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A B S T R A C T   

Concerns of declining agrobiodiversity and widening socioeconomic inequities in United States (US) agriculture 
highlight the critical need for systemic change. Despite surmounting evidence of the field and landscape scale 
benefits of diversifying agricultural systems, path dependencies of US agriculture present barriers to such 
diversification pathways. This study aims to elucidate path dependencies of agricultural landscapes that (dis) 
incentivize crop diversification at the regional scale through two main research questions: 1) what are the 
biophysical and socioecological factors most predictive of agricultural diversity across the US; and 2) how do 
these factors vary regionally? Using a novel panel dataset constructed from several open-source databases, we 
use random forest (RF) permutation variable importance measures to identify and compare the factors most 
predictive of county-level crop diversity across nine US regions. Our results show that climate, land use norms, 
and farm inputs are consistently the most important categories for predicting agricultural diversity across re
gions; however, variability exists in the relative regional importance of variables within these categories. Thus, 
factors most strongly predictive of agricultural diversity across US landscapes operate distinctly at a regional 
level, emphasizing the need to consider multiple scales of influence. These distinct regional relationships 
contribute to path dependencies that present resistance to enhancing agricultural diversity. By more appropri
ately addressing the regional factors of US agricultural landscapes the constrain agricultural diversification, with 
an eye towards future cropscapes, we can shift current path dependencies toward a more resilient and adaptive 
US agricultural future.   

1. Introduction 

In the United States (US), the Green Revolution is failing to safely 
and sustainably meet the food production demands of a growing global 
population (Altieri and Nicholls, 2009; Gleissman, 2015). Although 
modern agriculture is becoming increasingly productive (ERS, 2019; 
Key, 2019; Pellegrini and Fernández, 2018; Ramankutty et al., 2018; 
Reganold et al., 2011), this productivity has come at the cost of 
ecological health and the wellbeing of farmers, farmworkers, and rural 
communities writ large (Aizen et al., 2019; Anderson et al., 2019; 
Benton, 2012; Burchfield et al., 2022; Petersen-Rockney et al., 2021; 
Prokopy et al., 2020; Spangler et al., 2020; Thaler et al., 2021). 
Corporate power and consolidation are rising in the agri-food sector, 
extending corporate influence and control over global agricultural 
markets and political lobbying (Clapp, 2018; Clapp and Purugganan, 
2020). These forces are reducing farmer autonomy (Burchfield et al., 

2022; Hendrickson et al., 2020) and reinforcing agricultural policies 
built upon socioeconomic inequity and injustice (Fagundes et al., 2019; 
Graddy-Lovelace, 2017; Hauter, 2012). 

At the same time, agricultural production has become increasingly 
specialized for a decreasing number of crop species (Aguilar et al., 2015; 
Aizen et al., 2019; Auch et al., 2018; Baines, 2015), and large-scale farm 
consolidation is driving out smaller-scale operations (MacDonald and 
Hoppe, 2017; Paul et al., 2004). This consolidation has led to the 
agglomeration and intensification of commodity production, resulting in 
simplified agricultural landscapes and concomitant biodiversity loss 
(Grab et al., 2018; Nassauer, 2010; Tscharntke et al., 2005). Moreover, 
these simplified landscapes are heavily reliant on external chemical and 
financial inputs and less resilient to uncertainty and change (Kremen 
and Merenlender, 2018; Landis, 2017; Meehan et al., 2011; Spangler 
et al., 2020). 

Given these urgent concerns, there is a critical need for systemic 
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change in US agriculture. One crucial area for change is a shift away 
from simplified commodity agriculture by increasing the agro
biodiversity of agricultural landscapes. Agrobiodiversity refers broadly 
to the diversity of food and agricultural systems (Zimmerer et al., 2019). 
As Kremen et al., (2012, p. 44) states, “a farming system is diversified 
when it intentionally includes functional biodiversity at multiple spatial 
and/or temporal scales through practices developed via traditional 
and/or agroecological scientific knowledge.” Increasing agro
biodiversity promotes greater multifunctionality – or multiple beneficial 
functions beyond food and fiber production – throughout the US 
agri-food system to support mechanisms that “(re-)link agriculture to 
society at large through a far wider range of interrelations than just large 
commodity markets” (van der Ploeg et al., 2009, p. S130). 

One short term mechanism for increasing agrobiodiversity is crop 
diversification. Crop diversification includes temporal and spatial 
diversification practices that increase the number and type of crops 
grown in an area at any point in time and over several years. Prior 
research at the field scale strongly supports the benefits of greater crop 
diversity, namely improved crop yields (Pywell et al., 2015; Schulte 
et al., 2017; Smith et al., 2008; Virginia et al., 2018), decreased yield 
volatility over time (Gaudin et al., 2015; Li et al., 2019), improved pest 
management (Bommarco et al., 2013; Chaplin-Kramer et al., 2011), 
improved soil health (Albizua et al., 2015; Berendsen et al., 2012; 
Ghimire et al., 2018; McDaniel et al., 2014; Postma et al., 2008), and 
increased pollinator diversity (Guzman et al., 2019; Schulte et al., 2017). 

Furthermore, crop diversification at the field scale is embedded 
within multiscale landscape dynamics that serve a critical role in man
aging for and maintaining greater crop diversity at other scales 
(Birkhofer et al., 2018; iiPES-FOOD, 2016; Renting et al., 2009). An 
individual farm’s ecosystem is both influenced by and influences the 
regional pool of crop and non-crop species and associated habitats. 
These interactions are referred to as the “landscape effect” (Benton, 
2012, p. 9). In turn, greater crop diversity at the landscape scale can 
boost overall yields (Burchfield et al., 2019), improve yield stability to 
weather and climate volatility (Abson et al., 2013; Manns and Martin, 
2018), support pest and disease control (Chaplin-Kramer et al., 2011; 
Gardiner et al., 2009; Ratnadass et al., 2012), and promote overall 
pollinator diversity (Hass et al., 2018; Tscharntke et al., 2005). 

Despite the mounting evidence of the benefits of crop diversity, path 
dependencies in US agriculture present significant barriers to diversifi
cation. Path dependency can be defined as “resistance to changing the 
way things have always been done, even if business as usual seems to be 
increasingly maladaptive” (Barnett et al., 2015, p. 2). Increasing 
commodification of agricultural land use reinforces a high-yielding, 
productivist agricultural paradigm perpetuated by infrastructure, ma
chinery, and institutional norms (Magrini et al., 2018, 2019; G. E. 
Roesch-McNally et al., 2018a). This self-reinforcing cycle may create 
resistance to change by “locking” farmers into certain technological and 
political regimes (e.g., pest management strategies, crop breeding, 
reliance on crop insurance, etc.) that are increasingly maladaptive to the 
implications of a changing climate (Annan and Schlenker, 2015; Chhetri 
et al., 2010) and other environmental shocks and stressors (Barnett 
et al., 2015). Crop diversification (and increasing agrobiodiversity more 
broadly) are important pathways toward more sustainable and resilient 
landscapes that work against these path dependencies. 

Therefore, it is urgent to assess factors that help drive (or inhibit) 
crop diversity, particularly beyond the field scale, to understand how 
current path dependencies shape US agricultural landscapes. Biophysi
cal realities of agricultural landscapes – climatic variability, water 
availability, and soil characteristics – shape and are shaped by processes 
of diversification or simplification, creating a baseline of environmental 
suitability for certain crops to grow and thrive (Burchfield and Nelson, 
2021; Burchfield and Schumacher, 2020; Goslee, 2020). Yet, on-farm 
factors such as fertilizer use, labor, and irrigation play a crucial role in 
the success and stability of farm outputs (Burchfield and Schumacher, 
2020), and government subsidies and assistance strongly influence 

farmer decision-making and priorities (Bowman and Zilberman, 2013; 
Graddy-Lovelace and Diamond, 2017; Zulauf, 2019). Thus, there is a 
pressing need to understand how biophysical realities, farmer 
decision-making, and government policy interact and influence the path 
dependencies that drive landscape simplification or diversification. 

This study aims to elucidate path dependencies in US agricultural 
landscapes that (dis)incentivize crop diversification. In so doing, we 
address two main research questions: 1) what are the biophysical and 
socioecological factors most predictive of agricultural diversity across 
the US; and 2) how do these factors vary regionally? By focusing on the 
regional scale, we fill a research gap calling for a deeper understanding 
of human-environmental interactions at multiple scales across agricul
tural landscapes (Coomes et al., 2019; Duarte et al., 2018; Swift et al., 
2004). In assessing how these factors are associated with agriculturally 
diverse or non-diverse landscapes, we aim to provide structural context 
for how and why farmers and farmworkers make decisions toward or 
away from diversification within these regions and landscapes. 

2. Methods 

We use random forest (RF) permutation variable importance mea
sures to determine which biophysical and socioecological factors are 
most predictive of county-level crop diversity measures at the regional 
scale. These importance measures naturally account for interactive and/ 
or non-linear effects among the predictor variables not possible in a 
standard correlation analysis. What differentiates our analysis from 
previous studies using RF is the focus on the predictive power of each 
explanatory variable, rather than simply focusing on accurate 
predictions. 

2.1. Predictor variables 

We utilized a novel panel dataset constructed from several open- 
source databases containing information about US agricultural land 
use, climate and soil characteristics, on-farm use of inputs and assis
tance, and farmer demographics. These data include observations for all 
counties in the coterminous US for the US Department of Agriculture 
(USDA) Census of Agriculture (COA) years 2012 and 2017, which are 
the most recent years available (USDA NASS, 2019a). The USDA COA is 
administered every five years to all farms and ranches selling at least 
$1000 of their products. It also includes irrigated extent from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated 
Agriculture Dataset (MIrAD) provided by the US Geological Survey 
(USGS) (Brown et al., 2019). 

Although soil and climate data are available at much higher spatio
temporal resolution, the county-year is the finest spatiotemporal reso
lution at which COA data is publicly available nationally. Therefore, we 
aggregated all soil and climate data to the county-year scale. From 1- 
kilometer monthly climate summaries provided by the DayMet group 
(Thornton et al., 2017), we constructed nineteen indicators of average 
seasonal climate over the period from 2000 to 2020 (Fick and Hijmans, 
2017) and extracted average seasonal values of these indicators for 
across all pixels in a county. To increase model interpretability, we only 
considered eight climatic indicators that are most predictive of crop 
suitability to include in our model prior to variable selection. We also 
included soil characteristics extracted from the Regridded Harmonized 
World Soils Database (FAO, 2012; Wieder et al., 2014) by extracting the 
average for soil attributes across pixels in a county. Once aggregated, we 
merged data into a county-year panel dataset for all counties in the 
coterminous US (n = 3108) for the years 2012 and 2017. 

While we recognize the concern for the ecological fallacy associated 
with aggregating multiscale spatial data, we also acknowledge that there 
is no optimal scale at which all relevant ecological processes can be 
adequately explained (Harris, 2006), especially in a study that encom
passes the entire US. One of the only reliable ways to mitigate this issue 
is to critically combine aggregated data with individual-level data 
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(Wakefield, 2007; Wakefield and Lyons, 2010); this is not possible for 
the scale of our models and the type of data necessary to capture the 
breadth of factors related to agricultural production and diversity. 
Furthermore, we have only included variables that are justifiably related 
to and influential of US agriculture production, supported by recent 
literature and relevant experts, to limit the estimation of spurious re
lationships (Salkeld and Antolin, 2020). Although obfuscating 
intra-county variability, the county scale is the finest resolution to 
include all relevant data in our models, and this study is a valuable step 
forward to encourage further intra-county analysis. For additional in
formation and detail on methodological procedures, all code can be 
found on GitHub (github.com/kspangler1/regional-diversity). 

2.2. Variable selection 

Since RF permutation variable importance measures are negatively 
impacted by an excess number of highly related explanatory variables 
(Biau and Scornet, 2016), we performed a manual variable selection to 
minimize variable overlap based on both data availability and collin
earity as foundational rules of elimination. First, we row-wise deleted 
any variables that were more than eight percent missing for both 2012 
and 2017 and removed any variables that were a direct linear combi
nation of any other variables. 

We observed several pairs of highly collinear variables among the 
candidate explanatory variables (see SI Fig. 1A-1C for correlation 
matrices). For soil variables, we consulted with a soil health expert to 
rank all soil variables in order of priority (between one and three, one 
being top priority) as they relate to agricultural production (Cowan, 
2020). Based on this expertise, we removed: 1) eight qualitative vari
ables due to their redundancy and lack of interpretability; and 2) five 
quantitative variables based on high collinearity (correlation > 0.8) 
with variables of greater importance to agriculture that are more stable 
over time. For instance, topsoil pH was removed because it is actively 
managed for by farmers from season to season and therefore varies in 
many places across time and space, but we retained subsoil pH due to its 
relative stability over time (Ebabu et al., 2020; Metwally et al., 2019). 
For correlated climate variables, we assessed pairwise correlations by 
the following set of rules: 1) drop any climate variable that measures a 
range in favor of the minimum and maximum values; 2) drop monthly 

climate measurements and retain quarterly measurements; 3) retain any 
climate variable that is an annual summary. Finally, for highly corre
lated COA variables (rho > 0.8), we retained the variable with the 
higher availability. 

2.3. Imputation 

Following these variable selection processes, we would have 
removed 475 counties for 2012 (15.2% of all 3108 counties) and 422 
different counties for 2017 (13.6%) due to missing COA data via row- 
wise deletion (for a total removal of 28.8% of counties across both 
years). To avoid this costly data removal, we performed imputation for 
missing data. First, we verified that the COA variables were not appre
ciably different between 2012 and 2017 by checking the distribution 
from 1997 to 2017 (see GitHub link to RF-imputation-COA.html). Given 
that all COA variables varied minimally from 2012 to 2017, we imputed 
missing data for counties in 2012 by infilling with its value in 2017, and 
vice versa. After systematically imputing these values, we deleted 134 
counties in each year that had no data reported and, therefore, no data to 
impute in either year for retained COA variables. 

2.4. Final predictor variables 

Final predictor variables include measures of six main characteristic 

Fig. 1. Standard deviation of bootstrapped SDI, SIDI, and RICH plotted against 
number of agricultural land pixels (vertical line indicates 250-pixel cutoff). 

Table 1 
Predictor variable categories and units.  

Variable Units 

Farm(er) Characteristics  
Primary producer’s age Avg. age 
% acres operated by male farmers % ag acres 
Land tenure % ag acres 
On-farm experience Avg. years 
Farm size Med. # 
Farm inputs  
Fertilizer expense $/ag acre 
Manure acres % ag acres 
Chemical expense $/ag acre 
Irrigation % ag acres 
Labor n/ag acre 
Machinery $/ag acre 
Land use  
% cropland % cty 
% pastureland (excluding cropland) % cty 
Assistance & income  
Commodity sales $/operation 
Government programs $/operation 
Soil characteristics  
Topsoil gravel content %vol. 
Topsoil sand fraction % wt. 
Topsoil silt fraction % wt. 
Topsoil reference bulk 

density 
Kg/dm3 

Topsoil organic carbon % weight 
Subpsoil pH (H2O) -log(H+) 
Topsoil CEC (clay) Cmol/kg 
Topsoil CEC (soil) Cmol/kg 
Topsoil calcium 

carbonate 
% weight 

Topsoil gypsum % weight 
Topsoil sodicity (ESP) % 
Topsoil salinity (Elco) dS/m 
Climate  
Mean annual temperature ◦C 
Mean diurnal range ◦C 
Temperature seasonality sd* 100 
Mean temperature of wettest quarter ◦C 
Mean temperature of driest quarter ◦C 
Mean temperature of warmest quarter ◦C 
Total (annual) precipitation mm 
Precipitation seasonality coefficient 
Precipitation of warmest quarter mm  
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types: 1) farm(er) characteristics, 2) farm inputs, 3) land use, 4) assis
tance and income, 5) soil characteristics, and 6) climate (see Table 1 for 
variable descriptions). Variables were standardized (where applicable) 
using “total operated acres,” which includes agricultural land used for 
crops, pasture, or grazing, as well as woodlands, farm roads, and farm 
buildings (USDA NASS, 2019b) (See SI Table 1 for full description of 
variables and their standardization). Further, given that our research 
questions aim to determine the influence of external factors on crop 
diversity at a moment in time, we did not include any lagged effects of 
prior crop diversity. 

While this dataset contains a wide range of variables that are openly 
and reliably accessible, they are far from a comprehensive list of vari
ables that are key to US agricultural path dependencies. They omit key 
demographic factors (e.g., race and ethnicity of both farmers and 
farmworkers), financial factors (e.g., corporate revenue and influence), 
and other important ecological factors (e.g., topography). These omis
sions limit our ability to build models that explicitly include sociopolit
ical processes that have been central to defining US agricultural 
landscapes and their current trajectories, such as Indigenous land 
dispossession and knowledge appropriation (Caradonna and 
Apffel-Marglin, 2018; Dunbar-Ortiz, 2014), racial discrimination (Ayazi 
and Elsheikh, 2015; Minkoff-Zern and Sloat, 2017), dismissal of queer 
rural identities (Dentzman et al., 2020), and corporate power over seeds, 
land, and trade markets (Baines, 2015; Clapp and Purugganan, 2020). 
However, such data have not been systematically or reliably collected 
for national or sub-national representativeness. 

Nonetheless, these predictors do gauge several important factors that 
both drive current sociopolitical contexts and represent past sociopo
litical forces to gauge what presents resistance to more diversified 
agricultural systems. These include: 1) reliance on external chemical and 
mechanical inputs (farm inputs); 2) binary gender-based differences in 
farm management (% acres operated by female/male farmers) in light of 
historical inequities in US agricultural land access for women (Carter, 
2017); 3) the importance of land ownership (land tenure) and related 
experience (on-farm experience) in the context of the systematic 
exclusion of marginalized farmers and farmworkers in achieving such 
tenure and experience (Calo and De Master, 2016); 4) migrant and 
non-migrant farmworkers (number of laborers), particularly considering 
their inequitable legal representation and treatment (Soper, 2020), and 
5) the significance of commodity production (commodity sales) and 
government assistance (government programs) as representations of the 
commodification and expansion of US production. We also include a 
suite of soil and climate variables to establish an understanding of bio
physical suitability for crop diversity across regions. 

2.5. Response variables 

Response variables measure agricultural land use diversity through 
three metrics, computed using only agricultural land pixels from the 
USDA NASS Cropland Data Layer (CDL) (USDA NASS, 2020) and 
aggregated for every county in the coterminous US: Shannon’s diversity 
index (SDI), Simpson’s diversity index (SIDI), and Richness (RICH). SDI 
is one of the most common measures of landscape diversity, measured as 
the proportional abundance of each land use category in a county 
(Aguilar et al., 2015; Burchfield et al., 2019; Goslee, 2020; Gustafson, 
1998). SIDI measures the probability that two random pixels (in the case 
of CDL data, 30-meter pixels) comprise different land uses and is less 
affected by rare land use categories than the SDI. Finally, RICH measures 
the number of agricultural land use categories (see SI Table 2 for full 
descriptions). These metrics operationalize crop diversity as both 
configurational (i.e., how much space each land use comprises) and 
compositional (i.e., what each land use is), accounting for spatial but not 
temporal variation within a given year. 

2.6. Reclassification of CDL data 

While the overall cropland classification accuracy for the CDL 
dataset is notably high (89.4% in 2012 and 82.9% in 2017) (USDA 
NASS, 2021), crop- and region-specific classification accuracy rates are 
notably low (Reitsma et al., 2016). To address these error rates, we 
grouped functional crops together into broader categories – an approach 
recommended by Lark et al. (2017) – to improve data reliability. 
Broader categories were defined by the US National Vegetation Classi
fication (USNVC) database (Faber-Langendoen et al., 2016) (SI Table 3). 
With this reclassification, we recalculated SDI, SIDI, and RICH for final 
analyses. 

2.7. Bootstrap sensitivity analysis 

Current approaches for estimating landscape diversity do not ac
count for differences in the percentage of land devoted to agricultural 
land use. For example, prior to reclassification, San Francisco County, 
CA has only 39 pixels (30 m resolution) devoted to agricultural use, 
whereas Tioga County, PA has more than a half-million agricultural 
pixels. Both counties have an SDI score of 0.52, but the estimate for 
Tioga County is more reliable given its larger agricultural land area. 
Thus, we conducted a bootstrap sensitivity analysis (Efron, 1979) of the 
estimated diversity scores for each county. This analysis samples, with 
replacement, the parcels of agricultural land within each county. Each 
bootstrap sample is the same size as the original sample with some ob
servations appearing more than once, and others not at all. In practice, 
roughly two-thirds of the original observations are represented in each 
bootstrap sample, and diversity scores are estimated for 500 bootstrap 
samples in each county. Fig. 1 plots the standard deviation of the 
bootstrapped diversity scores against the number of pixels devoted to 
agricultural land. 

As expected, the sensitivity of SDI and SIDI are highly related to the 
number of agricultural pixels in each county. The standard deviation of 
the bootstrap diversity metrics levels out at roughly 250 pixels, so we 
removed any county with less than 250 pixels of agricultural land from 
our analyses. In total, a 250-pixel cutoff removed 39 counties for 2012 
and 10 counties for 2017 after variable selection, imputation, and row- 
wise deletion. Of the 3108 total initial US counties, our final dataset 
included 2874 counties for 2012 and 2903 for 2017. 

2.8. Analysis 

Prior to analysis, we examined the distribution each response vari
able. SIDI was heavily skewed to the left, while SDI and RICH were 
normally distributed. We did not transform SDI and RICH, but since RF 
regression is not robust to the distribution of response variables, we 
transformed SIDI using a square transformation that substantially 
reduced the left skew. 

We then divided counties into Farm Resource Regions (FRR) as 
defined by the USDA Economic Research Service (ERS) (Fig. 2). These 

Table 2 
Summary statistics by FRR in 2017.  

FRR # of 
counties 

Mean SDI 
value 

Standard deviation of 
SDI 

Heartland  540  0.91  0.16 
Northern Crescent  388  1.11  0.35 
Northern Great 

Plains  
175  1.19  0.12 

Prairie Gateway  373  0.97  0.29 
Eastern Uplands  394  0.81  0.45 
Southern Seaboard  461  0.94  0.36 
Fruitful Rim  251  1.08  0.42 
Basin and Range  169  0.87  0.38 
Mississippi Portal  152  0.86  0.22  
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regions reflect geographic specialization of agricultural production at 
the county-scale as determined by a cluster analysis of four other agri
cultural land use classifications: 1) USDA Crop Reporting Districts, 2) 
Land Resource Regions, 3) County Clusters of US farm characteristics, 
and 4) outdated USDA Farm Production Regions (ERS, 2000). 

Using the randomForest package (Liaw and Wiener, 2002) in R (R 
Core Team, 2020), we built an RF regression model for all three response 
variables in 2012 and 2017 using all counties for each FRR (i.e., 3 
models for each of the 9 FRRs in 2 different years, totaling 54 RF 
models). RF regression is a particularly adept method at handling 
complex, non-linear interactions among predictors with large datasets, 
and it does not require any distributional assumptions about the data. It 
has been used to accurately predict regional and global crop yields 
(Jeong et al., 2016), as well as regional crop diversity (Goslee, 2020). 
Due to prior research indicating the importance of increasing the 
number of trees to achieve stable variable importance (Grömping, 2009; 
Probst etal, 2019) we used 2000 trees per forest – four times the default 
value – to achieve stability without compromising accuracy. Variable 

importance measures were also shown to be insensitive to a doubling of 
the default value of mtry – the number of variables considered for 
splitting at each node of the tree. Given this insensitivity, all regional 
random forest models use default hyper-parameters with a fourfold in
crease in the number of trees fit in each model. 

From each model, we assessed out-of-bag (OOB) percent variance 
explained from all variables, as opposed to cross-validated error using 
test and predictor subsets, because we were more interested in variable 
importance than predictive accuracy. Though there are many variations 
of the variable importance approach (Wei et al., 2015), we used 
permutation-based random forest variable importance (Breiman, 2001) 
given its widespread acceptance and use to compare the relative 
importance of the explanatory variables in each agricultural region. 
These relative measures are calculated by dividing the importance 
measures of each region by the maximum importance measure in each 
region. 

Further, we recognize the presence and influence of spatial auto
correlation in these models. By visualizing the county-level residuals 

Fig. 2. Farm Resource Region (FRR) Designations. 
Reprinted from Spangler et al. (2020). 

Fig. 3. RF regression model residuals for SDI in 2017; FRRs are outlined in black.  
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from our model predictions for SDI in 2017 (Fig. 3; see SI Fig. 2 for SDI in 
2012), we show the distinct trends of positive (e.g., the Heartland) and 
negative (e.g., the Fruitful Rim) spatial autocorrelation within and 
across regions. However, we do not explicitly account for these trends in 
our models for two reasons. First, in regression scenarios, spatial auto
correlation can artificially inflate the statistical significance of beta co
efficients, but we do not consider p-values to determine variable 
importance in this study. Second, while spatial autocorrelation can 
reduce predictive power, the focus of this paper is to quantify the pre
dictive power of external factors (e.g., soil, climate, demographics, etc.) 
not to predict agricultural diversity most accurately. Thus, fitting a 
spatial model to these residuals would not change the story we tell 
regarding the importance of such external factors. 

Finally, we assessed partial dependence of several of the most 
consistently important variables across regions from different predictor 
categories. Partial dependence plots are one way to visualize the mar
ginal influence of a variable with a precedence for use in ecology (Cutler 
et al., 2007). These plots visualize the effect of a single variable on the 
prediction of diversity after accounting for the average effects of all 
other variables (Friedman et al., 2001), but are limited in visualzing 
variable interactions. We focused on six variables that were, consistently 
the most strongly predictive of diversity across regions: 1) temperature 
seasonality, 2) precipitation seasonality, 3) percent cropland, 4) percent 
pastureland, 5) chemical input, and 6) fertilizer input. 

3. Results 

We focus our results on SDI – the most widely used metric of agri
cultural diversity – and on 2017 – the most recently available year for 
Census of Agriculture data. Results from our other two response vari
ables, and from 2012, are included in Supplemental Information (SI); the 
results of these analyses are consistent with our findings for SDI in 2017. 
First, we present summary statistics delineated by Farm Resource Re
gion (FRR). We then provide the results of the regional RF regression 
models, specifically 1) how variables most strongly associated with 
agricultural diversity (variable importance) vary across regions, and 2) 
how these variables differentially influence regional diversity (func
tional relationships of key variables). We conclude by discussing the 
implications of these models and by contextualizing them within 
broader conversations about agricultural diversification. 

3.1. Descriptive statistics 

Mean regional SDI for 2017 ranges in between 0.81 and 1.19 for 
2017, with the lowest mean value in the Eastern Uplands (0.81) and the 
highest in the Northern Great Plains (1.19) (Table 2; see SI Table 4 for 
2012 data). Unsurprisingly, the Heartland region, which has the greatest 
number of counties (540), has a low average SDI (0.91) as well as a low 
standard deviation (0.16), indicating that this region is both agricul
turally less diverse than most other regions and counties there within are 
more homogenous. The Mississippi Portal is the smallest region (152 
counties) and has both a low SDI and standard deviation value. Like the 

Fig. 4. Variable importance by FRR for SDI in 2017. The size of the bubble indicates variable importance: the most important variables are the largest bubbles, and 
the size of the bubbles in each region are standardized by the maximum importance measure in each region *The model for the Mississippi Portal only explains 9.58% 
of variance. We still included these results for consistency across models, but these results are not reliable. 
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Heartland, it is comparatively less diverse and more homogenous than 
other regions, particularly due to its small geographic area and a 
regional commodity focus on cotton, rice, and soybeans. The Fruitful 
Rim and Northern Crescent have comparatively high mean SDI values 
(1.08 and 1.11, respectively) and high standard deviations across 
counties (0.42 and 0.35, respectively). These divergences illustrate how 
landscapes within diverse regions have a wider range of heterogeneous 
farming systems across counties (e.g., high-end vegetable, fruit, and nut 
production in California) than less diverse regions. 

3.2. Variable importance across regions 

The relative importance of variable categories is consistent across 
regions (Fig. 4), with climate characteristics, farm inputs, and land use 
being the strongest predictors of SDI. This is also true for SIDI and RICH 
in 2017 (see SI Fig. 3A and 3B) and for all three response variables in 
2012 (SI Fig. 4A-4 C). In the context of these models, soil characteristics, 
assistance and income, and farm(er) characteristics are less important 
predictors of regional agricultural diversity. 

Although the variable categories predictive of diversity are consis
tent across regions, clear differences exist across regions regarding the 
distribution of variable importance. For regions such as the Northern 
Great Plains, specific climate variables (e.g., temperature seasonality) 
are substantially more important than most other variables in predicting 
SDI. This is also true for regions like the Northern Crescent, where farm 
input variables (e.g., chemical inputs) explain the majority of SDI vari
ance. However, for the Heartland and Southern Seaboard, predictive 
importance is distributed more evenly across predictors. For these re
gions with more evenly distributed variable importance, soil and farm 
(er) characteristics are similarly important to climate, inputs, and land 
use, placing less predictive power on any one variable category. 

In addition, model performance varies regionally. The two regions 
with the lowest mean SDI – the Heartland and Eastern Uplands – exhibit 
the highest percentage of variance explained (roughly 74% and 68%, 
respectively). This points to the ways that less diverse landscapes are 
easier to model and predict, particularly at a broader regional level. 
Nonetheless, the Northern Great Plains and Northern Crescent exhibit 
high average SDI values and comparatively high model performance 
(roughly 59% and 65% variance explained respectively). Importantly, 
the Mississippi Portal, one of the least diverse regions, exhibited an 
unreliably low model performance of less than 10% variance explained. 
This highlights the importance of intra-regional dynamics that are 

difficult to consistently capture at larger spatial scales, and the data- 
hungry nature of RF modeling. 

3.3. Functional relationships of key variables 

The partial dependence plots of several variables that were consis
tently important (Figs. 5–7) show the diverse ways that farm inputs, 
climate, and land use influence crop diversity, emphasizing the presence 
of regionally specific drivers of agricultural production – some that can 
be managed for and some that cannot. First, we consider the overall 
importance of climate in predicting crop diversity and defining bio
physical suitability for certain crops; Fig. 5A and 5B illustrate the 
functional relationships between temperature seasonality (A) and pre
cipitation seasonality (B) with SDI. As temperature seasonality (TS) in
creases (or as temperatures become more variable) in the Eastern 
Uplands and Fruitful Rim, SDI sharply increases and then plateaus, 
indicating wide temperature ranges across counties in each region that 
influence the diversity of crops grown. Yet, all other regions exhibit a 
slightly negative or neutral trend between TS and SDI: as TS increases, 
SDI decreases or stays the same, indicating that places with more sea
sonal temperatures do not inherently support greater crop diversity. A 
similar trend is observable with precipitation seasonality (PS) (or the 
variability of precipitation by season). For the Eastern Uplands, as PS 
increases, so does diversity; this is particularly true for counties well 
above the regional mean PS value. This means that counties in this re
gion with the highest PS are much more likely to support a greater di
versity of crops than those with less PS. For the Northern Crescent and 
Southern Seaboard, there is a slightly positive effect on SDI as PS in
creases; this positive relationship occurs for the counties with an average 
PS value. For all other regions, there is no observable positive or nega
tive effect from PS, emphasizing how precipitation (as one of many 
important climatic factors) creates baseline conditions for agricultural 
production and possibilities for diversification, as opposed to being a 
factor that can be directly managed to increase crop diversification. 

In terms of factors that can be directly managed, percent cropland 
and pastureland are highly predictive of crop diversity. Yet, percent 
cropland exhibits different functional relationships across regions 
(Fig. 6A). For the Northern Crescent, Eastern Uplands, and Southern 
Seaboard regions, there are discernable positive relationships between 
percent cropland and SDI, where counties with more croplands show 
higher levels of agricultural diversity. These positive relationships occur 
for the counties with percent cropland close to the regional mean. In the 

Fig. 5. Partial dependence plots of temperature seasonality (5A) and precipitation seasonality (5B) as a function of SDI in 2017.  
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Heartland and the Prairie Gateway, the opposite is true: for counties 
with percent cropland close to the regional mean, SDI begins to 
decrease. Moreover, counties in the Heartland have the highest average 
percent cropland of any region (~80%), reflecting its high concentration 
of simplified crop production. For the Fruitful Rim, Basin and Range, 
and Prairie Gateway, there is no effect between increasing percent 
cropland and SDI. This neutral relationship indicates that percent 
cropland is a highly predictive yet intrinsic factor in determining the 
diversity of crops grown in each region, and, thus, the directionality of 
its influence is indeterminable. 

Percent pastureland (Fig. 6B) exhibits a neutral relationship in pre
dicting SDI, with a few exceptions. For most regions, such as the 
Northern Crescent, Prairie Gateway, and Fruitful Rim, the effect of 
pastureland on predicting agricultural diversity is neither positive nor 
negative. Like cropland presence, the presence of pastureland within 
these counties is intrinsically important to the diversity of crops grown 
but does not increase or decrease such diversity. However, in regions 
such as the Heartland, Northern Great Plains, and Basin and Range, 

counties close to the regional mean of percent pastureland begin to in
crease in crop diversity until they eventually plateau again. This is 
particularly interesting for the Basin and Range, a region with the lowest 
average percent cropland and highest percent pastureland, indicating 
that pasture production is a strong driver of regional crop diversity. The 
only region where percent pastureland has a negative effect on SDI is the 
Southern Seaboard. 

Other key factors that can be directly managed as strong predictors of 
crop diversity include fertilizer and chemical input. Crop diversity in all 
regions is highly responsive to expenditures on fertilizers and chemicals 
but quickly experiences diminishing returns. Moreover, the threshold of 
these diminishing returns is different for every region (Fig. 7A and 7B). 
Most notably, the Heartland is the region with both the highest average 
chemical and fertilizer expenses per acre; increasing chemical and fer
tilizer expenses both have an observably negative relationship with SDI. 
For counties at the regional average of input use, SDI begins to decrease 
and quickly plateaus; in other words, higher input use is associated with 
decreasing crop diversity. 

Fig. 6. Partial dependence plots of percent cropland (6A) and percent pastureland (6B) as a function of SDI in 2017.  

Fig. 7. Partial dependence plots of chemical input (7A) and fertilizer (7B) as a function of SDI in 2017 *Data are visualized on the log scale to better visualize the 
lower end of the highly skewed data. Notice that each tick mark on the x axis represents a doubling of the previous value, rather than a fixed increment be
tween values. 
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Contrastingly, the Eastern Uplands, Basin and Range, and Northern 
Crescent regions exhibit the sharpest increase in crop diversity as 
chemical and fertilizer input use increases. These increases occur for 
counties close to the regional mean of input use and then plateaus, 
meaning that counties with the highest input use do not support greater 
crop diversity than those with average input use. Other regions, namely 
the Fruitful Rim and Northern Great Plains, consistently include 
counties with the highest SDI values and exhibit a neutral response to 
increasing input use, suggesting that their diversity is not dependent on 
their use of agricultural inputs. 

4. Discussion 

Our results show that factors most strongly predictive of crop di
versity across US landscapes operate distinctly at a regional level. These 
distinct regional relationships contribute to path dependencies that 
present resistance to enhancing agrobiodiversity across US agriculture. 
First, major US regions exhibit significantly different levels of crop di
versity, where the most diverse regions support a wider array of farming 
systems that deviate from the average, and the least diverse support 
more homogenous systems. Second, climate, land use norms, and farm 
inputs are consistently the most important categories for predicting 
agricultural diversity across regions; however, variability exists in the 
relative regional importance of variables within these categories. Model 
performance also varies, pointing to the existence of distinct intra- 
regional dynamics that we cannot explain at the regional level with 
the data we have included in these analyses. These intra-regional dy
namics are evident in the various functional relationships between key 
climate, land use, and input variables for predicting diversity. 

Regional differences in crop diversity, paired with the importance of 
climate, land use, and farm input variables in predicting such diversity, 
highlight the need to consider the regional scale and its influence on 
path dependencies in US agriculture. Our models illustrate clear and 
consistent trends that operate within and across nine US regions that 
may not be evident at the micro (field or farm) or macro (international) 
scales. For example, soil metrics did not prove to be as important a 
biophysical predictor as climate in our regional models, despite soil 
health and management being strong factors in understanding crop 
suitability (Zabel et al., 2014) and farmer decision-making 
(Roesch-McNally et al., 2018a) at the field scale. Furthermore, federal 
subsidy assistance and policies strongly dictate domestic and interna
tional markets, commodity supply chains, as well as farmer livelihoods 
and adaptation (Annan and Schlenker, 2015; Graddy-Lovelace, 2017; 
Graddy-Lovelace and Diamond, 2017), yet were not comparatively 
important in predicting regional crop diversity. Thus, considering mul
tiple scales of interaction is crucial to a deeper understanding of what 
constrains and enables processes of diversification. 

Climate characteristics play a pivotal role in defining the biophysical 
possibilities of regional crop and commodity production. Metrics of 
seasonal precipitation and temperature are consistently important fac
tors in predicting agricultural diversity within and across regional 
landscapes. The strong importance of climate in predicting agricultural 
diversity underscores the importance of understanding how climate af
fects what farmers can reasonably do within a given landscape. This is 
particularly salient considering how climate change may shift the suit
ability of landscapes for major crops northward (Lant et al., 2016), in
crease the sensitivity of the agricultural economy (Liang et al., 2017), 
and contribute to greater yield variability globally (Ray et al., 2015). 
While climatic factors cannot be actively managed for to shift US agri
cultural path dependencies, it is increasingly important to consider how 
any volatility in current and future regional climates will likely have a 
strong effect on the potential for, and success of, diversifying agricul
tural landscapes. 

The importance of land use patterns, namely the presence and con
centration of cropland and pastureland, in predicting crop diversity 
across regions emphasizes how past land use reinforces current and 

future land uses. The importance of these factors captures the path de
pendencies that have determined where and why agricultural land is 
located and managed and highlights the growing resistance to changing 
these land uses. Our results show the regional specialization and 
intensification of commodity production, where agricultural landscapes 
are either dominated by crop production or rangelands and never 
equally covered by both (Spangler et al., 2020). The negative effect of 
increasing percent cropland on diversity in regions already largely 
dominated by cropland (e.g., Heartland) accentuates the self-reinforcing 
cycle of intensified commodity production; in this region, cropland 
expansion has driven and continues to drive the simplification of these 
landscapes (Hart, 1986, 2001; G. E. Roesch-McNally et al., 2018b). This 
history exacerbates the sociopolitical and ecological challenges of 
transitioning these landscapes toward alternative production systems 
(Lawler et al., 2014). Yet, for other regions less dominated by cropland 
(e.g., Eastern Uplands, Southern Seaboard, and Northern Crescent), the 
relationship between percent cropland and diversity is slightly positive. 
This finding presents broad evidence that allocating more land to crop 
production in certain regions may support greater crop diversity, pro
vided such expansion is intentionally integrated with other socio
ecological benefits to the landscape (Kremen, 2015; Kremen and 
Merenlender, 2018). This is also true for increasing pastureland in re
gions such as the Basin and Range and Northern Great Plains, consid
ering recent research that supports the potential for integrated 
crop-livestock systems as a viable pathway toward enhancing agro
biodiversity (Bonaudo et al., 2014; Franzluebbers et al., 2014; Olmstead 
and Brummer, 2008; Poffenbarger et al., 2017). 

Finally, reliance on chemical and fertilizer use operates as a tech
nological lock-in to current US agricultural path dependencies, unsus
tainably extending the viability of simplified systems. Mounting 
evidence illustrates the harmful environmental and social externalities 
of our increased reliance on external inputs to agriculture, including 
Gulf of Mexico hypoxia, nutrient runoff, decreased air quality (Prokopy 
et al., 2020), declines in pollinator abundance and diversity (Sponsler 
et al., 2019), and even decreased yields (Burchfield and Nelson, 2021). 
Our results show diminishing diversity returns from increased input 
expenditure, where crop diversity in many regions responded positively 
to increasing chemical and fertilizer expenditures initially, but quickly 
plateaued. This trend suggests that initial increases in crop diversity 
rely, in part, on increasing fertilizer and chemical inputs, which is 
consistent with the well-documented reliance on inputs throughout 
commercial annual cropping systems in the US (Culman et al., 2010; De 
Notaris et al., 2018; Gardner and Drinkwater, 2009). However, the di
versity plateau in the fertilizer and chemical partial dependence plots 
provides compelling evidence that diversification beyond the regional 
status quo will not be driven by greater reliance on chemical and fer
tilizer use. Furthermore, for the Heartland, where intensified annual 
commodity production is most heavily concentrated (Hart, 1986; Hud
son, 1994), the results suggest that excessive use of chemical and fer
tilizer use promote simplification and inhibit diversification of 
agricultural landscapes. 

4.1. Future research 

This study presents multiple future research directions. First, the 
definition of a region could be explored through various other regional 
boundaries to assess how this change in scale influences our results. 
Methodologically, regarding the bootstrap sensitivity analysis, we used 
a simple cutoff method to eliminate any counties below a threshold of 
reliability. One issue with a simple cutoff is that small changes to the 
boundary could potentially lead to large changes in the final outcomes. 
Therefore, future research could consider a weighting scheme that 
handles differences in the landscape metric sensitivities in a continuous 
way. Furthermore, it would be worthwhile to explore alternative 
methods and measures of variable importance to further corroborate the 
results discussed in this paper, as well as consider multi-level statistical 
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methods to explore intra-regional mechanisms of crop diversity. Finally, 
we call for more research that explicitly considers the multiple scales of 
interaction that constrain and enable the efficacy and implementation of 
crop diversification (and policies that support it) from micro- to mac
roscales. There is strong potential for qualitative research to meaning
fully build from these modeling efforts to facilitate the critical and 
intentional contextualization of how farmers and farmworkers across 
the US operate within, and respond to, heterogenous biophysical and 
sociopolitical contexts. 

5. Conclusion 

Developing pathways to alternative agricultural systems requires a 
fundamental reckoning with current path dependencies in US agricul
ture. We show that these path dependencies, and the associated lock-ins 
of current agricultural land use, operate distinctly within and across US 
regions. The consistent importance of biophysical and nonactionable 
factors, like climate, and actionable factors, such as land use and farm 
inputs, as highly predictive regional factors exemplify how these factors 
are deeply intertwined with the diversity (or lack thereof) of agricultural 
landscapes. These important factors, and their functional relationships 
with crop diversity, also highlight how resistant the systems within each 
region may be to alternative pathways and adaptation. 

Imagining alternative, diversified agricultural systems – an increas
ingly urgent necessity in the face of a changing climate and widening 
sociopolitical inequity – requires a fundamental shift away from 
regional pathways that lock farmers and farmworkers into maladaptive 
systems. These pathways reinforce the current US productivist paradigm 
and the structural barriers to farmer adoption of alternative manage
ment strategies. As shown in this study, we can begin this shift by first 
integrating the importance of regional biophysical factors, namely cli
matic variability, into agricultural policies from local to federal levels, as 
well as prioritize climate adaptation for US agricultural systems. Second, 
the historical legacies of prior and current land use dynamics must be 
central to defining realistic alternative pathways of future crop diver
sification. For regions that have been and continue to be dominated by 
increasingly simplified cropland, these alternative pathways encounter 
greater resistance and will require distinct, innovative solutions as 
compared to regions that have been and continue to be more agricul
turally diverse. Third, decreasing reliance on agrichemical inputs is a 
key priority for US agriculture writ large. While such inputs can extend 
the viability of simplified systems, there is an upper limit to this support; 
thus, we add to the growing call for US agriculture to promote more 
ecologically situated practices that harness ecosystem services rather 
than degrade them. 

Agricultural diversity increases system resilience and has positive 
boundary effects for neighboring farm(er)s and ecological systems; by 
more appropriately addressing regional drivers of agricultural land use, 
with an eye towards future cropscapes, we can be sensitive to farm(er) 
concerns and needs while shifting current path dependencies toward 
more resilient and adaptive US agricultural landscapes. 
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Magrini, M.-B., Béfort, N., Nieddu, M., 2019. Technological lock-in and pathways for 
crop diversification in the bio-economy. In: Agroecosystem Diversity. Elsevier, 
pp. 375–388. https://doi.org/10.1016/B978-0-12-811050-8.00024-8. 

Manns, H.R., Martin, R.C., 2018. Cropping system yield stability in response to plant 
diversity and soil organic carbon in temperate. Agroecol. Sustain. Food Syst. 42, 28. 

McDaniel, M.D., Tiemann, L.K., Grandy, A.S., 2014. Does agricultural crop diversity 
enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. 
Appl. 24, 560–570. https://doi.org/10.1890/13-0616.1. 

Meehan, T.D., Werling, B.P., Landis, D.A., Gratton, C., 2011. Agricultural landscape 
simplification and insecticide use in the Midwestern United States. Proc. Natl. Acad. 
Sci. 108, 11500–11505. https://doi.org/10.1073/pnas.1100751108. 

Metwally, M.S., Shaddad, S.M., Liu, M., Yao, R.-J., Abdo, A.I., Li, P., Jiao, J., Chen, X., 
2019. Soil properties spatial variability and delineation of site-specific management 
zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, 
Sichuan, China. Sustainability 11, 7084. https://doi.org/10.3390/su11247084. 

Minkoff-Zern, L.-A., Sloat, S., 2017. A new era of civil rights? Latino immigrant farmers 
and exclusion at the United States Department of Agriculture. Agric. Hum. Values 
34, 631–643. https://doi.org/10.1007/s10460-016-9756-6. 

Nassauer, J.I., 2010. Rural landscape change as a product of US federal policy. In: 
Primdahl, J., Swaffield, S. (Eds.), Globalisation and Agricultural Landscapes. 
Cambridge University Press, Cambridge, pp. 185–200. https://doi.org/10.1017/ 
CBO9780511844928.011. 

Olmstead, J., Brummer, E.C., 2008. Benefits and barriers to perennial forage crops in 
Iowa corn and soybean rotations. Renew. Agric. Food Syst. 23, 97–107. https://doi. 
org/10.1017/S1742170507001937. 

Paul, C.M., Nehring, R., Banker, D., Somwaru, A., 2004. Scale economies and efficiency 
in U.S. agriculture: are traditional farms history? J. Product. Anal. 22, 22. 

Pellegrini, P., Fernández, R.J., 2018. Crop intensification, land use, and on-farm energy- 
use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. 
Sci. 115, 2335–2340. https://doi.org/10.1073/pnas.1717072115. 

Petersen-Rockney, M., Baur, P., Guzman, A., Bender, S.F., Calo, A., Castillo, F., De 
Master, K., Dumont, A., Esquivel, K., Kremen, C., LaChance, J., Mooshammer, M., 
Ory, J., Price, M.J., Socolar, Y., Stanley, P., Iles, A., Bowles, T., 2021. Narrow and 
brittle or broad and nimble? comparing adaptive capacity in simplifying and 
diversifying farming systems. Front. Sustain. Food Syst. 5, 564900 https://doi.org/ 
10.3389/fsufs.2021.564900. 

Poffenbarger, H., Artz, G., Dahlke, G., Edwards, W., Hanna, M., Russell, J., Sellers, H., 
Liebman, M., 2017. An economic analysis of integrated crop-livestock systems in 
Iowa U.S.A. Agric. Syst. 157, 51–69. https://doi.org/10.1016/j.agsy.2017.07.001. 

Postma, J., Schilder, M.T., Bloem, J., van Leeuwen-Haagsma, W.K., 2008. Soil 
suppressiveness and functional diversity of the soil microflora in organic farming 
systems. Soil Biol. Biochem. 40, 2394–2406. https://doi.org/10.1016/j. 
soilbio.2008.05.023. 

Probst, P., Wright, M.N., Boulesteix, A., 2019. Hyperparameters and tuning strategies for 
random forest. WIREs Data Min. Knowl. Disco 9. https://doi.org/10.1002/ 
widm.1301. 

Prokopy, L.S., Gramig, B.M., Bower, A., Church, S.P., Ellison, B., Gassman, P.W., 
Genskow, K., Gucker, D., Hallett, S.G., Hill, J., Hunt, N., Johnson, K.A., Kaplan, I., 
Kelleher, J.P., Kok, H., Komp, M., Lammers, P., LaRose, S., Liebman, M., 
Margenot, A., Mulla, D., O’Donnell, M.J., Peimer, A.W., Reaves, E., Salazar, K., 
Schelly, C., Schilling, K., Secchi, S., Spaulding, A.D., Swenson, D., Thompson, A.W., 
Ulrich-Schad, J.D., 2020. The urgency of transforming the Midwestern U.S. 
landscape into more than corn and soybean. Agric. Hum. Values 37, 537–539. 
https://doi.org/10.1007/s10460-020-10077-x. 

Pywell, R.F., Heard, M.S., Woodcock, B.A., Hinsley, S., Ridding, L., Nowakowski, M., 
Bullock, J.M., 2015. Wildlife-friendly farming increases crop yield: evidence for 
ecological intensification. Proc. R. Soc. B Biol. Sci. 282, 20151740. https://doi.org/ 
10.1098/rspb.2015.1740. 

R Core Team, 2020. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna. 

Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., Rieseberg, L. 
H., 2018. Trends in global agricultural land use: Implications for environmental 
health and food security. Annu. Rev. Plant Biol. 69, 789–815. https://doi.org/ 
10.1146/annurev-arplant-042817-040256. 

Ratnadass, A., Fernandes, P., Avelino, J., Habib, R., 2012. Plant species diversity for 
sustainable management of crop pests and diseases in agroecosystems: a review. 
Agron. Sustain. Dev. 32, 273–303. https://doi.org/10.1007/s13593-011-0022-4. 

Ray, D.K., Gerber, J.S., MacDonald, G.K., West, P.C., 2015. Climate variation explains a 
third of global crop yield variability. Nat. Commun. 6, 5989. https://doi.org/ 
10.1038/ncomms6989. 

Reganold, J.P., Jackson-Smith, D., Batie, S.S., Harwood, R.R., Kornegay, J.L., Bucks, D., 
Flora, C.B., Hanson, J.C., Jury, W.A., Meyer, D., Schumacher, A., Sehmsdorf, H., 
Shennan, C., Thrupp, L.A., Willis, P., 2011. Transforming U.S. agriculture. Science 
332, 670–671. https://doi.org/10.1126/science.1202462. 

Reitsma, K.D., Clay, D.E., Clay, S.A., Dunn, B.H., Reese, C., 2016. Does the U.S. cropland 
data layer provide an accurate benchmark for land-use change estimates? Agron. J. 
108, 266–272. https://doi.org/10.2134/agronj2015.0288. 

Renting, H., Rossing, W.A.H., Groot, J.C.J., Van der Ploeg, J.D., Laurent, C., Perraud, D., 
Stobbelaar, D.J., Van Ittersum, M.K., 2009. Exploring multifunctional agriculture. A 
review of conceptual approaches and prospects for an integrative transitional 
framework. J. Environ. Manag. 90, S112–S123. https://doi.org/10.1016/j. 
jenvman.2008.11.014. 

Roesch-McNally, G., Arbuckle, J.G., Tyndall, J.C., 2018a. Soil as social-ecological 
feedback: examining the “Ethic” of Soil Stewardship among Corn Belt Farmers. Rural 
Sociol. 83, 145–173. https://doi.org/10.1111/ruso.12167. 

Roesch-McNally, G.E., Arbuckle, J.G., Tyndall, J.C., 2018b. Barriers to implementing 
climate resilient agricultural strategies: the case of crop diversification in the U.S. 
Corn Belt. Glob. Environ. Change 48, 206–215. https://doi.org/10.1016/j. 
gloenvcha.2017.12.002. 

Salkeld, D.J., Antolin, M.F., 2020. Ecological fallacy and aggregated data: a case study of 
fried chicken restaurants, obesity and lyme disease. EcoHealth 17, 4–12. https://doi. 
org/10.1007/s10393-020-01472-1. 

Schulte, L.A., Niemi, J., Helmers, M.J., Liebman, M., Arbuckle, J.G., James, D.E., 
Kolka, R.K., O’Neal, M.E., Tomer, M.D., Tyndall, J.C., Asbjornsen, H., Drobney, P., 
Neal, J., Van Ryswyk, G., Witte, C., 2017. Prairie strips improve biodiversity and the 
delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl. 
Acad. Sci. 114, 11247–11252. https://doi.org/10.1073/pnas.1620229114. 

Smith, R.G., Gross, K.L., Robertson, G.P., 2008. Effects of crop diversity on 
agroecosystem function: crop yield response. Ecosystems 11, 355–366. https://doi. 
org/10.1007/s10021-008-9124-5. 

Soper, R., 2020. How wage structure and crop size negatively impact farmworker 
livelihoods in monocrop organic production: interviews with strawberry harvesters 
in California. Agric. Hum. Values 37, 325–336. https://doi.org/10.1007/s10460- 
019-09989-0. 

Spangler, K., Burchfield, E.K., Schumacher, B., 2020. Past and current dynamics of U.S. 
agricultural land use and policy. Front. Sustain. Food Syst. 4, 21. https://doi.org/ 
10.3389/fsufs.2020.00098. 

Sponsler, D.B., Grozinger, C.M., Hitaj, C., Rundlöf, M., Botías, C., Code, A., Lonsdorf, E. 
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