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ARTICLE INFO ABSTRACT

Keywords: Concerns of declining agrobiodiversity and widening socioeconomic inequities in United States (US) agriculture
Diversification highlight the critical need for systemic change. Despite surmounting evidence of the field and landscape scale
Agriculture

benefits of diversifying agricultural systems, path dependencies of US agriculture present barriers to such
diversification pathways. This study aims to elucidate path dependencies of agricultural landscapes that (dis)
incentivize crop diversification at the regional scale through two main research questions: 1) what are the
biophysical and socioecological factors most predictive of agricultural diversity across the US; and 2) how do
these factors vary regionally? Using a novel panel dataset constructed from several open-source databases, we
use random forest (RF) permutation variable importance measures to identify and compare the factors most
predictive of county-level crop diversity across nine US regions. Our results show that climate, land use norms,
and farm inputs are consistently the most important categories for predicting agricultural diversity across re-
gions; however, variability exists in the relative regional importance of variables within these categories. Thus,
factors most strongly predictive of agricultural diversity across US landscapes operate distinctly at a regional
level, emphasizing the need to consider multiple scales of influence. These distinct regional relationships
contribute to path dependencies that present resistance to enhancing agricultural diversity. By more appropri-
ately addressing the regional factors of US agricultural landscapes the constrain agricultural diversification, with
an eye towards future cropscapes, we can shift current path dependencies toward a more resilient and adaptive
US agricultural future.

United States
Path dependency
Region

1. Introduction

In the United States (US), the Green Revolution is failing to safely
and sustainably meet the food production demands of a growing global
population (Altieri and Nicholls, 2009; Gleissman, 2015). Although
modern agriculture is becoming increasingly productive (ERS, 2019;
Key, 2019; Pellegrini and Fernandez, 2018; Ramankutty et al., 2018;
Reganold et al., 2011), this productivity has come at the cost of
ecological health and the wellbeing of farmers, farmworkers, and rural
communities writ large (Aizen et al., 2019; Anderson et al., 2019;
Benton, 2012; Burchfield et al., 2022; Petersen-Rockney et al., 2021;
Prokopy et al., 2020; Spangler et al., 2020; Thaler et al., 2021).
Corporate power and consolidation are rising in the agri-food sector,
extending corporate influence and control over global agricultural
markets and political lobbying (Clapp, 2018; Clapp and Purugganan,
2020). These forces are reducing farmer autonomy (Burchfield et al.,
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2022; Hendrickson et al., 2020) and reinforcing agricultural policies
built upon socioeconomic inequity and injustice (Fagundes et al., 2019;
Graddy-Lovelace, 2017; Hauter, 2012).

At the same time, agricultural production has become increasingly
specialized for a decreasing number of crop species (Aguilar et al., 2015;
Aizen et al., 2019; Auch et al., 2018; Baines, 2015), and large-scale farm
consolidation is driving out smaller-scale operations (MacDonald and
Hoppe, 2017; Paul et al., 2004). This consolidation has led to the
agglomeration and intensification of commodity production, resulting in
simplified agricultural landscapes and concomitant biodiversity loss
(Grab et al., 2018; Nassauer, 2010; Tscharntke et al., 2005). Moreover,
these simplified landscapes are heavily reliant on external chemical and
financial inputs and less resilient to uncertainty and change (Kremen
and Merenlender, 2018; Landis, 2017; Meehan et al., 2011; Spangler
et al., 2020).

Given these urgent concerns, there is a critical need for systemic
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change in US agriculture. One crucial area for change is a shift away
from simplified commodity agriculture by increasing the agro-
biodiversity of agricultural landscapes. Agrobiodiversity refers broadly
to the diversity of food and agricultural systems (Zimmerer et al., 2019).
As Kremen et al., (2012, p. 44) states, “a farming system is diversified
when it intentionally includes functional biodiversity at multiple spatial
and/or temporal scales through practices developed via traditional
and/or agroecological scientific knowledge.” Increasing agro-
biodiversity promotes greater multifunctionality — or multiple beneficial
functions beyond food and fiber production — throughout the US
agri-food system to support mechanisms that “(re-)link agriculture to
society at large through a far wider range of interrelations than just large
commodity markets” (van der Ploeg et al., 2009, p. $130).

One short term mechanism for increasing agrobiodiversity is crop
diversification. Crop diversification includes temporal and spatial
diversification practices that increase the number and type of crops
grown in an area at any point in time and over several years. Prior
research at the field scale strongly supports the benefits of greater crop
diversity, namely improved crop yields (Pywell et al., 2015; Schulte
et al., 2017; Smith et al., 2008; Virginia et al., 2018), decreased yield
volatility over time (Gaudin et al., 2015; Li et al., 2019), improved pest
management (Bommarco et al., 2013; Chaplin-Kramer et al., 2011),
improved soil health (Albizua et al., 2015; Berendsen et al., 2012;
Ghimire et al., 2018; McDaniel et al., 2014; Postma et al., 2008), and
increased pollinator diversity (Guzman et al., 2019; Schulte et al., 2017).

Furthermore, crop diversification at the field scale is embedded
within multiscale landscape dynamics that serve a critical role in man-
aging for and maintaining greater crop diversity at other scales
(Birkhofer et al., 2018; iiPES-FOOD, 2016; Renting et al., 2009). An
individual farm’s ecosystem is both influenced by and influences the
regional pool of crop and non-crop species and associated habitats.
These interactions are referred to as the “landscape effect” (Benton,
2012, p. 9). In turn, greater crop diversity at the landscape scale can
boost overall yields (Burchfield et al., 2019), improve yield stability to
weather and climate volatility (Abson et al., 2013; Manns and Martin,
2018), support pest and disease control (Chaplin-Kramer et al., 2011;
Gardiner et al., 2009; Ratnadass et al., 2012), and promote overall
pollinator diversity (Hass et al., 2018; Tscharntke et al., 2005).

Despite the mounting evidence of the benefits of crop diversity, path
dependencies in US agriculture present significant barriers to diversifi-
cation. Path dependency can be defined as “resistance to changing the
way things have always been done, even if business as usual seems to be
increasingly maladaptive” (Barnett et al., 2015, p. 2). Increasing
commodification of agricultural land use reinforces a high-yielding,
productivist agricultural paradigm perpetuated by infrastructure, ma-
chinery, and institutional norms (Magrini et al., 2018, 2019; G. E.
Roesch-McNally et al., 2018a). This self-reinforcing cycle may create
resistance to change by “locking” farmers into certain technological and
political regimes (e.g., pest management strategies, crop breeding,
reliance on crop insurance, etc.) that are increasingly maladaptive to the
implications of a changing climate (Annan and Schlenker, 2015; Chhetri
et al., 2010) and other environmental shocks and stressors (Barnett
et al., 2015). Crop diversification (and increasing agrobiodiversity more
broadly) are important pathways toward more sustainable and resilient
landscapes that work against these path dependencies.

Therefore, it is urgent to assess factors that help drive (or inhibit)
crop diversity, particularly beyond the field scale, to understand how
current path dependencies shape US agricultural landscapes. Biophysi-
cal realities of agricultural landscapes - climatic variability, water
availability, and soil characteristics — shape and are shaped by processes
of diversification or simplification, creating a baseline of environmental
suitability for certain crops to grow and thrive (Burchfield and Nelson,
2021; Burchfield and Schumacher, 2020; Goslee, 2020). Yet, on-farm
factors such as fertilizer use, labor, and irrigation play a crucial role in
the success and stability of farm outputs (Burchfield and Schumacher,
2020), and government subsidies and assistance strongly influence
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farmer decision-making and priorities (Bowman and Zilberman, 2013;
Graddy-Lovelace and Diamond, 2017; Zulauf, 2019). Thus, there is a
pressing need to understand how biophysical realities, farmer
decision-making, and government policy interact and influence the path
dependencies that drive landscape simplification or diversification.

This study aims to elucidate path dependencies in US agricultural
landscapes that (dis)incentivize crop diversification. In so doing, we
address two main research questions: 1) what are the biophysical and
socioecological factors most predictive of agricultural diversity across
the US; and 2) how do these factors vary regionally? By focusing on the
regional scale, we fill a research gap calling for a deeper understanding
of human-environmental interactions at multiple scales across agricul-
tural landscapes (Coomes et al., 2019; Duarte et al., 2018; Swift et al.,
2004). In assessing how these factors are associated with agriculturally
diverse or non-diverse landscapes, we aim to provide structural context
for how and why farmers and farmworkers make decisions toward or
away from diversification within these regions and landscapes.

2. Methods

We use random forest (RF) permutation variable importance mea-
sures to determine which biophysical and socioecological factors are
most predictive of county-level crop diversity measures at the regional
scale. These importance measures naturally account for interactive and/
or non-linear effects among the predictor variables not possible in a
standard correlation analysis. What differentiates our analysis from
previous studies using RF is the focus on the predictive power of each
explanatory variable, rather than simply focusing on accurate
predictions.

2.1. Predictor variables

We utilized a novel panel dataset constructed from several open-
source databases containing information about US agricultural land
use, climate and soil characteristics, on-farm use of inputs and assis-
tance, and farmer demographics. These data include observations for all
counties in the coterminous US for the US Department of Agriculture
(USDA) Census of Agriculture (COA) years 2012 and 2017, which are
the most recent years available (USDA NASS, 2019a). The USDA COA is
administered every five years to all farms and ranches selling at least
$1000 of their products. It also includes irrigated extent from the
Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated
Agriculture Dataset (MIrAD) provided by the US Geological Survey
(USGS) (Brown et al., 2019).

Although soil and climate data are available at much higher spatio-
temporal resolution, the county-year is the finest spatiotemporal reso-
lution at which COA data is publicly available nationally. Therefore, we
aggregated all soil and climate data to the county-year scale. From 1-
kilometer monthly climate summaries provided by the DayMet group
(Thornton et al., 2017), we constructed nineteen indicators of average
seasonal climate over the period from 2000 to 2020 (Fick and Hijmans,
2017) and extracted average seasonal values of these indicators for
across all pixels in a county. To increase model interpretability, we only
considered eight climatic indicators that are most predictive of crop
suitability to include in our model prior to variable selection. We also
included soil characteristics extracted from the Regridded Harmonized
World Soils Database (FAO, 2012; Wieder et al., 2014) by extracting the
average for soil attributes across pixels in a county. Once aggregated, we
merged data into a county-year panel dataset for all counties in the
coterminous US (n = 3108) for the years 2012 and 2017.

While we recognize the concern for the ecological fallacy associated
with aggregating multiscale spatial data, we also acknowledge that there
is no optimal scale at which all relevant ecological processes can be
adequately explained (Harris, 2006), especially in a study that encom-
passes the entire US. One of the only reliable ways to mitigate this issue
is to critically combine aggregated data with individual-level data
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(Wakefield, 2007; Wakefield and Lyons, 2010); this is not possible for
the scale of our models and the type of data necessary to capture the
breadth of factors related to agricultural production and diversity.
Furthermore, we have only included variables that are justifiably related
to and influential of US agriculture production, supported by recent
literature and relevant experts, to limit the estimation of spurious re-
lationships (Salkeld and Antolin, 2020). Although obfuscating
intra-county variability, the county scale is the finest resolution to
include all relevant data in our models, and this study is a valuable step
forward to encourage further intra-county analysis. For additional in-
formation and detail on methodological procedures, all code can be
found on GitHub (github.com/kspanglerl/regional-diversity).

2.2. Variable selection

Since RF permutation variable importance measures are negatively
impacted by an excess number of highly related explanatory variables
(Biau and Scornet, 2016), we performed a manual variable selection to
minimize variable overlap based on both data availability and collin-
earity as foundational rules of elimination. First, we row-wise deleted
any variables that were more than eight percent missing for both 2012
and 2017 and removed any variables that were a direct linear combi-
nation of any other variables.

We observed several pairs of highly collinear variables among the
candidate explanatory variables (see SI Fig. 1A-1C for correlation
matrices). For soil variables, we consulted with a soil health expert to
rank all soil variables in order of priority (between one and three, one
being top priority) as they relate to agricultural production (Cowan,
2020). Based on this expertise, we removed: 1) eight qualitative vari-
ables due to their redundancy and lack of interpretability; and 2) five
quantitative variables based on high collinearity (correlation > 0.8)
with variables of greater importance to agriculture that are more stable
over time. For instance, topsoil pH was removed because it is actively
managed for by farmers from season to season and therefore varies in
many places across time and space, but we retained subsoil pH due to its
relative stability over time (Ebabu et al., 2020; Metwally et al., 2019).
For correlated climate variables, we assessed pairwise correlations by
the following set of rules: 1) drop any climate variable that measures a
range in favor of the minimum and maximum values; 2) drop monthly
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Fig. 1. Standard deviation of bootstrapped SDI, SIDI, and RICH plotted against
number of agricultural land pixels (vertical line indicates 250-pixel cutoff).
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climate measurements and retain quarterly measurements; 3) retain any
climate variable that is an annual summary. Finally, for highly corre-
lated COA variables (rho > 0.8), we retained the variable with the
higher availability.

2.3. Imputation

Following these variable selection processes, we would have
removed 475 counties for 2012 (15.2% of all 3108 counties) and 422
different counties for 2017 (13.6%) due to missing COA data via row-
wise deletion (for a total removal of 28.8% of counties across both
years). To avoid this costly data removal, we performed imputation for
missing data. First, we verified that the COA variables were not appre-
ciably different between 2012 and 2017 by checking the distribution
from 1997 to 2017 (see GitHub link to RF-imputation-COA.html). Given
that all COA variables varied minimally from 2012 to 2017, we imputed
missing data for counties in 2012 by infilling with its value in 2017, and
vice versa. After systematically imputing these values, we deleted 134
counties in each year that had no data reported and, therefore, no data to
impute in either year for retained COA variables.

2.4. Final predictor variables
Final predictor variables include measures of six main characteristic

Table 1
Predictor variable categories and units.

Variable Units

Farm(er) Characteristics
Primary producer’s age

% acres operated by male farmers
Land tenure

Avg. age
% ag acres
% ag acres

On-farm experience Avg. years
Farm size Med. #
Farm inputs

Fertilizer expense $/ag acre
Manure acres % ag acres
Chemical expense $/ag acre

Irrigation % ag acres

Labor n/ag acre

Machinery $/ag acre

Land use

% cropland % cty

% pastureland (excluding cropland) % cty

Assistance & income

Commodity sales $/operation

Government programs $/operation

Soil characteristics

Topsoil gravel content %vol.

Topsoil sand fraction % wt.

Topsoil silt fraction % wt.

Topsoil reference bulk Kg/dm3
density

Topsoil organic carbon % weight

Subpsoil pH (H20) -log(H")

Topsoil CEC (clay) Cmol/kg

Topsoil CEC (soil) Cmol/kg

Topsoil calcium % weight
carbonate

Topsoil gypsum % weight

Topsoil sodicity (ESP) %

Topsoil salinity (Elco) dS/m

Climate

Mean annual temperature °C

Mean diurnal range °C

Temperature seasonality sd* 100

Mean temperature of wettest quarter °C

Mean temperature of driest quarter °C

Mean temperature of warmest quarter °C

Total (annual) precipitation mm

Precipitation seasonality coefficient

Precipitation of warmest quarter mm
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types: 1) farm(er) characteristics, 2) farm inputs, 3) land use, 4) assis-
tance and income, 5) soil characteristics, and 6) climate (see Table 1 for
variable descriptions). Variables were standardized (where applicable)
using “total operated acres,” which includes agricultural land used for
crops, pasture, or grazing, as well as woodlands, farm roads, and farm
buildings (USDA NASS, 2019b) (See SI Table 1 for full description of
variables and their standardization). Further, given that our research
questions aim to determine the influence of external factors on crop
diversity at a moment in time, we did not include any lagged effects of
prior crop diversity.

While this dataset contains a wide range of variables that are openly
and reliably accessible, they are far from a comprehensive list of vari-
ables that are key to US agricultural path dependencies. They omit key
demographic factors (e.g., race and ethnicity of both farmers and
farmworkers), financial factors (e.g., corporate revenue and influence),
and other important ecological factors (e.g., topography). These omis-
sions limit our ability to build models that explicitly include sociopolit-
ical processes that have been central to defining US agricultural
landscapes and their current trajectories, such as Indigenous land
dispossession and knowledge appropriation (Caradonna and
Apffel-Marglin, 2018; Dunbar-Ortiz, 2014), racial discrimination (Ayazi
and Elsheikh, 2015; Minkoff-Zern and Sloat, 2017), dismissal of queer
rural identities (Dentzman et al., 2020), and corporate power over seeds,
land, and trade markets (Baines, 2015; Clapp and Purugganan, 2020).
However, such data have not been systematically or reliably collected
for national or sub-national representativeness.

Nonetheless, these predictors do gauge several important factors that
both drive current sociopolitical contexts and represent past sociopo-
litical forces to gauge what presents resistance to more diversified
agricultural systems. These include: 1) reliance on external chemical and
mechanical inputs (farm inputs); 2) binary gender-based differences in
farm management (% acres operated by female/male farmers) in light of
historical inequities in US agricultural land access for women (Carter,
2017); 3) the importance of land ownership (land tenure) and related
experience (on-farm experience) in the context of the systematic
exclusion of marginalized farmers and farmworkers in achieving such
tenure and experience (Calo and De Master, 2016); 4) migrant and
non-migrant farmworkers (number of laborers), particularly considering
their inequitable legal representation and treatment (Soper, 2020), and
5) the significance of commodity production (commodity sales) and
government assistance (government programs) as representations of the
commodification and expansion of US production. We also include a
suite of soil and climate variables to establish an understanding of bio-
physical suitability for crop diversity across regions.

2.5. Response variables

Response variables measure agricultural land use diversity through
three metrics, computed using only agricultural land pixels from the
USDA NASS Cropland Data Layer (CDL) (USDA NASS, 2020) and
aggregated for every county in the coterminous US: Shannon’s diversity
index (SDI), Simpson’s diversity index (SIDI), and Richness (RICH). SDI
is one of the most common measures of landscape diversity, measured as
the proportional abundance of each land use category in a county
(Aguilar et al., 2015; Burchfield et al., 2019; Goslee, 2020; Gustafson,
1998). SIDI measures the probability that two random pixels (in the case
of CDL data, 30-meter pixels) comprise different land uses and is less
affected by rare land use categories than the SDI. Finally, RICH measures
the number of agricultural land use categories (see SI Table 2 for full
descriptions). These metrics operationalize crop diversity as both
configurational (i.e., how much space each land use comprises) and
compositional (i.e., what each land use is), accounting for spatial but not
temporal variation within a given year.

Agriculture, Ecosystems and Environment 333 (2022) 107957

Table 2
Summary statistics by FRR in 2017.

FRR # of Mean SDI Standard deviation of
counties value SDI
Heartland 540 0.91 0.16
Northern Crescent 388 1.11 0.35
Northern Great 175 1.19 0.12
Plains
Prairie Gateway 373 0.97 0.29
Eastern Uplands 394 0.81 0.45
Southern Seaboard 461 0.94 0.36
Fruitful Rim 251 1.08 0.42
Basin and Range 169 0.87 0.38
Mississippi Portal 152 0.86 0.22

2.6. Reclassification of CDL data

While the overall cropland classification accuracy for the CDL
dataset is notably high (89.4% in 2012 and 82.9% in 2017) (USDA
NASS, 2021), crop- and region-specific classification accuracy rates are
notably low (Reitsma et al., 2016). To address these error rates, we
grouped functional crops together into broader categories — an approach
recommended by Lark et al. (2017) - to improve data reliability.
Broader categories were defined by the US National Vegetation Classi-
fication (USNVC) database (Faber-Langendoen et al., 2016) (SI Table 3).
With this reclassification, we recalculated SDI, SIDI, and RICH for final
analyses.

2.7. Bootstrap sensitivity analysis

Current approaches for estimating landscape diversity do not ac-
count for differences in the percentage of land devoted to agricultural
land use. For example, prior to reclassification, San Francisco County,
CA has only 39 pixels (30 m resolution) devoted to agricultural use,
whereas Tioga County, PA has more than a half-million agricultural
pixels. Both counties have an SDI score of 0.52, but the estimate for
Tioga County is more reliable given its larger agricultural land area.
Thus, we conducted a bootstrap sensitivity analysis (Efron, 1979) of the
estimated diversity scores for each county. This analysis samples, with
replacement, the parcels of agricultural land within each county. Each
bootstrap sample is the same size as the original sample with some ob-
servations appearing more than once, and others not at all. In practice,
roughly two-thirds of the original observations are represented in each
bootstrap sample, and diversity scores are estimated for 500 bootstrap
samples in each county. Fig. 1 plots the standard deviation of the
bootstrapped diversity scores against the number of pixels devoted to
agricultural land.

As expected, the sensitivity of SDI and SIDI are highly related to the
number of agricultural pixels in each county. The standard deviation of
the bootstrap diversity metrics levels out at roughly 250 pixels, so we
removed any county with less than 250 pixels of agricultural land from
our analyses. In total, a 250-pixel cutoff removed 39 counties for 2012
and 10 counties for 2017 after variable selection, imputation, and row-
wise deletion. Of the 3108 total initial US counties, our final dataset
included 2874 counties for 2012 and 2903 for 2017.

2.8. Analysis

Prior to analysis, we examined the distribution each response vari-
able. SIDI was heavily skewed to the left, while SDI and RICH were
normally distributed. We did not transform SDI and RICH, but since RF
regression is not robust to the distribution of response variables, we
transformed SIDI using a square transformation that substantially
reduced the left skew.

We then divided counties into Farm Resource Regions (FRR) as
defined by the USDA Economic Research Service (ERS) (Fig. 2). These
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Fig. 2. Farm Resource Region (FRR) Designations.
Reprinted from Spangler et al. (2020).

regions reflect geographic specialization of agricultural production at
the county-scale as determined by a cluster analysis of four other agri-
cultural land use classifications: 1) USDA Crop Reporting Districts, 2)
Land Resource Regions, 3) County Clusters of US farm characteristics,
and 4) outdated USDA Farm Production Regions (ERS, 2000).

Using the randomForest package (Liaw and Wiener, 2002) in R (R
Core Team, 2020), we built an RF regression model for all three response
variables in 2012 and 2017 using all counties for each FRR (i.e., 3
models for each of the 9 FRRs in 2 different years, totaling 54 RF
models). RF regression is a particularly adept method at handling
complex, non-linear interactions among predictors with large datasets,
and it does not require any distributional assumptions about the data. It
has been used to accurately predict regional and global crop yields
(Jeong et al., 2016), as well as regional crop diversity (Goslee, 2020).
Due to prior research indicating the importance of increasing the
number of trees to achieve stable variable importance (Gromping, 2009;
Probst etal, 2019) we used 2000 trees per forest — four times the default
value - to achieve stability without compromising accuracy. Variable
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Mississippi Portal

l Basin and Range

Fruitful Rim

. Southern Seaboard

Eastern Uplands

Prairie Gateway

Northern Great Plains

Northern Crescent

Heartland

importance measures were also shown to be insensitive to a doubling of
the default value of mtry — the number of variables considered for
splitting at each node of the tree. Given this insensitivity, all regional
random forest models use default hyper-parameters with a fourfold in-
crease in the number of trees fit in each model.

From each model, we assessed out-of-bag (OOB) percent variance
explained from all variables, as opposed to cross-validated error using
test and predictor subsets, because we were more interested in variable
importance than predictive accuracy. Though there are many variations
of the variable importance approach (Wei et al., 2015), we used
permutation-based random forest variable importance (Breiman, 2001)
given its widespread acceptance and use to compare the relative
importance of the explanatory variables in each agricultural region.
These relative measures are calculated by dividing the importance
measures of each region by the maximum importance measure in each
region.

Further, we recognize the presence and influence of spatial auto-
correlation in these models. By visualizing the county-level residuals
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Fig. 3. RF regression model residuals for SDI in 2017; FRRs are outlined in black.
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from our model predictions for SDIin 2017 (Fig. 3; see SI Fig. 2 for SDI in
2012), we show the distinct trends of positive (e.g., the Heartland) and
negative (e.g., the Fruitful Rim) spatial autocorrelation within and
across regions. However, we do not explicitly account for these trends in
our models for two reasons. First, in regression scenarios, spatial auto-
correlation can artificially inflate the statistical significance of beta co-
efficients, but we do not consider p-values to determine variable
importance in this study. Second, while spatial autocorrelation can
reduce predictive power, the focus of this paper is to quantify the pre-
dictive power of external factors (e.g., soil, climate, demographics, etc.)
not to predict agricultural diversity most accurately. Thus, fitting a
spatial model to these residuals would not change the story we tell
regarding the importance of such external factors.

Finally, we assessed partial dependence of several of the most
consistently important variables across regions from different predictor
categories. Partial dependence plots are one way to visualize the mar-
ginal influence of a variable with a precedence for use in ecology (Cutler
et al., 2007). These plots visualize the effect of a single variable on the
prediction of diversity after accounting for the average effects of all
other variables (Friedman et al., 2001), but are limited in visualzing
variable interactions. We focused on six variables that were, consistently
the most strongly predictive of diversity across regions: 1) temperature
seasonality, 2) precipitation seasonality, 3) percent cropland, 4) percent
pastureland, 5) chemical input, and 6) fertilizer input.

SDI 2017

Heartland: 73.86% @ ¢ @ @@ ¢ ® « ¢ 0 0 @@ ¢
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3. Results

We focus our results on SDI — the most widely used metric of agri-
cultural diversity — and on 2017 - the most recently available year for
Census of Agriculture data. Results from our other two response vari-
ables, and from 2012, are included in Supplemental Information (SI); the
results of these analyses are consistent with our findings for SDIin 2017.
First, we present summary statistics delineated by Farm Resource Re-
gion (FRR). We then provide the results of the regional RF regression
models, specifically 1) how variables most strongly associated with
agricultural diversity (variable importance) vary across regions, and 2)
how these variables differentially influence regional diversity (func-
tional relationships of key variables). We conclude by discussing the
implications of these models and by contextualizing them within
broader conversations about agricultural diversification.

3.1. Descriptive statistics

Mean regional SDI for 2017 ranges in between 0.81 and 1.19 for
2017, with the lowest mean value in the Eastern Uplands (0.81) and the
highest in the Northern Great Plains (1.19) (Table 2; see SI Table 4 for
2012 data). Unsurprisingly, the Heartland region, which has the greatest
number of counties (540), has a low average SDI (0.91) as well as a low
standard deviation (0.16), indicating that this region is both agricul-
turally less diverse than most other regions and counties there within are
more homogenous. The Mississippi Portal is the smallest region (152
counties) and has both a low SDI and standard deviation value. Like the
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Heartland, it is comparatively less diverse and more homogenous than
other regions, particularly due to its small geographic area and a
regional commodity focus on cotton, rice, and soybeans. The Fruitful
Rim and Northern Crescent have comparatively high mean SDI values
(1.08 and 1.11, respectively) and high standard deviations across
counties (0.42 and 0.35, respectively). These divergences illustrate how
landscapes within diverse regions have a wider range of heterogeneous
farming systems across counties (e.g., high-end vegetable, fruit, and nut
production in California) than less diverse regions.

3.2. Variable importance across regions

The relative importance of variable categories is consistent across
regions (Fig. 4), with climate characteristics, farm inputs, and land use
being the strongest predictors of SDI. This is also true for SIDI and RICH
in 2017 (see SI Fig. 3A and 3B) and for all three response variables in
2012 (SIFig. 4A-4 C). In the context of these models, soil characteristics,
assistance and income, and farm(er) characteristics are less important
predictors of regional agricultural diversity.

Although the variable categories predictive of diversity are consis-
tent across regions, clear differences exist across regions regarding the
distribution of variable importance. For regions such as the Northern
Great Plains, specific climate variables (e.g., temperature seasonality)
are substantially more important than most other variables in predicting
SDI. This is also true for regions like the Northern Crescent, where farm
input variables (e.g., chemical inputs) explain the majority of SDI vari-
ance. However, for the Heartland and Southern Seaboard, predictive
importance is distributed more evenly across predictors. For these re-
gions with more evenly distributed variable importance, soil and farm
(er) characteristics are similarly important to climate, inputs, and land
use, placing less predictive power on any one variable category.

In addition, model performance varies regionally. The two regions
with the lowest mean SDI - the Heartland and Eastern Uplands - exhibit
the highest percentage of variance explained (roughly 74% and 68%,
respectively). This points to the ways that less diverse landscapes are
easier to model and predict, particularly at a broader regional level.
Nonetheless, the Northern Great Plains and Northern Crescent exhibit
high average SDI values and comparatively high model performance
(roughly 59% and 65% variance explained respectively). Importantly,
the Mississippi Portal, one of the least diverse regions, exhibited an
unreliably low model performance of less than 10% variance explained.
This highlights the importance of intra-regional dynamics that are
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difficult to consistently capture at larger spatial scales, and the data-
hungry nature of RF modeling.

3.3. Functional relationships of key variables

The partial dependence plots of several variables that were consis-
tently important (Figs. 5-7) show the diverse ways that farm inputs,
climate, and land use influence crop diversity, emphasizing the presence
of regionally specific drivers of agricultural production — some that can
be managed for and some that cannot. First, we consider the overall
importance of climate in predicting crop diversity and defining bio-
physical suitability for certain crops; Fig. 5A and 5B illustrate the
functional relationships between temperature seasonality (A) and pre-
cipitation seasonality (B) with SDI. As temperature seasonality (TS) in-
creases (or as temperatures become more variable) in the Eastern
Uplands and Fruitful Rim, SDI sharply increases and then plateaus,
indicating wide temperature ranges across counties in each region that
influence the diversity of crops grown. Yet, all other regions exhibit a
slightly negative or neutral trend between TS and SDI: as TS increases,
SDI decreases or stays the same, indicating that places with more sea-
sonal temperatures do not inherently support greater crop diversity. A
similar trend is observable with precipitation seasonality (PS) (or the
variability of precipitation by season). For the Eastern Uplands, as PS
increases, so does diversity; this is particularly true for counties well
above the regional mean PS value. This means that counties in this re-
gion with the highest PS are much more likely to support a greater di-
versity of crops than those with less PS. For the Northern Crescent and
Southern Seaboard, there is a slightly positive effect on SDI as PS in-
creases; this positive relationship occurs for the counties with an average
PS value. For all other regions, there is no observable positive or nega-
tive effect from PS, emphasizing how precipitation (as one of many
important climatic factors) creates baseline conditions for agricultural
production and possibilities for diversification, as opposed to being a
factor that can be directly managed to increase crop diversification.

In terms of factors that can be directly managed, percent cropland
and pastureland are highly predictive of crop diversity. Yet, percent
cropland exhibits different functional relationships across regions
(Fig. 6A). For the Northern Crescent, Eastern Uplands, and Southern
Seaboard regions, there are discernable positive relationships between
percent cropland and SDI, where counties with more croplands show
higher levels of agricultural diversity. These positive relationships occur
for the counties with percent cropland close to the regional mean. In the
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tween values.

Heartland and the Prairie Gateway, the opposite is true: for counties
with percent cropland close to the regional mean, SDI begins to
decrease. Moreover, counties in the Heartland have the highest average
percent cropland of any region (~80%), reflecting its high concentration
of simplified crop production. For the Fruitful Rim, Basin and Range,
and Prairie Gateway, there is no effect between increasing percent
cropland and SDI. This neutral relationship indicates that percent
cropland is a highly predictive yet intrinsic factor in determining the
diversity of crops grown in each region, and, thus, the directionality of
its influence is indeterminable.

Percent pastureland (Fig. 6B) exhibits a neutral relationship in pre-
dicting SDI, with a few exceptions. For most regions, such as the
Northern Crescent, Prairie Gateway, and Fruitful Rim, the effect of
pastureland on predicting agricultural diversity is neither positive nor
negative. Like cropland presence, the presence of pastureland within
these counties is intrinsically important to the diversity of crops grown
but does not increase or decrease such diversity. However, in regions
such as the Heartland, Northern Great Plains, and Basin and Range,

counties close to the regional mean of percent pastureland begin to in-
crease in crop diversity until they eventually plateau again. This is
particularly interesting for the Basin and Range, a region with the lowest
average percent cropland and highest percent pastureland, indicating
that pasture production is a strong driver of regional crop diversity. The
only region where percent pastureland has a negative effect on SDI is the
Southern Seaboard.

Other key factors that can be directly managed as strong predictors of
crop diversity include fertilizer and chemical input. Crop diversity in all
regions is highly responsive to expenditures on fertilizers and chemicals
but quickly experiences diminishing returns. Moreover, the threshold of
these diminishing returns is different for every region (Fig. 7A and 7B).
Most notably, the Heartland is the region with both the highest average
chemical and fertilizer expenses per acre; increasing chemical and fer-
tilizer expenses both have an observably negative relationship with SDI.
For counties at the regional average of input use, SDI begins to decrease
and quickly plateaus; in other words, higher input use is associated with
decreasing crop diversity.
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Contrastingly, the Eastern Uplands, Basin and Range, and Northern
Crescent regions exhibit the sharpest increase in crop diversity as
chemical and fertilizer input use increases. These increases occur for
counties close to the regional mean of input use and then plateaus,
meaning that counties with the highest input use do not support greater
crop diversity than those with average input use. Other regions, namely
the Fruitful Rim and Northern Great Plains, consistently include
counties with the highest SDI values and exhibit a neutral response to
increasing input use, suggesting that their diversity is not dependent on
their use of agricultural inputs.

4. Discussion

Our results show that factors most strongly predictive of crop di-
versity across US landscapes operate distinctly at a regional level. These
distinct regional relationships contribute to path dependencies that
present resistance to enhancing agrobiodiversity across US agriculture.
First, major US regions exhibit significantly different levels of crop di-
versity, where the most diverse regions support a wider array of farming
systems that deviate from the average, and the least diverse support
more homogenous systems. Second, climate, land use norms, and farm
inputs are consistently the most important categories for predicting
agricultural diversity across regions; however, variability exists in the
relative regional importance of variables within these categories. Model
performance also varies, pointing to the existence of distinct intra-
regional dynamics that we cannot explain at the regional level with
the data we have included in these analyses. These intra-regional dy-
namics are evident in the various functional relationships between key
climate, land use, and input variables for predicting diversity.

Regional differences in crop diversity, paired with the importance of
climate, land use, and farm input variables in predicting such diversity,
highlight the need to consider the regional scale and its influence on
path dependencies in US agriculture. Our models illustrate clear and
consistent trends that operate within and across nine US regions that
may not be evident at the micro (field or farm) or macro (international)
scales. For example, soil metrics did not prove to be as important a
biophysical predictor as climate in our regional models, despite soil
health and management being strong factors in understanding crop
suitability (Zabel et al, 2014) and farmer decision-making
(Roesch-McNally et al., 2018a) at the field scale. Furthermore, federal
subsidy assistance and policies strongly dictate domestic and interna-
tional markets, commodity supply chains, as well as farmer livelihoods
and adaptation (Annan and Schlenker, 2015; Graddy-Lovelace, 2017;
Graddy-Lovelace and Diamond, 2017), yet were not comparatively
important in predicting regional crop diversity. Thus, considering mul-
tiple scales of interaction is crucial to a deeper understanding of what
constrains and enables processes of diversification.

Climate characteristics play a pivotal role in defining the biophysical
possibilities of regional crop and commodity production. Metrics of
seasonal precipitation and temperature are consistently important fac-
tors in predicting agricultural diversity within and across regional
landscapes. The strong importance of climate in predicting agricultural
diversity underscores the importance of understanding how climate af-
fects what farmers can reasonably do within a given landscape. This is
particularly salient considering how climate change may shift the suit-
ability of landscapes for major crops northward (Lant et al., 2016), in-
crease the sensitivity of the agricultural economy (Liang et al., 2017),
and contribute to greater yield variability globally (Ray et al., 2015).
While climatic factors cannot be actively managed for to shift US agri-
cultural path dependencies, it is increasingly important to consider how
any volatility in current and future regional climates will likely have a
strong effect on the potential for, and success of, diversifying agricul-
tural landscapes.

The importance of land use patterns, namely the presence and con-
centration of cropland and pastureland, in predicting crop diversity
across regions emphasizes how past land use reinforces current and
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future land uses. The importance of these factors captures the path de-
pendencies that have determined where and why agricultural land is
located and managed and highlights the growing resistance to changing
these land uses. Our results show the regional specialization and
intensification of commodity production, where agricultural landscapes
are either dominated by crop production or rangelands and never
equally covered by both (Spangler et al., 2020). The negative effect of
increasing percent cropland on diversity in regions already largely
dominated by cropland (e.g., Heartland) accentuates the self-reinforcing
cycle of intensified commodity production; in this region, cropland
expansion has driven and continues to drive the simplification of these
landscapes (Hart, 1986, 2001; G. E. Roesch-McNally et al., 2018b). This
history exacerbates the sociopolitical and ecological challenges of
transitioning these landscapes toward alternative production systems
(Lawler et al., 2014). Yet, for other regions less dominated by cropland
(e.g., Eastern Uplands, Southern Seaboard, and Northern Crescent), the
relationship between percent cropland and diversity is slightly positive.
This finding presents broad evidence that allocating more land to crop
production in certain regions may support greater crop diversity, pro-
vided such expansion is intentionally integrated with other socio-
ecological benefits to the landscape (Kremen, 2015; Kremen and
Merenlender, 2018). This is also true for increasing pastureland in re-
gions such as the Basin and Range and Northern Great Plains, consid-
ering recent research that supports the potential for integrated
crop-livestock systems as a viable pathway toward enhancing agro-
biodiversity (Bonaudo et al., 2014; Franzluebbers et al., 2014; Olmstead
and Brummer, 2008; Poffenbarger et al., 2017).

Finally, reliance on chemical and fertilizer use operates as a tech-
nological lock-in to current US agricultural path dependencies, unsus-
tainably extending the viability of simplified systems. Mounting
evidence illustrates the harmful environmental and social externalities
of our increased reliance on external inputs to agriculture, including
Gulf of Mexico hypoxia, nutrient runoff, decreased air quality (Prokopy
et al., 2020), declines in pollinator abundance and diversity (Sponsler
et al., 2019), and even decreased yields (Burchfield and Nelson, 2021).
Our results show diminishing diversity returns from increased input
expenditure, where crop diversity in many regions responded positively
to increasing chemical and fertilizer expenditures initially, but quickly
plateaued. This trend suggests that initial increases in crop diversity
rely, in part, on increasing fertilizer and chemical inputs, which is
consistent with the well-documented reliance on inputs throughout
commercial annual cropping systems in the US (Culman et al., 2010; De
Notaris et al., 2018; Gardner and Drinkwater, 2009). However, the di-
versity plateau in the fertilizer and chemical partial dependence plots
provides compelling evidence that diversification beyond the regional
status quo will not be driven by greater reliance on chemical and fer-
tilizer use. Furthermore, for the Heartland, where intensified annual
commodity production is most heavily concentrated (Hart, 1986; Hud-
son, 1994), the results suggest that excessive use of chemical and fer-
tilizer use promote simplification and inhibit diversification of
agricultural landscapes.

4.1. Future research

This study presents multiple future research directions. First, the
definition of a region could be explored through various other regional
boundaries to assess how this change in scale influences our results.
Methodologically, regarding the bootstrap sensitivity analysis, we used
a simple cutoff method to eliminate any counties below a threshold of
reliability. One issue with a simple cutoff is that small changes to the
boundary could potentially lead to large changes in the final outcomes.
Therefore, future research could consider a weighting scheme that
handles differences in the landscape metric sensitivities in a continuous
way. Furthermore, it would be worthwhile to explore alternative
methods and measures of variable importance to further corroborate the
results discussed in this paper, as well as consider multi-level statistical
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methods to explore intra-regional mechanisms of crop diversity. Finally,
we call for more research that explicitly considers the multiple scales of
interaction that constrain and enable the efficacy and implementation of
crop diversification (and policies that support it) from micro- to mac-
roscales. There is strong potential for qualitative research to meaning-
fully build from these modeling efforts to facilitate the critical and
intentional contextualization of how farmers and farmworkers across
the US operate within, and respond to, heterogenous biophysical and
sociopolitical contexts.

5. Conclusion

Developing pathways to alternative agricultural systems requires a
fundamental reckoning with current path dependencies in US agricul-
ture. We show that these path dependencies, and the associated lock-ins
of current agricultural land use, operate distinctly within and across US
regions. The consistent importance of biophysical and nonactionable
factors, like climate, and actionable factors, such as land use and farm
inputs, as highly predictive regional factors exemplify how these factors
are deeply intertwined with the diversity (or lack thereof) of agricultural
landscapes. These important factors, and their functional relationships
with crop diversity, also highlight how resistant the systems within each
region may be to alternative pathways and adaptation.

Imagining alternative, diversified agricultural systems — an increas-
ingly urgent necessity in the face of a changing climate and widening
sociopolitical inequity - requires a fundamental shift away from
regional pathways that lock farmers and farmworkers into maladaptive
systems. These pathways reinforce the current US productivist paradigm
and the structural barriers to farmer adoption of alternative manage-
ment strategies. As shown in this study, we can begin this shift by first
integrating the importance of regional biophysical factors, namely cli-
matic variability, into agricultural policies from local to federal levels, as
well as prioritize climate adaptation for US agricultural systems. Second,
the historical legacies of prior and current land use dynamics must be
central to defining realistic alternative pathways of future crop diver-
sification. For regions that have been and continue to be dominated by
increasingly simplified cropland, these alternative pathways encounter
greater resistance and will require distinct, innovative solutions as
compared to regions that have been and continue to be more agricul-
turally diverse. Third, decreasing reliance on agrichemical inputs is a
key priority for US agriculture writ large. While such inputs can extend
the viability of simplified systems, there is an upper limit to this support;
thus, we add to the growing call for US agriculture to promote more
ecologically situated practices that harness ecosystem services rather
than degrade them.

Agricultural diversity increases system resilience and has positive
boundary effects for neighboring farm(er)s and ecological systems; by
more appropriately addressing regional drivers of agricultural land use,
with an eye towards future cropscapes, we can be sensitive to farm(er)
concerns and needs while shifting current path dependencies toward
more resilient and adaptive US agricultural landscapes.
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