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ON LINKING OF LAGRANGIAN TORI IN R*
LAURENT COTE

ABSTRACT. We prove some results about linking of Lagrangian tori in the symplectic vector space
(R*,w). We show that certain enumerative counts of holomophic disks give useful information about
linking. This enables us to prove, for example, that any two Clifford tori are unlinked in a strong
sense. We extend work of Dimitroglou Rizell and Evans on linking of monotone Lagrangian tori to a
class of non-monotone tori in R? and also strengthen their conclusions in the monotone case in R%.

1. INTRODUCTION

Let Ly and Ly be disjoint Lagrangian tori in the symplectic vector space (R*, w) where w = dx1 Ady; +
dzxs A dys. We say that Ly and Lo are smoothly unlinked if they can be isotoped away from each other
without intersecting. A more precise definition is as follows.

Definition 1.1. Two closed, disjoint submanifolds Ni, No C R™ for m > 1 are said to be smoothly
unlinked if there exists a smooth isotopy ¢(!) : Ny x [0,1] — R™ with (bél) = Id such that

(i) 6 (Ny) N Ny =0 for all £ € [0,1],
(ii) ¢§1)(N1) and N are contained in disjoint, embedded balls.

We say that Ny and Ny are smoothly linked if they are not smoothly unlinked. By the isotopy extension
theorem, the existence of ¢(!) is equivalent to the existence of an isotopy ¢(?) satisfying properties (i)
and (ii) with the roles of N7 and N» interchanged.

The following theorem is one of the main results of this paper.

Theorem A. Let L1, Ly C R* be disjoint Clifford tori of possibly different monotonicity factor. Then
L1 and Lo are smoothly unlinked.

For 7 > 0, we say that L C R* is a Clifford torus of monotonicity factor mr?/2 if it is Hamiltonian
isotopic to the standard model {(z1,22) € C? | |21] = |22/ = r}. The proof of Theorem A will be
provided at the end of Section 4; see Corollary 4.7.

We remark that, in contrast to Theorem A, any Lagrangian torus in (R*

Chekanov torus; see Example 4.10.

,w) is smoothly linked with a

Important progress in understanding linking of Lagrangian tori was achieved by Dimitroglou Rizell and

Evans [15] using the theory of punctured pseudoholomorphic curves. Earlier work using different tools
includes [2,13,22].
In this paper, we build on ideas introduced in [15] and [16] to prove new results on linking in the

restricted context of Lagrangian tori in R*. In particular, we prove the following theorem.

Theorem B. Let L1, Ly C (R*,w) be disjoint, monotone Lagrangian tori with monotonicity factor K,
and Koy respectively. If Ko > Kj, then L1 and Lo are smoothly unlinked if and only if the image of
the natural map w1 (L) — 71 (R* — Ly) vanishes. If K1 = Ko, then Ly and Ly are always smoothly
unlinked.
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The proof of Theorem B occupies most of Section 3, where it is stated in a more general form as
Corollary 3.4

We emphasize that our proof of Theorem B relies crucially on the special properties of holomorphic
curves in dimension 4. In contrast, the results of [15] work equally well in all dimensions; cf. Theo-
rem 2.8.

The results of [15] on linking are restricted to monotone Lagrangian submanifolds. Our next theorem
extends some of the results of [15] to a class of non-monotone Lagrangian tori in R*. In order to state
precisely what is involved, we make a short digression to collect some necessary definitions.

Given a symplectic manifold (M,w) and a Lagrangian submanifold L. C M, the Maslov class is a map
w: o (M, L) — Z which takes values in the even integers if L is orientable. By a slight abuse of notation,
the symplectic area class is defined as the map w : mo(M, L) — R taking [u] — w([u]) = [, u*w.

The following invariant of Lagrangian tori in R* will play an essential role throughout this paper.

Definition 1.2. Let L C (R* ,w) be a Lagrangian torus. We define
Ay (L) := min{w(a) | a € ma(R*, L), p(a) =2, w(a) > 0}.

The following definition was considered in [15], using slightly different terminology.

Definition 1.3 (cf. [15]). Let Ny and N3 be closed, disjoint submanifolds of R™. Then N; is said to
be homologically unlinked from Ny if [N1] € Ha(R™ — Na; Z) is the zero class. Otherwise, we say that
N is homologically linked with Na. We say that Ny and Ny are mutually homologically unlinked if each
one is null-homologous in the complement of the other.

Clearly smooth unlinking implies homological unlinking. Observe also that the notion of homological
linking is not symmetric, i.e. it may be the case that N; is homologically unlinked from N5 while N is
homologically linked with N1; see Example 2.12. This is in contrast to the notion of smooth unlinking
(see Definition 1.1), which is manifestly symmetric.

In Section 5, we introduce a class of non-monotone Lagrangian tori called admissible. These tori are
distinguished by the nonvanishing of an enumerative invariant which counts Maslov 2 disks of small
area; cf. Definition 5.4. We show that the class of admissible tori is closed under Hamiltonian isotopy,
and that it contains “most” product tori.

As mentioned above, the results of [15] on linking only concern monotone Lagrangian submanifolds.
The following theorem extends [15, Theorem A] to admissible tori in R*.

Theorem C. Let Li,Ly C R* be disjoint Lagrangian tori and suppose that Ly is admissible. If
Ay(Lg) > As(Ly), then [L1] is the zero class in Ho(R* — Lo;Z). In other words, Ly is homologically
unlinked from L.

In Section 6, we show that the assumption Ay(Ls) > Ao(L;) in Theorem C is sharp in a suitable sense;
see Proposition 6.1.

1.1. Some perspective. One of the main conclusions of this paper may be summarized as follows:
if one considers the problem of smoothly unlinking monotone Lagrangian tori in R*, then the obvi-
ous algebro-topological obstructions are the only obstructions. Moreover, one can identify reasonable
conditions under which these obstructions vanish.

Suppose that L1, Ly C (R* w) are monotone Lagrangian tori. In order for L; and Ly to be smoothly
unlinked, it is necessary that the natural maps Hy(L;;Z) — H(R* — L;; Z) and 7y (L;) — 7x(R* — L)
have trivial image for all k > 0 and ¢ # j € {1,2}. In addition to these algebro-topological obstructions,
there could a priori be more subtle obstructions coming from smooth topology. Indeed, there is in general
a large gap between algebraic and differential topology in dimension 4.

Let us now assume without loss of generality that the monotonicity factor of Ly is at most equal to
that of Ly. Under this assumption, we will show in Section 3 that L; bounds a solid torus which is
smoothly embedded in the complement of Lo; see Theorem 3.2. In particular, this implies that L,



ON LINKING OF LAGRANGIAN TORI IN R* 3

is homologically unlinked from L, which was already proved by Dimitroglou Rizell and Evans; see
Theorem 2.8.

As noted above, it is necessary, in order for L; and Lo to be smoothly unlinked, that the natural map
71 (L1) — 7 (R* — Ly) have trivial image. Using the fact that L; bounds a smoothly embedded solid
torus, we show that this necessary condition is in fact sufficient (see Theorem B and Corollary 3.4).
Hence the question of whether L; and Lo are smoothly unlinked reduces to elementary algebraic topol-
ogy.

In Section 4, we analyze the map 71 (L1) — 71 (R* — L2). We show that it must have trivial image if
certain enumerative counts of holomorphic disks with boundary in L; are nonzero. This enables us, in
particular, to prove that Clifford tori (of possibly different monotonicity factors) are always smoothly
unlinked; see Theorem A.

1.2. Organization. Section 2 contains a summary of some prior work on linking of Lagrangian tori,
and some topological lemmas which will be needed in the remainder of the paper.

Section 3 and Section 4 were already surveyed in the above paragraphs; they contain in particular
proofs of Theorem A and Theorem B.

Section 5 deals with linking of non-monotone tori in R*. In particular, we introduce the class of
admissible tori alluded to earlier and prove Theorem C.

Section 6 describes a construction which shows that Theorem C is sharp in a suitable sense.

Section 7 explores some connections between our analysis of linking and questions about embeddings
of tori and polydisks into various subdomains of R*.
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Cieliebak for suggestions which significantly strengthened Section 7 of this paper. I wish to thank
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Cédric de Groote, Eleny Ionel, Janko Latschev, Oleg Lazarev, Daniel Ruberman, Laura Starkston and
Chris Wendl. I gratefully thank all of them. Finally, I wish to thank the anonymous referee for many
important comments and suggestions.

2. CONTEXT AND PREPARATORY MATERIAL

This section is intended to introduce some preparatory material and to provide some context to help
motivate the techniques and results of this paper. We begin by stating some standard conventions which
will be followed throughout this work. We then summarize some prior work on linking of Lagrangian
submanifolds. Finally, we prove some topological lemmas which will be useful in later sections and
which partly rely on an important classification theorem of Dimitroglou Rizell, Ivrii and Goodman.

2.1. Conventions. Unless otherwise indicated, the vector space R?" is endowed with the coordinates
(1,Y1,---,2n,yn) and with the symplectic form w = dx; Ady; + - - - + dzy, A dy,. We let j denote the
standard integrable complex structure on R?"”. We will routinely identify R?” with C" via the map
(T1,Y1, s Ty Yn) — (X1 + Y1, - oy Ty + 0Yp)-

Given a Lagrangian L C (R?",w), we note that the boundary maps m.(R*",L) — m._1(L) and
H.(R?" L;Z) — H._1(R* L;Z) are isomorphisms. It follows from the universal coefficient theorem
that we may view the Maslov class 1 and symplectic area class w as cohomology classes of L.

Definition 2.1. Given a symplectic manifold (M, w), a Lagrangian submanifold L C (M, w) is said to
be a Lagrangian torus if it is diffeomorphic to T" = S! x ... x S

Definition 2.2. Given a symplectic manifold (M, w), a Lagrangian submanifold L C (M, w) is said to
be monotone if w(a) = cu(a) for all o € mo(M, L). Here ¢ is a positive constant which is called the
monotonicity factor of L.
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For a Lagrangian torus L C (R*,w), note that the monotonicity factor c satisfies the identity As(L) = 2¢;
cf. Definition 1.2.

Example 2.3. For r > 0, the Clifford torus
Ler = {(21,22) € C | |z1] = |2| = 7}
is a monotone Lagrangian torus of monotonicity factor 7?2 /2.
Example 2.4. For r > 0, the Chekanov torus is defined as the set
Len = {((e” +ie™"y) cos b, (e” +ie *y)sinf) | 6 € [0,27], 22 + y? =12, (z,y) € R?}.

It is a monotone Lagrangian torus of monotonicity factor 72 /2.

A Lagrangian torus in R* which is Hamiltonian isotopic to Loy or Ley, for some r > 0 will be referred to
as a Clifford torus or a Chekanov torus. When it is not clear from the context, we will indicate whether
we are referring the standard models of Example 2.3 and Example 2.4 or to a torus Hamiltonian isotopic
to them.

A pseudoholomorphic or J-holomorphic curve is a map u : (X,5) — (W?",J) satisfying the nonlinear
Cauchy-Riemann equation du + J o du o j = 0. Here (X, ) is a (possibly punctured) Riemann surface
and (W?2" J) is an almost-complex manifold. Such maps will routinely be referred to as holomorphic
curves when it is clear from the context that .J is not assumed to be integrable.

By a similar abuse of language, we will usually use the terms almost-complex structure and complex
structure interchangeably, even though the later term is often reserved in the literature for integrable
almost-complex structures.

Remark 2.5 (Signs). We will generally follow the sign conventions of [15] and [16]. In particular, the
Liouville 1-form on a cotangent bundle T*M is denoted A and gives rise to a symplectic form w by the
equation w = d\. We note that this sign convention differs from that of [20, see Remark 3.5.35].

2.2. Some prior work. Let ¢ : M — (R?", j) be a totally real embedding. Given a nowhere vanishing
vector field X € T'(T'M), let M’ be a small push-off of ¢(M) in the direction of j(d¢(X)). This gives
rise to a class [M'] € H,(R®" — ¢(M);Z). By the long exact sequence of the pair (R?", R?" — ¢(M))
and Alexander duality, there are isomorphisms

(2.1) H,(R?" — ¢(M);Z) ~ H, 11 (R*",R*" — ¢(M); Z) ~ H" 1 (M; 7).

Definition 2.6. Let I(¢, X) € H" }(M;Z) be the class corresponding to [M’] under (2.1). The class
l(¢, X) is called the linking class.

Observe that the linking class I(¢, X) vanishes if and only if M’ is homologically unlinked from ¢(M);
cf. Definition 1.3.

It can be shown that there exist totally real embeddings ¢ : T? — R* and vector fields X € I'(T'T?)
such that I(¢, X) # 0. In contrast, for Lagrangian embeddings Eliashberg and Polterovich proved the
following theorem using the technique of Luttinger surgery.

Theorem 2.7 (Eliashberg-Polterovich [13]). Let i : T2 — (R* w) be a Lagrangian embedding. Then
(i, X) = 0 for all nonvanishing vector fields X € T(TM).

We remark that Theorem 2.7 was extended by Borrelli [2] to Lagrangian embeddings of S! x S and
St x S7 into R® and R'® respectively.

In [15], Dimitroglou Rizell and Evans introduced a new approach to the study of linking of Lagrangian
submanifolds. This approach relies on the theory of punctured pseudoholomophic curves. Dimitroglou
Rizell and Evans proved the following theorem.
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Theorem 2.8 (Dimitroglou Rizell-Evans, Theorem A in [15]). Let W be a subcritical Stein manifold
and let Ko > K1 > 0 be real numbers. An embedded monotone Lagrangian torus Ly, with monotonicity
factor K1 is homologically unlinked from any embedded monotone Lagrangian torus Lo with factor K.
In particular, two embedded monotone Lagrangian tori with the same monotonicity factor are mutually
homologically unlinked.

Let us briefly sketch the proof of Theorem 2.8 as it is the starting point for much of this work. We refer
the reader to [15] for details.

Given a class 8 € m(W, L1) and an almost-complex structure J, let M7 (3, J) be the moduli space of
J-holomorphic disks representing the class § with one interior marked point. Let Mg 1(5,J) be the
corresponding moduli space of J-holomorphic disks with one boundary marked point. Under suitable
assumptions on J, it can be shown using work of Damian [10] and Evans-Kedra [14] that there exists a
class 8 such that the boundary evaluation map Mg 1(8,J) — L1 has nonzero degree on some component
M of the moduli space Mg 1(5,J). This fact relies on the assumption that L; is monotone.

The crux of the argument is now to produce an almost-complex structure J with the property that
the image of M;(f,J) under the natural evaluation map is disjoint from Lo. This can be achieved by
deforming a fixed complex structure Jy near Lo by a process known as “stretching the neck”. The
authors analyze the limiting behavior of sequences of holomorphic disks under the SFT compactness
theorem. Using the assumption that Ky > K, they conclude that all disks must become disjoint from
Ls for sufficiently large deformations of the complex structure. The theorem then follows by elementary
topological arguments since 9[M] = n[L;] for some n > 1.

We remark that arguments similar to the one sketched above appear in a recent paper of Ekholm and
Smith [11, see Thm. 1.3].

2.3. Topological lemmas. We now state a landmark classification result of Ivrii, Goodman and Dim-
itroglou Rizell. Both the theorem and its proof will have an important role in our work.

Theorem 2.9 (Dimitroglou Rizell-Ivrii-Goodman, [16]). All Lagrangian tori in (R*,w), (S?x S?, wdw)
and (CP?,wrs) are isotopic through Lagrangian tori.

One can show by elementary topological arguments that all orientable Lagrangian submanifolds of R*
and CP? are tori, and that all orientable Lagrangian submanifolds of S? x S? are spheres or tori.
Hence Theorem 2.9 gives a complete classification of all Lagrangian submanifolds of R* and CP? up to
Lagrangian isotopy. One also obtains a full classification of Lagrangian submanifolds of S2 x S2, up to
Lagrangian isotopy, by combining Theorem 2.9 with a theorem of Hind [18] establishing the uniqueness
of Lagrangian spheres in S? x S2 up to Hamiltonian isotopy.

We now introduce some useful topological lemmas whose proofs rely on Theorem 2.9.

Lemma 2.10. Let L C R* be a Lagrangian torus. Then w1 (R* — L) = Hy(R* — L;Z) = Z. Moreover,
we have that Hy(R* — L;Z) = Z® Z and H3(R* — L;Z) = Z. For all i > 4, the groups H;(R* — L;7Z)
vanish.

Proof. Tt follows from Theorem 2.9 that all Lagrangian tori in R* are Lagrangian isotopic. Hence
we may assume that L is the Clifford torus of radius one {(21,22) € C? | |z1] = |22] = 1}. Let
U = {(x1,91,22,9y2) € R* | 22 +yF # 0}. One can easily check (e.g. using cylindrical coordinates) that
mU—L)=Z®Z. Let V := {(x1,y1,22,92) | 23 +y} < 1/2}. An application of van-Kampen’s theorem
implies that 71 (R* — L) = 71 (U — L) #r, vy m(V) = (Z B L) %z {e} = Z.

To compute the homology groups, let N(L) be a tubular neighborhood of L and consider the Mayer-
Vietoris homology sequence associated to the subspaces N(L) C R* and R* — L C R*. Observing that
N(L) N (R* — L) is homotopy equivalent to T?, we find that Hy(T3) = Hy(L) ® Hy(R* — L). Since
Hy(T3) =Z ®Z ®Z and H3(T?) = Z, it follows easily that Ho(R* — L) = Z ® Z and H3(R* — L) = Z.
The vanishing of the higher homology groups holds for dimension reasons. O
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Lemma 2.11. Let Ly and Lo be disjoint Lagrangian tori in R*. If the natural map i, : m (L) —
71 (R* — Ly) has nontrivial image, then Lo is homologically linked with L; cf. Definition 1.5.

Proof. We first argue that there exists a solid torus S C R* with the property that 9S = Lo and that
the intersection pairing
(2.2) H3(R*, Ly;Z) x Hi(R* — Ly; Z) — Z

([S1, ) = S -
generates Hom(H; (R* — Lo; Z),Z) ~ HY(R* — Lo; 7).
This is not hard to verify in the case where Lo is a Clifford torus (in this case, there are two families of
disks which form solid tori with the desired property). Theorem 2.9 implies that Lo is isotopic to the
Clifford torus, so the claim follows in general by the isotopy extension theorem.
Let us now assume for contradiction that i, : m(L1) — 71 (R* — Ls) has nontrivial image and that
[Lo] € Ho(R* — Ly;7Z) is the zero class. Let [y] € Imi, be a nonzero element. In light of Lemma 2.10,
we have isomorphisms Z ~ 71 (R* — Lo) ~ H;(R* — L; Z), so we may as well view [y] as a nonzero class
in Hl(R4 — LQ,Z)
Since 0 = [Ly] € H2(R* — Ly;Z), there exists some chain U € C3(R* — L;) such that Ly = dU. Observe
that U naturally defines a class in H3(R*, Lo; Z), and we have U - [y] = 0 since U is disjoint from L;.
It follows from the long exact sequence of the pair (R*, Ly) that 0 = (U — [S]) € H3(R*, Ly; Z) = Z.
Hence 0 = (U —[S]) - [7] = U - [v] = [S] - [7]- Hence [S] - [y] = 0. In light of (2.2), this implies that
[v] = 0 as an element of H;(R* — Lo;Z). We thus obtain a contradiction. O

The converse of Lemma 2.11 is true under the assumption that L; and Lo are monotone Lagrangian
tori in R*. This will follow from Corollary 3.3.
We end this section with an example which was already mentioned in the introduction. Given disjoint
compact Lagrangians Ly, Ly C R?", this example illustrates that L; may be homologically linked with
Lo while Lo is homologically unlinked from L.

Example 2.12. Let L1 = {(21,22) € C? | |z1] = |22] = 1} be the Clifford torus. We showed in
Lemma 2.10 that m (R* — L1) = Z. Choose a loop 7 realizing a nontrivial element of 7;(R* — L;). It
follows easily from the isotropic neighborhood theorem that any arbitrarily small neighborhood of v
contains a Lagrangian torus which is a circle bundle over 7.

Let Ly be such a Lagrangian torus. It follows by construction that L, is null-homologous in the
complement of L;. However, the inclusion L, — R* — L; induces a nontrivial map on fundamental
groups. It now follows by Lemma 2.11 that L; is homologically essential in the complement of Lo.

3. LINKING OF MONOTONE LAGRANGIAN TORI

The main result of this section is Theorem 3.2, which leads almost immediately to a proof of Theorem B
(cf. Corollary 3.4) and is also an essential ingredient in the proof of Theorem A. The arguments of this
section borrow heavily from [16] and [15], but we have included most proofs since our setting is slightly
different.

3.1. The main result. We recall from the introduction the following definition, which plays an essen-
tial role throughout this work.
Definition 3.1. Let L C (R* w) be a Lagrangian torus. Then
As(L) :=min{w(a) | @ € m(R*, L), u(a) = 2, w(a) > 0}.
The goal of this section is to prove the following theorem.

Theorem 3.2. Let L1, Ly C (R*,w) be disjoint Lagrangian tori. Assume that Ly is monotone and that
As(Lg) > Aa(L1). Then there exists a smooth embedding

¢:(S' x D? S x OD?) — (R* — Ly, Ly).
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In other words, Theorem 3.2 says that L; bounds a solid torus in the complement of L.

Corollary 3.3. Suppose that Lgl), L§2), Lo are Lagrangian tori in (R*, w) with ng‘) monotone and with
ng) NLy =0 for i = 1,2. If Ay(Ls) > AQ(LY)), then Lgl) and_L?) are smoothly isotopic in the
complement of Lo if and only if the group homomorphisms m (ng)) — m(R* — Ly) have the same
image.

Proof of Corollary 3.3. If Lgl) and ng) are smoothly isotopic in R* — Ly, then clearly the images of the
induced maps of fundamental groups coincide. For the reverse direction, observe by the theorem that

L' bounds a solid torus ¢ : (S1 x D2, 81 x 9D?) — (R4 — Ly, L{Y).
The interior of Im ¢(* forms an orientable open submanifold and hence has trivial normal bundle. It

follows that there exists for some e > 0 a tubular neighborhood of the circle () : §1 x R? x R — R*
such that WO (¢, 21, 29,0) = ¢V (¢, 21, 22) for x| < 2e.

Let T4 = {T() (¢, ecosf,esinh,0) | t € S*,0 € [0,27)}. By contracting ng‘) using ¢(¥), we immediately
see that ng) and T are isotopic in the complement of Ls.

By hypothesis, the cores ¥ (S* x 0 x 0) are isotopic in R* — Ly for i = 1,2. Since any isotopy between
these cores extends to an isotopy of tubular neighborhoods, it follows (after perhaps choosing e smaller)
that ¥ is isotopic to some tubular neighorhood ¥(?) : §* x R? x R, where () (S x 0 x 0 x 0) =
T2)(S! x 0x 0 x0). Similarly, T2 is isotopic to T2 = {T?)(t,ecosh, esinh,0) | t € S*,0 € [0,27)}.
The uniqueness theorem for tubular neighborhoods [19, p. 112] implies that there exists a smooth
isotopy of tubular neighborhoods " : [0,1] x ! x R2 x R — R4 — Ly with ") = ¥ and such that
\Ilgl) = 0@ o F, where F: S* x R? = S! x R is a bundle isomorphism.

After a possible further isotopy, we can assume that this bundle isomorphism is a fiberwise isometry,
with respect to the standard euclidean metric on R3. Finally, we can assume that it preserves the
splitting R? x R, since we can generate 71 (SO(3)) = Z/2 by a loop of orthogonal matrices which rotates
the plane R? x 0 around the axis 0 x 0 x R. It follows that ") and T3 are isotopic.

Since T'! is isotopic to Lgl) and since T2 is isotopic to L§2), it follows that Lgl) are L§2) isotopic. g
The following corollary of Theorem 3.2 was already stated in the introduction in a slightly weaker form
as Theorem B. It strengthens the conclusions of Theorem 2.8, due to Dimitroglou Rizell and Evans, in
the special case of Lagrangian tori in R*.

Corollary 3.4. Let L1, Ly C (R* w) be disjoint Lagrangian tori. If Ly is monotone and As(La) >
As(Lq), then Ly bounds a solid torus in the complement of Lo. Moreover, L1 and Lo are smoothly
unlinked if and only if the image of the natural map w1 (L1) — 71 (R* — Ly) vanishes. If L1 and Ly are
both monotone and As(L1) = Aa(L2), then L1 and Lo are smoothly unlinked.

Proof of Corollary 3.4. The fact that L; bounds a solid torus in the complement of Lo is a restatement
of the theorem.

If L1 and Lo are smoothly unlinked, then it follows immediately from Definition 1.1 that the map
m1(L1) — m (R* — Ly) has trivial image. To prove the converse, consider some other Lagrangian torus

{ which is far away from Ly and, in particular, is smoothly unlinked from Ls. Then it follows from
Corollary 3.3 that L; and L} are isotopic in the complement of Ly if the map m1(L1) — m (R* — Lg)

has trivial image. Hence Ly and Lo are smoothly unlinked.
In the special case where Ay(L;) = As(Ls), we find by interchanging the roles of Ly and Lo that
they both bound solid tori in the complement of the other. It then follows from Lemma 2.11 that the

natural map 7 (L1) — 71 (R* — Ls) has trivial image. Hence we conclude that L; and Lo are smoothly
unlinked. O
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Overview of the proof of Theorem 3.2. Our proof of Theorem 3.2 is very much analogous to the original
argument of Dimitroglou Rizell and Evans in their proof of Theorem 2.8. The main difference is that
we work with holomorphic planes rather than holomorphic disks.

The argument of Dimitroglou Rizell and Evans was already sketched in the introduction; cf. Section 2.2.
Given L; and Lo as in the statement of Theorem 2.8, recall that the strategy is to deform the complex
structure near Lo by “stretching the neck”. One then considers the effect of this deformation on the
moduli space of holomorphic disks with boundary on L;. For the argument to work, one needs to
ensure that the relevant moduli spaces remain non-empty as one deforms the complex structure. In the
original paper of [15], this property is observed to follow from work of Damian [10] and Evans-Kedra
[14] using Floer theory.

These Floer theoretic methods do not apply if one works with planes instead of disks. Instead, we
will appeal to an analysis carried out in [16], which also uses the technique of “neck stretching” to
produce moduli spaces of planes whose compactification has boundary in L;. The relevant statement
is Proposition 3.8. We will then analyze the behavior of these moduli spaces under deformation of the
complex structure near Lo. This step is carried out in Proposition 3.11. The argument and conclusion
will be essentially the same as in [15], although one can slightly sharpen the analysis when working
in dimension 4. This in particular allows us to replace the monotonicity assumption on L, with a
condition on As(Ls).

The monotonicity assumption on L is needed in order to control the area of the holomorphic planes
obtained using [16]. In Section 5, we will prove certain results on homological linking of non-monotone
Lagrangian tori in R* using moduli spaces of holomorphic disks. It would be interesting to extend the
arguments of that section to planes, but the analysis required seems more difficult; cf. Section 8.2.

3.2. Recollection of some standard constructions. For completeness and for the purpose of fix-
ing some conventions which will be needed in the remainder of this work, we review some standard
constructions on the way to proving Theorem 3.2.

Definition 3.5. Given a metric g on 7*M and a real number r > 0, let Sy M denote the sphere
bundle consisting of covectors of norm r. Let 05y < T*M denote the zero sect1on The submanifold
S;‘ng naturally inherits a contact structure a4 by restricting the Liouville form Acqp.

For R > 0, we consider the polydisk P(R, R) = {(21,22) € C? | |21] < R, |22| < R}. We will be viewing
P(R, R) both as an open symplectic manifold and as a symplectic subdomain of (R* w). By choosing
R large enough, we can assume that L; and Lo are both contained in P(R, R) C R*.

Observe that there is a natural symplectic embedding

(3.1) i:P(R,R)— (S? x 8% wr ® wg),

where [wr = 7R? and 5% x §? = P(R, R) U Do, with Do, = 52 X {oo} U{oc} x 52 Thus we may view
Ly and Ly as Lagrangian submanifolds of (5% x S?, wr @ wg).

It will be useful to consider the identification T*T? ~ T? x R2 given by the map y1df; + yadfs —
(01,02,y1,y2). In these coordinates, we have weqn = dy1 A df1 + dys A dfs and Aapn = y1d01 + yodbs; cf.
Remark 2.5.

For i = 1,2, let ¢; : Op(Op2) — N(L;) C §% x 82 — Do, be Weinstein embeddings with disjoint images.
Let g; be a suitable rescaling of the flat metric on T*T? so that

(3.2) o' ((—1,1) x St T?,d(e' o)) — (N(Li),wr ® wr)

is a symplectic embedding. We write o; = a,4,. By setting y; = rcosf and y, = rsinf for r > 0
and 6 € R/Z, we naturally get coordinates (61,62,0) € (R/Z)* on S;,T? ~ T®. We then have
o = Ei(cos ?d@l_—l- sinfdfy) for some ¢; > 0. Observe that the Reeb vector field is then R,, =
E—li(cos 00, + sin 60y, ).

Let us consider the symplectization (R x St , T?, d(e'a;)) with coordinates (¢, 61, 02,0). We fix a triv-
ialization of the tangent bundle ® = {0, R,,, X = sinf0p, — cos5892,8§}. Let Jey be the unique
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almost-complex structure satisfying J(9;) = Rq, and J(X) = J;. One can readily check that J., is
compatible with d(efc;) and preserves ker c;.

Let j be the standard integrable complex structure on S? x S2. Let J be a compatible almost-complex
structure on (S? x S?,wr ® wr) with the following two properties:

(i) The restriction of J to ¢*((—1,1) x S}, (T?)) coincides with (¢").Jey:.
(ii) J agrees with j in some open neighborhood U of D, which does not intersect N(L;) U N (Lz).

We now introduce a family of compatible almost-complex structure {J.} on (5% x S% wr ® wg) for
(k,1) € Ny xN;. We construct this family by stretching the neck along S} , T?> C N(L;) and S}, T? C
N(Lz), following the procedure described in [8, Sec. 2.7]. We will fix the convention that subscript
indices correspond to stretching the neck along S7 T? while the superscript indices correspond to
stretching the neck along S} 92'}1‘2. In other words, J}C is obtained from J by inserting a neck of length
k along ST | T2 and a neck of length [ along S;)QZT?

We also consider the almost-complex structures {J. }, {J°} and JE on S? x §2 — L1, on S? x S? — Ly
and on S? x S% — Ly — Ly respectively. These are constructed by replacing J with J.,; in the image of
¢'((—00,1) x 87, T?) C N(L;) C 5 x 8% = De.

Lemma 3.6. It is possible to choose J such that the almost-complex structures {JL_}, {J°} and J
are regular for somewhere injective punctured curves.

Proof. Let Jy be any compatible almost-complex structure on S? x §? which satisfies (i) and (ii) above.
Observe that any compatible perturbation of Jy which is fixed on N(L1) U N(Lo) UU will also satisfy
these properties. Let V = P(R, R) — (N(L1) UN(L2) Ul).

Let {J(a)}3, be an enumeration of the {J! }, {J°} and J.

It follows from elementary topological arguments that any punctured J(a)-holomorphic curve which is
somewhere injective must intersect V.

Observe that J(«)|y is independent of a.. For each «, there is a Baire set of compatible perturbations
of J(a) supported in V, such that the perturbed almost-complex structure is regular for simply covered
curves which intersect V (see [27, Theorem 7.2]). Since the J(a) are all equal inside V, the space of
perturbations of each J(«) can be naturally identified.

Since there are countably many J(«), the intersection of these Baire sets is nonempty. Hence there is
a perturbation which works for all . If we apply this perturbation to Jy, then we obtain an almost-
complex structure J with the desired property. (Equivalently, we can think of this as simultaneously
perturbing all of the J(«)). O

Let u be a punctured holomorphic curve mapping into S2 x 82 — L1, 52 x 82 — Ly or S? x S2 — L1 — Lo.
We let ¢ (u) be the relative Chern number of u with respect to ® = {®!, ®2}. This is a count of zeros
of a generic section of u*T'(S? x S%) Au*T(S? x S?) which is constant near the punctures with respect
to the trivializations induced by ®' and ®2.

We have the following simple relation between the Chern number of a holomorphic plane and the Maslov
index of its compactification.

Lemma 3.7. Fori = 1,2, let u; : C — (S? x S2 — L;) be a J-holomorphic plane where J = J. or
J=JX. Letv:C — S? x S — Ly — Ly be a J-holomorphic plane for J = JX. Then 2ct (u;) = u(us)
and 2¢3 (v) = p(v).

Proof. This is stated in [16, Sec. 3.1 Eq. (2)] and references are provided for the proof. However, since
these references follow notational and sign conventions which are different from ours, we will briefly
sketch an argument in the appendix for the reader’s convenience. O
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3.3. The moduli space of holomorphic planes. For a class a € m3(S5?% x S2, L1) and a distinguished
point p € C, we let

Mi(a, J\) :={u:C— S?x S*— L, | ajéou =0,7 = a}/{Aut(C,p)}

be the moduli space of J._-holomorphic planes with one marked point whose compactification represents
the class «. Let

ev(a, J\) : My(a,JL) = S x §? — I,
([u], p) = u(p),

be the evaluation map. We will also denote by M (a, J,) the moduli space of J!_-holomorphic planes
(with no marked points) whose compactification represents the class a.

If we assume that o € ma(S? x S%, L) is primitive, it follows from Lemma 3.6 that M («, J. ) and
M(a, JL) are a smooth manifolds and that ev(a, J. ) is a smooth map.

We now come to the following important proposition.

Proposition 3.8. For every natural number | > 0, there exists a class oy € w(S? x S?%, L) with
w(ay) = 2 such that the following properties are satisfied:

(i) There exists a component M°(l) C M(ay,J.)) diffeomorphic to S, and a diffeomorphism
My, JL) =~ MO(1) x C. Here M$ (e, L) is a component of My(ay, L), the moduli space
of planes in the class oy, with one marked point.

(ii) The evaluation map ev(ay, J.) : M(1)xC — S?x S%2—L; is a smooth embedding, and its image
is disjoint from Doo. Thus, we can also view ev(ay, JL.) as mapping into P(R, R)—L, C R*—L;.

(iit) The evaluation map can be modified to a yield smooth map &v(ay, JL.) : (MO(1) x D2, MO°(1) x
S1) — (R* L1), whose image can be made to lie in an arbitrarily small neighborhood of the
image of ev(ay, J..).

The planes belonging to the component MO (1) will be called “small planes”; cf. [16, Sec. 5.2].

Remark 3.9. The choice of the class a; and component M?(1) in Proposition 3.8 is not canonical. In
general, there could be multiple families of small planes.

Proof. This proposition follows from the analysis carried out in [16]. It follows from a well-known
theorem of Gromov that S? x S? is foliated by .J!-holomorphic spheres in the classes [S? x *| and
[* x S2]. If one views [ as fixed and sends k — oo, one can analyze the limiting behavior of these
spheres under the SFT compactness theorem. This analysis is carried out in [16, Sec. 5]. We observe
in light of Lemma 3.6 that the almost-complex structures {J! } satisfy the transversality properties
which are assumed in this analysis (see [16, p. 27]).

It follows from [16, Prop. 5.11] that there is a component M°(1) C M(ay, J.,) satisfying (i) and (ii) of
Proposition 3.8. These planes are referred to in [16] as “small planes”, and we will continue to use this
terminology.

The proof of (iii) is carried out in [16, Sec. 5.3]. The key input is [16, Lem. 5.13] which guarantees that
distinct planes are asymptotic to distinct Reeb orbits. The desired modification can then be constructed
using a standard asymptotic formula for punctured holomorphic curves, as in [16, Sec. 5.3]. 0

We record the following lemma which will be useful in the next section.

Lemma 3.10. There exists a neighborhood U' C U independent of | € N with Doy, C U’ such that
none of the J._-holomorphic small planes intersect U'.

Proof. Let O C S? be a small open neighborhood containing {oo} € S2, with the property that
{p} x S? CU and S? x {p'} C U for all p,p’ € O. Since the asymptotic boundaries of the small planes
are geodesics of Ly and since N(L1) NU = (), it follows that the intersection number of a small plane
with the spheres {p} x S? and S? x {p'} is independent of p, p’ € O. This intersection number must be
zero since the small planes do not intersect Do,. Since J is standard in U, it follows by positivity of
intersection that the small planes do not intersect {p} x S? and S? x {p'} for any p,p’ € O. O
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3.4. Deforming the complex structure by stretching the neck. We now implement the second
part of the proof of Theorem 3.2. We will show that the moduli spaces considered in Proposition 3.8
eventually become disjoint from L.

Proposition 3.11. There exists A > 1 such that the image of ev(ag, J.)) : M°(I) x C — S? x S? — L,
is disjoint from Lo for all | > A.

Proof. The proof is similar to [15, Theorem 4.1]. Let us suppose for contradiction that the statement is
false. Then there exists a sequence {u;} of Jéo holomorphic planes in the class «; such that Imwu; N Lo
is nonempty for all I. Recall by Proposition 3.8 (ii) that u; N Do, = ), so we can view ev(ay, J.) as
mapping into P(R,R) — Ly C R* — L;. Since L; is monotone as a Lagrangian submanifold of R*,
there is a constant C' > 0 such that w(u;) = Cu(ag) = 2C. Up to replacing {u;} with a subsequence,
it follows by the by the SFT compactness theorem (cf. Remark 3.12) that the sequence {u;} converges
to a holomorphic building u.

For 0 = 1,2,..., N, let {u”} be an enumeration of the components of u. The u” map into domains
which are diffeomorphic to S? x S* — Ly — Lo, (R x St , T?), (R x S, T?) and T*Ly. In light of

Lemma 3.10, the planes wu; stay uniformly away from OP(R, R). This implies that the u” which map
into S? x S? — L1 — Lo actually land inside P(R, R) — L1 — Ly C R* — Ly — L.

Since R* — L, — L5 is exact, it follows that any «° mapping into R* — L; — L has at least one puncture.
The domains (R x S}, T?), (R x St ,,T?) and T* Ly have vanishing homotopy groups in degree strictly
greater than 1, so all v mapping into these domains must also have at least one puncture.

It now follows by elementary topological considerations that the building u must contain a plane. Up
to relabeling the indices, we can assume that u' is a plane. Observe that «! must map into R* — L, — Lo
due to the fact that the flat metric g; on L; admits no contractible geodesics for ¢ =1, 2.

Let @' be the compactification of u'. By combining Lemma 3.14 and Lemma 3.15 below, we find
that 7' has Maslov index 2. Hence u! cannot converge at its puncture to a geodesic of (L, go) since
w(ur) < Aa(Ls). Hence it converges at its puncture to a geodesic of (L1, g1). This implies that u! has
area As(L1) = w(ug) since Ly is monotone. It follows that there are in fact no other components to

the building u, which contradicts the assumption that the u; intersect L. O

Remark 3.12. In the proof of Proposition 3.11, we are appealing to a version of the SF'T compactness
theorem for “neck-stretching” in a manifold with a negative cylindrical end. To the author’s knowledge,
a proof of this precise version of the SF'T compactness theorem does not appear in the literature, but
closely related versions are described in [3] and the arguments there go through in our setting with
straightforward modifications. We note that an alternative approach to SFT compactness is detailed
in [8].

It seems useful to clarify the relation between the symplectic area of the holomorphic planes u; con-
sidered in the proof of Proposition 3.11, and the notions of energy considered in [3] which are needed
for proving compactness. Although these notions are strictly different, it can be shown using the ar-
guments of [3, Lem. 9.2] that the symplectic area of the planes u; controls the relevant energies in [3].
For completeness, the details of this argument are provided in the Appendix; see Section 9.4.

Remark 3.13. If we assume that Lo is monotone, it follows that the disk w; considered in the proof of
Proposition 3.11 above has Maslov index at least 2. This makes it possible to prove Proposition 3.11
without appealing to Lemma 3.14 and Lemma 3.15. The reader who is only interested in monotone
tori (and in particular in the proof of Theorem A) can therefore safely pass to Section 4 of this paper.

Lemma 3.14 (cf. Prop. 3.5in [16]). The sum of the Fredholm indices of the components of the building

u which map into R* — L1 — Lo is at most 1.

Proof. As in the proof of Proposition 3.11, let {u“} be an enumeration of the components of the building
ufor o =1,2,...,N. Let K be the total number of asymptotic Reeb orbits of the components of the
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building u. Let us compute the sum of the Fredholm indices of all the u©?. We claim that the following
equation holds

N N
(3.3) > ind(u?) = —2N + (3K —2)+2> _cf(u”) = —2N + (3K — 2) + 2¢{ (w),

o=1 o=1
where we assume that [ is large enough so that ¢ (u;) is independent of I.
The key input in proving (3.3) is the index formula (9.4) in the appendix. Observe that, with a single
exception, all asymptotic orbits of the components of u occur as the negative puncture of exactly one
component and as the positive puncture of exactly one component. Let p be the unique asymptotic
orbit which is not paired up with a positive puncture. It follows that every asymptotic orbit gets
counted three times in (9.4), except for p which gets counted only once.

In fact, since u is a limit of planes, it follows that K = N and hence

N
(3.4) > ind(u”) = N — 2+ 26 (w).
o=1
We now argue as in [16, Lemma 3.1]. Let T C {1,2,..., N} be the set of all o € {1,2,..., N} such that
u? maps into the domains 7% Lo, R X ngl']f‘2 or S 4, T2. With the exception of p, all asymptotic orbits
of the components of u occur as a positive puncture of some u? for o € T. Hence it follows from (9.4)
that that the set of punctured curves {u},cr has total index

(3.5) D ind(u?) ==Y x(w) + (K —1) == x(u’) + (N -1).

oeT oeT oeT

Combining (3.4) with (3.5), we find that the sum of the indices of the components mapping into
R* — L, — Ly is precisely

N
(3.6) > ind(u?) = > ind(u”) = N = 2+ 2cF (w) + Y x(u”) = (N = 1)

oeT oc€eT
< =142 (w) = -1+ p(@m) =1,
where we have used Lemma 3.7 and the previously observed fact that all components mapping into

T*T?, R x Sf,, T? or R x S} T? must have at least two punctures and thus have non-positive Euler
characteristic. |

Lemma 3.15 (cf. Lem. 3.1 and Lem. 3.3 in [16]). Suppose that u™ € {u’}_, is a component of the

building u. Then ind(u™) > 0. If u” is a plane, then ind(u™) > 1 with equality if and only if u™ is
simply-covered and the compactification " has Maslov index 2.

Proof. If u™ maps into R x S, T? for i = 1,2, then x(u”) < 0 (since we saw that u” has at least 2
punctures) and ¢ (u”) = 0. It follows that ind(u”) = —x(u”) + 2¢§ (u™) > 0.

We can therefore assume that 47 maps into R* — L1 — Ly. In this case, recall from the proof of
Proposition 3.11 that 4™ has at least one puncture. It follows from Lemma 3.6 that ind(u™) > 0 if u”
is simply-covered.

If w7 is multiply covered, then there exists a map ¢ : 3 — Y’ such that deg(¢) =d > 1 and u™ = v" 0 ¢
where v7 is a simply-covered punctured curve. Here ¥ and ¥/ are punctured Riemann surfaces of genus
0, having k.- and k,- punctures respectively.

Let B be an enumeration of the branch points of ¢ and set
b= Z(mp - 1),
peEB

where m,, is the multiplicity of ¢ at p. By the Riemann-Hurwicz formula, we have

(3.7) 2=2d—b.
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Observe that we also have
(3.8) dkyr < kyr +b.
In light of the index formula (9.4), we now have
ind(u”) = =2 + kyr + 2¢7 (u")

=b—2d+ kyr +2¢T (u7)

> dkyr — 2d + 2dct (v7)

= dind(u7).
Assuming that ind(u”) < 0, it then follows that ind(v”) < 0. This is a contradiction since v is

simply-covered. This proves the first part of the lemma.

If " is a plane, then it follows from Lemma 3.7 that ind(u”™) = —1 + p(u”) > 1, with equality if and
only if u(u™) = 2. O

Proof of Theorem 3.2. The theorem follows immediately by combining Proposition 3.11 and Proposi-
tion 3.8 (iii). O

4. ENUMERATIVE INVARIANTS AND LINKING OBSTRUCTIONS

Let Ly and Lo be monotone Lagrangian tori and assume that the monotonicity factor of L; is at most
equal to that of Lo. It follows from Corollary 3.3 that the only obstruction to smoothly unlinking Iy
and Lo is the nontriviality of the map 71 (L1) — m1(R* — Ly). In this section, we will relate this map
to certain enumerative counts of holomorphic disks with boundary in L;.

4.1. An enumerative invariant of Lagrangian tori. The present section follows [, Section 3].
Fix a monotone Lagrangian torus L C (R* w) and let J be a compatible almost-complex structure
which is standard at infinity. Throughout this section, all almost-complex structures (and families
of almost-complex structures) will be assumed to coincide with the standard complex structure j at
infinity.
Given a class a € mo(R*, L), let
M(a,J) = {u: (D* 0D?* — (R* L) | 9;u = 0,u.[D?] = a}

be the moduli space of J-holomorphic disks representing «. Let

Moa(a,J) = {u: (D*dD?*) — (R* L) | 0ju = 0,u.[D? = a}/ Aut(D?1)
be the moduli space of J-holomorphic disks representing o with one boundary marked point.

If o is primitive and J is regular for simply-covered curves, then M(a, J) and Mg 1(«, J) are smooth
manifolds of dimension —1 + p(«) and p(«) respectively. The boundary evaluation map

ev(a,J): Mo1(a,J) = L
[u] = u(1)
is also smooth.

Definition 4.1. Let a € mo(R%, L) be a class with p(a) = 2 and let J be a compatible almost-complex
structure which is regular for simply-covered curves with boundary in L. We define n(L,a) € Z/2 to
be the mod 2 degree of the boundary evaluation map ev(«, J) : Mo 1(a, J) — L.

The invariant n(L, ) can be interpreted as a count of holomorphic disks representing the class a which
pass through a generic point of L. A standard cobordism argument (which uses crucially our assumption
that L is monotone) shows that n(L, «) remains unchanged under Hamiltonian isotopies of L, and under
generic homotopies between regular almost-complex structures. Since any two regular almost-complex
structures can be connected by a generic homotopy, it follows that n(L, «) is independent of the choice
of regular almost-complex structure.
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Example 4.2. Consider the Clifford torus L = L(r,r) = {(21,22) € C? | |21] = |22| = r} for some
r > 0. It can be shown (cf. [7, Thm. 10.2]) that the standard complex structure j is regular for all
holomorphic disks with boundary in L. Let a; = [D? x ] and let ap = [* x D?] be classes in m2(R*, L).
It’s clear that ev(ay,j) is a degree 1 map for ¢ = 1,2. It follows that n(L, o;) = 1.

4.2. Application of the invariant to linking. In this section, we explain why the enumerative
invariant introduced above is relevant for the study of linking of Lagrangian tori. In particular, we
will use it to show that any two Clifford tori in (R* w) are always smoothly unlinked, thus proving
Theorem A in the introduction.

We begin with the following key proposition.

Proposition 4.3. Let L; C (R*,w) be a monotone Lagrangian torus and let Ly C (R*,w) be a (not
necessarily monotone) Lagrangian torus disjoint from Li. Suppose that there exist homotopy classes
a1, ay € mo(RA, Ly) satisfying the following properties:

(i) plon) = plaz) =2,
(ll) n(Ll,al) = TL(Ll,ag) = 1,
(iii) The image of {a1,as} under the inclusion ma(R* L1) = m(L1) — m(L1) ® Q generates a
basis.

If A3(Lo) > Aa(Ly), then the group homomorphism i, : m1(L1) — m1(R* — Lo) induced by the inclusion
i: L1 — R*— Lo is trivial.

Proof. Tt follows from Lemma 2.10 that 71 (R* — Lg) is torsion-free. Hence, in light of property (iii)
above, it is enough to prove that oy and as have trivial image in m (R4 — Lo).

Fix a compatible almost-complex structure J on (R*, w). As in Section 3.2, let {J'}?°, be a sequence
of almost-complex structures obtained from J by stretching the neck in a Weinstein neighborhood
N(L2) which is disjoint from L. Let N(L;) be a Weinstein neighborhood of L; with the property that
It follows from property (i) and from the fact that L; is orientable that a; and «y are primitive classes.
By standard genericity arguments, we can perturb J outside of N(L;) U N(Ls) in such a way that all
J! can be assumed to be regular for simply-covered pseudoholomorphic disks; cf. Lemma 3.6.

Since n(L1, ;) = 1 for i = 1,2, it follows that M(a;, J') is non-empty for all [ > 1. The proposition is
now a consequence of the following lemma. 0

Lemma 4.4. For i = 1,2, there exists a large integer A such that any disk u; € M(ay, J') is disjoint
from Lo if I > A.

Proof. The proof is similar to that of Proposition 3.11 and [15, Theorem 4.1]. Suppose for contradiction
that the statement is false. This implies that there exists an infinite sequence of J'-holomorphic disks
u; such that w; N Ly is non-empty for all [ € N. Up to passing to a subsequence, we can assume by the
SE'T compactness theorem that the u; converge to a holomorphic building u. This building must have
a component mapping into the domain 7" Ly due to our assumption that u; N Ly is non-empty.

It can be shown by a routine modification of the proofs of Lemma 3.14 and Lemma 3.15 that the
components of u satisfy the following two properties.

(i) The sum of the Fredholm indices of the components of u which map into R* — Ly is at most 1.

(ii) Every component u” of u has non-negative Fredholm index. If u” is a plane, then ind(u”) > 1
with equality if and only if u” is simply-covered and the compactification u” has Maslov index
2.

It now follows by an argument analogous to the proof of Proposition 3.11 that the limit building u must
contain a plane v whose compactification 7 has Maslov index 2. Observe that T cannot have boundary
in Ly. Indeed, we must have w(v) > As(L2) > Az(L1) = w(u;), which would imply that there are
no other components of the holomorphic building mapping into R* — L,. But there must be at least
one other component of the building having boundary in L;. It follows that v has boundary in L;.
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But this means that w(7) > As(L1) = w(w;). Hence there are no other components of the building
mapping into R* — L. By connectedness of the building (cf. Sec. 9.1 (v) of [3]), it follows that there are
no components of the building mapping into T Ly, which is a contradiction in view of the paragraph
above. O

Remark 4.5. Note that for the purpose of proving Theorem A in the introduction, we could bypass the
above argument entirely by assuming Ly to be monotone. In this case, the proof is identical to the
original argument of Dimitroglou Rizell and Evans [15, Thm. 4.1].

We arrive at the following corollaries, the second of which implies Theorem A in the introduction.

Corollary 4.6. Suppose that Ly, Ly C (R* ,w) are disjoint Lagrangian tori satisfying the assumptions
of Proposition 4.5. Suppose also that As(La) > Aa(L1). Then Ly and Lo are smoothly unlinked.

Proof. Tt follows from Proposition 4.3 that 71 (L1) has trivial image in 71 (R* — Ly). By Corollary 3.3,
this implies that L; and Ly are smoothly unlinked. O

Corollary 4.7. Any two Clifford tori (of possibly different monotonicity factor) in R* are smoothly
unlinked.

Proof. If Ly and Ly are both Clifford tori, we can assume without loss of generality that As(Lg) >
As(Ly). It follows from Example 4.2 that L; satisfies the assumptions of Proposition 4.3. Hence
Corollary 4.7 follows from Corollary 4.6. O

4.3. Configurations of monotone Lagrangian tori. The goal of this section is to characterize
possible configurations of monotone Lagrangian tori in R* up to smooth isotopy. Some of the arguments
will only be sketched, since they are not needed in the remainder of this paper.

We begin with an auxiliary lemma.

Lemma 4.8. Let A\ = x21dy; + zodys. Let v1 and v be simple closed curves in R*. Then v1 and o are
Hamiltonian isotopic if and only if f'n A= f'vz A

Proof. The main step is to observe that there exists a smooth isotopy {:} such that f% A is independent
of t. By the symplectic neighborhood theorem, we can then extend the isotopy to a compactly supported
diffeomorphism ® which is a symplectomorphism near ;. Let w; = ®*w and observe that it would be
enough to produce a compactly supported isotopy ¥: such that ¥iw; = w. This can be accomplished
by a standard Moser-type argument, which relies on the fact that the v, have constant action. O

Corollary 4.9. Let v C R* be a simple closed curve and let v C U be a tubular neighborhood. Then
there exists a Chekanov torus Len, CU such that the map 1 (Lop) — m(U) = Z is surjective.

Proof. Choose a simple closed curve 4 C U such that [y] = [§] € m(U) and f;y/\ = 0. By the
lemma, there exists a global Hamiltonian isotopy taking the curve x(t) = (cost,0,sint,0) to the curve
7. In particular, this isotopy maps a small neighborhood V of k into Y. Inspecting the definition
of the Chekanov torus in Example 2.4, we can choose the monotonicity factor small enough so that
Lep(r?) € V. The corollary follows.

The existence of 7 is geometrically clear but tedious to prove in detail. A sketch of a possible argument
goes as follows. Pick a point p € v and a small ball B, C V. Supposing that fv/\ = A, one can

clearly construct an immersed closed curve ¢, : [0,1] — B, C R* with ¢,(0) = ¢,(1) = p and such
that fc A = —A. The concatenation 7 * ¢, is now an immersed closed curve of area zero satisfying the
P

desired properties. By wiggling it slightly, we can get a nearby embedded curve of area zero. g

Example 4.10. Let L; C (R* w) be an arbitrary Lagrangian torus. Let v C R*— L; be a simple closed
curve which realizes a nontrivial element of 1 (R* — L) ~ Z; cf. Lemma 2.10. Let i/ C R* — L; be a
tubular neighborhood of 7. It follows from Corollary 4.9 that there is a Chekanov torus Ly C U C R*—L;
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with the property that 71 (La) — 71 (R*— L1) has nontrivial image. By Lemma 2.11, L; is homologically
linked with Lo. In particular, L1 and Lo are not smoothly unlinked; cf. Corollary 4.7.

Let C be a finite collection of disjoint monotone Lagrangian tori in R*. Let a; > --- > a, be the set of
values of Az(L) for L € C. We partition C into levels £1, ..., £, by stipulating that L € ¢; if A3(L) = a;.

Observe that C satisfies the following properties:

(i) All pairs of Clifford tori in C are smoothly unlinked from one another. This follows from
Corollary 4.7.

(ii) All tori of the same level are smoothly unlinked. Any torus L € C bounds a solid torus embedded
in the complement of all tori of higher level. This follows from Corollary 3.4.

We can think of C as being built in the following way. First, one chooses disjoint monotone tori
Li,...,L3" with As(L%) = a; which form the level ¢;. Having constructed the levels /1. .., 0,1, we
construct the level ¢, by choosing disjoint monotone tori Ll ..., Li» such that Ay(LY) = a,. We
require that the L® do not intersect any of the previously constructed /;.

At each step, one can consider the image of the map (L) — 71 (R* — U~ 1¢;), which is a cyclic
subgroup. These subgroups are discrete invariants of our construction of C. The following proposition
shows that they are in a sense the only invariants of the construction.

Proposition 4.11 (Uniqueness). For i =1,2,...,jn, the Lagrangian torus L is entirely determined
up to smooth isotopy by the image of the map w1 (L%) — w1 (R* — UT14y,).

Proof. The arguments of Section 3.2 allow us to produce a smoothly embedded solid torus which does
not intersect any of the tori belonging to the levels ¢1,...,¢,_1. This can be done by stretching the
neck along all of these tori simultaneously. The remainder of the proof is now analogous to the proof
of Corollary 3.3. 0

The next proposition shows that all possible images of the maps 71 (L%) — 71 (R* — UP~14,) are indeed
achieved through the above construction.

Proposition 4.12 (Existence). Let S C m(R* — UT" ;) be a cyclic subgroup. Then there exists a
torus L such that (L) — 71 (R* — U1 0y) has image S and Ay(L) < a; fori=1,...,n—1.

Proof. Let v C R* — UT" 1), be a simple closed curve generating S. By modifying v in a C-small
neighborhood, we can assume that fv A=0. Let U C R* — U’fflék be a tubular neighborhood of ~. It

now follows from Corollary 4.9 that there is a Chekanov torus L C U such that 71 (L) — 71 (R*—U}14y)
has image precisely S. O

The upshot of the above propositions is that monotone Lagrangian tori in R* are essentially character-
ized up to smooth isotopy by a discrete set of topological choices. In fact, by a repeated application of
the arguments of Corollary 3.3, one should be able to prove a statement to the effect that isomorphic
choices of this data give rise to smoothly isotopic configurations of tori. We leave it to the interested
reader to formulate a precise version of this statement.

5. HOMOLOGICAL LINKING OF NON-MONOTONE TORI IN R*

In this section, we introduce a class of non-monotone Lagrangian tori in R* whose members will be
called admussible tori. We show that this class is closed under Hamiltonian isotopies and contains
“most” product tori. The main result of this section is Theorem 5.7 (stated as Theorem C in the
introduction), which gives sufficient conditions under which admissible tori are homologically unlinked
and thus modestly generalizes Theorem 2.8 of Dimitroglou Rizell and Evans in dimension 4. We will
show in Section 6 that Theorem 5.7 is sharp in an appropriate sense.
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5.1. An enumerative invariant for admissible Lagrangian tori. Let L C (R* w) be a Lagrangian
torus. We will assume throughout this section that L is not monotone; this is a harmless assumption
since the results proved in this section will be weaker than those of the previous two sections, which do
apply to monotone tori.

Unless otherwise indicated, all almost-complex structures in this section are assumed to coincide at
infinity with the standard complex structure j. Let J be an almost-complex structure on R* which is
compatible with w and regular for simply covered curves. Given a primitive class a € mo(R* — L), let
Moy, J), Mo 1(a, J) and ev(a, J) be defined as in Section 4.

Observe that there is a unique class apg € m2(R*, L) with the property that u(ap) = 2 and w(ag) =
Az(L). The existence of this class follows from the fact that every Lagrangian torus in R?" admits
a disk of Maslov index 2 (this was proved by Cieliebak and Mohnke [9, Theorem 1.2], although the
4-dimensional case was already known). The uniqueness of this class follows from our assumption that
L is not monotone.

Definition 5.1. Let L C (R* w) be a Lagrangian torus and let oy € ma(R*, L) be the unique class
with the property that u(ag) = 2 and w(ay) = A2(L). By analogy with [15, Def. 4.1], we will call ag
the p-infimal class of L.

Definition 5.2. Let o € m(R*, L) be a primitive class and let J be an w-compatible almost complex
structure which is regular for simply-covered curves. We define n(L, o, J) € Z/2 to be the mod 2 degree
of the evaluation map ev(a, J) : Mo 1(a, J) — L.

Since L is not monotone, one does not in general expect the count (L, e, J) to be independent of J.
However, we have the following useful proposition.

Proposition 5.3. Let ag be the u-infimal class of L. Then n(L, J, ap) € Z/2 is independent of the
choice of J among w-compatible almost-complex structure which are reqular for simply covered disks
with boundary in L.

It follows from Proposition 5.3 that we can write (L, ag) = n(L, J, ag).

Let us now consider some applications of Proposition 5.3 to homological linking of Lagrangian subman-
ifolds. We defer the proof of Proposition 5.3 to the next section.

Definition 5.4. We say that a (non-monotone) Lagrangian torus L C R* is admissible if (L, ap) = 1.

It is immediate that the class of admissible Lagrangian tori is closed under Hamiltonian isotopy. The
next proposition shows that it contains “most” product tori.

Proposition 5.5. Consider the product torus L(r,s) = {(z1,22) € C? | |z1| = r,|22| = s}. Assume
without loss of generality that 0 < r < s. Then L(r,s) is admissible if s/r > V2. The class oy is
represented by [D? x x].

Proof. Let us write L = L(r,s). We first argue that As(L) = w(ag) = 7r?. By choosing each of the
product factors as generators for Hy(L;Z), we get an identification Z & Z ~ H;(L;Z) ~ ma(R*, L)
sending (1,0) onto [D? x *] and (0,1) onto [* x D?]. Now, every Maslov 2 class is of the form (p, —p+1)
for p € Z, and so the areas of Maslov 2 classes are of the form w(p(r — s) 4+ s). Using our assumption
that s > \/§r, it is then easy to check that

Ay(L) = mr® = minpez ({m(p(r* — 5%) + s*)} NRxo) .

It is now a standard fact that the standard complex structure j is regular for all holomorphic disks with
boundary in L, and that the boundary evaluation map has degree 1; see [7, Thm. 10.2] and [I, Lem.
4]. Hence n(L,ap) = 1 and it follows that L is admissible. O

Remark 5.6. Tt is a folklore conjecture that all non-monotone Lagrangian tori in R* are Hamiltonian
isotopic to product tori. In light of Proposition 5.5, this would imply that the class of admissible tori
contains “most” examples of non-monotone Lagrangian tori in R*.
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We are now in a position to prove the following result, which was stated as Theorem C in the intro-
duction. It extends [15, Theorem 5.1] to the class of admissible tori in R*.

Theorem 5.7. Let Ly, Ly C R* be disjoint Lagrangian tori. Suppose that Ly is admissible. If Ag (Lo) >
Az (Ly), then [L1] is the zero class in H,(R* — Lo;Z). In other words, Ly is homologically unlinked from
Ly (¢f. Definition 1.3).

Proof. A routine modification of the proof of Proposition 3.11 (or equivalently Lemma 4.4 or [15, Thm.
4.1]) shows that there exists a regular almost-complex structure J! with the property that the image
of ev(ap, J') — R* misses Lo. The boundary evaluation map has degree 1 since L; is admissible. The
rest of the argument is now identical to the proof of [15, Thm. 5.1]. O

5.2. Proof of Proposition 5.3. Let Jy and J; be compatible almost-complex structures on (R*, w)
which are regular for simply covered disks. Let {J;}+c[0,1] be a generic homotopy of compatible almost-

complex structures. Let Mg 1(a, J;) = {u: (D?,0D?) — (R*, L) | 5,u = 0,u.[D?] = a}/ Aut(D?,1).

Lemma 5.8. Fort € [0,1], there does not exist a Jy-holomorphic disk u : (D* 0D?) — (R*, L) such
that p(u) < 0.

Proof. Assume for contradiction that such a disk exists. If u is simply-covered, we get a contradiction
due to the genericity of {J;} and the fact that ind(u) = —14p(u) < —3. If u is not simply-covered, there
is a simply-covered J;-holomorphic curve v : (D?,0D?) — (R*, L) and a degree d > 1 map ¢ : D? — D?
such that u = v o ¢. It follows that u(v) = p(u)/d < 0. Replacing u with v, we are back to considering
the case where u is simply-covered, which again gives a contradiction. O

Lemma 5.9. Fort € [0,1], suppose that u: (D?,0D?) — (R*, L) is a Ji-holomorphic disk representing
a class B € m(R*, L). Let ag be the p-infimal class of L. If u(B) = 0, then w(B) > w(ag) = Aa(L).

Proof. By the long exact sequence of the pair (R?*, L), we have isomorphisms mp(R*, L) ~ 71 (L) =~
H1(L;Z). Hence we can view p and w as elements of Hom(H;(L;Z),Z) ~ H'(L;Z).

Let oy € Hy(L;Z) be the unique class such that p(a1) = 2,w(a1) > w(ag) and {ag, a1} generates
Hy(L;Z). To see that such a class exists and is unique, consider the preimage of 2 under the group
homomorphism p : Hy(L;Z) — Z. This is the intersection of a line in Hy (L; R) with the lattice Hy (L;Z).
It’s not hard to check that any two adjacent lattice points on the line generate the entire lattice. Now «
has two adjacent lattice points, and «; is the unique one satisfying the condition that w(a;) > w(ayg).

Observe that w(ay) > 2w(ap). Indeed, since the class 2ag — a; has Maslov index 2, it follows from
the definition of ag that either 0 > w(2ap — an) or w(2ap — 1) > w(ayg). The later inequality would
contradict the fact that w(ay) > w(ag). Hence 0 > w(2a9 — o), which means that w(ay) > 2w(ayg).

Finally, it follows from the fact that {ag, a1} generate Hy(L;Z) that all Maslov zero classes are of the
form n(ay — ap), for n € Z. If n > 1, then w(n(ag — ap)) = nw(on — ap) > nw(ag) > A2(L). If n <0,
then w(n(a; — ap)) < 0. Since classes of negative symplectic area do not support holomorphic disks,
this proves the lemma. O

Proposition 5.10. The moduli space Mo 1(ao, Jt) is a compact smooth manifold with boundary. Its
boundary can be identified with Mg 1(ag, Jo) U Mo 1(ao, J1).

Proof. 1t follows from the genericity of {J; } and the fact that oy € w2 (R?, L) is primitive that M1 (ao, J¢)
is a smooth manifold of finite dimension. It remains to prove that it is compact. To this end, let {u;}
be a sequence of J;-holomorphic disks representing the class oy which Gromov converge to a J,-
holomorphic stable holomorphic map u = (u®) in the sense of [17, Sec. 1.3], for some ¢ € (0, 1]. Since
mo(R*Y) = 0, it follows that u® : (D?,0D?) — (R*, L) for all a (i.e. there are no sphere bubbles). It
follows from Lemma 5.8 that p(u®) > 0. We claim that in fact p(u®) > 2. If a Maslov 0 disk occurred,
it would follow by Lemma 5.9 that it would have maximal area and so there could be no other disks.
But since we also have that [u] = " [u®] as classes in m2(R?, L), there must be other disks. Hence all
p(u®) = 2.
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Since p(ut) = 2, we conclude again from the fact that [u;] = > [u®] that the stable map u = (u®)
consists of a single holomorphic disk of Maslov index 2. This map must represent the class g since
ag = [ug] = >, [u®]. The proposition follows. O

Proof of Proposition 5.3. This follows from Proposition 5.10 and the fact that the degree is a cobordism
invariant. |

6. A CONSTRUCTION OF LINKED TORI

The purpose of this section is to prove that the condition As(Lg) > Aa(L1) in the statement of Theo-
rem 5.7 is sharp. More precisely, we prove the following proposition.

Proposition 6.1. Given real numbers AV > A®R) > 0, there exists a pair of admissible, disjoint
Lagrangian tori Ly, Ly C R* with Ay(L1) = AM) and Ay(Ls) = AP, such that [Li] € Ho(R* — Ly) is

not the zero class.

The proof of Proposition 6.1 will proceed in three steps. We will first construct a pair of Lagrangian
cylinders, such that one cylinders is “threaded” through the other; cf. Lemma 6.3. We will then “close-
up” these cylinders, thus obtaining a pair of Lagrangian tori. Finally, we will show that these tori
satisfy the properties stated in Proposition 6.1.

6.1. Construction of linked cylinders. We begin with a definition.

Definition 6.2. A Lagrangian cylinder in R* is a Lagrangian submanifold which is diffeomorphic to
S1 x R. A Lagrangian cylinder L is said to be standard if it is of the form

(6.1) Cla,b;r) = {(z1,y2,22,52) | (11 — a)* + (y1 — b)* =17, z2 = 0},

for some (a,b,r) € R x R x Rso. We say finally that a Lagrangian cylinder is standard at infinity if it
agrees with a standard cylinder outside of some compact set.

Suppose that A, A®?) > 0 are positive real constants with A > A®). Choose r; > r5 > 0 satisfying
ar? = AW and 71 = A?),
Lemma 6.3. There exists a smooth embedding ¢ : R/Z x R — R* satisfying the following properties:
(i) The image of ¢ is a Lagrangian cylinder.
(ii) We have ¢(s,t) = (racos2nws + D,rosin27s,0,t) whenever |t| > T, for some fized constants
T >0 and D > 2(r1 + r2).
(iii) The curve ¢(0,t) and the solid cylinder {(x1,y1,22,y2) | 23 + y3 < r?, z2 = 0} with boundary

C(0,0;71) intersect transversally in a single point.
(iv) We have Im ¢ N C(0,0;71) = 0.

Proof. We prove Lemma 6.3 by describing a procedure to construct ¢. We consider a map
¢:R/Z xR —R*
(s,8) = (x(s,1),y(s,1), 2(s, 1), ).
We wish to find sufficient conditions on the functions x,y, z in order for ¢ to describe a parametrized
Lagrangian embedding. Observe that the condition that ¢ be a Lagrangian embedding is equivalent to
the equation
0 =w(0s0,0:0) = Tsyt — Tys + 2s,
or equivalently,
(62) Rs = _(xsyt - :Etys)'

Set vi(s) = (z(s,t),y(s,t). We can think of {;}icr as a 1-parameter family of curves moving in R?.
Such a family is referred to as a “Lagrangian movie” in [23]. Observe from (6.2) that z(s,t), and hence
@(s,1), is completely determined by 7; and z(0, t).



20 LAURENT COTE

Since 2(0,t) = 2(1,t), we must have

1 1 1 1
(63) 0= / Zs = _/ (xsyt - :Etys) = _/ (Isyt + Itsy) = _at/ TslY = 815/ A,
0 0 0 0 Yt

where we have used integration by parts in the third equality.

We obtain from the above computations the following necessary conditions for ¢ to determine a
parametrized Lagrangian immersion:

(i) 7 is an immersion for all ¢,

(i) :(f,, A) =0.
Observe that any family of immersions {7;} which satisfies 9;( f% A) = 0 can be lifted to a Lagrangian
immersion by specifying the map ¢t — z(0,¢). Moreover, this map can be chosen arbitrarily. Observe
finally that ¢ will be an embedding if, for all fixed ¢ € R, the loop = has no self-intersections. (This
condition is sufficient to ensure that ¢ is an embedding but is by no means necessary.)

It is now straightforward to construct ¢ satisfying the properties stated in Lemma 6.3. One way of doing
this is ensure that {7y} and z(0, t) simultaneously satisfy the following conditions, where D = 2(ry +7r2).

o We have v:(s) = (x(s,1),y(s,t)) = (r2 cos 2ws, rosin2ws) and z(s,t) =t for |t| < 1.
e There exists a constant 7' >> 0 such that (s) = (z(s,t),y(s,t)) = (r2 cos2ms + D, ro sin 27s)
and z(s,t) =0 for all [t| > T

For 1 < |t| < T, the movie {y:} can be defined to simply translate the circle of radius ro centered
at the origin to the circle of radius ro centered at the point (D,0). For those values of ¢ such that
v¢(s) N {z? + y# = r?} is non-empty, one needs to choose |2(0,t)| large enough so that ¢ does not
intersect the solid cylinder {x? + y? < r}, 2o = 0}.

The precise choice of T' is immaterial but can be taken to depend only on D. Observe that the condition
r1 > 79 is needed to ensure that Im ¢NC(0,0,71) is empty. This completes the proof of Lemma 6.3. O

6.2. Closing-up the cylinders. We fix ¢, D,T as in Lemma 6.3.

For 61,09 > T, we consider the truncations C; = C(0,0;7r1) N {|y2| <1} and Cy =Im ¢ N {|ya| < d2}.
We can assume that o is large enough so that Cy agrees with the standard cylinder C(0, D;r3) on the
set {52 -2 < |y2| < 52}

The purpose of this section is to explain how to “close-up” C; and C5 by gluing to them suitable
Lagrangian cylinders, in order to obtain Lagrangian tori L; and L. These cylinders will be constructed
in such a way that L; and Lo are disjoint, both admissible, and satisfy As(L;) = 7r? = AWM and
AQ(LQ) = WT% = A(Q)

We will only describe the construction of Lo as the other case is similar and easier.

Fix a > 1 and § > 1 and consider an embedded curve + : [0, 5] — R* with the following properties:

(D,0,0,5 +1) for t € [0, 1],
v(t) =< (D,0,0, (6 +1) — (¢t —2)(2(6 + 1)) fort e [2,3],
(D,0,0,—0 + (t—5) for t € [4,5].

We also require that v(t) C {y2 > 6 + 1} for t € [1,2] and that y(¢) C {y2 < —(6+ 1)} for ¢t € [3,4].
By the isotropic neighborhood theorem, we can construct a Lagrangian cylinder C, in a neighborhood
of . We can assume that C., has the property that C, N {6 <ys <5+ 1} = {(z1 — D)*+yi = €3, 20 =
0,6 <y2 <3+ 1}U{(z1 — D)? +y} =€3,20 = a,0 < ya <+ 1}, for some small constant ez > 0.

By rescaling and translating the cylinder C., (thus possibly making a and ¢ larger), we can assume that
€2 = T9.

If we set 62 = §, then we can glue C, to Co. We obtain a Lagrangian cylinder Lo := C,, U Cs.

The homology H;(La;Z) is generated by the meridian o = {(x1 — D)? + y} = r}, 29 = 0,y2 = §} and
by a longitudinal curve 7. We can assume that 7 agrees with Im ¢(0, —) on the set {|y2| < — 1}.



ON LINKING OF LAGRANGIAN TORI IN R* 21

By choosing ~ appropriately, and choosing 7 appropriately, we can ensure that the projection of 7 to
the (21,y1) plane has rotation number zero, and that the projection to the (z2,y2) plane has rotation
number 1. It follows that o and 7 both have Maslov index 2. We can also ensure, by choosing a large
enough, that the area of 7 is arbitrarily large and in particular larger that 2773. Since all Maslov 2
classes are of the form 7 + n(r — o), for n € Z, one readily verifies that Ay(Ls) = 773 = A?).

By the same argument, we can close up C; to obtain a Lagrangian torus L; with Ay(L1) = 7r? =

AD > A®) Since we are free to choose d; >> 8o, is evident from the construction that we can ensure
L, and Ly are disjoint.

Since T C Lo agrees with Im¢(0,—) for {|y2| < § — 1}, it follows from Lemma 6.3 (iii) and the
construction of L; that there is a solid torus S with 95 = L; such that 7 intersects S transversally in a
single point. It follows by an argument analogous to the proof of Lemma 2.11 that the map m(L2) —
71 (R* — L;) has nontrivial image. We conclude in light of Lemma 2.11 that [L;] € Ha(R* — Ly;Z) is
not the zero class, i.e. Ly is homologically linked with L.

6.3. Admissibility. It remains to show that L; and Ly are admissible. We will again only prove this
for Lo as the argument for L, is essentially the same.

Let A = {§ < y2 <+ 1} C R% Observe that La N A = {(z1 — D)?> +y} = r3,22 = 0,5 < yo <
04+1}U{(x1 =D +yf =rf,my =06 <y <5+ 1},

Let j be the standard integrable complex structure on R*. Let j be a small perturbation having the
following properties.

(i) j is standard at infinity.
(ii) j agrees with j on A.
(iii) Any simply-covered j-holomorphic disk with boundary in Ly having a point mapped into R*— A
is regular.

Observe that there are two families of embedded j-holomorphic disks parametrized by s € [0, 1] which
are of the form

o z,y) = (x + D,y,0,6 + 5)
and

#*(z,y) = (v + D,y,a,8 + 5).

Lemma 6.4. Every simply-covered j-holomorphic disk either has a point mapped into R* — A or belongs
to one of the families {1}, up to reparametrization.

Proof. Let u : (D?,0D?) — (R*, L) be j-holomorphic and assume that Im(u) C A. We write u =
(u1,u2) where u; is the projection onto the (z;,y;) plane for i = 1, 2. Since j is standard on A, it follows
that the u; are ordinary holomorphic functions.

Observe that ug(0D?) C {xg = 0,6 <y < d+1}U{z2 = a,d < yo < §+1}. Since u(dD?) is connected,
it must be entirely contained in either of these two intervals. Let us assume that u(9D?) C {22 = 0,8 <
ya < 6 + 1} as the other case can be treated in the same way.

We claim that in fact Im(ug) C {2 = 0,6 < y2 < d 4+ 1}. Assume for contradiction that this is not
the case. Writing us = (u3?,u3?), there exists (xq,yo) € Im(uz) with the property that |xz¢| > 0 and
|u3?(z,y)| < |zo| for all (z,y) € D?. Hence there exists a point p € Int(D?) with uz(p) = (z0,yo). This
contradicts the open mapping theorem. g

Corollary 6.5. The almost-complex structure j is reqular for all simply-covered holomorphic disks with
boundary in Ls.

Proof. Tt follows by automatic transversality that the j-holomorphic disks ¢% are all regular since they
are embedded. We also know that j is regular for all simply-covered holomorphic disks which have a
point mapped in R* — A. It follows from the lemma that there are no other simply-covered holomorphic
disks. g
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Consider the class ag = [¢1] € ma(R?*, Ly). It follows from the construction of Section 6.2 that ayg is
the p-infimal class of Lo; cf. Definition 5.1. Let ev(ag, J) : Mo1(ao,j) = L2 C R* be the boundary
evaluation map.

Lemma 6.6. The degree of ev(ag,J) is 1.

Proof. Choose p € {(z1 — D)*+y? =r3,20 = 0,6 <y <+ 1} C Ly N A. Suppose p € u(9D?). We
claim that u is a reparametrization of a curve in one of the families {¢¢}.

As before, write u = (u1,u2) and observe that u is an ordinary holomorphic function in u=1(A). Suppose
first that Im(us) NA C {xe = 0,0 <y2 <5+ 1} U{z2 = ,0 < y2 < &+ 1}. Since uy is an ordinary
holomorphic function in u~!(A), it follows that us is a constant function. From this, we can easily
conclude that u is a reparametrization of a curve in one of the family {¢l}.

Suppose now that Im(ug) N A contains a point (zg,yo) such that z¢ ¢ {0, a}. It follows by the open
mapping theorem that in fact {0 < 22 < ,0 <ys <0+ 1} C Im(ug).

But observe now that a = [

u-1(A) uswa < u-1(A) uw < sz uw*w. This contradicts the fact that

w(u) = 7r3 since a > 1 (and in particular, we were free to assume when choosing « that a > 7r3). [

We have shown that ev(ag,j) is a degree 1 map, where ag is the p-infimal class and j is regular for
simply-covered disks with boundary in Ly. We conclude that Lo is admissible; cf. Definition 5.4. This
concludes the proof of Proposition 6.1.

7. QUANTITATIVE UNLINKING

7.1. Motivation. Consider a Lagrangian torus L; C R* Let v C R* — L; be a non-contractible
embedded loop and let 4/ C R* — L; be a tubular neighborhood of 7. Now suppose that Lo C U is
another Lagrangian torus. Observe that if the map m1(L2) — m1(U) = Z has nontrivial image, then
it follows from Lemma 2.11 that L is homologically linked with Ls. This means that any obstruction
to linking L; with Lo automatically gives an obstruction to embedding Lo into & in a homologically
essential way.

In light of the results of Section 4, where we showed that the linking behavior of tori is sensitive to
the enumerative invariants n(L, «), one expects that such invariants could also be used to obstruct
embeddings of tori into certain subdomains of R*. We will see one instance of this in Corollary 7.9.

The discussion of this section can be fit neatly into the framework of symplectic capacities. Thus most
of the results we present will be deduced from the existence of a certain symplectic capacity, which is
a slight variant on a construction of Cieliebak and Mohnke in [9, p. 2].

The existence of this capacity can be deduced from a theorem of Charette [4, Thm. 3.1] which was
proved by Floer theoretic methods; cf. Remark 7.2. We will however present a self-contained proof
which is closer in spirit to the arguments of the previous sections.

This section is logically independent from the rest of the paper and the results may already be known to
experts. Nevertheless, we feel that it serves a useful purpose in highlighting some connections between
the study of linking and certain classical questions in symplectic topology.

7.2. A symplectic capacity. Asusual, we identify C? with R* by letting (21, 22) = (1 +iy1, T2 +iy2).
Let us consider the polydisk

Pla,b) = {(21,22) € C* | |z1]| < a,|22| < b}.
We can view P(a,b) both as an open symplectic manifold and as a symplectic subdomain of (R*, w).

Proposition 7.1. For 0 < a <b, let L C P(a,b) C R* be a Lagrangian torus. Then As(L) < ma?.
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Proof. Suppose for contradiction that As(L) > wa?. As in Section 3.2, the polydisk P(a,b) naturally
embeds as a symplectic subdomain of (5% x 52, wy @ wy), where [, w1 = ma® and [, wy = wb*. We
write Doo = 5% x 5% — P(a,b) = 5% x {oo} U {c} x S2.

Let J be an almost-complex structure on S? x S? compatible with w; @ wy. For some p € S2, let
a = [S? x p] € Hy(S?% x S%;7Z). We consider the moduli space

Mi(a,J) :={u: 5% = 5% x S? | 9yu=0,u.[D?] = a}/ Aut(S?, z),
for some = € S2, and the evaluation map
ev(a,J) : Mi(a, J) = S? x §2

As in Section 3.2 and in [16], we let N(L) C 5% x S? be a Weinstein embedding and let & be an open
neighborhood of D, such that N(L)NU = 0. Let J° be a compatible almost-complex structure on
52 % S? which agrees with the standard integrable complex structure on /. We now construct a sequence
of compatible almost-complex structures {J*}2° | by stretching the neck along ST g'}l‘Q C N(L), where
g is a suitably rescaled flat metric on TZ2.

A well-known theorem of Gromov implies that ev(a,.J*¥) is a degree 1 map (and in fact the J*-
holomorphic spheres in the class  form a foliation of $? x S2). It follows from the SFT compactness
theorem that there is an infinite sequence u of J*-holomorphic spheres which converge to a building
u. Let J* be the almost-complex structure on S? x S? — L which results from the neck-stretching
procedure. By choosing J° appropriately, or equivalently by simultaneously perturbing the J* in the
complement of N(L)UU, we can assume that J° is regular for simply covered punctured holomorphic
curves.

It follows by elementary topological considerations that the building u must have at least two J°°-
holomorphic planes in §? x S?— L. A routine modification of the proofs of Lemma 3.14 and Lemma 3.15
shows that the components of u satisfy the following two properties.

(i) The sum of the Fredholm indices of all the components of u which map into S? x S? — L is at
most 2.

(ii) Every component u” of u has non-negative Fredholm index. If moreover u” is a plane, then
ind(u™) > 1 with equality if and only if u” is simply-covered and the compactification T" has
Maslov index 2.

We conclude that there are exactly two simply-covered planes of Fredholm index 1. It follows by
positivity of intersection (since J*° is standard in ¢/) that only one such plane can intersect Do,. Let v
be the plane which does not intersect D,. We can think of v as a plane inside P(a,b) C R*. It follows
by Lemma 3.7 that (7)) = 2. But this implies that w(7) > A3(L), contradicting our assumption that
w(®) < w(uy) = ma? < Ay(L). O

Remark 7.2. As noted above, Proposition 7.1 can also be deduced from work of Charette [4,5]. In fact,
one can prove the stronger statement that As(L) < d(L), where d(L) is the displacement energy of L.
This follows by combining [4, Thm. 3.1] and the fact that there are no holomorphic disks of Maslov
index strictly less than 2 for a generic almost-complex structure.

Following Cieliebak and Mohnke [9, p. 2], Proposition 7.1 can interpreted in terms of a symplectic
capacity.

Definition 7.3. For any domain U C R*, we define a symplectic capacity cy, o as follows:

cr2(U) :=sup{Aa(L) | L C U embedded Lagrangian torus} € [0, oo].

It is clear that this capacity is well-defined and nonzero on any non-empty domain, since we can always
embed a Clifford torus with sufficiently small monotonicity factor.
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Proposition 7.4. The capacity cy, 2 satisfies the following properties:

(Monotonicity) We have cr, 2o(U") < e 2(U) if U’ C U.

(Conformality) ~ Given any real constant r > 0, we have cy, o(rU) = |r|?cp 2(U).

(Invariance) If ¢ is a Hamiltonian isotopy, then cr 2(U) = cp2(p(0)).

(Nontriviality) We have 0 < cp2(B*(1)) and cp2(Z*(1)) < oo, where we write
Z4(1) = R? x BY(1) C R".

Proof. The first two properties are immediate from the definition. The invariance property follows
immediately from the fact that As(L) is invariant under Hamiltonian isotopy. The fact that 0 <
¢ (B*(1)) is also clear since we may embed a Clifford torus with monotonicity factor 72/8 inside the
unit ball. Finally, the fact that ¢2 (Z4(1)) < oo is an immediate consequence of Proposition 7.1. O

In fact, Proposition 7.1 implies that cr, 2(Z*(1)) < 7. It’s clear that ™ < ¢, 2(Z%(1)) since we may
embed a Clifford torus of factor 5 (1 — €)? for any € > 0. It follows that ¢z 2(Z*(1)) = m.

Similarly, let 0 < a < b be as in Proposition 7.1 and observe that we can embed a Clifford torus of
s

factor % (a — €)? inside P(a,b). It follows that ma* < c¢r 2(P(a,b)). The proposition now implies that

cr2(P(a, b)) < ma? which means that cg, o(P(a,b)) = ma?.
We are thus led to the following result:

Proposition 7.5. Consider the product torus L(r,s) = {(z1,22) | |z21| = 7, |22] = s} for 0 < r < s. If
s >/2r, and r > a, then L(r,s) cannot be embedded by a Hamiltonian isotopy into the polydisk P(a,b).
It also follows that the polydisk P(r,s) cannot be embedded by a Hamiltonian isotopy into the polydisk
P(a,b).

Proof of Proposition 7.5. By the same argument as in the proof of Proposition 5.5, one can show that
the condition s > /2r implies that As(L) = mr?. Since we observed above that cz 2(P(a,b)) = ma?, it
follows from our assumption that r > a and from the definition of ¢y, 5 that L(r, s) cannot be embedded
in P(a,b).

The fact that P(r,s) cannot be embedded into the polydisk P(a,b) follows from the monotonicity and
invariance properties of the capacity. O

Remark 7.6. Proposition 7.5 can also be deduced from work of Chekanov and Schlenk, who proved in
2

[6, Sec. 2.1] that the displacement energy of L(r,s) for r < s is mr.
Example 7.7. Suppose that »r = 1 and s = 3/2. It follows from the proposition that the torus L(r, s)
cannot be embedded by a Hamiltonian isotopy into P(1 —€,1 — €) for any € > 0. Observe that there
exists a class in Hi(L(r,s); Z) (or Maslov index —1) having symplectic area —27 + §7 = Z. Hence the
capacity ¢y, defined in [9] does not a priori rule out the existence of such an embedding. Of course, the
embedding can easily be ruled out by the work of Chekanov and Schlenk mentioned in Remark 7.6.

7.3. Quantitative non-linking. In Proposition 7.5, we gave obstructions to Hamiltonian embeddings
of Lagrangian tori into certain polydisks in terms of the invariant As(L). The purpose of this section is
to establish an obstruction to Hamiltonian embeddings of Lagrangian tori into certain subdomains of
R* which depends on the enumerative invariants n(L, o;) considered in Section 4.

Consider the domain D, = {1 — € < [21] < 1+ €} x {|22]| < €} € C? for any € € (0,1/2).
Proposition 7.8. Let L — D. be an embedded Lagrangian torus. Suppose that there exist classes

a1, as € mo(RY, L) satisfying properties (i), (i), (iii) of Proposition 4.3. Then the natural map m (L) —
m1(De) = Z is trivial.

Corollary 7.9. Let Loy — D, be an embedded Clifford torus. Then the induced map 71 (Lcy) —
m1(De) = Z is trivial. Note that we do not make any assumptions about the monotonicity factor of L¢y.
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Proof. Tt follows from Proposition 7.1 that A5(L) < 7e?. Now assume that 71 (L) — 71 (D) is nontrivial.
Without loss of generality, we can assume that a; has nontrivial image in 71 (D,). This implies that a4
has nontrivial image in 71 (D.) =~ 7 (C* x C) =~ 71 (C*).

Let J be a compatible almost-complex structure which is regular for simply-covered disks with boundary
in L and is obtained by perturbing the standard integrable complex structure j in the interior of D..
Since n(L, a1) = 1, it follows that M(aq, J) is non-empty. Let uw € M(«q,J). Let uy := 7 o u, where
m : C? = C is the projection onto the first factor.

Observe that u; is holomorphic on u; '({|z1] < 1 — €}) since J is standard on this domain. Since
[Ou] = Im(a1) € m1(C*) is nontrivial, it follows that du; has nontrivial winding number. Hence
0 € Imwu;. It now follows by the open mapping theorem that Imuy N {|z1] <1 —€} = {|z1] < 1 — €}
But

(7.1) (1l —€)? = / ujwy < / uw'w < / uw.

up ' ({lz1]<1-6)} up ' ({lz1]<1-6)} D?
The middle inequality uses the fact that u is holomorphic on uy *({|21| < 1 — €}). This contradicts the
fact that As(L) < me?. O

In contrast to Corollary 7.9, there is no obstruction to squeezing Chekanov tori.

Proposition 7.10. There exists an embedded Chekanov torus Lop — De such that the induced map
m1(Len) — m1(De) is surjective.

Proof. Choose a simple closed curve v C D, which represents a nontrivial class in 71 (D.). The desired
claim now follows from Corollary 4.9. 0

8. CLOSING REMARKS

We end this paper by briefly discussing to what extent our methods are limited to dimension 4. We
also highlight some possible directions for further research.

8.1. The role of dimension 4. As a general rule, all results in this paper which rely on the analysis
of holomorphic planes are expected to fail in dimensions greater than 4. This applies in particular
to the results on smooth unlinking in Section 3 and Section 4. These results make essential use of
the intersection theory of [24] and [25] and of index positivity properties (cf. Lemma 3.15), neither of
which are available in dimension greater than 4. The importance of the intersection theory is partly
hidden from view in our paper since it enters into the proof of Proposition 3.8, which we obtained as a
consequence of arguments in [16].

On the other hand, the methods of Section 5 do work in higher dimensions and should in principle allow
one to prove homological linking results for non-monotone tori in all dimensions. However, these results
would get progressively weaker as the dimension increases, in the sense that the corresponding class of
“admissible tori” would get smaller. This is essentially because one needs to prevent the appearance of
disks of Maslov index [2 — n,0] in order to prove an analog of Proposition 5.10 for tori in R?". We also
remark that the class of admissible tori in R* is plausibly very large; cf. Remark 5.6. This is unlikely
to be true in higher dimensions.

Regarding the constructions of Section 6, it is certainly possible to construct Lagrangians in all di-
mensions as lifts of lower dimensional projections (see, for instance, the technique of “Lagrangian
suspension” [21, 3.1E]). However, the 4-dimensional case is particularly easy to visualize and to work
with, because the projections are just closed curves in R* and the area constraint (6.3) takes a very
simple form. This allows us to effectively “see” what types of movies are possible.
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8.2. Smooth unlinking of admissible Lagrangian tori. One could hope to improve the results
of Section 5 from homological unlinking to smooth unlinking. A natural approach would be to work
with holomorphic planes rather than disks. If one tries to implement this approach, one runs into
the difficulty that holomorphic planes can degenerate into a priori complicated buildings which could
potentially have certain non-regular and multiply-covered components. In contrast, holomorphic disks
in an exact symplectic manifold can only degenerate into disks. Although the analysis of planes appears
more complicated, there is reason to hope that it could be tractable. In particular, one could hope to
take advantage of the intersection theory of [24] and [25], and of the many useful results contained in
[16, Sec. 3 & 4].

8.3. Lagrangian unlinking. In light of the classification result of Dimitroglou Rizell, Ivrii and Good-
man [16] (see Theorem 2.9), one might hope to upgrade the results of Section 3 and Section 4 from
smooth unlinking to Lagrangian unlinking. For example, one might hope to show that two Clifford tori
can always be pulled apart from each other through Lagrangian tori; cf. Theorem A.

If one follows the strategy of [16, Sec. 6], the key step in constructing Lagrangian isotopies is to
extend the embedded solid tori constructed using holomorphic planes to a symplectic embedding of
S1 x D% x (—¢,€). To achieve this, one needs to ensure that the symplectic disks which foliate the solid
torus have trivial monodromy. For a single torus, this can be achieved using the so-called “inflation
procedure”, at the cost of modifying the Lagrangian; cf. [16, Sec. 6]. However, if there are two or more
Lagrangians, a naive application of the inflation procedure might cause them to intersect.

8.4. Linking in high dimensions. It could be interesting to study the connection between the enu-
merative invariants of the type considered in Section 4 and linking of tori in higher dimensions. What
can one say about linking of Clifford tori in high dimensions? Auroux [1] has constructed infinite fam-
ilies of monotone Lagrangian tori in R?” for n > 3 which are not of Clifford or Chekanov type, and
which are distinguished by enumerative invariants analogous to those considered in Section 4. What
sort of linking behavior do these tori display? Note that in high dimensions, one only expects to obtain
results about homological linking by directly analyzing moduli spaces of holomorphic curves. However,
it might still be possible in favorable circumstances to promote such results to statements about smooth
linking, using techniques of high dimensional differential topology.

8.5. Local linking. In [12, Thm. 1.1B], Eliashberg proved a “local unknottedness result” which states
that any Lagrangian cylinder in R* which is standard at infinity is Hamiltonian isotopic to a standard
cylinder (see Definition 6.2). In this spirit, one could also try to prove “local unlinking” results. One
expects that a cylinder of radius r should be smoothly unlinked from any cylinder of radius R > r.
Given a configuration of N disjoint cylinders in R* which are standard at infinity, one also expects this
configuration to be smoothly isotopic to some standard model which depends only on how the various
components are homologically linked. Finally, the monodromy issues mentioned above do not occur for
cylinders, so it should be possible to upgrade a smooth isotopy to a Lagrangian isotopy using techniques
from [16, Sec. 6].

As in Section 3, a first step in proving such statements would be to show that the cylinders under
consideration occur as the boundary of an embedded solid cylinder which is foliated by holomorphic
planes. One way to do this would be to start with a family of planes near infinity (where the cylinder is
standard) and to argue that this family is open and closed and hence extends to the whole cylinder. This
can be done using the theory of [24] and [25], although the analysis is not completely straightforward
due to the non-compactness of the domain. (Alternatively, one could also compactify the situation
and turn the cylinder into a torus. This would solve the compactness issue but one would lose the
monotonicity of the cylinder).

9. APPENDIX

The purpose of this appendix is to briefly collect some definitions and computations from the theory of
punctured pseudoholomorphic curves which are needed in Section 3 of this paper. We will assume that



ON LINKING OF LAGRANGIAN TORI IN R* 27

the reader is familiar with the basics of this theory, as outlined for instance in [26]. The definitions and
notation below are intended to be consistent with [26].

9.1. The index formula for punctured pseudoholomorphic curves. Let (W, J) be an almost-
complex manifold with cylindrical ends of the form (—o0,0] x M_ and [0, 00) x M (the manifolds M
and M_ are are allowed to be disconnected or empty).

Given a punctured Riemann surface ¥ = (X —T't —T'~), let ¢ denote an assignment of a family of Reeb
orbits to each puncture z € ' UT'~. The Fredholm index of a J-holomorphic curve u : 3 — (W, J)
with asymptotic orbits determined by c is shown [26, eq. (1.1)] to satisfy the formula

(9.1) ind(u;c) = (n — 3)x(X) + 2§ (W TW) 4 u® (u; c).

Let us briefly recall how the terms appearing in (9.1) are defined. Here ¢ (u*TW) is the relative first
Chern number of u*TW with respect to a trivialization ® near the punctures of 3. It counts the number
of zeros of a generic section of w*TW A w*TW which is constant and nonzero near the punctures with
respect to the trivialization induced by ®.

Our definition of u® follows [26, Sec. 3.2]. Given a T-periodic orbit ¢, of the contact manifold M,
there is an associated asymptotic operator

A, :T(z"E) - T(z*¢)
A, =—-J(Vw—TV,R,),

where z : S — M, is a parametrization of ¢, satisfying @ = ¢, = TR,.

The Conley-Zehnder index of a non-degenerate asymptotic operator is defined as in [27, Definition 3.30].
If A, is a degenerate asymptotic operator, then the operator (A + §Id) is non-degenerate provided
that § ¢ o(A,). One can show that u® (v, +6) := u2,(A.,. £+ §1d) is well-defined provided that § is
sufficiently small.

We will always be considering punctured holomorphic curves ¥ with unconstrained ends ¢ which are
allowed to move in a Morse-Bott manifold, and possibly with boundary component 0% contained in
some Lagrangian L C R?". In this case, we have for § > 0

(9.2) pPuie) = Y plg(v—0) = Y plz(v: +0) + p(dD).

zel'+ zel'—

9.2. Some index computations. Let us now specialize to the setting of Section 3. We will follow
throughout this section the notation introduced in Section 3.2. In particular, recall that ST gi']I“2 is a

contact manifold with coordinates (61,02,0) and contact form «; for ¢ = 1,2. We have trivializations
@' = {9, Ra, X = sin 09y, — cos 00y, , d5} of the tangent bundle of R x S} , T?. With respect to ®*, the
almost complex structure J.,; takes the form

0 -1 0 O
1 0 0 O
(9.3) Jeyl = 0 0 0 -1
0 0 1 0

We wish to compute the Conley-Zehnder index of Reeb orbits in ST . T? with respect to trivializations
{X, 05} of £ = kero;.

Lemma 9.1. Let ¢, be a Reeb orbit of period T with ¢, = R., = cos 00p, +sin00p,. Then u ,(v—45) =1
while pg (v +6) = 0.

Proof. We have:

e S [ (R R i | R G )
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The constant vectors X, 05 are eigenvectors with eigenvalues § and —1'+ 0 respectively, each of winding
number number zero. It follows from [27, Theorem 3.36] that u&,(v+49) = 0 while 2 ,(y—46)=1. O

In the context of Section 3, we are considering punctured holomorphic curves mapping into almost-
complex manifolds with cylindrical ends diffeomorphic to (—oco,0] x S} T? or [0,00) x Sf , T? and
endowed with the almost-complex structure Jgy;.

In this situation, it follows from the index formula (9.1) and from Lemma 9.1 that the index of a
pseudoholomorphic curve u satisfies the formula:

(9.4) ind(u) = —x(u) + #{positive punctures of u} — 0 + 2¢¥ (u)
= —2 + #{all punctures of u} + #{positive punctures of u} 4 2¢f (u).

9.3. The Maslov index and relative Chern number. The purpose of this section is to sketch a
proof of Lemma 3.7, which we restate here for the reader’s convenience. We will follow throughout this
argument the notation of Section 3.2.

Lemma 9.2 (cf. Lemma 3.7). Fori = 1,2, let u; : C — (S% x S? — L;) be a J-holomorphic plane
where J = J. or J = J*. Letv:C — S?x S%— Ly — Ly be a J-holomorphic plane for J = J. Then
262 (u) = () and 268 (v) = (D).

Proof. Throughout this argument, let u stand for uy, us,v.

There are many related but distinct notions in the literature which go by the name of “Maslov index”.
In [20, Chap. 2], one considers a Maslov index for loops of symplectic m atrices and a Maslov index
for loops of Lagrangian subspaces in (R?",w). Let us denote the former by m, and the latter by m;.
These two indices are related as follows. If v : S! — £(n) is a loop of Lagrangian subspaces and
o : St — Sp(2n) is a loop of symplectic matrices such that o (¢)y(0) = (¢), then one has (see [20, Thm.
2.3.7])

(9.5) 2ms(o) = my (7).

The Maslov class p(u) is defined as follows. Observe that there is a homotopically unique trivialization 7
of u*T(S% x §?%). There is also a path v : 9D? — u*T (5% x 5?)|5p2 of Lagrangian subspaces determined
by L;, which can be viewed as a path v : dD? — £(2) with respect to the trivialization 7. We then
have

(9.6) (@) = mu(7y).

Now observe that ® = {9;, Ra,, X, 05} extends to a C° trivialization of w*T(S? x S?)|pp> with the
property that the subframe {R,,, X} is tangent to L;. Let ®(t) = ®|,(, ) and let o be a loop of
linear maps such that ®(t) = o(¢)®(0). Then o can be viewed as a loop of symplectic matrices with
respect to the homotopically unique trivialization of w*T(S? x S2). It follows from (9.5) and (9.6) that
2mg(o) = p(m).

It only remains to relate m (o) to ¥ (u), i.e. we wish to relate the winding number of ® with respect
to the homotopically unique trivialization of w*T(S? x S?) with the count of zeros of a generic section
which is constant near the punctures with respect to ®. It can be shown by standard arguments (see
[20, Sec. 2.7]) that these counts are equal. O

9.4. Notions of energy. As we noted in Remark 3.12; the proof of Proposition 3.11 uses a version
of SFT compactness for “stretching the neck” in a manifold with a negative cylindrical end. To the
author’s knowledge, a proof of this precise version of the theorem has not appeared in the literature.
However, closely related statements are proved in [3] and the arguments there go through in our setting
with routine modifications.

In order to apply the approach of [3] for proving SFT compactness, one needs to control certain energies
of punctured holomorphic curves. In Proposition 3.11, one controls the symplectic area of a sequence
of J!_-holomorphic planes u;. The purpose of this section is to argue that our control on the symplectic
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areas of these planes automatically gives us control on their energies in the sense needed for applying the
arguments of [3]. The following arguments are mainly drawn from [3] but are included for completeness.

Let us briefly recall the setting of Proposition 3.11. We are considering .J!_-holomorphic planes u; for
[ > 0 in the symplectic manifold (S? x S% — Ly, w).

Let us write V := S} | T> C 5% x 52 — Ly, where S}, T? is a unit circle bundle as defined in Section 3.2.
Recall that the symplectic manifold S? x S? — L; has a negative end of the form
((—o0, 1] x V,d(e'a)),

where we let a be the contact form on V' which was defined in Section 3.2 and denoted there by ;. It
will be convenient to write

S?xS%*—L,=FE_Uy M,

where we let E_ = ((—00,0] x V) and M} = S? x S? — ((—o0,0) x V).

Let v : ¥ — S% x §% — L; be a punctured J!_-holomorphic curve. Let 7 : (—00,1] x V — (—00,1] be
the projection. A standard argument using the maximum principle implies that 7 o v has no critical
points. Hence v=1(ty x V') C ¥ is a manifold with boundary for all ¢y € (—oo, 1]. Let us write v = (s, g)
on v (=00, 1] x V).

We first define the notions of energy considered in [3] which are relevant in our setting. We begin with
the the so-called a-energy. To this end, let C be the set of all functions ¢ : R_ — R such that f o =1

Definition 9.3 (see (23) in [3]). We define the a-energy of a J. -holomorphic curve v as follows:

E,(v) := sup/ (pos)ds A g*a.
pec Jo-1(E_)

Next, we consider the w-energy:

Definition 9.4 (see (22) in [3]). We define the w-energy of a J!_-holomorphic curve v as follows:

E,(v) ::/ v*da—|—/ v¥w.
v 1(E-) v (My)

Remark 9.5. The term “w-energy” is potentially confusing since it does not coincide with the symplectic
area, but we have retained it to be consistent with [3].

Our goal is now to prove Corollary 9.11. This says that the symplectic area of the planes u; considered
in Proposition 3.11 controls — up to a constant factor which is independent of [ — the o- and w-energies.
For the remainder of this section, we will abuse notation by dropping the subscript [ from our notation
and writing u = (¢, f) on u~1((—o0, 1] x V). The reader may verify that the following inequalities are
independent of [.

Let’s begin by analyzing the w energy.
Lemma 9.6. We have fu*l(E,) du () < [, -1 (gx vy " (a).

Proof. Let v be the Reeb orbit to which u is asymptotic. Let A(y) := fwa be the action of 7. By
Stokes’ theorem, we have:

(9.7) / ) = / @ AO) / @)

Hence, it is enough to control fu,l( ) u*(a). This is the content of the next lemma

oxV

Lemma 9.7 (cf. Lem. 9.2 of [3]). We have fu,l(OXv) ut (o) < e (u).
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Proof. Let
Ch :/ u*d(e’ ):/ eu*a—/ u*o.
u=1(0,1]x V) u=1(1xV) u1(0xV)

Co :/ w*do :/ u*oz—/ uwFa.
w=1([0,1]x V) u=1(1xV) w=1(0xV)

Hence C; —eCy = (e — 1) fu*I(OXV) u*a. Note that we evidently have Cy < w(T).

Also let

We claim that D < w(u). Indeed, since u is holomorphic, it follows that
Cy = /u*da < /u*(et(da)) < /u*(et(dt/\ a+da)) < w(u).

Hence

Cy —eC 1
(9.8) / wa= L2 < +ew(u).
u=1(0xV) e—1 e—1

O

By combining the above two lemmas and appealing to the definition of E,,, we obtain the following
corollary:

Corollary 9.8. We have E,,(u) < (1+ 1££)w(u).

Let us now analyze the a-energy. Recall that C is the set of functions ¢ : R_ — R4 such that [¢ = 1.
Given ¢ € C, we let ¢(s) = [ o(t)dt.

Lemma 9.9. We have E,(u) < w1(0xV) fra.

Proof. We write:

wwoee [ @onainfra= [ @wio ) -y o)

w1 (E_)
:/ f*a—/ Y(t) f*da.
u=1(0x V) u=1(E_)
The second term is always non-positive since u is holomorphic, so this proves the claim. O
Corollary 9.10. We have Eq(u) < Hw(u).
Proof. This follows by combining Lemma 9.7 and Lemma 9.9 . O

Corollary 9.11. We have Eq(u) + E,(u) < (14 23E)w(u).
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