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Abstract

We study Cauchy problem of a Keller-Segel type chemotaxis model with logistic growth, logarithmic
sensitivity and density-dependent production/consumption rate. Our Cauchy data connect two different end-
states for the chemical signal while the cell density takes its typical carrying capacity at the far fields. We are
interested in the time-asymptotic behavior of the solution. We show that in the borderline, the component
representing the chemical signal converges to a permanent, diffusive background wave, which connects the
two end-states monotonically. On the other hand, the cell component converges to the spatial derivative of
a heat kernel. The asymptotic solution has explicit formulation and is common to all solutions sharing the
same end-states. Optimal L% and L™® convergence rates are obtained. We first convert the model into a
2 x 2 hyperbolic-parabolic system via inverse Hopf-Cole transformation. Then we apply Chapman-Enskog
expansion to identify the asymptotic solution. After extracting the asymptotic solution, we use a variety of
analytic tools to study the remainder and obtain optimal rates. These include time-weighted energy method,
spectral analysis, Green’s function estimate and iterations. Our results apply to a general class of Cauchy
data for the model and for its transformed system. In particular, our results apply to large data solutions.
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1. Introduction

We consider Cauchy problem of a Keller-Segel type chemotaxis model with logistic growth,
logarithmic sensitivity and density-dependent production/consumption rate:

b= RS TOs, . xeR, >0, (1.1)
ur = Duyy — x[u(Ins)y ]y +au(l — %),
(s,u)(x,0) = (so, uo)(x), x€R. (1.2)

In (1.1) the unknown functions are s = s(x, ¢) and u = u(x, t) for the concentration of a chemical
signal and density of a cellular population, respectively. We have assumed that the chemical
signal is non-diffusive. Meanwhile, the system parameters have the following meaning:

u # 0: coefficient of density-dependent production/consumption rate of chemical signal;
o > 0: natural degradation rate of chemical signal;

D > 0: diffusion coefficient of cellular population;

x # 0: coefficient of chemotactic sensitivity;

a > 0: natural growth rate of cellular population;

K > 0: typical carrying capacity of cellular population.

In (1.2) we assume sg > 0 and up > 0. We are interested in the situation that the chemical signal
has transitional end-states while the cellular population takes its typical carrying capacity at the
far fields,

lim (so, uo)(x) = (s+, K), s+ > 0. (1.3)
x—+o00

Our goal is to study the time-asymptotic behavior of solutions to (1.1)-(1.3) under a very
general set of hypotheses on the Cauchy data. In particular, we impose neither decay rates as
x — F00 nor smallness assumption on the data. We identify a time-asymptotic solution, and
obtain optimal convergence rates towards it for the solution to (1.1)-(1.3).

It turns out that the s-component of the asymptotic solution is a monotonic curve connecting
s_ to s for each ¢ > 0 while diffusive in the 7-direction. Meanwhile, the #-component is the spa-
tial derivative of a heat kernel atop of the carrying capacity. The asymptotic solution is uniquely
determined by the end-states. That is, all Cauchy data satisfying (1.3) with the same s give rise
to solutions of (1.1)-(1.3) with the same asymptotic solution. Optimal convergence rates towards
the asymptotic solution are then obtained in L>(R) and L>®(R).

System (1.1) is an appended version of the Othmer-Stevens model [21,8]:

Sy = —jUS — TS,

(1.4)
ur = Duxy — x[u(Ins);ly,

which interprets the dynamical behavior of chemotactic movement of random walkers that de-

posit non-diffusive or slow-moving chemical signals for succeeding passages to modify the local

environment. Mathematical properties of (1.4), along with its companion with chemical diffu-

sion, have been studied abundantly in recent years. These include, but are not limited to, global
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well-posedness [3,4], asymptotic stability of equilibria [1,9,10,12,20,23,24,26,35], existence and
stability of traveling wave solutions [2,7,11,13-16,22,25], and vanishing chemical diffusivity
limit [5,6,23,26].

One of the important features of (1.4) is the logarithmic sensitivity function, which is in-
corporated to serve as potential of the gradient flow driving the biased movement of cellular
population, based on the assumption that the detection of chemical signal by cellular population
follows the Weber-Fechner law. Though the logarithmic sensitivity has achieved success in bio-
logical science, its singular nature brings difficulties to mathematical analysis of the model. The
key to resolve the issue is the inverse Hopf-Cole transformation [8]:

v:(lns)xz%x, (1.5)

which has been extensively employed in qualitative analysis of (1.4). Under the new variables v
and u, the reaction-diffusion-advection system (1.1) becomes a system of hyperbolic-parabolic
balance laws:
=0,
Uy - ity ) (1.6)
ur + x W)y = Duyy +au(l — ).

Doing so allows us to utilize sophisticated analytic tools originally developed for hyperbolic-
parabolic systems [17-19] and dissipative hyperbolic systems [27,31] for our current treatment
of technical difficulties associated with s_ # s .

In this paper we assume

xu>0. (.7

This includes two scenarios: x > 0 and i > 0, or x < 0 and u < 0. The former is interpreted
as cells are attracted to and consume the chemical. On the other hand, the latter describes cells
depositing the chemical to modify the local environment for succeeding passages [21]. Math-
ematically, the non-diffusive, non-reactive part of (1.6) is hyperbolic in biologically relevant
regimes when x p > 0, while it may change type when y u < 0 [32].

Under (1.7), we introduce rescaled and dimensionless variables:

- K VA K
P=tE, R YR oo [ e, = (1.8)
D D wK
This simplifies (1.6) to
S0
vitus=9 xeR, 1>0. (1.9)
up + uv)z = uzz +ru(l —u),
Here the new parameter r is
D
r=22 -0 (1.10)
XK

From (1.5) and (1.8), the corresponding Cauchy data for (1.9) are

3
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(G0, o)) = 5, D)E 0, To(®) =sign(o). |22 0EE) o e = L@, (111
1K 5o(x(¥)) K

In particular, (1.11) implies

S_

mo 5/50(2)(1; = %m > (1.12)
R

Thus, in the more biologically relevant situation when the chemical concentration experiences
transition between two different end-states s_ # s, the initial mass of v is nonzero. Since (1.9),
is a conservation law, the mass of v(x, 7) is nonzero for all 7 > 0 in this case.

Dropping the bar accent, we write the converted Cauchy problem as

-0
{Wr”x ’ XxeR, 10, (1.13)

ur + W)y =uxy +ru(l —u),

(v, u)(x,0) = (vo, uo)(x), x€R,

tim_(v0.0)(x) = (0. 1), (119

Our strategy is to use hyperbolic theory (including Chapman-Enskog expansion from fluid dy-
namics) to study the converted problem (1.13), (1.14), and then translate the results via the
transformations (1.5) and (1.8) into those of the original problem (1.1)-(1.3). The converted sys-
tem is considered under generic perturbations of the constant equilibrium state (0, 1). We do
not impose zero-mass assumption on the variables. We do not make smallness assumption on
perturbations either.

Mathematical study of (1.1) is recently initiated to understand the influence of logistic damp-
ing on the global dynamics of solutions to (1.4) through studying the transformed system (1.13).
Cauchy problem (1.13), (1.14) has been studied in [32], where global well-posedness and asymp-
totic stability of the equilibrium state (0, 1) are obtained. In particular, explicit time decay rates
of the solution to the equilibrium are identified against general initial perturbation without small-
ness assumption, by using weighted energy method. This is one of the major discoveries of the
enhanced dissipation induced by logistic damping, comparing to the non-growth model (1.4), as
the same decay rates were previously established for (1.4) but under certain smallness assump-
tion on the initial perturbation [9]. We stress that to obtain time decay rates by weighted energy
method, however, the zero-mass assumption on v is imposed in [32]. By (1.12), it is equivalent
to considering the case s_ = s there.

The decay rates in [32] are up to the capacity of weighted energy method but can be improved
to the optimal ones by more sophisticated analytic tools such as a combination of spectral anal-
ysis, Green’s function estimate and Duhamel’s principle under an additional L' assumption on
the data. This has been done in [33] (also see [34]). The optimal rates provide us a clear pic-
ture on how the solution of the original model (1.1), (1.2) behaves even in the borderline case
of uK + o = 0. In that case, s(x, t) neither exponentially grows nor exponentially decays but
algebraically decays to the background state (s, K), where s = s_ = s,.. This is another demon-
stration of the enhanced dissipation of logistic damping, since the same result has never been
built for (1.4) (see Remark 1.2 in [9]).
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The present paper is to remove the zero-mass assumption on vy in [32-34], and hence allow-
ing transitional end-states s_ # s. For this we note that a key step in [32-34] is to utilize the
antiderivative of v:

X

Yx,t)= / v(y, t)dy. (1.15)

—0o0

Under the zero-mass assumption on vy,

/vo(x)dx =0, (1.16)
R

and observing that the mass of v(x, t) is a conserved quantity by (1.13);, we have 1 (*o0, t) =0.
Therefore, we expect ¥ € L>(R) under appropriate assumptions on the initial data, and are able
to perform energy estimate for it. Once we remove the restriction (1.16), ¥ (oo, t) is the mass
of v(-, 1) or v and hence nonzero. This means ¥ ¢ L>(R), and the analysis immediately breaks
down.

A strategy to circumvent the obstacle is to extract a conserved quantity of the same mass
from v and take the antiderivative of the difference instead. The conserved quantity needs to be
constructed carefully as it is an asymptotic solution of v. The construction has been developed
successfully for hyperbolic-parabolic systems [17-19] and dissipative hyperbolic systems [27,
31] in the spirit of Chapman-Enskog expansion, commonly used in fluid dynamics. In fact, the
construction of such an asymptotic solution has been done in [28] for (1.13).

On the other hand, the strategy of constructing asymptotic solutions for hyperbolic-parabolic
systems, dissipative hyperbolic systems and (1.13) with nonzero mass Cauchy data has worked
only for small data solutions so far. In the present paper we extend such a Chapman-Enskog
expansion based strategy to large data solutions. The key of success is to obtain the time-weighted
energy estimates in Theorem 2.1 below.

Recently, the Cauchy problem with transitional end-states (1.1)-(1.3) has been considered in
a very different scenario, where one of s+ or both are zero. It is considered near a weak diffusive
contact wave of (1.13), connecting two different end-states vy for v with vy —v_| K 1 [29].
The background wave for s is then special, the Hopf-Cole transformation of the weak diffusive
contact wave of (1.13). Due to the difficulty of logarithmic singularity, so needs to be a small
perturbation of the background wave and u( a small perturbation of K. The perturbation in sg
needs to stay away from the singularity as not to upset the exponential decay of s¢ to the zero
end-state [30].

In the present paper we have st > 0 and hence there is no logarithmic singularity. The payoff
is that our results cover a very general class of Cauchy data. As to be seen in Theorem 2.4,
we only require so — s_ € L*>((—00,0)) N L' ((—00,0)), so — s4 € L>((0, 00)) N L'((0, 00)),
s(/) € H>(R) and ug — K € H*2(R) N L'(R), besides so > 0 and uo > 0 for physical relevance.
There is no convergence rates of sp to s+ or smallness assumption attached to (1.1)-(1.3) or
(1.13), (1.14). In particular, by (1.12) a smallness assumption on the mass of vy is equivalent to
the closeness of s and s_. Without such an assumption, our results apply to data with arbitrary
positive s4.

The plan of the paper is as follows. In Section 2 we give needed preliminaries and identify
a time-asymptotic solution. Then we state and comment on the main results. In Section 3 we
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prove Theorem 2.1 by time-weighted energy method. In Section 4 we iterate the decay rates in
Theorem 2.1 by a different set of analytic tools to obtain optimal rates. That proves Theorem 2.2.
In Section 5 we prove Theorem 2.4 concerning the original variables in (1.1)-(1.3).

2. Main results

We start with the transformed problem (1.13), (1.14). Our first step is to identify an asymptotic
solution. We introduce a new variable for the perturbation in the u-component,

u=u-—1. 2.1
Then (1.13) becomes

Ut+ﬁx :0,

~ - - s xeR, t>0. 2.2)
U+ vy + W)y =iy —ru(u+1),

We take expansion according to time decay rates (in the spirit of Chapman-Enskog expansion)
for (2.2),. The leading terms give us

Uy X —TU. 2.3)
Substituting (2.3) into (2.2); we have

1
VU R —Uyy- 2.4)
r

Therefore, we define the v-component of the asymptotic solution as the self-similar solution 6 of

1
91‘ = ;exxa (25)

carrying the same mass of v. That is, 6(x, ) is a heat kernel,

0( t)—L {_i} (2.6)
U= amar oy P ac+n ) '
where
m0:/v0(x)dx:/v(x,t)dx, 2.7
R R

noting the mass of v is a conserved quantity. From (2.3), the asymptotic solution for # is given
by —}Qx. Finally, the asymptotic profile for (v, u) is defined as (6, 1 — %Gx).

Next, we set up a decomposition formula for the solution to (1.13), (1.14). Since (2.2); and
(2.5) are conservation laws, we have
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/[v(x, t)—0(x,t)]dx = /[vo(x) —0(x,0)]dx =mg —mo =0.
R R

This allows us to define a new variable

X

$x.1) = / [w(y. 1) — 0(y. )]dy. (2.8)
which gives us
¢x(x,t)=v(x,1) —0(x,1) 2.9)

and ¢ (£o00, ) =0 for ¢ > 0. For convenience we set

po(x) =¢(x,0) = /[vo(y) —6(y,0)]dy. (2.10)

Let

Vx,t)=¢ (x,t) =v(x,t) —0(x,1),

- 1 1 (2.11)
Ux,)=u(x,t) + =0,(x, 1) =u(x,t) — 1+ =0, (x,1).
r r
Then we have the following decomposition for the solution to (1.13), (1.14),
v(x, 1) =0(x,1)+ V(x,1),
(2.12)

ulx,t)y=1-— %GX(x,t) + U(x, ).

It is worth mentioning that the main results of this paper are concerned with the explicit decay
rates of large data classical solutions to (1.1)-(1.3) and (1.13), (1.14). The proofs are based upon
the global well-posedness and long time behavior of the solutions, which have been established
in [32] for ug > 0. However, it can be readily checked that by adapting the arguments in [9], the
results of [32] can be produced when u is not strictly positive, i.e., ug > 0 and ug # 0. The idea
is essentially to add a positive constant to ug and its background state to avoid zero value in the
solution, then take the limit as the constant tends to zero. Since the adaptation can be made in
a straightforward fashion, we shall not go through the technical details in this paper, but rather
focus on deriving the explicit decay rates.
Our first theorem is on time-decay rates for the remainder (V, U) under the L? framework.

Theorem 2.1. Suppose that the initial data satisfy ¢y € L%(R), vo € H2(R), ug >0, andup—1 €
H?(R). Then there exists a unique solution to (1.13), (1.14) for all t > 0. The solution satisfies
u(x,t) >0 forall x € R and t > 0, with the following decay properties:

7
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3 2 !
o llp®IT+ > A+ VOIT + > / 1+ DMV (D) ||7dTr < C,

k=1 k:OO
1
o Y U+ TRUMIT. + 1+ 07U ®)]7, <C, (2.13)
k=0
I 2
. / [+ U@, + (1 + DU (0, Jde = €,
o k=0

where C > 0 is a constant.

Remark 2.1. We compare time-decay rates on the right-hand side of (2.12). From (2.13), V

decays at the rates (1 +1¢)" 2
Sobolev inequality to obtain the L°° norm. The corresponding rates for 6 are (1 + )~ % and

and (1 + t)_?T in L? and L, respectively. Here we have applied

(1 —H)_% , respectively. Similarly, the rates for U are (14 1)~'and (1 +t)_%, which are compared
with the rates (1 + t)_% and (1 +17)~! for 6. Therefore, Theorem 2.1 justifies (6, 1 — %Qx) as an
asymptotic profile for the solution (v, u) to (1.13), (1.14). While representing the leading terms
in (v, u) for large time, the asymptotic solution has explicit formulation. Theorem 2.1 implies
that the solution (v, u) to (1.13), (1.14) converges to the constant equilibrium state (0, 1) at the
same rates as (6, —%QX). They are (1 + t)_élT and (1 + t)_% in L2, and (1+ t)_% and (1477t
in L,

With L'-L? initial data, the decay rates in Theorem 2.1 can be iterated to optimal ones. This
is our next theorem.

Theorem 2.2. Under the hypotheses of Theorem 2.1 and with the additional assumption ¢o €
L'(R) and ug — 1 € L'(R), the unique solution to (1.13), (1.14) satisfies the following decay
property:

A+ 07 1Ol 2+ + D3IVl 2 + 1+ DIV 2 + 10D 2)

; (2.14)
+A 4+ U022 =C,
where C > 0 is a constant.
Remark 2.2. The time-decay rates in L* is a direct consequence of Sobolev inequality:
_1 - _3
lp@lle <CA+D72, VOl <CA+D7" U@ |e <CU+072,  (2.15)

where C > 0 is a constant.

The decay rates are optimal in the sense that they are the best possible rates for generic Cauchy
data. They are determined by the rates of the Green’s function and its derivatives. These rates
cannot be improved even when initial data (after subtracting the far field states) decay faster as
x — Zo0. For instance, in the case that initial data have compact support we still have the same

8
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rates. As determined by the corresponding rates of the Green’s function, V(x, ¢) decays with the
same rates as the first derivative of a heat kernel and the rates for U(x, ¢) are the same as those
of V,, or the second derivative of a heat kernel. These can be roughly seen from (2.11).

The rest of the section concerns the original variables (s, u), the solution to (1.1)-(1.3). We
are particularly interested in the s-component of the asymptotic solution and the convergence of
s towards it. Noting that the Cauchy problem (1.1)-(1.3) is related to the transformed one, (1.13),
(1.14), by the inverse Hopf-Cole transformation (1.5) and the rescaling (1.8), we recover the bar
accent for all variables, dependent and independent ones, for the transformed problem. That is,
we use (1.9), (1.11) to replace (1.13), (1.14).

From (1.5) and (1.8) we have

F(x)
s(x, 1) =s(—00,1)exp (? / ﬁ(y,f(ﬂ)di).

—0oQ
Solving (1.1); for x — —oo and noting (1.3) give us

s(—00,1) = s_e” WK+

Therefore,

s(x, 1) = e KT G4 1),

F(x)

. D o - -
s(x,t):s_exp(; / v(y,t(t))dy).

—00

(2.16)

In the critical case of uK + o =0, s(x,t) = 5(x, 1), which possesses an interesting wave
pattern to be identified here. From (2.12),,

v(xX,1) =0(X, 1) + V(X,1), (2.17)
where 6 is the leading term in terms of time-decay. Thus, substituting (2.17) into (2.16) gives us

X(x)

D - - -
§(x,1) =s_exp (; / [0y, 1(1) +V(y, t(t))]d§>- (2.18)

The leading term in (2.18) with respect to time-decay is

F(x)
O(x,1) = s_exp (2 / e(y,f(t))dy). (2.19)
X

Next we study properties of ®, which is the s-component in the time asymptotic solution.
Substituting (2.6) into (2.19) gives us
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x(x)

D mo oot

OU,t)=s_exp| ————— e 4i+hdy ). (2.20)
X 4@+ 1)/r

—00

Here my is the total mass of vg, given by (1.12). Thus, we substitute (1.12) into (2.20) and
simplify to arrive at

x(x)

St 1 _
O,t)=s_exp| In(—) —— e A dy
S— Jan(t+1)/r
—00
F(x)
VAG+)/r

( 5t L, ) @.21)
=s_exp| In(—) e Ydz
S_

ﬁ—oo

1. sy x(x) )
=s_ —In(—)|1 f—— 0
s exp<2 n(s_)[ + erf( TR 1)/r)] >

It is clear that
Iim O(x,t)=s+.
x—>+00

It is also clear that

1 Vx K
Var@E+D/r D ’

Thus, O, (x,f) >0if sy > s_, and O, (x, ) < 0 if s; < s_. This gives us the following propo-
sition.

riz
O, (x.1) = O(x, 1) In(-X)e 3D (2.22)
S_

Proposition 2.3. For each t > 0, ©(x, t) monotonically connects s— to sy on R.
Remark 2.3. As the background wave of s(x, t), ©(x, t) is permanent but diffusive in time. It

is a function of X/+/7 + 1 while x and 7 are scalings of x and 7, respectively. It is interesting to
observe that for x € R fixed, ®(x, t) approaches the geometric mean of s time asymptotically,

. 1 S+
[1_1)1& O(x,t) =s_exp (5 In s—> = /s_5s+ =0(0,1).

Besides, ©(x, t) is independent of Cauchy data sharing the same end-states s+. That is, all those
Cauchy problems have the same asymptotic solution.

The u-component is simpler. From (1.8) and (2.12) we have
u(x,t)=Ku(x(x),1(t)) = K[1 — %6‘; (x(x), 1)) + UGEx), 1(1)]. (2.23)

10
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Thus, the u-component of the asymptotic solution against the background equilibrium state K is
X K _ -
0% (x, 1) = ——0z(x(x),1(1)). (2.24)
r

Our next theorem concerns the convergence of (s, u) to (®, K + 6*).

Theorem 2.4. Suppose that the initial data satisfy so, s+ > 0, ug >0, so —s— € L' ((—00,0)) N
L?((—00,0)), 5o — s+ € L1((0, 00)) N L%((0, 00)), 5, € H*(R), and ug — K € H*(R) N L' (R).
Then there exists a unique solution to (1.1)-(1.3) for all t > 0. The solution satisfies s(x,t) > 0,
u(x,t) >0 forall x € R and t > 0. With the decomposition,

s(x, 1) =e KT (x, 1) + S(x, 1)),

(2.25)
u(x,t)=K~+0%(x, 1) +U(x,1),
the solution has the following decay properties,
15 S @)l < CA+D7373, 0<k <2 [[058@)llpe < CA+1727%, k=0, 1; -
(2.26)
U2 <CA+07375, k=0,1;  [U@lx < CA+0)2;

where C > 0 is a constant.

Remark 2.4. From (2.25) we see that s(x,t) exponentially grows if uK + o < 0, and expo-
nentially decays if uK 4 o > 0. In the critical case of uK + o = 0, which may happen in
chemotactic repulsion, s(x, ) = §(x, f) exhibits an interesting wave pattern. In this case, s(x, t)
time-asymptotically converges to a permanent, diffusive background wave ®(x, ), which is
common to all Cauchy solutions sharing the same end-states si. The convergence rates are
1+ t)’% in L? and (1 + t)’% in L. On the other hand, u(x,t) converges to the asymp-
totic solution K + 6*(x, t) at the rates (1 + t)_% in L? and (1 + t)_% in L®°. Since 0*(x, t) is
the spatial derivative of a heat kernel, u(x, ) converges to the background, constant equilibrium
state K at the rates (1 + t)_?T and (1 +7)~!in L% and L, respectively. These are faster than
the convergence rates of §(x, t) to ®(x, t).

3. Proof of Theorem 2.1

In this section for convenience and without loss of generality we set r = 1. We consider (2.2),
an equivalent form of (1.13),

V=Tl - XxeR, 10, G.1)
U =Uxx — (’/“))x — Uy — M(” + 1)7

subject to the initial conditions:
(Uaﬁ)(x»o):(UO» ’ZO)(X)E(U(L uo — 1)(-x)a X GR, (32)

11
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which satisfy ig(x) + 1 > 0 for x € R. From (2.11) and (3.1) we can show that

Uy = Usy — U= Vy — [(U— 6V + )]y — (U — 6,2, YeR =0 G

{Vt - U,
3.1. Preliminaries

Before implementing time-weighted energy estimates, we need to establish the uniform tem-

poral integrability of |V (¢) ”22’ which is the foundation for the subsequent asymptotic analysis.

For this purpose, we first collect the uniform a priori estimates of (i, v), which are recorded in
[32].

Lemma 3.1. Under the conditions of Theorem 2.1, there exists a unique solution (v, it) to Cauchy
problem (3.1), (3.2), such that u(x,t) +1>0forx eR, t > 0, and

t

113, + v @)1, +/ (||ﬁ(r)||§,3 F o130 + i (D17, + ||ﬁz(r)||§z) dr <C,
0

where C > 0 is a constant. Moreover,
tlinolo (1O g2y + lox Ol g1 Ry + 2Ol cr ) + V@ llergy) = 0.

As a consequence of Lemma 3.1 and the properties of 8, we have

Lemma 3.2. Under the conditions of Theorem 2.1, it holds that

t

U@ 152 + IV, + / (||U<r>||§,3 + V@31 + 10D, + ||vt(r)||iz) dr<C,
0

where U =1+ 6, V= v — 0, and the constant is independent of t. Moreover,

Jim (IOl 2wy + V2Ol gy + 1UO 1wy + VOl 1 gy) = 0.

The next lemma establishes the uniform temporal integrability of the zeroth frequency of the
perturbed function V= ¢, =v — 6.

Lemma 3.3. Under the conditions of Theorem 2.1, there is a constant C > 0 such that

t
16 )12, + / IV@)I2dr < C.
0

12
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Proof. Integrating (3.3); over (—oo, x) and using (3.1), give us

¢t:_U:_ﬁ_ex:ﬁt_ﬁxx+(ﬁv)x+vx+ﬁ2_9x

=iy — lyy + (AV)x + Gxx + ﬁz- (3.4)

Taking L? inner product of (3.4) with ¢ and integrating by parts, we have

ld - 2 L. ) d - .
§a||¢||L2 +lPxlly = | (Ux —uv)ppdx + | u”¢pdx + m ugdx | — | a¢g.dx
R R R R

=/(ﬁx —ﬂv)¢xdx+fﬁ2¢dx+% fﬁqbdx +/ﬁ(ﬁ+9x)dx.
R R R R

After rearranging terms, we have

d[1 - - - - -~
T ﬂwﬁ—fww +ww;5ﬂm—me+fﬁwmjﬁw+mw.
R R R R
N——— —— N ———
=Rop =Roc

=Roa
(3.5)
Using Lemma 3.1 alongside Sobolev and Young inequalities, we can show that

1 - -
|Roal = 2192172 + 20l 72 + 2010l o Nl 72

< Nal2, 20,2 Clla|? 3.6
_4||¢x||L2+ luxlly 2 + Cllull; 2, (3.6)
and
-2 1 L3
[Rop| < llgpliellilly, < Cligll sl Nl
1 2
< 7192172 + Cliell 2 a7
< Lo liZ + 16120312, + Clal 3.7
_4 xlly2 L2 u||L2+ ”u”LZ ( . )
Using the expression of 6, we can show that
(3.8)

R 1 3 . _3
|Rocl = Sl + S 10172 < Slillg, + A +072

Substituting (3.6)-(3.8) into (3.5) gives us

13
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d

1 2 ~ 1 2 ~ 2 ~ 2 ~ 2 -3
o | 31917 — [ agdx +5||¢x||Lzs||¢||Lz||u||L2+c[||u||L2+||ux||L2+<1+r) ]
R

(3.9)

Fix an arbitrary 7 > 0. For any 0 <¢ < T, integrating (3.9) over [0, #] yields

t T
1 1 - -
5||¢<r>||iz+5/||¢x||izdrs/u<x,r)¢<x,r>dx+f||¢>||Lz||u||izdr+c, (3.10)
0 R 0

where we used Lemma 3.1, and the constant is independent of time. Note that by Lemma 3.1,

1 1
/ﬂ(x, D (x, Ndx < Llg Oz + 1EO172 < L1 DI72 +C, (3.11)
R

and

T T
/||¢||Lz||ﬂ||izdts( sup ||¢<r)||Lz)/||ﬁ||izdtsc( sup l¢(ll2),  (3.12)
0 tel0,7T] 0 1€[0,T]

where the constants are independent of time. Substituting (3.11) and (3.12) into (3.10) yields

t
1 1
—||¢(f)||iz + —/ ||¢x||i2df <C( sup l¢@®ll;2)+C, VYrel0,T]. (3.13)
4 2 , 1€[0,T]

Taking the supremum of the left-hand side of (3.13) gives us

T
1 2 1 2
— sup loOIll52+ 5 [ llgxll;2dr <C( sup llgp®)ll;2) +C
4 e10.1] 2 ) 1€[0,T]

1
=3 s lle@Ig +C,
t€l0,T]

which implies

T
1 ) 1 )
o Sup ||¢(t)”L2+_ ||¢x”L2dt§C,
8 ref0,7] 2 )

where the constant is independent of time. Since T > 0 is arbitrary, we conclude that

14
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t
le@12, + / e (011227 < C.

where the constant is independent of time. This completes the proof of the lemma. O
3.2. Decay rate of zeroth frequency

Lemma 3.4. Under the conditions of Theorem 2.1, there is a constant t; > 0 such that

140 (VO + IVO) + [+ 0 (10 + V@R, ) dr<C vesn,

where the constant C > 0 is independent of t > t,.

Proof. Taking L2 inner product of (3.3), with U, (3.3); with V, then adding the results, we have

1d
53 (1013 + VIR ) + 103 + 101
/(U 0)(V+0)Uy dx—/(U 6,)*Udx . (3.14)
R
=Ryq =Ryp

By Holder’s inequality, we can show that
|R1al < (IVIIzee 4+ 10115) 1Ul 21Ukl 22 + (10 Iz VI 2 + 101 o 161 z2) Ukl 2, (3.15)
and
|R1p| < (1U]lzoe + 20105 ll25) 1UN7 2 + 10x 2 16+ [l 12Ul 2. (3.16)
Since ||(U, V, 8,6,)(t)||L~ — 0 as t — oo, there is a constant #; > 0, such that for ¢ > 11,
1 1 2 1 ’
(IVIizee + 1011 L) N1UN 2 1Ux [l 2 < §IIUI|L2I|UXIIL2 = gllUlle + EHUx”Lza (3.17)
and
(Ul oo + 2[1Ox [ o) ||U||L2 ||U||L2 (3.13)

Substituting (3.17) and (3.18) into (3.15) and (3.16), respectively, then taking the sum of the
results and applying Cauchy inequality, we can show that

15
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[Rial + |R1p]

1 1 3
< 51022 + S IUxllzz + 5 (||9x||%oo||vniz + 1017 16: 172 + ||0x||%oo||ex||iz) =1

(3.19)
Substituting (3.19) into (3.14) gives us
S (U022 + IVIZ) 4+ U2 + U1,
dt L L L L
<3 (16,13 IVIZ2 + 1013 1612 + 1013 10:12,) . 1= 11 (3.20)

Multiplying (3.20) by (1 + #), then integrating the result with respect to time, we have

t

@+ (VI + VO ) + f 1+0) (V@12 + U2, ) dr

3|

t
<3 f A+ D) (10 @7 V@I N0 @ 1700 10 (D15 + 16 () 1700 [10x ()17 )dT
4|

=Ry =Ry =Ry,

t

+/ (V@I +IV@IZ, ) dr + @+ 1) (IUEDI2 + IVEDIZ,) (3.21)
n
Note that
1007 <CA+7)71, (3.22)
16x (D) 1300 < C(1+17) 72, (3.23)
3

16D, <CA+1)72, (3.24)

which imply
Ry <C(+D) V(@72 (3.25)
Ry <C(1+7)73, (3.26)
Roe<C(+17)2. (3.27)

Substituting (3.25)-(3.27) into (3.21) gives us

t

(1+1) (||U(t)||iz + ||V(r>||iz) + / (1+7) (||Ux(r>||iz + ||U<r)||iz) dr

1

16
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t t

sc/[(lﬂrg+(1+r)*%]dr+0/(||U<r)||iz+||V(r>||iz)dr

1 151

+ @) (1013 + IVEDI2) (3.28)

In view of Lemma 3.2 and Lemma 3.3 we see that

t

f (V@B + V@I, )dr=C, Vi>0, (3.29)
0

where the constant is independent of 7. Applying (3.29) to (3.28) yields

t
A+0 (VO +IVOI2,) + /(1 +0) (V@I + U@L ) dr <€ Yisn,
n
(3.30)
where the constant is independent of # > #;. This completes the proof of the lemma. O
3.3. Decay rate of first frequency

Lemma 3.5. Under the conditions of Theorem 2.1, for the same constant t; > 0 as in Lemma 3.4,
we have

t

[asovi@iar=c. visn

n

and

t
(1402 (01 + 1V, 01%) + [ 1407 (101 + 1001 ) dr <.
n

Vit>t,
where the constants are independent of t > 1.
Proof. We split the proof into two steps.
Step 1. We first establish the weighted temporal integrability of ||V ||i2. Substituting (3.3),
into (3.3), gives us
Vi==U =U= Vi = [(U=0)(V +0)]x = (U—6)". (3.31)

Taking L? inner product of (3.31) with V., we can show that

17
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1d
wnvxniﬁnvxniz:—/[U,+U+[<U—9x)<V+e)1x+(U—9x>2}vxdx. (3.32)
R

Note that by (3.3),,

d
—/U,dexz—a /Udex —i—/UVx,dx
R \lR R
d
=—— UV,dx | — | UU,,dx
dr
\R R
d 2
= T UV,dx | + ”UxHLZ' (3.33)
R
Substituting (3.33) into (3.32), we obtain
T Ly —l—/UV dx | 4+ 1V 2
dt 2 X L2 X X L2
R
=~ [{v+ 1w =000V 01 + U= 02| Vide 4 UL IR, (3.34)
R
The integral on the right-hand side of (3.34) is estimated as
/ [U+ U= 00V +0)L + U= 60?] Ve
R
< CL(IVIE 41813 ) (10132 + 160 2:) + (10 + 1603 ) (1ValZ + 6212 )
=Rz, =R3p
1
+IUIZoe IUNZ2 + 10l Zoe 162172 ] + IUIZ2 + S 1Vl 7 (3.35)
=Rsc =Rsq
Note that
5
16ex (D17, <CA+1)72. (3.36)

Using Sobolev inequality, (3.22), (3.30) and (3.36), we can show that
1 5
Rsa < C[A+072Vall 2 + A+ [1U:13: + (14073 (3.37)
Similarly, using (3.23) and (3.24), we can show that

18
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Rsp = C [ MUl 10l 2+ (4072 | [IVaI2, + (4073 (3.38)
Moreover, we can show that
R3c < C||U”L2||Ux||L2||U”iz’ (3.39)
and
Ry <C(1+1)77. (3.40)

Substituting (3.37)-(3.40) into (3.35) yields

/ [U+1U= 00V +0) + (U =007 Ve
R

_1 _ _ _7
< CLA+D72 Vil 20Ul + A+ D7 [ Vall 2 + A+ UL, + (1 +1)72

_3 _
F U200 2 Vel 32 + (L + D72 Ul 2 Us 2 + A+ 072 Vel3,
Ull;2]lU U||? U2, + Sva 2 3.41
+ 101210l 21052 ] + NV + 51Vl 7. (3.41)

Substituting (3.41) into (3.34) gives us

d (1 ) 1 )
3 | 3 IVallZa + [ UVadx | + S 1V2l
R
_ 1 _ _ _1
< ClA+D72 Vel 2 1Uxll72 + A+ Vil 2 + A4+ UL, + (1 41) 72
_3 _
F U200 2 Vil + (L + D72 Ul 2 Uxll 2 + L+ 072 Vi3,
+ Ul 21Ul 221017, ] + U135 + Ukl (3.42)

Note that according to Lemma 3.2, ||V|l;2, [|Ul|z2 and ||Uy|| ;2 are uniformly bounded in
time. Using such information, we update (3.42) as

= vz, +2/U\/xdx AT

R
= C[IU + U2, + A+ 07+ (407 VA | (3.43)

Multiplying (3.43) by (1 + ¢), then integrating the result with respect to time, we have

t
A+0 [ IV17, +2/U<x,z>vx<x,t>dx +/(1 +0)[[Ve (01747
R 1
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t

< c/ [+ 0 (IU@I + U@ ) + A+ 072+ VL@, | de
151

t

+ / IVe(ll72 +2 / U(x, 1)V (x, T)dx | dr
n R

+d+n) IIVx(tl)Iliz+2/U(x,t1)Vx(x,t1)dx . (3.44)
R

Note that according to (3.30) and Lemma 3.2, the first integral on the right-hand side of (3.44)
is uniformly bounded in time. The second and third terms are also uniformly bounded, thanks to
Cauchy’s inequality and Lemma 3.2. Therefore, we obtain

t
(1+1) ||Vx(t>||iz+2fU(x,t)vx(x,r>dx +f(1+r>||vx<r)||izdrsc, Vi,
R n

where the constant is independent of ¢ > ¢;. Moreover, it can be shown that
t
(1 +t)||Vx(t)||iz + _/(1 + T)”Vx(f)”izdf <C-201 +t)/U(x,t)Vx(x, t)dx
1 R

1
= CH20+DIUOIL: + 5 A+ 0IV2 017,

which yields

t
1
S DIV Ol + /(1 +DIVa(@l5dr <C. Vi1, (3.45)
1

where we applied (3.30).

Step 2. We now apply (3.45) to prove the decay rate of the first order spatial derivative of
the perturbed functions. Taking L? inner products of (3.3), with —U,, and (3.3); with —V,,
respectively, we can show that

1d
2 dt

= [ {tw=env+00,+ U =602] Unsar. (3.46)
R

(U2, + IV I22) 4+ U2 + U 2

The integral on the right-hand side of (3.46) can be estimated by using the arguments between
(3.35) and (3.41) as

20



Y. Zeng and K. Zhao Journal of Differential Equations 336 (2022) 1-43

[ {1 =001+ w02} U
R

_1 _ _ _7
< CLA+D72 Vel 20Ul + A+ [ Vall 2 + A+ UL, + (1 +1)72

_3 _
F U 2002 Vel + (L + D72 Ul 2 [ Uxll 2 + (4072 Vi |12,

1
+ U2 10U 22 10172] + 51Ul 72 (3.47)
Using (3.30) and (3.45), we update (3.47) as

i =0t 4o+ w02 U
R

_ _7 _ 1
<c[a+n l(||Ux||i2+||U||iz)+<1+r> P (L0 TIVeZ] + S0l 7

(3.48)
Substituting (3.48) into (3.46) gives us
& (U022 IVAI2) 4 U 22 + U 12
dt X L2 X LZ XX L2 X LZ
7
<cl[a+n~! (||Ux||iz - ||U||iz) A+ + A+ 072 Vil1,]. (3.49)

Multiplying (3.49) by (1 4 )2, then integrating the result with respect to time, we can show
that

t
A+02 (10013 + IV 012,) + f 1+ 02 (IUl2 + U2, ) de
1

t
3
< cf [+ 0 (U@ + IU@IZ) + (1 + D72 + Ve (@2, ]de
Al
13
+2f(1 +) (U@ + V@I ) dr + (1402 (U@ + 1Vl )

n
(3.50)
Note that according to (3.30) and Lemma 3.2, the first integral on the right-hand side of (3.50)
is uniformly bounded in time. By (3.30) and (3.45), the second integral is uniformly bounded in

time. Hence,
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t
A+02 (10013 + IV 012,) + /(1 + 02 (103 + U2, ) de =€, Vs,

(3.51)
where the constant is independent of ¢ > ¢1. This completes the proof of the lemma. O

3.4. Decay rate of second frequency

Lemma 3.6. Under the conditions of Theorem 2.1, for the same constant t| > 0 as in Lemma 3.4,
we have

f(l + 1V (Dlljdr <C, Vi,
and

t
A+0° (U2 + IVa®I3,) + / 1+0° (VeI + U (@2, de < C,

Vt>t,
where the constants are independent of t > t;.

Proof. We prove the lemma by using the same strategy as in Lemma 3.5.
Step 1. Taking d, of (3.31) gives us

Vxxt = _Uxt - Ux - Vxx - [(U - ex)(v + 9)]xx - Z(U - ex)(Ux - 9xx)~ (352)

Taking L? inner product of (3.52) with V., we can show that

d (1 2 2
a E”VX)C”LZ + UxVxxdx + ||Vxx||L2
R

Virdx — / [(U = )V + 0] Ved —2 / (U = ) (Uy = Be)Viedx + [Use |2,
R

R
/ Uy Vipdx — / (UgxV 42U,V + UV, + 20U, )V, pda
R

=Ry

- /(Uxxe - Uexx - Vxxex - 2Vx6xx - Vexxx)vxxdx

=Rup
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+ / (Bubex + 00,0V ey Uy 12, (3.53)
R

=R4c

The first term on the right-hand side of (3.53) is simply estimated as

1
/ UrVade| 21Ul + 5 IVarl . (3.54)
R

By Cauchy-Schwarz and Sobolev inequalities, we can show that
|Rigl < C (||Uxx||iz||vn’im + U7 IV l172 + U7 oo I Vax 175 + ||U||ioo||Ux||iz)
1
+ 5 Vae I3,
< CIUxc 720V 220Vl 2 + IU 2 0 2 V72 4 100 2 10l 2 Vi1 2
2 1 2
+ U2 NV 221Uk 72) + S IV a7 (3.55)

The four triple products on the right-hand side of (3.55) are estimated by using (3.30) and (3.51)
as

_3

U220V 21 Vsll 2 < €A+ 72 [Use |12, (3.56)

Ul 2 Ul 21 Vell32 < C(L+1)72 (||Ux||iz - ||Uxx||iz) : (3.57)
3

IO 21Ukl 2 Vi 72 < CA 4072 [[Virll72. (3.58)
_3

Ul 20Ul 22U I3, < €L+ 072 [ U2, (3.59)

Substituting (3.56)-(3.59) into (3.55) gives us

_3 1
|Ragl < C(141)72 (||Ux||iz + 1 Usel72 + ||Vxx||iz) + gnvxxniz. (3.60)
In a similar fashion, by the properties of 8, we can show that

|Rap| < CA+D " Uni 7+ CUA+ D72 Vix |72

_ _ 1
+C(1+1) 3(||U||iz+||vx||i2)+C(1+z) 4||V||iz+§||vxx||iz, (3.61)
and

_9o 1
[Racl = CA+077 + 2l Vel 72 (3.62)
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Substituting (3.54), (3.60)-(3.62) into (3.53) gives us

d LVl + [ UnVasde | + 2 1viel2
ar | 2 xxlly2 x Y xxdx B xxlly2
R

_3
= CO+073 (U3 + 103 + 1V 22)
+CA+D) Unl 2+ CA+ D2 Vix 3, + CA+1) 7 (||U||iz + IV ||§2)
—4 2 -2 2 2
+CA+DTHVIE +CU+072 + 20U, + U2, (363)
Note that we haven’t established any time-weighted estimate for ||V ||iz. However, similar
to the derivation of (3.45) and based on (3.63), we can show that
t
A+ DIV D2, +/<1 +OIVa@Ikdr <C, Visn. (3.64)
n

Next, we shall upgrade (3.64). Multiplying (3.63) by (1 4 1), we can show that

d 1 1
5 | 07| SIVadllz + / UsVardx | |+ 20407 Vaxl7,
R

1
= CO+07 (Ul + Uals + 1Vl 32)
2 2 —1 2 2
+CO+ DUl 2+ ClIValZs + CA+07" (IUI2 + 1V42,)
-2 2 -3 2 2 2 2
+CU+D2VIZ + CU+073 420+ D2 U, + (1 + 02U |2,

+ A+ [ IVixllF2 +2 f Uy Viyedx | (3.65)
R

The terms on the right-hand side of (3.65) are uniformly integrable with respect to ¢ for ¢ > ¢,
thanks to Lemma 3.2-Lemma 3.5, and (3.64). This implies

t
A+ Vax O3, + f A+ Vi (D7t <C, Vi>1. (3.66)

n

Step 2. Taking 9, of (3.3) gives us

Uxt = Uxxx - Ux - Vxx - [(U - Ox)(v + 9)])(): - 2(U - ex)(Ux - Gxx)v (3673)
Vit = —Usy. (3.67b)
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Taking L? inner products of (3.67a) with —Uy, and (3.67b) with —V ., respectively, then
adding the results, we can show that

1d ) 5 ) )
55 (”IJ)M”L2 + ”VXXHLZ) + ”Uxxx”Lz + ”UXXHLZ

= /[(U =0 (V4 60)]xx Uyrrdx +2/(U — 0)(Uy — Oxx) Upxrda. (3.68)
R R

Note that the two integrals on the right-hand side of (3.68) are similar to the second and third
integrals in the second line of (3.53), respectively. Hence, by adapting the estimates of R4y, Rap
and Ry4., we can show that

d 2 2 2 2

o, XX 2 XX 2 XXX 2 XX 2

= (10w + Ve 22) + U 22 + 21U

-3 2 2 2

<CU+077 ([UelZ2 4 Usell32 + [ Vax 132

+CA+D) Unl 2+ CA+ D2 Vix 3, +CA+1) 7 (||U||iz - ||Vx||§2)

9
+CA+DTHVI, +C1+1)72, (3.69)

Multiplying (3.69) by (1 4 1)3, we deduce

d
[0 (12 + Vs 122) |+ (4D Ui 12 +20+ 071U
3 2 2 2
= CO+0 (U2 + Ul + 1Val32)
2 2 2 2 2
+C(1+ DUl 2 + €1+ 0IVaelZa + € (U2, + Va2 )

3
+CA+0TIVIZ +CA+072 430 +0% (IUnlZ + IVal2) . (370)

Note that the right-hand side of (3.70) is uniformly integrable with respect to time for ¢ > ¢1, by
virtue of Lemma 3.2-Lemma 3.5 and (3.66). This implies for V ¢ > 11,

t
A+0° (112 + IVa®I2,) + / 1+0° (U + U (@2, de < €,
1

(3.71)
where the constant is independent of ¢ > #;. This completes the proof of the lemma. O

3.5. Improved decay rates

In this section, we improve the decay rates of the U-component.
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Lemma 3.7. Under the conditions of Theorem 2.1, there is a constant tp > t| such that
L+ 02U, + A+ 000>, <C, Vv
A+ NUDI .+ A+ U072 =C, 1>1,
where the constant C > 0 is independent of t > t,.

Proof. We prove the lemma by deriving the decay rates of the temporal derivative of the per-
turbed functions. Taking 9, of (3.3) gives us

Ut = Uxxr = Ur = Vi = [(U = 0x)(V + 0)]xr — 2(U — 0x) (U — Oxs), (3.72a)
Vi = —Uy. (3.72b)

Taking L? inner product of (3.72a) with U, and (3.72b) with V;, then adding the results, we have
li 2 v, |12 2 2
53 (1032 #1032 ) + 1012 + 1017

- / [(U = 0)(V +0)1s Uy — 2 / (U = 6:)(U, — 6 Ujdx . (3.73)
R R

=Rsq =Rs)
By a direct calculation, we can show that
Rsy = / (UatV 4+ UsVi 4 U Vi £ UV + Upf + U6, + Uy + U8,

R
- thex - Vxext - Vtexx - Vexxt - 29x19x - elexx - eexxt)Utdx

1 1
- / (— UsUs + 3UrVa = Ul + Usty + S Uy + Ut
R

+ Uxxex - Vx'gxt + Uxexx - V‘gxxt - 2e)ctex - etexx - eexxt)Utd)ﬁ

where we integrated by parts and replaced V; by —U,. Using Cauchy-Schwarz inequality, we
deduce

[Rsal = %(”VXHLOO + 1162 12o) 10172 + (10 oo 10l 2 + Ul 2o Ul .2
F U llzoe 10l 2 41Ul Zoe 1xe 172 + 162 | oo U 172 4+ [Vl zoo 10 2
F WU Moo 10xxll L2 + VI Lo 10 | L2 4 10l Loe 16 | L2 + 1107 [l oo (1O [l L2
101 oo 16xxe [l 2) 10l 2 (3.74)

Using Lemma 3.4-Lemma 3.6 and Sobolev inequality, we can show that for ¢ > 71,
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3 5
U2 <CA+D72  Ugllee < CA+1)72; a79)

3 5 :
IVI2 <CA+D72;  [Ville <C(1+1)72,

Moreover, by direct calculations, we can show that

) _1 2 -3.
[6x 117, < C(1+1)72; Oxxell;. < CA+1)"2; (3.76)

_35
1617, <CA+1)772;
16700 <CA+172 [0axllie <C(L+1)72.

1017 <CA+0)7"
Using (3.75)-(3.76), we update (3.74) as
1 2 L -5 -4 -6
|Rsq| < 3 IVilizoe + 16xllLoe) U2 + gIIUrIILz +C[A+D7+A+0D)77 +(1+1)

_s 2 _3 2 -2 2
+ A+ 072 Ulls + A4+ 72 [Unellz2 + A+ 077 [Urll72]-

Similarly, we can show that

1 _ _u
|Rspl < 2(IUllze + 10 WU 72 + ULl + C[1+0 70+ (1407 7]
Since || (U, V4, 0,)(®)||L> — 0 as t — oo, there is a constant 7, > ¢{, such that

1 _ _1 _
|Rsal + [Rsp| < SIUliZ. + C[A+07 + (A +072 + A +07°

_35 _3 _
F A+ 2U 3 + A+ D)7 2 [ Uell32 + A+ 072 Use 2, ]. (3.77)

Substituting (3.77) into (3.73) gives us
1d 1
53 (I3 4 IV ) + U + S 100
-5 _ 1 —6 _5 2
<SCl[A+D7+A+D"2 +A+D"+ A+ 2 U3,
_3 _
+ 4+ 2 U7, + A+ 072Ul ]- (3.78)

Multiplying (3.78) by (1 4 ¢) and applying Lemma 3.2, we can show that for ¢ > #,,
1
(A +0 (10O + 1V, ) + / (+0) (U @I + 10,03 ) dr < €. (3.79)
n

where the constant is independent of ¢ > #,. Multiplying (3.78) by (1 + )? and applying (3.79)
and Lemma 3.5, and noting V; = —U,, we can show that for ¢ > 15,

t

A+ 02 (013 + VO ) + /(1 + 02 (U @I} + U @13 dr < €.

5]

27



Y. Zeng and K. Zhao Journal of Differential Equations 336 (2022) 1-43

where the constant is independent of ¢ > t,. Iterating one more time, we can show that

t
140 (GO + VOIE:) + [ @+ 07 (U + 101 dr<C. (80)
15)

Since V; = —Uy, we get in particular from (3.80):
A+ U (n]7, <C. (3.81)
In view of (3.3),, (3.80), (3.71) and (3.51), we see that
iz, <c (||Uz(r>||iz F U ONI72 + IV, + ||N.T.||iz)
<C [(1 +0 3402+ ||N.T.||§2] ,
where N.T. stands for the nonlinear terms on the right-hand side of (3.3),, i.e.,
N.T. = [(U—6)(V+6)], + (U—6,)>.

According to (3.37)-(3.40), Lemma 3.4-Lemma 3.5 and (3.81), ||N.T.||i2 decays faster than
(1 4+ £)~2. Therefore, we conclude

IUOI2, <CA+072 Yi>n,
where the constant is independent of ¢ > t,. This completes the proof of the lemma. O

Finally, noting that #, > f; are constants and applying Lemma 3.2, we replace the lower
limits of temporal integrals in the conclusions of Lemmas 3.4-3.6 by 0. The combination of
Lemmas 3.3-3.7 gives us (2.13) for t > t,. The case of 0 <t < t, is a direct consequence of
Lemmas 3.2 and 3.3. With Lemma 3.1 we thus have proved Theorem 2.1.

4. Proof of Theorem 2.2

In this section we obtain the optimal decay rates in (2.14). Under the additional assumption
that ¢ € L' (R) and iig = ug — 1 € L' (R), we iterate the rates in Theorem 2.1 by a different set
of analytic tools. It is a combination of linearization, spectral analysis, Green’s function estimate,
Plancherel theorem and Duhamel’s principle. The strategy is detailed in [33,34] for the case of
zero-mass for the v-component, i.e., & = 0. Thus here we focus on the terms induced by the
asymptotic solution (6,1 — %6’)() in the estimates, and outline or cite results from [33,34] as
needed.

For our convenience and without loss of generality we continue to set ¥ = 1, and use C as a
generic positive constant.

We write (3.3) in matrix form,

W, + AW, = BW,, + LW + F, A.1)
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where W = (V, U)T, the matrices

0 1 0 0 0 0
A=(1 o)’ Bz(o 1)’ Lz(o —1)’ “.2)

and the nonlinearity is given by

0 0
F=F1x+F2, Fl:(-(U—ex)(V—i—Q))’ F2:<_(U_9x)2) (43)

Consider Fourier transform with respect to x:

WE, 1) = \/%_n/W(x,t)eixgdx,
R

! “4.4)
W(x, 1) = —— / W(E, 1)e*Ede.
N2
R
Taking Fourier transform of (4.1) with respect to x, we have
W, =E@{&)W+ F, (4.5)
where E(i§) = —i£A — SZB + L with A, B, L given in (4.2). The solution of (4.5) is
t
W = EOWo(e) + [ 0 VHOFE 0y 4.6)
0
where \7\70 denotes Fourier transform of
(Vo) _ vo — 6o
Wo = <Uo) = <u0 1 —90x) 4.7

and Gp(x) =0(x, 0).
The solution operator in (4.6) is studied in [33] with details. For small £ it is studied via

spectral analysis of the matrix
R A ) —i&
EOS)_(—Z& _52_1)'

Otherwise, energy estimation for the linear system is used to study the global decay property
of the solution operator in the Fourier space. Here we cite the following lemma for the needed
properties. Interested readers are referred to Lemma 3.3 in [33].
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Lemma 4.1. Let k > 0 be an integer, h € L' (R), D’;h e L2(R), and

Hi(x) = ('“5”) L = (h&)> .

Let (¢'EU8)), 5 denote the first/second row of e'E8). Then for t > 0,
1) (&) Hy (8l 2 < C(t+ D)5 2 Ikl 11 + Ce™ | DARY 2,
1B (&) Ba (&)l 2 < C(t+ D)3 2 Ikl 1 + Ce | DARYl 2,
1 EEY s (&) i (§)l 2 < C(t + 1) 33 ||hll 1 + Ce™ | DRl 2,
1 ), &) Ba (&)l 2 < Ct+1) 7373 ||l + Ce™ | DR 2,

where C and c are positive constants.

For k =0, 1, we apply Plancherel theorem and (4.6) to obtain

105V () 12 = 1GE V@)l 12

4.8)
4.9)
(4.10)

@11

t
< &)X (e E®) Wo ()12 + / G (" DEEN Fg, 1) 2dT (4.12)
0

=l + hp,
185012 = 1GE*T@) 12

t
< [G&* (e E®), Wo ()12 + f G (" DEEN, F (g, )| 2 dT, (4.13)
0

=D+ Iy
where (e’E(ié))j, j =1,2, denotes the jth row of ¢/£U&) and F is given in (4.3).
Lemma 4.2. Under the conditions of Theorem 2.2, for k =0, 1 and t > 0 we have
o <C(L4+1)7578,
ha<C(1+07175,
Proof. From (4.7) and (2.10) we have

Iia < 1GE (B (Vo ©), 0) Tl 12 4+ 11GE)* (€ E))1 0, o) Tl 12

= 1GE T B (go(€), 0) Tl 12 4 11GE)K (e E))1 0, To ()Tl 12

(4.14)

(4.15)

Applying (4.8) and (4.9) to the first and second terms on the right-hand side of the above inequal-

ity, respectively, we further have
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_ 1kt _
La <CU+1)737 2 |Idoll 1 + Ce | DE ol 2
(4.16)

—3_k —ct || pk
+CA+1)" 22| Upllpr +Ce “[IDyUp|l 2.

From the hypotheses of Theorem 2.2, (4.7) and (2.6) we know

lgoll;1 <oo  and IUollz1 < lluo — g1 + [I6ox I 1 < 00,
where 6p(x) = 0(x, 0). Similarly, the assumption that (vg, ug — 1) € H 2(R) x H2(R) implies

1D poll 2 = 1 DY (wo — 60) I 2 < 1 Dyvoll 2 + 118560 12 < o0
and

IDYUollz2 = DY (uo — 1 — 6ol 2 < DY (o — D2 + 119560l 12 < o0
for k =0, 1. These simplify (4.16) to
_3_k —ct _3_k
Iy <C(A 417324 Ce” " <C(1+1)" 372, k=0,1.

We thus have proved (4.14). Using (4.10) and (4.11) one can prove (4.15) in a similar way. O

Lemma 4.3. Under the conditions of Theorem 2.2, for k =0, 1 and t > 0 we have

k

Ly <C(+1)73i75, (4.17)

by <C+0)~372. (4.18)

Proof. From (4.3) and (4.12) we have

t
Iip = / G (I DEWE) EF (€, 7) + Fa(€, 1)) || 2 dT
0

t t
< f 1GE* (I =DEE g Fi(g, T)l| 2 dT + f IGE)* (e EEY) By, 7)) 2 d.
0 0

Applying (4.9) to the right-hand side gives us

t
Iy < c/(l b im0 U= )V 4+ )L ()l de
0

t
e / eI (U = 0,)(V +0))(D) [ 2 de
0
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t
+ C/(l Fr— ) iU = 60)2(0)ll 1 de
0

t
+C / e D188 WU — 0,)% (1) || 2 dr. (4.19)
0

For the first integral in (4.19), using (2.13), (2.6), we can show that

LU =0V + DOl gt = (Uxllz2 + 10xx 1 22)AIVIIL2 + 11011 £2)

3
+ (U2 + 10l .2) UVl g2 + 110x Ml p2) < C(A +7) 7 2.
(4.20)

For the second integral, using the same tools alongside Sobolev inequality, we can show that

LU =0V + D] (D2 = (Uxllz2 + 100l 2) (V[ oo + 10| Lo0)

7
+ (I0ll2 + 10x I .2) AVl + [10x ) = C(1 1) 4

4.21)
and
I[(U = 6)(V + 0)]ex (D]l 2 < CA + 1) 2. (4.22)
Moreover, it can be shown that
(U = 0020l < C(1+7)72, (4.23)
HU=02 @2 <CA+1)78, [0, (U—00* @2 <CU+1)73.  (4.24)

Substituting (4.20)-(4.24) into (4.19), we arrive at

! t
3k 3 7k
Iy = C/(l +t—1) 4 2(1+7) 2dr + C/e_c(’_f)(l +7)"i73dr
0 0

<Cl+4+n"i"% k=01

This is (4.17).
Similarly, from (4.3) and (4.13) we have

t

2 t
Ly < f 1GE)K (" EE e Fi(g, o)l 2 dT + / (=D EEN, () L F (8, 7) | 12 dT
0 t
2
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t

2 t
+ f G (e VEE), By, 7)) 2 de + / (e =DEEN, i)k By (&, 1) | 12 dr.
0 5

Applying (4.11) to the right-hand side gives us

t

Iy < c/(l 1 —T)TETI[(U = 0)(V + )]y (0)] 1 dT
0

t
+c/<1 F 1= T U = 00V +0)1(0) 1 dr

2

t
L / e~ 9FLL(U = 6,)(V + 0)](1) | 12 do
0

!

2
+ C/(l Fr— D) iU = 60)2(0)ll 1 dr
0

t
+c/<1 bt kU = 0020l dr
r

2

t
+C / e 185U - 0,)2 (1) || 2 dr. (4.25)
0

Besides (4.20)-(4.24), we have the following estimates based on (2.13), (2.6) and Sobolev in-
equality,

ILU = 6)(V +0)x (@)l 1 < C(1+ )74, (4.26)

and

18, (U = 6:)* (D)l 11 < C(1 + 1) 72 (4.27)
Substituting (4.20)-(4.24) and (4.26)-(4.27) into (4.25) gives us

t
2 t
[ S5_k 3 5 -
12”SC/“"’t—f)_rf(l-i-f)_7 dr+Cf(1+t—r)‘z(1+r)—7—z dr
0 T
2
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t
. 7 _k 5 k
+c/e*°(’*f>(1+r)*rz dt <C(+1)~172, k=0,1.
0

We have proved (4.18). O

Substituting (4.14), (4.15), (4.17) and (4.18) into (4.12) and (4.13), we arrive at

195V ()l 2 < CA +1)7i73,
k=0,1. (4.28)

(S ke

lof UM < Ca+n7i78,
To finish the proof of Theorem 2.2 we need the following lemma.
Lemma 4.4. Under the conditions of Theorem 2.2, for t > 0 we have
Il < CA+n)7%, (4.29)
Proof. We write (3.4) for ¢ as a heat equation with a nonlinear source term,

¢r = pxx + F(x,1),

where

4
Fa,) =ity —iixe + @v)x +i° = ) Fi(x,0).
i=1

Denote the heat kernel as

H(x,t)= e 4, (4.30)

Then by Duhamel’s principle,

t 4
¢(x,t):/H(x—y,t)¢o(y)dy+//H(x—y,t—t)ﬁ(y,r)dydrEZIi, “4.31)
R

0 R =0

where
mszu—»nm@m»
R

t

Iz-=//H(x—y,t—r)f“i(y,t)dydr, 1<i<4
0 R
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If0<tr<2,(429)is a consequence of (2.13). Thus, we consider the case ¢ > 2 below. By

Young’s inequality, (4.30) and the assumption on ¢g in Theorem 2.2,

_1
Hollz2 < 1H @)l 2llgollr = CA + 1) 2.
By integration by parts, we have

t—1

0 R t

- / H(x =y, Dii(y, 1 — 1) dy — / Hx — v, 0ii(y, 0)dy
R R

=, =l

t—1
—i—//H,(x—y,t—t)ﬂ(y,t)dydr
0 R

=lic
t
+//H(x—y,t—t)ﬁ,(y,t)dydt.

t—1 R

=14

By Young’s inequality, (2.6), (4.28), and noticing ¢ > 2, we have

M1allg2 < WH Mgl — D2 < CUI0x (2 — D2 + UG — Dl 2)

<Cc —l—t)_%,
and by the assumption on iig = ug — 1 in Theorem 2.2,
~ _1
IM1pll2 = IH @l 2 M@0l < C(A +1) 7%,

Similarly, we can show that

el 2 < WH (0 = Dl a2 < CA+1 = 1) (16D 112 + U] 12)

<Cl+i—0) "1 +1)i.

For 114 we apply (3.1), and by integration by parts to get
ha= [ HG =yt =0, = @), = v, — 26+ DI, 0y
R

35

t
11=//H(x—y,t—r)ﬁ,(y,r)dydr—i-f/H(X—y,t—T)ﬁr(y,T)dydT
IR

4.32)

4.33)

(4.34)

(4.35)

(4.36)
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:/Hx(x—y,t—t)ﬂy(y,r)dy—/H(x—y,t—t)[(ﬂv)y+vy+ﬂ(12+1)](y,t)dy.
R R

=R141 =Ria2

4.37)

Then again by Young’s inequality, (2.6) and (4.28) we have

IM1a1llz2 = 1 Hx(t = D)l prllix (Ol 2 < 1Hx (@ = Dl (6xx (DMl 2 + 1Ux (D) 22)

<Cl—1)t(1+1)3, (4.38)

and

Ia2ll2 < 1H @ = Ol (1@ (O 2 + lve (@)l 2 + 1@ G+ D) ()]12)
< C (1@ ) ()l 2 + @) (@)l 2 + e (Dl 2 + GG+ D)) 2) - (4.39)

By Sobolev inequality, the first two terms on the right-hand side of (4.39) are estimated as

1@l 2 < (0xx ()12 + U2 NO@) 12 + IV(D]lL%) < CL+ 1) 73, (4.40)

and

@) (T2 < (10x () lLoe + TUE) 1Loo) N0x (DI 2 + 1V (D)l 2) < C( + f)_‘z‘- (4.41)
The third term satisfies
lux(@)ll2 < N0 (D)2 + IV (@Ol 2 = CA + f)_%- (4.42)

For the last term, we can show that

@@+ D) ()2 < (16: (Ol 2 + 1U@ 1 22) U0 (D) e + U(D) I + 1)

<C+0)71, (4.43)

Substituting (4.40)-(4.43) into (4.39) gives us
Maall2 < C(1+1)73. (4.44)
Substituting (4.38) and (4.44) into (4.37), we have
1all2 <=0 2(1+1)7 3 +C(1+17) 75 (4.45)
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Feeding (4.34)-(4.36) and (4.45) into (4.33) and invoking Bochner inequality imply

t—1

t
||11||L2§||11u||L2+||11b||L2+/||11c||L2dT+/||11d||L2dT
0 t—1
t—1

<C+n"1 +c/(1+r—r)*‘(1+z)*%dz
0

t t
+C/(t—f)—%(1+r)—%dr+c/(1+r)—%drgca+t)—%. (4.46)

t—1 t—1
Similarly,

1 t

Iz=—//H(x—y,t—f)ftyy(y,r)dydf=—//Hx(x—y,t—r)ﬁy(y,r)dydr,
0 R 0 R

and hence

t t
1212 = f [ Hx(r = Dl liux (D)l 2 d7 < /(t — O 2 ([6xc (O 2 + 1Ux (D] 2) do
0 0

t

< c/(z—r)—%(l to)ide<C(1 4070

0
4.47)
We can also show that
t
||13||L2§/IIHx(t—f)llell(ﬁv)(f)llLl dr
0
t
S/IIHx(t—T)||L2(||9x(T)IIL2+IIU(T)Ile)(II9(T)I|L2+IIV(T)IILz)dT
0
'
< C[(l — o) i 40 de <CU 4+ TIn(l +1), (4.48)
0

and
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[4allz2 = / 1H (1 — o)l 2l ()| 1 dT < _/ IH @ = D)l 216 (D)l 2 + 1UD) ] 12)* do

< c/(z o i1+ ) 2de<C(1 4077

(4.49)
Substituting (4.32) and (4.46)-(4.49) into (4.31) gives us (4.29). O
5. Proof of Theorem 2.4
In this section we continue to use C as a generic positive constant. First we verify that under
the assumptions of Theorem 2.4, the regularity requirements in Theorem 2.2 are satisfied, and

hence the theorem applies.

Lemma 5.1. Under the conditions of Theorem 2.4, the Cauchy data of the transformed system
satisfy ¢o € L2(R) N LY (R), 9 € H2(R), itg > 0 and iig — 1 € H*(R) N L' (R).

Proof. From (2.10), (1.11), (1.12), (2.6), (1.8),

Fo(®) = / [50(3) — 6(5. 0)1d}

= sign( )\/L /x(lns ) (x(7)dF - 7 In(=5) 1 /xe_ﬁd‘

= s1gn(x WK 0 y))dy p " T 5

_X So(X(X)) X se. 1

- D1 n( ) 1 ( )W

= ¢01(X) + P2 (X). 5

By Taylor expansion,

bo1 (%) =

X (1 n 80 (x (X)) —S—) _ % S0(x (X)) — s 5.2)

s— +n(@)so(x (%) —s-1’

S—

where 0 < n(x) < 1. Noting that

s—+n@)so(x(x)) —s-]=[1 —n(x)]s— +nx))so(x(x))

is a convex combination of s_ and sg(x(x)), it takes a value between s_ and sg(x(x)). On the
other hand, the assumptions on sg in Theorem 2.4 imply that
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m= xigﬂfg s0(x) > 0. (5.3)
Therefore, (5.2) gives us
|fo1 (B)] < Clso(x (%)) — 5|, (5.4)
which implies
o1 € L' ((—00,0)) N L*((—00, 0)) (5.5)

by the assumption on sg — s— in Theorem 2.4.
For the second term in (5.1), by change of variables, we have

1 NZY B
7= X g S+ —5% 1= X S+ X
=2 — Ydy = — 2 In(“Hyerfe — — ).
do2(x) D n(s_)ﬁ f e y 2D n(S_)er c( 4/r>

—0Q
By properties of complementary error function we have
02 € L' ((—00,0)) N L*((—00, 0)). (5.6)
Combining (5.1), (5.5) and (5.6) gives us ¢ € L' ((—00, 0)) N L*((—00, 0)).
Noting ¢g(+00) = 0, we can write

do(X) = — f [D0(3) — 6(3, 0)1dy.

Similar to the above argument we may prove ¢o € L'((0, 00)) N L2((0, 00)). Therefore, ¢g €
L'(R) N L2(R).
From (1.11),

X SH(()
K so(x(®)’

vo(X) = sign(x)
With (5.3) we have

|T0(X)| < Clsg(x (X)),

which implies vy € L%(R) since s(’) € H*(R). Similarly, one can show that the first and second
derivatives of ¥ are in L(R). Therefore, 0y € H*(R).
By (1.11),

1
io(x) = 2 uo(x(x)),
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and the assumptions for u in Theorem 2.4, all conclusions on i are valid. We thus have proved
the lemma. O

The hypotheses of Theorem 2.4 imply those of Theorems 2.1 and 2.2. Thus, we apply The-
orem 2.1 to conclude that there is a unique solution (v, &) for the transformed problem (1.9),
(1.11). The transformation (2.16) and (2.23) gives us the unique solution (s, u) of (1.1), (1.2).
The solution satisfies s(x, ) > 0, u(x,7) >0 forall x € R and r > 0.

Now we need to prove (2.26) to finish this section.

Lemma 5.2. Under the conditions of Theorem 2.4, with the decomposition (2.25),

s(x, 1) = e  HEFIQ(x, 1) + S(x, 1],
ulx,t) =K +60*(x,t) +U(x, 1),

the solution of (1.1), (1.2) has the following decay properties,

15S@ 2 <CU+1)"37%, 0<k<2; [858()llpe <CA+0)727%, k=0, 1; 5
,k=0,1

UGN <O+ L MOl =ca+nE

Proof. Lemma 5.1 implies that the conclusion of Theorem 2.2 on the transformed system is
valid,

A+ DD 24+ +DF V@2 + A+ DIVl 2 + 10 1 2)

L (5.8)
+(+0)*|Uz @)l 2 < C.
From (2.16), (2.18), (2.19) and (2.11), we have
%(x)
. D - - -
Skx,t)=5(x,1) — O(x, 1) =O(x, t)|:exp <— / V(y, t(t))dy) — 1]
X
x(x)
D - _ 5.9
=@(x,t)[exp<; / ¢>y(ﬁ,t(t))d§> —1} 69

=0(x, t)[exp <§q§(2(x), f(z))) — 1].

Recall Proposition 2.3. For each r > 0, ®(x, t) monotonically connects s_ to s; on R, and hence
0 < O(x, ) <max{s_, s;}. Then applying Taylor expansion we further have

|S(x, )] < C|exp (24_5()?()6),50)0 - 1‘
; (5.10)
< Cexp (mllfﬁ(t_(t))llm)Ié(i(X),t_(t))l-
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From (5.8) and by Sobolev inequality,

1Dl <CU+D75, 1@l =IVDlp<CU+DHT,
(5.11)

1@~ <CA+D73,
Substituting (5.11) into (5.10) gives us
IS(x, )| < Clgp(E(x), 1(1))].

Therefore,

IS ll2 < ClEE) 2 < CA+D)73F <CA+1)73,

ISOle < ClFEN) I < C(1+1)72.

We take the first spatial derivative to (5.9) to have

S(x, 1) = Ok (x, I)[exp (24_5(2@), t_(t))> - 1}
X
D - _ - D- _ _ .dx
+O(x, r)exp <—¢(X(X), t(t))) — ¢z (x(x), 1(1)) —,

X X dx

which implies

|82 (x, )] < ClOx(x, D]|PE (x), 1(1))| + Clps (X (x), F(1))].
Applying (2.22) and (5.11) gives us

1.2 < CHO DL~ IE@N) Il 2 + Clle FEN 2 < C(A+1)77,

Similarly, we obtain the estimate for || Sxx(f)| ;2. By Sobolev inequality we also have

[1Sx (DL
Finally, applying the transformation (2.23) it is clear that

Ux, 1) = KUE(x), 1(1)).
Thus, the estimates on I/ in (5.7) are straightforward from (5.8) and Sobolev inequality. O
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