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Abstract

We study Cauchy problem of a Keller-Segel type chemotaxis model with logistic growth, logarithmic 
sensitivity and density-dependent production/consumption rate. Our Cauchy data connect two different end-
states for the chemical signal while the cell density takes its typical carrying capacity at the far fields. We are 
interested in the time-asymptotic behavior of the solution. We show that in the borderline, the component 
representing the chemical signal converges to a permanent, diffusive background wave, which connects the 
two end-states monotonically. On the other hand, the cell component converges to the spatial derivative of 
a heat kernel. The asymptotic solution has explicit formulation and is common to all solutions sharing the 
same end-states. Optimal L2 and L∞ convergence rates are obtained. We first convert the model into a 
2 × 2 hyperbolic-parabolic system via inverse Hopf-Cole transformation. Then we apply Chapman-Enskog 
expansion to identify the asymptotic solution. After extracting the asymptotic solution, we use a variety of 
analytic tools to study the remainder and obtain optimal rates. These include time-weighted energy method, 
spectral analysis, Green’s function estimate and iterations. Our results apply to a general class of Cauchy 
data for the model and for its transformed system. In particular, our results apply to large data solutions.
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1. Introduction

We consider Cauchy problem of a Keller-Segel type chemotaxis model with logistic growth, 
logarithmic sensitivity and density-dependent production/consumption rate:{

st = −μus − σs,

ut = Duxx − χ[u(ln s)x]x + au(1 − u
K

),
x ∈R, t > 0, (1.1)

(s, u)(x,0) = (s0, u0)(x), x ∈R. (1.2)

In (1.1) the unknown functions are s = s(x, t) and u = u(x, t) for the concentration of a chemical 
signal and density of a cellular population, respectively. We have assumed that the chemical 
signal is non-diffusive. Meanwhile, the system parameters have the following meaning:

• μ �= 0: coefficient of density-dependent production/consumption rate of chemical signal;
• σ ≥ 0: natural degradation rate of chemical signal;
• D > 0: diffusion coefficient of cellular population;
• χ �= 0: coefficient of chemotactic sensitivity;
• a > 0: natural growth rate of cellular population;
• K > 0: typical carrying capacity of cellular population.

In (1.2) we assume s0 > 0 and u0 ≥ 0. We are interested in the situation that the chemical signal 
has transitional end-states while the cellular population takes its typical carrying capacity at the 
far fields,

lim
x→±∞(s0, u0)(x) = (s±,K), s± > 0. (1.3)

Our goal is to study the time-asymptotic behavior of solutions to (1.1)-(1.3) under a very 
general set of hypotheses on the Cauchy data. In particular, we impose neither decay rates as 
x → ±∞ nor smallness assumption on the data. We identify a time-asymptotic solution, and 
obtain optimal convergence rates towards it for the solution to (1.1)-(1.3).

It turns out that the s-component of the asymptotic solution is a monotonic curve connecting 
s− to s+ for each t ≥ 0 while diffusive in the t -direction. Meanwhile, the u-component is the spa-
tial derivative of a heat kernel atop of the carrying capacity. The asymptotic solution is uniquely 
determined by the end-states. That is, all Cauchy data satisfying (1.3) with the same s± give rise 
to solutions of (1.1)-(1.3) with the same asymptotic solution. Optimal convergence rates towards 
the asymptotic solution are then obtained in L2(R) and L∞(R).

System (1.1) is an appended version of the Othmer-Stevens model [21,8]:{
st = −μus − σs,

ut = Duxx − χ[u(ln s)x]x, (1.4)

which interprets the dynamical behavior of chemotactic movement of random walkers that de-
posit non-diffusive or slow-moving chemical signals for succeeding passages to modify the local 
environment. Mathematical properties of (1.4), along with its companion with chemical diffu-
sion, have been studied abundantly in recent years. These include, but are not limited to, global 
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well-posedness [3,4], asymptotic stability of equilibria [1,9,10,12,20,23,24,26,35], existence and 
stability of traveling wave solutions [2,7,11,13–16,22,25], and vanishing chemical diffusivity 
limit [5,6,23,26].

One of the important features of (1.4) is the logarithmic sensitivity function, which is in-
corporated to serve as potential of the gradient flow driving the biased movement of cellular 
population, based on the assumption that the detection of chemical signal by cellular population 
follows the Weber-Fechner law. Though the logarithmic sensitivity has achieved success in bio-
logical science, its singular nature brings difficulties to mathematical analysis of the model. The 
key to resolve the issue is the inverse Hopf-Cole transformation [8]:

v = (ln s)x = sx

s
, (1.5)

which has been extensively employed in qualitative analysis of (1.4). Under the new variables v
and u, the reaction-diffusion-advection system (1.1) becomes a system of hyperbolic-parabolic 
balance laws: {

vt + μux = 0,

ut + χ(uv)x = Duxx + au(1 − u
K

).
(1.6)

Doing so allows us to utilize sophisticated analytic tools originally developed for hyperbolic-
parabolic systems [17–19] and dissipative hyperbolic systems [27,31] for our current treatment 
of technical difficulties associated with s− �= s+.

In this paper we assume

χμ > 0. (1.7)

This includes two scenarios: χ > 0 and μ > 0, or χ < 0 and μ < 0. The former is interpreted 
as cells are attracted to and consume the chemical. On the other hand, the latter describes cells 
depositing the chemical to modify the local environment for succeeding passages [21]. Math-
ematically, the non-diffusive, non-reactive part of (1.6) is hyperbolic in biologically relevant 
regimes when χμ > 0, while it may change type when χμ < 0 [32].

Under (1.7), we introduce rescaled and dimensionless variables:

t̄ = χμK

D
t, x̄ =

√
χμK

D
x, v̄ = sign(χ)

√
χ

μK
v, ū = u

K
. (1.8)

This simplifies (1.6) to{
v̄t̄ + ūx̄ = 0,

ūt̄ + (ūv̄)x̄ = ūx̄x̄ + rū(1 − ū),
x ∈ R, t > 0. (1.9)

Here the new parameter r is

r = aD

χμK
> 0. (1.10)

From (1.5) and (1.8), the corresponding Cauchy data for (1.9) are
3
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(v̄0, ū0)(x̄) ≡ (v̄, ū)(x̄,0), v̄0(x̄) = sign(χ)

√
χ

μK

s′
0(x(x̄))

s0(x(x̄))
, ū0(x̄) = 1

K
u0(x(x̄)). (1.11)

In particular, (1.11) implies

m0 ≡
∫
R

v̄0(x̄)dx̄ = χ

D
ln

s+
s−

. (1.12)

Thus, in the more biologically relevant situation when the chemical concentration experiences 
transition between two different end-states s− �= s+, the initial mass of v̄ is nonzero. Since (1.9)1
is a conservation law, the mass of v̄(x̄, ̄t) is nonzero for all t̄ ≥ 0 in this case.

Dropping the bar accent, we write the converted Cauchy problem as{
vt + ux = 0,

ut + (uv)x = uxx + ru(1 − u),
x ∈R, t > 0, (1.13)

(v,u)(x,0) = (v0, u0)(x), x ∈ R,

lim
x→±∞(v0, u0)(x) = (0,1).

(1.14)

Our strategy is to use hyperbolic theory (including Chapman-Enskog expansion from fluid dy-
namics) to study the converted problem (1.13), (1.14), and then translate the results via the 
transformations (1.5) and (1.8) into those of the original problem (1.1)-(1.3). The converted sys-
tem is considered under generic perturbations of the constant equilibrium state (0, 1). We do 
not impose zero-mass assumption on the variables. We do not make smallness assumption on 
perturbations either.

Mathematical study of (1.1) is recently initiated to understand the influence of logistic damp-
ing on the global dynamics of solutions to (1.4) through studying the transformed system (1.13). 
Cauchy problem (1.13), (1.14) has been studied in [32], where global well-posedness and asymp-
totic stability of the equilibrium state (0, 1) are obtained. In particular, explicit time decay rates 
of the solution to the equilibrium are identified against general initial perturbation without small-
ness assumption, by using weighted energy method. This is one of the major discoveries of the 
enhanced dissipation induced by logistic damping, comparing to the non-growth model (1.4), as 
the same decay rates were previously established for (1.4) but under certain smallness assump-
tion on the initial perturbation [9]. We stress that to obtain time decay rates by weighted energy 
method, however, the zero-mass assumption on v0 is imposed in [32]. By (1.12), it is equivalent 
to considering the case s− = s+ there.

The decay rates in [32] are up to the capacity of weighted energy method but can be improved 
to the optimal ones by more sophisticated analytic tools such as a combination of spectral anal-
ysis, Green’s function estimate and Duhamel’s principle under an additional L1 assumption on 
the data. This has been done in [33] (also see [34]). The optimal rates provide us a clear pic-
ture on how the solution of the original model (1.1), (1.2) behaves even in the borderline case 
of μK + σ = 0. In that case, s(x, t) neither exponentially grows nor exponentially decays but 
algebraically decays to the background state (s̄, K), where s̄ ≡ s− = s+. This is another demon-
stration of the enhanced dissipation of logistic damping, since the same result has never been 
built for (1.4) (see Remark 1.2 in [9]).
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The present paper is to remove the zero-mass assumption on v0 in [32–34], and hence allow-
ing transitional end-states s− �= s+. For this we note that a key step in [32–34] is to utilize the 
antiderivative of v:

ψ(x, t) =
x∫

−∞
v(y, t)dy. (1.15)

Under the zero-mass assumption on v0, ∫
R

v0(x)dx = 0, (1.16)

and observing that the mass of v(x, t) is a conserved quantity by (1.13)1, we have ψ(±∞, t) = 0. 
Therefore, we expect ψ ∈ L2(R) under appropriate assumptions on the initial data, and are able 
to perform energy estimate for it. Once we remove the restriction (1.16), ψ(∞, t) is the mass 
of v(·, t) or v0 and hence nonzero. This means ψ /∈ L2(R), and the analysis immediately breaks 
down.

A strategy to circumvent the obstacle is to extract a conserved quantity of the same mass 
from v and take the antiderivative of the difference instead. The conserved quantity needs to be 
constructed carefully as it is an asymptotic solution of v. The construction has been developed 
successfully for hyperbolic-parabolic systems [17–19] and dissipative hyperbolic systems [27,
31] in the spirit of Chapman-Enskog expansion, commonly used in fluid dynamics. In fact, the 
construction of such an asymptotic solution has been done in [28] for (1.13).

On the other hand, the strategy of constructing asymptotic solutions for hyperbolic-parabolic 
systems, dissipative hyperbolic systems and (1.13) with nonzero mass Cauchy data has worked 
only for small data solutions so far. In the present paper we extend such a Chapman-Enskog 
expansion based strategy to large data solutions. The key of success is to obtain the time-weighted 
energy estimates in Theorem 2.1 below.

Recently, the Cauchy problem with transitional end-states (1.1)-(1.3) has been considered in 
a very different scenario, where one of s± or both are zero. It is considered near a weak diffusive 
contact wave of (1.13), connecting two different end-states v± for v with |v+ − v−| � 1 [29]. 
The background wave for s is then special, the Hopf-Cole transformation of the weak diffusive 
contact wave of (1.13). Due to the difficulty of logarithmic singularity, s0 needs to be a small 
perturbation of the background wave and u0 a small perturbation of K . The perturbation in s0
needs to stay away from the singularity as not to upset the exponential decay of s0 to the zero 
end-state [30].

In the present paper we have s± > 0 and hence there is no logarithmic singularity. The payoff 
is that our results cover a very general class of Cauchy data. As to be seen in Theorem 2.4, 
we only require s0 − s− ∈ L2((−∞, 0)) ∩ L1((−∞, 0)), s0 − s+ ∈ L2((0, ∞)) ∩ L1((0, ∞)), 
s′

0 ∈ H 2(R) and u0 − K ∈ H 2(R) ∩ L1(R), besides s0 > 0 and u0 ≥ 0 for physical relevance. 
There is no convergence rates of s0 to s± or smallness assumption attached to (1.1)-(1.3) or 
(1.13), (1.14). In particular, by (1.12) a smallness assumption on the mass of v̄0 is equivalent to 
the closeness of s+ and s−. Without such an assumption, our results apply to data with arbitrary 
positive s±.

The plan of the paper is as follows. In Section 2 we give needed preliminaries and identify 
a time-asymptotic solution. Then we state and comment on the main results. In Section 3 we 
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prove Theorem 2.1 by time-weighted energy method. In Section 4 we iterate the decay rates in 
Theorem 2.1 by a different set of analytic tools to obtain optimal rates. That proves Theorem 2.2. 
In Section 5 we prove Theorem 2.4 concerning the original variables in (1.1)-(1.3).

2. Main results

We start with the transformed problem (1.13), (1.14). Our first step is to identify an asymptotic 
solution. We introduce a new variable for the perturbation in the u-component,

ũ = u − 1. (2.1)

Then (1.13) becomes{
vt + ũx = 0,

ũt + vx + (ũv)x = ũxx − rũ(ũ + 1),
x ∈ R, t > 0. (2.2)

We take expansion according to time decay rates (in the spirit of Chapman-Enskog expansion) 
for (2.2)2. The leading terms give us

vx ≈ −rũ. (2.3)

Substituting (2.3) into (2.2)1 we have

vt ≈ 1

r
vxx. (2.4)

Therefore, we define the v-component of the asymptotic solution as the self-similar solution θ of

θt = 1

r
θxx, (2.5)

carrying the same mass of v. That is, θ(x, t) is a heat kernel,

θ(x, t) = m0√
4π(t + 1)/r

exp

{
− rx2

4(t + 1)

}
, (2.6)

where

m0 =
∫
R

v0(x)dx =
∫
R

v(x, t)dx, (2.7)

noting the mass of v is a conserved quantity. From (2.3), the asymptotic solution for ũ is given 
by − 1

r
θx . Finally, the asymptotic profile for (v, u) is defined as (θ, 1 − 1

r
θx).

Next, we set up a decomposition formula for the solution to (1.13), (1.14). Since (2.2)1 and 
(2.5) are conservation laws, we have
6
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∫
R

[v(x, t) − θ(x, t)]dx =
∫
R

[v0(x) − θ(x,0)]dx = m0 − m0 = 0.

This allows us to define a new variable

φ(x, t) ≡
x∫

−∞
[v(y, t) − θ(y, t)]dy, (2.8)

which gives us

φx(x, t) = v(x, t) − θ(x, t) (2.9)

and φ(±∞, t) = 0 for t ≥ 0. For convenience we set

φ0(x) ≡ φ(x,0) =
x∫

−∞
[v0(y) − θ(y,0)]dy. (2.10)

Let

V(x, t) ≡ φx(x, t) = v(x, t) − θ(x, t),

U(x, t) ≡ ũ(x, t) + 1

r
θx(x, t) = u(x, t) − 1 + 1

r
θx(x, t).

(2.11)

Then we have the following decomposition for the solution to (1.13), (1.14),

v(x, t) = θ(x, t) + V(x, t),

u(x, t) = 1 − 1

r
θx(x, t) + U(x, t).

(2.12)

It is worth mentioning that the main results of this paper are concerned with the explicit decay 
rates of large data classical solutions to (1.1)-(1.3) and (1.13), (1.14). The proofs are based upon 
the global well-posedness and long time behavior of the solutions, which have been established 
in [32] for u0 > 0. However, it can be readily checked that by adapting the arguments in [9], the 
results of [32] can be produced when u0 is not strictly positive, i.e., u0 ≥ 0 and u0 �≡ 0. The idea 
is essentially to add a positive constant to u0 and its background state to avoid zero value in the 
solution, then take the limit as the constant tends to zero. Since the adaptation can be made in 
a straightforward fashion, we shall not go through the technical details in this paper, but rather 
focus on deriving the explicit decay rates.

Our first theorem is on time-decay rates for the remainder (V, U) under the L2 framework.

Theorem 2.1. Suppose that the initial data satisfy φ0 ∈ L2(R), v0 ∈ H 2(R), u0 ≥ 0, and u0 −1 ∈
H 2(R). Then there exists a unique solution to (1.13), (1.14) for all t > 0. The solution satisfies 
u(x, t) ≥ 0 for all x ∈R and t ≥ 0, with the following decay properties:
7
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• ‖φ(t)‖2
L2 +

3∑
k=1

(1 + t)k‖∂k−1
x V(t)‖2

L2 +
2∑

k=0

t∫
0

(1 + τ)k‖∂k
x V(τ )‖2

L2 dτ ≤ C,

•
1∑

k=0

(1 + t)k+2‖∂k
x U(t)‖2

L2 + (1 + t)3‖Uxx(t)‖2
L2 ≤ C,

•
t∫

0

[ 2∑
k=0

(1 + τ)k+1‖∂k
x U(τ )‖2

L2 + (1 + τ)3‖Uxxx(τ )‖2
L2

]
dτ ≤ C,

(2.13)

where C > 0 is a constant.

Remark 2.1. We compare time-decay rates on the right-hand side of (2.12). From (2.13), V

decays at the rates (1 + t)− 1
2 and (1 + t)− 3

4 in L2 and L∞, respectively. Here we have applied 
Sobolev inequality to obtain the L∞ norm. The corresponding rates for θ are (1 + t)− 1

4 and 
(1 + t)− 1

2 , respectively. Similarly, the rates for U are (1 + t)−1 and (1 + t)− 5
4 , which are compared 

with the rates (1 + t)− 3
4 and (1 + t)−1 for θx . Therefore, Theorem 2.1 justifies (θ, 1 − 1

r
θx) as an 

asymptotic profile for the solution (v, u) to (1.13), (1.14). While representing the leading terms 
in (v, u) for large time, the asymptotic solution has explicit formulation. Theorem 2.1 implies 
that the solution (v, u) to (1.13), (1.14) converges to the constant equilibrium state (0, 1) at the 
same rates as (θ, − 1

r
θx). They are (1 + t)− 1

4 and (1 + t)− 3
4 in L2, and (1 + t)− 1

2 and (1 + t)−1

in L∞.

With L1-L2 initial data, the decay rates in Theorem 2.1 can be iterated to optimal ones. This 
is our next theorem.

Theorem 2.2. Under the hypotheses of Theorem 2.1 and with the additional assumption φ0 ∈
L1(R) and u0 − 1 ∈ L1(R), the unique solution to (1.13), (1.14) satisfies the following decay 
property:

(1 + t)
1
4 ‖φ(t)‖L2+(1 + t)

3
4 ‖V(t)‖L2 + (1 + t)

5
4 (‖Vx(t)‖L2 + ‖U(t)‖L2)

+(1 + t)
7
4 ‖Ux(t)‖L2 ≤ C,

(2.14)

where C > 0 is a constant.

Remark 2.2. The time-decay rates in L∞ is a direct consequence of Sobolev inequality:

‖φ(t)‖L∞ ≤ C(1 + t)−
1
2 , ‖V(t)‖L∞ ≤ C(1 + t)−1, ‖U(t)‖L∞ ≤ C(1 + t)−

3
2 , (2.15)

where C > 0 is a constant.

The decay rates are optimal in the sense that they are the best possible rates for generic Cauchy 
data. They are determined by the rates of the Green’s function and its derivatives. These rates 
cannot be improved even when initial data (after subtracting the far field states) decay faster as 
x → ±∞. For instance, in the case that initial data have compact support we still have the same 
8
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rates. As determined by the corresponding rates of the Green’s function, V(x, t) decays with the 
same rates as the first derivative of a heat kernel and the rates for U(x, t) are the same as those 
of Vx , or the second derivative of a heat kernel. These can be roughly seen from (2.11).

The rest of the section concerns the original variables (s, u), the solution to (1.1)-(1.3). We 
are particularly interested in the s-component of the asymptotic solution and the convergence of 
s towards it. Noting that the Cauchy problem (1.1)-(1.3) is related to the transformed one, (1.13), 
(1.14), by the inverse Hopf-Cole transformation (1.5) and the rescaling (1.8), we recover the bar 
accent for all variables, dependent and independent ones, for the transformed problem. That is, 
we use (1.9), (1.11) to replace (1.13), (1.14).

From (1.5) and (1.8) we have

s(x, t) = s(−∞, t) exp

(
D

χ

x̄(x)∫
−∞

v̄(ȳ, t̄ (t))dȳ

)
.

Solving (1.1)1 for x → −∞ and noting (1.3) give us

s(−∞, t) = s−e−(μK+σ)t .

Therefore,

s(x, t) = e−(μK+σ)t s̃(x, t),

s̃(x, t) = s− exp

(
D

χ

x̄(x)∫
−∞

v̄(ȳ, t̄ (t))dȳ

)
.

(2.16)

In the critical case of μK + σ = 0, s(x, t) = s̃(x, t), which possesses an interesting wave 
pattern to be identified here. From (2.12)1,

v̄(x̄, t̄ ) = θ(x̄, t̄) + V̄(x̄, t̄ ), (2.17)

where θ is the leading term in terms of time-decay. Thus, substituting (2.17) into (2.16) gives us

s̃(x, t) = s− exp

(
D

χ

x̄(x)∫
−∞

[θ(ȳ, t̄(t)) + V̄(ȳ, t̄(t))]dȳ

)
. (2.18)

The leading term in (2.18) with respect to time-decay is


(x, t) = s− exp

(
D

χ

x̄(x)∫
−∞

θ(ȳ, t̄(t))dȳ

)
. (2.19)

Next we study properties of 
, which is the s-component in the time asymptotic solution. 
Substituting (2.6) into (2.19) gives us
9
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(x, t) = s− exp

(
D

χ

m0√
4π(t̄ + 1)/r

x̄(x)∫
−∞

e
− rȳ2

4(t̄+1) dȳ

)
. (2.20)

Here m0 is the total mass of v̄0, given by (1.12). Thus, we substitute (1.12) into (2.20) and 
simplify to arrive at


(x, t) = s− exp

(
ln(

s+
s−

)
1√

4π(t̄ + 1)/r

x̄(x)∫
−∞

e
− rȳ2

4(t̄+1) dȳ

)

= s− exp

(
ln(

s+
s−

)
1√
π

x̄(x)√
4(t̄+1)/r∫
−∞

e−z2
dz

)

= s− exp

(
1

2
ln(

s+
s−

)
[
1 + erf

( x̄(x)√
4(t̄(t) + 1)/r

)])
> 0.

(2.21)

It is clear that

lim
x→±∞
(x, t) = s±.

It is also clear that


x(x, t) = 
(x, t) ln(
s+
s−

)e
− rx̄2

4(t̄+1)
1√

4π(t̄ + 1)/r

√
χμK

D
. (2.22)

Thus, 
x(x, t) > 0 if s+ > s−, and 
x(x, t) < 0 if s+ < s−. This gives us the following propo-
sition.

Proposition 2.3. For each t ≥ 0, 
(x, t) monotonically connects s− to s+ on R.

Remark 2.3. As the background wave of s(x, t), 
(x, t) is permanent but diffusive in time. It 
is a function of x̄/

√
t̄ + 1 while x̄ and t̄ are scalings of x and t , respectively. It is interesting to 

observe that for x ∈ R fixed, 
(x, t) approaches the geometric mean of s± time asymptotically,

lim
t→∞
(x, t) = s− exp

(
1

2
ln

s+
s−

)
= √

s−s+ = 
(0, t).

Besides, 
(x, t) is independent of Cauchy data sharing the same end-states s±. That is, all those 
Cauchy problems have the same asymptotic solution.

The u-component is simpler. From (1.8) and (2.12) we have

u(x, t) = Kū(x̄(x), t̄(t)) = K[1 − 1
θx̄(x̄(x), t̄(t)) + Ū(x̄(x), t̄(t))]. (2.23)
r

10
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Thus, the u-component of the asymptotic solution against the background equilibrium state K is

θ∗(x, t) ≡ −K

r
θx̄(x̄(x), t̄(t)). (2.24)

Our next theorem concerns the convergence of (s̃, u) to (
, K + θ∗).

Theorem 2.4. Suppose that the initial data satisfy s0, s± > 0, u0 ≥ 0, s0 − s− ∈ L1((−∞, 0)) ∩
L2((−∞, 0)), s0 − s+ ∈ L1((0, ∞)) ∩ L2((0, ∞)), s′

0 ∈ H 2(R), and u0 − K ∈ H 2(R) ∩ L1(R). 
Then there exists a unique solution to (1.1)-(1.3) for all t > 0. The solution satisfies s(x, t) > 0, 
u(x, t) ≥ 0 for all x ∈R and t ≥ 0. With the decomposition,

s(x, t) = e−(μK+σ)t [
(x, t) + S(x, t)],
u(x, t) = K + θ∗(x, t) + U(x, t),

(2.25)

the solution has the following decay properties,

‖∂k
xS(t)‖L2 ≤ C(1 + t)−

1
4 − k

2 , 0 ≤ k ≤ 2; ‖∂k
xS(t)‖L∞ ≤ C(1 + t)−

1
2 − k

2 , k = 0,1;
‖∂k

xU(t)‖L2 ≤ C(1 + t)−
5
4 − k

2 , k = 0,1; ‖U(t)‖L∞ ≤ C(1 + t)−
3
2 ;

(2.26)

where C > 0 is a constant.

Remark 2.4. From (2.25) we see that s(x, t) exponentially grows if μK + σ < 0, and expo-
nentially decays if μK + σ > 0. In the critical case of μK + σ = 0, which may happen in 
chemotactic repulsion, s(x, t) = s̃(x, t) exhibits an interesting wave pattern. In this case, s(x, t)
time-asymptotically converges to a permanent, diffusive background wave 
(x, t), which is 
common to all Cauchy solutions sharing the same end-states s±. The convergence rates are 
(1 + t)− 1

4 in L2 and (1 + t)− 1
2 in L∞. On the other hand, u(x, t) converges to the asymp-

totic solution K + θ∗(x, t) at the rates (1 + t)− 5
4 in L2 and (1 + t)− 3

2 in L∞. Since θ∗(x, t) is 
the spatial derivative of a heat kernel, u(x, t) converges to the background, constant equilibrium 
state K at the rates (1 + t)− 3

4 and (1 + t)−1 in L2 and L∞, respectively. These are faster than 
the convergence rates of s̃(x, t) to 
(x, t).

3. Proof of Theorem 2.1

In this section for convenience and without loss of generality we set r = 1. We consider (2.2), 
an equivalent form of (1.13),{

vt = −ũx,

ũt = ũxx − (ũv)x − vx − ũ(ũ + 1),
x ∈R, t > 0, (3.1)

subject to the initial conditions:

(v, ũ)(x,0) = (v0, ũ0)(x) ≡ (v0, u0 − 1)(x), x ∈R, (3.2)
11
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which satisfy ũ0(x) + 1 ≥ 0 for x ∈R. From (2.11) and (3.1) we can show that

{
Vt = −Ux,

Ut = Uxx − U − Vx − [(U − θx)(V + θ)]x − (U − θx)
2,

x ∈R, t > 0. (3.3)

3.1. Preliminaries

Before implementing time-weighted energy estimates, we need to establish the uniform tem-
poral integrability of ‖V(t)‖2

L2 , which is the foundation for the subsequent asymptotic analysis. 
For this purpose, we first collect the uniform a priori estimates of (ũ, v), which are recorded in 
[32].

Lemma 3.1. Under the conditions of Theorem 2.1, there exists a unique solution (v, ũ) to Cauchy 
problem (3.1), (3.2), such that ũ(x, t) + 1 ≥ 0 for x ∈ R, t > 0, and

‖ũ(t)‖2
H 2 + ‖v(t)‖2

H 2 +
t∫

0

(
‖ũ(τ )‖2

H 3 + ‖vx(τ )‖2
H 1 + ‖ũt (τ )‖2

L2 + ‖ṽt (τ )‖2
L2

)
dτ ≤ C,

where C > 0 is a constant. Moreover,

lim
t→∞

(‖ũ(t)‖H 2(R) + ‖vx(t)‖H 1(R) + ‖ũ(t)‖C1(R) + ‖v(t)‖C1(R)

)= 0.

As a consequence of Lemma 3.1 and the properties of θ , we have

Lemma 3.2. Under the conditions of Theorem 2.1, it holds that

‖U(t)‖2
H 2 + ‖V(t)‖2

H 2 +
t∫

0

(
‖U(τ )‖2

H 3 + ‖Vx(τ )‖2
H 1 + ‖Ut (τ )‖2

L2 + ‖Vt (τ )‖2
L2

)
dτ ≤ C,

where U = ũ + θx , V = v − θ , and the constant is independent of t . Moreover,

lim
t→∞

(‖U(t)‖H 2(R) + ‖Vx(t)‖H 1(R) + ‖U(t)‖C1(R) + ‖V(t)‖C1(R)

)= 0.

The next lemma establishes the uniform temporal integrability of the zeroth frequency of the 
perturbed function V = φx = v − θ .

Lemma 3.3. Under the conditions of Theorem 2.1, there is a constant C > 0 such that

‖φ(t)‖2
L2 +

t∫
‖V(τ )‖2

L2 dτ ≤ C.
0

12
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Proof. Integrating (3.3)1 over (−∞, x) and using (3.1)2 give us

φt = −U = −ũ − θx = ũt − ũxx + (ũv)x + vx + ũ2 − θx

= ũt − ũxx + (ũv)x + φxx + ũ2. (3.4)

Taking L2 inner product of (3.4) with φ and integrating by parts, we have

1

2

d

dt
‖φ‖2

L2 + ‖φx‖2
L2 =

∫
R

(ũx − ũv)φxdx +
∫
R

ũ2φdx + d

dt

⎛⎝∫
R

ũφdx

⎞⎠−
∫
R

ũφtdx

=
∫
R

(ũx − ũv)φxdx +
∫
R

ũ2φdx + d

dt

⎛⎝∫
R

ũφdx

⎞⎠+
∫
R

ũ(ũ + θx)dx.

After rearranging terms, we have

d

dt

⎛⎝1

2
‖φ‖2

L2 −
∫
R

ũφdx

⎞⎠+ ‖φx‖2
L2 =

∫
R

(ũx − ũv)φxdx

︸ ︷︷ ︸
≡R0a

+
∫
R

ũ2φdx

︸ ︷︷ ︸
≡R0b

+
∫
R

ũ(ũ + θx)dx

︸ ︷︷ ︸
≡R0c

.

(3.5)

Using Lemma 3.1 alongside Sobolev and Young inequalities, we can show that

|R0a | ≤ 1

4
‖φx‖2

L2 + 2‖ũx‖2
L2 + 2‖v‖2

L∞‖ũ‖2
L2

≤ 1

4
‖φx‖2

L2 + 2‖ũx‖2
L2 + C‖ũ‖2

L2, (3.6)

and

|R0b| ≤ ‖φ‖L∞‖ũ‖2
L2 ≤ C‖φ‖

1
2
L2‖φx‖

1
2
L2‖ũ‖

3
2
L2

≤ 1

4
‖φx‖2

L2 + C‖φ‖
2
3
L2‖ũ‖2

L2

≤ 1

4
‖φx‖2

L2 + ‖φ‖L2‖ũ‖2
L2 + C‖ũ‖2

L2 . (3.7)

Using the expression of θ , we can show that

|R0c| ≤ 3

2
‖ũ‖2

L2 + 1

2
‖θx‖2

L2 ≤ 3

2
‖ũ‖2

L2 + C(1 + t)−
3
2 . (3.8)

Substituting (3.6)-(3.8) into (3.5) gives us
13
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d

dt

⎛⎝1

2
‖φ‖2

L2 −
∫
R

ũφdx

⎞⎠+ 1

2
‖φx‖2

L2 ≤ ‖φ‖L2‖ũ‖2
L2 + C

[
‖ũ‖2

L2 + ‖ũx‖2
L2 + (1 + t)−

3
2

]
.

(3.9)

Fix an arbitrary T > 0. For any 0 ≤ t ≤ T , integrating (3.9) over [0, t] yields

1

2
‖φ(t)‖2

L2 + 1

2

t∫
0

‖φx‖2
L2 dτ ≤

∫
R

ũ(x, t)φ(x, t)dx +
T∫

0

‖φ‖L2‖ũ‖2
L2 dt + C, (3.10)

where we used Lemma 3.1, and the constant is independent of time. Note that by Lemma 3.1,

∫
R

ũ(x, t)φ(x, t)dx ≤ 1

4
‖φ(t)‖2

L2 + ‖ũ(t)‖2
L2 ≤ 1

4
‖φ(t)‖2

L2 + C, (3.11)

and

T∫
0

‖φ‖L2‖ũ‖2
L2dt ≤ ( sup

t∈[0,T ]
‖φ(t)‖L2

) T∫
0

‖ũ‖2
L2dt ≤ C

(
sup

t∈[0,T ]
‖φ(t)‖L2

)
, (3.12)

where the constants are independent of time. Substituting (3.11) and (3.12) into (3.10) yields

1

4
‖φ(t)‖2

L2 + 1

2

t∫
0

‖φx‖2
L2dt ≤ C

(
sup

t∈[0,T ]
‖φ(t)‖L2

)+ C, ∀ t ∈ [0, T ]. (3.13)

Taking the supremum of the left-hand side of (3.13) gives us

1

4
sup

t∈[0,T ]
‖φ(t)‖2

L2 + 1

2

T∫
0

‖φx‖2
L2dt ≤ C

(
sup

t∈[0,T ]
‖φ(t)‖L2

)+ C

≤ 1

8
sup

t∈[0,T ]
‖φ(t)‖2

L2 + C,

which implies

1

8
sup

t∈[0,T ]
‖φ(t)‖2

L2 + 1

2

T∫
0

‖φx‖2
L2 dt ≤ C,

where the constant is independent of time. Since T > 0 is arbitrary, we conclude that
14
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‖φ(t)‖2
L2 +

t∫
0

‖φx(τ)‖2
L2 dτ ≤ C,

where the constant is independent of time. This completes the proof of the lemma. �
3.2. Decay rate of zeroth frequency

Lemma 3.4. Under the conditions of Theorem 2.1, there is a constant t1 > 0 such that

(1 + t)
(
‖U(t)‖2

L2 + ‖V(t)‖2
L2

)
+

t∫
t1

(1 + τ)
(
‖Ux(τ )‖2

L2 + ‖U(τ )‖2
L2

)
dτ ≤ C, ∀ t > t1,

where the constant C > 0 is independent of t > t1.

Proof. Taking L2 inner product of (3.3)2 with U, (3.3)1 with V, then adding the results, we have

1

2

d

dt

(
‖U‖2

L2 + ‖V‖2
L2

)
+ ‖Ux‖2

L2 + ‖U‖2
L2

=
∫
R

(U − θx)(V + θ)Uxdx

︸ ︷︷ ︸
≡R1a

−
∫
R

(U − θx)
2Udx

︸ ︷︷ ︸
≡R1b

. (3.14)

By Hölder’s inequality, we can show that

|R1a| ≤ (‖V‖L∞ + ‖θ‖L∞)‖U‖L2‖Ux‖L2 + (‖θx‖L∞‖V‖L2 + ‖θ‖L∞‖θx‖L2

)‖Ux‖L2, (3.15)

and

|R1b| ≤ (‖U‖L∞ + 2‖θx‖L∞)‖U‖2
L2 + ‖θx‖L∞‖θx‖L2‖U‖L2 . (3.16)

Since ‖(U, V, θ, θx)(t)‖L∞ → 0 as t → ∞, there is a constant t1 > 0, such that for t ≥ t1,

(‖V‖L∞ + ‖θ‖L∞)‖U‖L2‖Ux‖L2 ≤ 1

3
‖U‖L2‖Ux‖L2 ≤ 1

6
‖U‖2

L2 + 1

6
‖Ux‖2

L2 , (3.17)

and

(‖U‖L∞ + 2‖θx‖L∞)‖U‖2
L2 ≤ 1

6
‖U‖2

L2 . (3.18)

Substituting (3.17) and (3.18) into (3.15) and (3.16), respectively, then taking the sum of the 
results and applying Cauchy inequality, we can show that
15
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|R1a| + |R1b|

≤ 1

2
‖U‖2

L2 + 1

2
‖Ux‖2

L2 + 3

2

(
‖θx‖2

L∞‖V‖2
L2 + ‖θ‖2

L∞‖θx‖2
L2 + ‖θx‖2

L∞‖θx‖2
L2

)
, t ≥ t1.

(3.19)

Substituting (3.19) into (3.14) gives us

d

dt

(
‖U‖2

L2 + ‖V‖2
L2

)
+ ‖Ux‖2

L2 + ‖U‖2
L2

≤ 3
(
‖θx‖2

L∞‖V‖2
L2 + ‖θ‖2

L∞‖θx‖2
L2 + ‖θx‖2

L∞‖θx‖2
L2

)
, t ≥ t1. (3.20)

Multiplying (3.20) by (1 + t), then integrating the result with respect to time, we have

(1 + t)
(
‖U(t)‖2

L2 + ‖V(t)‖2
L2

)
+

t∫
t1

(1 + τ)
(
‖Ux(τ )‖2

L2 + ‖U(τ )‖2
L2

)
dτ

≤ 3

t∫
t1

(1 + τ)
(‖θx(τ )‖2

L∞‖V(τ )‖2
L2︸ ︷︷ ︸

≡R2a

+‖θ(τ )‖2
L∞‖θx(τ )‖2

L2︸ ︷︷ ︸
≡R2b

+‖θx(τ )‖2
L∞‖θx(τ )‖2

L2︸ ︷︷ ︸
≡R2c

)
dτ

+
t∫

t1

(
‖U(τ )‖2

L2 + ‖V(τ )‖2
L2

)
dτ + (1 + t1)

(
‖U(t1)‖2

L2 + ‖V(t1)‖2
L2

)
. (3.21)

Note that

‖θ(τ )‖2
L∞ ≤ C(1 + τ)−1, (3.22)

‖θx(τ )‖2
L∞ ≤ C(1 + τ)−2, (3.23)

‖θx(τ )‖2
L2 ≤ C(1 + τ)−

3
2 , (3.24)

which imply

R2a ≤ C(1 + τ)−2‖V(τ )‖2
L2, (3.25)

R2b ≤ C(1 + τ)−
5
2 , (3.26)

R2c ≤ C(1 + τ)−
7
2 . (3.27)

Substituting (3.25)-(3.27) into (3.21) gives us

(1 + t)
(
‖U(t)‖2

L2 + ‖V(t)‖2
L2

)
+

t∫
(1 + τ)

(
‖Ux(τ )‖2

L2 + ‖U(τ )‖2
L2

)
dτ
t1

16
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≤ C

t∫
t1

[
(1 + τ)−

3
2 + (1 + τ)−

5
2

]
dτ + C

t∫
t1

(
‖U(τ )‖2

L2 + ‖V(τ )‖2
L2

)
dτ

+ (1 + t1)
(
‖U(t1)‖2

L2 + ‖V(t1)‖2
L2

)
. (3.28)

In view of Lemma 3.2 and Lemma 3.3 we see that

t∫
0

(
‖U(τ )‖2

L2 + ‖V(τ )‖2
L2

)
dτ ≤ C, ∀ t > 0, (3.29)

where the constant is independent of t . Applying (3.29) to (3.28) yields

(1 + t)
(
‖U(t)‖2

L2 + ‖V(t)‖2
L2

)
+

t∫
t1

(1 + τ)
(
‖Ux(τ )‖2

L2 + ‖U(τ )‖2
L2

)
dτ ≤ C, ∀ t > t1,

(3.30)

where the constant is independent of t > t1. This completes the proof of the lemma. �
3.3. Decay rate of first frequency

Lemma 3.5. Under the conditions of Theorem 2.1, for the same constant t1 > 0 as in Lemma 3.4, 
we have

t∫
t1

(1 + τ)‖Vx(τ )‖2
L2 dτ ≤ C, ∀ t > t1,

and

(1 + t)2
(
‖Ux(t)‖2

L2 + ‖Vx(t)‖2
L2

)
+

t∫
t1

(1 + τ)2
(
‖Uxx(τ )‖2

L2 + ‖Ux(τ )‖2
L2

)
dτ ≤ C,

∀ t > t1,

where the constants are independent of t > t1.

Proof. We split the proof into two steps.
Step 1. We first establish the weighted temporal integrability of ‖Vx‖2

L2 . Substituting (3.3)1
into (3.3)2 gives us

Vxt = −Ut − U − Vx − [(U − θx)(V + θ)]x − (U − θx)
2. (3.31)

Taking L2 inner product of (3.31) with Vx , we can show that
17
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1

2

d

dt
‖Vx‖2

L2 + ‖Vx‖2
L2 = −

∫
R

{
Ut + U + [(U − θx)(V + θ)]x + (U − θx)

2
}

Vxdx. (3.32)

Note that by (3.3)1,

−
∫
R

UtVxdx = − d

dt

⎛⎝∫
R

UVxdx

⎞⎠+
∫
R

UVxtdx

= − d

dt

⎛⎝∫
R

UVxdx

⎞⎠−
∫
R

UUxxdx

= − d

dt

⎛⎝∫
R

UVxdx

⎞⎠+ ‖Ux‖2
L2 . (3.33)

Substituting (3.33) into (3.32), we obtain

d

dt

⎛⎝1

2
‖Vx‖2

L2 +
∫
R

UVxdx

⎞⎠+ ‖Vx‖2
L2

= −
∫
R

{
U + [(U − θx)(V + θ)]x + (U − θx)

2
}

Vxdx + ‖Ux‖2
L2 . (3.34)

The integral on the right-hand side of (3.34) is estimated as∣∣∣∣∣∣
∫
R

{
U + [(U − θx)(V + θ)]x + (U − θx)

2
}

Vxdx

∣∣∣∣∣∣
≤ C

[(‖V‖2
L∞ + ‖θ‖2

L∞
)(

‖Ux‖2
L2 + ‖θxx‖2

L2

)
︸ ︷︷ ︸

≡R3a

+
(
‖U‖2

L∞ + ‖θx‖2
L∞
)(

‖Vx‖2
L2 + ‖θx‖2

L2

)
︸ ︷︷ ︸

≡R3b

+ ‖U‖2
L∞‖U‖2

L2︸ ︷︷ ︸
≡R3c

+‖θx‖2
L∞‖θx‖2

L2︸ ︷︷ ︸
≡R3d

]+ ‖U‖2
L2 + 1

2
‖Vx‖2

L2 . (3.35)

Note that

‖θxx(τ )‖2
L2 ≤ C(1 + τ)−

5
2 . (3.36)

Using Sobolev inequality, (3.22), (3.30) and (3.36), we can show that

R3a ≤ C
[
(1 + t)−

1
2 ‖Vx‖L2 + (1 + t)−1

][
‖Ux‖2

L2 + (1 + t)−
5
2

]
. (3.37)

Similarly, using (3.23) and (3.24), we can show that
18
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R3b ≤ C
[
‖U‖L2‖Ux‖L2 + (1 + t)−2

][
‖Vx‖2

L2 + (1 + t)−
3
2

]
. (3.38)

Moreover, we can show that

R3c ≤ C‖U‖L2‖Ux‖L2‖U‖2
L2, (3.39)

and

R3d ≤ C(1 + t)−
7
2 . (3.40)

Substituting (3.37)-(3.40) into (3.35) yields∣∣∣∣∣∣
∫
R

{
U + [(U − θx)(V + θ)]x + (U − θx)

2
}

Vxdx

∣∣∣∣∣∣
≤ C

[
(1 + t)−

1
2 ‖Vx‖L2‖Ux‖2

L2 + (1 + t)−3‖Vx‖L2 + (1 + t)−1‖Ux‖2
L2 + (1 + t)−

7
2

+ ‖U‖L2‖Ux‖L2‖Vx‖2
L2 + (1 + t)−

3
2 ‖U‖L2‖Ux‖L2 + (1 + t)−2‖Vx‖2

L2

+ ‖U‖L2‖Ux‖L2‖U‖2
L2

]+ ‖U‖2
L2 + 1

2
‖Vx‖2

L2 . (3.41)

Substituting (3.41) into (3.34) gives us

d

dt

⎛⎝1

2
‖Vx‖2

L2 +
∫
R

UVxdx

⎞⎠+ 1

2
‖Vx‖2

L2

≤ C
[
(1 + t)−

1
2 ‖Vx‖L2‖Ux‖2

L2 + (1 + t)−3‖Vx‖L2 + (1 + t)−1‖Ux‖2
L2 + (1 + t)−

7
2

+ ‖U‖L2‖Ux‖L2‖Vx‖2
L2 + (1 + t)−

3
2 ‖U‖L2‖Ux‖L2 + (1 + t)−2‖Vx‖2

L2

+ ‖U‖L2‖Ux‖L2‖U‖2
L2

]+ ‖U‖2
L2 + ‖Ux‖2

L2 . (3.42)

Note that according to Lemma 3.2, ‖Vx‖L2 , ‖U‖L2 and ‖Ux‖L2 are uniformly bounded in 
time. Using such information, we update (3.42) as

d

dt

⎛⎝‖Vx‖2
L2 + 2

∫
R

UVxdx

⎞⎠+ ‖Vx‖2
L2

≤ C
[
‖Ux‖2

L2 + ‖U‖2
L2 + (1 + t)−3 + (1 + t)−1‖Vx‖2

L2

]
. (3.43)

Multiplying (3.43) by (1 + t), then integrating the result with respect to time, we have

(1 + t)

⎛⎝‖Vx(t)‖2
L2 + 2

∫
U(x, t)Vx(x, t)dx

⎞⎠+
t∫
(1 + τ)‖Vx(τ )‖2

L2 dτ
R t1
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≤ C

t∫
t1

[
(1 + τ)

(
‖Ux(τ )‖2

L2 + ‖U(τ )‖2
L2

)
+ (1 + τ)−2 + ‖Vx(τ )‖2

L2

]
dτ

+
t∫

t1

⎛⎝‖Vx(τ )‖2
L2 + 2

∫
R

U(x, τ )Vx(x, τ )dx

⎞⎠dτ

+ (1 + t1)

⎛⎝‖Vx(t1)‖2
L2 + 2

∫
R

U(x, t1)Vx(x, t1)dx

⎞⎠ . (3.44)

Note that according to (3.30) and Lemma 3.2, the first integral on the right-hand side of (3.44)
is uniformly bounded in time. The second and third terms are also uniformly bounded, thanks to 
Cauchy’s inequality and Lemma 3.2. Therefore, we obtain

(1 + t)

⎛⎝‖Vx(t)‖2
L2 + 2

∫
R

U(x, t)Vx(x, t)dx

⎞⎠+
t∫

t1

(1 + τ)‖Vx(τ )‖2
L2 dτ ≤ C, ∀ t > t1,

where the constant is independent of t > t1. Moreover, it can be shown that

(1 + t)‖Vx(t)‖2
L2 +

t∫
t1

(1 + τ)‖Vx(τ )‖2
L2 dτ ≤ C − 2(1 + t)

∫
R

U(x, t)Vx(x, t)dx

≤ C + 2(1 + t)‖U(t)‖2
L2 + 1

2
(1 + t)‖Vx(t)‖2

L2 ,

which yields

1

2
(1 + t)‖Vx(t)‖2

L2 +
t∫

t1

(1 + τ)‖Vx(τ )‖2
L2 dτ ≤ C, ∀ t > t1, (3.45)

where we applied (3.30).
Step 2. We now apply (3.45) to prove the decay rate of the first order spatial derivative of 

the perturbed functions. Taking L2 inner products of (3.3)2 with −Uxx and (3.3)1 with −Vxx , 
respectively, we can show that

1

2

d

dt

(
‖Ux‖2

L2 + ‖Vx‖2
L2

)
+ ‖Uxx‖2

L2 + ‖Ux‖2
L2

=
∫
R

{
[(U − θx)(V + θ)]x + (U − θx)

2
}

Uxxdx. (3.46)

The integral on the right-hand side of (3.46) can be estimated by using the arguments between 
(3.35) and (3.41) as
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∣∣∣∣∣∣
∫
R

{
[(U − θx)(V + θ)]x + (U − θx)

2
}

Uxxdx

∣∣∣∣∣∣
≤ C

[
(1 + t)−

1
2 ‖Vx‖L2‖Ux‖2

L2 + (1 + t)−3‖Vx‖L2 + (1 + t)−1‖Ux‖2
L2 + (1 + t)−

7
2

+ ‖U‖L2‖Ux‖L2‖Vx‖2
L2 + (1 + t)−

3
2 ‖U‖L2‖Ux‖L2 + (1 + t)−2‖Vx‖2

L2

+ ‖U‖L2‖Ux‖L2‖U‖2
L2

]+ 1

2
‖Uxx‖2

L2 . (3.47)

Using (3.30) and (3.45), we update (3.47) as

∣∣∣∣∣∣
∫
R

{
[(U − θx)(V + θ)]x + (U − θx)

2
}

Uxxdx

∣∣∣∣∣∣
≤ C

[
(1 + t)−1

(
‖Ux‖2

L2 + ‖U‖2
L2

)
+ (1 + t)−

7
2 + (1 + t)−2‖Vx‖2

L2

]+ 1

2
‖Uxx‖2

L2 .

(3.48)

Substituting (3.48) into (3.46) gives us

d

dt

(
‖Ux‖2

L2 + ‖Vx‖2
L2

)
+ ‖Uxx‖2

L2 + ‖Ux‖2
L2

≤ C
[
(1 + t)−1

(
‖Ux‖2

L2 + ‖U‖2
L2

)
+ (1 + t)−

7
2 + (1 + t)−2‖Vx‖2

L2

]
. (3.49)

Multiplying (3.49) by (1 + t)2, then integrating the result with respect to time, we can show 
that

(1 + t)2
(
‖Ux(t)‖2

L2 + ‖Vx(t)‖2
L2

)
+

t∫
t1

(1 + τ)2
(
‖Uxx‖2

L2 + ‖Ux‖2
L2

)
dτ

≤ C

t∫
t1

[
(1 + τ)

(
‖Ux(τ )‖2

L2 + ‖U(τ )‖2
L2

)
+ (1 + τ)−

3
2 + ‖Vx(τ )‖2

L2

]
dτ

+ 2

t∫
t1

(1 + τ)
(
‖Ux(τ )‖2

L2 + ‖Vx(τ )‖2
L2

)
dτ + (1 + t1)

2
(
‖Ux(t1)‖2

L2 + ‖Vx(t1)‖2
L2

)
.

(3.50)

Note that according to (3.30) and Lemma 3.2, the first integral on the right-hand side of (3.50)
is uniformly bounded in time. By (3.30) and (3.45), the second integral is uniformly bounded in 
time. Hence,
21



Y. Zeng and K. Zhao Journal of Differential Equations 336 (2022) 1–43
(1 + t)2
(
‖Ux(t)‖2

L2 + ‖Vx(t)‖2
L2

)
+

t∫
t1

(1 + τ)2
(
‖Uxx‖2

L2 + ‖Ux‖2
L2

)
dτ ≤ C, ∀ t > t1,

(3.51)
where the constant is independent of t > t1. This completes the proof of the lemma. �
3.4. Decay rate of second frequency

Lemma 3.6. Under the conditions of Theorem 2.1, for the same constant t1 > 0 as in Lemma 3.4, 
we have

t∫
t1

(1 + τ)2‖Vxx(τ )‖2
L2 dτ ≤ C, ∀ t > t1,

and

(1 + t)3
(
‖Uxx(t)‖2

L2 + ‖Vxx(t)‖2
L2

)
+

t∫
t1

(1 + τ)3
(
‖Uxxx(τ )‖2

L2 + ‖Uxx(τ )‖2
L2

)
dτ ≤ C,

∀ t > t1,

where the constants are independent of t > t1.

Proof. We prove the lemma by using the same strategy as in Lemma 3.5.
Step 1. Taking ∂x of (3.31) gives us

Vxxt = −Uxt − Ux − Vxx − [(U − θx)(V + θ)]xx − 2(U − θx)(Ux − θxx). (3.52)

Taking L2 inner product of (3.52) with Vxx , we can show that

d

dt

⎛⎝1

2
‖Vxx‖2

L2 +
∫
R

UxVxxdx

⎞⎠+ ‖Vxx‖2
L2

= −
∫
R

UxVxxdx −
∫
R

[(U − θx)(V + θ)]xxVxxdx − 2
∫
R

(U − θx)(Ux − θxx)Vxxdx + ‖Uxx‖2
L2

= −
∫
R

UxVxxdx −
∫
R

(UxxV + 2UxVx + UVxx + 2UUx)Vxxdx

︸ ︷︷ ︸
≡R4a

−
∫
R

(Uxxθ − Uθxx − Vxxθx − 2Vxθxx − Vθxxx)Vxxdx

︸ ︷︷ ︸

≡R4b
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+
∫
R

(θxθxx + θθxxx)Vxxdx

︸ ︷︷ ︸
≡R4c

+‖Uxx‖2
L2 . (3.53)

The first term on the right-hand side of (3.53) is simply estimated as∣∣∣∣∣∣
∫
R

UxVxxdx

∣∣∣∣∣∣≤ 2‖Ux‖2
L2 + 1

8
‖Vxx‖2

L2 . (3.54)

By Cauchy-Schwarz and Sobolev inequalities, we can show that

|R4a | ≤ C
(
‖Uxx‖2

L2‖V‖2
L∞ + ‖Ux‖2

L∞‖Vx‖2
L2 + ‖U‖2

L∞‖Vxx‖2
L2 + ‖U‖2

L∞‖Ux‖2
L2

)
+ 1

8
‖Vxx‖2

L2

≤ C
(‖Uxx‖2

L2‖V‖L2‖Vx‖L2 + ‖Ux‖L2‖Uxx‖L2‖Vx‖2
L2 + ‖U‖L2‖Ux‖L2‖Vxx‖2

L2

+ ‖U‖L2‖Ux‖L2‖Ux‖2
L2

)+ 1

8
‖Vxx‖2

L2 . (3.55)

The four triple products on the right-hand side of (3.55) are estimated by using (3.30) and (3.51)
as

‖Uxx‖2
L2‖V‖L2‖Vx‖L2 ≤ C(1 + t)−

3
2 ‖Uxx‖2

L2, (3.56)

‖Ux‖L2‖Uxx‖L2‖Vx‖2
L2 ≤ C(1 + t)−2

(
‖Ux‖2

L2 + ‖Uxx‖2
L2

)
, (3.57)

‖U‖L2‖Ux‖L2‖Vxx‖2
L2 ≤ C(1 + t)−

3
2 ‖Vxx‖2

L2, (3.58)

‖U‖L2‖Ux‖L2‖Ux‖2
L2 ≤ C(1 + t)−

3
2 ‖Ux‖2

L2 . (3.59)

Substituting (3.56)-(3.59) into (3.55) gives us

|R4a| ≤ C(1 + t)−
3
2

(
‖Ux‖2

L2 + ‖Uxx‖2
L2 + ‖Vxx‖2

L2

)
+ 1

8
‖Vxx‖2

L2 . (3.60)

In a similar fashion, by the properties of θ , we can show that

|R4b| ≤ C(1 + t)−1‖Uxx‖2
L2 + C(1 + t)−2‖Vxx‖2

L2

+ C(1 + t)−3
(
‖U‖2

L2 + ‖Vx‖2
L2

)
+ C(1 + t)−4‖V‖2

L2 + 1

8
‖Vxx‖2

L2, (3.61)

and

|R4c| ≤ C(1 + t)−
9
2 + 1

8
‖Vxx‖2

L2 . (3.62)
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Substituting (3.54), (3.60)-(3.62) into (3.53) gives us

d

dt

⎛⎝1

2
‖Vxx‖2

L2 +
∫
R

UxVxxdx

⎞⎠+ 1

2
‖Vxx‖2

L2

≤ C(1 + t)−
3
2

(
‖Ux‖2

L2 + ‖Uxx‖2
L2 + ‖Vxx‖2

L2

)
+ C(1 + t)−1‖Uxx‖2

L2 + C(1 + t)−2‖Vxx‖2
L2 + C(1 + t)−3

(
‖U‖2

L2 + ‖Vx‖2
L2

)
+ C(1 + t)−4‖V‖2

L2 + C(1 + t)−
9
2 + 2‖Ux‖2

L2 + ‖Uxx‖2
L2 . (3.63)

Note that we haven’t established any time-weighted estimate for ‖Vxx‖2
L2 . However, similar 

to the derivation of (3.45) and based on (3.63), we can show that

(1 + t)‖Vxx(t)‖2
L2 +

t∫
t1

(1 + τ)‖Vxx(τ )‖2
L2 dτ ≤ C, ∀ t > t1. (3.64)

Next, we shall upgrade (3.64). Multiplying (3.63) by (1 + t)2, we can show that

d

dt

⎡⎣(1 + t)2

⎛⎝1

2
‖Vxx‖2

L2 +
∫
R

UxVxxdx

⎞⎠⎤⎦+ 1

2
(1 + t)2‖Vxx‖2

L2

≤ C(1 + t)
1
2

(
‖Ux‖2

L2 + ‖Uxx‖2
L2 + ‖Vxx‖2

L2

)
+ C(1 + t)‖Uxx‖2

L2 + C‖Vxx‖2
L2 + C(1 + t)−1

(
‖U‖2

L2 + ‖Vx‖2
L2

)
+ C(1 + t)−2‖V‖2

L2 + C(1 + t)−
5
2 + 2(1 + t)2‖Ux‖2

L2 + (1 + t)2‖Uxx‖2
L2

+ (1 + t)

⎛⎝‖Vxx‖2
L2 + 2

∫
R

UxVxxdx

⎞⎠ . (3.65)

The terms on the right-hand side of (3.65) are uniformly integrable with respect to t for t > t1, 
thanks to Lemma 3.2–Lemma 3.5, and (3.64). This implies

(1 + t)2‖Vxx(t)‖2
L2 +

t∫
t1

(1 + τ)2‖Vxx(τ )‖2
L2 dτ ≤ C, ∀ t > t1. (3.66)

Step 2. Taking ∂x of (3.3) gives us

Uxt = Uxxx − Ux − Vxx − [(U − θx)(V + θ)]xx − 2(U − θx)(Ux − θxx), (3.67a)

Vxt = −Uxx. (3.67b)
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Taking L2 inner products of (3.67a) with −Uxxx and (3.67b) with −Vxxx , respectively, then 
adding the results, we can show that

1

2

d

dt

(
‖Uxx‖2

L2 + ‖Vxx‖2
L2

)
+ ‖Uxxx‖2

L2 + ‖Uxx‖2
L2

=
∫
R

[(U − θx)(V + θ)]xxUxxxdx + 2
∫
R

(U − θx)(Ux − θxx)Uxxxdx. (3.68)

Note that the two integrals on the right-hand side of (3.68) are similar to the second and third 
integrals in the second line of (3.53), respectively. Hence, by adapting the estimates of R4a , R4b

and R4c, we can show that

d

dt

(
‖Uxx‖2

L2 + ‖Vxx‖2
L2

)
+ ‖Uxxx‖2

L2 + 2‖Uxx‖2
L2

≤ C(1 + t)−
3
2

(
‖Ux‖2

L2 + ‖Uxx‖2
L2 + ‖Vxx‖2

L2

)
+ C(1 + t)−1‖Uxx‖2

L2 + C(1 + t)−2‖Vxx‖2
L2 + C(1 + t)−3

(
‖U‖2

L2 + ‖Vx‖2
L2

)
+ C(1 + t)−4‖V‖2

L2 + C(1 + t)−
9
2 . (3.69)

Multiplying (3.69) by (1 + t)3, we deduce

d

dt

[
(1 + t)3

(
‖Uxx‖2

L2 + ‖Vxx‖2
L2

)]
+ (1 + t)3‖Uxxx‖2

L2 + 2(1 + t)3‖Uxx‖2
L2

≤ C(1 + t)
3
2

(
‖Ux‖2

L2 + ‖Uxx‖2
L2 + ‖Vxx‖2

L2

)
+ C(1 + t)2‖Uxx‖2

L2 + C(1 + t)‖Vxx‖2
L2 + C

(
‖U‖2

L2 + ‖Vx‖2
L2

)
+ C(1 + t)−1‖V‖2

L2 + C(1 + t)−
3
2 + 3(1 + t)2

(
‖Uxx‖2

L2 + ‖Vxx‖2
L2

)
. (3.70)

Note that the right-hand side of (3.70) is uniformly integrable with respect to time for t > t1, by 
virtue of Lemma 3.2–Lemma 3.5 and (3.66). This implies for ∀ t > t1,

(1 + t)3
(
‖Uxx(t)‖2

L2 + ‖Vxx(t)‖2
L2

)
+

t∫
t1

(1 + τ)3
(
‖Uxxx(τ )‖2

L2 + ‖Uxx(τ )‖2
L2

)
dτ ≤ C,

(3.71)
where the constant is independent of t > t1. This completes the proof of the lemma. �
3.5. Improved decay rates

In this section, we improve the decay rates of the U-component.
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Lemma 3.7. Under the conditions of Theorem 2.1, there is a constant t2 ≥ t1 such that

(1 + t)2‖U(t)‖2
L2 + (1 + t)3‖Ux(t)‖2

L2 ≤ C, ∀ t > t2,

where the constant C > 0 is independent of t > t2.

Proof. We prove the lemma by deriving the decay rates of the temporal derivative of the per-
turbed functions. Taking ∂t of (3.3) gives us

Ut t = Uxxt − Ut − Vxt − [(U − θx)(V + θ)]xt − 2(U − θx)(Ut − θxt ), (3.72a)

Vt t = −Uxt . (3.72b)

Taking L2 inner product of (3.72a) with Ut and (3.72b) with Vt , then adding the results, we have

1

2

d

dt

(
‖Ut‖2

L2 + ‖Vt‖2
L2

)
+ ‖Uxt‖2

L2 + ‖Ut‖2
L2

= −
∫
R

[(U − θx)(V + θ)]xtUtdx

︸ ︷︷ ︸
≡R5a

−2
∫
R

(U − θx)(Ut − θxt )Utdx

︸ ︷︷ ︸
≡R5b

. (3.73)

By a direct calculation, we can show that

R5a =
∫
R

(
UxtV + UxVt + UtVx + UVxt + Utxθ + Uxθt + Ut θx + Uθxt

− Vxt θx − Vxθxt − Vt θxx − Vθxxt − 2θxt θx − θt θxx − θθxxt

)
Utdx

=
∫
R

(
− UxUx + 1

2
UtVx − UUxx + Uxθt + 1

2
Ut θx + Uθxt

+ Uxxθx − Vxθxt + Uxθxx − Vθxxt − 2θxt θx − θt θxx − θθxxt

)
Utdx,

where we integrated by parts and replaced Vt by −Ux . Using Cauchy-Schwarz inequality, we 
deduce

|R5a | ≤ 1

2
(‖Vx‖L∞ + ‖θx‖L∞)‖Ut‖2

L2 + (‖Ux‖L∞‖Ux‖L2 + ‖U‖L∞‖Uxx‖L2

+ ‖Ux‖L∞‖θt‖L2 + ‖U‖L∞‖θxt‖L2 + ‖θx‖L∞‖Uxx‖L2 + ‖Vx‖L∞‖θxt‖L2

+ ‖Ux‖L∞‖θxx‖L2 + ‖V‖L∞‖θxxt‖L2 + ‖θx‖L∞‖θxt‖L2 + ‖θt‖L∞‖θxx‖L2

+ ‖θ‖L∞‖θxxt‖L2

)‖Ut‖L2 . (3.74)

Using Lemma 3.4–Lemma 3.6 and Sobolev inequality, we can show that for t > t1,
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‖U‖2
L∞ ≤ C(1 + t)−

3
2 ; ‖Ux‖2

L∞ ≤ C(1 + t)−
5
2 ;

‖V‖2
L∞ ≤ C(1 + t)−

3
2 ; ‖Vx‖2

L∞ ≤ C(1 + t)−
5
2 .

(3.75)

Moreover, by direct calculations, we can show that

‖θt‖2
L2 ≤ C(1 + t)−

5
2 ; ‖θxt‖2

L2 ≤ C(1 + t)−
7
2 ; ‖θxxt‖2

L2 ≤ C(1 + t)−
9
2 ;

‖θ‖2
L∞ ≤ C(1 + t)−1; ‖θx‖2

L∞ ≤ C(1 + t)−2; ‖θxx‖2
L∞ ≤ C(1 + t)−3.

(3.76)

Using (3.75)-(3.76), we update (3.74) as

|R5a| ≤ 1

2
(‖Vx‖L∞ + ‖θx‖L∞)‖Ut‖2

L2 + 1

8
‖Ut‖2

L2 + C
[
(1 + t)−5 + (1 + t)−

11
2 + (1 + t)−6

+ (1 + t)−
5
2 ‖Ux‖2

L2 + (1 + t)−
3
2 ‖Uxx‖2

L2 + (1 + t)−2‖Uxx‖2
L2

]
.

Similarly, we can show that

|R5b| ≤ 2 (‖U‖L∞ + ‖θx‖L∞)‖Ut‖2
L2 + 1

8
‖Ut‖2

L2 + C
[
(1 + t)−5 + (1 + t)−

11
2
]
.

Since ‖(U, Vx, θx)(t)‖L∞ → 0 as t → ∞, there is a constant t2 ≥ t1, such that

|R5a | + |R5b| ≤ 1

2
‖Ut‖2

L2 + C
[
(1 + t)−5 + (1 + t)−

11
2 + (1 + t)−6

+ (1 + t)−
5
2 ‖Ux‖2

L2 + (1 + t)−
3
2 ‖Uxx‖2

L2 + (1 + t)−2‖Uxx‖2
L2

]
. (3.77)

Substituting (3.77) into (3.73) gives us

1

2

d

dt

(
‖Ut‖2

L2 + ‖Vt‖2
L2

)
+ ‖Uxt‖2

L2 + 1

2
‖Ut‖2

L2

≤ C
[
(1 + t)−5 + (1 + t)−

11
2 + (1 + t)−6 + (1 + t)−

5
2 ‖Ux‖2

L2

+ (1 + t)−
3
2 ‖Uxx‖2

L2 + (1 + t)−2‖Uxx‖2
L2

]
. (3.78)

Multiplying (3.78) by (1 + t) and applying Lemma 3.2, we can show that for t > t2,

(1 + t)
(
‖Ut (t)‖2

L2 + ‖Vt (t)‖2
L2

)
+

t∫
t2

(1 + τ)
(
‖Uxt (τ )‖2

L2 + ‖Ut (τ )‖2
L2

)
dτ ≤ C, (3.79)

where the constant is independent of t > t2. Multiplying (3.78) by (1 + t)2 and applying (3.79)
and Lemma 3.5, and noting Vt = −Ux , we can show that for t > t2,

(1 + t)2
(
‖Ut (t)‖2

L2 + ‖Vt (t)‖2
L2

)
+

t∫
t2

(1 + τ)2
(
‖Uxt (τ )‖2

L2 + ‖Ut (τ )‖2
L2

)
dτ ≤ C,
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where the constant is independent of t > t2. Iterating one more time, we can show that

(1 + t)3
(
‖Ut (t)‖2

L2 + ‖Vt (t)‖2
L2

)
+

t∫
t2

(1 + τ)3
(
‖Uxt (τ )‖2

L2 + ‖Ut (τ )‖2
L2

)
dτ ≤ C. (3.80)

Since Vt = −Ux , we get in particular from (3.80):

(1 + t)3‖Ux(t)‖2
L2 ≤ C. (3.81)

In view of (3.3)2, (3.80), (3.71) and (3.51), we see that

‖U(t)‖2
L2 ≤ C

(
‖Ut (t)‖2

L2 + ‖Uxx(t)‖2
L2 + ‖Vx(t)‖2

L2 + ‖N.T.‖2
L2

)
≤ C

[
(1 + t)−3 + (1 + t)−2 + ‖N.T.‖2

L2

]
,

where N.T. stands for the nonlinear terms on the right-hand side of (3.3)2, i.e.,

N.T. = [(U − θx)(V + θ)]x + (U − θx)
2.

According to (3.37)-(3.40), Lemma 3.4–Lemma 3.5 and (3.81), ‖N.T.‖2
L2 decays faster than 

(1 + t)−2. Therefore, we conclude

‖U(t)‖2
L2 ≤ C(1 + t)−2, ∀ t > t2,

where the constant is independent of t > t2. This completes the proof of the lemma. �
Finally, noting that t2 ≥ t1 are constants and applying Lemma 3.2, we replace the lower 

limits of temporal integrals in the conclusions of Lemmas 3.4-3.6 by 0. The combination of 
Lemmas 3.3-3.7 gives us (2.13) for t > t2. The case of 0 ≤ t ≤ t2 is a direct consequence of 
Lemmas 3.2 and 3.3. With Lemma 3.1 we thus have proved Theorem 2.1.

4. Proof of Theorem 2.2

In this section we obtain the optimal decay rates in (2.14). Under the additional assumption 
that φ0 ∈ L1(R) and ũ0 = u0 − 1 ∈ L1(R), we iterate the rates in Theorem 2.1 by a different set 
of analytic tools. It is a combination of linearization, spectral analysis, Green’s function estimate, 
Plancherel theorem and Duhamel’s principle. The strategy is detailed in [33,34] for the case of 
zero-mass for the v-component, i.e., θ = 0. Thus here we focus on the terms induced by the 
asymptotic solution (θ, 1 − 1

r
θx) in the estimates, and outline or cite results from [33,34] as 

needed.
For our convenience and without loss of generality we continue to set r = 1, and use C as a 

generic positive constant.
We write (3.3) in matrix form,

Wt + AWx = BWxx + LW + F, (4.1)
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where W = (V, U)T, the matrices

A =
(

0 1
1 0

)
, B =

(
0 0
0 1

)
, L =

(
0 0
0 −1

)
, (4.2)

and the nonlinearity is given by

F = F1x + F2, F1 =
(

0
−(U − θx)(V + θ)

)
, F2 =

(
0

−(U − θx)
2

)
. (4.3)

Consider Fourier transform with respect to x:

Ŵ(ξ, t) = 1√
2π

∫
R

W(x, t)e−ixξ dx,

W(x, t) = 1√
2π

∫
R

Ŵ(ξ, t)eixξ dξ.

(4.4)

Taking Fourier transform of (4.1) with respect to x, we have

Ŵt = E(iξ)Ŵ + F̂ , (4.5)

where E(iξ) = −iξA − ξ2B + L with A, B , L given in (4.2). The solution of (4.5) is

Ŵ(ξ, t) = etE(iξ)Ŵ0(ξ) +
t∫

0

e(t−τ)E(iξ)F̂ (ξ, τ )dτ, (4.6)

where Ŵ0 denotes Fourier transform of

W0 =
(

V0
U0

)
≡
(

v0 − θ0
u0 − 1 − θ0x

)
(4.7)

and θ0(x) = θ(x, 0).
The solution operator in (4.6) is studied in [33] with details. For small ξ it is studied via 

spectral analysis of the matrix

E(iξ) =
(

0 −iξ

−iξ −ξ2 − 1

)
.

Otherwise, energy estimation for the linear system is used to study the global decay property 
of the solution operator in the Fourier space. Here we cite the following lemma for the needed 
properties. Interested readers are referred to Lemma 3.3 in [33].
29



Y. Zeng and K. Zhao Journal of Differential Equations 336 (2022) 1–43
Lemma 4.1. Let k ≥ 0 be an integer, h ∈ L1(R), Dk
xh ∈ L2(R), and

H1(x) =
(

h(x)

0

)
, H2(x) =

(
0

h(x)

)
.

Let (etE(iξ))1,2 denote the first/second row of etE(iξ). Then for t ≥ 0,

‖(etE(iξ))1(iξ)kĤ1(ξ)‖L2 ≤ C(t + 1)−
1
4 − k

2 ‖h‖L1 + Ce−ct‖Dk
xh‖L2, (4.8)

‖(etE(iξ))1(iξ)kĤ2(ξ)‖L2 ≤ C(t + 1)−
3
4 − k

2 ‖h‖L1 + Ce−ct‖Dk
xh‖L2, (4.9)

‖(etE(iξ))2(iξ)kĤ1(ξ)‖L2 ≤ C(t + 1)−
3
4 − k

2 ‖h‖L1 + Ce−ct‖Dk
xh‖L2, (4.10)

‖(etE(iξ))2(iξ)kĤ2(ξ)‖L2 ≤ C(t + 1)−
5
4 − k

2 ‖h‖L1 + Ce−ct‖Dk
xh‖L2, (4.11)

where C and c are positive constants.

For k = 0, 1, we apply Plancherel theorem and (4.6) to obtain

‖∂k
x V(t)‖L2 = ‖(iξ)kV̂(t)‖L2

≤ ‖(iξ)k(etE(iξ))1Ŵ0(ξ)‖L2 +
t∫

0

‖(iξ)k(e(t−τ)E(iξ))1F̂ (ξ, τ )‖L2 dτ (4.12)

≡ I1a + I1b,

‖∂k
x U(t)‖L2 = ‖(iξ)kÛ(t)‖L2

≤ ‖(iξ)k(etE(iξ))2Ŵ0(ξ)‖L2 +
t∫

0

‖(iξ)k(e(t−τ)E(iξ))2F̂ (ξ, τ )‖L2 dτ, (4.13)

≡ I2a + I2b

where (etE(iξ))j , j = 1, 2, denotes the j th row of etE(iξ), and F is given in (4.3).

Lemma 4.2. Under the conditions of Theorem 2.2, for k = 0, 1 and t ≥ 0 we have

I1a ≤ C(1 + t)−
3
4 − k

2 , (4.14)

I2a ≤ C(1 + t)−
5
4 − k

2 . (4.15)

Proof. From (4.7) and (2.10) we have

I1a ≤ ‖(iξ)k(etE(iξ))1(V̂0(ξ),0)T‖L2 + ‖(iξ)k(etE(iξ))1(0, Û0(ξ))T‖L2

= ‖(iξ)k+1(etE(iξ))1(φ̂0(ξ),0)T‖L2 + ‖(iξ)k(etE(iξ))1(0, Û0(ξ))T‖L2 .

Applying (4.8) and (4.9) to the first and second terms on the right-hand side of the above inequal-
ity, respectively, we further have
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I1a ≤ C(1 + t)−
1
4 − k+1

2 ‖φ0‖L1 + Ce−ct‖Dk+1
x φ0‖L2

+ C(1 + t)−
3
4 − k

2 ‖U0‖L1 + Ce−ct‖Dk
xU0‖L2 .

(4.16)

From the hypotheses of Theorem 2.2, (4.7) and (2.6) we know

‖φ0‖L1 < ∞ and ‖U0‖L1 ≤ ‖u0 − 1‖L1 + ‖θ0x‖L1 < ∞,

where θ0(x) = θ(x, 0). Similarly, the assumption that (v0, u0 − 1) ∈ H 2(R) × H 2(R) implies

‖Dk+1
x φ0‖L2 = ‖Dk

x(v0 − θ0)‖L2 ≤ ‖Dk
xv0‖L2 + ‖∂k

x θ0‖L2 < ∞

and

‖Dk
xU0‖L2 = ‖Dk

x(u0 − 1 − θ0x)‖L2 ≤ ‖Dk
x(u0 − 1)‖L2 + ‖∂k+1

x θ0‖L2 < ∞

for k = 0, 1. These simplify (4.16) to

I1a ≤ C(1 + t)−
3
4 − k

2 + Ce−ct ≤ C(1 + t)−
3
4 − k

2 , k = 0,1.

We thus have proved (4.14). Using (4.10) and (4.11) one can prove (4.15) in a similar way. �
Lemma 4.3. Under the conditions of Theorem 2.2, for k = 0, 1 and t ≥ 0 we have

I1b ≤ C(1 + t)−
3
4 − k

2 , (4.17)

I2b ≤ C(1 + t)−
5
4 − k

2 . (4.18)

Proof. From (4.3) and (4.12) we have

I1b =
t∫

0

‖(iξ)k(e(t−τ)E(iξ))1(iξ F̂1(ξ, τ ) + F̂2(ξ, τ ))‖L2 dτ

≤
t∫

0

‖(iξ)k(e(t−τ)E(iξ))1iξ F̂1(ξ, τ )‖L2 dτ +
t∫

0

‖(iξ)k(e(t−τ)E(iξ))1F̂2(ξ, τ )‖L2 dτ.

Applying (4.9) to the right-hand side gives us

I1b ≤ C

t∫
0

(1 + t − τ)−
3
4 − k

2 ‖[(U − θx)(V + θ)]x(τ )‖L1 dτ

+ C

t∫
e−c(t−τ)‖∂k+1

x [(U − θx)(V + θ)](τ )‖L2 dτ
0
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+ C

t∫
0

(1 + t − τ)−
3
4 − k

2 ‖(U − θx)
2(τ )‖L1 dτ

+ C

t∫
0

e−c(t−τ)‖∂k
x (U − θx)

2(τ )‖L2 dτ. (4.19)

For the first integral in (4.19), using (2.13), (2.6), we can show that

‖[(U − θx)(V + θ)]x(τ )‖L1 ≤ (‖Ux‖L2 + ‖θxx‖L2)(‖V‖L2 + ‖θ‖L2)

+ (‖U‖L2 + ‖θx‖L2)(‖Vx‖L2 + ‖θx‖L2) ≤ C(1 + τ)−
3
2 .

(4.20)

For the second integral, using the same tools alongside Sobolev inequality, we can show that

‖[(U − θx)(V + θ)]x(τ )‖L2 ≤ (‖Ux‖L2 + ‖θxx‖L2)(‖V‖L∞ + ‖θ‖L∞)

+ (‖U‖L2 + ‖θx‖L2)(‖Vx‖L∞ + ‖θx‖L∞) ≤ C(1 + τ)−
7
4

(4.21)

and

‖[(U − θx)(V + θ)]xx(τ )‖L2 ≤ C(1 + τ)−2. (4.22)

Moreover, it can be shown that

‖(U − θx)
2(τ )‖L1 ≤ C(1 + τ)−

3
2 , (4.23)

‖(U − θx)
2(τ )‖L2 ≤ C(1 + τ)−

7
4 , ‖∂x(U − θx)

2(τ )‖L2 ≤ C(1 + τ)−
9
4 . (4.24)

Substituting (4.20)-(4.24) into (4.19), we arrive at

I1b ≤ C

t∫
0

(1 + t − τ)−
3
4 − k

2 (1 + τ)−
3
2 dτ + C

t∫
0

e−c(t−τ)(1 + τ)−
7
4 − k

4 dτ

≤ C(1 + t)−
3
4 − k

2 , k = 0,1.

This is (4.17).
Similarly, from (4.3) and (4.13) we have

I2b ≤
t
2∫

0

‖(iξ)k(e(t−τ)E(iξ))2iξ F̂1(ξ, τ )‖L2 dτ +
t∫

t

‖(e(t−τ)E(iξ))2(iξ)k+1F̂1(ξ, τ )‖L2 dτ
2
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+
t
2∫

0

‖(iξ)k(e(t−τ)E(iξ))2F̂2(ξ, τ )‖L2 dτ +
t∫

t
2

‖(e(t−τ)E(iξ))2(iξ)kF̂2(ξ, τ )‖L2 dτ.

Applying (4.11) to the right-hand side gives us

I2b ≤ C

t
2∫

0

(1 + t − τ)−
5
4 − k

2 ‖[(U − θx)(V + θ)]x(τ )‖L1 dτ

+ C

t∫
t
2

(1 + t − τ)−
5
4 ‖∂k+1

x [(U − θx)(V + θ)](τ )‖L1 dτ

+ C

t∫
0

e−c(t−τ)‖∂k+1
x [(U − θx)(V + θ)](τ )‖L2 dτ

+ C

t
2∫

0

(1 + t − τ)−
5
4 − k

2 ‖(U − θx)
2(τ )‖L1 dτ

+ C

t∫
t
2

(1 + t − τ)−
5
4 ‖∂k

x (U − θx)
2(τ )‖L1 dτ

+ C

t∫
0

e−c(t−τ)‖∂k
x (U − θx)

2(τ )‖L2 dτ. (4.25)

Besides (4.20)-(4.24), we have the following estimates based on (2.13), (2.6) and Sobolev in-
equality,

‖[(U − θx)(V + θ)]xx(τ )‖L1 ≤ C(1 + τ)−
7
4 , (4.26)

and

‖∂x(U − θx)
2(τ )‖L1 ≤ C(1 + τ)−2. (4.27)

Substituting (4.20)-(4.24) and (4.26)-(4.27) into (4.25) gives us

I2b ≤ C

t
2∫

0

(1 + t − τ)−
5
4 − k

2 (1 + τ)−
3
2 dτ + C

t∫
t

(1 + t − τ)−
5
4 (1 + τ)−

3
2 − k

4 dτ
2
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+ C

t∫
0

e−c(t−τ)(1 + τ)−
7
4 − k

4 dτ ≤ C(1 + t)−
5
4 − k

2 , k = 0,1.

We have proved (4.18). �
Substituting (4.14), (4.15), (4.17) and (4.18) into (4.12) and (4.13), we arrive at

‖∂k
x V(t)‖L2 ≤ C(1 + t)−

3
4 − k

2 ,

‖∂k
x U(t)‖L2 ≤ C(1 + t)−

5
4 − k

2 ,

k = 0,1. (4.28)

To finish the proof of Theorem 2.2 we need the following lemma.

Lemma 4.4. Under the conditions of Theorem 2.2, for t ≥ 0 we have

‖φ(t)‖L2 ≤ C(1 + t)−
1
4 . (4.29)

Proof. We write (3.4) for φ as a heat equation with a nonlinear source term,

φt = φxx + F̃ (x, t),

where

F̃ (x, t) = ũt − ũxx + (ũv)x + ũ2 ≡
4∑

i=1

F̃i(x, t).

Denote the heat kernel as

H(x, t) = 1√
4πt

e− x2
4t . (4.30)

Then by Duhamel’s principle,

φ(x, t) =
∫
R

H(x − y, t)φ0(y)dy +
t∫

0

∫
R

H(x − y, t − τ)F̃ (y, τ )dydτ ≡
4∑

i=0

Ii, (4.31)

where

I0 =
∫
R

H(x − y, t)φ0(y)dy,

Ii =
t∫

0

∫
R

H(x − y, t − τ)F̃i(y, τ )dydτ, 1 ≤ i ≤ 4.
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If 0 ≤ t ≤ 2, (4.29) is a consequence of (2.13). Thus, we consider the case t > 2 below. By 
Young’s inequality, (4.30) and the assumption on φ0 in Theorem 2.2,

‖I0‖L2 ≤ ‖H(t)‖L2‖φ0‖L1 = C(1 + t)−
1
4 . (4.32)

By integration by parts, we have

I1 =
t−1∫
0

∫
R

H(x − y, t − τ)ũτ (y, τ )dydτ +
t∫

t−1

∫
R

H(x − y, t − τ)ũτ (y, τ )dydτ

=
∫
R

H(x − y,1)ũ(y, t − 1)dy

︸ ︷︷ ︸
≡I1a

−
∫
R

H(x − y, t)ũ(y,0)dy

︸ ︷︷ ︸
≡I1b

+
t−1∫
0

∫
R

Ht(x − y, t − τ)ũ(y, τ )dy

︸ ︷︷ ︸
≡I1c

dτ

+
t∫

t−1

∫
R

H(x − y, t − τ)ũτ (y, τ )dy

︸ ︷︷ ︸
≡I1d

dτ. (4.33)

By Young’s inequality, (2.6), (4.28), and noticing t > 2, we have

‖I1a‖L2 ≤ ‖H(1)‖L1‖ũ(t − 1)‖L2 ≤ C(‖θx(t − 1)‖L2 + ‖U(t − 1)‖L2)

≤ C(1 + t)−
3
4 , (4.34)

and by the assumption on ũ0 = u0 − 1 in Theorem 2.2,

‖I1b‖L2 ≤ ‖H(t)‖L2‖ũ0‖L1 ≤ C(1 + t)−
1
4 . (4.35)

Similarly, we can show that

‖I1c‖L2 ≤ ‖Ht(t − τ)‖L1‖ũ(τ )‖L2 ≤ C(1 + t − τ)−1(‖θx(τ )‖L2 + ‖U(τ )‖L2)

≤ C(1 + t − τ)−1(1 + τ)−
3
4 . (4.36)

For I1d we apply (3.1)2 and by integration by parts to get

I1d =
∫

H(x − y, t − τ)[ũyy − (ũv)y − vy − ũ(ũ + 1)](y, τ )dy
R
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=
∫
R

Hx(x − y, t − τ)ũy(y, τ )dy

︸ ︷︷ ︸
≡R1d1

−
∫
R

H(x − y, t − τ)[(ũv)y + vy + ũ(ũ + 1)](y, τ )dy

︸ ︷︷ ︸
≡R1d2

.

(4.37)

Then again by Young’s inequality, (2.6) and (4.28) we have

‖I1d1‖L2 ≤ ‖Hx(t − τ)‖L1‖ũx(τ )‖L2 ≤ ‖Hx(t − τ)‖L1(‖θxx(τ )‖L2 + ‖Ux(τ )‖L2)

≤ C(t − τ)−
1
2 (1 + τ)−

5
4 , (4.38)

and

‖I1d2‖L2 ≤ ‖H(t − τ)‖L1

(‖(ũv)x(τ )‖L2 + ‖vx(τ )‖L2 + ‖(ũ(ũ + 1))(τ )‖L2

)
≤ C

(‖(ũxv)(τ )‖L2 + ‖(ũvx)(τ )‖L2 + ‖vx(τ )‖L2 + ‖(ũ(ũ + 1))(τ )‖L2

)
. (4.39)

By Sobolev inequality, the first two terms on the right-hand side of (4.39) are estimated as

‖(ũxv)(τ )‖L2 ≤ (‖θxx(τ )‖L2 + ‖Ux(τ )‖L2)(‖θ(τ )‖L∞ + ‖V(τ )‖L∞) ≤ C(1 + τ)−
7
4 , (4.40)

and

‖(ũvx)(τ )‖L2 ≤ (‖θx(τ )‖L∞ + ‖U(τ )‖L∞)(‖θx(τ )‖L2 + ‖Vx(τ )‖L2) ≤ C(1 + τ)−
7
4 . (4.41)

The third term satisfies

‖vx(τ )‖L2 ≤ ‖θx(τ )‖L2 + ‖Vx(τ )‖L2 ≤ C(1 + τ)−
3
4 . (4.42)

For the last term, we can show that

‖(ũ(ũ + 1))(τ )‖L2 ≤ (‖θx(τ )‖L2 + ‖U(τ )‖L2)(‖θx(τ )‖L∞ + ‖U(τ )‖L∞ + 1)

≤ C(1 + τ)−
3
4 . (4.43)

Substituting (4.40)-(4.43) into (4.39) gives us

‖I1d2‖L2 ≤ C(1 + τ)−
3
4 . (4.44)

Substituting (4.38) and (4.44) into (4.37), we have

‖I1d‖L2 ≤ (t − τ)−
1
2 (1 + τ)−

5
4 + C(1 + τ)−

3
4 . (4.45)
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Feeding (4.34)-(4.36) and (4.45) into (4.33) and invoking Bochner inequality imply

‖I1‖L2 ≤ ‖I1a‖L2 + ‖I1b‖L2 +
t−1∫
0

‖I1c‖L2 dτ +
t∫

t−1

‖I1d‖L2 dτ

≤ C(1 + t)−
1
4 + C

t−1∫
0

(1 + t − τ)−1(1 + τ)−
3
4 dτ

+ C

t∫
t−1

(t − τ)−
1
2 (1 + τ)−

5
4 dτ + C

t∫
t−1

(1 + τ)−
3
4 dτ ≤ C(1 + t)−

1
4 . (4.46)

Similarly,

I2 = −
t∫

0

∫
R

H(x − y, t − τ)ũyy(y, τ )dydτ = −
t∫

0

∫
R

Hx(x − y, t − τ)ũy(y, τ )dydτ,

and hence

‖I2‖L2 ≤
t∫

0

‖Hx(t − τ)‖L1‖ũx(τ )‖L2 dτ ≤
t∫

0

(t − τ)−
1
2 (‖θxx(τ )‖L2 + ‖Ux(τ )‖L2)dτ

≤ C

t∫
0

(t − τ)−
1
2 (1 + τ)−

5
4 dτ ≤ C(1 + t)−

1
2 .

(4.47)

We can also show that

‖I3‖L2 ≤
t∫

0

‖Hx(t − τ)‖L2‖(ũv)(τ )‖L1 dτ

≤
t∫

0

‖Hx(t − τ)‖L2(‖θx(τ )‖L2 + ‖U(τ )‖L2)(‖θ(τ )‖L2 + ‖V(τ )‖L2)dτ

≤ C

t∫
0

(t − τ)−
3
4 (1 + τ)−1 dτ ≤ C(1 + t)−

3
4 ln(1 + t), (4.48)

and
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‖I4‖L2 ≤
t∫

0

‖H(t − τ)‖L2‖ũ2(τ )‖L1 dτ ≤
t∫

0

‖H(t − τ)‖L2(‖θx(τ )‖L2 + ‖U(τ )‖L2)
2 dτ

≤ C

t∫
0

(t − τ)−
1
4 (1 + τ)−

3
2 dτ ≤ C(1 + t)−

1
4 .

(4.49)

Substituting (4.32) and (4.46)-(4.49) into (4.31) gives us (4.29). �
5. Proof of Theorem 2.4

In this section we continue to use C as a generic positive constant. First we verify that under 
the assumptions of Theorem 2.4, the regularity requirements in Theorem 2.2 are satisfied, and 
hence the theorem applies.

Lemma 5.1. Under the conditions of Theorem 2.4, the Cauchy data of the transformed system 
satisfy φ̄0 ∈ L2(R) ∩ L1(R), v̄0 ∈ H 2(R), ū0 ≥ 0 and ū0 − 1 ∈ H 2(R) ∩ L1(R).

Proof. From (2.10), (1.11), (1.12), (2.6), (1.8),

φ̄0(x̄) =
x̄∫

−∞
[v̄0(ȳ) − θ(ȳ,0)]dȳ

= sign(χ)

√
χ

μK

x̄∫
−∞

(ln s0)
′(x(ȳ))dȳ − χ

D
ln(

s+
s−

)
1√

4π/r

x̄∫
−∞

e− rȳ2

4 dȳ

= χ

D
ln(

s0(x(x̄))

s−
) − χ

D
ln(

s+
s−

)
1√

4π/r

x̄∫
−∞

e− rȳ2

4 dȳ

≡ φ̄01(x̄) + φ̄02(x̄). (5.1)

By Taylor expansion,

φ̄01(x̄) = χ

D
ln

(
1 + s0(x(x̄)) − s−

s−

)
= χ

D

s0(x(x̄)) − s−
s− + η(x̄)[s0(x(x̄)) − s−] , (5.2)

where 0 < η(x̄) < 1. Noting that

s− + η(x̄)[s0(x(x̄)) − s−] = [1 − η(x̄)]s− + η(x̄))s0(x(x̄))

is a convex combination of s− and s0(x(x̄)), it takes a value between s− and s0(x(x̄)). On the 
other hand, the assumptions on s0 in Theorem 2.4 imply that
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m ≡ inf
x∈R

s0(x) > 0. (5.3)

Therefore, (5.2) gives us

|φ̄01(x̄)| ≤ C|s0(x(x̄)) − s−|, (5.4)

which implies

φ̄01 ∈ L1((−∞,0)) ∩ L2((−∞,0)) (5.5)

by the assumption on s0 − s− in Theorem 2.4.
For the second term in (5.1), by change of variables, we have

φ̄02(x̄) = − χ

D
ln(

s+
s−

)
1√
π

x̄√
4/r∫

−∞
e−ȳ2

dȳ = − χ

2D
ln(

s+
s−

)erfc

(
− x̄√

4/r

)
.

By properties of complementary error function we have

φ̄02 ∈ L1((−∞,0)) ∩ L2((−∞,0)). (5.6)

Combining (5.1), (5.5) and (5.6) gives us φ̄0 ∈ L1((−∞, 0)) ∩ L2((−∞, 0)).
Noting φ̄0(+∞) = 0, we can write

φ̄0(x̄) = −
∞∫

x̄

[v̄0(ȳ) − θ(ȳ,0)]dȳ.

Similar to the above argument we may prove φ̄0 ∈ L1((0, ∞)) ∩ L2((0, ∞)). Therefore, φ̄0 ∈
L1(R) ∩ L2(R).

From (1.11),

v̄0(x̄) = sign(χ)

√
χ

μK

s′
0(x(x̄))

s0(x(x̄))
.

With (5.3) we have

|v̄0(x̄)| ≤ C|s′
0(x(x̄))|,

which implies v̄0 ∈ L2(R) since s′
0 ∈ H 2(R). Similarly, one can show that the first and second 

derivatives of v̄0 are in L2(R). Therefore, v̄0 ∈ H 2(R).
By (1.11),

ū0(x̄) = 1
u0(x(x̄)),
K
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and the assumptions for u0 in Theorem 2.4, all conclusions on ū0 are valid. We thus have proved 
the lemma. �

The hypotheses of Theorem 2.4 imply those of Theorems 2.1 and 2.2. Thus, we apply The-
orem 2.1 to conclude that there is a unique solution (v̄, ū) for the transformed problem (1.9), 
(1.11). The transformation (2.16) and (2.23) gives us the unique solution (s, u) of (1.1), (1.2). 
The solution satisfies s(x, t) > 0, u(x, t) ≥ 0 for all x ∈ R and t ≥ 0.

Now we need to prove (2.26) to finish this section.

Lemma 5.2. Under the conditions of Theorem 2.4, with the decomposition (2.25),

s(x, t) = e−(μK+σ)t [
(x, t) + S(x, t)],
u(x, t) = K + θ∗(x, t) + U(x, t),

the solution of (1.1), (1.2) has the following decay properties,

‖∂k
xS(t)‖L2 ≤ C(1 + t)−

1
4 − k

2 , 0 ≤ k ≤ 2; ‖∂k
xS(t)‖L∞ ≤ C(1 + t)−

1
2 − k

2 , k = 0,1;
‖∂k

xU(t)‖L2 ≤ C(1 + t)−
5
4 − k

2 , k = 0,1; ‖U(t)‖L∞ ≤ C(1 + t)−
3
2 .

(5.7)

Proof. Lemma 5.1 implies that the conclusion of Theorem 2.2 on the transformed system is 
valid,

(1 + t̄ )
1
4 ‖φ̄(t̄)‖L2+(1 + t̄ )

3
4 ‖V̄(t̄)‖L2 + (1 + t̄ )

5
4 (‖V̄x̄ (t̄ )‖L2 + ‖Ū(t̄)‖L2)

+(1 + t̄ )
7
4 ‖Ūx̄ (t̄ )‖L2 ≤ C.

(5.8)

From (2.16), (2.18), (2.19) and (2.11), we have

S(x, t) = s̃(x, t) − 
(x, t) = 
(x, t)

[
exp

(
D

χ

x̄(x)∫
−∞

V̄(ȳ, t̄ (t))dȳ

)
− 1

]

= 
(x, t)

[
exp

(
D

χ

x̄(x)∫
−∞

φ̄ȳ (ȳ, t̄ (t))dȳ

)
− 1

]

= 
(x, t)

[
exp

(
D

χ
φ̄(x̄(x), t̄(t))

)
− 1

]
.

(5.9)

Recall Proposition 2.3. For each t ≥ 0, 
(x, t) monotonically connects s− to s+ on R, and hence 
0 < 
(x, t) < max{s−, s+}. Then applying Taylor expansion we further have

|S(x, t)| ≤ C

∣∣∣∣ exp

(
D

χ
φ̄(x̄(x), t̄(t))

)
− 1

∣∣∣∣
≤ C exp

(
D ‖φ̄(t̄(t))‖L∞

)
|φ̄(x̄(x), t̄(t))|.

(5.10)
|χ |
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From (5.8) and by Sobolev inequality,

‖φ̄(t̄)‖L2 ≤ C(1 + t̄ )−
1
4 , ‖φ̄x̄ (t̄ )‖L2 = ‖V̄(t̄)‖L2 ≤ C(1 + t̄ )−

3
4 ,

‖φ̄(t̄)‖L∞ ≤ C(1 + t̄ )−
1
2 .

(5.11)

Substituting (5.11) into (5.10) gives us

|S(x, t)| ≤ C|φ̄(x̄(x), t̄(t))|.

Therefore,

‖S(t)‖L2 ≤ C‖φ̄(t̄(t))‖L2 ≤ C(1 + t̄ )−
1
4 ≤ C(1 + t)−

1
4 ,

‖S(t)‖L∞ ≤ C‖φ̄(t̄(t))‖L∞ ≤ C(1 + t)−
1
2 .

We take the first spatial derivative to (5.9) to have

Sx(x, t) = 
x(x, t)

[
exp

(
D

χ
φ̄(x̄(x), t̄(t))

)
− 1

]
+ 
(x, t) exp

(
D

χ
φ̄(x̄(x), t̄(t))

)
D

χ
φ̄x̄(x̄(x), t̄(t))

dx̄

dx
,

which implies

|Sx(x, t)| ≤ C|
x(x, t)||φ̄(x̄(x), t̄(t))| + C|φ̄x̄ (x̄(x), t̄(t))|.

Applying (2.22) and (5.11) gives us

‖Sx(t)‖L2 ≤ C‖
x(t)‖L∞‖φ̄(t̄(t))‖L2 + C‖φ̄x̄ (t̄ (t))‖L2 ≤ C(1 + t)−
3
4 .

Similarly, we obtain the estimate for ‖Sxx(t)‖L2 . By Sobolev inequality we also have 
‖Sx(t)‖L∞ .

Finally, applying the transformation (2.23) it is clear that

U(x, t) = KŪ(x̄(x), t̄(t)).

Thus, the estimates on U in (5.7) are straightforward from (5.8) and Sobolev inequality. �
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