
Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Recurrence of optimum for training weight and activation

quantized networks

Ziang Long a,∗, Penghang Yin b, Jack Xin a

a University of California, Irvine, United States of America
b University at Albany, SUNY, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 January 2022
Received in revised form 15 July
2022
Accepted 26 July 2022
Available online 4 August 2022
Communicated by Radu Balan

Keywords:
Quantization
Neural networks
Discrete optimiztion
Straight-through estimator

Deep neural networks (DNNs) are quantized for efficient inference on resource-
constrained platforms. However, training deep learning models with low-precision
weights and activations involves a demanding optimization task, which calls
for minimizing a stage-wise loss function subject to a discrete set-constraint.
While numerous training methods have been proposed, existing studies for full
quantization of DNNs are mostly empirical. From a theoretical point of view,
we study practical techniques for overcoming the combinatorial nature of network
quantization. Specifically, we investigate a simple yet powerful projected gradient-
like algorithm for quantizing two-layer convolutional networks, by repeatedly moving
one step at float weights in the negative direction of a heuristic fake gradient of
the loss function (so-called coarse gradient) evaluated at quantized weights. For
the first time, we prove that under mild conditions, the sequence of quantized
weights recurrently visit the global optimum of the discrete minimization problem
for training a fully quantized network. We also show numerical evidence of the
recurrence phenomenon of weight evolution in training quantized deep networks.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Deep neural networks (DNNs) have been profoundly transforming machine learning, in applications of

computer vision, reinforcement learning, and natural language processing, and so on. While achieving hu-

man level or even super-human performances, DNNs typically have tremendous number of weights with

high resource consumption at inference time, which poses a challenge for their deployment on mobile de-

vices used in our daily lives. To address this challenge, research efforts have been made to the quantizing

weights and activations of DNNs while maintaining their superior performance. Quantization methods train

DNNs with the weights and activation values being constrained to low-precision arithmetic rather than the

conventional floating-point representation in full-precision. [11,27,3,26,17,28], which offer the feasibility of

* Corresponding author.

E-mail address: zlong6@uci.edu (Z. Long).

https://doi.org/10.1016/j.acha.2022.07.006
1063-5203/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

42 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Fig. 1. One-hidden-layer neural network. The first linear layer resembles a convolutional layer with each Zi being a patch of size n
and w being the shared weights or filter. The second linear layer serves as the classifier.

running DNNs on edge devices with limited memory storage and battery power. For example, DNNs for

ImageNet recognition [6] typically requires hundreds of megabytes storage and billions of floating-point op-

erations at inference time. In contrast, the XNOR-Net [18] with binary weights and activations can achieve

58× faster convolutional operations and 32× memory savings, compared with the float counterpart.

Mathematically, training a fully quantized DNN requires solving a challenging optimization problem

with a piecewise constant (and non-convex) training loss function and a discrete set-constraint. That is, one

considers the following constrained population risk minimization problem:

min
w

f(w) := Ex∼p(x)[ℓ(w; x)] subject to w ∈ Q

where p(x) is the probability distribution of data; ℓ(w; x) is the sample loss function for input x; Q abstractly

denotes the discrete set of quantized weights.

1.1. Problem setup

In this paper, we consider the training of a one-hidden-layer model that outputs the prediction for any

input sample Z ∈ R
m×n:

y(Z; w) :=
m∑

i=1

viσ
(

Z⊤
i w

)
= v⊤σ (Zw) (1)

where Z⊤
i denotes the i-th row vector of Z; w ∈ R

n is the trainable weights in the first linear layer, and

v ∈ R
m the weights in the second linear layer which are assumed to be known and fixed during the training

process; the activation function σ(x) = 1{x>0} is binary, acting component-wise on the vector Zw. The

label is generated according to y∗
Z := y(Z; w∗) for some unknown true parameters w∗ ∈ R

n (see Fig. 1).

We fit the described model with quantized weights w ∈ Q and binary activation function σ(x) = 1{x>0}
on the i.i.d. Gaussian data {(Z, y∗

Z)}Z∼N (0,I). In this paper, we will focus on the cases of binary and ternary

weights. In the binary case, every quantized weight in w is either α or −α for some universal real-valued

constant α > 0, or equivalently, Q = R+ × {±1}n
; this setup of binary weights is widely adopted in the

literature; for example, [18]. Similarly in the ternary case, we take Q = R+ × {0, ±1}n
; see [14,25] for

examples.

Furthermore, we use the squared loss to measure the discrepancy between the model output y(Z; w) and

the true label y∗
Z :

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 43

ℓ(w; Z) :=
1

2
(y(Z; w) − y∗

Z)
2

=
1

2

(
v⊤σ(Zw) − v⊤σ(Zw∗)

)2
,

(2)

and cast the learning task as the following population loss minimization problem:

min
w∈Rn

f(w) := EZ∼N (0,I) [ℓ(w; Z)] subject to w ∈ Q (3)

where the sample loss function ℓ(w; Z) is given by (2). Hereby it is not hard to show that the gradient of

ℓ(w; Z) w.r.t. w is

∇wℓ(w; Z) = Z⊤ (σ′(Zw) ⊙ v) (y(Z; w) − y∗
Z) . (4)

Note that σ′ is zero a.e., which makes ∇wℓ(w; Z) zero a.e. and thus inapplicable to the training.

In this setting, we study the following iterative algorithm for training fully quantized networks

{
yt+1 = yt − ηt E[∇̃wℓ(wt; x)]

wt+1 = projQ(yt+1),
(QUANT)

where ∇̃wℓ denotes some heuristic modification of the vanished gradient ∇wℓ in (4) based on the so-

called straight-through estimator (STE) [1,9], rendering a valid search direction; see section 2.1 for details.

Following [24], we shall refer to this fake ‘gradient’ induced by STE as coarse gradient throughout this

paper.

1.2. Related works

For the best possible performance under quantization, the pre-trained full-precision networks need to be

re-trained. In the regime of weight quantization, the BinaryConnect scheme:

{
yt+1 = yt − ηt E[∇wℓ(wt; x)]

wt+1 = projQ(yt+1)
(5)

was first proposed in [5] for training DNNs with binary (1-bit) weights. It is similar to QUANT, but

simply uses the standard gradient ∇wℓ as the activation values were not quantized. The method was then

extended to multi-bit weight quantization such as ternary weight networks [14]. On the theoretical side,

[15] analyzed the convergence of BinaryConnect scheme for weight quantization, and proved that {wt}
converge to an error floor region of the optimal quantized weights under strong convexity and smoothness

assumptions on f . Recently, [16] used an algorithm called “error feedback” for pruning networks [7,22]. It

is basically the same as BinaryConnect, except that the weight quantization step projQ is replaced with

weight pruning/thresholding which can also be viewed as a projection. The authors showed the convergence

to a neighborhood of optimal solution under strong convexity and smoothness assumptions whose radius

is O(
√

d) with d being the number of model parameters. Moreover, it remains unclear whether the global

optimum can actually be reached in this setting.

The idea of STE has been extensively used for efficiently handling discrete-valued functions arising in

machine learning problems. A STE, used in the backward pass only, is a heuristic proxy that substitutes the

a.e. zero derivative of discrete component composited in the loss function when computing the gradient under

chain rule. Its applications include, but are not limited to, network quantization [10,3,27,4,11,21,2], neural

architecture search [20], knowledge graphs [23], discrete latent representations [12]. For networks with binary

44 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

activations (and real-valued weights), [24] showed that STE-based gradient (called coarse gradient) methods

converge only when a proper STE like ReLU STE [3] is used. And they proved that the negative of the

resulting coarse gradient points to a descent direction that reduces the training loss. For quantization of both

weights and activations, [10,11,3,4,27] utilized QUANT scheme which is the combination of BinaryConnect

and STE, and achieved state-of-the-art classification accuracies. Yet to our best knowledge, no convergence

results of QUANT have been established to date.

1.3. Main contributions

In this paper, we examine the quantization of one-hidden-layer networks with binary activation and

binary or ternary weights using the QUANT algorithm. Surprisingly, the sequence of quantized weights

{wt} generated by QUANT is generically divergent. Our key contributions are the first theoretical results

on the dynamics of QUANT algorithm for learning fully quantized neural nets: (1) we prove the generic

divergence if the teacher parameters are not in a quantized state, and give an explicit example of oscillatory

divergence behavior (the sequence {wt} has period 3 and jumps between sub-optimal quantized states; see

Example 1). (2) We explicitly point out, in the ternary case, the n (out of 3n − 1) sub-optimal quantized

states that {wt} could visit infinite many times; see Remark 1 and Lemma 8. (3) We prove that {wt}
oscillates around the global optimum of quantization problem. Under conditions that teacher parameters

and their quantized values are close enough (see Theorem 1), {wt} visits the quantized teacher parameters

(the optimum) infinitely often (recurrence). Compared with theoretical results for BinaryConnect [15,16],

our analysis is more precise and in depth in order to overcome a biased gradient modification in QUANT

based on straight-through estimator (STE) [9,1]. Our result is stronger in that the recurrence behavior at

global minimum holds without global convexity assumption of the loss function.

Organization. In section 2, we introduce the concept of coarse gradient and present some useful preliminary

results about the QUANT algorithm. In section 3, we summarize the main results regarding the recurrence

behavior of QUANT algorithm. More technical details and sketch of proofs are presented in section 4.

2. Preliminaries

We investigate the convergence behavior of QUANT described in Algorithm 1 for solving the quantization

problem (3). In Algorithm 1, ∇̃f := E[∇̃wℓ(wt; x)] stands for coarse gradient [24] in expectation specified

in section 2.1 below, which side-steps the vanished gradient issue. Since the loss function ℓ(w; Z) defined in

(2) is scale-invariant, i.e., ℓ(Z; w) = ℓ(Z; w/c) for any scalar c > 0, without loss of generality, we assume

that ‖w∗‖ = 1 is unit-normed.

Algorithm 1: QUANT algorithm for solving (3).

Input: number of iterations T , learning rate ηt, weight bits b;

Initialize: auxiliary real-valued weights y0 ∈ R
n, iteration number t = 1;

while t ≤ T do

yt = yt−1 − ηt∇̃f(wt−1);

wt = projQ(yt) ;
t = t + 1;

end

In addition, throughout this paper we make the following assumptions on the learning rate ηt > 0:

1.
∑∞

t=1 ηt = ∞.

2. ηt is upper bounded by some positive constant η.

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 45

2.1. Coarse gradient

In this part, we specify the coarse gradient ∇̃f(w) in Algorithm 1. As shown in (4), the standard gradient

of ℓ(w; Z) w.r.t. w is given by

∇wℓ(w; Z) = Z⊤ (σ′(Zw) ⊙ v) (y(Z; w) − y∗
Z) .

The associated coarse gradient w.r.t. w associated with the sample (Z, y∗
Z) is given by replacing σ′ with

a surrogate derivative, known as straight-through estimator (STE) [1,24]. Here we consider the derivative

of ReLU function μ(x) = max{x, 0} which is a widely used STE for quantization, namely, we modify the

original gradient ∇wℓ(w; Z) as follows:

∇̃wℓ(w; Z) = Z⊤ (μ′(Zw) ⊙ v) (y(Z; w) − y∗
Z) .

The coarse gradient induced by ReLU STE μ′ is just the expectation of ∇̃wℓ(w; Z) over Z ∼ N (0, I). We

evaluate the coarse gradient ∇̃f(w) used in Algorithm 1:

Lemma 1. The expected coarse gradient of ℓ(w; Z) w.r.t. w is

∇̃f(w) :=EZ∼N (0,I)[∇̃wℓ(w; Z)]

=
‖v‖2

2
√

2π

(
w

‖w‖ − w∗
)

.
(6)

2.2. Characterization of optimal solutions

To study the convergence of Algorithm 1, we first obtain the closed-form expression of the objective

function in (2), which only depends on the angle between quantized weight vector w and the true weight

vector w∗. This helps us find the expression of global minimum to (1).

Lemma 2. Let w 	= 0 be nonzero vector.

• the training loss in (3) is given by

f(w) =
‖v‖2

2π
arccos

(
w⊤w∗

‖w‖

)

• For any δ > 0, w = δ · projQ(w∗) is a global optimum of quantization problem (3).

The above result can be easily derived from Lemma 1 of [24], so we omit the proof. Lemma 2 states

that the optimal quantized weights are just the projection of w∗ onto Q, i.e., the direct quantization of

teacher parameters w∗. Note that the projection/quantization may not be unique, we refer to projQ(y) as

any choice of the projection of y onto Q.

2.3. Weight quantization step

The following two lemmas give the closed-form formulas of the projection/quantization projQ(·) in Al-

gorithm 1 in the binary and ternary cases, respectively.

46 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Lemma 3 (Binary Case). For any non-zero y ∈ R
n, the projection of y onto Q = R+ × {±1}n is

projQ(y) =
‖y‖1

n
s̃ign (y) ,

where the sign function acts element-wise

s̃ign (y)i =

{
1 if yi ≥ 0

−1 if yi < 0.

The above lemma is due to [18]. In the ternary case, [25] gives the following result:

Lemma 4 (Ternary Case). For any non-zero y ∈ R
n, the projection of y on Q = R+ × {0, ±1}n is

projQ(y) =

∥∥∥y[j∗]

∥∥∥
1

j∗ sign
(

y[j∗]

)

where j∗ = arg max1≤j≤n

∥∥∥y[j]

∥∥∥
2

1

j
, and y[j] ∈ R

n extracts the first j largest entries in magnitude of y and

enforces 0 elsewhere. Here,

sign (y)i =

⎧
⎪⎪⎨
⎪⎪⎩

1 if yi > 0

0 if yi = 0

−1 if yi < 0.

3. Main results

By Lemma 2, we assume, for the ease of presentation, that the iterates {wt} are normalized, that is, we

re-define wt in Algorithm 1 by

wt = p̃rojQ(yt) :=
projQ(yt)∥∥projQ(yt)

∥∥

Our results extend trivially to the original QUANT without normalization as the value of f(w) does not

depend on ‖w‖. Furthermore, we denote by p̃rojQ(w∗) the normalization of the quantization/projection of

w∗, projQ(w∗), which is a global minimum according to Lemma 2. Our main results show that the optimum

p̃rojQ(w∗) is recurrent as long as w∗ is close to its normalized quantization.

Theorem 1. Consider the setup of quantization problem (3). Let Q be either R+ × {±1}n (binary case)

or R+ × {0, ±1}n (ternary case). There exists constant ǫ > 0 that depends on the weight bit-width and

dimension n only, such that for any w∗ with

0 <
∥∥∥w∗ − p̃rojQ(w∗)

∥∥∥ < ǫ,

we have wt = p̃rojQ(w∗) for infinitely many t values, where {wt} is the sequence generated by Algorithm 1

with any initialization.

Intuitively, ternary weights should work better than binary weights. The following remark confirms this

intuition by showing that the number of points where wt visits infinitely many times is limited.

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 47

Remark 1. In the ternary case, we can further prove that the sequence {wt} generated by Algorithm 1 has

at most n sub-sequential limits.

4. Proof sketch

On one hand, the binary case is rather simple. We show that part of the coordinates is stable while

others have oscillating sign. We further prove that the set of oscillating coordinates is not empty as long as

w∗ /∈ Q = R+ × {±1}n is not quantized.

On the other hand, the proof of the ternary case follows the following steps. Our first step shows the

sequence yt generated by Algorithm 1 is bounded away from the origin for all but finitely many t values.

Then, our second step shows each coordinate of yt is of the same sign of w∗ for all but finitely many t values.

This forces yt to stay in the same orthant to which w∗ belongs. As a matter of fact, an n-dimensional space

has in total 2n orthants, which means yt can only stay in a small region near w∗. After that, our third step

furthermore cuts the orthant into n! congruent cones and argues yt must stay in the same cone where w∗

is for all but finitely many t values. In the last step, we prove the ternary case of Theorem 1, which asserts

that as long as the underlying true parameter w∗ is close to quantized state Q = R+ × {0, ±1}n, i.e., any

vertex of the cone it belongs to, the optimum is guaranteed to be recurrent.

4.1. Binary weight

In view of Lemmas 2 and 3, we have that the normalized optimum of (3) is 1√
n

s̃ign (w∗). The Lemma

below shows that some coordinates of wt generated by Algorithm 1 have oscillating signs.

Proposition 1. Let wt be any infinite sequence generated by Algorithm 1. If |w∗
j | < 1√

n
, then there exist

infinitely many t1 and t2 such that wt1
j = 1√

n
and wt2

j = − 1√
n

.

The above lemma clearly implies that wt does not converge, as long as w∗ /∈ Q.

Corollary 1. If w∗ /∈ Q, then any sequence {wt} generated by Algorithm 1 does not converge.

Since Algorithm 1 does not have a limit unless the weights in the network are already quantized, we ask

a natural question: Can we guarantee the optimum to be visited infinitely many times? The general answer

is no. We have the following example demonstrating that the optimum may never be achieved. We refer the

proof of the following example to the appendix.

Example 1. Let w∗ =
(

1
6 , 1

6 , 1
6 , 1

2

√
11
3

)
so that the best the optimum p̃rojQw∗ =

(
1
2 , 1

2 , 1
2 , 1

2

)
. Let ηt = η,

λ = η‖v‖2

6
√

2π
and

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y0
1 ∈ (−λ, 0)

y0
2 ∈ (0, λ)

y0
3 ∈ (λ, 2λ)

y0
4 ∈ (0, ∞)

the sequence {wt} generated by Algorithm 1 with initialization y0 satisfies wt+3 = wt and wt 	= p̃rojQw∗

for all t.

In the following, we give a sufficient condition for the optimum to be recurrent. The condition requires

w∗ to be close to Q. The following result is for the binary case of Theorem 1.

48 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Theorem 1 (Binary Case). If the optimum ŵ := p̃rojQ(w∗) = 1√
n

s̃ign (w∗) of (3) satisfies 0 <∑
|w∗

j |< 1√
n

|w∗
j − ŵj | < 2√

n
then there exist infinitely many t values for any sequence {wt} generated by

Algorithm 1 such that wt = p̃rojQ(w∗).

4.2. Ternary weights

The first result shows that wt generated by Algorithm 1 is generally divergent, and it converges only

when the true parameters w∗ ∈ Q = R+ × {0, ±1}n.

Proposition 2 (Ternary Case). Let {wt} be any sequence generated by Algorithm 1. If w∗ /∈ Q = R+ ×
{0, ±1}n, then {wt} is not a convergent sequence.

In what follows, we detail the proof of convergence behavior of Algorithm 1.

Our first step is to rule out an exceptional case that the direction of yt changes significantly in only one

iteration. As shown in Lemma 1, the coarse gradient is bounded by a constant depending only on the fixed

weight vector v. So it suffices to show that ‖yt‖ is bounded away from zero for all but finitely many t values.

Lemma 5. Let {yt} be any auxiliary sequence generated by Algorithm 1. If w∗ /∈ Q, then ‖yt‖1 converges to

infinity as t increases.

Lemma 5 shows that for any positive constant c > 0, we have ‖yt‖1 > c for all but finitely many t values.

Since Lemma 5 guarantees that the direction of yt will not change significantly, we cut down the region

that yt can belong to in two steps. To describe our first cut down, we need the following definition to make

our statement precise.

Definition 1. For any x ∈ R
n, we define the orthant of x as

O(x) := {y ∈ R
n : sign (y) = sign (x)} ,

where sign (·) acts coordinate-wise. Furthermore, we say O(x) is regular if any coordinate of x is not zero.

We state some basic properties of the defined orthant.

Proposition 3. For any x, y ∈ R
n, the following statements are true:

1. Either O(x) = O(y) or O(x) ∩ O(y) = ∅.

2. x ∈ O(x).

3. ∪x∈RnO(x) = R
n.

4. There are in total 3n orthants.

5. There are in total 2n regular orthants.

Lemma 6. Let {yt} be any auxiliary sequence generated by Algorithm 1. If w∗ /∈ Qn, then any subsequential

limit of ỹt := yt

‖yt‖ belongs to the closure of O(w∗). Furthermore, if O(w∗) is regular, then yt lies in O(w∗)

for all but finitely many t values.

In our previous step, we have partitioned Rn into orthants and showed that yt enter into a small neigh-

borhood of the orthant where w∗ stays. Now, we prove a stronger result based on the conclusion of our

previous step. We would like to cut each orthant into several congruent cones which we shall define later and

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 49

argue yt will move and stay in close neighborhood of the cone where w∗ stays. This step makes a stronger

statement because we manage to shrink the size of the region where yt can stay.

Definition 2. For any non-zero vector x ∈ R
n, we define the cone of x to be

Cone(x) :=

{
y ∈ O(x) :

sign (|yj | − |yi|) = sign (|xj | − |xi|) for ∀i, j ∈ [n]

}
.

Moreover, we say Cone(x) is regular if O(x) is regular and any |xj | 	= |xi| for all j 	= i.

Proposition 4. For any x, y ∈ R
n, the following statements are true:

1. Either Cone(x) = Cone(y) or Cone(x) ∩ Cone(y) = ∅.

2. x ∈ Cone(x).

3. If y ∈ Cone(x), then Cone(y) = Cone(x).

4. ∪y∈O(x)Cone(y) = O(x).

5. Any regular orthant contains n! regular cones.

Lemma 7. Let {yt} be any auxiliary real-valued sequence generated by Algorithm 1. If w∗ /∈ Q, then any

sub-sequential limit of ỹt := yt

‖yt‖ belongs to the closure of Cone(w∗). Moreover, if Cone(w∗) is regular,

then yt ∈ Cone(w∗) for all but finitely many t values.

The auxiliary weight vector yt can only stay in a small region around w∗ for large t values.

Definition 3. For any point x ∈ R
n, assume (j1, j2, · · · , jn) is a permutation of [n] such that

|xj1
| ≥ |xj2

| ≥ · · · ≥ |xjn
|

We define the set of vertexes of x to be

Λ(x) :=
{

1√
k

k∑

i=1

sign (xji
) eji

: xjk+1
	= xjk

are nonzeros

}
.

Below are some basic facts about connection between vertexes and cones.

Proposition 5. For any x, y ∈ R
n let k := |Λ(x)|, the following statements are true:

1. 0 ≤ k ≤ n.

2. Λ(x) is empty if and only if x = 0.

3. Λ(x) is a subset of the boundary of Cone(x).

4. Cone(x) = Cone(y) if and only if Λ(x) = Λ(y).

5. p̃rojQ(x) ∈ Λ(x).

6. y lies in Cone(x) if and only if there exists k positive numbers {μz(y) : z ∈ Λ(x)} such that y =∑
z∈Λ(x) μz(y)z.

7. y lies in the closure of Cone(x) if and only if there exists k non-negative numbers {μz(y) : z ∈ Λ(x)}
such that y =

∑
z∈Λ(x) μz(y)z.

50 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Table 1
Validation Accuracy of LeNet-5 on MNIST and ResNet-20/VGG-11 on CIFAR-10.

float binary ternary

LeNet-5 99.37 99.33 99.34
ResNet-20 92.33 89.42 90.86
VGG-11 92.15 89.47 90.91

8. ∪x∈Rn Λ(x) = {x ∈ Q : ‖x‖ = 1}.

Lemma 8. Let {wt} be the sequence generated by Algorithm 1. If w∗ /∈ Q = R+ ×{0, ±1}n, then wt ∈ Λ(w∗)

for all but finitely many t values.

The following result is the ternary case of Theorem 1 stated in section 3.

Theorem 1 (Ternary Case). Let {zj}k

j=1 = Λ(w∗) where z1 = p̃rojQw∗ is the optimum and w∗ =
∑k

j=1 λjzj. If 0 <
∑k

j=2 λj < 1, we have wt = p̃rojQw∗ for infinitely many t values, where wt is any

infinite sequence generated by Algorithm 1 with any initialization.

Intuitively, the parameter λj in Theorem 1 stands for the proportion of time that {wt} stays at zj . For

instance, if λj ≈ 1, then most of {wt} stay at zj so that the oscillation has a longer ‘period’ and is harder

to observe. On the contrary, if all λj’s are almost the same then {wt} behaves like uniform distribution and

oscillation becomes more obvious. Beside λj’s, a smaller learning rate can render yt moves slower which can

also slow down the oscillation. Although there are ways to stabilize the training process, both our theorem

and the experiments in the next section suggests the oscillation behavior is inevitable.

5. Experiments

In this section, we implement QUANT algorithm on both synthetic data and MNIST/CIFAR image

data. Our goals are (1) to validate our theoretical findings and (2) to show the appearance of the oscillation

behavior in more complicated setups. With that said, we emphasize that we did not extensively tune the

hyper-parameters or use ad-hoc tricks to achieve the best possible validation accuracy. More comprehensive

experimental results for QUANT-based approaches can be found in, for examples, [3,4,11,27]. Here we

report the validation accuracies on MNIST and CIFAR-10 for fully quantized networks in Table 1. For both

synthetic and image data sets, we observed the oscillation behavior.

5.1. Synthetic data

We take m = 4, n = 8 in (1) and construct v ∼ N(0, Im) and w∗ ∼ N(0, In) be random vectors. For

each run, we fix v and w∗ and train the neural network (1) by algorithm (1) for 200 iterations with a

learning rate being 0.1. Fig. 2 show the evolution of binary/ternary weight of wt in the last 100 iterations.

Each block of size 8 × 100 corresponds to the evolution of wt during the 100 iterations. The (quantized)

global minimum projQw∗ for each run is shown on the right side of the corresponding subplot in Fig. 2.

5.2. MNIST

We train LeNet-5 with binary/ternary weights and 4-bit activations using QUANT algorithm. For deep

networks, the (quantized) global optimum is generally unknown, we instead show the oscillating behavior

around local optimum. Note that Fig. 4 shows the training loss no longer drop significantly during the last

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 51

Fig. 2. Evolution of Weight signs of synthetic network described in (1). Each of the 8 large blocks is a colored display of weight sign
values via 8 × 100 matrix (i.e., 8 filter weight signs evolved over the last 100 iterations). The bars to the right of blocks are the
corresponding optima. Top two rows: Binary weight signs, red /blue for 1/−1. Bottom two rows: Ternary weight signs, red/green/blue
for 1/0/−1.

Fig. 3. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of LeNet-5. Each of the six 25 ×200 blocks corresponds to
evolution of the 5 × 5 convolutional filter over 200 iterations. Top three rows: Binary weights over the last 600 iterations of training,
red/blue for sign values 1/−1. Bottom three rows: Ternary weights over the last 600 iterations of training, red/green/blue for sign
values 1/0/−1.

30 epochs (50 in total). This suggests the network parameters have reached a local valley. However, Fig. 3

shows the iterating sequence of model parameters still have oscillating signs towards the end of training.

Fig. 3 shows the evolution of the quantized weights of one convolutional filter in the first convolutional

layer during the last 600 iterations. To visualize the weights, each quantized filter is reshaped into a 25-

52 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Fig. 4. LeNet-5 Training Loss v.s. Epoch. Left: Binary weights. Bottom: Ternary weights.

dimensional column vector. Each block (3 in a group) of size 25 × 200 corresponds to the evolution of the

one filter during 200 iterations. As we can see from these two figures, a proportion of the weights do not

converge to a limit but rather have oscillating signs.

5.3. CIFAR-10

We repeat the experiments on CIFAR-10 [13] with ResNet-20/VGG-11. We train ResNet-20 [8]/VGG-

11 [19] with binary/ternary weights and 4-bits activation using QUANT for 200 epochs. We refer to the

appendix for some figures that show similar oscillation behavior. Towards the end of training, although

there has been no noticeable decay of training loss, we can see a clearer pattern of the oscillating signs of

the weights.

6. Concluding remarks

We studied the convergence behavior of widely used QUANT algorithm [10,3,4,27] for the quantization of

one-hidden-layer networks. We showed that the sequence of quantized weights {wt} generated by QUANT

is generically divergent if the teacher parameters are not in a quantized state, and constructed an explicit

example of oscillatory divergence behavior. Under conditions that teacher parameters and their quantized

values are close enough, we proved the recurrence of QUANT algorithm at the global minimum.

Acknowledgment

This work was partially supported by NSF grants IIS-1632935, DMS-1854434, DMS-1924548, DMS-

1924935, and DMS-1952644.

Appendix A

Lemma 1. The expected coarse gradient of ℓ(w; Z) w.r.t. w is

∇̃f(w) =
‖v‖2

2
√

2π

(
w

‖w‖ − w∗
)

. (6)

Proof or Lemma 1. [24] gives

∇̃f(w) =
‖v∗‖2

√
2π

⎛
⎝ w

‖w‖ − cos

(
θ

2

) w
‖w‖ + w∗

∥∥∥ w
‖w‖ + w∗

∥∥∥

⎞
⎠ .

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 53

0

w̃

w∗

w̃+w
∗

‖w̃+w
∗‖

θ
2 θ

2

cos
(

θ
2

)

Fig. 5. 2-dim section of R
n spanned by w̃ and w∗.

Let w̃ = w
‖w‖ , we can easily see from Fig. 5 that the coarse gradient can be further simplified as (6). �

Proposition 1. Let wt be any infinite sequence generated by Algorithm 1. If |w∗
j | < 1√

n
, then there exist

infinitely many t1 and t2 values such that wt1
j = 1√

n
and wt2

j = − 1√
n

.

Proof of Lemma 1. For notational simplicity, since
∥∥w∗

j

∥∥ < 1√
n

, we have

α :=
1√
n

− w∗
j > 0 and β :=

1√
n

+ w∗
j > 0.

Using Lemma 3 in Algorithm 1, we see that

yt+1
j = yt

j + ηt

‖v‖2

2
√

2π
(w∗

j − wt
j)

=yt
j + ηt

‖v‖2

2
√

2π

(
w∗

j − 1√
n

s̃ign
(
yt

j

))
,

and thus

yt+1
j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

yt
j − ηt

‖v‖2

2
√

2π
α if yt

j ≥ 0

yt
j + ηt

‖v‖2

2
√

2π
β if yt

j < 0

Since yt
j is bounded for each fixed t ≥ 0 and j ∈ [n], our desired result follows from our assumptions on

learning rate ηt. �

Corollary 1. If w∗ /∈ Q, any sequence {wt} generated by Algorithm 1 does not converge.

Proof of Corollary 1. Since w∗ /∈ Q̃n
1 , we know there must exist some j ∈ [n] such that |w∗

j | < 1√
n

and

Proposition 1 gives our desired result. �

Example 1. Let w∗ =
(

1
6 , 1

6 , 1
6 , 1

2

√
11
3

)
so that the best the optimum p̃rojQw∗ =

(
1
2 , 1

2 , 1
2 , 1

2

)
. Let ηt = η,

λ = η‖v‖2

6
√

2π
and

54 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y0
1 ∈ (−λ, 0)

y0
2 ∈ (0, λ)

y0
3 ∈ (λ, 2λ)

y0
4 ∈ (0, ∞)

the sequence {wt} generated by Algorithm 1 with initialization y0 satisfies wt+3 = wt and wt 	= p̃rojQw∗

for all t.

Proof of Example 1. In order to show the periodicity, it suffices to show wt+3
j = wt

j . Note that ∂̃w4
f(w) < 0

we have yt
4 > 0 for all t since w0

4 > 0. It follows that wt
4 = w0

4 = 1
2 . Next, we would like to show the

periodicity of wt
j for j ∈ [3]. Note that

yt+1
j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

yt
j +

η ‖v‖2

2
√

2π

(
w∗

j +
1

2

)
if yt

j < 0

yt
j +

η ‖v‖2

2
√

2π

(
−w∗

j +
1

2

)
if yt

j ≥ 0

we choose w∗
j = 1

6 so that with

λ =
η ‖v‖2

6
√

2π

we have

yt+1
j =

{
yt

j + 2λ if yt
j < 0

yt
j − λ if yt

j ≥ 0

Hence, we have

wt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−1

2
,

1

2
,

1

2
,

1

2

)
if t ≡ 0(mod 3)

(
1

2
, −1

2
,

1

2
,

1

2

)
if t ≡ 1(mod 3)

(
1

2
,

1

2
, −1

2
,

1

2

)
if t ≡ 2(mod 3)

�

Theorem 1 (Binary Case). If the optimum ŵ := p̃rojQn
1
w∗ of (3) satisfies

∑

|w∗
j |< 1√

n

|w∗
j − ŵj | <

2√
n

then there exists infinitely many t values for any sequence {wt} generated by Algorithm 1 such that wt =

p̃rojQ(w∗).

Proof of Theorem 1 on b = 1. Without loss of generality, we can assume w∗
j ≥ 0 for all j ∈ [n] so that

ŵj = 1√
n

for all j.

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 55

Firstly, if w∗
j > 1√

n
, we know

yt+1
j = yt

j + ηt

‖v‖2

2
√

2π

(
w∗

j − wt
j

)
≥ wt

j + ηt

‖v‖2

2
√

2π

(
w∗

j − 1√
n

)
,

so that

yt
j ≥ y0

j +
‖v‖2

2
√

2π

(
t−1∑

s=0

ηs

)(
w∗

j − 1√
n

)

where the right hand side goes to infinity and thus wt
j = ŵj for all but finitely many t values.

Secondly, if w∗
j = 1√

n
, we know when wt

j < 0:

yt+1
j = yt

j + ηt

‖v‖2

2
√

2π

(
w∗

j − wt
j

)
= yt

j + ηt

‖v‖2

2
√

2π

2√
n

holds so that there must exist some t such that yt
j > 0. Once yt

j > 0 we have w∗
j = wt

j so that yt+1
j = yt

j

and hence wt
j = ŵj for all but finitely many t values.

Third, if w∗
j < 1√

n
, we have yt

j · ∂̃jf(wt) > 0 so that yt
j is increasing when yt

j < 0 and decreasing when

yt
k > 0. This tells us yt

j is bounded uniformly in t. Furthermore,

yt
j = y0

j +
‖v‖2

2
√

2π

[(
t−1∑

s=0

1{
ws

j >0
}ηs

)(
w∗

j − 1√
n

)

+

(
t−1∑

s=0

1{
ws

j <0
}ηs

)(
w∗

j +
1√
n

)]
.

For notation simplicity, we let

αj =
1√
n

− w∗
j > 0 and βj = w∗

j +
1√
n

> 0,

at
j =

1

t

t−1∑

s=0

1{
ws

j >0
}ηs and bt

j =
1

t

t−1∑

s=0

1{
ws

j <0
}ηs.

Now, we have

yt
j − y0

j

t
=

‖v‖2

2
√

2π

(
−αjat

j + βjbt
j

)
.

Since yt
j is bounded for all w∗

j < 1√
n

, we let t → ∞ so that left hand side vanishes and

lim
t→∞

bt
j

at
j + bt

j

=
αj

αj + βj

.

By assumption, we have

lim
t→∞

n∑

j=1

bt
j

at
j + bt

j

=
n∑

j=1

αj

αj + βj

< 1.

56 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Hence, we know

lim
t→∞

t−1∑

s=0

1{ws=ŵ∗}ηs ≥ lim
t→∞

⎡
⎣
⎛
⎝1 −

n∑

j=1

bt
j

at
j + bt

j

⎞
⎠

t−1∑

s=0

ηs

⎤
⎦ = ∞,

where we used the assumption
∑∞

t=0 ηt = ∞. Now, the desired result follows. �

Proposition 2 (Ternary Case). Let wt be any sequence generated by Algorithm 1. If w∗ /∈ Q, then {wt} is

not a converging sequence.

Proof of Proposition 2. We prove by contradiction. Observe that Q ∩ Sn−1 is a finite set, we know wt

converges to w∞ is equivalent to wt = w∞ for all but finitely many t values. Assume wt = w∞ for all but

finitely many t values, we know there exists some T ≥ 0 such that wt = w∞ for all t ≥ T . Thus,

yT +t = yT −
t−1∑

s=0

ηT +s∇̃f
(
wT +s

)

= yT −
(

t−1∑

s=0

ηT +s

)
∇̃f (w∞)

= yt +

(
t−1∑

s=0

ηT +s

)
‖v‖2

2
√

2π
(w∗ − w∞) .

Now, we have

〈
yT +t, w∞〉 =

〈
yT , w∞〉+

(
t−1∑

s=0

ηT +s

)
‖v‖2

2
√

2π
〈w∗ − w∞, w∞〉

where

〈w∗ − w∞, w∞〉 = 〈w∗, w∞〉 − 1 < 0.

Note that
∑∞

s=0 ηT +s = ∞, there exists some T1(T), such that for all t > T1(T)

〈
yt, w∞〉 < 0.

This contradicts Lemma 4 and our desired result follows. �

Lemma 5. Let {yt} be any auxiliary sequence generated by Algorithm 1. If w∗ /∈ Q, then ‖yt‖1 converges to

infinity as t increases.

Proof of Lemma 5. Q ∩ Sn−1 is a compact set because it is finite. Also, since Q is symmetric, w∗ /∈ Q also

implies −w∗ /∈ Q. It follows that

α := inf
w∈Q∩Sn−1

θ (w∗, w) ∈ (0, π).

Hence, for any w ∈ Q ∩ Sn−1 we have

〈
−∇̃f(w), w∗〉 =

‖v‖2

2
√

2π
〈w∗ − w, w∗〉 ≥ ‖v‖2

2
√

2π
(1 − cos α) .

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 57

Now, we know

〈
yT , w∗〉 =

〈
y0, w∗〉+

T −1∑

t=0

ηt

〈
−∇̃f

(
wt
)

, w∗〉

≥
〈
y0, w∗〉+

(
T −1∑

t=0

ηt

)
‖v‖2

2
√

2π
· (1 − cos α) .

Let T → ∞, we see that limt→∞ ‖yt‖ = ∞ which is equivalent to limt→∞ ‖yt‖1 = ∞. �

Lemma 9. Let w = projQ(y), then |yj | < 1
5n

‖y‖1 implies wj = 0.

Proof of Lemma 9. Without loss of generality, we assume yi ≥ 0 for all i ∈ [n] and yj < 1
5n

‖y‖1 for a fixed

j ∈ [n]. Let δ = 1
5n

‖y‖1 and

jδ := | {i ∈ [n] : |yi| ≥ δ} |

we know jδ ≥ 1 by the principle of drawer. Now, with

j∗ = arg max

∥∥∥y[j]

∥∥∥
2

1

j

for any 1 ≤ k ≤ n − jδ

∥∥∥y[j∗]

∥∥∥
2

1

j∗ −

∥∥∥y[jδ+k]

∥∥∥
2

1

jδ + k

≥

∥∥∥y[jδ]

∥∥∥
2

1

jδ

−

∥∥∥y[jδ+k]

∥∥∥
2

1

jδ + k

=
(jδ + k)

∥∥∥y[jδ]

∥∥∥
2

1
− jδ

∥∥∥y[jδ+k]

∥∥∥
2

1

jδ (jδ + k)
,

where the numerator is

k
∥∥∥y[jδ]

∥∥∥
2

1
− jδ

(∥∥∥y[jδ+k]

∥∥∥
2

1
−
∥∥∥y[jδ]

∥∥∥
2

1

)

≥k

[∥∥∥y[jδ]

∥∥∥
2

1
− jδδ

(∥∥∥y[jδ+k]

∥∥∥
1

+
∥∥∥y[jδ]

∥∥∥
1

)]
.

With τ =

∥∥∥y[jδ+k]

∥∥∥
1

nδ
, we have

k

[∥∥∥y[jδ]

∥∥∥
2

1
− jδδ

(∥∥∥y[jδ+k]

∥∥∥
1

+
∥∥∥y[jδ]

∥∥∥
1

)]

≥k

[(∥∥∥y[jδ+k]

∥∥∥
1

− kδ
)2

− 2nδ
∥∥∥y[jδ+k]

∥∥∥
1

]

=k (nδ)
2 (

τ2 − 4τ + 1
)

.

58 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Note that

τ =

∥∥∥y[jδ+k]

∥∥∥
1

nδ
≥ ‖y‖1 − nδ

nδ
≥ 4,

we conclude that

∥∥∥y[j∗]

∥∥∥
2

1

j∗ >

∥∥∥y[jδ+k]

∥∥∥
2

1

jδ + k

and hence j∗ ≤ jδ. Now, Lemma 4 gives wj = 0. �

Lemma 10. Let {wt} and {yt} be the sequence and the auxiliary sequence generated by Algorithm 1. Assume

w∗ /∈ Q, the following statements hold.

• If w∗
j = 0, then yt

j is bounded and wt
j = 0 for all but finitely many t values.

• If w∗
j 	= 0, then sign

(
yt

j

)
= sign

(
w∗

j

)
for all but finitely many t values.

Proof of Lemma 10. On the one hand, we consider the case w∗
j = 0, so that

yt+1
j = yt

j + ηt

‖v‖2

2
√

2π

(
w∗

j − wt
j

)
= yt

j − ηt

‖v‖2

2
√

2π
wt

j .

Note that Lemma 4 shows yt
j and wt

j are of the same sign if wt
j 	= 0, we know yt

j is bounded by Cj :=

max
{

|y0
j |, η ‖v‖2

2
√

2π

}
. Moreover Lemma 5 shows ‖yt‖1 > 5nCj for all but finitely many t values. Finally, we

see from Lemma 9 that wt
j = 0 for all but finitely many t values.

On the other hand, consider the case w∗
j 	= 0. Without loss of generality, we can assume w∗

j > 0. Note

that whenever yt
j ≤ 0, we also have wt

j ≤ 0 so that

yt+1
j = yt

j + ηt

‖v‖2

2
√

2π

(
w∗

j − wt
j

)
≥ yt

j + ηt

‖v‖2

2
√

2π
w∗

j .

From the above inequality, we see that yt
j is increasing where the increment is bounded from below by

ηt
‖v‖2

2
√

2π
w∗

j > 0 where
∑

ηt = ∞, so that there must exist some Tj > 0 such that y
Tj

j > 0. With Lemma 5,

we can without loss of generality assume that ‖yt‖1 ≥ 5nη ‖v‖2

2
√

2π
for all t ≥ Tj . For ease of notation, we let

δ = η ‖v‖2

2
√

2π
so that ‖yt‖1 ≥ 5nδ for all t ≥ Tj . We shall next prove that yt

j ≥ 0 for all t ≥ Tj . We prove by

induction, assume yt
j > 0 for some t > Tj and show yt+1

j > 0.

1. If yt
j > δ,

yt+1
j = yt

j + ηt

‖v‖2

2
√

2π

(
w∗

j − wt
j

)
≥ yt

j − δ > 0.

2. If 0 < yt
j ≤ δ, since ‖yt‖1 ≥ 5nδ, Lemma 9 shows wt

j = 0 so that

yt+1
j = yt

j + ηt

‖v‖2

2
√

2π

(
w∗

j − wt
j

)
= yt

j +
ηtδ

η
w∗

j > yt
j > 0.

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 59

Combining the above two cases, we get our desired result. �

Lemma 6. Let {yt} be any auxiliary sequence generated by Algorithm 1. If w∗ /∈ Q, then any sub-sequential

limit of ỹt := yt

‖yt‖ belongs to the closure of O(w∗). Furthermore, if O(w∗) is regular, then yt lies in O(w∗)

for all but finitely many t values.

Proof of Lemma 6. By Lemma 10, we see that sign
(
yt

j

)
= sign

(
w∗

j

)
for all w∗

j 	= 0. We only need to prove

w∗
j = 0 implies limt→∞ ỹt

j = 0. Indeed, by Lemma 10, we know that yt
j is bounded by Cj while Lemma 5

tells us ‖yt‖ goes to infinity. Thus, limt→∞ ỹt
j =

yt
j

‖y‖ = 0. �

Lemma 11. Let {w∗} and {yt} be any sequence and auxiliary sequence generated by Algorithm 1. Assuming

that w∗ /∈ Qn
2 , we have the following fact.

1. If |w∗
j | > |w∗

i |, then |yt
j | > |yt

i | for all but finitely many t values.

2. If |w∗
j | = |w∗

i |, then
∣∣|yt

j | − |yt
i |
∣∣ is bounded and |wt

j | = |wt
i | for all but finitely many t values.

Proof of Lemma 11. Without loss of generality, we can assume w∗
1 ≥ w∗

2 ≥ · · · ≥ w∗
n ≥ 0.

For the first statement, we only need to show that w∗
j > w∗

j+1 implies yt
j > yt

j+1 for all but finitely many

t values. Note that whenever yt
j < yt

j+1, then Lemma 4 implies wt
j ≤ wt

j+1, hence

yt+1
j − yt+1

j+1

=

(
yt

j + ηt

‖v‖2

2
√

2π

(
w∗

j − wt
j

)
)

−
(

yt
j+1 + ηt

‖v‖2

2
√

2π

(
w∗

j+1 − wt
j+1

)
)

=
(
yt

j − yt
j+1

)
+ ηt

‖v‖2

2
√

2π

[(
w∗

j − w∗
j+1

)
+
(
wt

j+1 − wt
j

)]

≥
(
yt

j − yt
j+1

)
+ ηt

‖v‖2

2
√

2π

(
w∗

j − w∗
j+1

)
.

Now that we know yt
j − yt

j+1 is increasing as long as it is negative and
∑

ηt = ∞. Therefore, we conclude

that there exist infinitely many t values such that yt
j − yt

j+1 > 0. We can therefore assume yT
j − yT

j+1 > 0,

where T is the constant in Lemma 5 such that ‖yt‖1 ≥ 5n
√

2ǫ for all t ≥ T where we set ǫ = η‖v∗‖2

√
2πn

. Next,

we would like to show yt
j − yt

j+1 > 0 for all t ≥ T by induction.

Next, assuming yt
j − yt

j+1 > 0, we want to show yt+1
j − yt+1

j+1 > 0.

On the one hand, if yt
j − yt

j+1 ≥ ǫ, we have

yt+1
j − yt+1

j+1

=
(
yt

j − yt
j+1

)
+ ηt

‖v‖2

2
√

2π

[(
w∗

j − w∗
j+1

)
+
(
wt

j+1 − wt
j

)]

>
(
yt

j − yt
j+1

)
+ ηt

‖v‖2

2
√

2π

(
wt

j+1 − wt
j

)

≥
(
yt

j − yt
j+1

)
− ηt

‖v‖2

2
√

2π

1√
n

≥
(
yt

j − yt
j+1

)
− ǫ ≥ 0.

On the other hand, if yt
j − yt

j+1 < ǫ, we still have

yt+1
j − yt+1

j+1 >
(
yt

j − yt
j+1

)
− ηt

‖v‖2

2
√

2π

(
wt

j − wt
j+1

)
,

60 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

so that it suffices to show wt
j = wt

j+1. From Lemma 4, we see that with

j∗ = arg max
j∈[n]

∥∥∥yt
[j]

∥∥∥
2

1

j
, (7)

we only need to show j 	= j∗. We prove by contradiction, assuming j = j∗ so that wt
j > 0 and wt

j+1 = 0.

Lemma 9 shows yt
j ≥ 1

5n
‖yt‖1. Also, (7) gives

∥∥∥yt
[j−1]

∥∥∥
2

1

j − 1
≤

∥∥∥yt
[j]

∥∥∥
2

1

j
=

(∥∥∥yt
[j−1]

∥∥∥
1

+ yt
j

)2

j
. (8)

Simplifying the above inequality, we get

⎛
⎝

∥∥∥yt
[j−1]

∥∥∥
1

yt
j

⎞
⎠

2

− 2(j − 1)

⎛
⎝

∥∥∥yt
[j−1]

∥∥∥
1

yt
j

⎞
⎠− (j − 1) ≤ 0.

Left hand side is a quadratic function of

(∥∥∥yt
[j−1]

∥∥∥
1

yt
j

)
, we know

∥∥∥yt
[j−1]

∥∥∥
1

yt
j

≤ j − 1 +
√

j(j − 1) ≤ n − 1 +
√

n(n − 1) < 2n. (9)

We write equation (8) in a different way and get

j ≥

(∥∥∥yt
[j−1]

∥∥∥
1

+ yt
j

)2

yt
j

(
2
∥∥∥yt

[j−1]

∥∥∥
1

+ yt
j

) . (10)

Now, we use j = j∗ again, to get

∥∥∥yt
[j]

∥∥∥
2

1

j
≤

∥∥∥yt
[j+1]

∥∥∥
2

1

j + 1
. (11)

Rewriting the above inequality, we get

j ≤

(∥∥∥yt
[j−1]

∥∥∥
1

+ yt
j

)2

yt
j+1

(
2
∥∥∥yt

[j−1]

∥∥∥
1

+ 2yt
j + yt

j+1

) . (12)

Combining (10) and (12), we get

(
yt

j − yt
j+1

)2 −
(

2
∥∥∥yt

[j−1]

∥∥∥
1

+ 4yt
j

) (
yt

j − yt
j+1

)
+ 2

(
yt

j

)2 ≤ 0.

Solving the above inequality, we get

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 61

yt
j − yt

j+1 ≥
∥∥∥yt

[j−1]

∥∥∥
1

+ 2yt
j

−
√∥∥∥yt

[j−1]

∥∥∥
2

1
+ 4

∥∥∥yt
[j−1]

∥∥∥
1

yt
j + 2(yt

j)2.

(13)

Combining (9) and (13), we get

yt
j − yt

j+1 ≥ (yt
j)2

(
2n + 2 −

√
4n2 + 4n + 2

)
>

(yt
j)2

2
. (14)

Recalling that yt
j ≥ 1

5n
‖yt‖1 ≥

√
2ǫ, we have

yt
j − yt

j+1 >
1

2

(‖yt‖1

5n

)2

> ǫ.

This contradiction shows j 	= j∗, and hence wt
j = wt

j+1 and it follows that yt+1
j > yt+1

j+1. Now, we have

proved our first statement.

For the second statement, since w∗
j = w∗

i , we have

yt+1
j − yt+1

i

=

(
yt

j + ηt

‖v‖2

2
√

2π

(
w∗

j − wt
j

)
)

−
(

yt
i + ηt

‖v‖2

2
√

2π

(
w∗

i − wt
i

)
)

=yt
j − yt

i − ηt

‖v‖2

2
√

2π

(
wt

j − wt
i

)
= yt

j − yt
i − 2

ηtǫ

η

(
wt

j − wt
i

)
.

Hence, we know that |yt
j − yt

i | is bounded by

Ci,j := max

{
|y0

j − y0
i |, η ‖v∗‖2

√
2π

}
.

Without loss of generality, we can assume j < i and min
{

yt
j , yt

i

}
≥ 0 by Lemma 10. Recalling (14), we

have wt
j 	= wt

i implying that

|yt
j − yt

i | >
max

{
yt

j , yt
i

}2

2
≥ 1

2

(‖yt‖
5n

)2

where the right hand side goes to infinity. This contradicts the boundedness of |yt
j −yt

i | if there are infinitely

many t values such that wt
j 	= wt

i . �

Lemma 7. Let {yt} be any auxiliary sequence generated by Algorithm 1. If w∗ /∈ Q, then any sub-sequential

limit of ỹt := yt

‖yt‖ belongs to the closure of Cone(w∗). Moreover, if Cone(w∗) is regular, then yt ∈
Cone(w∗) for all but finitely many t values.

Proof of Lemma 7. Note that we already have Lemma 6, we only need to show for any sub-sequential limit

y of ỹt, we have sign (|yj | − |yi|) = sign
(
|w∗

j | − |w∗
i |
)
. The first statement of Lemma 11 tells us that it is

true for all sign
(
|w∗

j | − |w∗
i |
)

	= 0. Thus, it suffices to show that |w∗
j | = |w∗

i | implies |yj | = |yi|.
Note that the second statement of Lemma 11 says that ||yj | − |yi|| is bounded by Ci,j , while Lemma 5

gives limt→∞ ‖yt‖ = ∞, we see that

62 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Fig. 6. Training Loss of CIFAR-10. Left: Binary/Ternary weight ResNet-20. Right: Binary/Ternary weight VGG-11.

|ỹj | = lim
k→∞

|ytk

j |
‖ytk ‖ = lim

k→∞
|ytk

i |
‖ytk ‖ = |ỹi|. �

Lemma 8. Let {wt} be the sequence generated by Algorithm 1. If w∗ /∈ Q, then wt ∈ Λ(w∗) for all but

finitely many t values.

Proof of Lemma 8. First, by Proposition 4, yt ∈ Cone(w∗) implies p̃rojQ(yt) ∈ Λ(w∗).

Second, let ∂̃Cone(w∗) = Cone(w∗) − Cone(w∗). Now, a non-zero yt ∈ ∂̃Cone(w∗) implies Cone(yt) ⊂
∂̃Cone(w∗) so that we also have p̃rojQ(yt) ∈ Λ(yt) ⊂ Λ(w∗).

Third, by compactness of Cone(w∗) ∩ Sn−1, we know there exists some ǫ > 0 such that ỹt := yt

‖yt‖ lies

in ǫ-neighborhood of Cone(w∗) ∩ Sn−1 implying p̃rojQ(yt) ∈ Λ(w∗).

Finally, Lemma 7 suggests ỹt lies in ǫ-neighborhood of Cone(w∗) for all but finitely many t values. We

get our desired result. �

Theorem 1 (Ternary Case). Let {zj}k

j=1 = Λ(w∗) where z1 = p̃rojQw∗ is the optimum and w∗ =
∑k

j=1 λjzj. If 0 <
∑k

j=2 λj < 1, we have wt = p̃rojQw∗ for infinite many t values, where wt is any

infinite sequence generated by Algorithm 1 with any initialization.

Proof of Theorem 1 (Ternary Case). Note that Lemma 7 suggests ỹt = yt

‖yt‖ lies in ǫ-neighborhood of

Cone(w∗) for all but finitely many t values. Let Λ(w∗) = {z1, · · · , zk} and define μt
j be the constants such

that

yt =

k∑

j=1

μt
jzj

which is determined uniquely by yt.

Let wt = zjt
, we know from Algorithm 1 that

yt+1 − yt = ηt

‖v‖2

2
√

2π
(w∗ − zjt

).

Thus

k∑

j=2

μt+1
j =

k∑

j=2

μt
j + ηt

‖v‖2

2
√

2π

⎡
⎣
⎛
⎝

k∑

j=2

λj

⎞
⎠− 1

⎤
⎦ .

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 63

Fig. 7. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of ResNet-20. Each of the three 27 × 200 blocks
corresponds to evolution of the 3 × 3 × 3 convolutional filter over 200 iterations. Binary weights over the last 600 iterations of
training, red/blue for sign values 1/−1.

Fig. 8. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of ResNet-20. Each of the three 27 × 200 blocks
corresponds to evolution of the 3 × 3 × 3 convolutional filter over 200 iterations. Ternary weights over the last 600 iterations of
training, red/green/blue for sign values 1/0/−1.

It follows that

k∑

j=2

μt
j = Constant +

(
t−1∑

s=0

ηs

)
‖v‖2

2
√

2π

⎡
⎣
⎛
⎝

k∑

j=2

λj

⎞
⎠− 1

⎤
⎦ < 0,

for large t’s. Now we see that when t is large enough, ỹt is bounded away from Cone(w∗) which contradicts

Lemma 7 and our desired result follows (see Figs. 6–10). �

64 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65

Fig. 9. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of VGG-11. Each of the three 27 ×200 blocks corresponds
to evolution of the 3 × 3 × 3 convolutional filter over 200 iterations. Binary weights over the last 600 iterations of training, red/blue
for sign values 1/−1.

Fig. 10. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of VGG-11. Each of the three 27 × 200 blocks
corresponds to evolution of the 3 × 3 × 3 convolutional filter over 200 iterations. Ternary weights over the last 600 iterations of
training, red/green/blue for sign values 1/0/−1.

References

[1] Yoshua Bengio, Nicholas Léonard, Aaron Courville, Estimating or propagating gradients through stochastic neurons for
conditional computation, arXiv preprint, arXiv :1308 .3432, 2013.

[2] Yaniv Blumenfeld, Dar Gilboa, Daniel Soudry, A mean field theory of quantized deep networks: the quantization-depth
trade-off, in: Advances in Neural Information Processing Systems, 2019, pp. 7036–7046.

[3] Zhaowei Cai, Xiaodong He, Jian Sun, Nuno Vasconcelos, Deep learning with low precision by half-wave gaussian quanti-
zation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[4] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, Kailash Gopalakr-
ishnan Pact, Parameterized clipping activation for quantized neural networks, arXiv preprint, arXiv :1805 .06085, 2018.

[5] Matthieu Courbariaux, Yoshua Bengio, Jean-Pierre David Binaryconnect, Training deep neural networks with binary
weights during propagations, in: Advances in Neural Information Processing Systems, 2015, pp. 3123–3131.

[6] J. Deng, W. Dong, R. Socher, L. Li, K. Li, F. Li, Imagenet: a large-scale hierarchical image database, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2009, pp. 248–255.

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41–65 65

[7] Song Han, Huizi Mao, William J. Dally, Deep compression: compressing deep neural networks with pruning, trained
quantization and huffman coding, arXiv preprint, arXiv :1510 .00149, 2015.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[9] Geoffrey Hinton, Neural networks for machine learning, coursera. Coursera, video lectures, 2012.
[10] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio, Binarized neural networks: training

neural networks with weights and activations constrained to +1 or -1, arXiv preprint, arXiv :1602 .02830, 2016.
[11] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio, Quantized neural networks: training

neural networks with low precision weights and activations, J. Mach. Learn. Res. 18 (2018) 1–30.
[12] Eric Jang, Shixiang Gu, Ben Poole, Categorical reparameterization with gumbel-softmax, in: International Conference on

Learning Representations (ICLR), 2017.
[13] Alex Krizhevsky, Learning multiple layers of features from tiny images, Tech Report, 2009.
[14] Fengfu Li, Bo Zhang, Bin Liu, Ternary weight networks, arXiv preprint, arXiv :1605 .04711, 2016.
[15] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, Tom Goldstein, Training quantized nets: a deeper under-

standing, in: Advances in Neural Information Processing Systems, 2017, pp. 5811–5821.
[16] Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, Martin Jaggi, Dynamic model pruning with feedback, in:

International Conference on Learning Representations, 2020.
[17] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, Max Welling, Relaxed quantization for dis-

cretized neural networks, in: International Conference on Learning Representations, 2019.
[18] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, Ali Farhadi Xnor-net, Imagenet classification using binary

convolutional neural networks, in: European Conference on Computer Vision, Springer, 2016, pp. 525–542.
[19] Karen Simonyan, Andrew Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint,

arXiv :1409 .1556, 2014.
[20] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Nissanka Bodhi Priyantha, Jie Liu, Diana Mar-

culescu, Single-path mobile automl: efficient convnet design and nas hyperparameter optimization, IEEE J. Sel. Top. Signal
Process. (2020).

[21] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki Yoshiyama, Javier Alonso García, Stephen Tiedemann, Thomas
Kemp, Akira Nakamura, Mixed precision dnns: all you need is a good parametrization, in: International Conference on
Learning Representations (ICLR), 2020.

[22] Xia Xiao, Zigeng Wang, Sanguthevar Rajasekaran Autoprune, Automatic network pruning by regularizing auxiliary pa-
rameters, in: Advances in Neural Information Processing Systems, 2019, pp. 13681–13691.

[23] Canran Xu, Ruijiang Li, Relation embedding with dihedral group in knowledge graph, in: Annual Conference of the
Association for Computational Linguistics, 2019.

[24] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley J. Osher, Yingyong Qi, Jack Xin, Understanding straight-through
estimator in training activation quantized neural nets, in: International Conference on Learning Representations, 2019.

[25] Penghang Yin, Shuai Zhang, Jack Xin, Yingyong Qi, Training ternary neural networks with exact proximal operator,
arXiv :1612 .06052 [abs], 2016.

[26] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, Yurong Chen, Incremental network quantization: towards lossless CNNs
with low-precision weights, arXiv preprint, arXiv :1702 .03044, 2017.

[27] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, Yuheng Zou Dorefa-net, Training low bitwidth convolutional
neural networks with low bitwidth gradients, arXiv preprint, arXiv :1606 .06160, 2016.

[28] Chenzhuo Zhu, Song Han, Huizi Mao, William J. Dally, Trained ternary quantization, arXiv preprint, arXiv :1612 .01064,
2016.

	Recurrence of optimum for training weight and activation quantized networks
	1 Introduction
	1.1 Problem setup
	1.2 Related works
	1.3 Main contributions

	2 Preliminaries
	2.1 Coarse gradient
	2.2 Characterization of optimal solutions
	2.3 Weight quantization step

	3 Main results
	4 Proof sketch
	4.1 Binary weight
	4.2 Ternary weights

	5 Experiments
	5.1 Synthetic data
	5.2 MNIST
	5.3 CIFAR-10

	6 Concluding remarks
	Acknowledgment
	References

