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weights and activations involves a demanding optimization task, which calls
for minimizing a stage-wise loss function subject to a discrete set-constraint.
While numerous training methods have been proposed, existing studies for full
quantization of DNNs are mostly empirical. From a theoretical point of view,
we study practical techniques for overcoming the combinatorial nature of network

Keywords: quantization. Specifically, we investigate a simple yet powerful projected gradient-
Quantization like algorithm for quantizing two-layer convolutional networks, by repeatedly moving
Neural networks one step at float weights in the negative direction of a heuristic fake gradient of
Discrete optimiztion the loss function (so-called coarse gradient) evaluated at quantized weights. For

Straight-through estimator the first time, we prove that under mild conditions, the sequence of quantized

weights recurrently visit the global optimum of the discrete minimization problem
for training a fully quantized network. We also show numerical evidence of the

recurrence phenomenon of weight evolution in training quantized deep networks.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Deep neural networks (DNNs) have been profoundly transforming machine learning, in applications of
computer vision, reinforcement learning, and natural language processing, and so on. While achieving hu-
man level or even super-human performances, DNNs typically have tremendous number of weights with
high resource consumption at inference time, which poses a challenge for their deployment on mobile de-
vices used in our daily lives. To address this challenge, research efforts have been made to the quantizing
weights and activations of DNNs while maintaining their superior performance. Quantization methods train
DNNs with the weights and activation values being constrained to low-precision arithmetic rather than the
conventional floating-point representation in full-precision. [11,27,3,26,17,28], which offer the feasibility of
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Fig. 1. One-hidden-layer neural network. The first linear layer resembles a convolutional layer with each Z; being a patch of size n
and w being the shared weights or filter. The second linear layer serves as the classifier.

running DNNs on edge devices with limited memory storage and battery power. For example, DNNs for
ImageNet recognition [6] typically requires hundreds of megabytes storage and billions of floating-point op-
erations at inference time. In contrast, the XNOR-Net [18] with binary weights and activations can achieve
58x faster convolutional operations and 32x memory savings, compared with the float counterpart.

Mathematically, training a fully quantized DNN requires solving a challenging optimization problem
with a piecewise constant (and non-convex) training loss function and a discrete set-constraint. That is, one
considers the following constrained population risk minimization problem:

min f(w) := Egp(a)[f(w; )] subject to w € Q

where p() is the probability distribution of data; £(w; x) is the sample loss function for input x; Q abstractly
denotes the discrete set of quantized weights.

1.1. Problem setup

In this paper, we consider the training of a one-hidden-layer model that outputs the prediction for any
input sample Z € R™*"™:

y(Z;w) = ivia (Z;—w) =v' 0 (Zw) (1)
i=1

where ZiT denotes the i-th row vector of Z; w € R™ is the trainable weights in the first linear layer, and
v € R™ the weights in the second linear layer which are assumed to be known and fixed during the training
process; the activation function o(z) = L¢,>0y is binary, acting component-wise on the vector Zw. The
label is generated according to y% = y(Z; w*) for some unknown true parameters w* € R" (see Fig. 1).

We fit the described model with quantized weights w € Q and binary activation function o(x) = 1,0}
on the i.i.d. Gaussian data {(Z, y*z)}ZNN(O,I)~ In this paper, we will focus on the cases of binary and ternary
weights. In the binary case, every quantized weight in w is either o or —« for some universal real-valued
constant o > 0, or equivalently, @ = R, x {41}"; this setup of binary weights is widely adopted in the
literature; for example, [18]. Similarly in the ternary case, we take @ = Ry x {0,£1}"; see [14,25] for
examples.

Furthermore, we use the squared loss to measure the discrepancy between the model output y(Z; w) and
the true label y7:
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w; Z) = § (4(Z:w) — yy)°
(vo(Zw) — ’UTU(ZUJ*))Q ,

1
2
and cast the learning task as the following population loss minimization problem:

m%l fw) :=Ez non [l(w; Z)] subject to w € Q (3)
weR™

where the sample loss function ¢(w; Z) is given by (2). Hereby it is not hard to show that the gradient of
lw; Z) wrt. wis

Vul(w: Z) = Z" (0'(Zw) ©v) (y(Z;w) — 7). (4)

Note that o’ is zero a.e., which makes V., f(w; Z) zero a.e. and thus inapplicable to the training.
In this setting, we study the following iterative algorithm for training fully quantized networks

1 _ ot v t
{y =y —mE[Vul(w';z)] (QUANT)

w'™ = projo(y)

where V¢ denotes some heuristic modification of the vanished gradient V., in (4) based on the so-
called straight-through estimator (STE) [1,9], rendering a valid search direction; see section 2.1 for details.
Following [24], we shall refer to this fake ‘gradient’ induced by STE as coarse gradient throughout this

paper.
1.2. Related works

For the best possible performance under quantization, the pre-trained full-precision networks need to be
re-trained. In the regime of weight quantization, the BinaryConnect scheme:

Yy =y’ - E[Vel(w';z)] .
{wt“ = projo(y*™) ®)
was first proposed in [5] for training DNNs with binary (1-bit) weights. It is similar to QUANT, but
simply uses the standard gradient V¢ as the activation values were not quantized. The method was then
extended to multi-bit weight quantization such as ternary weight networks [14]. On the theoretical side,
[15] analyzed the convergence of BinaryConnect scheme for weight quantization, and proved that {w!}
converge to an error floor region of the optimal quantized weights under strong convexity and smoothness
assumptions on f. Recently, [16] used an algorithm called “error feedback” for pruning networks [7,22]. It
is basically the same as BinaryConnect, except that the weight quantization step projg is replaced with
weight pruning/thresholding which can also be viewed as a projection. The authors showed the convergence
to a neighborhood of optimal solution under strong convexity and smoothness assumptions whose radius
is O(\/&) with d being the number of model parameters. Moreover, it remains unclear whether the global
optimum can actually be reached in this setting.

The idea of STE has been extensively used for efficiently handling discrete-valued functions arising in
machine learning problems. A STE, used in the backward pass only, is a heuristic proxy that substitutes the
a.e. zero derivative of discrete component composited in the loss function when computing the gradient under
chain rule. Its applications include, but are not limited to, network quantization [10,3,27,4,11,21,2], neural
architecture search [20], knowledge graphs [23], discrete latent representations [12]. For networks with binary
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activations (and real-valued weights), [24] showed that STE-based gradient (called coarse gradient) methods
converge only when a proper STE like ReLU STE [3] is used. And they proved that the negative of the
resulting coarse gradient points to a descent direction that reduces the training loss. For quantization of both
weights and activations, [10,11,3,4,27] utilized QUANT scheme which is the combination of BinaryConnect
and STE, and achieved state-of-the-art classification accuracies. Yet to our best knowledge, no convergence
results of QUANT have been established to date.

1.8. Main contributions

In this paper, we examine the quantization of one-hidden-layer networks with binary activation and
binary or ternary weights using the QUANT algorithm. Surprisingly, the sequence of quantized weights
{w'} generated by QUANT is generically divergent. Our key contributions are the first theoretical results
on the dynamics of QUANT algorithm for learning fully quantized neural nets: (1) we prove the generic
divergence if the teacher parameters are not in a quantized state, and give an explicit example of oscillatory
divergence behavior (the sequence {w'} has period 3 and jumps between sub-optimal quantized states; see
Example 1). (2) We explicitly point out, in the ternary case, the n (out of 3" — 1) sub-optimal quantized
states that {w'} could visit infinite many times; see Remark 1 and Lemma 8. (3) We prove that {w'}
oscillates around the global optimum of quantization problem. Under conditions that teacher parameters
and their quantized values are close enough (see Theorem 1), {w!} visits the quantized teacher parameters
(the optimum) infinitely often (recurrence). Compared with theoretical results for BinaryConnect [15,16],
our analysis is more precise and in depth in order to overcome a biased gradient modification in QUANT
based on straight-through estimator (STE) [9,1]. Our result is stronger in that the recurrence behavior at
global minimum holds without global convexity assumption of the loss function.

Organization. In section 2, we introduce the concept of coarse gradient and present some useful preliminary
results about the QUANT algorithm. In section 3, we summarize the main results regarding the recurrence
behavior of QUANT algorithm. More technical details and sketch of proofs are presented in section 4.

2. Preliminaries

We investigate the convergence behavior of QUANT described in Algorithm 1 for solving the quantization
problem (3). In Algorithm 1, Vf := E[V,,/(w?; )] stands for coarse gradient [24] in expectation specified
in section 2.1 below, which side-steps the vanished gradient issue. Since the loss function £(w; Z) defined in
(2) is scale-invariant, i.e., {(Z;w) = ¢(Z;w/c) for any scalar ¢ > 0, without loss of generality, we assume
that ||lw*|| =1 is unit-normed.

Algorithm 1: QUANT algorithm for solving (3).

Input: number of iterations T', learning rate n:, weight bits b;
Initialize: auxiliary real-valued weights y° € R"™, iteration number ¢t = 1;
while t < T do
y=y' Tt =V (wt )
w’ = projg (y') ;
t=1t+1;
end

In addition, throughout this paper we make the following assumptions on the learning rate n; > 0:

o0
1Y o e = oo.
2. m; is upper bounded by some positive constant 7.
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2.1. Coarse gradient

In this part, we specify the coarse gradient V f(w) in Algorithm 1. As shown in (4), the standard gradient
of {(w; Z) w.r.t. w is given by

Vul(w; 2) = Z" (0'(Zw) 0 ) (y(Z;w) —yz).
The associated coarse gradient w.r.t. w associated with the sample (Z,y3) is given by replacing o’ with
a surrogate derivative, known as straight-through estimator (STE) [1,24]. Here we consider the derivative

of ReLU function p(z) = max{z,0} which is a widely used STE for quantization, namely, we modify the
original gradient V,,¢(w; Z) as follows:

Vul(w; 2) = Z" (1 (Zw) © ) (y(Z;w) —yz).-

The coarse gradient induced by ReLU STE 4 is just the expectation of V¢(w; Z) over Z ~ N(0,I). We
evaluate the coarse gradient V f (w) used in Algorithm 1:

Lemma 1. The expected coarse gradient of {(w; Z) w.r.t. w is

V(w) =Kz no.n[Vwl(w; Z)]

2.2. Characterization of optimal solutions

To study the convergence of Algorithm 1, we first obtain the closed-form expression of the objective
function in (2), which only depends on the angle between quantized weight vector w and the true weight
vector w*. This helps us find the expression of global minimum to (1).

Lemma 2. Let w # 0 be nonzero vector.

o the training loss in (3) is given by

2 *
flw) = vl arccos <wTw )

2 [Jw]]
e Foranyd >0, w=4-projg(w*) is a global optimum of quantization problem (3).

The above result can be easily derived from Lemma 1 of [24], so we omit the proof. Lemma 2 states
that the optimal quantized weights are just the projection of w* onto Q, i.e., the direct quantization of
teacher parameters w*. Note that the projection/quantization may not be unique, we refer to projg(y) as
any choice of the projection of y onto Q.

2.8. Weight quantization step

The following two lemmas give the closed-form formulas of the projection/quantization projg(-) in Al-
gorithm 1 in the binary and ternary cases, respectively.
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Lemma 3 (Binary Case). For any non-zero y € R™, the projection of y onto Q@ = Ry x {£1}" is

HyHl

projo(y) = == Lsign (y),
where the sign function acts element-wise
— ( ) 1 if yi>0
sign (y), =
=1 if y; <O0.

The above lemma is due to [18]. In the ternary case, [25] gives the following result:

Lemma 4 (Ternary Case). For any non-zero y € R™, the projection of y on Q@ = Ry x {0, £1}" is

, Hyb‘*] L
projo(y) = Tblgn (y[j*])

where j* = argmax<;<, , and yp; € R™ extracts the first j largest entries in magnitude of y and

enforces 0 elsewhere. Here,

1 if y; >0
sign (y); = 0 if yi=0

3. Main results

By Lemma 2, we assume, for the ease of presentation, that the iterates {w'} are normalized, that is, we
re-define w? in Algorithm 1 by

t
w' = projo (y') == _Projg(¥)
[[projo(yt)]|

Our results extend trivially to the original QUANT without normalization as the value of f(w) does not
depend on [|w||. Furthermore, we denote by projg(w*) the normalization of the quantization/projection of
w*, projo (w*), which is a global minimum according to Lemma 2. Our main results show that the optimum

*

projg(w™*) is recurrent as long as w* is close to its normalized quantization.

Theorem 1. Consider the setup of quantization problem (3). Let Q be either Ry x {£1}™ (binary case)
or Ry x {0,£1}" (ternary case). There exists constant € > 0 that depends on the weight bit-width and
dimension n only, such that for any w* with

0< H'w *pI‘O.]Q H <€,

we have wt = pfrgjg(w*) for infinitely many t values, where {w'} is the sequence generated by Algorithm 1
with any initialization.

Intuitively, ternary weights should work better than binary weights. The following remark confirms this
intuition by showing that the number of points where w! visits infinitely many times is limited.
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Remark 1. In the ternary case, we can further prove that the sequence {w'} generated by Algorithm 1 has
at most n sub-sequential limits.

4. Proof sketch

On one hand, the binary case is rather simple. We show that part of the coordinates is stable while
others have oscillating sign. We further prove that the set of oscillating coordinates is not empty as long as
w* ¢ Q =R, x {x1}" is not quantized.

On the other hand, the proof of the ternary case follows the following steps. Our first step shows the
sequence y' generated by Algorithm 1 is bounded away from the origin for all but finitely many ¢ values.
Then, our second step shows each coordinate of y* is of the same sign of w* for all but finitely many ¢ values.
This forces y! to stay in the same orthant to which w* belongs. As a matter of fact, an n-dimensional space
has in total 2" orthants, which means y* can only stay in a small region near w*. After that, our third step
furthermore cuts the orthant into n! congruent cones and argues y* must stay in the same cone where w*
is for all but finitely many ¢ values. In the last step, we prove the ternary case of Theorem 1, which asserts
that as long as the underlying true parameter w* is close to quantized state Q@ = R4 x {0,+1}", i.e., any
vertex of the cone it belongs to, the optimum is guaranteed to be recurrent.

4.1. Binary weight

In view of Lemmas 2 and 3, we have that the normalized optimum of (3) is ﬁsflgfl (w*). The Lemma
below shows that some coordinates of w' generated by Algorithm 1 have oscillating signs.

Proposition 1. Let w! be any infinite sequence generated by Algorithm 1. If |w;‘\ < %, then there exist

infinitely many t1 and to such that wél = ﬁ and w;? = —ﬁ.

The above lemma clearly implies that w’ does not converge, as long as w* ¢ Q.
Corollary 1. If w* ¢ Q, then any sequence {w'} generated by Algorithm 1 does not converge.

Since Algorithm 1 does not have a limit unless the weights in the network are already quantized, we ask
a natural question: Can we guarantee the optimum to be visited infinitely many times? The general answer
is no. We have the following example demonstrating that the optimum may never be achieved. We refer the
proof of the following example to the appendix.

Example 1. Let w* = (é, 141 %) so that the best the optimum projow* = (1,3, 1,1). Let 7, = n,
_ nlvl?
A= m and
y(1) € (_)‘70)
Yo € (0,))
Y5 € (A 2))
yi € (0,00)

the sequence {w!} generated by Algorithm 1 with initialization y° satisfies w'*3

for all ¢.

= w! and w' # ﬁr\ajgw*

In the following, we give a sufficient condition for the optimum to be recurrent. The condition requires
w* to be close to Q. The following result is for the binary case of Theorem 1.
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Theorem 1 (Binary Case). If the optimum W := I;r\o/jg(w*) = %sflgl(w*) of (3) satisfies 0 <
Z‘w,fk% lwi — ;] < % then there exist infinitely many t values for any sequence {w'} generated by
J n

Algorithm 1 such that w' = I;r\o/jg(w*).
4.2. Ternary weights

The first result shows that w? generated by Algorithm 1 is generally divergent, and it converges only
when the true parameters w* € Q@ = Ry x {0, £1}".

Proposition 2 (Ternary Case). Let {w'} be any sequence generated by Algorithm 1. If w* ¢ Q = R, X
{0,£1}"™, then {w'} is not a convergent sequence.

In what follows, we detail the proof of convergence behavior of Algorithm 1.

Our first step is to rule out an exceptional case that the direction of y* changes significantly in only one
iteration. As shown in Lemma 1, the coarse gradient is bounded by a constant depending only on the fixed
weight vector v. So it suffices to show that ||y’ is bounded away from zero for all but finitely many ¢ values.

Lemma 5. Let {y'} be any auziliary sequence generated by Algorithm 1. If w* ¢ Q, then |ly'||, converges to
infinity as t increases.

Lemma 5 shows that for any positive constant ¢ > 0, we have ||y||, > ¢ for all but finitely many ¢ values.

Since Lemma 5 guarantees that the direction of y* will not change significantly, we cut down the region
that ¢! can belong to in two steps. To describe our first cut down, we need the following definition to make
our statement precise.

Definition 1. For any « € R™, we define the orthant of x as
O(z) := {y € R" : sign (y) = sign (x)},
where sign (+) acts coordinate-wise. Furthermore, we say O(x) is regular if any coordinate of  is not zero.
We state some basic properties of the defined orthant.
Proposition 3. For any «,y € R™, the following statements are true:
FEither O(x) = O(y) or O(z) N O(y) = 0.
z € O(x).

UmER" O(CC) =R"™.
There are in total 3" orthants.

AR NI S

There are in total 2™ regular orthants.

Lemma 6. Let {y'} be any auziliary sequence generated by Algorithm 1. If w* ¢ Q™, then any subsequential
t

limit of §* = m belongs to the closure of O(w*). Furthermore, if O(w*) is reqular, then y* lies in O(w*)

for all but finitely many t values.

In our previous step, we have partitioned R™ into orthants and showed that ¢’ enter into a small neigh-
borhood of the orthant where w* stays. Now, we prove a stronger result based on the conclusion of our
previous step. We would like to cut each orthant into several congruent cones which we shall define later and
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argue y® will move and stay in close neighborhood of the cone where w* stays. This step makes a stronger
statement because we manage to shrink the size of the region where y* can stay.

Definition 2. For any non-zero vector x € R™, we define the cone of x to be

Cone(x) := {y €0(x):

sen (351~ i) = sign (] ~ o) for v < o] .
Moreover, we say Cone(x) is regular if O(x) is regular and any |z;| # |z;| for all j # <.

Proposition 4. For any x,y € R™, the following statements are true:

FEither Cone(x) = Cone(y) or Cone(x) N Cone(y) = 0.
x € Cone(x).

If y € Cone(x), then Cone(y) = Cone(x).
Uyco(z)Cone(y) = O(x).

Any regular orthant contains n! regqular cones.

G Lo o =

Lemma 7. Let {y'} be any auziliary real-valued sequence generated by Algorithm 1. If w* ¢ Q, then any
sub-sequential limit of §' = m belongs to the closure of Cone(w*). Moreover, if Cone(w*) is regular,
then yt € Cone(w*) for all but finitely many t values.

The auxiliary weight vector ¢y’ can only stay in a small region around w* for large ¢ values.
Definition 3. For any point € R™, assume (j1, j2, - ,jn) iS a permutation of [n] such that
5| = [, 2 - = |a,, |
We define the set of vertexes of & to be

Az) =

— sS1gn (T, ) €, + Ty 7§ T, are nonzeros p .
\/E J J Jk+1 Jk

i=1

Below are some basic facts about connection between vertexes and cones.
Proposition 5. For any x,y € R" let k := |A(x)|, the following statements are true:

0<k<n.

A(x) is empty if and only if x = 0.

A(x) is a subset of the boundary of Cone(x).

Cone(x) = Cone(y) if and only if A(x) = Ay).

projo(z) € A(z).

y lies in Cone(x) if and only if there exists k positive numbers {p,(y) : z € A(x)} such that y =
ZZEA(m) 1z (y)z.

7. y lies in the closure of Cone(x) if and only if there exists k non-negative numbers {p.(y) : z € A(x)}
such that Yy =3, c sz H=(Y)Z.

S G o o=
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Table 1
Validation Accuracy of LeNet-5 on MNIST and ResNet-20/VGG-11 on CIFAR-10.
float binary ternary
LeNet-5 99.37 99.33 99.34
ResNet-20 92.33 89.42 90.86
VGG-11 92.15 89.47 90.91

8. Ugern A(x) ={x € Q: |x| =1}.

Lemma 8. Let {w'} be the sequence generated by Algorithm 1. If w* ¢ Q = R4 x{0,+1}", then w' € A(w*)
for all but finitely many t values.

The following result is the ternary case of Theorem 1 stated in section 3.

Theorem 1 (Ternary Case). Let {zj}?zl = A(w*) where z1 = ﬁfgjgw* is the optimum and w* =
Z?Zl ANz If 0 < Z§:2 Aj < 1, we have w' = ﬁrvojgw* for infinitely many t values, where w® is any
infinite sequence gemerated by Algorithm 1 with any initialization.

Intuitively, the parameter \; in Theorem 1 stands for the proportion of time that {w'} stays at z;. For
instance, if A\; ~ 1, then most of {w'} stay at z; so that the oscillation has a longer ‘period’ and is harder
to observe. On the contrary, if all A;’s are almost the same then {w’} behaves like uniform distribution and
oscillation becomes more obvious. Beside \;’s, a smaller learning rate can render y* moves slower which can
also slow down the oscillation. Although there are ways to stabilize the training process, both our theorem
and the experiments in the next section suggests the oscillation behavior is inevitable.

5. Experiments

In this section, we implement QUANT algorithm on both synthetic data and MNIST/CIFAR image
data. Our goals are (1) to validate our theoretical findings and (2) to show the appearance of the oscillation
behavior in more complicated setups. With that said, we emphasize that we did not extensively tune the
hyper-parameters or use ad-hoc tricks to achieve the best possible validation accuracy. More comprehensive
experimental results for QUANT-based approaches can be found in, for examples, [3,4,11,27]. Here we
report the validation accuracies on MNIST and CIFAR-10 for fully quantized networks in Table 1. For both
synthetic and image data sets, we observed the oscillation behavior.

5.1. Synthetic data

We take m = 4, n = 8 in (1) and construct v ~ N(0,I,,) and w* ~ N(0,I,) be random vectors. For
each run, we fix v and w* and train the neural network (1) by algorithm (1) for 200 iterations with a
learning rate being 0.1. Fig. 2 show the evolution of binary/ternary weight of w’ in the last 100 iterations.
Each block of size 8 x 100 corresponds to the evolution of w? during the 100 iterations. The (quantized)
global minimum projgow™ for each run is shown on the right side of the corresponding subplot in Fig. 2.

5.2. MNIST
We train LeNet-5 with binary/ternary weights and 4-bit activations using QUANT algorithm. For deep

networks, the (quantized) global optimum is generally unknown, we instead show the oscillating behavior
around local optimum. Note that Fig. 4 shows the training loss no longer drop significantly during the last
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ot
ity

Fig. 2. Evolution of Weight signs of synthetic network described in (1). Each of the 8 large blocks is a colored display of weight sign
values via 8 X 100 matrix (i.e., 8 filter weight signs evolved over the last 100 iterations). The bars to the right of blocks are the
corresponding optima. Top two rows: Binary weight signs, red /blue for 1/—1. Bottom two rows: Ternary weight signs, red/green/blue
for 1/0/—1.

Fig. 3. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of LeNet-5. Each of the six 25 X 200 blocks corresponds to
evolution of the 5 X 5 convolutional filter over 200 iterations. Top three rows: Binary weights over the last 600 iterations of training,
red/blue for sign values 1/—1. Bottom three rows: Ternary weights over the last 600 iterations of training, red/green/blue for sign
values 1/0/—1.

30 epochs (50 in total). This suggests the network parameters have reached a local valley. However, Fig. 3

shows the iterating sequence of model parameters still have oscillating signs towards the end of training.
Fig. 3 shows the evolution of the quantized weights of one convolutional filter in the first convolutional

layer during the last 600 iterations. To visualize the weights, each quantized filter is reshaped into a 25-



52 Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41-65

LeNet-5 Binary LeNet-5 Ternary

Fig. 4. LeNet-5 Training Loss v.s. Epoch. Left: Binary weights. Bottom: Ternary weights.

dimensional column vector. Each block (3 in a group) of size 25 x 200 corresponds to the evolution of the
one filter during 200 iterations. As we can see from these two figures, a proportion of the weights do not
converge to a limit but rather have oscillating signs.

5.8. CIFAR-10

We repeat the experiments on CIFAR-10 [13] with ResNet-20/VGG-11. We train ResNet-20 [8]/VGG-
11 [19] with binary/ternary weights and 4-bits activation using QUANT for 200 epochs. We refer to the
appendix for some figures that show similar oscillation behavior. Towards the end of training, although
there has been no noticeable decay of training loss, we can see a clearer pattern of the oscillating signs of
the weights.

6. Concluding remarks

We studied the convergence behavior of widely used QUANT algorithm [10,3,4,27] for the quantization of
one-hidden-layer networks. We showed that the sequence of quantized weights {w'} generated by QUANT
is generically divergent if the teacher parameters are not in a quantized state, and constructed an explicit
example of oscillatory divergence behavior. Under conditions that teacher parameters and their quantized

values are close enough, we proved the recurrence of QUANT algorithm at the global minimum.
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Appendix A

Lemma 1. The expected coarse gradient of {(w; Z) w.r.t. w is

el (w
vt = 7 (g~ ©)
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0

Fig. 5. 2-dim section of R™ spanned by w and w™*.

Let w = ﬁ, we can easily see from Fig. 5 that the coarse gradient can be further simplified as (6). O

Proposition 1. Let w! be any infinite sequence generated by Algorithm 1. If |w;\ < %, then there exist

infinitely many t1 and to values such that w;l = % and w;Q = —ﬁ.

Proof of Lemma 1. For notational simplicity, since ||ij < %, we have

1 1
a=—=-w; >0 and B:=—+w; >0.

vn vn

Using Lemma 3 in Algorithm 1, we see that

2
t+1 _ ¢ o] * ¢
YT =y g o= (W) —wj)

and thus
s
11 / 2v/21 !
Y, = 9
[[v]]

t s i
+ if %<0
Y; ntQ\/ﬁﬁ Y;

Since y]t is bounded for each fixed ¢ > 0 and j € [n], our desired result follows from our assumptions on
learning rate n,. O

Corollary 1. If w* ¢ Q, any sequence {w'} generated by Algorithm 1 does not converge.

1

Proof of Corollary 1. Since w* ¢ Q7. we know there must exist some j € [n] such that |w%| < —= and
1 ; 7=

Proposition 1 gives our desired result. O

_ (11
Example 1. Let w* = (g, 59

.

,%1/1—31) so that the best the optimum pArEjQ'w* = (3.3.5,4). Let n, = m,

o=
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i

Ys

(S
S
ys €
yi €

the sequence {w!} generated by Algorithm 1 with initialization y° satisfies w'*?® = w! and w! # pfr\(;jgw*
for all ¢.

Proof of Example 1. In order to show the periodicity, it suffices to show w§+3 = w’. Note that D, fw) <0
we have y§ > 0 for all ¢ since w] > 0. It follows that w} = wl = 3. Next, we would like to show the
periodicity of w! for j € [3]. Note that

2
¢ nlvll <* 1) et
y; + w; + — ify: <0
1 J 2/27'[' J 2 J
Y, =
n

—|—§> 1fy§»20

we choose 'w;f = % so that with

we have

1 _ JYiT2N iy <0
yh— A\ ify§20

Hence, we have

if t = 0(mod 3)

N—= N~ N
N~ N~ N
~_

/T
N —
~_

8@#

I
7 N
DN | =

|

ift=1(mod 3) O

7 N

N | —

DN —
|

) if ¢ = 2(mod 3)

Theorem 1 (Binary Case). If the optimum w = [;r\/ojg?w* of (3) satisfies

L 2
> fwj =gl < ==

lwil<J=

then there exists infinitely many t values for any sequence {w'} generated by Algorithm 1 such that w' =
projg (w*).

Proof of Theorem 1 on b = 1. Without loss of generality, we can assume w? > 0 for all j € [n] so that

J
w; = = for all j.
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Firstly, if w} > ﬁ, we know

2 2
t+1 _ ot v o t) >t [[v]l * _ 1
Yj yj+77t2\/%(wj w])—wﬂ—’_ntzm wy Jn)’

so that

o (80) (-3

where the right hand side goes to infinity and thus w?!

i = w; for all but finitely many ¢ values.

Secondly, if wj \F’ we know when w < 0:

2
[[o]” 2

= w} so that yt+1 =9t

holds so that there must exist some ¢ such that yj > 0. Once yj > 0 we have w} j

and hence wj = ; for all but finitely many ¢ values.
Third, if w} < ﬁ, we have y - d; f(w') > 0 so that Y5 is increasing when y} < 0 and decreasing when
Yi > 0. This tells us y} is bounded uniformly in ¢. Furthermore,

st 3 () (- 5)
() ()]

J

For notation simplicity, we let

1
oy = n—w}‘>0 and Bj:w;+ﬁ>0,
1 t—1 1 t—1
at == 1 and bt == 1 .
J t ; {wj->0}ns J t ; {wj-<0}77$
Now, we have

0 2
vi =y _ vl

Since y; is bounded for all w} < ﬁ, we let ¢ — oo so that left hand side vanishes and

b; Oéj
lim ;= .
t—o0 a + b o + B

By assumption, we have

n bt n

3 O
lim S— R—- I < 1.
teoo;at,-kbt, ;aj—i—ﬁj

J J
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Hence, we know

t—1 t—1
tll?(}o Wwe=ayms = tlggo 1= L gt 1 bt fs| =%
s=0 j=1"7J J ] s=0

where we used the assumption Zfi oMt = 00. Now, the desired result follows. O

Proposition 2 (Ternary Case). Let w' be any sequence generated by Algorithm 1. If w* ¢ Q, then {w'} is
not a converging sequence.

Proof of Proposition 2. We prove by contradiction. Observe that @ N S™~! is a finite set, we know w’
converges to w™ is equivalent to w! = w for all but finitely many ¢ values. Assume w! = w* for all but
finitely many ¢ values, we know there exists some T' > 0 such that w! = w® for all ¢ > T. Thus,

t—1

yT+t _ ,yT _ ZT/T-S-S@JC (’LUT+S)
s=0

t—1
=y’ - (Z 77T+s> VI (w™)
s=0

t—1 2
t ”U” * e3¢}
= + s w —w .
Yy (E nr+ > 9 ﬁ27r( )

s=0

Now, we have

t—1
(W™ ) = (y" w) + (Z nms) L )
where
(w* — w,w>) = (w",w>) -1 <0.
Note that Y o2 nr4+s = 00, there exists some T4 (T'), such that for all t > T4 (T)
(y", w™) <0.
This contradicts Lemma 4 and our desired result follows. O

Lemma 5. Let {y'} be any auziliary sequence generated by Algorithm 1. If w* ¢ Q, then |ly*||; converges to
infinity as t increases.

Proof of Lemma 5. QN S" ! is a compact set because it is finite. Also, since Q is symmetric, w* ¢ Q also
implies —w* ¢ Q. Tt follows that

= inf 0 (w",w) e (0,m).
= edhonn O 0 w) € (0.)

Hence, for any w € @ N S™ ! we have

2

2
v v
I oy 5

<—@f(w)7w*>—ﬁ W

(1 -cosa).
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Now, we know

<fww=www+§?wﬁﬂw»w>

T-1 2
> ) () L (-

t=0

Let T — oo, we see that lim;_, ||y|| = co which is equivalent to lim;_, [[y*]|; = oc0. O
Lemma 9. Let w = projo(y), then |y;| < = |lyl|, implies w; = 0.

Proof of Lemma 9. Without loss of generality, we assume y; > 0 for all i € [n] and y; < &= ||yl|; for a fixed
j € [n]. Let 0 = % llyll;, and

js = [{i € [n] = [yi] = 0}

we know j5 > 1 by the principle of drawer. Now, with

2
. o,
j* = argmax ——
J
forany 1 <k <n—js
2 2
Hy[j*] 1 Hy[jﬁk}Hl
J* Js +k
2 2
Jsll e
T s Js tk
. 2 . 2
(Js + k) Hy[jé] - Js Hy[ja-i-k] Hl

)

js (js + k)

where the numerator is

)
)

2 . 2
1 —Js (Hy[j5+k]H1 o Hy[j«s]

2
1

k Hyw

2k {Hym] —Js0 (Hy[a‘5+k]H1 + Hy[m

With 7 = w, we have

(P e

K Mym 1)}

- |:(Hy[j5+k]H1 - k6)2 ) Hy[ja-i'k]Hl:|

=k (nd)? (72 —4r +1).
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Note that
],
vyl =nd
no n6 -
we conclude that
e e
J* Jjs+k

and hence j* < js. Now, Lemma 4 gives w; = 0. O

Lemma 10. Let {w'} and {y'} be the sequence and the auziliary sequence generated by Algorithm 1. Assume
w* ¢ Q, the following statements hold.

o Ifw; =0, then y§ is bounded and w§ =0 for all but finitely many t values.
o Ifwj #0, then sign (yg) = sign (w;‘) for all but finitely many t values.

Proof of Lemma 10. On the one hand, we consider the case wj = 0, so that

2
t+1 _ |v || [v]]

= —+ fwffwt. — ot — -
Y, Y m%/%( 5 =15 word

Note that Lemma 4 shows y% and w} are of the same sign if w’ # 0, we know y! is bounded by Cj :=

]I

max {|y?|, nﬁ}. Moreover Lemma 5 shows ||y'||; > 5nC; for all but finitely many ¢ values. Finally, we

see from Lemma 9 that w§ = 0 for all but finitely many ¢ values.
On the other hand, consider the case w; # 0. Without loss of generality, we can assume wj > 0. Note
that whenever yt < 0, we also have wt < 0 so that

2 2
gl

*

41t l[v]l * t
=y, + w: —w;) > Y + w;.
Yj Yj 7}t2 /—2ﬂ_( J ]) Yj 7lt2 on J

From the above inequality, we see that y§ is increasing where the increment is bounded from below by
M 2” \/H—wj > 0 where > = 00, so that there must exist some T; > 0 such that y 9 > 0. With Lemma 5

we can without loss of generality assume that [y*||, > 5nn% for all t > Tj. For ease of notation, we let

0= 772”;—; so that ||ly*[|, > 5nd for all ¢ > T);. We shall next prove that y; > 0 for all t > T;. We prove by

induction, assume yt > 0 for some ¢t > T; and show yi*! > 0.
y] J yj

L Ifyt >,

Il
2v2r

2. If 0 <yt <4, since [ly*[l; > 5nd, Lemma 9 shows w’ = 0 so that

Hl—y]—i-n (w —w)>y] 6> 0.

2
v * 77t5 *
= O (=) = o+ 2 > 4> 0

NGT J
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Combining the above two cases, we get our desired result. O

Lemma 6. Let {yt} be any auziliary sequence generated by Algorithm 1. If w* ¢ Q, then any sub-sequential
limit of §* : = o tH belongs to the closure of O(w*). Furthermore, if O(w*) is regular, then y' lies in O(w*)
for all but finitely many t values.

Proof of Lemma 6. By Lemma 10, we see that sign (y;) = sign ( *) for all w} # 0. We only need to prove
* = 0 implies lim; o § y] = 0. Indeed, by Lemma 10, we know that yj is bounded by C; while Lemma 5

tells us ||y'|| goes to infinity. Thus, lim; o 75 = |f/yj|| =0. O

Lemma 11. Let {w*} and {y'} be any sequence and auziliary sequence generated by Algorithm 1. Assuming
that w* ¢ QF, we have the following fact.

1 If lwi] > |wf], then |y%| > |yf| for all but finitely many t values.
2. If |wi| = |w;|, then ||yt — |yt|| is bounded and |wh| = |w}| for all but finitely many t values.

Proof of Lemma 11. Without loss of generality, we can assume wj > wj > --- > w) > 0.
For the first statement, we only need to show that w} > w},, implies y; > y§ 1 for all but finitely many
t values. Note that whenever y; < y; 41, then Lemma 4 implies w§ < w§ 41, hence

TRl
2 2
+ [ (*7 t) Y [v]] (* ot )
v 77t2\/— Wy —w; Yj+1 WtQ\/ﬁ Wit1 — Wit

v * *
= (¥) = Yjs1) + Wtzm [(w) —wiiy) + (Wi —w))]

v]”
Z (y;t —y§~+1) +77t2|\/!—7r (U}J _ijrl) .

Now that we know yj yj 41 Is increasing as long as it is negative and ) 7y = oco. Therefore, we conclude
that there exist infinitely many ¢ values such that y] — y] 41 > 0. We can therefore assume yj — yj 11 >0,

where T is the constant in Lemma 5 such that [ly*||, > 5n+/2¢ for all t > T where we set € = % Next,
we would like to show y% —y%, | > 0 for all t > T by induction.

Next, assuming yj — yﬁ_1 > 0, we want to show yt+1 yﬁi% > 0.

On the one hand, if yj yj+1 > €, we have

t+1 t+1
Yy —Yin

ol ¢
= (05~ ) + A [0 = w7) + (ki — )]
o]

> (yj _yj+1) +n tQ\/* (wj+1 wj)

lv]* 1
> (y; = Yj4) _ntQ\/%ﬁ > (y; = Yiy1) —€=0.

On the other hand, if y§ —y%,; < ¢, we still have

2
1t lol™ (¢ s
Yi o T Y1 > (y - %H) - 22 (wj - ij) ’
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so that it suffices to show w? = w}, ;. From Lemma 4, we see that with
¢

J
Jvt
j* = argmax D‘] L (7)
j€[n] J

2

we only need to show j # j*. We prove by contradiction, assuming j = j* so that w§ > 0 and w§+1 = 0.
Lemma 9 shows y} > = ||ly*[|,. Also, (7) gives

= bn

Y-, - Yall,  \[|Yu-ull, 7Y% ®
i1~ j '

Simplifying the above inequality, we get

loioll )y (Lol

ji—1)<o.
Y’ Y ( )

J

yf;-
Left hand side is a quadratic function of <| []yt_llul ), we know

N = DY = ©)

Yj
We write equation (8) in a different way and get

2
t t
i (Jot-al, + )

ot t t)
o (2w, +91)

(10)

Now, we use j = j* again, to get

t 2 t 2
Hy[ﬂul < HymﬂHl

7 J+1

Rewriting the above inequality, we get

2
(ot )

s (2wl-a], #2054 00)

(12)

Combining (10) and (12), we get

6 = o)’ = (2ot +408) - s5) + 265" <o

Solving the above inequality, we get
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t t ¢ t
Yi = Yj 2 Hy[j—ﬂHl + 2yj

2
st + 4ty 5+ 20802

Combining (9) and (13), we get

t\2
Ui =Y = () <2n+2—\/4n2+4n+2> S W (14)

2

Recalling that y! > 2= [|lyf]], > V/2¢, we have

1 (gl
bska > () >

This contradiction shows j # j*, and hence w§

+1 t+1
> y;y1- Now, we have

= w!,, and it follows that y!
proved our first statement.

For the second statement, since w;‘ = wj, we have

yjﬂ ylt+1
B (PR Pt D (PR L s
T T2y ! o i
fy fy - v H (w wﬁ) :yt-f 72% (w fwt).
J i 2v2x i J n J i

Hence, we know that [y} — yf| is bounded by

v ||
C; ;= max < [y9 — Q,L .
] {'y] yz| \/%

Without loss of generality, we can assume j < ¢ and min {yj,yf} > 0 by Lemma 10. Recalling (14), we
have w! # w} implying that

t 12 2
|yt _yt| > max {y]’yl} > 1 ||yt||
J ¢ 2 ~— 2\ 5n
where the right hand side goes to infinity. This contradicts the boundedness of |y§ —y!| if there are infinitely
many ¢ values such that w} # wh O

Lemma 7. Let {y'} be any auziliary sequence generated by Algorithm 1. If w* ¢ Q, then any sub-sequential
t

limit of Y := ”Z—t” belongs to the closure of Cone(w*). Moreover, if Cone(w*) is regqular, then y' €

Cone(w*) for all but finitely many t values.

Proof of Lemma 7. Note that we already have Lemma 6, we only need to show for any sub-sequential limit
y of g', we have sign (|y;| — |y;|) = sign (|w*| — |w}|). The first statement of Lemma 11 tells us that it is
true for all sign (|w*| — |w}|) # 0. Thus, it suffices to show that |wi| = |w;| implies |y;| = |yi|.

Note that the second statement of Lemma 11 says that ||y;| — |y;|| is bounded by C; ;, while Lemma 5
gives lim;_, ||y']| = oo, we see that
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— ResNet-20 Binary : — VGG-11 Binary
ResNet-20 Ternary . VGG-11Ternary

Fig. 6. Training Loss of CIFAR-10. Left: Binary/Ternary weight ResNet-20. Right: Binary/Ternary weight VGG-11.

IyJI . Ayt 15

] il O
1= i i = A Ty~ 1

Lemma 8. Let {w'} be the sequence generated by Algorithm 1. If w* ¢ Q, then w' € A(w*) for all but
finitely many t values.

Proof of Lemma 8. First, by Proposition 4, y* € Cone(w*) implies ﬁ—r\(_)tjg(yt) € Aw*).
Second, let dCone(w*) = Cone(w*) — Cone(w*). Now, a non-zero y* € dCone(w*) implies Cone(y') C
dCone(w*) so that we also have projo(y*) € A(y?) C A(w*).

Third, by compactness of Cone(w*) N S"~!, we know there exists some ¢ > 0 such that g := .

lies
lytll

in e-neighborhood of Cone(w*) N 8"~! implying I;;o/jg(yt) € AMw*).
Finally, Lemma 7 suggests ¢" lies in e-neighborhood of Cone(w*) for all but finitely many ¢ values. We
get our desired result. O

Theorem 1 (Ternary Case). Let {zj}§=1 = A(w*) where z1 = p?o/jgw* is the optimum and w* =
Z?Zl Az If 0 < 2522 A < 1, we have w' = [;;(Ijg'w* for infinite many t values, where wt is any
infinite sequence gemerated by Algorithm 1 with any initialization.

Proof of Theorem 1 (Ternary Case). Note that Lemma 7 suggests g’ = ”Zt” lies in e-neighborhood of
Cone(w*) for all but finitely many ¢ values. Let A(w*) = {21, , 2} and define y} be the constants such
that

k
y'=> iz
j=1

which is determined uniquely by ¥¢.
Let w' = z,, we know from Algorithm 1 that

2
tHl ot [v]l * ]
Yy Y m%/%( )

Thus




w

Z. Long et al. / Appl. Comput. Harmon. Anal. 62 (2023) 41-65 6

Fig. 7. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of ResNet-20. Each of the three 27 x 200 blocks
corresponds to evolution of the 3 X 3 X 3 convolutional filter over 200 iterations. Binary weights over the last 600 iterations of
training, red/blue for sign values 1/—1.

Fig. 8. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of ResNet-20. Each of the three 27 x 200 blocks
corresponds to evolution of the 3 X 3 X 3 convolutional filter over 200 iterations. Ternary weights over the last 600 iterations of
training, red/green/blue for sign values 1/0/—1.

It follows that

k t—1 2 k
¢ o]
g . = Constant + g s E A =1 <0,
Hi s:on 2v2r |\ o /

Jj=2

for large t’s. Now we see that when ¢ is large enough, §' is bounded away from Cone(w*) which contradicts
Lemma 7 and our desired result follows (see Figs. 6-10). O
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Fig. 9. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of VGG-11. Each of the three 27 x 200 blocks corresponds
to evolution of the 3 x 3 X 3 convolutional filter over 200 iterations. Binary weights over the last 600 iterations of training, red/blue
for sign values 1/—1.

Fig. 10. Evolution of signs of weight filters in the last training epoch (or 600 iterations) of VGG-11. Each of the three 27 x 200 blocks
corresponds to evolution of the 3 x 3 x 3 convolutional filter over 200 iterations. Ternary weights over the last 600 iterations of
training, red/green/blue for sign values 1/0/—1.
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