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Abstract

The study of fairness in multiwinner elections fo-
cuses on settings where candidates have attributes.
However, voters may also be divided into prede-
fined populations under one or more attributes. The
models that focus on candidate attributes alone may
systematically under-represent smaller voter popu-
lations. Hence, we develop a model, DiRe Commit-
tee Winner Determination (DRCWD), which de-
lineates candidate and voter attributes to select a
committee by specifying diversity and representa-
tion constraints and a voting rule. We analyze its
computational complexity and develop a heuristic
algorithm, which finds the winning DiRe commit-
tee in under two minutes on 63% of the instances
of synthetic datasets and on 100% of instances of
real-world datasets. We also present an empirical
analysis of feasibility and utility traded-off.
Moreover, even when the attributes of candidates
and voters coincide, it is important to treat them
separately as diversity does not imply representa-
tion and vice versa. This is to say that having a
female candidate on the committee, for example, is
different from having a candidate on the commit-
tee who is preferred by the female voters, and who
themselves may or may not be female.

1 Introduction
The problem of selecting a committee from a given set of
candidates arises in multiple domains; it ranges from polit-
ical sciences (e.g., selecting the parliament of a country) to
recommendation systems (e.g., selecting the movies to show
on Netflix). Formally, given a set C of m candidates (politi-
cians and movies, respectively), a set V of n voters (citizens
and Netflix subscribers, respectively) give their ordered pref-
erences over all candidates c ∈ C to select a committee of
size k. These preferences can be stated directly in case of par-
liamentary elections, or they can be derived based on input,
such as when Netflix subscribers’ viewing behavior is used to
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(a) candidates

Voter State Preferences
v1 California c1≻c2 ≻c3 ≻c4

v2 California c1≻c2 ≻c3 ≻c4

v3 California c1≻c2 ≻c3 ≻c4

v4 Illinois c4 ≻c2 ≻c3 ≻c1

(b) voters

Figure 1: (a) Candidates with “gender” attribute (and their Borda
scores) and (b) voters with “state” attribute.

derive their preferences. In this paper1, we focus on selecting
a committee using direct, ordered, and complete preferences.

Which committee is selected depends on the committee se-
lection rule, also called the multiwinner voting rule. Exam-
ples of commonly used families of rules when a complete
ballot of each voter is given are Condorcet principle-based
rules [Faliszewski et al., 2016], approval-based voting rules
[Faliszewski et al., 2016; Sánchez-Fernández et al., 2017],
and ordinal preference ballot-based voting rules like k-Borda
and β-Chamberlin-Courant (β-CC) [Elkind et al., 2017;
Faliszewski et al., 2017]. We refer readers to Section 2.2 of
[Faliszewski et al., 2017] for further details. In this paper, we
focus on ordinal preference-based rules.

However, these rules can create or propagate biases by
systematically harming candidates coming from historically
disadvantaged groups [Bredereck et al., 2018; Celis et al.,
2018]. Hence, diversity constraints on candidate attributes
were introduced to mitigate this. However, voters may be
divided into predefined populations under one or more at-
tributes, which may be different from candidate attributes.
For example, voters in Figure 1b are divided into “California”
and “Illinois” populations under the “state” attribute. The
models that focus on candidate attributes alone may system-
atically under-represent smaller voter populations.
Example 1. An election E consists of m = 4 candidates (Fig-
ure 1a) and n = 4 voters giving complete, ordered preference
(Figure 1b) to select a committee of size k = 2. Candidates
and voters have one attribute each (gender and state, respec-
tively). The k-Borda2 winning committee for each voter pop-
ulation is {c1, c2} for California and {c4, c2} for Illinois.

1An extended version of this paper is available at [Relia, 2021].
2The Borda rule associates score m− i with the ith position, and

k-Borda selects candidates with the k highest Borda scores.
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Suppose that we impose a diversity constraint that requires
the committee to have at least one candidate of each gender
and a representation constraint that requires at least one can-
didate from the winning committee of each state. Observe
that the highest-scoring committee consists of {c1, c2} (score
= 17), which is representative but not diverse, since both can-
didates are male. Further, the highest-scoring diverse com-
mittee consisting of {c1, c3} (score = 13) is not representa-
tive because it does not include any winning candidates from
Illinois, the smaller state. The highest-scoring diverse and
representative committee is {c2, c3} (score = 12).

This example illustrates the inevitable utility cost due to
enforcing additional constraints.

In contrast to prior work in computational social choice,
we incorporate voter attributes that are separate from can-
didate attributes. Also, our work is different from “pro-
portional representation” [Sánchez-Fernández et al., 2017;
Brill et al., 2018; Monroe, 1995], where the number of can-
didates selected in the committee from each group is propor-
tional to the number of voters preferring that group, and from
its variants such as “fair” representation [Koriyama et al.,
2013]. All these approaches dynamically divide the voters
based on the cohesiveness of their preferences. Another re-
lated work, multi-attribute proportional representation [Lang
and Skowron, 2018], couples candidate and voter attributes.
An important observation we make here is that, even if the
attributes of the candidates and of the voters coincide, it may
still be important to treat them separately. This is because
having a female candidate on the committee, for example,
is different from having a candidate on the committee who
is preferred by the female voters, and who themselves may
or may not be female. This observation has implications on
United Nations’ sustainable development goals on equality.
Contributions. In this paper, we define a model that treats
candidate and voter attributes separately during committee
selection, and thus enables selection of the highest-scoring
diverse and representative committee. We classify the com-
putational complexity of using our model, study the limits
of approximability, and develop a heuristic algorithm. Fi-
nally, we present an experimental evaluation using real and
synthetic datasets, in which we show the efficiency of our al-
gorithm, analyze the feasibility of committee selection and
illustrate the utility trade-offs.

2 Related Work
Our work is motivated by the work on constrained multiwin-
ner elections. Goalbase score functions, which specify an ar-
bitrary set of logic constraints and let the score capture the
number of constraints satisfied, could be used to ensure di-
versity [Uckelman et al., 2009]. Using diversity constraints
over multiple attributes in single-winner elections is NP-hard
[Lang and Skowron, 2018]. Also, using diversity constraints
over multiple attributes in multiwinner elections and partic-
ipatory budgeting is NP-hard, which has led to approxima-
tion algorithms and matching hardness of approximation re-
sults by Bredereck et al. [2018] and Celis et al. [2018]. Fi-
nally, due to the hardness of using diversity constraints over
multiple attributes in approval-based multiwinner elections

[Brams, 1990], these have been formalized as integer linear
programs (ILP) [Potthoff, 1990]. In contrast, Skowron et al.
[2015] showed that ILP fails in the real world when using
ranking-based proportional representation rules.

Overall, the work by Bredereck et al. [2018], Celis et al.
[2018], and Lang and Skowron [2018] is closest to ours but
we differ as we: (i) consider elections with predefined voter
populations under one or more attributes, (ii) delineate voter
and candidate attributes even when they coincide, and (iii)
consider diversity and representation constraints.

3 Preliminaries and Notation
Multiwinner Elections. Let E = (C, V ) be an election
consisting of a candidate set C = {c1, . . . , cm} and a voter
set V = {v1, . . . , vn}, where each voter v ∈ V has a prefer-
ence (ranked) list ≻v over m candidates. posv(c) denotes the
position of candidate c ∈ C in the ranking of voter v ∈ V ,
where the most preferred candidate has position 1 and the
least preferred has position m.

Given E = (C, V ) and k ∈ [m] (for k ∈ N+, [k] =
{1, . . . , k}), a multiwinner election selects a k-sized subset of
candidates (or committee) W using a multiwinner voting rule
f (discussed later) such that the score of the committee f(W )
is the highest. Ties are broken using a pre-decided order.
Candidate Groups. The candidates have µ attributes,
A1, . . . , Aµ : µ ∈ Z and µ ≥ 0. ∀ i ∈ [µ], Ai partitions
the candidates into gi ∈ [m] groups, A(i,1), . . . , A(i,gi) ⊆ C.
For example, candidates in Figure 1a have gender attribute (µ
= 1) with disjoint groups, male and female (g1 = 2). Over-
all, the set G of all such arbitrary and potentially non-disjoint
groups is A(1,1), . . . , A(µ,gµ) ⊆ C.
Voter Populations. The voters have π attributes,
A′

1, . . . , A
′
π : π ∈ Z and π ≥ 0, which may be differ-

ent from the candidate attributes. ∀ i ∈ [π], A′
i partitions

the voters into pi ∈ [n] populations, P(i,1), . . . , P(i,pi) ⊆ V .
For example, voters in Figure 1b have state attribute (π =
1), which has populations California and Illinois (p1 = 2).
Overall, the set P of all such predefined and potentially
non-disjoint populations will be P(1,1), . . . , P(π,pπ) ⊆ V .

Additionally, we are given WP , the winning committee ∀
P ∈ P . We limit the scope of WP to be a committee instead
of a ranking of k candidates because using a committee selec-
tion rule such as CC rule does not return a complete ranking.
Committee Selection Rules. In this paper, we focus on
committee selection rules f that are based on single-winner
positional voting rules and are monotone and submodular
(∀A ⊆ B, f(A) ≤ f(B) and f(B) ≤ f(A) + f(B \A)).
Definition 1. Chamberlin–Courant (CC) rule [1983]: The
CC rule associates each voter with their most preferred can-
didate in the committee. The score of a committee is the sum
of scores given by voters to their associated candidate. β-CC
uses the Borda rule to assign scores to each voter’s candidate.
Definition 2. Monroe rule: The Monroe rule [1995] dynam-
ically divides the n voters into π populations based on the
cohesiveness of their preferences where π = k (assuming k
divides n). Then, each subpopulation’s most preferred can-
didate is selected into the k-sized committee. Formally, ∀
P ∈ P , select c for P : maxc∈C(fP (c)).
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A special case of submodular functions are separable func-
tions: score of a committee W is the sum of the scores of
individual candidates in the committee. Formally, f(W ) =∑

c∈W f(c) [Bredereck et al., 2018]. Monotone and separa-
ble rules are natural and are considered good when the goal
is to shortlist a set of individually excellent candidates:
Definition 3. k-Borda rule The k-Borda rule outputs com-
mittee of k candidates with the k highest Borda scores.

4 DiRe Committee Model
In this section, we formally define a model to select a diverse
and representative committee, namely the DiRe committee,
and compare our model to existing related models.
Definition 4. Unconstrained Committee Winner Determi-
nation (UCWD): We are given a set C of m candidates, a
set V of n voters such that each voter v ∈ V has a prefer-
ence list ≻v over m candidates, a committee selection rule
f, and a committee size k ∈ [m]. Let W denote the family
of all size-k committees. The goal of UCWD is to select a
committee W ∈ W that maximizes f(W ).

We introduce the diversity and representation constraints
such that their minimum value is 1 as each candidate group
and voter population deserve at least one candidate in the
committee. This replicates real-world settings like the United
Nations (UN) charter, which guarantees at least one represen-
tative to each member country in the UN General Assembly,
independent of the country’s population. Theoretically, all
results in this paper hold even if the minimum value is 0.
Diversity Constraints. These constraints, denoted by ℓDG ∈
[min(k, |G|)] for each G ∈ G, enforce at least ℓDG candidates
from the group G to be in the committee W . Formally, ∀
G ∈ G, |G ∩W | ≥ ℓDG .
Representation Constraints. These constraints, denoted
by ℓRP ∈ [1, k] for each voter population P ∈ P , enforce at
least ℓRP candidates from the population P ’s committee WP to
be in the committee W . Formally, ∀ P ∈ P , |WP ∩W | ≥ ℓRP .
Definition 5. (µ, π)-DiRe Committee Feasibility ((µ, π)-
DRCF): We are given an instance of E = (C, V ), k ∈ [m],
G under µ attributes and ∀ G ∈ G, ℓDG , and P under π at-
tributes and ∀ P ∈ P , ℓRP and WP . Let W denote the family
of all size-k committees. The (µ, π)-DRCF problem selects
committees W ∈ W such that |G ∩W | ≥ ℓDG ∀ G ∈ G and
|WP ∩W | ≥ ℓRP ∀ P ∈ P . These are called DiRe committees.

If a committee selection rule f is also an input to the feasi-
bility problem, we get the (µ, π, f)-DRCWD problem:
Definition 6. (µ, π, f)-DiRe Committee Winner Determina-
tion ((µ, π, f)-DRCWD): Given (µ, π)-DRCF and f, the (µ,
π, f)-DRCWD selects the highest scoring DiRe committee.
Observation 1. (µ, π, f)-DRCWD is a generalized version
of (µ, π)-DRCF and UCWD.

Finally, as our model provides the flexibility to specify the
diversity and representation constraints and to select the vot-
ing rule, the diverse committee problem [Bredereck et al.,
2018; Celis et al., 2018] and the apportionment problem [Brill
et al., 2018; Hodge and Klima, 2018] are special cases of (µ,
π, f)-DRCWD. See [Relia, 2021] for formal formulations.

Instance of (µ, π, f)-DRCWD Complexity
(≤ 2, 0, separable)-DRCWD P (Lem. 1)
(≥ 3, 0, separable)-DRCWD NP-hard (Thm. 3, Thm. 4)

(≥ 0, ≥ 1, separable)-DRCWD NP-hard (Thm. 5, Cor. 2)
(≥ 0, ≥ 0, submodular)-DRCWD NP-hard (Thm. 6, Cor. 3)

Table 1: The complexity of (µ, π, f)-DRCWD (Thm. 1, Cor. 1).
The value in brackets for µ and π denote that the results hold for all
non-negative integers µ and π that satisfy the condition stated in the
brackets. ‘Lem.’: Lemma. ‘Thm.’: Theorem. ‘Cor.’: Corollary.

5 Complexity Results
Selecting a committee using a submodular function such as
the CC rule is NP-hard, known via reduction from exact 3-
cover [Procaccia et al., 2008]. Selecting a diverse committee
when a candidate belongs to three groups is also NP-hard,
known via reductions from 3-dimensional matching [Bred-
ereck et al., 2018] and 3-hypergraph matching [Celis et al.,
2018]. However, these hardness results are fragmented over
several papers and they use reductions from several well-
known NP-hard problems. Next, we introduce representation
constraints and hardness due to its use is unknown. Hence, we
provide a complete computational classification3 of (µ, π, f)-
DRCWD using reductions from single well-known NP-hard
problem, the vertex cover problem, in line with the approach
used in [Chakraborty and Kolaitis, 2021]. All proofs can be
found in the extended version of this paper [Relia, 2021].
Theorem 1. Let µ, π ∈ Z : µ, π ≥ 0 and f be a monotone
committee selection rule, then (µ, π, f)-DRCWD is NP-hard.
Corollary 1. Classification of Complexity.
1. If ∀µ ∈ Z : µ ≥ 0, ∀π ∈ Z : π ≥ 0, and f is a submodu-

lar function, then (µ, π, f)-DRCWD is NP-hard.
2. If ∀µ ∈ [0, 2], π = 0, and f is a separable function, then

(µ, π, f)-DRCWD is in P.
3. If ∀µ ∈ Z : µ ≥ 3, π = 0, and f is a separable function,

then (µ, π, f)-DRCWD is NP-hard.
4. If ∀µ ∈ Z : µ ≥ 0, ∀π ∈ Z : π ≥ 1, and f is a separable

function, then (µ, π, f)-DRCWD is NP-hard.

5.1 Tractable Case
Theorem 2. [Theorem 21, Corollary 22 in full-version of
Celis et al. [2018]] The diverse committee feasibility prob-
lem can be solved in polynomial time when µ = 2.

Without loss of generality (W.l.o.g.), the above theorem
holds when µ = 2. Hence, it holds for µ ∈ [0, 2]. There-
fore, the following lemma and Corollary 1(2) follows:
Lemma 1. If µ ∈ [0, 2], π = 0, and f is a monotone, sepa-
rable function, then (µ, π, f)-DRCWD is in P.

5.2 Hardness Results
NP-hard problem used. We reduce from the vertex cover
problem on 3-regular, 2-uniform4 hypergraphs [Garey and
Johnson, 1979; Alimonti and Kann, 1997].

3All hardness results are under the assumption P ̸= NP.
4The size of hyperedges has implications on the inapproximabil-

ity results. We use 2-uniform hypergraphs for the complexity results.
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Definition 7. Vertex Cover (VC) problem: Given a graph
H consisting of a set of m vertices X = {x1, x2, . . . , xm}
and a set of n edges E = {e1, e2, . . . , en} where each e ∈ E
connects two vertices in X , then VC S ⊆ H is where ∀ e ∈ E,
e ∩ S ̸= ϕ. The VC problem is to find the minimum size S.

(µ, π, f)-DRCWD w.r.t. Diversity Constraints
When π = 0, (µ, π, f)-DRCWD is related to the diverse
committee selection problem. However, the hardness of (µ,
π, f)-DRCWD when µ ≥ 3 does not follow the hardness of
the diverse committee selection problem.

More specifically, Theorem 9 of Bredereck et al. [2018]
uses a reduction from 3-Dimensional Matching that only
holds for instances when the number of groups that a candi-
date can belong to is exactly 3. Also, lower bound and upper
bound is set to 1, which is mathematically different from our
setting where we only allow lower bounds. On the other hand,
Theorem 6 (“NP-hardness of feasibility: ∆ ≥ 3”5) of Celis
et al. [2018] uses two reductions: the first reduction from ∆-
hypergraph matching is indeed for the case when ∆≥ 3 but is
limited to instances when the lower bound is 0 and the upper
bound is 1, which is a trivial case in our setting. Moreover,
the reduction from ∆-hypergraph matching uses a different
problem as when ∆ ̸= ∆′, the ∆-hypergraph matching and
∆′-hypergraph matching are separate problems. The second
reduction from 3-regular VC is for instances when ∆ = 3.

Hence, in this section, we give reductions such that our
result holds ∀µ ∈ Z : µ ≥ 3, even when ∀G ∈ G, ℓDG = 1.
The next two theorems help us prove Corollary 1(3).
Theorem 3. If ∀µ ∈ Z : µ ≥ 3 and µ is an odd number,
π = 0, and f is a monotone, separable function, then (µ, π,
f)-DRCWD is NP-hard, even when ∀G ∈ G, ℓDG = 1.

Proof Sketch. We create an instance such that |C| = |V | =
m+(m ·(2µ2−7µ+3)) and |W | = k+mµ2−3mµ. The re-
duction conforms to the real-world stipulations: (i) each can-
didate attribute Ai, ∀i ∈ [µ], partitions all the candidates into
two or more groups and (ii) either no two attributes partition
the candidates in the same way or if they do, the lower bounds
for the two attributes are not the same. If any two attributes
Ai and Aj : i ̸= j violates stipulation (ii), it implies that Ai

and Aj are mathematically equivalent.

Theorem 4. If ∀µ ∈ Z : µ ≥ 3 and µ is an even number,
π = 0, and f is a monotone, separable function, then (µ, π,
f)-DRCWD is NP-hard, even when ∀G ∈ G, ℓDG = 1.

(µ, π, f)-DRCWD w.r.t. Representation Constraints
We now study the computational complexity of (µ, π, f)-
DRCWD due to the presence of voter attributes. The fol-
lowing theorem helps us prove Corollary 1(4).
Theorem 5. If µ = 0, ∀π ∈ Z : π ≥ 1, and f is a monotone,
separable function, then (µ, π, f)-DRCWD is NP-hard, even
when ∀P ∈ P , ℓRP = 1.

Proof Sketch. Create an instance where |C| = m + (n ·m),
|V | = n2, and |W | = k. The reduction conforms to the stip-
ulations analogous to the ones for candidate attributes.

5In Celis et al. [2018], ∆ denotes “the maximum number of
groups in which any candidate can be”.

Instance of (µ, π)-DRCF Limits of Approximability
(≥ 3, 0)-DRCF (1− ε)· (lnµ−O(ln lnµ)) (Thm. 7)
(0, ≥ 1)-DRCF k − ε (Thm. 9)

(≥ 1, ≥ 1)-DRCF (1− ε)· ln (|G|+ |P|) (Thm. 8)

Table 2: Limits of approximability of (µ, π)-DRCF. The value in
brackets of µ and π denote that results hold for non-negative integers
µ and π that satisfy the condition. ε denotes an arbitrarily small
constant such that the results are meant to hold for every such ε > 0.

Corollary 2. If ∀µ ∈ Z : µ ≥ 0, ∀π ∈ Z : π ≥ 1, and f
is a monotone, separable function, then (µ, π, f)-DRCWD is
NP-hard, even when ∀G ∈ G, ℓDG = 1 and ∀P ∈ P , ℓRP = 1.

(µ, π, f)-DRCWD w.r.t. Submodular Scoring Function
Chamberlin-Courant (CC) rule is a well-known monotone,
submodular scoring function [Celis et al., 2018], which we
use for our proof. The novelty of our reduction is that
it holds for determining the winning committee using CC
rule that uses any positional scoring rule with scoring vec-
tor s = {s1, . . . , sm} such that s1 = s2, sm ≥ 0, and
∀i ∈ [3,m− 1], si ∈ Z : si ≥ si+1 and s2 > si.

The following statements prove Corollary 1(1).
Theorem 6. If f is a monotone, submodular function, then
(µ, π, f)-DRCWD is NP-hard even when µ = 0 and π = 0.
Corollary 3. If ∀µ ∈ Z : µ ≥ 0, ∀π ∈ Z : π ≥ 0, and f is
a monotone, submodular function, then (µ, π, f)-DRCWD is
NP-hard, even when ∀G ∈ G, ℓDG = 1 and ∀P ∈ P , ℓRP = 1.

5.3 Inapproximability
The hardness of (µ, π, f)-DRCWD is mainly due to the hard-
ness of (µ, π)-DRCF, even when constraints are set to 1.
Hence, we now study the inapproximability of (µ, π)-DRCF.

We can try to reformulate representation constraints as di-
versity constraints. However, this is not possible as each can-
didate attribute partitions all m candidates into groups and
ℓDG ∈ [min(k, |G|)], ∀ G ∈ G. However, for representation
constraints, WP , ∀ P ∈ P , contains only k candidates and
the remainder m − k candidates consisting of C \ WP , ∀
P ∈ P , may never be selected, thus making the reformula-
tion non-trivial. Even if we relax range of ℓDG , ∀ G ∈ G, from
[1,min(k, |G|)] to [0,min(k, |G|)], the following settings are
different and we may not carry out reformulations:
Observation 2. ∀µ ∈ Z and ∀π ∈ Z, the following settings
of the (µ, π)-DRCF problem are not equivalent: (i) µ=0 and
π ≥ 1, (ii) µ ≥ 3 and π = 0, and (iii) µ ≥ 1 and π ≥ 1.

These settings differ as |G| and |WP | have implications.
For instance, using both the constraints and using only rep-
resentation constraints are mathematically as different as the
vertex cover problem on hypergraphs and the vertex cover
problem on k-uniform hypergraphs, respectively.
Definition 8. (µ, π)-DRCF-size-optimization: In the (µ,
π)-DRCF-size-optimization problem, the aim is to find a
minimum-size committee W ⊆ C such that W satisfies
|G ∩W | ≥ ℓDG ∀ G ∈ G and |WP ∩W | ≥ ℓRP ∀ P ∈ P .
Theorem 7. For ε > 0, ∀µ ∈ Z : µ ≥ 3, and π = 0,
(µ, π)-DRCF-size-optimization problem is inapproximable
within (1−ε)· (lnµ−O(ln lnµ)), even when ℓDG = 1 ∀G ∈ G.
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Figure 2: (µ, π)-DRCF as DiReGraph. (A) Global committee size
constraint and (C) the diversity/representation constraints connected
by edges with (B) the candidates and (D) the DiRe committee.

Theorem 8. For ε > 0, ∀µ ∈ Z : µ ≥ 1, and ∀π ∈ Z : π ≥
1, (µ, π)-DRCF-size-optimization problem is inapproximable
within a factor of (1− ε)· ln (|G|+ |P|), even when ℓDG = 1 ∀
G ∈ G and ℓRP = 1 ∀ P ∈ P .

Proof Sketch. We first give a reduction from hitting set (HS)
to (1, 1)-DRCF. Next, as the HS problem is equivalent to the
minimum set cover problem [Niedermeier and Rossmanith,
2003], the latter’s inapproximability [Dinur and Steurer,
2014] holds for our problem.

Theorem 9. For ε > 0, µ = 0, and ∀π ∈ Z : π ≥ 1, (µ,
π)-DRCF-size-optimization problem, assuming the UGC, is
inapproximable within k − ε, even when ℓRP = 1 ∀ P ∈ P .

Proof Sketch. Assuming the Unique Games Conjecture
(UGC) [Khot, 2002], vertex cover problem on k-uniform hy-
pergraphs, for any integer k ≥ 2, is inapproximable within
k − ε [Bansal and Khot, 2010], which we reduce from6.

6 Heuristic Algorithm
Our model is useful from the social choice theory perspective
but it is computationally hard. Hence, we take a pragmatic
approach to evaluate its efficiency in practice. We develop
a two-stage heuristic algorithm motivated, in part, from dis-
tributed constraint satisfaction [Russell and Norvig, 2002].

6.1 DiReGraphs
We represent an instance of the (µ, π)-DRCF problem from
Figure 1 as a DiReGraph (Figure 2). The quadrilaterals corre-
spond to constraints and ellipses to candidates. Specifically,
there is the global committee size constraint k (Level A), can-
didates (B), unary constraints ℓDG and ℓRP (C), and the DiRe
committee (D). Edges connecting (B) and (C) depend on the
candidate’s membership in G or WP . The idea is to have a

6For Theorem 9, we assume UGC holds as the result that showed
pseudorandom sets in the Grassmann graph have near-perfect ex-
pansion completed the proof of 2-to-2 Games Conjecture [Khot
et al., 2018], which is a significant evidence towards proving the
UGC. Moreover, GapUG( 1

2
, ε) is NP-hard, i.e., a weaker version

of the UGC holds with completeness 1
2

(See [Dinur et al., 2018]
and “Evidence towards the Unique Games Conjecture” in [Khot et
al., 2018]). Without assuming UGC, the result when µ = 0 and
π ≥ 1 will change. For ε > 0, the problem is inapproximable
within k − 1 − ε for k ≥ 3 [Dinur et al., 2005] and within

√
2 − ε

for k = 2 [Khot et al., 2018].

Algorithm 1 DiRe Committee Algorithm
Input:
variables X = {X1, . . . , X|G|+|P|}
domain D = (D1, . . . , D|G|+|P|) : each Di is G or WP

constraints S = {S1, . . . , S|G|+|P|} : each Si is ℓDG or ℓRP
Output: set W of committees : ∀W ∈ W , |W ∩Di| ≥ Si

1: Create DiReGraph DiReG
2: SG = subgraph of nodes on levels B & C of DiReG
3: SCC = strongly connected components of SG
4: for each scci, sccj ∈ SCC do
5: for each Xu = {Xi∪ Xj} : Xi ∈ scci, Xj ∈ sccj do
6: if !pairwise feasible(Xu, D, S) return false
7: end for
8: end for
9: for each scc in SCC do

10: XSCC = list of Xi for each Si at level C of scc
11: if !pairwise feasible(XSCC , D, S) return false
12: end for
13: Recreate DiReG using reduced D
14: return heuristic backtrack({}, DiReG, X , D, S)

“network flow” from A to D such that all nodes on level C are
visited. Specifically, select k candidates (A) from m candi-
dates (B) such that the in-flow τ at the unary constraint nodes
(C) is at least ℓDG or ℓRP where τ = |W ∩G| or τ = |W ∩WP |.
When τ ≥ ℓDG or τ ≥ ℓRP , there will be a DiRe committee (D).
Example 2. DiReGraph: Consider the election instance in
Figure 1. The candidate c2 is a male who is in winning com-
mittees of both the states, namely CA (California) and IL (Illi-
nois). Hence, c2 in DiReGraph (Figure 2) is connected to
three sets of constraints, one each for male and two states.

6.2 DiRe Committee Algorithm
The Algorithm 1 has two stages: (i) preprocessing reduces
the search space used to satisfy the constraints and efficiently
finds infeasible instances, and (ii) heuristic search of candi-
dates decreases the number of steps needed either to find a
feasible committee, or return infeasibility.
Preprocessing. Find the strongly connected components of
the graph in time linear in m and n. We only do the pairwise
feasibility as three-way (and higher) feasibility tests increase
the computational time without improving the scope of find-
ing infeasibility [Russell and Norvig, 2002].

Inter-component pairwise feasibility: Select Xi, Xj cor-
responding to Si, Sj on level C of DiReGraph, one each
from different components of SCC. Do a pairwise feasibility
check for each pair and return infeasibility if any one pair of
variables can not return a valid committee. The correctness
and completeness of this step are easy. If there are more con-
straints than the available candidates or if a pair of constraints
are pairwise infeasible, then it is impossible to find a feasible
solution. For intra-component pairwise feasibility, repeat the
above procedure but within a component.

Reducing domain: If the algorithm reaches this stage, re-
duce the domain by removing candidates who, when selected,
always return a pairwise infeasible solution.
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Figure 3: Using SynData 1, (a) Proportion (in %) of instances that
timed out at 2000 seconds and (b) mean running time of non-timed
out instances. Each combination of µ and π has 10 instances.

Heuristic Backtracking. Use depth-first search for back-
tracking. Specifically, choose one Xi at a time, and backtrack
when Xi has no legal values left to satisfy the constraint.
This technique repeatedly chooses an unassigned variable,
and then tries all values in its domain, trying to find a so-
lution. If an infeasibility is returned, traverse back by one
step and move forward by trying another value.

Select unsatisfied variable: The ”minimum-remaining-
values” heuristic chooses the variable having the fewest
legal values. It picks a variable that is most likely to cause a
failure, thereby pruning the search tree as infeasibility may
be returned, in turn, avoiding additional searches.

Sort most favorite candidates: This heuristic sorts the can-
didates in decreasing order of its out-degree. For example, the
ordering of candidates (Figure 2) will be c2 (out-degree = 3),
c1, c4 (2), and c3 (1). This reduces the branching factor on fu-
ture choices by selecting the candidate that is involved in the
largest number of constraints, which means they help satisfy
the highest proportion of constraints. Next, for completeness
and to get multiple DiRe committees, do a “shift-left” such
that the second candidate becomes the first and so on. (See
[Relia, 2021] for an example explaining the algorithm.)

7 Empirical Analysis
We assess the efficiency of the algorithm and
the effect of enforcing the constraints. [Code:
https://github.com/KunalRelia/DiReCommittees]
Setup. We run experiments on a Macbook Pro(R) (Docker;
2.2 GHz 6-Core Intel(R) Core i7; 2.2GHz; 16 GB RAM; Ma-
cOS Big Sur (v11.1); Python 3.7). We use previously defined
voting rules and set constraints at random.
Real Data: The United Nations Resolutions dataset [Voeten,
2014] consists of 193 countries voting for 81 resolutions pre-
sented in the UN General Assembly in 2014. We select a
12-sized DiRe committee. Each candidate has two attributes
and the voter has one. The Eurovision dataset [Kaggle, 2019]
consists of 26 countries ranking the songs performed by each
of the 10 finalist countries. We select a 5-sized DiRe commit-
tee. Each candidate has two attributes and voter has one.
SynData 1: We set k = 6, n = 100, and m = 50. We gener-
ate complete preferences using Repeated Selection Model by
setting selection probability Πi,j to replicate Mallows’ [Mal-
lows, 1957] model (ϕ = 0.5, random reference ranking σ)
(Theorem 3, [Chakraborty et al., 2021]) and preference prob-
ability p(i) = 1, ∀i ∈ [m]. We randomly divide the can-
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Figure 4: Using SynData 2, proportion (in %) of instances that have
an infeasible committee and the maximum proportion (in %) of con-
straints that are unsatisfiable per instance; each ϕ has 5 instances.

didates and voters into groups and populations, respectively.
SynData 2: We use the same setting as SynData 1 except we
fix µ and π to 2 and vary the cohesiveness by setting Πi,j to
replicate Mallows’ model’s ϕ ∈ [0.1, 1], in increments of 0.1.

Efficiency of Heuristic Algorithm. All experiments in this
section combine instances of k-Borda and β-CC (no signif-
icant difference in the running time; paired Student’s t-test,
p > 0.05). We present results for the Monroe rule separately.

Algorithm is efficient: Only 18.90% of 525 instances timed
out at 2000 sec (vs 93.71% using a brute-force algorithm).
Among the instances that did not time out, the mean running
time was 566.48 sec (standard deviation (sd) = 466.66) for
k-Borda and β-CC, and 724.39 sec (sd = 575.31) for Monroe
(Figure 3). Sparse DiReGraphs increased the efficiency.

Comparison with ILP: Our algorithm, which (i) handles
constraints and any committee selection rule and (ii) termi-
nated in (avg) 724 sec, has a clear edge over ILP [Skowron et
al., 2015] as it scales linearly. Promisingly, the first commit-
tee returned by the algorithm in <120 sec was the winning
DiRe committee among 63% of all instances.

Feasibility and Cost of Fairness. All experiments consider
each rule separately (paired Student’s t-test, p < 0.05).

There was a negative correlation between the maximum
proportion of unsatisfied constraints and ϕ, for all the three
scoring rules (mean Pearson’s ρ = -0.95, p <0.05). It was
easier to satisfy the constraints when the cohesiveness (ϕ) was
high, which led to lower infeasibility (Figure 4).

Real Datasets. The mean ratio of utilities of constrained to
unconstrained committees was 0.93 (sd = 0.08). Importantly,
the algorithm always terminated in under 102 sec.

8 Conclusion
With diversity in multiwinner elections becoming necessary,
we showed that only diversity can do more harm than good
as its cost may disproportionately be paid more by historically
under-represented voter population. Hence, we developed (µ,
π, f)-DRCWD model, which enforces diversity and repre-
sentation constraints. We studied its computational properties
theoretically and empirically. We also delineate the candidate
and voter attributes even when they coincide as just like cor-
relation does not imply causation, we observe that diversity
does not imply representation and vice versa. This has rel-
evance to equality-related United Nations’ sustainable devel-
opment goals. (See [Relia, 2021] for full acknowledgement.)
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