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ABSTRACT
It remains an open question how to determine the winner of an
election given incomplete or uncertain voter preferences. One so-
lution is to assume some probability space for the voting profile
and declare that the candidates having the best chance of winning
are the (co-)winners. We refer to this interpretation as the Most
Probable Winner (MPW). In this paper, we focus on elections that
use positional scoring rules, and propose an alternative winner
interpretation, the Most Expected Winner (MEW), according to the
expected performance of the candidates.

We separate the uncertainty in voter preferences into the gener-
ation step and the observation step, which gives rise to a unified
voting profile combining both incomplete and probabilistic voting
profiles. We use this framework to establish the theoretical hard-
ness of MEW over incomplete voter preferences, and then identify
a collection of tractable cases for a variety of voting profiles, includ-
ing those based on the popular Repeated Insertion Model (RIM) and
its special case, the Mallows model. We develop solvers customized
for various voter preference types to quantify the candidate perfor-
mance for the individual voters, and propose a pruning strategy that
optimizes computation. The performance of the proposed solvers
and pruning strategy is evaluated extensively on real and synthetic
benchmarks, showing that our methods are practical.
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• Theory of computation → Incomplete, inconsistent, and
uncertain databases; •Applied computing→Voting / election
technologies.
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1 INTRODUCTION
Voting is a mechanism to determine winners among the candidates
in an election by aggregating voter preferences. In classical voting
theory, each voter gives a complete preference (most frequently, a
ranking) of all candidates. How voter preferences are aggregated is
determined by a voting rule [8, 27, 29]. A prominent class of voting
rules, which assign scores to candidates based on their positions
in the rankings and then sum up the scores for each candidate, are
positional scoring rules, on which we focus in this paper.

In practice, voter preferences may well be incomplete and repre-
sented by partial orders. Since voting rules are defined over (com-
plete) rankings, the solution is to replace each partial order with
all of its linear extensions, each of which is a completion or a possi-
ble world1 of the partial order. The preferences of all voters in an
election are referred to as a voting profile. A voting profile of com-
plete rankings is a complete voting profile, while that of incomplete
preferences is an incomplete voting profile. Voters are assumed to
cast their preferences independently. A completion of an incomplete
voting profile is a complete voting profile obtained by replacing
each voter’s partial order with one of its completions.

There have been various interpretations of winners proposed
for this setting. For example, Konczak et al. [16] proposed the nec-
essary winners (NWs) and possible winners (PWs): the NWs are
the candidates winning in all possible worlds, while the PWs are
the ones winning in at least one possible world. Bachrach et al.
[2] assumed that the partial orders correspond to the uniform dis-
tribution over their completions, and evaluated the candidates by
the number of possible worlds in which they win. We refer to this
winner semantics as the Most Probable Winner (MPW).

In this paper, we propose theMost Expected Winner (MEW) as an
alternative winner interpretation for incomplete voter preferences
under positional scoring rules. Like MPW, it adopts the possible
world semantics of incomplete voting profiles. However, in contrast
to MPW that determines a winner by a (weighted) count of the
possible worlds in which she wins, MEW follows the principle of
score-based rules that high-scoring candidates should be favored.
Specifically, an MEW is the candidate who has the highest expected
score in a random possible world.

MEW and MPW are similar in that they both aggregate election
results over all possible worlds and give a balanced evaluation of
the candidates. Their difference lies in the aggregation methods,
which will be discussed in detail in Section 10. In practice, MEW
and MPWmay yield the same result, but this is not always the case.

Example 1. Figure 1 gives an example where MEW and MPW
select different winners in an election with two voters and three candi-
dates, under the plurality rule. In this election, each voter produces a
full ranking drawn from a probability distribution over 𝝉1 = ⟨𝑎, 𝑏, 𝑐⟩,
1We use completion and possible world interchangeably.
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Voter 𝝉1=⟨𝑎, 𝑏, 𝑐⟩ 𝝉2=⟨𝑏, 𝑎, 𝑐⟩ 𝝉3=⟨𝑏, 𝑐, 𝑎⟩ 𝝉4=⟨𝑐, 𝑏, 𝑎⟩
𝑥 0.7 0.3 0 0
𝑦 0 0 0.5 0.5

(a) A probabilistic voting profile of voters 𝑥 and 𝑦.

Possible world (Co-)winners by Plurality Pr(𝝉𝑥 ,𝝉𝑦)
𝑥 casts 𝝉1, 𝑦 casts 𝝉3 {𝑎, 𝑏} 0.7 × 0.5 = 0.35
𝑥 casts 𝝉1, 𝑦 casts 𝝉4 {𝑎, 𝑐} 0.7 × 0.5 = 0.35
𝑥 casts 𝝉2, 𝑦 casts 𝝉3 {𝑏} 0.3 × 0.5 = 0.15
𝑥 casts 𝝉2, 𝑦 casts 𝝉4 {𝑏, 𝑐} 0.3 × 0.5 = 0.15

(b) Each voter casts her vote independently of the other, leading to 4 possible
worlds and 4 possible outcomes for (co-)winners under the plurality rule. The
probability of a possible world is Pr(𝝉𝑥 ,𝝉𝑦 ) . Under the plurality rule, candidate
𝑎 is the MPW with a winning probability of Pr(𝝉1,𝝉3)+ Pr(𝝉1,𝝉4)=0.7, while
candidate 𝑏 is the MEW with expected score Pr(𝝉2 | 𝑥)+ Pr(𝝉3 | 𝑦)=0.3+0.5=0.8.

Figure 1: A probabilistic voting profile of 2 voters.

𝝉2 = ⟨𝑏, 𝑎, 𝑐⟩, 𝝉3 = ⟨𝑏, 𝑐, 𝑎⟩, 𝝉4 = ⟨𝑐, 𝑏, 𝑎⟩, with probabilities of each
ranking for each voter given in Figure 1a. Since voter preferences
are probability distributions over rankings, the corresponding voting
profile is named a probabilistic voting profile.

Let Pr(𝝉𝑥 ,𝝉𝑦) denote the probability that voters 𝑥 and 𝑦 cast rank-
ings 𝝉𝑥 and 𝝉𝑦 , respectively. If we assume that 𝑥 and 𝑦 cast their votes
independently, then Pr(𝝉𝑥 ,𝝉𝑦) = Pr(𝝉𝑥 | 𝑥) ·Pr(𝝉𝑦 | 𝑦). For example,
Pr(𝝉1,𝝉3) = 0.7 · 0.5 = 0.35. The voting profile in Figure 1a generates
4 possible worlds in Figure 1b. The plurality rule rewards a candidate
with 1 point every time she is ranked at the top of a ranking in the
profile. So, in the possible world of Pr(𝝉1,𝝉3), candidate 𝑎 obtains 1
point from 𝝉1, candidate 𝑏 obtains 1 point from 𝝉3, and both of them
become (co-)winners in this possible world. After enumerating all 4
possible worlds, we find that candidate 𝑎 is the MPW with probability
0.7 to be a (co-)winner, while candidate 𝑏 is the MEWwith an expected
score of 0.8 points.

If the Borda rule, which rewards a candidate with the number of
candidates ranked below her, is used, then, in the possible world of
Pr(𝝉1,𝝉3), candidate 𝑎 would obtain 2 points from 𝝉1, while candidate
𝑏 would obtain 1 point from 𝝉1 and 2 points from 𝝉3. Candidate 𝑏
would then be the only NW of this profile, and she would also be the
MEW with an expected score of 2.8 points.

Contributions and Roadmap. We present related work in
Section 2, and provide the necessary background on preferences
and voting in Section 3.

Then, in Section 4, we present our first contribution: a unified
framework for representing uncertainty in voter preferences, where
we distinguish between the uncertainty from voters themselves
(e.g., their preferences are actually probability distributions [22])
and that due to the voting mechanism (e.g., approval ballots do
not allow the voters to fully reveal their preferences). We classify
voting profiles into probabilistic profiles, where uncertainty is due
to the voters themselves, incomplete profiles, where uncertainty
is due to the voting mechanism, and combined profiles, with both
kinds of uncertainty. This classification gives us a framework within

which to study the complexity of identifying MEW, by computing
expected scores of the candidates.

In Section 5, we discuss several alternative interpretations of
MEW and formally state the MEW problem. Then, we present our
second contribution: an investigation of the computational complexity
of MEW, and its related Expected Score Computation (ESC) problem,
in Section 6. The MEW problem turns out to be FP#𝑃 -complete
under plurality, veto, and 𝑘-approval rules for the general case of
uncertain profiles.2

In Sections 7 and 8, we present our third contribution: exact
solvers for MEW computation over different voting profiles. We first
give a solver with exponential complexity for the partial voting
profiles studied in Section 6. We then identify many interesting
cases, such as the RIM [7] voting profiles and the combined profiles
of Mallows [21] and partitioned preferences, where it is tractable to
compute the expected scores and determine the MEW (Section 7).
In Section 8, we present performance optimizations to speed up the
computation of MEW for large voting profiles.

In Section 9 we present our fourth contribution: an extensive
experimental evaluation of the proposed solvers, demonstrating that
our proposed methods are practical.

In Section 10 we present a thorough comparison between MEW
and MPW, describing cases where MEW treats candidates differ-
ently from MPW, and highlighting the computational advantages
of MEW that can lead to more efficient computation in practice.

We conclude and propose future directions in Section 11.

2 RELATEDWORK
Winner semantics under incompleteness. Among the winner inter-
pretations for incomplete preferences, the most thoroughly studied
are the necessary and possible winners [16]. A candidate is a nec-
essary winner (NW) if she wins in every possible world; she is a
possible winner (PW) if she wins in at least one possible world.
Chakraborty et al. [5] recently developed practical techniques for
NW and PW computation. NW and PW have substantial short-
comings: The requirement for NW is so strict that there are often
no winners available in a voting profile under this interpretation,
while the requirement for PW does not differentiate between a can-
didate who only wins in one possible world and another candidate
who only loses in one possible world. To address these limitations,
alternative winner semantics for uncertain preferences have been
proposed in the literature, discussed next.

Bachrach et al. [2] assume that an incomplete voting profile of
partial orders represents a uniform distribution over its comple-
tions, and prefer the candidates who enjoy victory in more possible
worlds. This winner semantics is named the Most Probable Win-
ner (MPW). While this semantics is well defined under any voting
rule, and while it can be extended in a straight-forward way to
incorporate the probability of a completion of a voting profile, com-
puting a winner under MPW is known to be intractable already
under plurality [2]. Kenig and Kimelfeld [14] study the probability
of the complement event, namely, losing an election, and devise

2Recall that FP#𝑃 is a class of functions efficiently solvable with an oracle to some #P
problem. A function 𝑓 is FP#𝑃 -hard if there is a polynomial-time Turing reduction
from any FP#𝑃 function to 𝑓 .
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an approach based on the Karp-Luby-Madras algorithm [12] for
multiplicative polynomial-time approximations.

Hazon et al. [9] also investigate MPW but in a different setting,
where voter preferences are specified explicitly by rankings and
their associated probabilities. They prove that it is #P-hard to com-
pute the winning probabilities under plurality, k-approval, Borda,
Copeland, and Bucklin, and provide an approximation algorithm.

Imber and Kimelfeld [10] investigate the minimal and maximal
possible ranks of candidates after rank aggregation of partial voting
profiles, and prove intractability for every positional scoring rule.

Preference models. In this paper we model the uncertainty in
voter preferences using a distance-based model known as the Mal-
lows [21], and itsmore general forms the Repeated InsertionModel [7]
and the Repeated Selection Model [5]. Others have considered un-
certainty in voter preferences under the Random Utility Models
(RUMs) such as the Thurstone-Mosteller (TM) [23, 31] and the
Plackett-Luce (PL) [20, 26]. RUMs quantify the preferences over
each item with a modal utility randomized with noise (e.g., Gauss-
ian noise for TM and Gumbel distributions for PL), and the modal
utilities are regarded as the ground truth.

Two recent papers proposed preference aggregation semantics
for PL and TM models that are similar to MEW, in that they eval-
uate the candidates in an election based on their expected utility.
Noothigattu et al. [24] first aggregate preferences over the TM or
PL models that correspond to each voter into a summary model to
represent the entire voter base (without explicit use of a scoring
rule at this step), and then select the highest modal utility candidate.
The authors show that their aggregation method is equivalent to
Borda and Copeland. Zhao et al. [32] apply randomized voting rules
that sample a winner from the candidates with a probability propor-
tional to their expected scores. They demonstrate that the expected
utilities of the candidates can be determined efficiently under plu-
rality and Borda, for PL models. These papers share motivation
with our work, but they do not consider distance-based preference
models such as the Mallows, or their popular generalization like
RIM, and do not study the complexity of winner determination
for specific kinds of uncertain voting profiles. Understanding the
complexity of evaluation of MEW for TM and PL models for dif-
ferent kinds of incomplete voting profiles and voting rules is an
interesting direction for future work.

Querying probabilistic preferences. Voter preferences are a spe-
cial case of preference data that has been studied in the database
community [11]. Kenig et al. [15] propose RIMPPD, a database
framework to incorporate probabilistic preferences represented by
RIM models, and identify a class of tractable queries. Then Kenig
et al. [13] further optimize the query engine with lifted inference.
For a more general class of queries that are intractable in RIMPPD,
Ping et al. [25] develop a number of exact solvers, as well as approx-
imate techniques based on Multiple Importance Sampling. In this
work, we build on some of the technical insights of these papers,
and develop solvers for MEW.

3 PRELIMINARIES
3.1 Preferences
We denote by 𝐶 = {𝑐1, . . . , 𝑐𝑚} a set of items or candidates (used
interchangeably.) For any 𝑎, 𝑏, 𝑐 ∈ 𝐶 , preference is a binary relation

Table 1: Examples of positional scoring rules.

Voting rule 𝒓𝑚

plurality (1, 0, . . . , 0, 0)
veto (1, 1, . . . , 1, 0)
2-approval (1, 1, 0, . . . , 0, 0)
Borda (𝑚 − 1,𝑚 − 2, . . . , 1, 0)

≻ that is transitive (𝑎 ≻ 𝑏 and 𝑏 ≻ 𝑐 imply 𝑎 ≻ 𝑐), irreflexive
(𝑎 ⊁ 𝑎), and asymmetric (𝑎 ≻ 𝑏 implies 𝑏 ⊁ 𝑎). A preference pair is
an instance of this relation.

A (strict) partial order or poset is a set of preference pairs that cor-
responds to a directed acyclic graphwith edges being the preference
pairs. For example, 𝝂0 = {𝑐1 ≻ 𝑐2, 𝑐1 ≻ 𝑐3} states that candidate 𝑐1
is preferred to both 𝑐2 and 𝑐3.

A ranking or permutation is a list 𝝉 = ⟨𝜏1, . . . , 𝜏𝑚⟩ such that
∀𝑖 < 𝑗, 𝜏𝑖 ≻ 𝜏 𝑗 . It defines a bijection between the candidates and
the ranks: 𝝉 (𝑖) = 𝜏𝑖 and 𝝉−1 (𝜏𝑖 ) = 𝑖 .

The linear extensions of a partial order 𝝂 , denoted by Ω(𝝂), is
a set of rankings consistent with 𝝂 . For example, 𝐶0 = {𝑐1, 𝑐2, 𝑐3}
and 𝝂0 = {𝑐1 ≻ 𝑐2, 𝑐1 ≻ 𝑐3}, then Ω(𝝂0) = {⟨𝑐1, 𝑐2, 𝑐3⟩, ⟨𝑐1, 𝑐3, 𝑐2⟩}.

3.2 Voting and Winners
Wedenote by𝑉 = {𝑣1, . . . , 𝑣𝑛} a set of voters and by 𝑷 = (𝝉1, . . . ,𝝉𝑛)
a (complete) voting profile where 𝝉𝑖 is a ranking over 𝐶 by voter 𝑣𝑖 .

Among various voting rules, the positional scoring rules are ar-
guably the most thoroughly studied. Let 𝒓𝑚 = (𝒓𝑚 (1), ..., 𝒓𝑚 (𝑚))
denote a positional scoring rule where ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑚, 𝒓𝑚 (𝑖) ≥
𝒓𝑚 ( 𝑗) and 𝒓𝑚 (1) > 𝒓𝑚 (𝑚). It assigns a score 𝒓𝑚 (𝑖) to the candi-
date at rank 𝑖 . The performance of a candidate 𝑐 is the sum of her
scores across the voting profile 𝑷 : 𝑠 (𝑐, 𝑷 ) =

∑
𝝉 ∈𝑷 𝑠 (𝑐,𝝉 ) where

𝑠 (𝑐,𝝉 ) = 𝒓𝑚 (𝝉−1 (𝑐)). Candidate 𝑤 is a (co-)winner if her score
is not less than that of any other candidate. We use W(𝒓𝑚, 𝑷 ) to
denote the set of co-winners.

Example 2. Given the voting profile in Table 2, under the Borda
rule, Biden obtains 3 points from Ann and Dave, and 0 point from
Bob, which makes him the winner with a total score of 6.

Most Probable Winner. Voters may only partially express their
preferences. Let 𝑷PO = (𝝂1, . . . ,𝝂𝑛) denote a partial voting profile of
𝑛 partial orders. Recall that Ω(𝝂) is the set of linear extensions of 𝝂 ,
which are also called the completions of 𝝂 . A complete voting profile
𝑷 = (𝝉1, . . . ,𝝉𝑛) is a completion or a possible world of a partial voting
profile 𝑷PO = (𝝂1, . . . ,𝝂𝑛) if ∀𝝉𝑖 ∈ 𝑷 ,𝝉𝑖 ∈ Ω(𝝂𝑖 ). Let Ω(𝑷PO) =

{𝑷1, . . . , 𝑷𝑧 } denote the set of completions of 𝑷PO. Assume that
𝑷PO represents a uniform distribution of its possible worlds. The
Most Probable Winner (MPW) [2, 9] is defined as follows.

voter ranking

Ann ⟨Biden, Sanders, Weld, Trump⟩
Bob ⟨Trump, Weld, Sanders, Biden⟩
Dave ⟨Biden, Sanders, Weld, Trump⟩

Table 2: A voting profile of 3 voters over 4 candidates.
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voter partial order

Ann {Biden ≻ Weld, Sanders ≻ Weld, Weld ≻ Trump}
Bob ⟨Trump, Weld, Sanders, Biden⟩
Dave ⟨Biden, Sanders, Weld, Trump⟩

Table 3: A partial voting profile of 3 voters over 4 candidates.
Ann gives a partial order, while Bob and Dave give rankings.

completion voter ranking

Ann ⟨Biden, Sanders, Weld, Trump⟩
No. 1 Bob ⟨Trump, Weld, Sanders, Biden⟩

Dave ⟨Biden, Sanders, Weld, Trump⟩
Ann ⟨Sanders, Biden, Weld, Trump⟩

No. 2 Bob ⟨Trump, Weld, Sanders, Biden⟩
Dave ⟨Biden, Sanders, Weld, Trump⟩

Table 4: The two completions of the voting profile in Table 3.

Algorithm 1 Repeated Insertion Model
Input: RIM(𝝈 ,Π) where |𝝈 | =𝑚
Output: Ranking 𝝉
1: Initialize an empty ranking 𝝉 = ⟨⟩.
2: for 𝑖 = 1, . . . ,𝑚 do
3: Insert 𝝈 (𝑖) into 𝝉 at 𝑗 ∈ [1, 𝑖 ] with probability Π (𝑖, 𝑗) .
4: end for
5: return 𝝉

Definition 1 (MPW). Given a partial voting profile 𝑷PO and a
positional scoring rule 𝒓𝑚 , candidate 𝑤 ∈ 𝐶 is the Most Probable
Winner (MPW), if and only if, Pr(𝑤 | 𝑷PO) = max𝑐∈𝐶 Pr(𝑐 | 𝑷PO)
where Pr(𝑐 | 𝑷PO) = ∑

𝑷 ∈Ω (𝑷PO) 1(𝑐 ∈ W(𝒓𝑚, 𝑷 )) · Pr(𝑷 | 𝑷PO).

A candidate is the MPW if her chance of winning in a random
possible world is no less than any other candidate.

Example 3. Given the partial voting profile in Table 3, we first
construct its completions listed in Table 4. Under the plurality rule,
Biden is the only winner in completion No.1, while completion No.2
has winners Biden, Sanders and Trump. Both completions have the
probability 0.5. Thus, Biden is the MPW with winning probability 1,
while the winning probability for Sanders and Trump is 0.5.

3.3 Preference Models
Repeated Insertion Model (RIM). Doignon et al. [7] proposed a

generative model RIM(𝝈 ,Π) that defines a probability distribu-
tion over permutations. It is parameterized by a reference ranking
𝝈 = ⟨𝜎1, . . . , 𝜎𝑚⟩ and a probability function Π where Π(𝑖, 𝑗) is the
probability of inserting 𝜎𝑖 at position 𝑗 . Algorithm 1 presents the
RIM generative procedure. It starts with an empty ranking, inserts
items in the order of 𝝈 , and places 𝜎𝑖 at the 𝑗𝑡ℎ position of the
incomplete ranking 𝝉 with probability Π(𝑖, 𝑗).

Algorithm 2 Repeated Selection Model
Input: RSM(𝝈 ,Π, 𝑝) where |𝝈 | =𝑚
Output: Partial order 𝝂
1: Initialize an empty partial order 𝝂 = {}.
2: for 𝑖 = 1, . . . ,𝑚 − 1 do
3: Sample 𝑗 ∈ [1,𝑚 − 𝑖 + 1] with probability Π (𝑖, 𝑗) .
4: Obtain item 𝜎 = 𝝈 ( 𝑗) and remove it from 𝝈 .
5: for 𝑘 = 1, . . . ,𝑚 − 𝑖 do
6: Add 𝜎 ≻ 𝝈 (𝑘) into 𝝂 with probability 𝑝 (𝑖) .
7: end for
8: end for
9: return 𝝂

Example 4. RIM(⟨𝑎, 𝑏, 𝑐⟩,Π) generates 𝝉 ′=⟨𝑐, 𝑎, 𝑏⟩ as follows. Ini-
tialize 𝝉0=⟨⟩. When 𝑖 = 1, 𝝉1=⟨𝑎⟩ by inserting 𝑎 into 𝝉0 with prob-
ability Π(1, 1). When 𝑖 = 2, 𝝉2=⟨𝑎, 𝑏⟩ by inserting 𝑏 into 𝝉1 at
position 2 with probability Π(2, 2). When 𝑖 = 3, 𝝉 ′=⟨𝑐, 𝑎, 𝑏⟩ by
inserting 𝑐 into 𝝉2 at position 1 with probability Π(3, 1). Overall,
Pr(𝝉 ′ | ⟨𝑎, 𝑏, 𝑐⟩,Π)=Π(1, 1) · Π(2, 2) · Π(3, 1).

RIM Inference and Cover Width. Given RIM(𝝈 ,Π) and a partial
order 𝝂 , RIM inference is used to calculate the marginal probability
of 𝝂 over RIM(𝝈 ,Π), or, equivalently, the probability that a sample
from RIM(𝝈 ,Π) is a linear extension of 𝝂 .

RIMDP [13] is a RIM inference solver that uses Dynamic Pro-
gramming (DP). It runs the RIM insertion procedure (Algorithm 1)
to generate all possible rankings that satisfy the partial order. Given
𝑚 items, there are potentially𝑚! permutations to generate. RIMDP
prunes the space based on an insight that it is only necessary to
track the positions of items directly related to some not-yet-inserted
item in the partial order. Two items {𝑎, 𝑏} are directly related and 𝑎
is a cover of 𝑏, if and only if 𝑎 ≻ 𝑏 and �𝑐 ∈ 𝐶, 𝑎 ≻ 𝑐 ≻ 𝑏. As a DP
approach, the states of RIMDP are mappings from tracked items to
their positions. The maximum number of tracked items during RIM
procedure is called the cover width, denoted cw(𝝈 ,𝝂). The complex-
ity of RIMDP is 𝑂 (𝑚cw(𝝈 ,𝝂)+2). RIMDP runs in polynomial time
for partial orders whose cover widths are bounded.

Example 5. Let 𝝈 = ⟨𝜎1, . . . , 𝜎9⟩ and 𝝂 = {𝜎3 ≻ 𝜎5, 𝜎5 ≻ 𝜎8}.
RIMDP does not track the positions of 𝜎1 and 𝜎2 since they are not
directly related to any item in 𝝂 . The insertion of 𝜎3 generates 3
states: {𝜎3 → 1}, {𝜎3 → 2}, and {𝜎3 → 3}. The position of 𝜎3 is
the boundary for 𝜎5. After inserting 𝜎5, RIMDP will stop tracking 𝜎3
by merging all states sharing the same position of 𝜎5, e.g., merging
{𝜎3 → 1, 𝜎5 → 3} and {𝜎3 → 2, 𝜎5 → 3} into {𝜎5 → 3}. RIMDP
will keep tracking 𝜎5 until 𝜎8 is inserted. The cover width in this
example is 1, since RIMDP tracks at most 1 item for each insertion.

Repeated Selection Model (RSM). Algorithm 2 presents a gener-
ative model for partial orders called RSM(𝝈 ,Π, 𝑝) [5]. The model
is parameterized by a reference ranking 𝝈 , a probability function
Π where Π(𝑖, 𝑗) is the probability of the 𝑗𝑡ℎ item selected at step 𝑖 ,
and a probability function 𝑝 : {1, ...,𝑚 − 1} → [0, 1] determining
whether the selected item is preferred to each remaining item. In
contrast to RIM that randomizes insertion positions, RSM random-
izes the insertion order. In this paper, we will use RSM with 𝑝 ≡ 1,
such that it only outputs rankings, and will denote it rRSM(𝝈 ,Π).
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Mallows Model. Denoted by MAL(𝝈 , 𝜙), where 0 ≤ 𝜙 ≤ 1, the
Mallows model [21] defines a probability distribution over rankings:
reference ranking 𝝈 at the center and other rankings closer to 𝝈
having higher probabilities. For a given ranking 𝝉 , Pr(𝝉 |𝝈 , 𝜙) ∝
𝜙𝐷 (𝝈 ,𝝉 ) , where 𝐷 (𝝈 ,𝝉 ) = | (𝑎, 𝑎′) |𝑎 ≻𝝈 𝑎′, 𝑎′ ≻𝝉 𝑎 | is the Kendall-
tau distance counting the number of disagreed preference pairs. If
𝜙 = 1, the Mallows becomes a uniform distribution. TheMAL(𝝈 , 𝜙)
is a special case for both RIM(𝝈 ,Π) by Π(𝑖, 𝑗) = 𝜙𝑖−𝑗

1+𝜙+...+𝜙𝑖−1 and

rRSM(𝝈 ,Π) by Π(𝑖, 𝑗) = 𝜙 𝑗−1

1+𝜙+...+𝜙𝑚−𝑖 .

4 UNCERTAIN VOTING PROFILES
In classical voting theory, voters give complete rankings over can-
didates. However, in practice only partial preferences may be ob-
served, due to the voting mechanism (e.g., when approval ballots
or a ranking of at most 𝑘 < 𝑚 candidates are elicited), the uncer-
tainty in preferences themselves [22], or both. Figure 2 represents
uncertainty as two distinct steps: preference generation (Figure 2a)
and preference observation (Figure 2b). Important special cases of
voting profiles are discussed next.

4.1 Uncertainty in profile generation
The most general form of voter preferences over rankings is a non-
parametric probability distribution such as that given in Figure 1a.
Let 𝑷M = (M1, . . . ,M𝑛) denote a probabilistic voting profile where
M𝑖 is the ranking model of voter 𝑣𝑖 . A possible world of 𝑷M is a com-
plete voting profile 𝑷 = (𝝉1, . . . ,𝝉𝑛) where each 𝝉𝑖 is sampled from
M𝑖 . It is assumed that the voters cast their ballots independently,
i.e., Pr(𝑷 | 𝑷M) = ∏𝑛

𝑖=1 Pr(𝝉𝑖 | M𝑖 ). So 𝑷M represents a probability
distribution of its possible worlds Ω(𝑷M) = {𝑷1, . . . , 𝑷𝑧 }.

Let 𝑠 (𝑐,M) and 𝑠 (𝑐, 𝑷M) denote the scores assigned to candidate
𝑐 by model M and probabilistic voting profile 𝑷M, respectively.
(Note that both are random variables.) Partial voting profiles are a
special case of probabilistic voting profiles, since they are based on
the assumption that all completions are equally likely. Below are a
few other cases.

In a uniform voting profile, denoted by 𝑷U, no voter has any pref-
erence between any two candidates. Voter preferences are sampled
from the uniform distribution over the rankings of all candidates.

There are specific important rankingmodels that wewill describe
in Section 7. The Mallows model [21] is the best known, and it is
generalized by the Repeated Insertion Model (RIM) [7] and the
ranking version of the Repeated Selection Model (RSM) [5]. Voting
profiles consisting of Mallows, RIMs, and RSMs (ranking version)
are denoted by 𝑷MAL, 𝑷RIM, and 𝑷 rRSM, respectively. We will see
that, when the generation step is based on these models, we have a
computational advantage for computing the MEW.

4.2 Uncertainty in profile observation
A partial voting profile, denoted by 𝑷PO, consists of partial orders
and represents a uniform distribution of its completions. What
follows are important special cases.

A (fully) partitioned voting profile, denoted by 𝑷FP, records pref-
erences in the form of partitions: linear orders of item buckets, with
no preference among the items within a bucket.

PM (ranking models)

 PRIM

 P rRSM

PU PMAL

(a) Generation step

PPO (partial orders)


PPP (partially partitioned preferences)


PPC (partial chains)

PFP (fully partitioned preferences)


PTR (truncated rankings)


(b) Observation step

Figure 2: Uncertain voting profiles. (a) Uncertainty in the
preferences by the voters themselves is represented by the
ranking models in the generation step. (b) Uncertainty intro-
duced by the preference elicitationmechanism is represented
by the incomplete voting profiles in the observation step.

A partially partitioned voting profile, denoted by 𝑷PP, generalizes
the fully partitioned preferences by only considering a subset of
items, with no preference information for the missing ones.

A partial chain voting profile, denoted by 𝑷PC, records prefer-
ences in the form of partial chains. A partial chain is a linear order
of a subset of items, with no preference over the remaining items.
The partial chains are a special case of the partially partitioned
preferences, where each partition only consists of one item.

A truncated voting profile, denoted by 𝑷TR, records preferences
in the form of truncated rankings. Let 𝝉 (𝑡,𝑏) denote a truncated
ranking with 𝑡 items at the top and 𝑏 items at the bottom, with no
preference specified for the middle part of the ranking. The 𝝉 (𝑡,𝑏) is
a special case of the partitioned preferences, with 𝑡 +𝑏 +1 partitions.

Combined voting profiles. Most research works have assumed
that a partial voting profile represents a uniform distribution over
its completions. However, the assumption that all completions are
equally likely may not hold in practice. We propose combined vot-
ing profiles 𝑷M+𝑃 , where each voter is associated with both her
original incomplete preferences 𝑃 and a ranking model M. The
ranking modelM is her prior preference distribution, which may
be obtained from historical data. But after observing new evidence
𝑃 , the probabilities of rankings that violate 𝑃 collapse to zero, while
the remaining rankings that satisfy 𝑃 have the same relative prob-
abilities among each other. Formally speaking, the preferences of
this voter become the posterior distribution of M conditioned on 𝑃 .

In another sense, the combined voting profiles are also the most
general form of voting profiles (same as 𝑷M) that unify all voting
profiles so far. For example, a partitioned voting profile 𝑷FP is
essentially 𝑷U+FP, and a RIM voting profile 𝑷RIM is essentially
𝑷RIM+∅ where ∅ means that the partial orders are the empty ones.

Among the tractable cases in Section 7, there are also combined
voting profiles, whichmeans that applying combined voting profiles
both brings the benefit of more customized ranking distributions,
and can also be practical.
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5 MOST EXPECTED WINNER
For a general voting profile and a positional scoring rule, the per-
formance of a candidate can be quantified by the expectation of her
score in a random possible world. We define this formally below.

Definition 2 (MEW). Given a general voting profile 𝑷M and a
positional scoring rule 𝒓𝑚 , candidate𝑤 is a Most Expected Winner, if
and only if, E(𝑠 (𝑤, 𝑷M)) = max𝑐∈𝐶 E(𝑠 (𝑐, 𝑷M)).

We denote the set of Most Expected Winners by MEW(𝒓𝑚, 𝑷M).

5.1 Alternative Interpretations
To gain an intuition for Most Expected Winner (MEW), we will
now give two winner definitions that are equivalent to MEW. (See
supplementary materials [1] for theorem proofs in this section.)

Least Expected Regret Winner. The MEW can also be regarded as
the candidate who minimizes the expected regret in a random pos-
sible world. Let Regret(𝑤, 𝑷 ) denote the regret value of choosing
𝑤 ∈ 𝐶 as the winner given a complete voting profile 𝑷 .

Regret(𝑤, 𝑷 ) = max
𝑐∈𝐶

𝑠 (𝑐, 𝑷 ) − 𝑠 (𝑤, 𝑷 )

Accordingly, the regret value Regret(𝑤, 𝑷M) over a probabilistic
voting profile becomes a random variable.

E(Regret(𝑤, 𝑷M)) =
∑︁

𝑷 ∈Ω (𝑷M)
Regret(𝑐, 𝑷 ) · Pr(𝑷 | 𝑷M)

Candidate𝑤 is a Least Expected Regret Winner, if and only if, she
minimizes the expected regret E(Regret(𝑤, 𝑷M)).

Theorem 1. Least Expected Regret Winner is equivalent to MEW.

Our use of expected regret as an alternative interpretation of
MEW is inspired by Lou and Boutillier [19], whowere the first to use
regret in winner determination. They proposed MMR, the winner
that minimized regret in the worst-case completion. In contrast,
MEW minimizes regret in expectation, across all completions.

Meta-Election Winner. Recall that a voting profile 𝑷M represents
a probability distribution of possible worlds Ω(𝑷M) = {𝑷1, . . . , 𝑷𝑧 }.
The Meta-Election Winner is defined as the candidate who wins
a meta election with a large meta profile 𝑷𝑀 = (𝑷1, . . . , 𝑷𝑧) where
rankings in 𝑷𝑖 are weighted by Pr(𝑷𝑖 | 𝑷M).

Theorem 2. Meta-Election Winner is equivalent to MEW.

5.2 Problem Statement
The MEW is determined based on the expected performance of the
candidates. Thus, the winner determination problem of MEW can
be reduced to the problem of Expected Score Computation (ESC),
stated below and addressed in the remainder of the paper.

Definition 3 (ESC). Given a general voting profile 𝑷M, a posi-
tional scoring rule 𝒓𝑚 , and a candidate 𝑐 ∈ 𝐶 , compute E(𝑠 (𝑐, 𝑷M))
the expected score of the candidate 𝑐 .

6 HARDNESS OF ESC
This section investigates the complexity of the ESC problem. We
first prove the hardness of two closely related problems, the Fixed-
rank Counting Problem and the Rank Estimation Problem, and then

demonstrate that the ESC problem is hard as well. See supplemen-
tary materials [1] for all proofs.

6.1 Fixed-rank Counting Problem
Counting the number of linear extensions of a partial order is well-
known to be #P-complete [3]. The Fixed-rank Counting Problem
(FCP) is interested in the number of linear extensions where an
item is placed at a specific rank. Let Ω(𝝂) denote the set of linear
extensions of 𝝂 , and 𝑁 (𝑐→ 𝑗 | 𝝂) denote the number of linear
extensions in Ω(𝝂) where item 𝑐 is placed at rank 𝑗 .

Definition 4 (FCP). Given a partial order 𝝂 over 𝑚 items, an
item 𝑐 , and an integer 𝑗 ∈ [1,𝑚], calculate 𝑁 (𝑐→ 𝑗 | 𝝂), the number
of linear extensions of 𝝂 where item 𝑐 is placed at rank 𝑗 .

De Loof’s doctoral dissertation [18] discusses this problem (Sec-
tion 4.2.1), proposing exact and approximate algorithms, but does
not provide proof of complexity.

Theorem 3. The FCP is #P-complete.

The hardness of FCP facilitates the hardness proofs for the Rank
Estimation Problem.

6.2 Rank Estimation Problem
Now we move on to the Rank Estimation Problem (REP). This
problem can be regarded as the probabilistic version of the FCP. It
calculates the probability that a given item is placed at a specific
rank. But the REP is generalized from partial orders to arbitrary
ranking distributions.

Definition 5 (REP). Given a ranking model M over 𝑚 items,
an item 𝑐 , and an integer 𝑗 ∈ [1,𝑚], calculate Pr(𝑐→ 𝑗 | M), the
probability that item 𝑐 is placed at rank 𝑗 , byM.

For the convenience of discussions in the rest of this Section, we
also define two special cases of the REP where items are placed at
the top and bottom of the linear extensions.

Definition 6 (REP-𝑡 ). Given a ranking model M of𝑚 items and
an item 𝑐 , calculate Pr(𝑐→1 | M), the probability that item 𝑐 is placed
at the top of a linear extension, by M.

Definition 7 (REP-𝑏). Given a ranking model M of𝑚 items and
an item 𝑐 , calculate Pr(𝑐→𝑚 | M), the probability that item 𝑐 is
placed at the bottom of a linear extension, by M.

Lerche and Sørensen [17] proposed an approximation for the
REP over partial orders, but did not provide a formal complexity
proof. Bruggemann and Annoni [4] and De Loof et al. [6] consid-
ered a related problem, calculating the expected rank of an item
in the linear extensions of a partial order. These works focused on
approximation, lacking complexity proofs as well.

With the help of Theorem 3, it turns out that the REP and its
two variants are all FP#𝑃 -complete over partial orders.

Lemma 1. If ranking model M is a partial order 𝝂 of𝑚 items rep-
resenting a uniform distribution of Ω(𝝂), the REP-t is FP#𝑃 -complete.

Lemma 2. If ranking model M is a partial order 𝝂 of𝑚 items rep-
resenting a uniform distribution of Ω(𝝂), the REP-b is FP#𝑃 -complete.

Theorem 4. If ranking model M is a partial order 𝝂 of𝑚 items
representing a uniform distribution of Ω(𝝂), the REP is FP#𝑃 -complete.
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6.3 Complexity of ESC
ESC is closely related to REP. Firstly, ESC is no harder than REP
over general voting profiles (Theorem 5), which lays the foundation
for the identification of tractable cases in Section 7.

Theorem 5. Given a general voting profile 𝑷M and a positional
scoring rule 𝒓𝑚 , the ESC problem can be reduced to the REP.

Theorem 6. The REP for rank 𝑘 is equivalent to the ESC problem
over either one or both of the (𝑘 − 1)-approval and 𝑘-approval rules.

Theorem 6 provides an insight into the relation between REP and
ESC in terms of computational complexity. If a solver is available for
the ESC problem over a collection of 𝑘-approval votes, this solver is
computationally equivalent to the REP solver. Note that Theorem 6
is not limited to partial voting profiles.

Theorem 7. Given a partial voting profile 𝑷PO, a distinguished
candidate 𝑐 , and plurality rule 𝒓𝑚 , the ESC problem of calculating
E(𝑠 (𝑐 | 𝑷PO, 𝒓𝑚)) is FP#𝑃 -complete.

Theorem 8. Given a partial voting profile 𝑷PO, a distinguished
candidate 𝑐 , and veto rule 𝒓𝑚 , the ESC problem of calculatingE(𝑠 (𝑐 |
𝑷PO, 𝒓𝑚)) is FP#𝑃 -complete.

Theorem 9. Given a partial voting profile 𝑷PO, a distinguished
candidate 𝑐 , and 𝑘-approval rule 𝒓𝑚 , the ESC problem of calculating
E(𝑠 (𝑐 | 𝑷PO, 𝒓𝑚)) is FP#𝑃 -complete.

The three theorems above demonstrate the hardness of the ESC
problem over partial voting profiles, under plurality, veto, and 𝑘-
approval, respectively. In particular, ESC is FP#𝑃 -complete even
under plurality (Theorem 7).

7 MOST EXPECTEDWINNER SOLVERS
The problem of determining MEW can be reduced to the ESC prob-
lem (Definition 3), then further reduced to the REP by Theorem 5.
This section will solve the MEW problem by solving the REP. See
supplementary materials [1] for all theorem proofs.

7.1 Solver for RIM-based partial orders
We adopt the RIMDP algorithm [13], discussed in Section 3.3, to
develop an exact solver for the REP over posets, and more generally,
for RIM combined with posets. The exact solver only modifies the
RIMDP by always tracking the target candidate, such that when
RIM insertions finish, RIMDP obtains the probabilities of the target
candidate being placed at each rank.

The RIMDP has exponential complexity 𝑂 (𝑚cw(𝝈 ,𝝂)+2), where
cw(𝝈 ,𝝂) is the cover width, given the reference ranking 𝝈 and the
partial order 𝝂 [13]. It takes 𝑂 (𝑛𝑚cw(𝝈 ,𝝂)+3) to calculate MEW by
executing RIMDP for all𝑚 candidates and 𝑛 voters.

7.2 Solvers for Partitioned Preferences,
Truncated Rankings, and Partial Chains

It turns out that the MEW problem can be solved efficiently for
all special cases of partial voting profiles in Figure 2b, i.e., the
partitioned voting profile,

Theorem 10. Given a positional scoring rule 𝒓𝑚 , a fully parti-
tioned voting profile 𝑷FP = (𝝂FP1 , . . . ,𝝂

FP
𝑛 ), and candidate 𝑤 , deter-

mining𝑤 ∈ MEW(𝒓𝑚, 𝑷FP) is in 𝑂 (𝑛𝑚2).

Algorithm 3 REP solver for RIM
Input: Item 𝑐 , RIM(𝝈 ,Π) where |𝝈 | =𝑚
Output: {𝑘 → Pr(𝑐→𝑘 | 𝝈 ,Π) | 𝑘 ∈ [1,𝑚] }
1: 𝛿0 := ∅, P0 := {𝛿0 } and 𝑞0 (𝛿0) := 1
2: for 𝑖 = 1, . . . ,𝑚 do
3: P𝑖 := {}
4: for 𝛿 ∈ P𝑖−1 do
5: for 𝑗 = 1, . . . , 𝑖 do
6: if 𝝈 (𝑖) is 𝑐 then
7: 𝛿′ := {𝑐 → 𝑗 }
8: else if 𝛿 = {𝑐 → 𝑘 } and 𝑗 ≤ 𝑘 then
9: 𝛿′ := {𝑐 → 𝑘 + 1}
10: else
11: 𝛿′ := 𝛿

12: end if
13: if 𝛿′ ∉ P𝑖 then
14: P𝑖 .𝑎𝑑𝑑 (𝛿′)
15: 𝑞𝑖 (𝛿′) := 0
16: end if
17: 𝑞𝑖 (𝛿′) += 𝑞𝑖−1 (𝛿) · Π (𝑖, 𝑗)
18: end for
19: end for
20: end for
21: ∀𝑘 ∈ [1,𝑚], Pr(𝑐→𝑘 | 𝝈 ,Π) = 𝑞𝑚 ( {𝑐 → 𝑘 }) .
22: return {𝑘 → Pr(𝑐→𝑘 | 𝝈 ,Π) | 𝑘 ∈ [1,𝑚] }

The truncated voting profiles can be solved by the same approach
above, since they are a special case of the fully partitioned profile.

Theorem 11. Given a positional scoring rule 𝒓𝑚 , a partial chain
voting profile 𝑷PC = (𝝂PC1 , . . . ,𝝂PC𝑛 ), and candidate 𝑤 , determining
𝑤 ∈ MEW(𝒓𝑚, 𝑷PC) is in 𝑂 (𝑛𝑚2).

The MEW over partially partitioned preferences can be solved
by extending the above approach for partial chain voting profiles.

Theorem 12. Given a positional scoring rule 𝒓𝑚 , a partially par-
titioned voting profile 𝑷PP = (𝝂PP1 , . . . ,𝝂PP𝑛 ), and candidate𝑤 , deter-
mining𝑤 ∈ MEW(𝒓𝑚, 𝑷PP) is in 𝑂 (𝑛𝑚2).

7.3 Solver for Probabilistic Voting Profiles
While the problem of MEW determination is hard in general, it is
tractable over specific ranking models such as the Mallows [21]
and its generalizations RIM [7] and RSM [5].

Theorem 13. Given positional scoring rule 𝒓𝑚 , a RIM voting
profile 𝑷RIM = (RIM1, . . . ,RIM𝑛), and candidate 𝑤 , determining
𝑤 ∈ MEW(𝒓𝑚, 𝑷RIM) is in 𝑂 (𝑛𝑚4).

The complexity of MEW determination over RSM voting profiles
is 𝑂 (𝑛𝑚4) as well. Supplementary proofs for details [1].

7.4 Solver for Combined Voting Profiles
It is usually harder to compute the expected scores over combined
voting profiles. Below are some caseswhere this problem is tractable.
The first case is the RIMs combined with truncated rankings.

Theorem 14. Given a positional scoring rule 𝒓𝑚 , a voting profile
𝑷RIM+TR=

(
(RIM1,𝝉

(𝑡1,𝑏1)
1 ), . . . , (RIM𝑛,𝝉

(𝑡𝑛,𝑏𝑛)
𝑛 )

)
, and candidate𝑤 ,

determining𝑤 ∈ MEW(𝒓𝑚, 𝑷RIM+TR) is in 𝑂 (𝑛𝑚4).
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Table 5: Complexity of exact MEW solvers under general
positional scoring rules for various voting profiles, including
partial orders (PO), partially partitioned preferences (PP),
fully partitioned preferences (FP), partial chains (PC), RIMs,
rRSMs, Mallows, and combined profiles. A dagger (†) refers to
results presented in supplementarymaterials [1]. An asterisk
(*) means that the RIM and rRSM models are effectively the
Mallows models in the experimental benchmarks.

Profile Complexity Solver Experiments

𝑷PO 𝑂 (𝑛𝑚cw+3) RIMDP Figures 5 and 6
𝑷PP 𝑂 (𝑛𝑚2) Theorem 12 Figure 7
𝑷FP 𝑂 (𝑛𝑚2) Theorem 10 Figure 8
𝑷PC 𝑂 (𝑛𝑚2) Theorem 11 Figure 9
𝑷TR 𝑂 (𝑛𝑚2) Theorem 10, as 𝑷FP Figure 10

𝑷RIM 𝑂 (𝑛𝑚4) Theorem 13
𝑷MAL 𝑂 (𝑛𝑚4) Theorem 13, as 𝑷RIM Figure 11
𝑷 rRSM 𝑂 (𝑛𝑚4) Theorem 16† Figure 12*

𝑷RIM+PO 𝑂 (𝑛𝑚cw+3) RIMDP Figure 13c
𝑷RIM+PP 𝑂 (𝑛𝑚cw+3) RIMDP, as 𝑷RIM+PO

𝑷RIM+PC 𝑂 (𝑛𝑚cw+3) RIMDP, as 𝑷RIM+PO

𝑷RIM+FP 𝑂 (𝑛𝑚cw+3) RIMDP, as 𝑷RIM+PO

𝑷RIM+TR 𝑂 (𝑛𝑚4) Theorem 14 Figure 13b*
𝑷MAL+FP 𝑂 (𝑛𝑚4) Theorem 15 Figure 13a
𝑷MAL+TR 𝑂 (𝑛𝑚4) Theorem 15, as 𝑷MAL+FP

𝑷MAL+PP 𝑂 (𝑛𝑚cw+3) RIMDP, as 𝑷RIM+PP

𝑷MAL+PC 𝑂 (𝑛𝑚cw+3) RIMDP, as 𝑷RIM+PC

𝑷MAL+PO 𝑂 (𝑛𝑚cw+3) RIMDP, as 𝑷RIM+PO

Mallows combined with partitioned preferences is also tractable.

Theorem 15. Given a positional scoring rule 𝒓𝑚 , a voting pro-
file 𝑷MAL+FP =

(
(MAL1,𝝂FP1 ), . . . , (MAL𝑛,𝝂FP𝑛 )

)
, and candidate 𝑤 ,

determining𝑤 ∈ MEW(𝒓𝑚, 𝑷MAL+FP) is in 𝑂 (𝑛𝑚4).

7.5 Summary
Table 5 summarizes all solvers in this Section, including additional
conclusions for a large number of specialized voting profiles. For
example, the complexity over Mallows voting profiles is bounded
by𝑂 (𝑛𝑚4), since they are a special case of 𝑷RIM. An interesting ob-
servation is that the MEW complexity over 𝑷RIM+FP is not tractable,
but its special case 𝑷MAL+FP has polynomial complexity. Although
this table demonstrates that evaluating MEW over probabilistic vot-
ing profiles has higher complexity than that over incomplete voting
profiles (e.g., 𝑂 (𝑛𝑚4) for 𝑷MAL+FP but only 𝑂 (𝑛𝑚2) for 𝑷FP), the
tractability results over a collection of probabilistic and combined
voting profiles give the MEW a computation advantage in practice.
Note that the combined voting profiles with RSM models are not
covered by Table 5, since the complexity of determining the MEW
for them is still an open question.

8 OPTIMIZATION STRATEGIES
The algorithms in Section 7 find the MEW by computing candi-
date scores for a single voter at a time, and then aggregating the
scores across the voting profile. We now present two optimization
strategies for a voting profile solver in Algorithm 4.

Algorithm 4 Solver for voting profiles
Input: general voting profile 𝑷M = (M1, . . . ,M𝑛) , voting rule 𝒓𝑚
Output: MEW(𝒓𝑚, 𝑷M)
1: Group identical votes in 𝑷M, sort them by the group size in descending

order, to generate a weighted voting profile 𝑷𝑤 where each vote M𝑖 is
associated with a weight 𝑤𝑖

2: Obtain candidates𝐶 = {𝑐1, . . . , 𝑐𝑚 } from 𝑷𝑤
3: ∀𝑐 ∈ 𝐶,𝑈𝐵 (𝑐) := 0, 𝐿𝐵 (𝑐) := 0
4: for (M, 𝑤) ∈ 𝑷𝑤 do
5: for 𝑐 ∈ 𝐶 do
6: Compute the best possible rank 𝑎 of 𝑐 over M
7: Compute the worst possible rank 𝑏 of 𝑐 over M
8: 𝑈𝐵 (𝑐) += 𝑤 · 𝒓𝑚 (𝑎) , 𝐿𝐵 (𝑐) += 𝑤 · 𝒓𝑚 (𝑏)
9: end for
10: end for
11: Compute𝑚𝑎𝑥 (𝐿𝐵) , prune any candidate 𝑐 if𝑈𝐵 (𝑐) <𝑚𝑎𝑥 (𝐿𝐵)
12: for (M, 𝑤) ∈ 𝑷𝑤 do
13: Let𝐶𝑡 denote the candidates currently tracked by𝑈𝐵 and 𝐿𝐵
14: for 𝑐 ∈ 𝐶𝑡 do
15: Compute the exact score of 𝑐 overM
16: Refine𝑈𝐵 (𝑐) and 𝐿𝐵 (𝑐) with its exact score and the weight 𝑤
17: end for
18: Compute𝑚𝑎𝑥 (𝐿𝐵) , prune any candidate 𝑐 if𝑈𝐵 (𝑐) <𝑚𝑎𝑥 (𝐿𝐵)
19: if Only one candidate remains in𝑈𝐵 and 𝐿𝐵 then
20: Let 𝑐′ denote the only remaining candidate
21: return MEW(𝒓𝑚, 𝑷M) = 𝑐′
22: end if
23: end for
24: Let𝐶′ denote the set of remaining candidates in𝑈𝐵 and 𝐿𝐵
25: return MEW(𝒓𝑚, 𝑷M) = 𝐶′

Candidate pruning. We can save computation by iteratively prun-
ing candidates who cannot be the MEW. The key idea is to quickly
compute score upper- and lower-bounds for all candidates across
the voting profile, progressively refine these scores during per-voter
computation, and prune candidates who cannot be the MEW based
on the upper- and lower-bounds computed so far.

Algorithm 4 presents the candidate pruning procedure. The first
step is to compute 𝑈𝐵(𝑐) and 𝐿𝐵(𝑐), the upper- and lower-bounds
of the score of each candidate 𝑐 by quickly computing their best
possible and worst possible ranks assigned by each voter (lines 3
- 10). For example, in a given partial order 𝑀 (voter) in a partial
voting profile, the best possible rank of candidate 𝑐 is bounded by
the number of its ancestors in 𝑀 , while its worst possible rank is
bounded by the number of its descendants. Combing this informa-
tion with the voting rule, we can efficiently obtain score upper- and
lower-bounds of each candidate for each voter.

Example 6. Let 𝝂 = {𝜎3 ≻ 𝜎5, 𝜎3 ≻ 𝜎8} be a partial order, over
𝑚 = 10 items, and assume the voting rule is 2-approval. Item 𝜎5 has
1 ancestor 𝜎3 and no descendant in 𝝂 . So its best possible rank is 2
and its worst possible rank is𝑚, which correspond to scores 1 and 0,
respectively, under 2-approval. Thus, 1 is the score upper-bound of 𝜎5,
and 0 the score lower-bound, for 𝝂 .

Per-voter score upper-bounds and lower-bounds can be aggre-
gated (summed up) across all voters in the profile (line 8 of Algo-
rithm 4). The pruning strategy can then confidently determine the
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Figure 4: Parallel implementation for MEW over partial vot-
ing profiles of 10 candidates, 1 million voters, 𝜙 = 0.5, and
𝑝𝑚𝑎𝑥 = 0.1. The speedup due to parallelism is nearly linear in
the number of worker processes.

losing candidates as those whose score upper-bounds are lower
than the best observed score lower-bound (line 11 of Algorithm 4).

Score upper- and lower-bounds are refined as the algorithm
iterates over the voters (lines 12- 23), computing the exact scores of
viable (tracked) candidates, refining𝑈𝐵(𝑐) and 𝐿𝐵(𝑐), and pruning
any candidates that are no longer viable (line 18).

If, at any point during the iteration, only a single tracked can-
didate 𝑤 remains, then it is returned as the MEW (line 21). Once
all voters 𝑀 have been iterated over, return all remaining tracked
candidates as the winners. (Note that if after all voters are iterated,
and there are still multiple tracked items, then their upper- and
lower-bounds are precisely their exact scores, and they all share
the same exact score, otherwise the candidates with lower exact
scores would have been pruned during voter iteration.)

Example 7. Assume 𝑈𝐵 = {𝜎1 → 15, 𝜎2 → 6} and 𝐿𝐵 = {𝜎1 →
5, 𝜎2 → 2} at a time point during refining the 𝑈𝐵 and 𝐿𝐵. Assume
that after computing the exact scores of 𝜎1 and 𝜎2 over the latest
voter, the refined 𝑈𝐵 = {𝜎1 → 12, 𝜎2 → 5} and the refined 𝐿𝐵 =

{𝜎1 → 7, 𝜎2 → 3}. Now, candidate 𝜎2 can be pruned, since𝑈𝐵(𝜎2) <
𝐿𝐵(𝜎1). After pruning 𝜎2, only 𝜎1 is tracked by 𝑈𝐵 and 𝐿𝐵, thus we
can confidently declare 𝜎1 as the winner.

Voter grouping. As another optimization, we observe that when
multiple voters cast the same vote, we only need to compute the
expected candidate scores for this vote once. When computing
the MEW over a voting profile, the first step is to group identical
votes and sort them by their frequencies in descending order, which
generates a new voting profile that is weighted and sorted.

9 EXPERIMENTS
We systematically tested the proposed algorithms and optimization
strategies with both synthetic and real datasets, described below.
The experiment code is available in the supplementary materials [1].
All experiments were conducted on a Linux machine with two Intel
Xeon Platinum 8268 24-core 2.9GHz Processors and 384GB RAM.

Synthetic data generators. The synthetic partial orders are gen-
erated by RSMs. Let RSM(𝝈 ,Π, 𝑝) denote the preference model of
a voter where 𝝈 = ⟨𝜎1, . . . , 𝜎𝑚⟩ and Π(𝑖, 𝑗) = 𝜙 𝑗−1

1+𝜙+...+𝜙𝑚−𝑖 , which

makes its item selection order equivalent to MAL(𝝈 , 𝜙). Then uni-
formly draw probabilities 𝑝 : {1, . . . ,𝑚 − 1} → Uniform(0, 𝑝𝑚𝑎𝑥 )
where 𝑝𝑚𝑎𝑥 is part of the parameter setup in our experiments.

Partially partitioned preferences are generated with specified
numbers of partitions. First, create an ordered list of partitions, and
randomly choose an item for each partition to guarantee that each
partition has at least one item. Then, create an additional partition
for the missing items. Finally, assign each of the remaining items to
a random partition, including the “missing items” partition. Fully
partitioned preferences are generated in a similar fashion, except
that there is no partition for the missing items. Partial chains also
use this generator, except that it stops at the first step where each
partition has been assigned a single random item.

Truncated rankings are generated by first drawing a ranking
from the uniform ranking distribution, and keeping only the top
and the bottom parts of the ranking.

Real datasets. We applied the proposed solvers to three real
datasets of different voting profile types.

CrowdRank [30] is a dataset of partial chains over movies col-
lected from Amazon Mechanical Turk. It consists of 50 human
intelligence tasks (HITs), each of which asked 100 users to rank 20
movies that they were familiar with.

MovieLens is a dataset of movie ratings collected by GroupLens
(www.grouplens.org). We used the most frequently rated movies
and converted the movie ratings by the same user into partially
partitioned preferences, given that each user only rated a subset of
the movies. We then obtained a partially partitioned voting profile
with 200 movies and 6040 users.

Travel [28] is a dataset of ratings of European attractions that
belong to 24 categories in Google Reviews. The ratings are average
values given by each user for each attraction category.We converted
these average ratings into a fully partitioned voting profile with 24
attraction categories and 5456 users.

9.1 Performance optimizations
We tested the performance of optimization strategies over syn-
thetic partial voting profiles, with 10 candidates under three voting
rules. The partial orders are generated by RSM(𝝈 ,Π, 𝑝) and 𝑝𝑚𝑎𝑥
as described above. In each voting profile, all voters share the same
reference ranking 𝝈 and insertion probabilities Π, and their item

www.grouplens.org
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Figure 7: Average time over partially partitioned profiles. It declines with more partitions in the voter preferences, increases
with more candidates in the voting profile, and increases linearly with the number of voters.

selection orders are equivalent to MAL(𝝈 , 𝜙). For the convenience
of discussion, we use 𝜙 as the setting that describes Π.

Candidate pruning. We turned off voter grouping to test the
performance of candidate pruning. For each parameter setting,
we generated 10 voting profiles, fixing 10,000 voters and 𝜙 = 0.5,
varying 𝑝𝑚𝑎𝑥 , and computed MEW with and without candidate
pruning. We present speedup as a function of 𝑝𝑚𝑎𝑥 for 10, 000
voters in Figure 3a, for plurality, 2-approval and Borda. We observe
that pruning never hurts performance, and that it is more effective
for higher values of 𝑝𝑚𝑎𝑥 , the parameter that controls the density
(number of preference pairs) in a partial order. Pruning is most
effective for plurality, followed by 2-approval and then by Borda.
We thus conclude that these performance optimizations are effective
at reducing the running time of MEW computation, and we use
both optimizations in all remaining experiments.

Voter grouping. In this experiment, we turned off candidate prun-
ing, and tested the voter grouping optimization. For each param-
eter setting, we generated 10 voting profiles, fixing 𝜙 = 0.5 and
𝑝𝑚𝑎𝑥 = 0.1, varying the number of voters, and computed MEW
with and without voter grouping. The speedup of voter grouping
is the running time without voter grouping divided by the running
time with voter grouping. Figure 3b demonstrates that voter group-
ing never hurts performance, and that the speedup realized by this
optimization increases with the number of voters.

Parallel computation of MEW. Algorithm 4 gives a sequential
implementation of MEW, with linear complexity in the number of

voters. To handle a large volume of voters in real-world settings,
the computation of MEW can be easily parallelized by turning off
the candidate pruning strategy and allocating all votes to different
CPU cores. We tested the parallel implementation of MEW over 10
synthetic partial voting profiles of 10 candidates and 1million voters.
The partial orders are generated with 𝜙 = 0.5 and 𝑝𝑚𝑎𝑥 = 0.1, using
the same methodology as in Section 9.1. Figure 4a demonstrates
that the solver runs faster with more worker processes. In Figure 4b,
the speedup of the parallel solver relative to the sequential solver
increases linearly with the number of worker processes.

9.2 Incomplete voting profiles
Partial voting profiles. A collection of synthetic profiles of 10

candidates are generated to test the scalability of the solver in
Section 7.1. Synthetic partial orders are generated in the same way
as in Section 9.1. We generated 10 voting profiles for each parameter
setting, and calculated the MEW under three voting rules, with
performance optimizations discussed in Section 8.

Figure 5 demonstrates the impact of voting rules on the running
time. MEW is determined fastest under plurality, followed by 2-
approval, and finally, by Borda. In Figure 5a, the 𝜙 parameter of the
Mallows model is varied to test the impact of voter consensus level
on the running time, which turns out to be minor. Figure 5b shows
the linearly increasing running time with the number of voters.
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5 10 20
top / bottom size

2-6

2-4

2-2

20

tim
e(

s)

plurality 2-approval Borda

(a) 80 candidates, 1000 voters

102 103 104 105 106
#voters

10-1

101

103

tim
e(
s)

plurality 2-approval Borda

(b) 80 candidates, top / bottom size 5
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when increasing the top and bottom sizes of the truncated
rankings. It increases linearly with the number of voters.

Partial orders and cover width. A benchmark of partial orders is
prepared to investigate the impact of the cover width parameter,
discussed in Section 3.3, on performance. We fixed the reference
ranking of the RSM over 10 candidates, and made its insertion
probabilities equivalent to 𝜙 = 0.5 in Mallows. For each partial
order, we sample a new vector of edge construction probabilities
with 𝑝𝑚𝑎𝑥 = 0.1, generating 100 partial orders. Figure 6 shows that
the exact solver for partial orders has exponential complexity with
the cover width, which is consistent with our complexity analysis.

Partially partitioned voting profiles. Synthetic profiles are gener-
ated with the parameter settings in Figure 7. For each setup, we
generated 10 profiles and calculated the MEW with the solver in
Theorem 12 and Algorithm 4. Figure 7 shows their average running

time to demonstrate the scalability w.r.t. the number of partitions,
candidates, and voters. In Figure 7a, the running time decreased
with greater number of partitions. Figures 7b and 7c show that the
running time increases linearly with more candidates and voters.

Fully partitioned voting profiles. The setup of this experiment
is identical to that of the partially partitioned preferences above.
While Figure 8b also gives the linear growth of running time with
increasing number of candidates, Figure 8a shows opposite trends
between Borda and the other two voting rules. It turns out that
under Borda rule, the pruning strategy benefits from the increasing
number of partitions. In comparison, after turning off the pruning
strategy, the running time of computing MEW under the Borda
rule increased from 0.76 seconds to 0.79 seconds.

Partial chain voting profiles. The setup of this experiment is al-
most identical to the experiments of partitioned voting profiles,
except that the number of partitions is now the chain size. Fig-
ure 9 presents the average running time to compute the MEW with
candidate pruning under various parameter settings. In Figure 9a,
running time increases mildly with chain size under Borda, while it
even drops under plurality and 2-approval. In Figures 9b and 9c, the
running time increases linearly with more candidates and voters.

Truncated voting profiles. In this experiment, we fixed the number
of candidates to be 80, and varied the top and bottom sizes of the
truncated rankings, and the number of voters. For each parameter
setting, we generated 10 voting profiles and computed the average
running time of MEW with the candidate pruning strategy.

Figure 10a demonstrates that the top and bottom size has no
impact on the running time over plurality and 2-approval, which
is expected since these voting rules only need information about
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the top-1 or 2 ranked candidates. Under Borda, MEW computation
is faster for higher top and bottom size, also as expected, since un-
certainty in the truncated rankings decreases accordingly. Finally,
Figure 10b demonstrates that the running time over truncated vot-
ing profiles increases linearly with the number of voters.

9.3 Probabilistic voting profiles
Mallows voting profiles.We generate synthetic profiles to test the
performance of the RIM solver over its special case, the Mallows
model. We vary the number of candidates from 10 to 80, and the
dispersion parameter 𝜙 from 0.1 to 0.9, generate 10 profiles for
each parameter setting, and report the average running time, with
pruning, in Figure 11. Figure 11a shows that the solver scales well
with the number of candidates, while Figure 11b shows that the
time to compute MEW is insensitive to the Mallows parameter 𝜙 .

RSM voting profiles. This experiment uses exactly the same voting
profiles as the experiment above for Mallows models. Since rRSM
generalizes the Mallows model, we converted the Mallows models
into rRSM instances and invoked the RSM solver for these con-
verted voting profiles. Compared to Figure 11a, Figure 12a shows
better scalability with regards to increasing number of candidates,
especially for the plurality and 2-approval rules. Figure 12b gives a
similar conclusion as Figure 11b that the dispersion of the prefer-
ences has little impact over the running time.

9.4 Combined voting profiles
Mallows with fully partitioned preferences. In this experiment, we
investigate the impact of the Mallows 𝜙 on the running time. All
voting profiles have 10 candidates, 1000 voters, and 2 partitions for
the partitioned preferences. Figure 13a shows that the Mallows 𝜙
has little impact on the running time, and that the running time
under plurality and 2-approval rules are almost identical. Similar
trends were observed for more than 2 partitions, and we do not
report these results here.

Mallows with truncated rankings. The setup of this experiment is
similar to the above, for Mallows combined with fully partitioned
preferences, except that the top and bottom sizes of the truncated
rankings are fixed to be 3, instead of fixing the number of partitions.
Figure 13b demonstrates that the dispersion 𝜙 has little impact on
the running time. Similar trends were observed for other truncated
ranking sizes, and we do not report these results here.

Mallows with partial orders. The setup of this experiment is simi-
lar to the previous two experiments for combined voting profiles.
All voters in a profile have the same Mallows model. Their par-
tial orders are generated by RSMs whose selection probabilities
are derived from dispersion 𝜙 of their Mallows, and each voter
has an independent edge construction probability vector sampled
from 𝑝𝑚𝑎𝑥 = 0.9. Figure 13c shows that 𝜙 substantially impacts
the running time: The computation of MEW is faster with a small
𝜙 value, especially for Borda. This is expected, because the voters
exhibit stronger consensus for lower values of 𝜙 , and so the pruning
strategy is more effective.

9.5 Real datasets
Figure 14 compares the running time of computing MEW under 3
voting rules for the 50 HITs in CrowdRank. Recall that each HIT has

Table 6: Computing MEW for real datasets

Dataset #cand #voters Running time (in seconds)

plurality 2-approval Borda

MovieLens 200 6040 137 140 344

Travel 24 5456 0.57 0.49 0.35

its own set of 20 movies and 100 partial chains over these movies.
The experiment result shows that the voting rule has a significant
impact on the running time. It took much longer to compute MEW
under the Borda rule, compared to plurality and 2-approval.

Table 6 presents the running time of MEW over MovieLens
and Travel, with number of items 𝑚 (i.e., movies and attraction
categories, respectively), and number of voters 𝑛. MovieLens is a
partially partitioned voting profile of 200 movies. It took about 38
minutes to compute the MEW under both plurality and 2-approval
rules, and the winner is American Beauty in both cases. In compari-
son, Star Wars: Episode IV - A New Hope is the winner under Borda,
computed in around 100 minutes. Travel is a fully partitioned vot-
ing profile with 24 attraction categories. It took less than 1 second
to compute the MEW under all three voting rules, which yields
museums as the winner.

10 COMPARING MEW AND MPW
We now conduct a thorough comparison between MEW and MPW
to better demonstrate their differences. MEW and MPW can be
interpreted as different aggregation approaches across possible
worlds. Recall that given a general voting profile 𝑷M, Ω(𝑷M) =

{𝑷1, . . . , 𝑷𝑧 } is the set of its possible worlds of 𝑷M, and each 𝑷𝑖 is
associated with a probability 𝑝𝑖 = Pr(𝑷𝑖 | 𝑷M) and ∑𝑧

𝑖=1 𝑝𝑖 = 1.
Now let’s see how the performance of a candidate 𝑐 is aggregated
across possible worlds. Let 1() be the indicator function.

• MEW: E(𝑠 (𝑐, 𝑷M)) = ∑𝑧
𝑖=1 𝑠 (𝑐, 𝑷𝑖 ) · 𝑝𝑖

• MPW: Pr(𝑐 wins | 𝑷M) = ∑𝑧
𝑖=1 1(𝑐 wins | 𝑷𝑖 ) · 𝑝𝑖

MEW estimates the average performance of a candidate, while
MPW estimates the probability that she wins. As a result, MPW
ignores the possible worlds in which the candidate cannot win,
putting certain candidates at a disadvantage.

Example 8. Let 𝑷M = {M0} be a single-voter voting profile
over 4 candidates {𝑎, 𝑏, 𝑐, 𝑑}. Assume M0 is a ranking model where
Pr(⟨𝑏, 𝑎, 𝑐, 𝑑⟩) = Pr(⟨𝑐, 𝑎, 𝑏, 𝑑⟩) = Pr(⟨𝑑, 𝑎, 𝑏, 𝑐⟩) = 1/3. Under Borda
rule, MEW favors candidate 𝑎 who, despite losing in every possible
world, enjoys the highest expected score of 2, while the MPWs are
{𝑏, 𝑐, 𝑑}, each winning in one possible world.

MEW also quantifies the performance of candidates more gran-
ularly than MPW, as illustrated in the next example.

Example 9. Let 𝑷PO = {𝝂0} be a single-voter voting profile over
4 candidates {𝑎, 𝑏, 𝑐, 𝑑}. Assume 𝝂0 = {𝑎 ≻ 𝑏, 𝑏 ≻ 𝑐, 𝑏 ≻ 𝑑}. Under
the Borda rule, MEW and MPW agree that candidate 𝑎 is the winner,
but they disagree on the performance of candidate 𝑏. MPW cannot
differentiate between 𝑏, 𝑐 , and 𝑑 , since none of them wins in any
possible world, but MEW believes that 𝑏 outperforms 𝑐 and 𝑑 , since 𝑏
has a higher expected score than 𝑐 and 𝑑 .
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Figure 11: Average time over Mallows voting profiles, fixing
1000 voters. It increases linearlywith the number of candidates,
while the 𝜙 has little impact over the running time.
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Figure 12: Average time over RSM voting profiles, fixing 1000
voters. It increases linearly with the number of candidates,
while the equivalent 𝜙 has little impact over the running time.
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Figure 13: Average time over combined voting profiles. The 𝜙 has little impact over the
running time when the Mallows models are combined with fully partitioned preferences
or truncated rankings, while the running time increases with 𝜙 for voting profiles of the
Mallows combined with partial orders, especially under the Borda rule.
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Figure 15: Average time of parallel MPW and MEW, using 48
worker processes, over partial voting profiles, fixing 𝜙 = 0.5
and 𝑝𝑚𝑎𝑥 = 0.1, using the plurality rule. MEW scales much
better than MPW, with both #candidates and # voters.

MEW also has a computational advantage over MPW, making it
practical for real-world applications: Although both are intractable
in the general case, MEW enjoys linear complexity in the number
of voters, while the running time of MPW grows exponentially. We
implemented the MPW solver based on the VotingResult algorithm
by Hazon et al. [9], with the modification that the solver iterates
over the completions of each voter’s partial order, while the origi-
nal algorithm assumes that each voter gives an explicit probability
distribution over the rankings. We compared performance of the
parallel versions of MPW andMEW under plurality, fixing the num-
ber of voters to 10 and varying the number of candidates from 3 to 9

(Figures 15a), then fixing the number of candidates to 9 and varying
the number of voters from 1 to 10 (Figure 15b). Observe that MEW
scales much better than MPW. The corresponding results under
the Borda rule are available in the supplementary materials [1].

11 CONCLUDING REMARKS
In this paper we modeled uncertainty in voter preferences with
the help of a framework that distinguishes between uncertainty in
preference generation and uncertainty in preference observation,
unifying incomplete and probabilistic voting profiles. We then pro-
posed the Most Expected Winner (MEW) semantics for positional
scoring rules and established the theoretical hardness of this prob-
lem. We identified tractable cases with the help of the uncertainty
framework for voting profiles, and developed solvers.

Much exciting future work remains. For example, the hardness
of ESC is proved over only plurality, veto, and 𝑘-approval, which
calls for investigation of other positional scoring rules such as
Borda. When MEW is intractable, it may be necessary to develop
approximate solvers. MEW can also be extended to other score-
based rules, such as Simpson and Copeland. Another direction is
to consider voter preferences represented by additional ranking
models [22] such as the Plackett-Luce (PL) [20, 26] and Thurstone-
Mosteller (TM) [23, 31]. For example, others [24, 32] have studied
a preference aggregation method over PL models that is closely
related to the MEW over PL models, and we plan to investigate this
connection further in the future.
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A ADDITIONAL PROOFS

Theorem 1. Least Expected Regret Winner is equivalent to MEW.

Proof. Let 𝑷M denote a general voting profile with Ω(𝑷M) =
{𝑷1, . . . , 𝑷𝑧 }. The expected regret of a candidate𝑤 can be rewritten
as follows.

E(Regret(𝑤, 𝑷M))

=

𝑧∑︁
𝑖=1

Regret(𝑐, 𝑷𝑖 ) · Pr(𝑷𝑖 | 𝑷M)

=

𝑧∑︁
𝑖=1

(
max
𝑐∈𝐶

𝑠 (𝑐, 𝑷𝑖 ) − 𝑠 (𝑤, 𝑷𝑖 )
)
· Pr(𝑷𝑖 | 𝑷M)

=

𝑧∑︁
𝑖=1

max
𝑐∈𝐶

𝑠 (𝑐, 𝑷𝑖 ) · Pr(𝑷𝑖 | 𝑷M) −E(𝑠 (𝑤, 𝑷M))

The first term
∑𝑧
𝑖=1max𝑐∈𝐶 𝑠 (𝑐, 𝑷𝑖 ) · Pr(𝑷𝑖 | 𝑷M) is a constant

value, when 𝑷M and the voting rule are fixed. Thus,E(Regret(𝑤, 𝑷M))
is minimized by maximizing E(𝑠 (𝑤, 𝑷M)), the expected score of
the candidate𝑤 . □

Theorem 2. Meta-Election Winner is equivalent to MEW.

Proof. Let 𝑷M denote a general voting profile with Ω(𝑷M) =
{𝑷1, . . . , 𝑷𝑧 }, and 𝑷𝑚𝑒𝑡𝑎 = (𝑷1, . . . , 𝑷𝑧) denote the large meta pro-
file where rankings in 𝑷𝑖 are weighted by Pr(𝑷𝑖 | 𝑷M). Accord-
ing to the definition of the Meta-Election Winner, 𝑠 (𝑤, 𝑷𝑚𝑒𝑡𝑎) =
max𝑐∈𝐶 𝑠 (𝑐, 𝑷𝑚𝑒𝑡𝑎). As a result, for any candidate 𝑐 ,

E(𝑠 (𝑐, 𝑷M)) =
∑︁

𝑷 ∈Ω (𝑷M)
𝑠 (𝑐, 𝑷 ) · Pr(𝑷 | 𝑷M) = 𝑠 (𝑐, 𝑷𝑚𝑒𝑡𝑎)

Her expected score in 𝑷M is precisely her score in 𝑷𝑚𝑒𝑡𝑎 . The two
winner definitions are optimizing the same metric. □

Theorem 3. The FCP is #P-complete.

Proof. First, we prove its membership in #P. The FCP is the
counting version of the following decision problem: given a partial
order 𝝂 , an item 𝑐 , and an integer 𝑗 , determine whether 𝝂 has a
linear extension 𝝉 ∈ Ω(𝝂) where 𝑐 is ranked at 𝑗 . This decision
problem is obviously in NP, meaning that the FCP is in #P.

Then, we prove that the FCP is #P-hard by reduction. Recall that
counting |Ω(𝝂) |, the number of linear extensions of a partial order
𝝂 , is #P-complete [3]. This problem can be reduced to the FCP by
|Ω(𝝂) | = ∑𝑚

𝑗=1 𝑁 (𝑐@ 𝑗 | 𝝂).
In conclusion, the FCP is #P-complete. □

Lemma 1. If ranking model M is a partial order 𝝂 of𝑚 items rep-
resenting a uniform distribution of Ω(𝝂), the REP-t is FP#𝑃 -complete.

Proof. First, we prove that the REP-t is in FP#𝑃 . Recall that
Ω(𝝂) is the linear extensions of a partial order 𝝂 , and 𝑁 (𝑐@1|𝝂)
is the number of linear extensions in Ω(𝝂) where candidate 𝑐 is

at rank 1. Then Pr(𝑐@1|𝝂) = 𝑁 (𝑐@1|𝝂)/|Ω(𝝂) |. Consider that
counting 𝑁 (𝑐@1 | 𝝂) is in #P (Theorem 3) and counting |Ω(𝝂) | is
#P-complete [3], so Pr(𝑐@1|𝝂) is in FP#𝑃 .

In the rest of this proof, we prove that the REP-t is #P-hard by
reduction from the #P-complete problem of counting |Ω(𝝂) |.

Let 𝑐∗ denote an item that has no parent in 𝝂 . Let 𝝂−𝑐∗ denote the
partial order of 𝝂 with item 𝑐∗ removed. If we are interested in the
probability that 𝑐∗ is placed at rank 1, we can write Pr(𝑐∗@1|𝝂) =
𝑁 (𝑐∗@1 | 𝝂)/|Ω(𝝂) |. The item 𝑐∗ has been fixed at rank 1, so any
placement of the rest items will definitely satisfy any relative order
involving 𝑐∗. That is to say, the placement of the rest items just
needs to satisfy 𝝂−𝑐∗ , which leads to 𝑁 (𝑐∗@1 | 𝝂) = |Ω(𝝂−𝑐∗ ) |.

For example, let 𝝂 ′ = {𝑐1 ≻ 𝑐4, 𝑐2 ≻ 𝑐4, 𝑐3 ≻ 𝑐4}. Then 𝑁 (𝑐1@1 |
𝝂 ′) = |Ω(𝝂 ′

−𝑐1 ) | = |Ω({𝑐2 ≻ 𝑐4, 𝑐3 ≻ 𝑐4}) |.
Thenwe re-write Pr(𝑐∗@1|𝝂) = 𝑁 (𝑐∗@1|𝝂)/|Ω(𝝂) | = |Ω(𝝂−𝑐∗ ) |/|Ω(𝝂) |.

The oracle for Pr(𝑐∗@1|𝝂) manages to reduce the size of the count-
ing problem from |Ω(𝝂) | to |Ω(𝝂−𝑐∗ ) |. This oracle should be as hard
as counting |Ω(𝝂) |. Thus calculating Pr(𝑐∗@1|𝝂) is FP#𝑃 -hard.

In conclusion, the REP-t is FP#𝑃 -complete. □

Lemma 2. If ranking model M is a partial order 𝝂 of𝑚 items rep-
resenting a uniform distribution of Ω(𝝂), the REP-b is FP#𝑃 -complete.

Proof. This proof adopts the same approach as the proof of
Lemma 1.

Let𝑚 be the number of items in the ranking modelM. For the
membership proof that the REP-b is in FP#𝑃 , let 𝑁 (𝑐@𝑚 |𝝂) denote
the number of linear extensions in Ω(𝝂) where candidate 𝑐 is at the
bottom rank𝑚. Then Pr(𝑐@𝑚 |𝝂) = 𝑁 (𝑐@𝑚 |𝝂)/|Ω(𝝂) |. Consider
that counting 𝑁 (𝑐@𝑚 |𝝂) is in #P (Theorem 3) and counting |Ω(𝝂) |
is #P-complete [3], so Pr(𝑐@𝑚 | 𝝂) is in FP#𝑃 .

In the proof of Lemma 1, item 𝑐∗ is an item with no parent in
the partial order 𝝂 . In the current proof, item 𝑐∗ is set to be an
item with no child in 𝝂 . The 𝝂−𝑐∗ still denotes the partial order of
𝝂 but with item 𝑐∗ removed. Then the probability that item 𝑐∗ at
the bottom rank 𝑚 is Pr(𝑐∗@𝑚 | 𝝂) = 𝑁 (𝑐∗@𝑚 | 𝝂)/|Ω(𝝂) | =
|Ω(𝝂−𝑐∗ ) |/|Ω(𝝂) |. The oracle for Pr(𝑐∗@𝑚 | 𝝂) manages to reduce
the size of the counting problem again from |Ω(𝝂) | to |Ω(𝝂−𝑐∗ ) |.
Thus, this oracle is #P-hard, and calculating Pr(𝑐∗@𝑚 | 𝝂) is FP#𝑃 -
hard.

In conclusion, the REP-b is FP#𝑃 -complete. □

Theorem 4. If ranking model M is a partial order 𝝂 of𝑚 items
representing a uniform distribution of Ω(𝝂), the REP is FP#𝑃 -complete.

Proof. First, we prove that the REP is in FP#𝑃 . Recall that Ω(𝝂)
is the linear extensions of a partial order 𝝂 , and 𝑁 (𝑐@ 𝑗 |𝝂) is the
number of linear extensions in Ω(𝝂) where candidate 𝑐 is at rank
𝑗 . Then Pr(𝑐@ 𝑗 |𝝂) = 𝑁 (𝑐@ 𝑗 |𝝂)/|Ω(𝝂) |. Consider that counting
𝑁 (𝑐@ 𝑗 |𝝂) is #P-complete (Theorem 3) and counting |Ω(𝝂) | is #P-
complete [3] as well. So Pr(𝑐@ 𝑗 |𝝂) is in FP#𝑃 .

Lemma 1 demonstrates that REP-t, a special case of REP, is FP#𝑃 -
hard. Thus REP is #P-hard as well.

In conclusion, REP is FP#𝑃 -complete. □

Theorem 5. Given a general voting profile 𝑷M and a positional
scoring rule 𝒓𝑚 , the ESC problem can be reduced to the REP.
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Proof. Recall that the MEW 𝑤 maximizes the expected score,
i.e.,

𝑠 (𝑤, 𝑷M) = max
𝑐∈𝐶

E(𝑠 (𝑐, 𝑷M))

The voting profile 𝑷M contains𝑛 ranking distributions {M1, . . . ,M𝑛},
so

E(𝑠 (𝑐, 𝑷M)) =
𝑛∑︁
𝑖=1

E(𝑠 (𝑐,M𝑖 ))

where E(𝑠 (𝑐,M𝑖 )) is the expected score of 𝑐 from voter 𝑣𝑖 .

E(𝑠 (𝑐,M𝑖 )) =
𝑚∑︁
𝑗=1

𝑃𝑟 (𝑐@ 𝑗 | M𝑖 ) · 𝒓𝑚 ( 𝑗)

where 𝑐@ 𝑗 denotes candidate 𝑐 at rank 𝑗 , and 𝒓𝑚 ( 𝑗) is the score of
rank 𝑗 .

Let T denote the complexity of calculating 𝑃𝑟 (𝑐@ 𝑗 |M𝑖 ). The
original MEW problem can be solved by calculating 𝑃𝑟 (𝑐@ 𝑗 |M𝑖 )
for all 𝑚 candidates, 𝑚 ranks and 𝑛 voters, which leads to the
complexity of 𝑂 (𝑛 ·𝑚2 ·T). □

Theorem 6. The REP for rank 𝑘 is equivalent to the ESC problem
over either one or both of the (𝑘 − 1)-approval and 𝑘-approval rules.

Proof. The ESC problem has been reduced to the REP (Theo-
rem 5). This proof will focus on the other direction, i.e., reducing
the REP to the ESC problem.

Let Pr(𝑐@ 𝑗 | M) denote the probability of placing candidate 𝑐 at
rank 𝑗 over a ranking distribution M. Let 𝑷M denote a single-voter
profile consisting of only this ranking distribution M.

When 𝑘 = 1, the REP can be reduced to solving the ESC problem
under plurality or 1-approval rule.

Pr(𝑐@1 | M) = E(𝑠 (𝑐 | 𝑷M, 1-approval))
When 𝑘 =𝑚, the REP can be reduced to solving the ESC problem

under veto or (𝑚−1)-approval rule.
Pr(𝑐@𝑚 | M) = 1 −E(𝑠 (𝑐 | 𝑷M, (𝑚−1)-approval))

When 2 ≤ 𝑘 ≤ 𝑚, the REP can be reduced to solving the ESC
problem twice under 𝑘-approval and (𝑘 − 1)-approval rules.

Pr(𝑐@𝑘 | M) = E(𝑠 (𝑐 | 𝑷M, 𝑘-approval))

−E(𝑠 (𝑐 | 𝑷M, (𝑘 − 1)-approval))
□

Theorem 7. Given a partial voting profile 𝑷PO, a distinguished
candidate 𝑐 , and plurality rule 𝒓𝑚 , the ESC problem of calculating
E(𝑠 (𝑐 | 𝑷PO, 𝒓𝑚)) is FP#𝑃 -complete.

Proof. Firstly, we prove the membership of the ESC problem
as an FP#𝑃 problem. Consider that the REP is FP#𝑃 -complete over
partial orders (Theorem 4), and the ESC problem can be reduced
to the REP (Theorem 5) So the ESC problem is in FP#𝑃 for partial
voting profiles.

Secondly, we prove that the ESC problem is FP#𝑃 -hard, even
for plurality rule, by reduction from the REP-t that is FP#𝑃 -hard
(Lemma 1).

Let 𝝂 denote the partial order of the REP-t problem. Recall that
the REP-t problem aims to calculate Pr(𝑐@1 | 𝝂) for a given item 𝑐 .

Let 𝑷 𝝂 denote a voting profile consisting of just this partial order
𝝂 . The answer to the REP-t problem is the same as the answer
to the corresponding ESC problem, i.e., Pr(𝑐@1 | 𝝂) = E(𝑠 (𝑐 |
𝑷 𝝂 , plurality)). So the ESC problem is FP#𝑃 -hard, even for plurality
voting rule.

In conclusion, the ESC problem is FP#𝑃 -complete, under plurality
rule. □

Theorem 8. Given a partial voting profile 𝑷PO, a distinguished
candidate 𝑐 , and veto rule 𝒓𝑚 , the ESC problem of calculatingE(𝑠 (𝑐 |
𝑷PO, 𝒓𝑚)) is FP#𝑃 -complete.

Proof. This proof adopts the same approach as the proof of
Theorem 7.

Firstly, the membership proof that the ESC is in FP#𝑃 is based
on the conclusions that the REP is FP#𝑃 -complete over partial or-
ders (Theorem 4), and that the ESC can be reduced to the REP
(Theorem 5) So the ESC is in FP#𝑃 for partial voting profiles.

Secondly, we prove that the ESC is FP#𝑃 -hard, under veto voting
rule, by reduction from the REP-b that is FP#𝑃 -hard (Lemma 2).

Let 𝝂 denote the partial order of the REP-b problem. Recall that
the REP-b problem aims to calculate Pr(𝑐@𝑚 | 𝝂) for a given
item 𝑐 . Let 𝑷 𝝂 denote a voting profile consisting of just this partial
order 𝝂 . The answer to the ESC indirectly solves the REP-b, i.e.,
Pr(𝑐@𝑚 | 𝝂) = 1 − E(𝑠 (𝑐 | 𝑷 𝝂 , veto)). So the ESC problem is
FP#𝑃 -hard under veto rule.

In conclusion, the ESC is FP#𝑃 -complete, under veto rule. □

Theorem 9. Given a partial voting profile 𝑷PO, a distinguished
candidate 𝑐 , and 𝑘-approval rule 𝒓𝑚 , the ESC problem of calculating
E(𝑠 (𝑐 | 𝑷PO, 𝒓𝑚)) is FP#𝑃 -complete.

Proof. Firstly, the proof that the Expected Score Computation
(ESC) is in FP#𝑃 is the same as the proof of Theorem 7. Now we
prove that the ESC problem is FP#𝑃 -hard, under 𝑘-approval rule 𝒓𝑚 ,
by reduction from the REP-t problem that is FP#𝑃 -hard (Lemma 1).

Let 𝝂 denote the partial order of the REP-t problem. Recall that
the REP-t problem aims to calculate Pr(𝑐@1 | 𝝂) for a given item 𝑐 .
Let 𝝂+ denote a new partial order by inserting (𝑘 − 1) ordered items
𝑑1 ≻ . . . ≻ 𝑑𝑘−1 into 𝝂 such that item 𝑑𝑘−1 is preferred to every
item in 𝝂 . Such placement of items {𝑑1, . . . , 𝑑𝑘−1} is to guarantee
that all linear extensions of 𝝂+ start with 𝑑1 ≻ . . . ≻ 𝑑𝑘−1 and these
linear extensions will be precisely the linear extensions of 𝝂 after
removing {𝑑1, . . . , 𝑑𝑘−1}.

Let 𝑷 𝝂+ denote a voting profile consisting of just this partial
order 𝝂+. The answer to the ESC problem for item 𝑐 is E(𝑠 (𝑐 |
𝑷 𝝂+ , 𝑘-approval)). Since there is only one partial order𝝂+ in the vot-
ing profile, E(𝑠 (𝑐 | 𝑷 𝝂+ , 𝑘-approval)) = ∑𝑘

𝑗=1 Pr(𝑐@ 𝑗 | 𝝂+). Recall
that any linear extension of 𝝂+ always starts with 𝑑1 ≻ . . . ≻ 𝑑𝑘−1,
so ∀1 ≤ 𝑗 ≤ (𝑘 − 1), Pr(𝑐@ 𝑗 | 𝝂+) = 0, which leads to E(𝑠 (𝑐 |
𝑷 𝝂+ , 𝑘-approval)) = Pr(𝑐@𝑘 | 𝝂+). Since 𝝂+ is constructed by in-
serting (𝑘 −1) items before items in 𝝂 , Pr(𝑐@𝑘 | 𝝂+) = Pr(𝑐@1 | 𝝂).
So E(𝑠 (𝑐 | 𝑷 𝝂+ , 𝑘-approval)) = Pr(𝑐@1 | 𝝂). The answer to the
REP-t problem has been reduced to the ESC problem. So the ESC
problem is FP#𝑃 -hard, under 𝑘-approval rule.

In conclusion, the ESC problem is FP#𝑃 -complete, under𝑘-approval
rule. □
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Theorem 10. Given a positional scoring rule 𝒓𝑚 , a fully partitioned
voting profile 𝑷FP = (𝝂FP1 , . . . ,𝝂

FP
𝑛 ), and candidate 𝑤 , determining

𝑤 ∈ MEW(𝒓𝑚, 𝑷FP) is in 𝑂 (𝑛𝑚2).

Proof. Any 𝝂FP ∈ 𝑷FP defines a set of consecutive ranks in
the linear extensions of 𝝂FP for each of its partitions of candidates.
Any candidate is equally likely to be positioned at these ranks. So
the REP can be solved in 𝑂 (1) for any candidate. Thus, the MEW
problem can be solved in𝑂 (𝑛𝑚2) by calculating the expected scores
of all candidates. □

Theorem 11. Given a positional scoring rule 𝒓𝑚 , a partial chain
voting profile 𝑷PC = (𝝂PC1 , . . . ,𝝂PC𝑛 ), and candidate 𝑤 , determining
𝑤 ∈ MEW(𝒓𝑚, 𝑷PC) is in 𝑂 (𝑛𝑚2).

Proof. For any 𝝂PC ∈ 𝑷PC and any candidate 𝑐 , the Pr(𝑐→ 𝑗 |
𝝂PC) is proportional to the degree of freedom to place the rest of
the candidates, after fixing 𝑐 at rank 𝑗 .

• If 𝑐 ∉ 𝝂PC, this is a trivial case where 𝑐 is equally likely to be
placed at any rank, thus ∀1 ≤ 𝑗 ≤ 𝑚, Pr(𝑐→ 𝑗 | 𝝂PC) = 1/𝑚.

• If 𝑐 ∈ 𝝂PC, let 𝐾𝑙 = |{𝑐 ′ | 𝑐 ′ ≻𝝂PC 𝑐}| be the number of
items preferred to 𝑐 by 𝝂PC and 𝐾𝑟 = |{𝑐 ′ | 𝑐 ≻𝝂PC 𝑐 ′}|
be the number of items less preferred to 𝑐 by 𝝂PC, then
Pr(𝑐→ 𝑗 | 𝝂PC) ∝

( 𝑗−1
𝐾𝑙

)
·
(𝑚−𝑗
𝐾𝑟

)
where .

It takes 𝑂 (𝑛𝑚2) to obtain the expected scores of all candidates
and to determine whether𝑤 is a MEW. □

Theorem 12. Given a positional scoring rule 𝒓𝑚 , a partially par-
titioned voting profile 𝑷PP = (𝝂PP1 , . . . ,𝝂PP𝑛 ), and candidate𝑤 , deter-
mining𝑤 ∈ MEW(𝒓𝑚, 𝑷PP) is in 𝑂 (𝑛𝑚2).

Proof. For any 𝝂PP ∈ 𝑷PP and any candidate 𝑐 , the Pr(𝑐→ 𝑗 |
𝝂PP) is proportional to the degree of freedom to place the rest of
the candidates, after fixing 𝑐 at rank 𝑗 .

• If 𝑐 ∉ 𝝂PP, this is a trivial case where 𝑐 is equally likely to be
placed at any rank, thus ∀1 ≤ 𝑗 ≤ 𝑚, Pr(𝑐→ 𝑗 | 𝝂PC) = 1/𝑚.

• If 𝑐 ∈ 𝝂PP, let 𝐾𝑙 = |{𝑐 ′ | 𝑐 ′ ≻𝝂PP 𝑐}| be the number of
items preferred to 𝑐 by 𝝂PP, 𝐾𝑟 = |{𝑐 ′ | 𝑐 ≻𝝂PP 𝑐 ′}| be the
number of items less preferred to 𝑐 by 𝝂PP, and 𝐾𝑐 be the
number of items in the partition of 𝑐 , then Pr(𝑐→ 𝑗 | 𝝂PC) ∝∑𝐾𝑐−1
𝑥=0

( 𝑗−1
𝐾𝑙+𝑥

)
·
( 𝑚−𝑗
𝐾𝑟+𝐾𝑐−1−𝑥

)
where 𝑥 is the number of items

from the same partition as 𝑐 and placed to the left of 𝑐 .
It takes 𝑂 (𝑛𝑚2) to obtain the expected scores of all candidates

and to determine whether𝑤 is a MEW. □

Theorem 13. Given positional scoring rule 𝒓𝑚 , a RIM voting
profile 𝑷RIM = (RIM1, . . . ,RIM𝑛), and candidate 𝑤 , determining
𝑤 ∈ MEW(𝒓𝑚, 𝑷RIM) is in 𝑂 (𝑛𝑚4).

Proof. Given anyRIM ∈ 𝑷RIM and any candidate 𝑐 , the 𝑃𝑟 (𝑐→ 𝑗 |
RIM) for 𝑗 = 1, . . . ,𝑚 can be calculated byAlgorithm 3 in𝑂 (𝑚3). Al-
gorithm 3 is a variant of RIMDP [13]. RIMDP calculates themarginal
probability of a partial order over RIM via Dynamic Programming
(DP). Algorithm 3 is simplified RIMDP in the sense that Algorithm 3
only tracks a particular item 𝑐 , while RIMDP tracks multiple items
to calculate the insertion ranges of items that satisfy the partial

order. Note that Algorithm 3 calculates all𝑚 different values of 𝑗
simultaneously. So it takes 𝑂 (𝑛𝑚 ·𝑚3) = 𝑂 (𝑛𝑚4) to obtain the ex-
pected scores of𝑚 candidates over 𝑛 RIMs to determine MEW. □

Theorem 14. Given a positional scoring rule 𝒓𝑚 , a voting profile
𝑷RIM+TR=

(
(RIM1,𝝉

(𝑡1,𝑏1)
1 ), . . . , (RIM𝑛,𝝉

(𝑡𝑛,𝑏𝑛)
𝑛 )

)
, and candidate𝑤 ,

determining𝑤 ∈ MEW(𝒓𝑚, 𝑷RIM+TR) is in 𝑂 (𝑛𝑚4).

Proof. Given any (RIM,𝝉 (𝑡,𝑏) ) ∈ 𝑷RIM+TR, candidate 𝑐 , and
rank 𝑗 , if 𝑐 is in the top or bottom part of 𝝉 (𝑡,𝑏) , its rank has been
fixed, which is a trivial case; If 𝑐 is in the middle part of 𝝉 (𝑡,𝑏) ,
we just need to slightly modify Algorithm 3 to calculate Pr(𝑐→ 𝑗 |
RIM,𝝉 (𝑡,𝑏) ). Line 5 in Algorithm 3 enumerates values for 𝑗 from 1
to 𝑖 . The constraints made by 𝝉 (𝑡,𝑏) limits this insertion range of
item 𝝈 (𝑖). If 𝝈 (𝑖) is in the top or bottom part of 𝝉 (𝑡,𝑏) , its insertion
position has been fixed by 𝝉 (𝑡,𝑏) and the inserted items of the top
and bottom parts of 𝝉 (𝑡,𝑏) should be recorded as well by the state
𝛿 ′; If 𝝈 (𝑖) is in the middle part of 𝝉 (𝑡,𝑏) , 𝝈 (𝑖) can be inserted into
any position between the inserted top and bottom items.

Theoretically, the algorithm needs to track as many as (𝑡 +𝑏 + 1)
items. But (𝑡 +𝑏) items are fixed, which makes 𝑐 the only item lead-
ing to multiple DP states. The complexity of calculating Pr(𝑐→ 𝑗 |
RIM,𝝉 (𝑡,𝑏) ) for all 𝑗 values is 𝑂 (𝑚3). It takes 𝑂 (𝑛𝑚4) to calculate
the expected scores of all candidates across all voters to determine
the MEW. □

Theorem 15. Given a positional scoring rule 𝒓𝑚 , a voting pro-
file 𝑷MAL+FP =

(
(MAL1,𝝂FP1 ), . . . , (MAL𝑛,𝝂FP𝑛 )

)
, and candidate 𝑤 ,

determining𝑤 ∈ MEW(𝒓𝑚, 𝑷MAL+FP) is in 𝑂 (𝑛𝑚4).

Proof. Given any (MAL(𝝈 , 𝜙),𝝂FP) ∈ 𝑷MAL+FP, candidate 𝑐 ,
and rank 𝑗 , consider calculating 𝑃𝑟 (𝑐→ 𝑗 | 𝝈 , 𝜙,𝝂FP). Let𝐶𝑃 denote
the set of candidates in the same partition with 𝑐 in𝝂FP. The relative
orders between 𝑐 and items out of 𝐶𝑃 are already determined by
𝝂FP. That is to say, for a non-trivial 𝑗 value, 𝑃𝑟 (𝑐→ 𝑗 | 𝝈 , 𝜙,𝝂FP) is
proportional to the exponential of the number of disagreed pairs
within𝐶𝑃 . So we can construct a new Mallows modelMAL′(𝝈 ′, 𝜙)
over 𝐶𝑃 . It has the same 𝜙 asMAL and its reference ranking 𝝈 ′ is
shorter than but consistent with 𝝈 . The 𝑃𝑟 (𝑐→ 𝑗 | MAL′,𝝂FP) for
all non-trivial 𝑗 values can be calculated in 𝑂 ( |𝐶𝑃 |3) < 𝑂 (𝑚3) by
Algorithm 3.

The MEW problem can be solved in 𝑂 (𝑛𝑚4) by calculating the
expected scores of all candidates across all voters to determine
whether𝑤 is a MEW. □

B TRACTABILITY OVER RSM PROFILES
RSM [5] denoted by RSM(𝝈 ,Π, 𝑝) is another generalization of the
Mallows. It is parameterized by a reference ranking 𝝈 , a probability
function Π where Π(𝑖, 𝑗) is the probability of the 𝑗𝑡ℎ item selected
at step 𝑖 , and a probability function 𝑝 : {1, ...,𝑚−1} → [0, 1] where
𝑝 (𝑖) is the probability that the 𝑖𝑡ℎ selected item preferred to the
remaining items. In contrast to the RIM that randomizes the item
insertion position, the RSM randomized the item insertion order.
In this paper, we use RSM as a ranking model, i.e., 𝑝 ≡ 1 such that
it only outputs rankings. This ranking version is named rRSM and
denoted by rRSM(𝝈 ,Π).
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Algorithm 5 REP solver for rRSM
Input: Item 𝑐 , rank 𝑘 , rRSM(𝝈 ,Π)

Output: Pr(𝑐@𝑘 | 𝝈 ,Π)
1: 𝛼0 := |{𝜎𝑖 |𝜎𝑖 ≻𝝈 𝑐}|, 𝛽0 := |{𝜎𝑖 | 𝑐 ≻𝝈 𝜎𝑖 }|
2: P0 := {⟨𝛼0, 𝛽0⟩} and 𝑞0 (⟨𝛼0, 𝛽0⟩) := 1
3: for 𝑖 = 1, . . . , (𝑘 − 1) do
4: P𝑖 := {}
5: for ⟨𝛼, 𝛽⟩ ∈ P𝑖−1 do
6: if 𝛼 > 0 then
7: Generate a new state ⟨𝛼 ′, 𝛽 ′⟩ = ⟨𝛼 − 1, 𝛽⟩.
8: if ⟨𝛼 ′, 𝛽 ′⟩ ∉ P𝑖 then
9: P𝑖 .𝑎𝑑𝑑 (⟨𝛼 ′, 𝛽 ′⟩)
10: 𝑞𝑖 (⟨𝛼 ′, 𝛽 ′⟩) := 0
11: end if
12: 𝑞𝑖 (⟨𝛼 ′, 𝛽 ′⟩) += 𝑞𝑖−1 (⟨𝛼, 𝛽⟩) ·

∑𝛼
𝑗=1 Π(𝑖, 𝑗)

13: end if
14: if 𝛽 > 0 then
15: Generate a new state ⟨𝛼 ′, 𝛽 ′⟩ = ⟨𝛼, 𝛽 − 1⟩.
16: if ⟨𝛼 ′, 𝛽 ′⟩ ∉ P𝑖 then
17: P𝑖 .𝑎𝑑𝑑 (⟨𝛼 ′, 𝛽 ′⟩)
18: 𝑞𝑖 (⟨𝛼 ′, 𝛽 ′⟩) := 0
19: end if
20: 𝑞𝑖 (⟨𝛼 ′, 𝛽 ′⟩) += 𝑞𝑖−1 (⟨𝛼, 𝛽⟩) ·

∑𝛼+1+𝛽
𝑗=𝛼+2 Π(𝑖, 𝑗)

21: end if
22: end for
23: end for
24: return

∑
⟨𝛼,𝛽 ⟩∈P𝑘−1 𝑞𝑘−1 (⟨𝛼, 𝛽⟩) · Π(𝑘, 𝛼 + 1)

Example 10. rRSM(𝝈 ,Π) with 𝝈 = ⟨𝑎, 𝑏, 𝑐⟩ generates 𝝉=⟨𝑐, 𝑎, 𝑏⟩
as follows. Initialize 𝝉0=⟨⟩. When 𝑖 = 1, 𝝉1=⟨𝑐⟩ by selecting 𝑐 with
probability Π(1, 3), making the remaining 𝝈 = ⟨𝑎, 𝑏⟩. When 𝑖 = 2,
𝝉2=⟨𝑐, 𝑎⟩ by selecting 𝑎 with probability Π(2, 1), making the remain-
ing 𝝈 = ⟨𝑏⟩. When 𝑖 = 3, 𝝉=⟨𝑐, 𝑎, 𝑏⟩ by selecting 𝑏 with probability
Π(3, 1). Overall, Pr(𝝉 | 𝝈 ,Π)=Π(1, 3) · Π(2, 1) · Π(3, 1).

Theorem 16. Given a positional scoring rule 𝒓𝑚 , an RSM voting
profile 𝑷 rRSM = (rRSM1, . . . , rRSM𝑛), and candidate𝑤 , determining
𝑤 ∈ MEW(𝒓𝑚, 𝑷 rRSM) is in 𝑂 (𝑛𝑚4).

Proof. Given any rRSM ∈ 𝑷 rRSM, candidate 𝑐 , and rank 𝑗 , the
𝑃𝑟 (𝑐@ 𝑗 | rRSM) is computed by Algorithm 5 in a fashion that
is similar to Algorithm 3. This is also a Dynamic Programming
(DP) approach. The states are in the form of ⟨𝛼, 𝛽⟩, where 𝛼 is the
number of items before 𝑐 , and 𝛽 is that after 𝑐 in the remaining
𝝈 . For state ⟨𝛼, 𝛽⟩, there are (𝛼 + 1 + 𝛽) items in the remaining
𝝈 . Algorithm 5 only runs up to 𝑖 = (𝑘 − 1) (in line 3), since item
𝑐 must be selected at step 𝑘 and the rest steps do not change the
rank of 𝑐 anymore. Each step 𝑖 generates at most (𝑖 + 1) states,
corresponding to [0, . . . , 𝑖] items are selected from items before 𝑐 in
the original 𝝈 . The complexity of Algorithm 5 is bounded by𝑂 (𝑚2).
It takes 𝑂 (𝑛𝑚4) to obtain the expected scores of all candidates and
to determine the MEW.

□

Example 11. Let rRSM(𝝈 ,Π) denote a RSMwhere𝝈 = ⟨𝜎1, 𝜎2, 𝜎3, 𝜎4⟩,
and Π = [[0.1, 0.3, 0.4, 0.2], [0.2, 0.5, 0.3], [0.3, 0.7], [1]]. Assume we

are interested in Pr(𝜎2@3 | 𝝈 ,Π), the probability of rRSM(𝝈 ,Π)
placing 𝜎2 at rank 3.

• Before running RSM, there is 𝛼0 = 1 item before 𝜎2 and 𝛽0 = 2
items after 𝜎2 in 𝝈 . So the initial state is ⟨𝛼0, 𝛽0⟩ = ⟨1, 2⟩, and
𝑞0 (⟨1, 2⟩) = 1.

• At step 𝑖 = 1, the selected item can be either from {𝜎1} or
{𝜎3, 𝜎4}. So two new states are generated here.
– The 𝜎1 is selected with probability Π(1, 1) = 0.1, which
generates a new state ⟨0, 2⟩, and 𝑞1 (⟨0, 2⟩) = 𝑞0 (⟨1, 2⟩) ·
Π(1, 1) = 0.1.

– An item 𝜎 ∈ {𝜎3, 𝜎4} is selected with probability Π(1, 3) +
Π(1, 4) = 0.6, which generates a new state ⟨1, 1⟩, and𝑞1 (⟨1, 1⟩) =
𝑞0 (⟨1, 2⟩) · 0.6 = 0.6.

So P1={⟨0, 2⟩, ⟨1, 1⟩}, 𝑞1={⟨0, 2⟩↦→0.1, ⟨1, 1⟩↦→0.6}.
• At step 𝑖 = 2, iterate states in P1.
– For state ⟨0, 2⟩, the selected item must be from the last two
items in the remaining reference ranking. A new state ⟨0, 1⟩
is generated with probability Π(2, 2) + Π(2, 3) = 0.8.

– For state ⟨1, 1⟩, the selected item is either the first or last
item in remaining reference ranking. A new state ⟨0, 1⟩ is
generated with probability Π(2, 1) = 0.1, and another state
⟨1, 0⟩ is generated with probability Π(2, 3) = 0.3.

So P2 = {⟨0, 1⟩, ⟨1, 0⟩} and
□ 𝑞2 (⟨0, 1⟩) = 𝑞1 (⟨0, 2⟩) · 0.8 + 𝑞1 (⟨1, 1⟩) · 0.1 = 0.1 · 0.8 +

0.6 · 0.1 = 0.14
□ 𝑞2 (⟨1, 0⟩) = 𝑞1 (⟨1, 1⟩) · 0.3 = 0.6 · 0.3 = 0.18

• At step 𝑖 = 3, item 𝜎2 must be selected to meet the requirement.
For each state ⟨𝛼, 𝛽⟩ ∈ P2, the rank of 𝜎2 is (𝛼 +1) in the corre-
sponding remaining ranking. So Pr(𝜎2@3|𝝈 ,Π) = 𝑞2 (⟨0, 1⟩) ·
Π(3, 1) + 𝑞2 (⟨1, 0⟩) · Π(3, 2) = 0.14 · 0.3 + 0.18 · 0.7 = 0.168.

C ADDITIONAL EXPERIMENTS
Figure 15 in Section 10 has demonstrated that MEW is much more
scalable than MPW under the plurality rule. Figure 16 presents
results of a similar experiment under the Borda rule, with up to 6
candidates and up to 15 voters. We first fixed the number of voters
to 5 and varied the number of candidates from 3 to 6, then fixed the
number of candidates to 5 and varied the number of voters from
1 to 15. In this experiment, MEW is still much more scalable than
MPW.
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Figure 16: Average time of parallel MPW and MEW, using 48
worker processes, under Borda, over partial voting profiles,
fixing 𝜙 = 0.5 and 𝑝𝑚𝑎𝑥 = 0.1. MEW scales much better than
MPW, with both #candidates and #voters.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Preferences
	3.2 Voting and Winners
	3.3 Preference Models

	4 Uncertain Voting Profiles
	4.1 Uncertainty in profile generation
	4.2 Uncertainty in profile observation

	5 Most Expected Winner
	5.1 Alternative Interpretations
	5.2 Problem Statement

	6 Hardness of ESC
	6.1 Fixed-rank Counting Problem
	6.2 Rank Estimation Problem
	6.3 Complexity of ESC

	7 Most Expected Winner Solvers
	7.1 Solver for RIM-based partial orders
	7.2 Solvers for Partitioned Preferences, Truncated Rankings, and Partial Chains
	7.3 Solver for Probabilistic Voting Profiles
	7.4 Solver for Combined Voting Profiles
	7.5 Summary

	8 Optimization strategies
	9 Experiments
	9.1 Performance optimizations
	9.2 Incomplete voting profiles
	9.3 Probabilistic voting profiles
	9.4 Combined voting profiles
	9.5 Real datasets

	10 Comparing MEW and MPW
	11 Concluding Remarks
	References
	A Additional proofs
	B Tractability over RSM profiles
	C Additional experiments

