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Asymmetric radical cyclopropanation of alkenes
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ORIGIN
Metalloradical catalysis (MRC), which utilizes metal-centered radicals to homolytically activate substrates for catalytic generation of metal-stabilized organic radicals as key intermediates,
has emerged as a conceptually new approach for controlling both reactivity and stereoselectivity of radical reactions. As the first application of MRC, Co(II) complexes of chiral porphyrins,
as stable 15e-metalloradicals, have been demonstrated as effective catalysts for asymmetric cyclopropanation of alkenes with diazo compounds via a stepwise radical mechanism.

REACTION MECHANISM
With the support of D2-symmetric chiral amidoporphyrin ligands, the Co(II)-based metalloradical system, which operates under mild conditions with low catalyst loadings, can activate various
classes of diazo compounds without the need of slow addition for asymmetric cyclopropanation of diverse types of alkenes as the limiting reagents. The corresponding cyclopropanes can be
synthesized in high yieldswith excellent control of both diastereoselectivity and enantioselectivity. Thebroad substrate scope and the unique catalytic profile of theCo(II)-catalyzed cyclopropanation
are attributed to the underlying stepwise radical mechanism that has been established through combined experimental and computational studies. The Co(II) complexes of porphyrins as
metalloradical catalysts can activate diazo compounds homolytically while translocating the original radical character from the metal center to the α-carbon atom upon releasing dinitrogen gas,
resulting in the generation of α-Co(III)-alkyl radicals I. The initially generated α-Co(III)-alkyl radical intermediates I, which represent a fundamentally new class of metal-stabilized organic radicals,
are kinetically competent to undergo radical addition to alkenes, leading to the generation of γ-Co(III)-alkyl radicals IIwhile forming the first C–C bond. Since Co–C bonds are significantly weaker
than C–Cbonds, the resulting γ-Co(III)-alkyl radical intermediates II preferentially proceedwith intramolecular radical substitution (3-exo-tet radical cyclization) over intermolecular radical addition to
another alkene molecule, giving rise to selective production of the cyclopropanes by forming the second C–C bond while regenerating the Co(II)-metalloradical catalysts. Different from the
well-known concerted mechanism, the Co(II)-based radical cyclopropanation controls enantioselectivity and diastereoselectivity separately during two consecutive steps of C–C bond formation.
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IMPORTANCE
As the first demonstration ofMRC to harness the potential of radical chemistry for stereoselective organic synthesis, theCo(II)-basedmetalloradical system for radical cyclopropanation provides a
fundamentally different and practically attractive method for asymmetric synthesis of chiral cyclopropanes. Due to its distinctive stepwise radical mechanism involving unprecedented α-Co(III)-
alkyl radical and γ-Co(III)-alkyl radical intermediates, Co(II)-catalyzed cyclopropanation enables some long-standing problems in asymmetric cyclopropanation to be addressed.
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