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Rangelands provide numerous ecosystem services, including forage for livestock grazing. Effective grazing
management requires measuring forage availability, which influences the level of grazing that can be sus-
tained while maintaining healthy ecological conditions. However, spatiotemporal variability makes such
determinations of forage quantity difficult, potentially hindering optimal management. These determina-
tions are especially difficult across large, remote areas. To address this, we developed an approach using

Keywords: data from a one-time sampling of vegetation throughout the Uintah and Ouray Reservation in northeast
fora&gfe ayqllabnhty Utah. By associating these data in a random forest model with environmental and climatic covariates
productivity

that vary annually, we produced yearly predictions of forage availability on a pixel-by-pixel basis for the
Reservation and surroundings from 1984 to 2018. This method addresses and quantifies the spatiotempo-
ral variability of available forage. The model confirms that forage availability is highly variable throughout
the area. On average, forage availability in Reservation management units declined as much as 32% below
median availability in some years and increased 33% above median availability in others. Moreover, some
management units experienced large increases in favorable years but less significant declines in unfavor-
able years, while the opposite was true in others. In comparison to determining a single “typical” forage
availability of management units, recognizing this inherent variability and how it differs between units
provides a fuller picture of the range of possible forage availability. This can improve grazing management
by revealing how forage quantities vary from year to year and may help avoid forage overutilization dur-
ing unfavorable years such as drought. The model can continue to be used into the future to monitor
vegetation trends, though with ongoing climate and vegetation changes periodic recalibration may be
necessary. In addition, the modeling method may be applicable to other similar study systems.
Published by Elsevier Inc. on behalf of The Society for Range Management.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Rangelands, including grasslands, savannas, shrublands, and
steppe, cover about 650 million acres in the western United States
(Reeves and Mitchell 2011) and provide numerous ecological and
social benefits (Reid et al. 2008). Though general methods to as-

* This study was funded/supported by the Bureau of Indian Affairs (Contract
A17AC00037, JLB and EWS); Utah Agricultural Experiment Station (UAES); Utah
State University (projects 1222 & 1523, EWS; 1213, JLB); and the National Science
Foundation (grant DGE-1633756, MCR). This publication has been approved as UAES
journal paper number 9344.

* Correspondence: Scott N. Zimmer, Dept of Wildland Resources and the Ecology
Center, Utah State University, 5230 Old Main Hill, Logan, UT 84322-5230, USA

E-mail address: scottnzimmer@gmail.com (S.N. Zimmer).

https://doi.org/10.1016/j.rama.2021.07.008

sess key indicators of rangeland health such as vegetation compo-
sition, bare ground cover, and annual production are well estab-
lished (Galt et al. 2000; Herrick et al. 2005; Pellant et al. 2005),
accurate and economical inventory and monitoring of rangelands
still pose basic challenges (Booth and Tueller 2003).

Annual production and subsequent forage availability are
among the most widely studied rangeland attributes, given their
inherent link to stocking rates (Holechek 1988). Vegetation produc-
tion is also an indicator of ecological condition, as declining pro-
ductivity can signal land degradation, potentially caused by grazing
(Bai et al. 2008; Wessels et al. 2008). Appropriate stocking rates
help prevent overutilization and the biotic and abiotic degradation
that can follow (Fuls 1992; Menke and Bradford 1992).

Accurately measuring forage availability within management
units and assigning appropriate stocking rates is essential to graz-
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ing management. However, spatiotemporal variability in vegetation
production throughout units makes determining forage availability
difficult across large areas. Given this variability, any single stock-
ing rate is a simplification (Stoddart 1960), but a “typical” stocking
rate or grazing capacity is a useful starting point for management
(Holechek 1988; Holechek and Pieper 1992; Galt et al. 2000). Spa-
tial variability in vegetation production can be partially addressed
by stratifying field sampling locations in a management unit by
soil type or ecological sites (Karl and Herrick 2010). However, veg-
etation can vary within these units due to microclimatic and to-
pographic variation. Temporal variability is difficult to account for
without multiple years of data collection, and field vegetation sam-
pling may inevitably occur in unusually wet or dry years. There-
fore, a presumed typical production must be inferred from col-
lected data (Holechek 1988), which can lead to spurious assump-
tions about typical conditions or trends through time.

Remote sensing is an attractive tool to address rangeland
vegetation sampling challenges given its widespread availability
through space and time, allowing this spatiotemporal variability to
be measured. Remote sensing has been used for decades to de-
termine indicators such as ground cover (Booth and Tueller 2003;
Boswell et al. 2017; Ford et al. 2019), land degradation (Allbed and
Kumar 2013), and total vegetation production (Hunt Jr. et al. 2003;
Running et al. 2004; Del Grosso et al. 2008). However, a gap still
exists in using remote sensing to determine forage availability in
rangelands.

Most commonly, spectral indices like normalized difference
vegetation index (NDVI) are assumed to represent available forage,
given its association with total aboveground annual net primary
productivity (ANPP) (Paruelo et al. 2000; Mitchell 2010; Borowik
et al. 2013). However, the proportion of vegetation that is palat-
able and available to livestock as forage varies widely between
vegetation communities (Miller and Krueger 1976; Mueggler and
Stewart 1981), so ANPP may not be an appropriate proxy for for-
age availability across environments dominated by multiple veg-
etation types or complex vegetation mixtures. Therefore, directly
determining forage availability is preferable to treating ANPP as a
proxy. Furthermore, NDVI alone is an imperfect predictor of veg-
etation biomass, and its accuracy varies by soil, topography, and
habitat type (Garroutte et al. 2016).

Here, we detail a method to predict annual forage availability
and ANPP throughout more than 2 million ha (5 million acres) of
the Uintah and Ouray Reservation and surroundings in northeast-
ern Utah by fitting climatic, topographic, and edaphic covariates to
plant production data collected in the field. This location is an ideal
study area for this analysis given its wide elevation range, diversity
of dominant vegetation types, high interannual variability in vege-
tation production, and the availability of a large plant production
dataset collected in the field.

Objectives

We aimed to enhance a typical rangeland inventory by produc-
ing a time series of high-resolution gridded layers of forage avail-
ability and ANPP. This was intended to address the following goals:

1 Assess the range of variability in forage availability in the study
area, and analyze differences in variability between manage-
ment units.

2 Examine whether trends in forage availability are apparent
throughout the study period.

3 Interpret the significance of forage variability and trends for
grazing management.

Tavaputs Plateau
Uinta Basin
Uinta Mountains

@ Completed Transects
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Figure 1. Map of study area, showing the three geographic areas, borders of Reser-
vation range units, and transect sampling locations.

Methods
Study area

Our study area was centered on the Uintah and Ouray Reser-
vation and surroundings in northeastern Utah (Fig. 1), including
three broad geographic areas: the higher elevation Uinta Moun-
tains foothills in the north and the Tavaputs Plateau in the south,
and the lower elevation Uinta Basin between these two. The Reser-
vation is divided into 148 management units referred to as range
units. The Reservation covers an elevation range of over 2 000
m, from 1 300 m to 3 350 m above sea level. Climate varies
greatly, with an arid climate with cold winters and hot summers
in the lowest elevations, while higher elevations have a subhu-
mid climate with cold winters and short, cool summers. The low-
est elevations in the Uinta Basin receive approximately 150 mm
mean annual precipitation (MAP) and 8°C mean annual tempera-
ture (MAT) (1 540 m, Ft. Duchesne Station ID:USC00422996, Utah
Climate Center 2019). The highest elevations receive approximately
885 mm MAP and 1°C MAT (3 231 m elevation, Brown Duck Sta-
tion ID:USS0010J30S, Utah Climate Center 2019).

Geologically, the Uinta Basin is dominated by the Duchesne
River and Uinta Formations, the Tavaputs Plateau is composed
mainly of the Green River Formation, and the Uinta Mountains
foothills include Mancos Shale and older Jurassic to Triassic For-
mations (Hintze et al. 2000). Soils include Aridisols in much of
the lower-elevation Uinta Basin, Entisols in middle elevations of
the Tavaputs Plateau and Uinta Basin, and Mollisols in higher-
elevation, moister sites in the Tavaputs Plateau and Uinta Moun-
tains (Boettinger 2009).
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Many distinct vegetation communities occur throughout this re-
gion. Generally, the lowest elevations are dominated by saltbush
(Atriplex L. spp.) and galleta grass (Pleuraphis jamesii Torr.), and
middle elevations include pinyon-juniper (Pinus edulis Engelm. and
Juniperus osteosperma Torr.), Wyoming big sagebrush (Artemisia tri-
dentata Nutt. ssp. wyomingensis Beetle & Young), and bunchgrasses
(Leymus Hochst. spp., Achnatherum P. Beauv. spp., and others). The
highest elevations feature mountain big sagebrush (Artemisia tri-
dentata ssp. vaseyana Rydb.) and other shrubs, lodgepole pine (Pi-
nus contorta Dougl.), aspen (Populus tremuloides Michx.), and a va-
riety of graminoids. Species names and authorities are from the
USDA NRCS plants database (USDA—NRCS 2020).

Managed grazing by cattle and other livestock has been lim-
ited in recent years (A. Pingree, personal communication, June 21,
2019). However, unmanaged grazing still occurs on the Reserva-
tion; a bison herd introduced in 1986 has increased to several hun-
dred individuals (Bates and Hersey 2016), and wild horses, elk, and
other ungulates are common in some areas.

Field-sampled vegetation data

We compiled annual plant production data collected at 872
transects across the Uintah and Ouray Reservation, each surveyed
once between 2010 and 2017 (see Fig. 1). Transect locations were
stratified by soil map unit, with approximately one transect per 1
000 acres of each soil map unit within each range unit. Transect
locations were randomly generated before sampling. At each tran-
sect, a 30.5-m (100-ft) transect tape was laid in a random orienta-
tion, and the current year’s growth of grasses and forbs was sam-
pled in ten 0.89-m? hoops located every 3.05 m along the tran-
sect. Biomass was sampled through either double-sampling or to-
tal harvest of current year’s growth, depending on vegetation den-
sity (Natural Resources Conservation Service 2003; Herrick et al.
2005). Shrub biomass was sampled by weight unit estimation in
two larger circular areas along the transect, each 40.72 m? in size.

Field sampling occurred from approximately May through Au-
gust of each year. Sampling began at the lowest elevations and
moved to progressively higher elevations throughout the season
to capture as much of the year’s total plant production as pos-
sible. The current stage of development for each species at each
transect was also noted to estimate total annual production when
development was not yet complete. For example, a forb flowering
at the time of sampling was assumed to have produced only ap-
proximately 75% of its total annual production, and its observed
biomass was multiplied by 1.33 to estimate its total annual pro-
duction (Herrick et al. 2005; S. Green, personal communication,
July 16, 2020). When wildlife grazing was evident, we also esti-
mated what proportion of a species’ total biomass had been grazed
by weighing grazed and ungrazed individuals of similar develop-
ment and increased observed measurements to estimate the total
biomass produced before utilization (Natural Resources Conserva-
tion Service 2003; Herrick et al. 2005).

Small samples of all species were collected and oven-dried to
calculate dry biomass proportions. Finally, annual ANPP of each
transect was calculated by adding the growth measured for each
species at the transect. Available forage was calculated by multiply-
ing the total production of each species by a palatability factor for
that species, representing the proportion of the species’ total pro-
duction that cattle are expected to use. Palatability factors had pre-
viously been established by the Bureau of Indian Affairs to quantify
forage utilization by cattle in the region (see Table S1, available on-
line at ...). ANPP and forage values used in this analysis represent
oven-dried biomass and are reported in kilograms per hectare. Full
vegetation sampling methods are available in supplementary ma-
terials.

Calculating edaphic data

We used the NRCS Soil Data Viewer Tool (Natural Resources
Conservation Service 2019) to calculate edaphic data in the study
area. We summarized these data from the soil surface to a 20-cm
depth, calculated as a weighted average of soil components > 5%
abundance within each soil map unit. Data were rasterized at 30-
m resolution.

Processing Landsat imagery

Landsat imagery available from 1984 to 2018 were accessed
from Google Earth Engine (Gorelick et al. 2017). We accessed The-
matic Mapper (Landsat 5) from 1984 to 2013, Enhanced Thematic
Mapper (Landsat 7) from 1999 to 2018, and Operational Land Im-
ager (Landsat 8) from 2013 through 2018. Landsat data were used
to calculate Normalized Difference Vegetation Index (NDVI), formu-
lated as:

NDVI = (NIR — Red) / (NIR + Red) 1)

where Red and NIR represent spectral reflectance in the red and
near-infrared regions, respectively.

Only Tier 1 data, representing the highest-quality images, were
selected for analysis. Images were processed to terrain-corrected
surface reflectance and then further screened for clouds, snow, and
shadows using the CFMask algorithm (Zhu et al. 2012). This pro-
cess is often used to produce consistent time series such as Land-
sat Analysis Ready Data (Dwyer et al. 2018). After this imagery se-
lection and processing, we determined the maximum NDVI value
attained in each pixel in each yr from 1984 to 2018. NDVI values
obtained from the three sensors differ slightly, by < 5% (Teillet et
al. 2001; Li et al. 2014; Roy et al. 2016).

Calculating climatic data

Climatic data were obtained from Daymet (Thornton et al.
2018). Precipitation, maximum temperature, and minimum tem-
perature were determined in multiple temporal windows. Vapor
pressure deficit was calculated by subtracting actual vapor pressure
from saturation vapor pressure (Zotarelli et al. 2010). Originally in
1-km resolution, climatic data were resampled by nearest neighbor
to 30-m resolution to align with all other data.

Modeling forage availability and ANPP

We used a random forest model to predict forage availability
and ANPP at transects from environmental and climatic covariates.
Random forest fits a series of classification trees to random sam-
ples of input data (“in-bag observations”) and evaluates accuracy
by predicting the values of data not included in a given tree (“out-
of-bag observations”) (Breiman 2001; Cutler et al. 2007). Each tree
uses only a random subset of predictor variables (“split variables”)
per node, making trees more variable and reducing correlation be-
tween trees (Cutler et al. 2007). Random forest is appropriate for
modeling moderate size datasets with many nonlinear, interacting
variables.

We used the randomForest package in R (Liaw and Wiener
2002; R Core Team 2018), building 800 trees with 5 split variables
per node. We used only two thirds of the input data for model
training and reserved one third of data for model validation. The
validation points were therefore never incorporated in model con-
struction and are not to be confused with out-of-bag observations,
which vary from tree to tree. Model performance was evaluated by
calculating the mean absolute error (MAE) and root mean square
error (RMSE) of the model’s predictions of validation points not
included in modeling. MAE evaluates the average absolute value of
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Table 1

Covariates included as predictors of ANPP and forage availability at transects and the source and processing of those covariates.

Covariate Derivation and processing

Elevation USGS 30-m digital elevation model (DEM) (US Geological Survey 2017)
Slope Calculated from DEM

Northness Aspect calculated from DEM, transformed to eastness and northness

Compound topographic index (CTI)
Edaphic characteristics (available water capacity; cation exchange

Calculated from DEM (Gessler et al. 1995)
SSURGO data (currently not publicly available in the study area) summarized in NRCS Soil Data

capacity; depth to any restrictive layer; organic material; pH; sodium Viewer (Natural Resources Conservation Service 2019)

adsorption ratio; sand, silt, and clay proportion; estimated rangeland
production in a typical year)
Estimated tree cover

Determined from Landfire existing vegetation cover at 30-m resolution (LANDFIRE 2008).

Coded from 0 (< 10% tree cover) to 9 (90—100% cover)

Annual climatic variables (precipitation, vapor pressure deficit,
maximum temperatures, minimum temperatures)
Normalized difference vegetation index (NDVI)

Determined from Daymet (Thornton et al. 2018) in multiple temporal windows

Determined from Landsat imagery at 30-m resolution

errors by the following equation, where y; represents the predicted
value, y; represents the observed value, and T represents the total
number of points:
T -~
RMSE calculates the square of all errors, determines the average
squared error, and then evaluates the square root of the average
squared error:

RMSE = 3)

Low MAE and RMSE indicate a close fit between predicted and
observed values of points. All errors are weighted equally in MAE,
whereas RMSE allows large errors to be identified by giving them
greater weight. We prioritized the minimization of RMSE over MAE
in model selection to reduce the occurrence of large errors.

There is some debate as to how variables should be selected or
excluded from random forest models (Behnamian et al. 2017; Fox
et al. 2017; Degenhardt et al. 2019). Fox et al. (2017) found, using
a dataset similar to ours, that iteratively eliminating variables after
attempting to identify unimportant variables did not significantly
affect model performance. Therefore, we eliminated only two pre-
dictors that random forest variable importance measures strongly
suggested were unimportant.

The final variables included in modeling forage and ANPP were
all edaphic characteristics (soil available water capacity, cation
exchange capacity, depth to restrictive layer, organic matter, pH,
sodium adsorption ratio, proportion of sand, silt, and clay; es-
timated rangeland production), elevation, slope, northness, com-
pound topographic index, estimated tree cover (from Landfire),
maximum annual NDVI (from Landsat), and climatic data from
Daymet (January—June precipitation sum, May—June mean va-
por pressure deficit, May—June mean maximum temperature, and
May-June mean minimum temperature). These covariates and
their derivations are shown in Table 1.

Bias correction

Random forest predictions often have a systematic bias, where
predictions are too high at very low and too low at very high ob-
served values (Zhang and Lu 2012; Xu 2013). Therefore, prediction
errors (observed values minus predicted values) tend to be nega-
tive at low predicted values and positive at high predicted values.
We corrected this bias by employing a method from Xu (2013) and
Zhang (2012), which applies a second random forest to the results
of the first random forest, modeling the prediction error of the first
forest as a function of the prediction. This modeled prediction bias
is then subtracted from the first random forest to calculate a bias-
corrected prediction.

Modeled forage availability layers

Layers of modeled annual forage availability and ANPP were cal-
culated in R by associating the random forest model with data
layers corresponding to all covariates included in the model and
calculating pixel-by-pixel predictions annually. This required raster
layers corresponding to all covariates included in modeling. These
were projected to the same coordinate system (EPSG:4326) and re-
sampled when necessary to 30-m resolution by nearest neighbor
resampling.

We calculated layers of modeled forage availability and ANPP
annually from 1984 to 2018. To correct for random forest bias, lay-
ers of predicted bias were also calculated and then subtracted from
the modeled layers to calculate bias-corrected results. These re-
sulting layers were masked where the underlying landscape cor-
responded to urban areas, agricultural land, or water.

Summarizing forage availability of range units

The Reservation is divided into 148 grazing allotments, referred
to as range units (see Fig. 1). To summarize forage availability and
ANPP in each unit, we calculated the mean forage availability and
ANPP in each range unit in each year by masking the layers to in-
clude only pixels falling within a single range unit and calculating
the mean and standard deviation of pixel values in each year. This
summarized results at a more relevant scale and allowed compar-
ison of forage availability in individual units. We also calculated
other relevant attributes of forage availability in range units, in-
cluding the median forage availability across years, and the maxi-
mum and minimum deviations from median forage availability. We
calculated the forage coefficient of variation (CV), the ratio of stan-
dard deviation to mean, to assess the overall interannual variability
of forage in range units. Lastly, we examined relationships between
modeled forage availability and modeled ANPP at sampling loca-
tions and allotments as a whole.

Trends

We used the time series of mean forage availability in each
range unit to test for trends in forage availability over time. For
this analysis we used the Mann-Kendall test, a common method to
assess nonparametric trends (Mann 1945; Kendall 1948). We also
used this test to examine trends in the climatic variables included
in modeling.

Results
Random forest model fit and correlates of forage availability

Individual covariates were only weakly correlated with forage
availability at transects (Table S2, available online at ...), mean-
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Figure 2. Random forest model variable importance. Values show the percent in-
crease in mean squared error among random forest trees without a given variable.

ing each covariate alone only partially explained the variance in
forage availability. The highest correlations were found for annual
maximum NDVI (2 =0.138), NRCS estimated rangeland production
of soil map units (2 =0.116), and May—]June vapor pressure deficit
(r? = 0.104). Lesser forage availability was associated with typical
drought conditions—higher vapor pressure deficit, lower precipita-
tion, and higher temperatures. Random forest variable importance
metrics differed slightly from these raw variable correlations and
showed tree cover, maximum NDVI, elevation, and precipitation
had the greatest explanatory value in predicting forage availability
(Fig. 2).

Though individual covariates were only weakly correlated
with forage, the variance explained by the random forest model
was high. After bias correction, r2 = 0.72, RMSE=99.11, and
MAE = 64.54 among validation points not included in model train-
ing. Fit for the entire dataset including validation and training
points was higher (r> = 0.86, RMSE =73.37, MAE =44.07 after bias
correction) (Fig. 3). Model predictions had a slight bias before bias
correction, with prediction errors slightly skewed negative at low
modeled values and positive at high modeled values. Correction re-
duced this systematic bias and improved model performance, re-
ducing RMSE by 27% and MAE by 33% among validation points.

Modeled forage availability

We used the random forest model to calculate layers of mod-
eled forage availability and ANPP annually from 1984 to 2018 at
30-m resolution (Fig. 4a). Forage availability was highly variable
spatially, ranging from under 100 kg o ha~! to over 800 kg e ha~!.
Generally, available forage was higher at higher elevations in the
Uinta Mountains and Tavaputs Plateau than in the Uinta Basin.

Time series of the mean forage availability in two range units
with highly contrasting forage dynamics are shown in Figs. 4b and
4c. These units are Steer Ridge, ranging from 2 500 to 2 800 m
above sea level in the Tavaputs Plateau region, and Alger Draw,
from 1 600 to 1 800 m above sea level in the Uinta Basin region.
Vegetation composition varies greatly between these units, with
Steer Ridge characterized by mountain big sagebrush, aspen, Gam-
bel oak, and sedges, and Alger Draw dominated by greasewood,
saltbushes, snakeweed, halogeton, and basin big sagebrush. These
units are outlined in Fig. 4a.

In Steer Ridge, median forage availability was 485 kg e ha~! and
most years fell within 10% of the median, between 436 and 506
kg o ha~! (see Fig. 4b). However, forage declined dramatically in a
few years (2002, 2007, and 2014), as low as 314 kg e ha~!, 35% be-
low the median. In contrast to the drastic forage declines in some
years, large increases above the median were not evident. Forage
varied differently within Alger Draw, in the Uinta Basin region (see
Fig. 4c). Forage availability was centered around a median of 162
kg o ha~! in this unit. Most years fell within 17% of the median,
but forage increased dramatically in some yr (1995 and 1999), up
to 43% above the median. However, large declines below median
conditions were not evident in this unit.

Figure 5 shows histograms of these deviations from median
conditions colored by geographic region. These histograms demon-
strate that the dynamics mentioned earlier are typical for their re-
spective regions, not unique to these range units. More frequently,
units in the cooler, moister Uinta Mountains and Tavaputs Plateau
had large decreases below median (Fig. 5a) and small increases
above median conditions (Fig. 5b). Conversely, units in the warmer,
drier Uinta Basin had more frequently small decreases below me-
dian but large increases above median. This matches the relation-
ship shown in the Figure 4b and 4c time series results.

The coefficient of variation (CV) of forage, showing the overall
interannual variability of available forage, ranged from 6% to 28%
among all range units, with a mean of 16%. CV was negatively
correlated with median forage availability, indicating that greater
median forage availability was associated with lesser interannual
variability. This relationship was weak but statistically significant
(Fig. 6).

Relationship between forage availability and ANPP

We examined the relationship between forage availability and
ANPP using both the plant production data collected at transects
and the modeled forage and ANPP results. Forage and ANPP are
clearly associated at transects, but with considerable variability
(Fig. 7a), indicating that ANPP alone is not an adequate predictor
of forage availability. Median forage availability and median ANPP
at range units were more closely related (Fig. 7b).

The relationship between modeled forage availability and ANPP
varied spatially (Fig. 8). Generally, lower-elevation areas in the
Uinta Basin had lower forage to ANPP ratios, whereas higher el-
evations in the Uinta Mountains and Tavaputs Plateau had higher
forage to ANPP ratios. This means available forage constituted a
greater proportion of total ANPP in the wetter and cooler high-
elevation units, indicative of greater forage quality. Forage to ANPP
ratios ranged from 0.23 to 0.63 among all range units.

Trends

We found no range units with statistically significant (P < 0.05)
trends in forage availability from 1984-2018, though some ap-
proached significant declines. In 21 of the 148 range units, primar-
ily in the southern Tavaputs Plateau, we found declines approach-
ing significance (P values from 0.08—0.25). Figure 9 shows the time
series of annual forage availability in one range unit where de-
clines approached statistical significance (P=0.08). Analyzing cli-
matic trends, we found significant increases in maximum and min-
imum temperature in approximately one-third of range units (P <
0.05) but found no units with significant changes in precipitation
and only three with significant increases in vapor pressure deficit.
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Figure 3. Postcorrection modeled forage versus observed forage among validation points (a); and validation and training points (b). Line of best fit shown in solid blue line,

1:1 relationship shown in dashed line.

Discussion
Modeled forage availability

We found large deviations between median forage availability
and extremes in years with minimum and maximum forage avail-
ability (Figs. 4 and 5). On average across range units, minimum for-
age was 32% below median forage and up to 58% below median
in some units. Conversely, maximum forage was on average 33%
above median forage and up to 100% above median. Such variabil-
ity has important management implications—high variability indi-
cates typical conditions have limited significance and points to a
greater need for adaptive management responsive to yearly condi-
tions. We also found a negative relationship between median for-
age and coefficient of variation for forage, meaning variability is
most significant in units with lesser forage availability (Fig. 6).

Our results are similar to those from a study that found that
across publicly owned western US rangelands, ANPP from 1993 to
2017 varied from 23% below to 28% above mean ANPP (Robinson
et al. 2019). However, variability throughout our predominantly
shrubland study area is lower than what others have found in

grasslands (Swemmer et al. 2007; Wehlage et al. 2016). Whereas
the mean CV of forage in Reservation range units was 16%, CV
of ANPP in grasslands may typically be closer to 30% (Knapp and
Smith 2001) and even 50% in some shortgrass steppe regions
(Reeves et al. 2020).

Our results showed that higher-elevation areas in the Uinta
Mountains and Tavaputs Plateau experienced large forage availabil-
ity declines below median conditions in some years but less dra-
matic increases above median (see Fig. 4b, 5). Conversely, units in
the lower-elevation Uinta Basin experienced large spikes in forage
availability above the median in some years but lesser declines
below median conditions (see Fig. 4c, 5). Grazing management
should be tailored to these local forage availability dynamics, an-
ticipating the sharp forage availability declines in the Uinta Moun-
tains and Tavaputs Plateau units during drought and the spikes
during favorable conditions in the Uinta Basin. Unsurprisingly, in-
creased forage availability was correlated with wetter, cooler con-
ditions (see Table S2).

The relative dominance of perennial and annual vegetation
in these regions could contribute to the differing forage avail-
ability dynamics (Schmidt and Karnieli 2000). For example, an-
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Figure 5. Histogram of maximum forage decrease below median forage in range units (a) and maximum forage increase above median forage (b), colored by region.

nual exotic cheatgrass (Bromus tectorum L.) is most prominent in
the Uinta Basin and may capitalize on favorable conditions and
produce additional biomass more readily than perennial species
(Hardegree et al. 2018). In addition, many dominant plants in the
Uinta Basin perform C4 photosynthesis, whereas these species are
nearly absent in the Uinta Mountains and Tavaputs Plateau. C4
species typically tolerate drought better than C; species (Ward
et al. 1999) and may grow more rapidly under more favor-
able conditions (Nippert et al. 2007), closely matching the dif-
fering forage availability dynamics we observed between these
regions.

Trends

We found no statistically significant (P < 0.05) trends in forage
availability from 1984 to 2018, though we found trends approach-
ing significance in some range units (Fig. 9). Others have also not
found clear NPP trends in recent history across western US range-
lands (Robinson et al. 2019). Shrublands, particularly in the US
southwest, may have experienced particularly little NPP change on
the time scales studied (Hicke et al. 2002). Though climate change
is predicted to significantly impact rangeland productivity (Reeves
et al. 2014), these changes may not yet be evident in the time
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Figure 6. Coefficient of variation (CV) of forage availability in range units versus
median forage availability of range units. Line of best fit shown in blue line.

frame we analyzed. We found significant temperature increases in
our area but no precipitation trends, which would more drastically
impact productivity.

Livestock and wildlife can also influence productivity (Menke &
Bradford 1992; Fleischner 1994), but managed livestock grazing in
our study area has been limited (A. Pingree, personal communi-
cation, June 21, 2019). Bison populations have grown in the Tava-
puts Plateau (Bates and Hersey 2016), where many range units
had weak forage availability declines (P < 0.25), but these fac-
tors are difficult to link. Regardless, trends in forage availability
can continue to be monitored using the model, particularly as cli-
mate, grazing, or wildlife management may change. Though any
model may have limited accuracy under novel conditions, random
forest can successfully be extrapolated beyond training conditions
(Carrasco et al. 2015). However, with continued climate and vege-
tation changes it is likely that the model will be improved by recal-
ibration in the future based on updated field sampling. Nonethe-

a

y=23+0.38 x
R=0.81,p<22e-16 «

1500

1000

Transect Forage Availability (kg - ha'1)

less, this is still vastly more feasible than annually measuring for-
age over vast and varied landscapes.

Random forest model fit and correlates of forage availability

Individual covariates were only weakly associated with for-
age availability measured at transects, with the strongest associ-
ation found for annual maximum NDVI (2 =0.138). Unsurprisingly,
lower forage availability was associated with higher vapor pres-
sure deficit, lower precipitation, and higher temperatures, which
are typical drought conditions that reduce productivity (Roby et al.
2020). Fit achieved by the random forest model was generally high,
achieving r2 =0.72 among validation points and r2 =0.86 for train-
ing and validation points after bias correction (see Fig. 3). Since
bias correction improved model fit, we recommend others follow
random forest bias correction methods (Zhang and Lu 2012; Xu
2013) when appropriate.

Predicting forage availability from annual maximum NDVI is
clearly not appropriate across our study area. Others have found
stronger correlations between NPP and NDVI (e.g., Schloss et al.
1999; Paruelo et al. 2000), but NDVI is likely a weaker predictor of
forage availability, especially across complex habitats covering mul-
tiple plant communities and soil types (Garroutte et al. 2016). Our
results show that NDVI in conjunction with edaphic, topographic,
and climatic covariates, which also impact productivity (Wessels et
al. 2007; Popp et al. 2009; Mitchell 2010), can predict forage with
acceptable accuracy in a model such as random forest.

Relationship between forage availability and ANPP

Across the Reservation, there was considerable variation in the
relationship between forage availability and ANPP at the level of
transects (Fig. 7a). Since ANPP does not fully explain forage avail-
ability, directly modeling forage with multiple covariates is prefer-
able to considering ANPP as a proxy, as is sometimes done (Paruelo
et al. 2000; Mitchell 2010). We were able to directly model for-
age availability because our field data identified vegetation to the
species level, and the palatability of these species to cattle was
previously determined for the region (see Table S1).

Forage and ANPP differences were less pronounced when mod-
eled ANPP and forage availability results were aggregated across
range units (Fig. 7b). However, the ratio between the two did vary
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Figure 7. Forage availability versus annual net primary productivity (ANPP) as measured at individual transects (a) and median forage availability versus median ANPP as

calculated from modeled results in each range unit (b). Line of best fit shown in blue.
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in a somewhat predictable pattern, with higher-elevation units in
the Uinta Mountains and Tavaputs Plateau having a higher for-
age to ANPP ratio (Fig. 8). These forage-to-ANPP ratios were in
line with previous literature, which reported a ratio of 0.37-0.54
in shrublands and higher in sites with more grass and less shrub
cover (Mueggler & Stewart 1981; Hirata et al. 2005). In our study
area, lower elevations are dominated by saltbush and sagebrush
shrublands, while higher elevations include more meadow-like
sites with less shrub cover and therefore higher forage to ANPP
ratios.

Implications

Average forage availability has limited value in grazing
management—not planning for declines in drought years could
promote overgrazing (Menke and Bradford 1992), as potentially
less than half of median forage is available in these years. On the
other hand, increasing stocking will allow the utilization of the
additional available forage in favorable years. We found differing
forage availability dynamics between the Uinta Basin region and
the Uinta Mountains and Tavaputs Plateau regions, with the for-
mer more likely to experience forage availability spikes and the
latter more susceptible to large declines. This spatial variation sug-
gests management should plan for these local conditions, signif-
icantly reducing stocking during drought in the Uinta Mountains
and Tavaputs Plateau and increasing stocking in favorable years in
the Uinta Basin based on this known variability. Since large for-
age spikes in the Uinta Basin may represent an increase in cheat-
grass productivity, increasing stocking in this area as a targeted-
grazing method could also fulfill management goals by controlling
cheatgrass populations and wildfire risk (Diamond et al. 2009). Ad-
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Figure 9. Time series of mean annual forage availability in the Flat Rock range unit,
with line of best fit in blue. Correlation coefficient and P value are from Mann-
Kendall regression.

vancements in long lead forecasting (e.g., National Weather Ser-
vice Climate Prediction Center; https://www.cpc.ncep.noaa.gov/) or
consideration of pregrowing season conditions (Raynor et al. 2020)
could improve this fine-tuning of stocking rates year to year.

Directly modeling forage provided more reliable estimates of
spatial and temporal patterns of forage availability than treating
ANPP as a proxy for forage availability. However, we know of few
others who have directly modeled available forage rather than
ANPP (though see Hirata et al. 2005 and Smolko et al. 2018). Do-
ing so should improve forage availability and stocking rate deter-
minations by addressing variations in productivity and vegetation
palatability throughout an area. Our modeling method was sim-
ple and incorporated only freely available data in conjunction with
field observations, so it could be easily replicated at low cost wher-
ever training data is available. Such methods can help minimize
the expenditure of time and money required for sampling by mon-
itoring change remotely.

Conclusion

Effective, economical inventory and monitoring is a basic chal-
lenge in rangeland environments. Due to high spatiotemporal vari-
ability and large spatial scales, it remains difficult to adequately
sample and summarize indicators essential for informed manage-
ment, such as forage availability. We used a random forest model
to predict annual forage availability across the Uintah and Ouray
Reservation and surroundings, trained on field-collected plant pro-
duction data and freely available climatic and biophysical data. Pro-
ducing results from 1984 to 2018, this model greatly enhances
standard rangeland vegetation inventory in the area by explic-
itly addressing variability in forage availability. Understanding this
variability and how it differs regionally may help improve range-
land management by informing how to adjust stocking rates in
atypical years and avoid overgrazing or insufficient forage availabil-
ity in drought years.
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