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a b s t r a c t 

Rangelands provide numerous ecosystem services, including forage for livestock grazing. Effective grazing 

management requires measuring forage availability, which influences the level of grazing that can be sus- 

tained while maintaining healthy ecological conditions. However, spatiotemporal variability makes such 

determinations of forage quantity difficult, potentially hindering optimal management. These determina- 

tions are especially difficult across large, remote areas. To address this, we developed an approach using 

data from a one-time sampling of vegetation throughout the Uintah and Ouray Reservation in northeast 

Utah. By associating these data in a random forest model with environmental and climatic covariates 

that vary annually, we produced yearly predictions of forage availability on a pixel-by-pixel basis for the 

Reservation and surroundings from 1984 to 2018. This method addresses and quantifies the spatiotempo- 

ral variability of available forage. The model confirms that forage availability is highly variable throughout 

the area. On average, forage availability in Reservation management units declined as much as 32% below 

median availability in some years and increased 33% above median availability in others. Moreover, some 

management units experienced large increases in favorable years but less significant declines in unfavor- 

able years, while the opposite was true in others. In comparison to determining a single “typical” forage 

availability of management units, recognizing this inherent variability and how it differs between units 

provides a fuller picture of the range of possible forage availability. This can improve grazing management 

by revealing how forage quantities vary from year to year and may help avoid forage overutilization dur- 

ing unfavorable years such as drought. The model can continue to be used into the future to monitor 

vegetation trends, though with ongoing climate and vegetation changes periodic recalibration may be 

necessary. In addition, the modeling method may be applicable to other similar study systems. 

Published by Elsevier Inc. on behalf of The Society for Range Management. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Rangelands, including grasslands, savannas, shrublands, and 

teppe, cover about 650 million acres in the western United States

 Reeves and Mitchell 2011 ) and provide numerous ecological and

ocial benefits ( Reid et al. 2008 ). Though general methods to as-
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ess key indicators of rangeland health such as vegetation compo-

ition, bare ground cover, and annual production are well estab-

ished ( Galt et al. 20 0 0 ; Herrick et al. 2005 ; Pellant et al. 2005 ),

ccurate and economical inventory and monitoring of rangelands

till pose basic challenges ( Booth and Tueller 2003 ). 

Annual production and subsequent forage availability are 

mong the most widely studied rangeland attributes, given their

nherent link to stocking rates ( Holechek 1988 ). Vegetation produc-

ion is also an indicator of ecological condition, as declining pro-

uctivity can signal land degradation, potentially caused by grazing

 Bai et al. 2008 ; Wessels et al. 2008 ). Appropriate stocking rates

elp prevent overutilization and the biotic and abiotic degradation

hat can follow ( Fuls 1992 ; Menke and Bradford 1992 ). 

Accurately measuring forage availability within management 

nits and assigning appropriate stocking rates is essential to graz-
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Figure 1. Map of study area, showing the three geographic areas, borders of Reser- 

vation range units, and transect sampling locations. 
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ng management. However, spatiotemporal variability in vegetation 

roduction throughout units makes determining forage availability 

ifficult across large areas. Given this variability, any single stock- 

ng rate is a simplification ( Stoddart 1960 ), but a “typical” stocking

ate or grazing capacity is a useful starting point for management

 Holechek 1988 ; Holechek and Pieper 1992 ; Galt et al. 20 0 0 ). Spa-

ial variability in vegetation production can be partially addressed 

y stratifying field sampling locations in a management unit by 

oil type or ecological sites ( Karl and Herrick 2010 ). However, veg-

tation can vary within these units due to microclimatic and to-

ographic variation. Temporal variability is difficult to account for 

ithout multiple years of data collection, and field vegetation sam- 

ling may inevitably occur in unusually wet or dry years. There-

ore, a presumed typical production must be inferred from col- 

ected data ( Holechek 1988 ), which can lead to spurious assump-

ions about typical conditions or trends through time. 

Remote sensing is an attractive tool to address rangeland 

egetation sampling challenges given its widespread availability 

hrough space and time, allowing this spatiotemporal variability to 

e measured. Remote sensing has been used for decades to de-

ermine indicators such as ground cover ( Booth and Tueller 2003 ;

oswell et al. 2017 ; Ford et al. 2019 ), land degradation ( Allbed and

umar 2013 ), and total vegetation production ( Hunt Jr. et al. 2003 ;

unning et al. 2004 ; Del Grosso et al. 2008 ). However, a gap still

xists in using remote sensing to determine forage availability in 

angelands. 

Most commonly, spectral indices like normalized difference 

egetation index (NDVI) are assumed to represent available forage, 

iven its association with total aboveground annual net primary 

roductivity (ANPP) ( Paruelo et al. 20 0 0 ; Mitchell 2010 ; Borowik

t al. 2013 ). However, the proportion of vegetation that is palat-

ble and available to livestock as forage varies widely between

egetation communities ( Miller and Krueger 1976 ; Mueggler and

tewart 1981 ), so ANPP may not be an appropriate proxy for for-

ge availability across environments dominated by multiple veg- 

tation types or complex vegetation mixtures. Therefore, directly 

etermining forage availability is preferable to treating ANPP as a 

roxy. Furthermore, NDVI alone is an imperfect predictor of veg- 

tation biomass, and its accuracy varies by soil, topography, and 

abitat type ( Garroutte et al. 2016 ). 

Here, we detail a method to predict annual forage availability

nd ANPP throughout more than 2 million ha (5 million acres) of

he Uintah and Ouray Reservation and surroundings in northeast- 

rn Utah by fitting climatic, topographic, and edaphic covariates to 

lant production data collected in the field. This location is an ideal

tudy area for this analysis given its wide elevation range, diversity

f dominant vegetation types, high interannual variability in vege- 

ation production, and the availability of a large plant production 

ataset collected in the field. 

bjectives 

We aimed to enhance a typical rangeland inventory by produc- 

ng a time series of high-resolution gridded layers of forage avail-

bility and ANPP. This was intended to address the following goals:

1 Assess the range of variability in forage availability in the study

area, and analyze differences in variability between manage- 

ment units. 

2 Examine whether trends in forage availability are apparent 

throughout the study period. 

3 Interpret the significance of forage variability and trends for 
grazing management. t
ethods 

tudy area 

Our study area was centered on the Uintah and Ouray Reser-

ation and surroundings in northeastern Utah ( Fig. 1 ), including

hree broad geographic areas: the higher elevation Uinta Moun- 

ains foothills in the north and the Tavaputs Plateau in the south,

nd the lower elevation Uinta Basin between these two. The Reser-

ation is divided into 148 management units referred to as range

nits. The Reservation covers an elevation range of over 2 0 0 0

, from 1 300 m to 3 350 m above sea level. Climate varies

reatly, with an arid climate with cold winters and hot summers

n the lowest elevations, while higher elevations have a subhu- 

id climate with cold winters and short, cool summers. The low-

st elevations in the Uinta Basin receive approximately 150 mm 

ean annual precipitation (MAP) and 8 °C mean annual tempera- 

ure (MAT) (1 540 m, Ft. Duchesne Station ID:USC00422996, Utah 

limate Center 2019). The highest elevations receive approximately 

85 mm MAP and 1 °C MAT (3 231 m elevation, Brown Duck Sta-

ion ID:USS0010J30S, Utah Climate Center 2019). 

Geologically, the Uinta Basin is dominated by the Duchesne 

iver and Uinta Formations, the Tavaputs Plateau is composed 

ainly of the Green River Formation, and the Uinta Mountains 

oothills include Mancos Shale and older Jurassic to Triassic For- 

ations ( Hintze et al. 20 0 0 ). Soils include Aridisols in much of

he lower-elevation Uinta Basin, Entisols in middle elevations of 

he Tavaputs Plateau and Uinta Basin, and Mollisols in higher- 

levation, moister sites in the Tavaputs Plateau and Uinta Moun- 

ains ( Boettinger 2009 ). 
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Many distinct vegetation communities occur throughout this re-

ion. Generally, the lowest elevations are dominated by saltbush

 Atriplex L. spp . ) and galleta grass ( Pleuraphis jamesii Torr.), and

iddle elevations include pinyon-juniper ( Pinus edulis Engelm. and

uniperus osteosperma Torr.), Wyoming big sagebrush ( Artemisia tri-

entata Nutt. ssp . wyomingensis Beetle & Young), and bunchgrasses

 Leymus Hochst. spp ., Achnatherum P. Beauv. spp . , and others). The

ighest elevations feature mountain big sagebrush ( Artemisia tri-

entata ssp. vaseyana Rydb.) and other shrubs, lodgepole pine ( Pi-

us contorta Dougl.), aspen ( Populus tremuloides Michx.), and a va-

iety of graminoids. Species names and authorities are from the

SDA NRCS plants database ( USDA −NRCS 2020 ). 

Managed grazing by cattle and other livestock has been lim-

ted in recent years (A. Pingree, personal communication, June 21,

019). However, unmanaged grazing still occurs on the Reserva-

ion; a bison herd introduced in 1986 has increased to several hun-

red individuals ( Bates and Hersey 2016 ), and wild horses, elk, and

ther ungulates are common in some areas. 

ield-sampled vegetation data 

We compiled annual plant production data collected at 872

ransects across the Uintah and Ouray Reservation, each surveyed

nce between 2010 and 2017 (see Fig. 1 ). Transect locations were

tratified by soil map unit, with approximately one transect per 1

 0 0 acres of each soil map unit within each range unit. Transect

ocations were randomly generated before sampling. At each tran-

ect, a 30.5-m (100-ft) transect tape was laid in a random orienta-

ion, and the current year’s growth of grasses and forbs was sam-

led in ten 0.89-m 
2 hoops located every 3.05 m along the tran-

ect. Biomass was sampled through either double-sampling or to-

al harvest of current year’s growth, depending on vegetation den-

ity ( Natural Resources Conservation Service 2003 ; Herrick et al.

005 ). Shrub biomass was sampled by weight unit estimation in

wo larger circular areas along the transect, each 40.72 m 
2 in size. 

Field sampling occurred from approximately May through Au-

ust of each year. Sampling began at the lowest elevations and

oved to progressively higher elevations throughout the season

o capture as much of the year’s total plant production as pos-

ible. The current stage of development for each species at each

ransect was also noted to estimate total annual production when

evelopment was not yet complete. For example, a forb flowering

t the time of sampling was assumed to have produced only ap-

roximately 75% of its total annual production, and its observed

iomass was multiplied by 1.33 to estimate its total annual pro-

uction ( Herrick et al. 2005 ; S. Green, personal communication,

uly 16, 2020). When wildlife grazing was evident, we also esti-

ated what proportion of a species’ total biomass had been grazed

y weighing grazed and ungrazed individuals of similar develop-

ent and increased observed measurements to estimate the total

iomass produced before utilization ( Natural Resources Conserva-

ion Service 2003 ; Herrick et al. 2005 ). 

Small samples of all species were collected and oven-dried to

alculate dry biomass proportions. Finally, annual ANPP of each

ransect was calculated by adding the growth measured for each

pecies at the transect. Available forage was calculated by multiply-

ng the total production of each species by a palatability factor for

hat species, representing the proportion of the species’ total pro-

uction that cattle are expected to use. Palatability factors had pre-

iously been established by the Bureau of Indian Affairs to quantify

orage utilization by cattle in the region (see Table S1, available on-

ine at …). ANPP and forage values used in this analysis represent

ven-dried biomass and are reported in kilograms per hectare. Full

egetation sampling methods are available in supplementary ma-
erials. i  
alculating edaphic data 

We used the NRCS Soil Data Viewer Tool ( Natural Resources

onservation Service 2019 ) to calculate edaphic data in the study

rea. We summarized these data from the soil surface to a 20-cm

epth, calculated as a weighted average of soil components > 5%

bundance within each soil map unit. Data were rasterized at 30-

 resolution. 

rocessing Landsat imagery 

Landsat imagery available from 1984 to 2018 were accessed

rom Google Earth Engine ( Gorelick et al. 2017 ). We accessed The-

atic Mapper (Landsat 5) from 1984 to 2013, Enhanced Thematic

apper (Landsat 7) from 1999 to 2018, and Operational Land Im-

ger (Landsat 8) from 2013 through 2018. Landsat data were used

o calculate Normalized Difference Vegetation Index (NDVI), formu-

ated as: 

DVI = ( NIR − Red ) / ( NIR + Red ) (1) 

here Red and NIR represent spectral reflectance in the red and

ear-infrared regions, respectively. 

Only Tier 1 data, representing the highest-quality images, were

elected for analysis. Images were processed to terrain-corrected

urface reflectance and then further screened for clouds, snow, and

hadows using the CFMask algorithm ( Zhu et al. 2012 ). This pro-

ess is often used to produce consistent time series such as Land-

at Analysis Ready Data ( Dwyer et al. 2018 ). After this imagery se-

ection and processing, we determined the maximum NDVI value

ttained in each pixel in each yr from 1984 to 2018. NDVI values

btained from the three sensors differ slightly, by < 5% ( Teillet et

l. 2001 ; Li et al. 2014 ; Roy et al. 2016 ). 

alculating climatic data 

Climatic data were obtained from Daymet ( Thornton et al.

018 ). Precipitation, maximum temperature, and minimum tem-

erature were determined in multiple temporal windows. Vapor

ressure deficit was calculated by subtracting actual vapor pressure

rom saturation vapor pressure ( Zotarelli et al. 2010 ). Originally in

-km resolution, climatic data were resampled by nearest neighbor

o 30-m resolution to align with all other data. 

odeling forage availability and ANPP 

We used a random forest model to predict forage availability

nd ANPP at transects from environmental and climatic covariates.

andom forest fits a series of classification trees to random sam-

les of input data (“in-bag observations”) and evaluates accuracy

y predicting the values of data not included in a given tree (“out-

f-bag observations”) ( Breiman 2001 ; Cutler et al. 2007 ). Each tree

ses only a random subset of predictor variables (“split variables”)

er node, making trees more variable and reducing correlation be-

ween trees ( Cutler et al. 2007 ). Random forest is appropriate for

odeling moderate size datasets with many nonlinear, interacting

ariables. 

We used the randomForest package in R ( Liaw and Wiener

002 ; R Core Team 2018 ), building 800 trees with 5 split variables

er node. We used only two thirds of the input data for model

raining and reserved one third of data for model validation. The

alidation points were therefore never incorporated in model con-

truction and are not to be confused with out-of-bag observations,

hich vary from tree to tree. Model performance was evaluated by

alculating the mean absolute error (MAE) and root mean square

rror (RMSE) of the model’s predictions of validation points not

ncluded in modeling. MAE evaluates the average absolute value of
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Table 1 

Covariates included as predictors of ANPP and forage availability at transects and the source and processing of those covariates. 

Covariate Derivation and processing 

Elevation USGS 30-m digital elevation model (DEM) ( US Geological Survey 2017 ) 

Slope Calculated from DEM 

Northness Aspect calculated from DEM, transformed to eastness and northness 

Compound topographic index (CTI) Calculated from DEM ( Gessler et al. 1995 ) 

Edaphic characteristics (available water capacity; cation exchange 

capacity; depth to any restrictive layer; organic material; pH; sodium 

adsorption ratio; sand, silt, and clay proportion; estimated rangeland 

production in a typical year) 

SSURGO data (currently not publicly available in the study area) summarized in NRCS Soil Data 

Viewer ( Natural Resources Conservation Service 2019 ) 

Estimated tree cover Determined from Landfire existing vegetation cover at 30-m resolution ( LANDFIRE 2008 ). 

Coded from 0 ( < 10% tree cover) to 9 (90 −100% cover) 

Annual climatic variables (precipitation, vapor pressure deficit, 

maximum temperatures, minimum temperatures) 

Determined from Daymet ( Thornton et al. 2018 ) in multiple temporal windows 

Normalized difference vegetation index (NDVI) Determined from Landsat imagery at 30-m resolution 
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rrors by the following equation, where ̂ y t represents the predicted 

alue, y t represents the observed value, and T represents the total 

umber of points: 

AE = 

∑ T 
t | ̂  y t − y t | 

T 
(2) 

RMSE calculates the square of all errors, determines the average

quared error, and then evaluates the square root of the average

quared error: 

MSE = 

√ (∑ T 
t ˆ y t − y t 

)2 
T 

(3) 

Low MAE and RMSE indicate a close fit between predicted and

bserved values of points. All errors are weighted equally in MAE, 

hereas RMSE allows large errors to be identified by giving them

reater weight. We prioritized the minimization of RMSE over MAE 

n model selection to reduce the occurrence of large errors. 

There is some debate as to how variables should be selected or

xcluded from random forest models ( Behnamian et al. 2017 ; Fox

t al. 2017 ; Degenhardt et al. 2019 ). Fox et al. (2017) found, using

 dataset similar to ours, that iteratively eliminating variables after 

ttempting to identify unimportant variables did not significantly 

ffect model performance. Therefore, we eliminated only two pre- 

ictors that random forest variable importance measures strongly 

uggested were unimportant. 

The final variables included in modeling forage and ANPP were 

ll edaphic characteristics (soil available water capacity, cation 

xchange capacity, depth to restrictive layer, organic matter, pH, 

odium adsorption ratio, proportion of sand, silt, and clay; es- 

imated rangeland production), elevation, slope, northness, com- 

ound topographic index, estimated tree cover (from Landfire), 

aximum annual NDVI (from Landsat), and climatic data from 

aymet (January −June precipitation sum, May −June mean va- 

or pressure deficit, May −June mean maximum temperature, and 

ay −June mean minimum temperature). These covariates and 

heir derivations are shown in Table 1 . 

ias correction 

Random forest predictions often have a systematic bias, where 

redictions are too high at very low and too low at very high ob-

erved values ( Zhang and Lu 2012 ; Xu 2013 ). Therefore, prediction

rrors (observed values minus predicted values) tend to be nega- 

ive at low predicted values and positive at high predicted values.

e corrected this bias by employing a method from Xu (2013) and

hang (2012) , which applies a second random forest to the results

f the first random forest, modeling the prediction error of the first

orest as a function of the prediction. This modeled prediction bias

s then subtracted from the first random forest to calculate a bias-

orrected prediction. 
odeled forage availability layers 

Layers of modeled annual forage availability and ANPP were cal- 

ulated in R by associating the random forest model with data

ayers corresponding to all covariates included in the model and 

alculating pixel-by-pixel predictions annually. This required raster 

ayers corresponding to all covariates included in modeling. These 

ere projected to the same coordinate system (EPSG:4326) and re- 

ampled when necessary to 30-m resolution by nearest neighbor 

esampling. 

We calculated layers of modeled forage availability and ANPP 

nnually from 1984 to 2018. To correct for random forest bias, lay-

rs of predicted bias were also calculated and then subtracted from

he modeled layers to calculate bias-corrected results. These re- 

ulting layers were masked where the underlying landscape cor- 

esponded to urban areas, agricultural land, or water. 

ummarizing forage availability of range units 

The Reservation is divided into 148 grazing allotments, referred 

o as range units (see Fig. 1 ). To summarize forage availability and

NPP in each unit, we calculated the mean forage availability and

NPP in each range unit in each year by masking the layers to in-

lude only pixels falling within a single range unit and calculating

he mean and standard deviation of pixel values in each year. This

ummarized results at a more relevant scale and allowed compar- 

son of forage availability in individual units. We also calculated 

ther relevant attributes of forage availability in range units, in- 

luding the median forage availability across years, and the maxi- 

um and minimum deviations from median forage availability. We 

alculated the forage coefficient of variation (CV), the ratio of stan-

ard deviation to mean, to assess the overall interannual variability 

f forage in range units. Lastly, we examined relationships between 

odeled forage availability and modeled ANPP at sampling loca- 

ions and allotments as a whole. 

rends 

We used the time series of mean forage availability in each

ange unit to test for trends in forage availability over time. For

his analysis we used the Mann-Kendall test, a common method to

ssess nonparametric trends ( Mann 1945 ; Kendall 1948 ). We also

sed this test to examine trends in the climatic variables included

n modeling. 

esults 

andom forest model fit and correlates of forage availability 

Individual covariates were only weakly correlated with forage 

vailability at transects (Table S2, available online at …), mean- 
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Figure 2. Random forest model variable importance. Values show the percent in- 

crease in mean squared error among random forest trees without a given variable. 
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ng each covariate alone only partially explained the variance in

orage availability. The highest correlations were found for annual

aximum NDVI ( r 2 = 0.138), NRCS estimated rangeland production

f soil map units ( r 2 = 0.116), and May −June vapor pressure deficit

 r 2 = 0.104). Lesser forage availability was associated with typical

rought conditions—higher vapor pressure deficit, lower precipita-

ion, and higher temperatures. Random forest variable importance

etrics differed slightly from these raw variable correlations and

howed tree cover, maximum NDVI, elevation, and precipitation

ad the greatest explanatory value in predicting forage availability

 Fig. 2 ). 

Though individual covariates were only weakly correlated 

ith forage, the variance explained by the random forest model

as high. After bias correction, r 2 = 0.72, RMSE = 99.11, and

AE = 64.54 among validation points not included in model train-

ng. Fit for the entire dataset including validation and training

oints was higher ( r 2 = 0.86, RMSE = 73.37, MAE = 44.07 after bias

orrection) ( Fig. 3 ). Model predictions had a slight bias before bias

orrection, with prediction errors slightly skewed negative at low

odeled values and positive at high modeled values. Correction re-

uced this systematic bias and improved model performance, re-

ucing RMSE by 27% and MAE by 33% among validation points. 

odeled forage availability 

We used the random forest model to calculate layers of mod-

led forage availability and ANPP annually from 1984 to 2018 at

0-m resolution ( Fig. 4 a). Forage availability was highly variable

patially, ranging from under 100 kg • ha −1 to over 800 kg • ha −1 .

enerally, available forage was higher at higher elevations in the

inta Mountains and Tavaputs Plateau than in the Uinta Basin. 

Time series of the mean forage availability in two range units

ith highly contrasting forage dynamics are shown in Figs. 4 b and

 c. These units are Steer Ridge, ranging from 2 500 to 2 800 m

bove sea level in the Tavaputs Plateau region, and Alger Draw,

rom 1 600 to 1 800 m above sea level in the Uinta Basin region.

egetation composition varies greatly between these units, with

teer Ridge characterized by mountain big sagebrush, aspen, Gam-

el oak, and sedges, and Alger Draw dominated by greasewood,

altbushes, snakeweed, halogeton, and basin big sagebrush. These

nits are outlined in Fig. 4 a. 
In Steer Ridge, median forage availability was 485 kg • ha −1 and

ost years fell within 10% of the median, between 436 and 506

g • ha −1 (see Fig. 4 b). However, forage declined dramatically in a

ew years (20 02, 20 07, and 2014), as low as 314 kg • ha −1 , 35% be-

ow the median. In contrast to the drastic forage declines in some

ears, large increases above the median were not evident. Forage

aried differently within Alger Draw, in the Uinta Basin region (see

ig. 4 c). Forage availability was centered around a median of 162

g • ha −1 in this unit. Most years fell within 17% of the median,

ut forage increased dramatically in some yr (1995 and 1999), up

o 43% above the median. However, large declines below median

onditions were not evident in this unit. 

Figure 5 shows histograms of these deviations from median

onditions colored by geographic region. These histograms demon-

trate that the dynamics mentioned earlier are typical for their re-

pective regions, not unique to these range units. More frequently,

nits in the cooler, moister Uinta Mountains and Tavaputs Plateau

ad large decreases below median ( Fig. 5 a) and small increases

bove median conditions ( Fig. 5 b). Conversely, units in the warmer,

rier Uinta Basin had more frequently small decreases below me-

ian but large increases above median. This matches the relation-

hip shown in the Figure 4 b and 4 c time series results. 

The coefficient of variation (CV) of forage, showing the overall

nterannual variability of available forage, ranged from 6% to 28%

mong all range units, with a mean of 16%. CV was negatively

orrelated with median forage availability, indicating that greater

edian forage availability was associated with lesser interannual

ariability. This relationship was weak but statistically significant

 Fig. 6 ). 

elationship between forage availability and ANPP 

We examined the relationship between forage availability and

NPP using both the plant production data collected at transects

nd the modeled forage and ANPP results. Forage and ANPP are

learly associated at transects, but with considerable variability

 Fig. 7 a), indicating that ANPP alone is not an adequate predictor

f forage availability. Median forage availability and median ANPP

t range units were more closely related ( Fig. 7 b). 

The relationship between modeled forage availability and ANPP 

aried spatially ( Fig. 8 ). Generally, lower-elevation areas in the

inta Basin had lower forage to ANPP ratios, whereas higher el-

vations in the Uinta Mountains and Tavaputs Plateau had higher

orage to ANPP ratios. This means available forage constituted a

reater proportion of total ANPP in the wetter and cooler high-

levation units, indicative of greater forage quality. Forage to ANPP

atios ranged from 0.23 to 0.63 among all range units. 

rends 

We found no range units with statistically significant ( P < 0.05)

rends in forage availability from 1984 −2018, though some ap-

roached significant declines. In 21 of the 148 range units, primar-

ly in the southern Tavaputs Plateau, we found declines approach-

ng significance ( P values from 0.08 −0.25). Figure 9 shows the time

eries of annual forage availability in one range unit where de-

lines approached statistical significance ( P = 0.08). Analyzing cli-

atic trends, we found significant increases in maximum and min-

mum temperature in approximately one-third of range units ( P <

.05) but found no units with significant changes in precipitation

nd only three with significant increases in vapor pressure deficit. 
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Figure 3. Postcorrection modeled forage versus observed forage among validation points (a); and validation and training points (b). Line of best fit shown in solid blue line, 

1:1 relationship shown in dashed line. 
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iscussion 

odeled forage availability 

We found large deviations between median forage availability 

nd extremes in years with minimum and maximum forage avail- 

bility ( Figs. 4 and 5 ). On average across range units, minimum for-

ge was 32% below median forage and up to 58% below median

n some units. Conversely, maximum forage was on average 33%

bove median forage and up to 100% above median. Such variabil-

ty has important management implications—high variability indi- 

ates typical conditions have limited significance and points to a 

reater need for adaptive management responsive to yearly condi- 

ions. We also found a negative relationship between median for- 

ge and coefficient of variation for forage, meaning variability is 

ost significant in units with lesser forage availability ( Fig. 6 ). 

Our results are similar to those from a study that found that

cross publicly owned western US rangelands, ANPP from 1993 to 

017 varied from 23% below to 28% above mean ANPP ( Robinson

t al. 2019 ). However, variability throughout our predominantly 

hrubland study area is lower than what others have found in
rasslands ( Swemmer et al. 2007 ; Wehlage et al. 2016 ). Whereas

he mean CV of forage in Reservation range units was 16%, CV

f ANPP in grasslands may typically be closer to 30% ( Knapp and

mith 2001 ) and even 50% in some shortgrass steppe regions

 Reeves et al. 2020 ). 

Our results showed that higher-elevation areas in the Uinta 

ountains and Tavaputs Plateau experienced large forage availabil- 

ty declines below median conditions in some years but less dra-

atic increases above median (see Fig. 4 b, 5 ). Conversely, units in

he lower-elevation Uinta Basin experienced large spikes in forage 

vailability above the median in some years but lesser declines 

elow median conditions (see Fig. 4 c, 5 ). Grazing management

hould be tailored to these local forage availability dynamics, an- 

icipating the sharp forage availability declines in the Uinta Moun- 

ains and Tavaputs Plateau units during drought and the spikes 

uring favorable conditions in the Uinta Basin. Unsurprisingly, in- 

reased forage availability was correlated with wetter, cooler con- 

itions (see Table S2). 

The relative dominance of perennial and annual vegetation 

n these regions could contribute to the differing forage avail- 

bility dynamics ( Schmidt and Karnieli 20 0 0 ). For example, an-
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Figure 4. Example surface of modeled forage availability in 1984 (a) and time series results of mean forage availability in the Steer Ridge (b) and Alger Draw (c) range units. 

Borders of the Reservation range units are shown in (a), with Steer Ridge and Alger Draw outlined in red in the south and center, respectively. 

Figure 5. Histogram of maximum forage decrease below median forage in range units (a) and maximum forage increase above median forage (b), colored by region. 
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ual exotic cheatgrass ( Bromus tectorum L.) is most prominent in

he Uinta Basin and may capitalize on favorable conditions and

roduce additional biomass more readily than perennial species

 Hardegree et al. 2018 ). In addition, many dominant plants in the

inta Basin perform C 4 photosynthesis, whereas these species are

early absent in the Uinta Mountains and Tavaputs Plateau. C 4 
pecies typically tolerate drought better than C 3 species ( Ward

t al. 1999 ) and may grow more rapidly under more favor-

ble conditions ( Nippert et al. 2007 ), closely matching the dif-

ering forage availability dynamics we observed between these

egions. 
rends 

We found no statistically significant ( P < 0.05) trends in forage

vailability from 1984 to 2018, though we found trends approach-

ng significance in some range units ( Fig. 9 ). Others have also not

ound clear NPP trends in recent history across western US range-

ands ( Robinson et al. 2019 ). Shrublands, particularly in the US

outhwest, may have experienced particularly little NPP change on

he time scales studied ( Hicke et al. 2002 ). Though climate change

s predicted to significantly impact rangeland productivity ( Reeves

t al. 2014 ), these changes may not yet be evident in the time
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Figure 6. Coefficient of variation (CV) of forage availability in range units versus 

median forage availability of range units. Line of best fit shown in blue line. 
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rame we analyzed. We found significant temperature increases in 

ur area but no precipitation trends, which would more drastically 

mpact productivity. 

Livestock and wildlife can also influence productivity ( Menke & 

radford 1992 ; Fleischner 1994 ), but managed livestock grazing in

ur study area has been limited (A. Pingree, personal communi- 

ation, June 21, 2019). Bison populations have grown in the Tava-

uts Plateau ( Bates and Hersey 2016 ), where many range units

ad weak forage availability declines ( P < 0.25), but these fac-

ors are difficult to link. Regardless, trends in forage availability

an continue to be monitored using the model, particularly as cli-

ate, grazing, or wildlife management may change. Though any 

odel may have limited accuracy under novel conditions, random 

orest can successfully be extrapolated beyond training conditions 

 Carrasco et al. 2015 ). However, with continued climate and vege-

ation changes it is likely that the model will be improved by recal-

bration in the future based on updated field sampling. Nonethe- 
igure 7. Forage availability versus annual net primary productivity (ANPP) as measured

alculated from modeled results in each range unit (b). Line of best fit shown in blue. 
ess, this is still vastly more feasible than annually measuring for-

ge over vast and varied landscapes. 

andom forest model fit and correlates of forage availability 

Individual covariates were only weakly associated with for- 

ge availability measured at transects, with the strongest associ- 

tion found for annual maximum NDVI ( r 2 = 0.138). Unsurprisingly,

ower forage availability was associated with higher vapor pres- 

ure deficit, lower precipitation, and higher temperatures, which 

re typical drought conditions that reduce productivity ( Roby et al.

020 ). Fit achieved by the random forest model was generally high,

chieving r 2 = 0.72 among validation points and r 2 = 0.86 for train-

ng and validation points after bias correction (see Fig. 3 ). Since

ias correction improved model fit, we recommend others follow 

andom forest bias correction methods ( Zhang and Lu 2012 ; Xu

013 ) when appropriate. 

Predicting forage availability from annual maximum NDVI is 

learly not appropriate across our study area. Others have found 

tronger correlations between NPP and NDVI (e.g., Schloss et al. 

999 ; Paruelo et al. 20 0 0 ), but NDVI is likely a weaker predictor of

orage availability, especially across complex habitats covering mul- 

iple plant communities and soil types ( Garroutte et al. 2016 ). Our

esults show that NDVI in conjunction with edaphic, topographic, 

nd climatic covariates, which also impact productivity ( Wessels et 

l. 2007 ; Popp et al. 2009 ; Mitchell 2010 ), can predict forage with

cceptable accuracy in a model such as random forest. 

elationship between forage availability and ANPP 

Across the Reservation, there was considerable variation in the 

elationship between forage availability and ANPP at the level of 

ransects ( Fig. 7 a). Since ANPP does not fully explain forage avail-

bility, directly modeling forage with multiple covariates is prefer- 

ble to considering ANPP as a proxy, as is sometimes done ( Paruelo

t al. 20 0 0 ; Mitchell 2010 ). We were able to directly model for-

ge availability because our field data identified vegetation to the 

pecies level, and the palatability of these species to cattle was

reviously determined for the region (see Table S1). 

Forage and ANPP differences were less pronounced when mod- 

led ANPP and forage availability results were aggregated across 

ange units ( Fig. 7 b). However, the ratio between the two did vary
 at individual transects (a) and median forage availability versus median ANPP as 
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Figure 8. Forage availability −to −annual net primary productivity ratio of range 

units, from median modeled results in each range unit. 
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Figure 9. Time series of mean annual forage availability in the Flat Rock range unit, 

with line of best fit in blue. Correlation coefficient and P value are from Mann- 

Kendall regression. 
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None. 
n a somewhat predictable pattern, with higher-elevation units in

he Uinta Mountains and Tavaputs Plateau having a higher for-

ge to ANPP ratio ( Fig. 8 ). These forage-to-ANPP ratios were in

ine with previous literature, which reported a ratio of 0.37 −0.54

n shrublands and higher in sites with more grass and less shrub

over ( Mueggler & Stewart 1981 ; Hirata et al. 2005 ). In our study

rea, lower elevations are dominated by saltbush and sagebrush

hrublands, while higher elevations include more meadow-like 

ites with less shrub cover and therefore higher forage to ANPP

atios. 

mplications 

Average forage availability has limited value in grazing

anagement—not planning for declines in drought years could

romote overgrazing ( Menke and Bradford 1992 ), as potentially

ess than half of median forage is available in these years. On the

ther hand, increasing stocking will allow the utilization of the

dditional available forage in favorable years. We found differing

orage availability dynamics between the Uinta Basin region and

he Uinta Mountains and Tavaputs Plateau regions, with the for-

er more likely to experience forage availability spikes and the

atter more susceptible to large declines. This spatial variation sug-

ests management should plan for these local conditions, signif-

cantly reducing stocking during drought in the Uinta Mountains

nd Tavaputs Plateau and increasing stocking in favorable years in

he Uinta Basin based on this known variability. Since large for-

ge spikes in the Uinta Basin may represent an increase in cheat-

rass productivity, increasing stocking in this area as a targeted-

razing method could also fulfill management goals by controlling

heatgrass populations and wildfire risk ( Diamond et al. 2009 ). Ad-
ancements in long lead forecasting (e.g., National Weather Ser-

ice Climate Prediction Center; https://www.cpc.ncep.noaa.gov/ ) or 

onsideration of pregrowing season conditions ( Raynor et al. 2020 )

ould improve this fine-tuning of stocking rates year to year. 

Directly modeling forage provided more reliable estimates of

patial and temporal patterns of forage availability than treating

NPP as a proxy for forage availability. However, we know of few

thers who have directly modeled available forage rather than

NPP (though see Hirata et al. 2005 and Smolko et al. 2018 ). Do-

ng so should improve forage availability and stocking rate deter-

inations by addressing variations in productivity and vegetation

alatability throughout an area. Our modeling method was sim-

le and incorporated only freely available data in conjunction with

eld observations, so it could be easily replicated at low cost wher-

ver training data is available. Such methods can help minimize

he expenditure of time and money required for sampling by mon-

toring change remotely. 

onclusion 

Effective, economical inventory and monitoring is a basic chal-

enge in rangeland environments. Due to high spatiotemporal vari-

bility and large spatial scales, it remains difficult to adequately

ample and summarize indicators essential for informed manage-

ent, such as forage availability. We used a random forest model

o predict annual forage availability across the Uintah and Ouray

eservation and surroundings, trained on field-collected plant pro-

uction data and freely available climatic and biophysical data. Pro-

ucing results from 1984 to 2018, this model greatly enhances

tandard rangeland vegetation inventory in the area by explic-

tly addressing variability in forage availability. Understanding this

ariability and how it differs regionally may help improve range-

and management by informing how to adjust stocking rates in

typical years and avoid overgrazing or insufficient forage availabil-

ty in drought years. 
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