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We study a two-band dispersive Sachdev-Ye-Kitaev (SYK) model in 1 4+ 1 dimension. We suggest a model
that describes a semimetal with quadratic dispersion at half filling. We compute the Green’s function at the
saddle point using a combination of analytical and numerical methods. Employing a scaling symmetry of
the Schwinger-Dyson equations that becomes transparent in the strongly dispersive limit, we show that the
exact solution of the problem yields a distinct type of non-Fermi liquid with sublinear o o< T%*? temperature
dependence of the resistivity. A scaling analysis indicates that this state corresponds to the fixed point of the

dispersive SYK model for a quadratic band touching semimetal.
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I. INTRODUCTION

Sachdev-Ye-Kitaev (SYK,) models describe strongly in-
teracting fermions with infinite range, g-body, random all-to-
all interactions. The 0 + 1 dimensional SYK,, dot model [1,2]
exhibits an approximate conformal symmetry in the infrared,
is exactly solvable in the limit of a large number of fermion
flavors, saturates the bound on quantum chaos, and is dual
to gravitational theories in 1 4+ 1 dimensions [3-5]. Useful
connections to the black hole information problem have also
been established [6].

In these models, approximate conformal symmetry in
the strong-coupling/low-frequency regime leads to power-
law behavior of correlation functions. In the SYK, model,
the zero-temperature two-point correlation function decays
as G(w) ~ 1//w, with @ the frequency. Finite-temperature
Green’s functions can be then obtained by appealing to con-
formal symmetry [1]. In dispersive versions of the SYK
model, they result in the linear temperature dependence of the
dc resistivity, p o T, a characteristic feature of strange metal
phases. It was originally conjectured that the linear scaling
of the scattering rate in the strange metal phase was due
to hyperscaling in the proximity of a quantum critical point
buried inside the superconducting phase. Recent momentum-
resolved electron-energy spectroscopy experiments in the
cuprates revealed the emergence of a mysterious momentum-
independent energy scale nearly one order of magnitude larger
than the temperature range of the quantum critical fan [7,8],
at odds with conventional quantum critical theories. One may
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speculate [9-13] that the origin of the strange metal phase
could be related to aspects of the physics of incoherent metals.

Various lattice generalizations [13—18] of the dot model
comprising connected SYK dots have been recently proposed
in the regime where the SYK coupling is the dominant en-
ergy scale of the problem. The general idea behind many
of those extensions is to build on the solution of the dot
model including lattice effects perturbatively. Weakly dis-
persive versions of the SYK model were used to describe
incoherent or “Planckian” metals which lack well-defined
quasiparticles [12,19,20]. These incoherent metals typically
have a crossover between the incoherent high-temperature
regime and a low-temperature Fermi liquid behavior [15,16].
The crossover energy scale between the two regimes is set by
t?/J, with ¢ proportional to the band width and J >>> ¢ the SYK
coupling. In the low-temperature regime, the coherence of the
quasiparticles is restored by the presence of a large Fermi
surface. Semimetals, on the other hand, abridge a large class
of gapless multiband systems that lack a Fermi surface. One
could ask what is the nature of the normal state in a disordered
semimetal with random local couplings.

Motivated by these ideas, we study a one-dimensional (1D)
ladder with local random couplings at every unit cell, as
shown in Fig. 1. The hopping amplitudes between lattice sites
is finely tuned such that this system describes a half-filled
semimetal with quadratic dispersion and local SYK couplings.
The weakly dispersive limit 12/J <« T < J has approximate
conformal invariance and recovers the usual SYK transport
behavior, as expected. In the strongly dispersive regime, T <
t?/J, the scaling symmetry of the problem becomes transpar-
ent, albeit the absence of conformal symmetry. In this limit,
the incoherent regime extends down to zero frequency and
temperature, unlike in the more conventional metallic case.
We show that the resistivity of this model has a sublinear
scaling with temperature,
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FIG. 1. Dispersive SYK ladder model: The unit cell contains two
sites, one for each chain (color). Each color site hosts N complex
fermions, which interact locally through random couplings. We as-
sume that hopping is only allowed between different color sites, with
t; the NN hopping and 7, the NNN one. The two-band quadratic
dispersion in Eq. (3) can be obtained by tuning #;, = —2t, = ¢, with
m = 2/(ta*) the effective mass of the fermions, where a is the lattice
constant.

whereas the Lorentz ratio L = k /(o T) = 3.2 is fairly close
to the value expected for a Fermi liquid, L = m2/3. We
find through a scaling argument that when the system starts
from the SYK fixed point at high temperature, it flows to-
ward a distinct non-Fermi liquid (NFL) fixed point at zero
temperature. At intermediate energy scales, away from the
low-temperature fixed point, the system crosses over from a
“Planckian” semimetal to an incoherent NFL with sublinear
temperature scaling of the resistivity.

This paper is organized in the following way: In Sec. I we
introduce the lattice model of a 1D ladder of SYK quantum
dots that behaves as a 1D semimetal with quadratic dispersion.
In Sec. III we address the Green’s function of this system at
zero and finite temperature. In the strongly dispersive regime
(T < t?/J), where conformal symmetry is not present, we
numerically extract the finite-temperature scaling functions of
the Green’s function and of the self-energy. In Sec. IV, we
discuss a scaling analysis of the problem and the crossover
between the high-temperature incoherent Planckian regime
and the low-temperature NFL one. In Sec. V we address the
temperature scaling of the dc resistivity of the model. Finally,
in Sec. VI we present our conclusions.

II. MODEL

We consider N flavors of complex fermions hopping on an
1D lattice. Each lattice site hosts an SYK dot with random,
site-dependent interactions J;;, between them. The indexes
i,j,k,£=1,...,N label the N flavors/colors per site. We
start from a 1D ladder shown in Fig. 1, with two sites per
unit cell, shown in blue and red. Allowing hopping processes
between blue and red sites only, the Hamiltonian of the kinetic
term can be written as

Ao = [ 24000 (i, @

where
f(k) =1 + 2t cos(ka), 3

with #; and #, the hopping between nearest neighbors (NN) and
second nearest neighbors (NNN) respectively among differ-
ent color sites, and [, = a(27)™! f_AA dk with A = 7 /a the

A o2

2m

=

FIG. 2. Finely tuned energy dispersion for the ladder model illus-
trated in Fig. 1. The half-filled band describes a 1D semimetal with
parabolic band touching at k = 0.

ultraviolet cutoff; v, is a two-component spinor in the site
basis of the unit cell v = a, b and o, is the real off-diagonal
Pauli matrix in that basis. Fine-tuning the hopping constants
tot; = —2t, =t, then

= ~ ; x vy’ Vs 4
Ho ,/;;;mek’“”(o) Vi 4

in the continuum limit (k <« 1/a), with m~' =ta®/2. The
dispersion of this model has two quadratic bands touching at a
single point k = 0, as shown in Fig. 2. At half filling, the band
lacks a Fermi momentum and behaves as a 1D semimetal. In
the following, we assume the band to be half filled and set
a— 1.

These fermions interact via a local, instantaneous two-body
SYK interaction,

1

Hsyk =

> / T W ek e, (5)

3
)2vv’,ijki x

with random, color site-independent matrix elements J;‘j .o that
are properly antisymmetrized with J7,, = —J3, = =/
As in the other SYK models, we take these to be com-
plex Gaussian distributed coupling with a zero mean value
((Jl?‘jkl)) = 0 and variance <<|ijke|2>> =J?/8.

The standard method to study the current problem is the
imaginary time path integral formalism, where the partition
function is given by Z = [[DyDyle™S, where S = Sy +
Ssyk, with

] 52
80 - Zw(,v(ryx)[af - (GX)UV’%}WLU’(‘LX)' (6)

X g

We define [ = foﬁ dt, with B =1/T, and Ssykx the cor-
responding two-body action of (5) with with same time
Grassmann fields v/ (t, x) and ¥ (7, x). In order to deal with
the disorder, we use the replica trick and average over disorder
realizations. This procedure amounts to an annealed approxi-
mation [21]. Using

(<€7 ke JijitAijie >) — ejz Dk AijreAijre @)
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and defining the Green’s function

PN

1 & _
Go(T,20) = =2 D (T [¥0.6(0, 0w o (x, D), ®)
=1

the integration over the fermionic fields results in the saddle-point action,

Seir = — logdet{8(t — )8(x — xX)[3; + 0:(id)* 1+ S(x —x', T — 7))}

J? . . N N
Y [ trG2(0, T — tHrG30, 7' — 1) — / / tr[X(x —x, 1 — )G —x, ' — 1), 9)

where $(x —x', T — ') is the self-energy. The action can be
minimized exactly in G and ¥ in the large-N limit. Following
the minimization, the solutions form a set of Schwinger-
Dyson equations

a k? N
G (iwy, k) = iw, — 2-0x = Biwn, k), (10)
m

and
. J? . . .
(T, x) = —ES(x)G(—T, Otr[G(z, 0)G(7,0)], (A1)

The self-energy S (iwp, k) = (iw,) is therefore momentum
independent, reflecting the x dependence of the couplings
Jiike- The disorder averaged SYK term is uncorrelated
and purely local. We denote the Fourier transform of the
momentum-independent self-energy as ¥ (7). We also denote

¢(t)=G6(z,0) = f(;(r, k) (12)
k

for the momentum-integrated Green’s function.

III. GREEN’S FUNCTION

If one takes the ansatz for the Green’s function, G(r) =
G(t)oy, then the self-energy then has to be of the form
f)(r) = X(t)oy. As in usual SYK models, we make the usual
infrared assumption iw, < X(iw,). The Schwinger Dyson
equations (10) and (11) can be written as

1

Gliwn) = — [ ———
k m + 2:(la)n)

= V/2m tan-‘[ A } (13)
7/Z(iw) V2mZ(iw) |
and
(1) = —J*G*(1)G(-71), (14)

There are two limits of particular interest. As it will be clear
in the next section, one is the intermediate frequency limit
t?/] < w < J, where the argument of the tan~'(y) function,

A
V2mJE(w)
is small. This regime corresponds to the weakly dispersive
limit, which recovers the physics of the 0+ 1 dimensional
SYK dot. The other is the strongly dispersive regime, v <

t?/J, where y > 1. We show that this limit is exactly solvable
and leads to a different NFL regime.

y (15)

(
A. Weakly dispersive limit

In this weakly dispersive limit (y < 1), the SYK physics
dominates and typically one obtains a fully incoherent system
with a linear in 7 dc resistivity. In that regime, Eq. (13)
becomes

1A
Glion) ™ = o)’

(16)

The Schwinger-Dyson equations (14) and (16) have the
same form as in the SYK dot model [1]. They have
conformal/reparametrization invariance, indicating a power-
law solution at 7 = 0.

At zero temperature, Eqgs. (14) and (16) can be solved
by the ansatz G(iw) = cle_"%(z’a))_% for the time-ordered
Green’s function [1]. Using this result in Eq. (14) and taking
a Fourier transform one finds

2.3

J i
S(iw) = —— Lt Viw, (17)
b4
where the constant ¢; = Ai /~/7. The zero-temperature dis-

persive Green’s function is

1 _k2/2m+
S(iw) T(iw)*

Gliw, k) = (18)

This solution introduces a perturbative correction to the SYK
Green’s function, in the same spirit as in the metallic case [16].
To get the finite-temperature solutions, one can then use

the conformal map, t — f(r) = tan % Applying this to the
Fourier transform of G(iw) gives

1
g(f)=5gn(f)cl‘/28m/—ﬁﬁr/ﬁ- (19)

The finite-temperature self-energy X(iw,) can then be ob-
tained from a Fourier transform of (14),

i (2”)3/2\5”% + %)F( - %)’
VBal (3 +%2)

with @, a Matsubara frequency. The dispersive Green’s func-
tion at finite temperature follows from Eq. (16) and (20),

S(iw,) = (20)

1 K2 /2m

Glion ) = S0 = S2Gan)

+.... 1)
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FIG. 3. Scaling functions for the Green’s function (F;) and the self-energy (Fyx) versus Matsubara frequency w, normalized by temperature
T. Top row: Numerical solution of Eq. (14) and (16) for F; and Fy in the SYK limit for various temperatures, namely 7 = 10, 20, and 30
(green, blue, and red lines, respectively). 8 = T~'and J = 100 are set in units of 2m with @ — 1 (A = 7). In this case, the Green’s function
and self-energy are purely imaginary and admit an analytical solution [see Eq. (17)]. Bottom row: Numerical solution of Egs. (14) and (25),
in the strongly dispersive regime. The real and imaginary parts of the scaling functions were computed at various temperatures, namely
B =1/T =256, 64, and 4 (green, blue, and red lines, respectively). All curves nearly coincide at low frequencies, where the scaling functions

are expected to be temperature independent.

It is well known that the Greens function and self-energies
in this regime have some convenient scaling properties. Equa-
tions (14) and (16) admit solutions of the form:

Gliw,) = (JT)—%A—%FG(%), (22)
S(iw,) = (JT) AT Fx (‘%) (23)

where Fg y are scaling functions which are independent of all
parameters. The scaling functions are plotted in the top row
panels of Fig. 3. They were obtained by numerically solving
Eq. (14) and (16) for various temperatures and then stripping
away the power-law dependence in T and J from the above
equations. The results show good agreement with the scaling
arguments.

B. Strongly dispersive regime
Next we consider the regime where y > 1. As we will
show below, this inequality corresponds to the regime where
2

—, 24
w<<J (24)

and leads a different kind of NFL behavior compared to
weakly dispersive SYK models.

In the y > 1 regime, the Schwinger-Dyson equation (13)
reads

N

Equations (14) and (25) admit a power-law solution at 7 = 0,
given by the ansatz

1
Q(T)=CW, (26)

where 2A = 3/5, as found in a related model [17], with

-1 -2
z[ NORAG)
20 sin? (31—’5) sin (91—’6

That solution corresponds to a self-energy

)} ~ 0.40. 27)

. gt 3 6A—1
Y(iw) = C'J5m5 |w) > |wl, (28)
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from Eq. (14). Explicit verification of this solution follows by
Fourier transforming (25),

Gliw) = 2Csinw A T(1 — 2A) " im* |w[*27, (29)

and calculating X(iw) from (14). The zero-temperature
Green’s function is hence

. —0o,
Gliw, k) = i , 30
00) = (30)
where
' = —2¢%sin ( Z\r(-2) ~ 022 31)
N 10 5 o

The Green’s function above describes a distinct type of in-
coherent semimetal and is valid all the way down to zero
frequency. It contrasts with the result in the coherent J — 0
limit of the ladder problem model (J/|w| < 1), where the
Green’s function has a pole with well-defined quasiparticles.
One needs to analytically continue the above solution and im-
pose physical restrictions to obtain the exact Green’s function.
Note that the linear in T resistivity in SYK models stems
from A = }1. In strongly dispersive semimetals, with y > 1,
finite-temperature solutions cannot be obtained using a con-
formal map on the T = 0 solution because (14) and (25) do
not have the requisite conformal /reparametrization symmetry.
Finite-temperature solutions to these equations then have to be
obtained numerically. However, we still have a scaling sym-
metry which dictates a certain scaling form for the solutions.
Rewriting (25) in T space,

G(1)G(r —m)E(r — 1)) = %8&)- (32)

It is easy to see that these equations are invariant under
3
G—bsg,

Under this scaling, T — T /b leaving Tt invariant. With this
information, one can see that (14) and (25) admit a solution of
the form

T — br, NS ) (33)

G(t) =msJ 3T G(T1) (34)
and
X(t) = mSJSTES(T 7). (35)
Equivalently in Fourier space, we find
. 1 _2 Wy
Gliwy) = m*(JT) sFG(T), (36)
(i) = m* (JT)* Fy (= (37)
=i (%)

where Fg y are scaling functions that are independent of
temperature 7' and the coupling J, with w, a Matsubara fre-
quency. The dispersive finite-temperature Green’s function of
the problem in this regime is

2
G Niwn, k) = —B—m + mi(JT)%‘FE(wn/T)]ax. (38)

As shown in the next section, this will suffice to determine
the temperature dependence of various transport coefficients.
Strictly speaking, the scaling symmetry is only present in the

AT

SYK 12
p~T 7<<T<<J

\ L

,

2

NFL2 ) T < =
p~Ts /

N

FIG. 4. Different temperature regimes in the scaling. At temper-
ature T > T, =t*/J, the system 1is close to the 0 + 1-dimensional
SYK fixed point and shows Planckian behavior, with linear depen-
dence of the resistivity in temperature. Below T, = ¢>/J the system
crosses over toward a distinct type of incoherent NFL, with p ~ TS,

infrared limit of the theory. This means that the exact numer-
ical solutions may violate these scaling forms at very high
frequencies. The real and imaginary parts of the numerically
obtained scaling functions F and Fy, are plotted in the bottom
row of Fig. 3. The plots show good agreement with Eq. (37)
even outside the infrared limit.

IV. SCALING ANALYSIS

After averaging over the disorder, which is spatially uncor-
related, the SYK term in the action has eight fermionic fields,
which we symbolically write as

Ssvk = I / [ (1, )% (1, 0PI (22 Y (22, )T

(39
Rescaling time as t’ = 7/s and imposing the SYK coupling
J to be marginal, then the fields rescale as ¢ = /s%. As
pointed out before [15,16], analyzing the problem in the vicin-
ity of the fixed point of the 0 4+ 1-dimensional SYK model
(t = 0), the kinetic term is a relevant perturbation and the
hopping parameter grows as t' = t./s. If one starts from tem-
perature T in the weakly dispersive regime ¢ < J, then the
hopping will grow until ¢'(s,) ~ J for a rescaling parameter
no larger than s, = J/T. Hence, the scaling stops at T = ¢2/J.
The validity of the incoherent “Planckian™ regime requires
that

T>>T,=1%/], (40)

as in the case of incoherent metals with a finite Fermi surface
[16].

If one continues to lower the temperature further below
T, then we claim that the system crosses over to a different
type of incoherent NFL regime with sublinear temperature
scaling of the resistivity, as illustrated in Fig. 4. From the
perspective of the Schwinger-Dyson equations (13) and (14),
the parameter that controls the crossover between the weakly
and the strongly dispersive regimes is

t
y(T) ~ ,/—E(T). 41)
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(a) (b) (c)

FIG. 5. Diagrams that contribute to the current-current corre-
lation function to leading order in N (see text). Red rectangles
represent the current vertex. Black lines represent the fermion Green’
s function and dotted blue line represents disorder average. Since
the current vertex is an odd function of momenta, diagrams (b) and
(c) and so on vanish, leaving (a) as the sole contribution in the
large-N limit.

In the strongly dispersive regime y(T') > 1, setting m ~ ¢!,
one can write the solution of the finite-temperature self-energy
(37) as

S(T) x 1 3UJT)3 <. (42)

This inequality leads to T < T, = t*/J. In the same way, in
the weakly dispersive regime [y(T) < 1],

S(T) x VIT > t, (43)

as seen from Eq. (20), implying that T > T,.

We note that in the case of metals, the T < T™* regime was
found to realize a Fermi liquid. In the case of a 1D half-filled
semimetal with parabolic touching, we showed that the low-
temperature regime does not lead to a semimetal but to another
type of incoherent NFL, whose transport properties will be
addressed in the next section.

V. TRANSPORT

In this section, we look at the electric and thermal con-
ductivities using the above finite-temperature solutions. These
can be computed using the Kubo formula. The charge current
operator for this model is

A e +
o= o /k Zijkwk,-axwk,-. (44)

The zero-frequency conductivity is given by

ImK™ (w)
—

oge = lim,, o (45)
where K™ (w) is the retarded current-current correlation
function, K(7) = (T[].(0, x)j.(t, X)), given by the series of
diagrams in Fig. 5. Each diagram displayed in that figure is
of order N. For instance, in Fig. 5(b) each SYK vertex con-
tributes a factor of N ’%, while the three independent flavor
sums contribute N*, making it a total of order N. Diagrams in
Figs. 5(b) and 5(c) vanish because the current vertex is an odd
function of momenta. This can be readily seen by noticing
that because of the disorder averaging, the summation over
momenta through each current vertex can be performed inde-
pendently, resulting in a zero contribution of those diagrams
[22]. The remaining diagram is shown in Fig. 5(a). It can be

written in terms of the Green’s functions derived before as

2
K(ion) = (zsze)zT tr; fk K2 G(iva, k)G iV + iy, ).

(46)
The transport properties of the weakly dispersive regime re-
covers the expected behavior of incoherent metals found in
Refs. [13,16], o4. &< 1/T, and we will focus instead in the
strongly dispersive case.

Itis usually challenging to sum over Matsubara frequencies
in the absence of poles in the Green’s functions. One can
circumvent that difficulty by using the spectral representation
of the Green’s function

R Ak, o
Gliwn k) = / Ak @) 7
o Wy — @
with
A 1 1
Ak, w) = —odm7———— (48)
Y4 2 T X(@+1i04)
the spectral function. One arrives at
NeVam [ [Im=(2)] / K2 )
Ode = 75 2 (o > NS
a¢T » cosh (ZT) k %"‘Z(ﬁﬂ

Equivalently, casting Eq. (49) in terms of the scaling functions
(37), the dc conductivity is
Neé?

(T) = —1, 50
04.(T) \/%(JT)il (50)

where

[} 2 %) 2
5 - iz / iz [Iszz(Z)] / dy y N
w2 Jo " cosh? () Joo T2+ Fr2)l
is a dimensionless integral and Fx(z) the analytically contin-
ued scaling function of the self-energy.

A signature property of Fermi liquids is captured by the
Lorentz ratio, L = « /(o T), which is the ratio of thermal (k)
and electric (o) conductivities. In the particle-hole symmetric
model, the thermoelectric contribution to the thermal conduc-
tivity, which is proportional to T /o, vanishes by symmetry
and can be ignored in the computation of « [13,19]. The
energy current, whose correlation function determines the re-
maining piece of the thermal conductivity, is given by

N k.
Y i .
JE = /k Ei m Wk,,»ffxar Wk,t- (52)

In the present particle-hole symmetric case, the thermal con-
ductivity is then given by the same diagrams as in the case of
o . Following the same prescription as above,

K (w)
T

; (53)

Kk = lim, g
where KCg(t) = (T[J£(0,x)jg (T, x)) is a thermal current-
current correlation function. This leads to

Neé?

B WV 2mJ 3

K T3, (54)
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where

1 o) Im[ F: 2 00 2
L= _2/ dz 2 i(zz)] / dy——2——. (55
72 Jo cosh’(5) Jo "~ y2+Fr(2)l

In order to calculate integrals /; and I, one needs to
perform a numerical analytical continuation of the scaling
functions obtained in Sec. III. In the spirit of SYK models, we
compute these integrals assuming the scaling form to be valid
over the entire range of frequencies. Numerical analytical con-
tinuation is a challenging problem. The numerical integrals
were done with the Pade approximation method in the TRIQS
library [23,24].

We numerically find that slight variations in the Matsub-
ara scaling forms can significantly affect the integrals /; and
b, but their ratio is insensitive to numerical issues with the
analytical continuation process in the regime of interest. The
Lorentz ratio is

I
- _2x3, (56)
To Il

which is rather close to the Fermi liquid value of Ly, = 7% /3.

VI. DISCUSSION

In this work, we studied a simple semimetallic version of
a dispersive SYK model in one dimension. Contrary to most
studies of dispersive models in the literature [13—17], we focus
on the strongly dispersive limit, which corresponds to the sta-
ble fixed point of this problem from the scaling point of view.
In this limit, we find that the Schwinger-Dyson equations do
not admit an exact analytic finite-temperature solution even in
the infrared approximation, where it is assumed that X(iw) >
iw. In particular, the model does not exhibit conformal sym-
metry, which makes it difficult to solve the Schwinger-Dyson
equations analytically. We solve those equations exactly ex-
ploiting the scaling symmetry of the model, combined with
numerical calculations. We find that the Greens function and
self-energy scale with temperature with a power law of T3
and T'5, respectively.

Using this solution to study transport properties, we show
that dc resistivity scales with a sublinear power-law depen-

dence on temperature, p ~ T3. We compute the Lorentz ratio
L = « /(o T) with the analytically continued scaling functions
and find that L ~ 3.2, rather close to that of Fermi liquids.
The scaling analysis of this problem indicates that if one
starts in the high-temperature SYK fixed point of the problem,
where 12/J <« T <« J, then the hopping parameter will grow
as one scales the temperature down, while the SYK coupling
is marginal. The scaling flows toward the strongly dispersive
regime, where the Schwinger-Dyson equations indicate the
presence of a distinct incoherent NFL regime at T < t2/J.
That contrasts with the behavior of incoherent metals, which
have a finite Fermi surface. In the latter, the system flows
toward a Fermi liquid at low temperature [16].

Those results should be compared with the several lat-
tice models of SYK dots that have been studied recently
[13,16,17]. References [13,16] studied a lattice of coupled
dots in the limit where the SYK coupling J is the highest
energy scale. In those cases, the physics of a single dot dom-
inates, with the effects of hopping being perturbative. The
¥ « /o scaling of the self-energy in this limit ultimately
leads to a linear in T dc resistivity.

Among the dispersive SYK models, the one studied in
Ref. [17] is the closest to ours. They examined a two-band
model for arbitrary dimension and dispersion, with a color
site-dependent SYK interaction, which forces the saddle-point
solution of the Green’s function to be diagonal but still color
site dependent. Their solution for the self-energy is purely
imaginary and color site independent, differently from our re-
sults. That leads to an approximate conformal symmetry in the
problem in the NFL regime, in contrast with our work, where
we find that conformal symmetry is absent. In this paper, we
focused in the crossover between the regime dominated by the
0 + 1-dimensional SYK fixed point and the low-temperature
NFL regime for a 1D semimetal with parabolic band touching,
and addressed the transport properties of this novel state.
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