LUSIN-TYPE PROPERTIES OF CONVEX FUNCTIONS AND CONVEX BODIES

DANIEL AZAGRA AND PIOTR HAJLASZ

ABSTRACT. We prove that if f : R” — R is convex and A C R" has finite measure,
then for any € > 0 there is a convex function ¢ : R® — R of class C1! such that
Lr{x € A: f(z) # g(x)}) < e. As an application we deduce that if W C R” is a
compact convex body then, for every € > 0, there exists a convex body W, of class C1:!
such that H"~1 (OW \ OW.) < e. We also show that if f : R® — R is a convex function
and f is not of class C L1 then for any € > 0 there is a convex function g : R™ — R of class

loc?

CLhl such that £7({z € R" : f(z) # g(x)}) < ¢ if and only if f is essentially coercive,

loc
meaning that lim,|_ f(z) — £(x) = oo for some linear function £. A consequence of

this result is that, if S is the boundary of some convex set with nonempty interior (not
necessarily bounded) in R™ and S does not contain any line, then for every & > 0 there
exists a convex hypersurface S. of class C\o! such that H"~1(S\ S.) < e.

loc

1. INTRODUCTION AND MAIN RESULTS

Let A and € be two classes of real valued functions defined on R™ (or on an open subset
of R™). If for a given f € A and every £ > 0 we can find a function g € € such that

(1.1) L ({z: flz) # g(2)}) <e,
we say that f has the Lusin property of class C. Here, and in what follows £" denotes the

Lebesgue measure in R". If every function f € A satisfies this property, we also say that
A has the Lusin property of class €.

This terminology comes from the well known theorem of Lusin which asserts that for
every Lebesgue measurable function f : R®™ — R and every € > 0 there exists a continuous
function g : R" — R such that £" ({z : f(z) # g(z)}) < . That is, measurable functions
have the Lusin property of class C(R™).

Several authors have shown that one can take g of class C* if f has some weaker regular-
ity properties of order k. For instance, Federer [19, p. 442] showed that almost everywhere
differentiable functions (and in particular locally Lipschitz functions) have the Lusin prop-
erty of class C'. Whitney [30] improved this result by showing that a function f : R® — R
has approximate partial derivatives of first order a.e. if and only if f has the Lusin property
of class C'; see also [I], 26] for related results.
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In [15, Theorem 13] Calderén and Zygmund proved analogous results for A = WHP(R")
(the class of Sobolev functions) and € = C*(R™). Other authors, including Liu [24], Baghy,
Michael and Ziemer [10], 27, B31], Bojarski, Hajtasz and Strzelecki [12, [13], and Bourgain,
Korobkov and Kristensen [14] improved Calderén and Zygmund’s result in several direc-
tions, by obtaining additional estimates for f — ¢ in the Sobolev norms, as well as the
Bessel capacities or the Hausdorff contents of the exceptional sets where f # ¢g. In [14]
some Lusin properties of the class BVj(R") (of integrable functions whose distributional
derivatives of order up to k are Radon measures) are also established. On the other hand,
generalizing Whitney’s result [30] to higher orders of differentiability, Isakov [22] and Liu
and Tai [25] independently established that a function f : R™ — R has the Lusin property
of class CF if and only if f is approximately differentiable of order k almost everywhere
(and if and only if f has an approximate (k — 1)-Taylor polynomial at almost every point).
See also [20], 30] for related results.

The Whitney extension technique [29], or other related techniques, such as the Whitney
smoothing [13], play a key role in the proofs of all of these results.

For the special class of conver functions f : R™ — R, Alberti, Imomkulov [2], 21] and
Evans and Gangbo [17, Proposition A.1] showed that every convex function has the Lusin
property of class C?; however, given a convex function f, the function g € C? satisfying
that they obtained is not necessarily convex. Indeed, their arguments were based on
the Whitney extension theorem and Whitney’s construction does not preserve convexity.
Thus it is natural to consider the following problems.

Denote by CP1(R™), Co(R™) and Ceony(R™) respectively the class of real valued C*
functions with Lipschitz continuous gradient, the class of C'! functions with locally Lipschitz

continuous gradient and the class of convex functions, and define
CLL (R™) = CYHR™) N Ceony (R™);

conv

Cl,lloc(Rn) — 0171<Rn) N Cconv(Rn);

conv loc

C2 (R™) = C?(R"™) N Cony (R™).

Problem 1.1. Given € € {CL! (R"), CLllc(R™) C2 (R™)}, does Coony(R™) have the

conv conv conv
Lusin property of class C7

Example[I.§and Proposition show that the answer to this question is in the negative.
Thus we ask:

Problem 1.2. For every such €, can we characterize the subclass of Ceopny (R™) which has
the Lusin property of class C?7

In Theorem we provide a complete answer to this question when € = Cllloc(Rm).

conv

Problem 1.3. What happens if we replace R™ with an open bounded convex subset €2 of
R"?

In Corollary [1.6| we show that the answer is in the positive when € = CL! (Q) (and
hence when € = C511°(Q)). See also Theorem [1.4]

conv
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Our proofs are based on some results and techniques concerning CL! (R"™) and CL1lo¢(R™)
extensions of 1-jets recently obtained in [6l 7, 8, @]. Problems and remain open for
€ = C? (R"), and they look rather hard in the absence of a characterization of the 2-jets

conv

(defined on an arbitrary subset of R") which admit C? _(R") extensions.

As an application of our results, we will show that all boundaries of compact convex
bodies in R™ have the Lusin property of class CL! = meaning that they are equal, up to

conv?’

subsets of arbitrarily small measures, to boundaries of convex bodies of class C1!; see

Corollary below.

Our first main result is as follows.

Theorem 1.4. Let f : R — R be a convex function. For every measurable subset A of finite

Lebesgue measure in R™, and for every € > 0, there exists a conver function g : R" — R
of class C1' such that

(1.2) L ({r e A: f(z) #g(@))) <.

Note that if f = ¢ in a measurable set E, then it is easy to show that Vf = Vg a.e. in
E, so condition (|1.2]) is equivalent to a seemingly stronger one:

£ ({r € A: f(z) # g(x) or V() # Vg()}) < e

which says that outside a set of measure less than ¢, we have f = g and Vf = Vg.
As a corollary we obtain a new proof of a result mentioned above.

Corollary 1.5. If f : R" — R is convex, then for any ¢ > 0 there is g € C*(R") such that
Lr({z: flz) #g(2)}) <e.

We do not claim however, that g is convex.

Corollary 1.6. Let Q) be a bounded, open and convex subset of R™. Then for every convex
function f: Q0 — R and every ¢ > 0 there exists a convex function g : R® — R of class
CH such that L ({z € Q: f(z) # g(x)}) <e.

Recall that a subset W of R™ is a compact convex body if W is compact and convex,
with nonempty interior. We will say that a compact convex body W is of class C*!
provided that its boundary OW is a C* hypersurface of R” such that the outer unit normal
N : OW — S ! is a Lipschitz mapping. If W is a compact convex body, this is equivalent
to saying that the Minkowski functional of W is of class C*! on R™ \ B(0,¢) for some
e > 0, or that W can be locally parameterized as a graph (x1,...,Z,—1,9(Z1, ..., Ty_1))

(coordinates taken with respect to an appropriate permutation of the canonical basis of
R"), where g is of class C11.

A consequence of Theorem [1.4]is that the boundary of every compact convex body in R"
is of class C1! up to a subset of arbitrarily small (n — 1)-dimensional Hausdorff measure.

Corollary 1.7. Let W be a compact convex body in R™. Then for every e > 0 there exists
a compact convex body W. of class C*' such that H"~' (OW \ OW.) < e.
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The following examples show that the assumption £"(A) < oo in Theorem cannot
be dispensed with (unless other hypotheses on the global behaviour and the growth of f
are put in their place).

Example 1.8. Let f : R — R be defined by f(x) = x*. Then there is no function g € CH(R)
such that L'({z € R: f(z) # g(x)}) < 00

Indeed, the second derivative of f is bounded by a constant only on a set of finite
measure.

Example 1.9. Let f : R? — R be defined by f(x,y) = |x|. Then f is the only convex
function g : R* — R such that L ({z € R : f(z) # g(x)}) < oc.

More generally we have the following.

Proposition 1.10. Let P : R"™ — X be the orthogonal projection onto a linear subspace
X of R™ of dimension k, with 1 < k < n—1, let ¢c: X — R be a conver function,
and define f(x) = ¢(P(x )) Then f is the only convez function g : R" — R such that

Lr({z e R™: f(z) # g(x)}) <

Proof. Let g : R™ — R be a convex function such that £™"(A) < oo, where

A= {z €R": f(x) # g(@)}.
Let X+ stand for the orthogonal complement of X in R™. By Fubini’s theorem, for F*-
almost every point # € X, we have that for H""*~1-almost every direction v € X+, |v| = 1,
the line

L(z,v) :={z+tv:t e R}
intersects A in a set of finite 1-dimensional measure. This implies that for all such = €
X,v € X+, the set L(z,v) N (R™\ A) contains sequences
xjc ::x—l—tijv ceR"\A4,j €N

with lim;_, 4 tij = t00. Since f = f o P, this means that

flz) = flz+t50) = glz +t;,v),

and because t — g(z + tv) is convex we see that
[z +tv) = f(z) = g(z + tv)
for all ¢ € R and every such x, v. By continuity of f and g this implies that
f(z+tv) = g(x + tv)
for all z € X, v € X+, and this shows that f = g on R". O

In light of Example [1.8, Theorem and Corollary seem the best possible results
for the Lusin property of class CL!

conv*

Thus it is natural to consider the Lusin property of class Chllo¢ or €2  where we do not

have any restrictions on the growth of the second derivative. Clearly, if the function f from
Proposition is not already C,2!, it does not have the Lusin property of class CL11o¢ o

oc’ conv
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C2 . Under the assumptions of Proposition [1.10} if 0 # v € X+, then the function f is
constant along the line ¢ — tv and hence there is no linear function ¢ : R™ — R such that
f(z) — £(z) — oo as |z| — oo. That is, f is not essentially coercive, where the essential
coercivity is defined as follows:

Definition 1.11. We say that a convex function f : R™ — R is essentially coercive provided
there exists a linear function ¢ : R™ — R such that

lim (f(x)—{(x)) = oc.

|| =00

It is natural to wonder whether the lack of essential coercivity of a convex function
defined on R" is the only obstruction for it to satisfy a Lusin property of type CLlloc(R")

conv
or C2  (R"). Our second main result shows that this is indeed so in the CLI¢(R") case.

conv conv

Theorem 1.12. Let f : R® — R be a convexr function, and assume that f is not of class
0110,01 (R™). Then f is essentially coercive if and only if for every e > 0 there exists a convex

function g : R* = R of class CL(R™) such that L™ ({x € R : f(z) # g(x)}) < e.

loc

As an easy application we obtain the following generalization of Corollary [I.7} We call
S a convex hypersurface of R™ provided that S is the boundary of a closed convex set W
with nonempty interior (not necessarily bounded) in R”, and we say that S is of class CpL:!
whenever S is a 1-codimensional C* submanifold of R™ such that the outer unit normal
N : S — S" 1 is a locally Lipschitz mapping. Equivalently, the Minkowski functional jy
of W is of class Cpot on R™ \ puy;t(0).

Corollary 1.13. Let S be a convex hypersurface of R™, and assume that S is not of class

C’ﬁ;g. Then the following assertions are equivalent:

(1) S does not contain any line.

(2) For every e > 0 there exists a convexr hypersurface S, of class C’llo’c1 of R™ such that
HrL(S\ S.) <e.

2. PRELIMINARIES AND TOOLS

In this section we explain some known results and techniques which we will use in the
proofs of our main results.

A convex function f :  — R defined on an open and convex set 2 C R” is locally
Lipschitz and hence differentiable almost everywhere by Rademacher’s theorem. In fact
the following result is true:

Theorem 2.1. If a convex function f : 0 — R is defined on an open and convex set {2 C R,
and D C Q is the set of points where f is differentiable, then V f|p is continuous.

For a proof see e.g. [28, Theorem IV.E]. An elementary and a straightforward argument
can also be found in [23] p.727].
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According to Aleksandrov’s theorem [4], at almost every point x, where f is differen-
tiable, there is a symmetric n x n matrix V2f(z) such that

(2.1) i SW) = f @) = (V@) y — @) — 5 (V2 f(2)(y — 2),y — )

y—a ly —xf?

=0.

For modern proofs, see for example [3, Theorem 7.10], [11], [16, Theorem A.2] [18, Theo-
rem 6.9].

A common technique of showing that a class of functions has a Lusin property of class C*
is based on the Whitney extension theorem. For example, it follows from the Aleksandrov
theorem that a convex function satisfies the assumptions of a C?-version of the Whit-
ney extension theorem outside a set of an arbitrarily small measure and hence the class
Cronv(R™) has the Lusin property of class C*(R™), see [2, 17, 21]. Unfortunately, Whitney’s
construction does not preserve convexity. Instead we will use results and techniques from
[6], [7, 8, 9] which we next review.

Theorem 2.2. ([8, Corollary 1.3] and [7, Theorem 2.4]). Let E be an arbitrary subset of
R" Let f: E— R, G: E — R" be given functions. Then there exists a convex function
F e CHY(R") with F = f and VF = G on E if and only if there exists a number M > 0
such that

1 2
(2.2) fl@) = fly) = (Gly), 2 —y) 2 571G(@) = G(y)]

for all x,y € E. In fact, the formula

M
P =conv (o inf {10+ (Gla = )+ e - o}
yer 2
defines such an extension, with the additional property that Lip(VF) < M.

Here conv(z +— g(z)) denotes the convex envelope of the function g, that is, the largest
convex function ¢ such that ¢ < g.

This result was first proved in [8, Corollary 1.3], but the proof given in [7, Theorem
2.4] is elementary and much simpler. The next elementary lemma shows another condition
that is equivalent to . In fact, in our proofs we will apply Theorem by verifying
condition (b) from below.

Lemma 2.3. Let E be an arbitrary subset of R*. Let f : E — R, G : E — R" be given
functions and let M > 0 be a given constant. Then the following conditions are equivalent:

(4) F(2) ~ F() ~ (G(w). 2~ 4) 2 51 |G () — G for all 2,y € B

(b) f(2) +(G(2),x — 2) < f(y) + (G(y),x —y) + %MS —y|? for ally,z € E and all
r € R"”,
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Proof. Tmplication from (a) to (b) is just [7, Lemma 2.6]. Thus it remains to show that
(b) implies (a). Renaming variables allows us to rewrite (b) as

F&) +{Gw).€ ) < f() + (G@), €~ ) + 62 for v,y € Band € €R",

which is equivalent to
M
J@) = 1) = (Gly), e —y) = (Gly) = CG(x),{ —2) = - |{—al’, for 2,y € Eand { € R™.

Since the inequality is true for all ¢ € R, we can take £ such that { — 2 = 7(G(y) — G(z))
and (a) follows. O

In the same spirit, a more complicated version of Theorem [2.2| for C’ﬁ)’cl convex extensions
of 1-jets has been established in [0, Theorem 1.10]. However, we will need the following
special case which is easier to state.

Theorem 2.4. ([0, Theorem 1.3]). Let E be an arbitrary nonempty subset of R™. Let
f+E—=R,G:E—R" be functions such that

(2.3) span{G(z) — G(y) : z,y € £} = R".
Then there exists a convex function F' € Ciot(R") such that Fl, = f and (VF), = G if

loc

and only if for each k € N there exists a number Ay > 2 such that

(2.4) F() +4G (), = 2) < F(0) +{C ) o) + Sl P

for every z € E, y € EN B(0,k), x € B(0,4k).

We will also need:

Theorem 2.5. ([9, Theorem 1.11] and [5, Lemma 4.2]). For every convex function f : R™ —
R, there exist a unique linear subspace X of R, a unique vector v € X+, and a unique
essentially coercive function ¢ : X — R such that f can be written in the form

f(z) =c¢(P(x)) + (v,z) for all z € R",
where P : R" — X 1s the orthogonal projection.
The next extension lemma is well known, but for the sake of completeness we will provide
a proof.

Lemma 2.6. Suppose that f : W — R is convex and K -Lipschitz, where W C R"™ is convex.
Then,

(2.5) f@) = mf {f(z) + Klo =2}, zeR"

1s convex and K-Lipschitz on R", and f =fonW.
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Proof. K-Lipschitz continuity of f on W implies that for z,2z € W we have
flo) < f(2)+ Kle — 2| so f(z) < f(o).

On the other hand, f(z) < f(x) + K|z — z| = f(z) so f = f on W. To prove that f is
K-Lipschitz, let z,y € R" and assume that f(z) > f(y). For z € W we have

f(@) < f(2) + Kz — 2| < (f(2) + Kly — 2]) + K|z — ],

so taking infimum on the right hand side over z € W yields K-Lipschitz continuity of f.
It remains to show that f is convex. If z,y € R™ and A € [0, 1], then for any z,w € W we
have

FOz+(1=Ny) < fOz+ (1= Nw) + K|(Ax + (1= N)y) — (A2 + (1 = Nw)|
S Af(2) + Klz = z[) + (1 = ) (f(w) + K|y — wl)

and taking infimum over z,w € W yields convexity of f. O

3. PROOFS OF THE MAIN RESULTS

3.1. Proof of Theorem Let E C A be a compact set such that L"(A\ F) < £/2 and
that all points x € E satisfy (2.1)). It is easy to see that

E:UE]', FiCE,C...,
j=1

where
E; = {ye E: f(z) = f(y) = (VI(y),z —y) < jle —y[ forall z € R" s.t. o —y| < 3}

Since by Theorem , V f is continuous on F, it is easy to check that the sets £; are closed
and hence compact. Since L"(FE) < oo, L"(E\ Ex) < /2 for some N, so L"(A\ Ey) < ¢.
Thus

(31) Vye ExVz €R" (Jr—y| < N = f(z) — f(y) — (Vf(y),z —y) < N|lz —y[?).

Since Ey is compact, Exy C B(0,7) for some 7 > 0. Let R > r+N~' and let W = B(0, R).
Since convex functions are locally Lipschitz, f|y is K-Lipschitz for some K > 0 and we
may assume that K > 1.

Let f be defined by (2.5). Then f is convex and K-Lipschitz on R”. Since f = f in W,
the function f satisfies (3.1). Observe that

(3.2)  f(z)— fly) = (Vf(y),z —y) <2KN|z —y|* forally € Ey and all z € R".
Indeed, if |[x —y| < N7, follows from (3.1)). If |z — y| > N, then

f@) = fly) = (VI(y),x —y) < Kl —y|+|VF(y)l|r —y| < 2K|z —y| < 2KN|z — y|*.
Also convexity of f yields

(3.3) f(2)+ (Vf(2),x —2) < f(z) forall z€ Ey and all z € R™.
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By combining (3.3) and (3.2) we get
f(z)+(Vf(z),x—z) < f)+ (Vf(y),z—y)+2KN|z—y|*> fory,z€ Ey and z € R".

This is condition (b) from Lemma [2.3] Since the condition is equivalent to (2.2), The-
orem [2.2 . gives that there is a CU! function F defined in R™ such that ' = f = f and
VF =V f=V/fin Ey. This and the fact that £"(A\ Ey) < € complete the proof. [

3.2. Proof of Corollary According to Theorem for each positive integer i, there
is g; € CY(R™) such that £L"({z € B(0,7) : f(z) # gi(2)}) < /271 Let {vi}2,
be a smooth partltlon of unity subordinate to the covering {B(0,¢)}°; of R*. Then
g =" gipi € Cll satisfies L"({x € R" : g(x) # f(2)} < 5/2 and the result follows
from Whitney’s theorem [30, Theorem 4] according to which a C} function on R™ coincides
with a C? function outside a set of measure less than /2. O

3.3. Proof of Corollary Take a compact convex body W, such that

(3.4) W. CQ, and £"(Q\ W) < %
Denote the Lipschitz constant of f|y. by K (notice that W, is at positive distance from
the boundary of €, so this Lipschitz constant exists). According to Lemma

flz) = Jnf {f(2) + K|z —2[}

is convex on R” and f = f on W.. Therefore, we can apply Theorem [L.4/ to f and find a
function g € CL! (R™) such that

conv

Lr({z e We: g(z) # fa)}) = £"({x € W : g(x) # f(2)}) < g
This and imply that £" ({z € Q: g(z) # f(x)}) < e. O

3.4. Proof of Corollary We can assume that 0 € int(W) and consider the Minkowski
functional of W, defined by

p(x) =inf{A\ >0 : x € AW},

which is a Lipschitz convex function on R™. Let L be the Lipschitz constant of y. By using
Corollary [1.6| we may find a function g € CL! (R™) such that

n €
L8z €2W : plz) # g(2)}) < 7
Now consider the annulus
Cio=2W\W ={zeR": 1< p(z) <2},

and define
A={zeCy:plx)#g(x)}

By the coarea formula for Lipschitz functions (see [18, Theorem 3.10] for instance) we have

e>LL"A /\V/L ]d:r;—/fH"l Anp~l(t)) dt.
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This inequality and Sard’s theorem imply that there exists a regular value ¢, € (1,2) of
g € O such that
! (A N u‘l(to)) <e.

Then we can define )
WE = —g_1<—OO,t0],
to
so that W, is a convex body of class C*!, with boundary

1
oW, = t—g_l(to) and hence to(OW \ OW.) = AN u~(ty).
0

This yields
HHOW \ OWL) <ty PH T (OW \ OWL) = H"H (AN (b)) < e
O

3.5. Proof of Theorem The necessity of the essential coercitivity assumption is clear
from Proposition and Theorem [2.5] The fact that this assumption is sufficient will
follow from Theorem [2.4, The rest of the proof is similar to that of Theorem [I.4 but more
complicated.

Thus assume that f : R" — R is convex, [ ¢ Cllo’g and f is essentially coercive. Fix

0 < & < 1. Tt remains to show that there is a convex g € CL:! such that £"({f # g}) < &.
By Aleksandrov’s theorem and by Theorem , there is a closed set A C R" such that

LR\ A) < g, V f|a is continuous, and (2.1)) is true for all z € A.

As in the proof of Theorem [I.4]

A:UE]', EiCEy,C...,
j=1

where
. . 1
Ej={y€A: fo) = f) ~ (VS(y)w—y) < jla—yf forall o € R st | —y| < -}

Since Vf is continuous on A, it easily follows that the sets E; are closed and hence
measurable.

We set By = 0, and for each k& € N, we define
Bk = B(O,]{?), and Ak =AN (Bk \ Bk_1>.

Now, for each k € N, since the sequence {F}};en is increasing and Ay, = U2, (E; N Ay),

we can find 7, € N such that
€

Ln(‘Ak \ Ejk) < W?

and define, for each k € N,
Ok = Ejk N Ak,

We could use Lusin’s theorem instead of Theorem
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and .
k=1
We may obviously assume that
(3.5) Jr < jrqr for all k € N.
We then have that
(3.6) L(ANC) =3 LM(AN\ Gy < g so LM(R"\ O) < .
k=1

Lemma 3.1. For each k € N there exists a number B, > 1 such that
(3.7 f(x)— fly) = (Vf(y),r —y) < Belr —y|* for ally € C N By, and all x € Byy,.

Proof. Take y € C'N By, and note that since (jj,) is increasing we have CN By, C Ej, N By, C
Byi. In particular y € Ej,.

If x € R™ is such that |x —y| < 1/jk, the inequality we seek obviously holds with 8y, = ji,
because of the definition of Ej,. On the other hand, if |z — y| > 1/ji, and = € By, then,
since f is Lipschitz on the ball By, we have

F(@) = fly) = (VF(y)sw =) < 2Lip (fin,, ) lo = ol < 2Lip (fis,, ) dele = yf*

In any case the Lemma is satisfied with [ = max {jk, 2jx Lip <f|B4k) } m

Since f is convex we have, for all z € C', x € R", that
(3.8) f(2) +{V[f(2), 2 —z) < f(z),
which combined with the preceding lemma gives us
f(2) +(Vf(2),2 = 2) < fy) +(VI(y)x —y) + Brlz — yI”

for all z € C, y € C'N By, x € By,. That is to say, the jet (f(y), Vf(y)), y € C, satisfies
condition (2.4)) of Theorem 2.4 with Ay = 23, > 2.

Finally, let us check condition ([2.3)) which in our case reads as
span{V f(x) = Vf(y): z,y € C} =R".

Fix some yg € C, and consider the function g(z) = f(x)— f(vo) — (V f(y0),x — yo). Since f
is essentially coercive and convex, g is also essentially coercive and convex. We have that

span{V f(x)=V f(y) : x,y € C} = span{V f(x)—V f(y) : * € C'} = span{Vyg(z) : z € C}.

Thus it suffices to show that Y := span{Vg(z) : x € C} = R". Seeking a contradiction,
suppose that Y # R™. We can then take a vector 0 # v € Y+ such that

(3.9) (Vg(z),v) =0 for all x € C.

Since L™(R™ \ C) < ¢, an easy application of Fubini’s theorem shows that there exists xg
perpendicular to v such that the intersection of the line L := {xo+tv : t € R} with the set



12 DANIEL AZAGRA AND PIOTR HAJLASZ

R™\ C has finite one-dimensional measure. This implies that L NC must contain sequences

z) = w0+ t;v,j € N with limj_,1o t; = Fo0.

Consider the restriction of g to the line L i.e., consider the convex function h(t) =

g(xo + tv). Since by (3.9),
=2 + —
h (tj ) = <V9(xj ),v) =0,
it follows that h is constant and hence g is constant on the line L. But this contradicts the
fact that g is essentially coercive.

We have thus checked that the 1-jet (f(y), Vf(y)), y € C, satisfies all the conditions of
Theorem 2.4, and therefore there exists a locally C*! convex function F' : R — R such
that ' = f on C, and also VF = V f on C. In particular we have that

L ({z eR": f(z) # F(r)}) <L"(R"\ C) <e.
The proof of Theorem is complete. O

3.6. Proof of Corollary We will need to use the following:

Lemma 3.2. Let W be a closed convex set such that 0 € int(W), and p = pw denote the
Minkowski functional of W. The following assertions are equivalent:

(a) W does not contain any line.

(b) OW does not contain any line.
(c) p=(0) does not contain any line
(d) w is essentially coercive.

Proof. (a) = (b) is obvious.

(b) = (c): if for some x,v with v # 0 we have u(x+tv) = 0 for all ¢t € R then, for any
y € p (1) = OW we have p(y +tv) = puy —z+a+tv) < p(y —2) + p(z +tv) = ply — o)
for all t € R. In particular the convex function R 5 ¢ — u(y + tv) € R is bounded above,
hence it is constant. That is to say, pu(y + tv) = u(y) = 1 for all ¢ € R, which means that
OW contains the line {y + tv : t € R}.

(¢) = (d): If p is not essentially coercive then by Theorem [2.5] for some w # 0 we
have that ¢ — p(tw) is linear, and this may only happen if p(tw) = 0 for all t € R, because
p = 0.

(d) = (a). If W contains a line {x + tv : t € R}, then t — pu(x + tv) convex
and bounded from above by 1 so is is constant. This prevents p from being essentially
coercive. 0J

Now we can prove Corollary

(1) = (2): Let W be the closed convex set with nonempty interior such that S = oW
Without loss of generality we may assume that 0 is an interior point of W. Denote the
Minkowski functional of W by p. By the assumption (1) and the preceding lemma, pu is
essentially coercive. Also observe that p is L-Lipschitz, where 1/L = d(0,S). Then the
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same proof as in Corollary |1.7| (replacing C*! with C’llo’g at appropriate places, and using
Theorem instead of Corollary shows (2).

(2) = (1): Suppose to the contrary that S contains a line, or equivalently that p~*(0)
contains a line Ly = {tv: t € R}, v # 0.

Given € > 0, let S. be a convex hypersurface of class C,.! such that H"1(S\ S.) < e.
Let W, be the closed convex set such that OW, = S.. If ¢ > 0 is small enough, we may
assume that 0 € int(W) and 0 € int(WV,).

Indeed, since S & q{;j , it is not a flat hyperplane and we can find points py,...,ppi1 € S
such that the simplex conv{pi,...,p,s1} C W has nonempty interior. By translating the
coordinate system we may assume that 0 belongs to the interior of that simplex and hence
0 € int(W). Then, if ¢ > 0 is sufficiently small, we can find points p}, ..., p,,; € S: so close
to the points py, ..., p,11 that 0 belongs to the interior of the simplex conv{p, ... ,p}, 1} C
W, and hence 0 € int(WW,). Denote the Minkowski functional of W, by ..

Since pu is convex, if Vy(z) = 0, then p attains minimum at z. Since p > 0 = u(0), it
follows that = € p~1(0). Therefore, |[Vu| > 0 almost everywhere in the set R™ \ x~1(0).

Recall that Ly C p~1(0) so u(tv) = 0 for all + € R. This implies that x is constant on
every line parallel to Lg. Indeed,

p(@ +tv) < p(x) + p(tv) = p(z)

so the convex function ¢t — (z + tv) is constant as bounded from above.

Let X = Lg be the orthogonal complement of Ly and let P : R® — X be the orthogonal
projection. Since y is constant on every line parallel to Loy, u(z) = u(P(x)), hence Vu(z) =
Vu(P(x)), and also

(3.10) R™\ 51(0) = P~1(X \ 57(0).
Recall that |[Vu(y)| > 0 exists and is positive for almost all y € X \ p~1(0).
Suppose that £ C R™\ x~1(0) is measurable and

/ V| < oo.
E

Since |Vl is well defined and constant along almost all lines P~ 1(y), y € X \ p*(0)
parallel to Ly, we note that P(E) C X \ ©~*(0), and apply Fubini’s theorem to obtain

/P L ITHIE P ) P E)ae ) = / Vil dL" < oo.

Since |Vpu(y)| > 0 for almost all y € X \ p=(0), LY(P~(y) N F) < oo for almost all
y € X \ n71(0) i.e., almost every line parallel to Ly and disjoint from p~'(0) intersects F
along a set of finite length. We shall use this observation below.

Let C, :={ty: ye SNS,, t€[0,a]}, a>0. Then for 0 < t < a,
N (1) Co) = K (S 52) = 190N (S\ S) < e
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and hence the coarea formula yields

ca”

/ Vp(z)|de = / H (M) \ C)dt < / gt = 24~ oo
1 1((0.0])\Ca 0

0 n

It follows from an observation that we made earlier, that almost every line parallel to Lg
intersects = 1((0, a]) \ C, along a set of finite length and hence almost every line parallel to
Ly that is contained in p~1(0, a] intersects R™ \ C, along a set of finite length. Therefore,
for such a line, the set L N C, contains sequences

+ . + : N
r; =z +t, ;v € Cy with jgxﬁm t,; = *oo.

By convexity of u., the fact that g4 = pu. on C,, and that p is constant on L, it follows
that pu(y) = pe(y) for all y € L, and by continuity it follows that p = p. on every line
parallel to Ly and contained in p~'(0,a]. Since a > 0 is arbitrary, it follows that u = p.
on every line parallel to Ly and disjoint from p~'(0) (because every line L parallel to Ly
and disjoint from p~'(0) is contained in p~1(0, a] for some a > 0; indeed, if u(z) =a >0
for some z € L, then = a on L and L C p~*(0,a]). Bearing in mind (3.10), we deduce
that u = p. on R™\ p~1(0), and therefore S = p~1(1) = p-'(1) = S.. But this is absurd,
because S. is of class Cllo’cl and S is not.
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