THE COAREA INEQUALITY

BEHNAM ESMAYLI, PIOTR HAJLASZ

ABSTRACT. The aim of this paper is to provide a self-contained proof of a general case
of the coarea inequality, also known as the Eilenberg inequality. The result is known,
but we are not aware of any place that a proof would be written with all details. The
known proof is based on a difficult result of Davies. Our proof is elementary and does not
use Davies’ theorem. Instead we use an elegant argument that we learned from Nazarov
through MathOverflow. We also obtain some generalizations of the coarea inequality.

1. INTRODUCTION

The aim of this paper is to provide an elementary and self-contained proof of the following
result which is known under the name of the coarea inequality or the Filenberg inequality.

Theorem 1.1. Let X andY be arbitrary metric spaces, 0 <t < s < oo (any) real numbers
and E C X any subset. Then, for any Lipschitz map f: X — Y we have
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Moreover if X is boundedly compact i.e., bounded and closed sets in X are compact, E is
H?-measurable, and H*(E) < 0o, then the function
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is H'-measurable and therefore, the upper integral can be replaced with the usual integral.

Here H* stands for the a-dimensional Hausdorff measure and [ " gdu is the upper inte-
gral which does not require measurability of the integrand.

Remark 1.2. In general, we cannot expect measurability of the function as the
following simple example shows: Let V' C R be a non-measurable set. Let X =V, Y =R
and f: X — Y, f(zr) = x. Then for s =t =1, and £ = X, the function is the
characteristic function of V' and therefore is not measurable. It was communicated to us
by Pertti Mattila [23] that is measurable with respect to the sigma-algebra generated
by analytic sets if X and Y are Polish spaces and F is analytic. This is a consequence
of the work of Dellacherie [6], see Remark 7.8 in [24]. However, we did not verify this
statement.
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Proving measurability of (1.2]) under the given assumptions is not difficult, see Section
and the main difficulty rests in proving inequality ((1.1). Thus in the discussion below we

will focus on ((1.1)) only.

The inequality was first proved by Eilenberg [7] in 1938 in the case whent =1, Y =R
and f(-) = d(-,x,) — R is the distance to a point on a metric space X. Then it was
generalized in [8] to the case of t =1, Y =R and f: X — R any Lipschitz function.

It seems however, that a related argument was used by Szpilrajnlj [29] in the proof that
if H"1(X) = 0, then the topological dimension of X is at most n. Szpilrajn’s proof
is reproduced in [I6l Theorem 7.3] and [14, Theorem 8.15]. Szpilrajn mentions that his
argument is based on Nobeling’s proof of a weaker result that the topological dimension
is bounded from above by the Hausdorff dimension of a metric space [26] (Nobeling’s
paper is reproduced in [25]). The reader may find a translation of Nobeling’s paper in
MathOverflow [22], and it is clear that his argument was closely related to Eilenberg’s
inequality for the distance function. From reading Szpilrajn’s paper, it is also clear that
there was a strong collaboration between him and Eilenberg.

Remark 1.3. Most of the proofs that the reader may find in the literature [3, Theo-
rem 13.3.1], [19, Lemma 5.2.4], [24, Theorem 7.7], apply to the case of Lipschitz mappings
f: X — R™ and t = m, and the proofs do not differ much from that in [§]. Since the
proofs use the fact that for a subset A C Y = R™, the isodiamteric inequality holds, that is
H™(A) < wy,(diam A)™ /2™ there is no obvious way how such proofs could be generalized
to other metric spaces Y.

Remark 1.4. Regarding coarea inequality for mappings into metric spaces one should
mention an interesting paper by Maly [20]. The result given in [I, Proposition 3.1.5]
covers the general case but, as confirmed by the authors, the proof is incorrect.

Proving the result in a more general case was a remarkable achievement of Federer [11],
see also [10, Theorem 2.10.25]. However, he could prove Theorem [1.1]only under additional
assumptions that

(a) The integrand H*~*(f~!(y) N E) is positive (only) on a set of o-finite measure H';
or

(b) The space Y is boundedly compact, meaning that bounded and closed sets are
compact.

His strategy was as follows. He first proved an inequality more or less equivalent to (see

Lemma and Remark below),

(13) / Mt (F ) N E) dHE < (Lip f)

t ws—tths(E) ’
where the left-hand side is the weighted integral (see Definition . Federer [10, 2.10.24]
used however, different notation (see Remark [3.5).

He changed his name to Marczewski while hiding from Nazi persecution.



THE COAREA INEQUALITY 3

This inequality follows from a straightforward covering argument. In fact the proof is
very similar to the classical proof due to Eilenberg, the one the reader can find in 3], 19, 24],
see Remark [L.3

The coarea inequality then follows from the following theorem — which is of independent
interest — and a simple monotone convergence theorem for upper integrals as 6 — 0%,

Theorem 1.5. Let Y be an arbitrary metric space. Fort € [0,00), and any g : Y — [0, 00|
we have

/*g(y) dH'(y) = /.g(y) dH'.

Y Y

Federer [10], 2.10.24] proved this result under the restrictive assumption that one of the
following two conditions is satisfied: (a’) The function g is positive on a set of o-finite
measure H'; or (b’) the space Y is boundedly compact. Therefore he could only prove
Theorem |1.1| under the assumptions (a) or (b) listed above.

While the inequality

/ gly) dH'(y) = / 9(y) dH'(y)
Y Y
is easy to prove in the general case (see ([6.1))), the problem is to prove the opposite
inequality (Federer proved it when (a’) or (b’) holds true). In the general case, Federer

[10, p. 187] stated the following:

The general problem whether or not the preceding inequality can always be replaced by
the corresponding equation is unsolved.

The problem was answered in the positive by Davies |4, page 236]:

Note added 8 September 1969. H. Federer tells me that this work answers a question he
raised in Geometric measure theory (Berlin, 1969) |...]

There is no explicit proof of Theorem in the work of Davies, but the main result
of Davies [4, Theorem 8, Example 1], provides a missing step in generalizing Federer’s
proof. In fact it is the celebrated Increasing Sets Lemma [4, Theorem 8] that was needed
to complete Federer’s proof:

Theorem 1.6. Suppose (X,d) is an arbitrary metric space, t € [0,00), and § > 0. Then
for any increasing sequence of subsets Ay C Ay C A3 C -,

’Hg(U A;) = Tim H5(4,).

With Theorem being true for an arbitrary metric space Y, Federer’s proof of Theo-
rem |1.1] applies to the case of arbitrary metric spaces X and Y.

From what we could dig out from the literature, it would be fair to call Theorem the
Nobeling-Szpilrajn-Eilenberg-Federer-Davies inequality.

Surprisingly, it wasn’t until 2009 when Reichel [27] in his PhD thesis, re-wrote a complete
proof of Theorem [T.1]in its full generality, by following the original proof of Federer while
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making use of Davies’ result. Reichel’s thesis seems to be the only place with a complete
proof of Theorem [I.1], except that Reichel did not include the proof of Davies’ theorem.

Davies’ theorem [4, Theorem 8] (Theorem [1.6|above) is very difficult and its proof makes
use of Ramsey’s theorem, ordinal numbers and non-principal ultrafilters.

In the paper we present a new and elementary proof of Theorem (reformulated below
as Theorem that completely avoids the use of Davies’ result. It is based on a beautiful
argument that we learned from Nazarov [21]. Then we prove Theorem including all
necessary details.

Most of the older applications of Theorem are in the case of Lipschitz mappings
f: X — R™ and t = m. However, in a recent development of analysis on metric spaces,
the general version of Theorem [I.T|plays an increasingly important role. It is a fundamental
result and it deserves to have a proof that is self-contained and easy to read. Our proof
of how to conclude Theorem from Theorem [I.5], follows Federer’s argument, but we
believe is much easier to read than Federer’s proof. In writing this proof we also used a
presentation of Federer’s proof given in [27].

In fact we prove more general versions of Theorem in Section [} Theorem and
Theorem [7.16] As explained in Remark these are substantial improvements of The-
orem . In Section we show an application of Theorem to the (n, m)-mapping
content introduced in 2] [].

The paper is structured as follows. Section [2] contains basic material from measure
theory needed in the rest of the paper. This material is standard, but some of the results,
although contained in Federer’s book, seem to be not very well known. The reader might
want to skip Section [2], go directly to Section [3]and return to Section [2] whenever necessary.

Section [3| defines the weighted integrals and weighted measures and proves Lemma [3.10)
which is a version of Theorem with weighted integral in place of the upper integral.
This section also has statements of the two main results regarding weighted integral: The-

orem and Theorem [3.15] (i.e., Theorem [L.5).

Section []is focused on Theorem [4.1] and Corollary 4.4 which are of independent interest.
These are general results that are essentially combinatorial and are not limited to the
specific setting of our problem. They play a central role in the proof of Theorem (3.13|

In Section [5| we prove Theorem [3.13] The proof is very short only because of the use of
powerful Corollary [4.4]

In Section [6] we prove Theorem [3.15 Section [7] contains the proof of Theorem
and its generalization Theorem [7.1] We end with applications to the mapping densities,
introduced in [13], and to the (n,m)-mapping content |2, [5]. Theorem can be viewed
as yet another coarea inequality, although only under finer assumptions on the metric
spaces.

1.1. Notation. Open and closed balls in a metric space (X, d) will be denoted by B(z,7) =
{y : d(z,y) < r} and B(x,r) = {y : d(z,y) < r}, respectively. Closure of a set £ will
be denoted by E; as a warning, note that in general closed ball might be strictly larger
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than the closure of the open ball. Symbol B will always be used to denote a ball, open or
closed. If B = B(x,r) is aball, 6 B = B(x,o0r), o > 0, will denote a dilated ball (the same
notation is used for closed balls).

The characteristic function of a set £ will be denoted by xg.
A metric space is boundedly compact if bounded and closed sets are compact.

A map f: X — Y between metric spaces is called Lipschitz if there exists an L > 0
such that dy (f(z), f(y)) < Ldx(z,y) for all x and y in X. The smallest such L, denoted
Lip f, is the Lipschitz constant of f.

The integral average will be denoted by the barred integral:

Hausdorff measure will be denoted by H?®. It is normalized so that on R" the measure H"
coincides with the Lebesgue measure, see Section for more details.

For A C X, diam A = sup{d(z,y) : z,y € A} and

Wy 71.5/2

CS(A) 95 (d1am A)S, where Wg = m

Note that w, is the volume of the unit ball in R™ so ("(B™(0,r)) = H"(B"(0,r)). Note
also that (°(A) =1if A # @ and (°(@) = 0.

For § € (0,00], a covering E C |J:2, A; by bounded sets satisfying diam A; < § for all
i € N, is called a d-covering of E. An open (closed) d-covering is one where every A; is
open (closed).

Acknowledgement. We would like to express our deepest gratitude to Fedor Nazarov
for his kindness in providing us with an elementary proof of inequality , through
MathOverflow [2I]. We would also like to thank Mikhail Korobkov for discussions on
topics related to Definition [3.6] Finally, the authors would like to thank the MathOverflow
community for providing the reference to Nébeling’s paper [22].

2. PRELIMINARIES

2.1. Upper Integral. Throughout Section [2.1] (X, x) is a measure space.

Definition 2.1. For a function f : X — [0, 00] defined p-a.e. on X, the upper integral is

defined by
[ rau=int [ odn.
X X

where the infimum is taken over all p-measurable functions ¢ satisfying 0 < f(z) < ¢(z)
for p-a.e. x € X.
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We do not require f to be measurable. Clearly, for measurable functions the upper
integral coincides with the Lebesgue one. Note also that

(2.1) If / fdu =0, then f =0, u-almost everywhere and hence f is measurable.
X

Lemma 2.2. Let f,, : X — [0, 00] be a monotone sequence of (not necessarily measurable)
functions, i.e. 0 < fi(z) < fo(x) < ... for p-a.e. © € X. If f(x) := lim, o fn(x) for
p-a.e. x € X, then

(2.2) lim fn du = /): fdu.

n—oo

Proof. Throughout the proof, inequalities between functions are assumed to hold pu-a.e.
Clearly the limit on the left hand side of . exists and

(2.3) lim fn du < / fdu.

n—o0

Choose measurable functions ¢,, such that 0< f, < ¢, and

/qﬁnduS/ Fodp+27"
X X

This and Fatou’s lemma yield
/ fd,u:/ lim f, du < / liminf ¢, dp < liminf/ Ondp < lim / fndpu,
which together with ([2.3)) proves (2.2]). O

Definition 2.3. We say ¢ : X — [0, 00] is a step function if it is p-measurable and attains
at most countably many values (we allow infinite values). That is, ¢ is a step function if
there exist disjoint p-measurable subsets A; C X and 0 < a; < oo such that

(2.4) Z aixa,(

=1
Lemma 2.4. Let f: X — [0,00| be any function. Then

/X*f du—inf/xqbdu,

where the infimum is over all step functions ¢ satisfying 0 < f(x) < ¢(x) for all x € X.

Proof. Since the claim is true when [} fdu = co, we can assume that [ fdu < co. We
can also assume that f is measurable since the general case will easily follow from the
definition of the upper integral. For i € Z and 1 < A\ < oo define

A ={z: f(x) = +o0}, and A} ={z: X < f(z) < N}
Then |
f<on<\f, where ¢y=o00-xa_ + Z)‘Z—HXA?

iE€EZ

/delLS/X¢AdM§)\/deu—>/)(fdu as A — 171

and
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complete the proof. O

2.2. Covering lemma. A familiar 5r-covering lemma, known also as a Vitali type cover-
ing lemma, asserts that from any family F of balls with bounded radii in a metric space,
we can select a subfamily F’ of pairwise disjoint balls such that balls in F dilated 5 times,
cover all balls in F, see e.g. [28, Theorem 3.3]. A close inspection of the proof reveals that
we do not really use the fact that this is a family of balls since the proof is based on sim-
ple estimates for diameters. Therefore, the lemma holds true for any family of uniformly
bounded sets, provided we give a proper meaning of being dilated 5 times. This gives (cf.
[10, Section 2.8])

Lemma 2.5. Let F be a family of bounded sets in a metric space such that sup{diam F" :
F € F} < 0. Then, there is a subfamily F' C F of pairwise disjoint sets such that

U Fc | v,
FeF FleF
where
WP =| {FeF: FNF # @, diamF < 2diam F'}.
Moreover, if F € F, then there is F' € F' such that FNF' # & and F C bF".

Remark 2.6. That is I is the union of I’ and all sets that intersect it and have relative
small diameter. Clearly diam bF’ < 5diam F”.

Proof. Let sup{diam F': F € F} = R < oo and let

R R
}"j:{FG}":2—<diamF<—}.

j = 9j-1
So, Uj’;l F; includes all of F except possibly for some singletons — sets of diameter zero.

We define F| C F; to be a maximal family of pairwise disjoint sets in F;. Suppose that
the families F7,..., F}_; have already been defined. Then we define F; to be a maximal
family of pairwise disjoint sets in

{FeF:FNF =gforall '€ FlU...UF; }.

Set F' = (J;2, Fj. Every set I € F; intersects with a set F' € UL, F/; it follows that
diam F < 2diam F’ and hence F' C bF".

If there are any singletons F' = {x} € F such that ¢ (Jz . F’, then add F' to the
collection F’. The updated F’ will remain disjointed and now it satisfies the claim of the
lemma. 0J

Definition 2.7. Let F be a family of sets in a metric space X. We say that the family F
is a fine covering of a set A C X if for every x € A and every € > 0, there is F' € F such
that x € F' C B(x,¢).

Corollary 2.8. If F is a family of closed sets that forms a fine covering of A C X,
sup{diam F' : F € F} < oo, and F' is as in Lemma then for any finite collection of
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sets Fy, ..., Fy € F' we have

N
(2.5) Ac|JFu U bE
j=1

FIeF\{F],...F;}

Proof. If z € A\ Uj\le Fj, since the sets I are closed, a ball B(z,¢) is disjoint with the
sets Fj. If v € F' C B(x,¢), I’ € F, then there is ' € F' such that FF'N [ # & and
v € FFCBF'. Since F' C B(z,¢) and B(z,e) N Fj = &, F' # F} and hence F" is one of
the sets on the right hand side of .

O

2.3. Hausdorff Measures. Let (X,d) be a metric space. Fix an 0 < s < co. For a
subset E of X and a ¢ € (0, 00], the Hausdorff contents Hj and J&° are defined by

H;(E) =inf > (*(A;), and 5 (E) =inf Y ((U;)
i=1 i=1

where the infima are taken, respectively, over all countable coverings E C |J;=; A; by
bounded sets with diam A; < ¢ for all ¢ € N, and over all countable coverings F C U;’il U;
by open sets with diam U; < ¢ for all + € N, in other words, over all )-coverings and over
all open d0-coverings. If no such covering(s) exists, we set the corresponding content equal
to +oo0.

Note that we can always assume that the sets A; are closed since taking the closure of
a set does not increase its diameter. Note also that for any 0 < € < § < o0

H3(E) < 75 (E) < H;_(E),

because any (0 — €)-covering can be enlarged to an open d-covering with an arbitrarily
small increase in diameters of the sets.

The functions § — H;(F) and 0 — 5¢°(E) are non-increasing, hence for 0 < s < oo
HAE) = lim H5(E) = supH5(E) = lim, A5 (E) = sup A5 (E),
is well-defined. This is the s-dimensional Hausdorff measure on X.
Note that H° is the counting measure, i.e. H°(F) equals the number of elements of E.

The Hausdorfl measure is an outer measure defined on all subsets of X and all Borel
sets are ‘H*-measurable.

Remark 2.9. If n € N, then w, equals the volume of the unit ball in R™. With this choice
of the normalizing coefficient, H" = H2 = L" in R", where L£" is the outer Lebesgue
measure, see [28, Theorem 2.6]. However, we will not use this fact in what follows.

The next result proves that the Hausdorff measure is Borel-regular.

Lemma 2.10. For s € [0,00) and every B C X there is a decreasing sequence of open
sets Vi D Vo D ... D E such that E C E := (-, Vi and H*(E) = H*(E).
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Proof. 1f H*(E) = oo then we can take V; = X, for all i € N. So, assume H*(E) < oco. For
each i € N there is a 1/i-covering E C U;’;l U;j == U; by open sets, such that

1 1
ZCS ij) < 1/Z(E)+; 50 17i(Ui)§%S(E)+;'

Let V; = ﬂ2:1 Uk, then E = Nz, Ui =2, V; has the required properties. O

As an immediate consequence we get
Lemma 2.11. If0 < s < oo, H*(X) < oo and E C X is any set, then
(2.6) H*(E) =inf{H*(U) : U D E, U is open}.

The next result is slightly less obvious
Lemma 2.12. Let E C X be any H*-measurable set, 0 < s < co. If H*(E) < oo then
H(E) =sup{H*(C): C C FE, C is closed}.

Proof. 1t is enough to prove that for any € > 0 there exists an Fj,-set contained in E with
Hs-measure larger than H*(E) — e.

Fixe > 0. Let E = (2, Vi, H*(E) = H*(E) be the G set from Lemma . Since F is
measurable and has finite measure, H*(E\ E) = 0. Each of the open sets V; is a union of an
increasing sequence of closed sets. Since F is contained in that union, there is a closed set
F; C V; such that #°(E \ F;) < £/2" and hence the closed set F = (%, F; c N2, Vi = F

satisfies
o0

H(E\ F) :”H,S<U(E\E-)> <e

=1
Since H*(F \ F) < H*(E \ E) = 0, by Lemma m there exits a Gs-set G such that
F\ E C G and H*(G) =0. Now F \ G is an F,-set contained in E and
(F

H(F\G) =H(F) 2 H(E) —H(E\ F) > H(E) —¢
0

Lemma 2.13. Ifs € [0,00) and A1 C Ay C ... is an increasing sequence of (not necessarily
measurable) sets, then

(2.7) (UA) = lim H°(4;).

i—00
=1

Proof. 1t suffices to prove that the right hand side of (| - is greater than or equal to the

left hand side; the opposite inequality is obvious. Let A; be a Borel set such that A; C Al,
and H*(4;) = H*(A;). Let A; = ﬂ]:lA. Then A; is Borel, A; C A; and H*(4;) = H3(4;).

Since A; C Ay C ... are measurable, we have

<UA> < HS<UA> — lim H*(A;) = lim H5(A4)).

1—>00 11— 00
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If a set F is bounded, then H3_ (F) < (*(F') is an obvious estimate. However, in general
we may expect that H*(F) is much larger than (*(F'). Indeed, sets with small diameters
may have arbitrarily large Hausdorff measure. There is no need to convince the reader
that life would be much easier if we could estimate H*(F') in terms of the diameter, say
Ho(F) < (1 +¢)¢*(F) for some small e. The next result shows that in fact, in spaces of
finite measure, at almost all locations and all small scales this estimate is true.

Lemma 2.14. Let 0 < s < 00 and € > 0. If H*(X) < oo, then there is a set E C X of
measure zero, H*(E) = 0, such that

(28) Ve e X\E 36, >0 VFCX (z€FCB(z0,) = HF)<(1+e)(F)).

Remark 2.15. We do not assume measurability of the sets F.

Proof. The claim is obvious for s = 0, so assume s > 0. Since (*(F) = ¢*(F), it suffices
to prove (2.8) for closed sets F'. Let £ C X be the set of all points z € X such that for
every j € N, there is a closed set F} ; satisfying

€ F,; CB(z,1/j) and H(F,;)> (1+¢&)C°(Fyp;).
Clearly, with this definition of F, (2.8) is true and it remains to show that H*(E) = 0.

Suppose to the contrary H*(FE) > 0. According to Lemma [2.11} there is an open set U
such that F C U and H*(U) < H*(E)(1 +¢/4). Given 0 > 0, the family

F={F;:F,;CcU j>10/0, v € E}

is a fine covering of E by closed sets. Note that F, ; C B(x,1/j), diam F,; < 2/j < §/5.
Lemma [2.5| yields 7" C F such that

Ec |J vF,

FIeF!
and the closed sets F' € F' are pairwise disjoint. Since H*(X) < oo, only countably many

of them may have positive measure and the sum of measures is finite so there is a finite
collections of sets FY, ..., F} € F' such that

S ) < 5*8%8(@% .

FIeFN\{F],...F\.}

According to Corollary [2.8]

N
Ec|JF u J vF
j=1

FIeFN\{F],...F}
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Since for each of the sets F' € F' we have, I/ C U, diam bF’ < 5diam F’ < §,

MBI CE+ Y o)

FeFN\{F],...Fi.}

=YD DI S

FIeFN\{F],...Fl,}

§1ig SNHEN+ DY BH(F)

j=1 FIeFN\{F,..Fi}
1 € 14+¢/2
< —— (W) +H(B);) <H(E .
_1+€< () + <)4_ (>1+5
The estimate is independent of ¢ so letting § — 0 we get
1+¢/2
HI(E) <H(E)——— < H(E
(B) < #(B)=2 < 32 (B)
which is a clear contradiction. O

3. WEIGHTED INTEGRAL AND WEIGHTED HAUDORFF MEASURE

Throughout this section (X, d) will be a metric space and functions f : X — [0, oo] will
not necessarily be measurable.

Definition 3.1. For a function f : X — [0, 00], a weighted covering of f is a countable
collection {(a;, A;) }ien of pairs of bounded sets A; C X and numbers a; € [0, co] such that

(3.1) flz) < ZaiXAi(x) forall ze€ X.

If in addition diam A; < 4, § € (0, +oc], for all i € N, we say that {(a;, A;) }ien is a weighted
d-covering of f. If f = xg we call {(a;, A;) }ien a weighted (- )covering of E.

Let § € (0,+0o¢], and s € [0,00). The weighted integral of f is defined by
(3.2) / fdHy =inf Y a,((A)),
X i=1

where the infimum is taken over all weighted d-coverings of f, and

dH® = i dH;.
f,riw = [ s
Note that the limit exists since the integral (3.2]) is non-increasing in 4.

If no d-cover of f exists, we set the weighted integral of f to be +oc.

Remark 3.2. Since the diameter of a set and of its closure are equal, we may assume that
the sets A; are closed.
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Definition 3.3. The weighted Hausdorff content and the weighted Hausdorff measure of a
set F C X are respectively defined by

)\g(E):/ xpdH; and N(E)= lim Aé(E):/ Xe dH®.
X §—0+ X
In other words A\j(E) = inf) .~ a;(*(4;), where the infimum is over all collections

{(a;, A;) bien such that > a;xa,(x) > 1 for all z € | and diam A; < 6, for all i € N.

Remark 3.4. Note that while in the definition of a step function we assumed that the
sets A; were disjoint, the sets A; here are not required to be disjoint. A step function
uniquely determines the sets A; and numbers a;, but the same function on the right hand
side of can be represented in several different ways. It is important that the infimum
in is taken over all collections {(a;, 4;)} and not only over those corresponding to
step functions.

Remark 3.5. It seems that Federer [10, 2.10.24] was the first to define weighted integrals.
He denoted them by As(f) but did not use any terms to refer to them. The first systematic
study of weighted measures was done by Kelly [17, 18] under the name of method III
measures, although he is using the name weighted covering. The name weighted Hausdorff
measures was introduced by Howroyd [15], see also [24, Chapter 8]. The term weighted
integral and the notation [ f dHj appears in [27].

3.1. Coarea inequality for weighted integrals. To provide motivation for the notion
of the weighted integral, we will prove . In fact we will prove a slightly more general
inequality that applies to any uniformly continuous map between metric spaces. The point
is that the notion of weighted integral is designed to make the proof very easy.

Definition 3.6. For an arbitrary map f : X — Y between metric spaces, s,t € [0, 00),
d € (0,00], and any E C X we define

OY(f,E) 1nf2§5 A,

where the infimum is taken over all d-coverings {A4;}2°, of E. Obviously, § ~ ®3' is
non-increasing, allowing the definition

O*(f, B) = lim ®3'(f, E).

Remark 3.7. This definition is motivated by a similar definition in [I2, Appendix Al and
also by the definition of the mapping content introduced in [2, 5], see Definition [7.20}

The proofs of the next two easy results are left to the reader.
Lemma 3.8. For any ¢ € (0,0¢], s,t € [0,00), E,F C X, and f: X — Y we have
OY(f,EUF) <Y (f,E)+ ' (f, F) so @ (f,EUF)<®%(f E)+ & (f,F).

Lemma 3.9. If f : X — Y is Lipschitz continuous and E C X, s,t € [0,00), and
d € (0,00], then

@5(f.B) < (Lip f) T HT(E) so @°(f.B) < (Lip f)

s+t wert

Wy

Hs+t< )
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The next version of the coarea inequality easily follows from the definition of the weighted
integral and is a building block of the proof of the main coarea inequality, Theorem [7.1]

Lemma 3.10. If f : X — Y s a uniformly continuous map between metric spaces,
0<t<s<ooand E C X, then

(3.3) lim % "(fN(y) N E)dH (y) < ([, E).

=0t Jy
Remark 3.11. At this point it is not entirely clear that we can pass to the limit under
the sign of the integral as § — 07, since we do not a priori have the monotone convergence
theorem for weighted integrals. In fact such a result is true since according to Theorem[3.15
the weighted integral equals the upper integral, but Theorem is difficult.

Remark 3.12. Lemma and Lemma yield that if in addition f is Lipschitz con-
tinuous, then

tim [ (7 (0) 0 E) d () < 90N E) < (Lip £ S

6—0t Y Ws
Therefore Theorem [I.1]is a consequence of the easy Lemma and the deep Theorem
(reformulated below as Theorem [3.15)).

1 (E).

Proof of Lemma[3.10, Assume that ®"*7'(f, F) < oo, as otherwise the inequality is obvi-
ous. Fix 6, € (0,00]. Given ¢ > 0 and 0 < § < J,, let {A;}°, be a d-covering of E such
that

(3.4) ZCt DT (A) < 2F(f E) +
Since the sets {4; : y € f(A;)} form a d-covering of f~(y) N E, we have

(3.5) H (' (y)NE) < Z aixr,(y), where a; = (""(A;) and F; = f(A;).

i=1
Since the mapping f is uniformly continuous,

n(6) = sup diam f(A) -0 asd— 0F.
ACX

diam A<$

According to (3.5), {(a;, F;)}2, forms a weighted n(d)-covering of the function y +—
H5'(f~'(y) N E) and the definition of the weighted integral yields

/ Hio )N E)dH;, 5 (y) < Zazg <P N[, E)+e

where the last inequality is nothing else, but inequality (3.4] @ Letting § — 0" first and
then € — 01 proves

/H y) N E)dH (y) < d"*7'(f, E).

Since, 6, was arbitrary, (3.3 . follows. O
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The strategy to prove the coarea inequality, Theorem (generalization of Theorem,
from Lemma [3.10| is to apply Theorem below to replace the weighted integral in
inequality with the upper integral and then apply the monotone convergence theorem,
Lemma [2.2] So, it is clear that the heart of the proof lies in proving Theorem [3.15] and
this is the focus of the Sections 4, 5, and 6. Here is where we deviate from literature
significantly and provide a new proof that avoids Davies’ result, Theorem [L.6]

3.2. Fundamental properties of weighted integrals. Fundamental properties of the
weighted Hausdorff measures and the weighted integrals are stated in Theorem [3.13| and
Theorem [3.15] which is a reformulation of Theorem [L.5 in a notation consistent with that
of Theorem [3.13]

Theorem 3.13. Let X be a metric space and s € [0,00). Then for any E C X,

(3.6) N(E) = H(E).
Moreover, if § € (0, 00], then
(3.7) (8-6°) " Hes(E) < N5(E) < H3(E).

Remark 3.14. Passing to the limit in (3.7) as § — 07, yields (8- 6%)"'H(E) < \3(E) <
‘H?(E) which is weaker than (3.6) so (3.6)) is somewhat surprising.
Theorem will play a crucial role in the proof of

Theorem 3.15. Let X be a metric space. For s € [0,00), and any f : X — [0, 00] we
have

(3.8) /X.deS:/X*deS.

Remark 3.16. Inequality (3.7)) is stated implicitly in [10, 2.10.24], as a step in the proof
of Theorem [3.15] (under assumptions (a’) or (b’)) and the general case follows from the
theorem of Davies [4], see [15, [17, [1§].

4. WEIGHTED COVERING THEOREM

The proof of inequality (3.7)) is based on the following weighted covering result that we
learned from Nazarov through MathOverflow [21]. The result is interesting on its own and
we believe it will have applications beyond those given in the paper.

Theorem 4.1. Let E be a bounded and non-empty subset of a metric space. If 0 < b; < o0,
i=1,2,...,N, are fivred numbers and {(a;, B;)}Y., is a finite weighted covering of E by
(either all open or all closed) balls i.e.,

N
(41) XE < ZaiXBw a; > 07
i=1

then there is a subfamily of pairwise disjoint balls {B;, }é?:l such that

k k N
Ec|J3B;, and Zlbij < 22@@.
J= i=

J=1
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Remark 4.2. Later, we will apply Theorem with b; = (*(B;).

Proof. We will prove the result using induction with respect to N. More precisely, we
will prove that for every NV € N, the statement is true for any set £ that is bounded and
non-empty and any weighted covering of it with N balls.

It is important to prove the statement for all sets E. Proving it for a fixed set F would
not work, since the induction hypothesis will be applied to sets different than E. Namely,
it will be applied to subsets of E.

If N =1, the claim is obvious, because we have one ball B; and a; > 1. Suppose N > 2
and the claim is true if the number of balls is less than or equal to N — 1, we will prove it
for N balls.

Let {(a;, B;)}Y., be a weighted covering of F satisfying ([4.1)). For a = (ay,...,ay), let
N N
W= {CY ca; >0, Z%’XBi > XE}7 We = {Oé 1 >a; 20, ZO@XBi > XE}-
i=1 i=1

Let 9(a) = SN ayb;. If @ € W, then
aAl=(min{ay,1},...,min{ayn,1}) € W. and ¢(aAl) <P(a)

so infy ¢ = infy,_ 1. Since W, is compact and non-empty, there is o € W, such that
Y(a) = infy, » = infy 2. In particular,

N N
i=1 i=1

If there is i, such that a;, = 0, we are done. Indeed,

XE < E QX B;
1<i<N
itio

is a weighted covering of F by N — 1 balls so according to the induction hypothesis, there
is a subfamily of pairwise disjoint balls {B;, }5_, such that

k k N N
j=1 j=1 1 i=1

1<i<N =
i#io

Therefore, we may assume that o; > 0 for all i € {1,..., N}.

Lemma 4.3. If a € W, is a minimizer of ¥ and «; > 0 for all i, then for any i, €

{1,..., N}, we have
b,
b > L
> bz

{’i: BimBil ;ﬁ@}
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Proof. Since the sum on the left hand side includes «;, b;,, the claim is obvious if ;; > 1/2.
Therefore, we may assume that 0 < «;; < 1/2. Let 0 < h < o, and define

o it B;NB;, =,
a; = a;(1+2h) if B;N B, # @, 1 # iy,
a; —h it i = 1.
We claim that
N
(4.3) (Gr,...,an) EW e, Y dixs > Xp.
i=1

If x ¢ By, then &y, xp, (v) = i, x,, (z) = 0. Since & > a; for all i # i1, we have

(4.4) Z aixp(T) > ZaiXBi () = xe(@).

If x ¢ E, then xg(z) = 0 and there is nothing to prove.
If x € EN B, then

N
1= XE(x) S ZalXBz(a:) = Q4 + Z 4,
i=1

{i: 1#£i1, CEEBiﬂBil }

and hence

Z ai21—ai1.

{’i: i#£i1, $€B¢f‘lBi1}
Therefore,

Z aixp,(¢) = (@i, —h) + > a;(1+ 2h)

{i:i;ﬁih IEBiﬂBil}
> (v, —h)+(1+2h) (1 —a;) =14+ h(1 —2a;) > 1 = xp(x),
where the last inequality is a consequence of 0 < «;; < 1/2. This completes the proof of

E3).

Since 1) attains minimum at «, we have

N N
= =1

i=1 7
Since o = O~él if Bl N Bi1 = @, " y1€1dS
Oéilbil + Z Oéibi
{’i: i#£i1, Bir‘IBil;ﬁ@}
<(an —Mby+ ) a(l42h)b;
{i: i#i1, BimBil ;AZ}

and hence
hbi, < 2h > aib;
{i: 41, BiﬂBil#Z}
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which finishes the proof of Lemma [4.3] O

Now we can complete the proof of the theorem. Let B; be a ball with the largest
diameter and let

We have

UB,- C 3B;, and Zoz,-bi > bﬂ

iel iel 2
The inclusion is a consequence of the triangle inequality and the fact that diam B;, >
diam B; for ¢ € I, while the inequality follows from Lemma [4.3

If £\ 3B;, = @, then (4.2)) yields

N N
E C ?)le and bil S 2 Zazbl S 22 Oéibi S 2Zaibi,
il i=1 i=1

and the theorem follows.

Therefore, we may assume that E \ 3B;, # @. Since the balls B;, i € I have empty
intersection with £\ 3B;,,

Z QX B, = XE\3B;,

icle
and hence {(ay, B;)}iere is a weighted covering of £\ 3B;, and the number of balls in that
covering is less than or equal to N — 1 (we removed at least one ball: B;,). According to
the induction hypothesis, we can select pairwise disjoint balls {5;, };?:2, i; € I such that

k k
E\3B;, | J3B;, and > b, <2) aib;.
j=2 =2

iele

Therefore,

=2

k k
Ec3B,ul 3B, =3B,
j=1

(note that B;, N B;, = &, for j > 2 so the balls {B; }¥_, are pairwise disjoint) and

k k N N
J=1 Jj=2 icl iele i=1 i=1
The proof is complete. O

Corollary 4.4. Let E be a non-empty subset of a metric space, {b;}5°,, a sequence of non-
negative numbers, and {(a;, B;)}52,, a weighted covering of E by (all open or all closed)
balls 1.e.,

o
XE < Z%‘XB“ a; > 0.
i1
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Then there is a subfamily of balls {B;, }52, such that

j=1 =1

J=1

Remark 4.5. Differently than in Theorem we do not assume that the balls {B; }22,
are pairwise disjoint.

Proof. If Y2, a;b; = 400, the claim is obvious. Therefore, we may assume that M :=
Z?; a;b; < 0o. We divide the series into finite blocks such that

Nk

Zaﬁ-Z( 3 a,-bi>, 0= Ny< Ny <N, <

k=0 i=Nj,+1

<4-kM
Let
Ng41
E, = {a: ek Z 2" gy, (2) > 1}.
i=Ng+1
Observe that E = J;—, Ex. Indeed, if 2 € E, then
N1
3 (3 annlo)) = Sanalo) > nete) = 1= 32
k=0 1= Nk+1
Therefore, there is k such that
N1
Z aixp,(r) > 27V 5oz € Ey.
l—Nk+1

By the definition of Ey, the family {(2*"'a;, B;) ,JL\Q“K,; 1 1s a finite weighted covering of Ej.

According to Theorem , we can select pairwise disjoint balls {B,L-(f)}ﬁ’“zl from {Bl}f\fﬁ 1
so that

L Ngi1
B, c|J3BY and Zb(k <2 Y oMlab <427k
j=1 7j=1 i=Ni+1

To be more precise, we select this family of balls only if Ey # @. If E, = &, we select
empty family of balls.

If we relabel balls as
(B ke NU{0}, 1<j <6} ={B,}2,,

then e
oo Y fe’e)
E= UEkoUSB(’“ 3B,
k=0j=1 7=1
and

ibij =" u < i4-2’“M:8M:8iaibi.
j=1

k=0 j=1 k=0 i=1
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5. PROOF OF THEOREM [3.13]

First we will prove (3.7). Note that the inequality \j(E) < Hj(E) is obvious and
follows upon taking weighted coverings with coefficients a; = 1 so it remains to prove that
55(E) < 8-6°M\i(E).

Let {(a;, A;)}52, be a weighted d-covering of E,

XE S ZaiXAm Q; Z 07 diam Al S J.
i=1
Each of the sets A; is contained in a closed ball B; of radius diam A;. Hence
diam(3B;) < 6diam A; <66 so (°(3B;) < 6°C°(A;).
Since {(a;, B;)}32, is also a weighted cover of E, Corollary [£.4] with b; = (*(4;) yields a
subfamily {B;, }32, of balls such that

EcLﬁ&jam §:¢ <8§}w3

j=1

Therefore,

Hes(E) < ZCS (3B;;) < GSZCS ) <8- 6SZG¢CS(Ai)
i=1

and taking the infimum over all Welghted (5—cover1ngs {(a;, A;)}2, of E proves that
55(E) < 8-6°M\;(F) and completes the proof of (3.7]).

Passing to the limit in as 6 — 07 yields
(8-6°)'"H (E) < XN (E) < HY(E).

This proves when H?*(E) = oo. Therefore, it remains to prove
(5.1) H(FE) < N(E) assuming that H*(E) < oc.
Let E be a Borel set such that £ C E and H*(E) = H*(E).

Fix ¢ > 0. For each j € N, let W, be the set of points x € E such that

t€FCB(z,1/j) = H(ENF)<1+e)C(F).

Note that W; € W5 C ... and Lemma applied to E regarded as a metric space yields

(because H*(E) < o0)
w(E\Jw;) =0
j=1
Therefore, Lemma [2.13| implies

H%@gﬂﬂE@Qwﬂ+H%Ewgwﬁ:ggW@mww
0

(. /
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It remains to show that
(5.2) H(ENW;) < (14)(A]);(E) +¢)
as passing to the limit as 7 — oo and then as ¢ — 07 will imply .
Fix j € N. Let {(ax, Ax)}72, be a weighted 1/j-covering of E by closed sets such that

[e.9]

(5.3) > ari(A) < X (E) + e

k=1
Let I ={k: W;NA; # @}. We have

XEnw; < E Ak XEnAy-
kel

Let

Z = {x: ZakXEmAk(a:) > 1}.

kel
The set Z is Borel, ENW; C Z, and

Xz <Y rXgna, -
kel

Integrating this inequality with respect to H?® yields
H(ENW) SH(Z) <D ayH (BN Ay).

kel
If k € I, then there is x € W; N A, and hence

€A, CB(x,1/7) so HI(ENAL) < (1+e)C%(Ar)
by the definition of the set W;. Therefore,

H(ENW)) < (1+2) Y arC*(Ar) < (1+2)(A5(E) +2),
kel

where the last inequality follows from (5.3). This proves (5.2)) and completes the proof of
the theorem.

O

6. PROOF OF THEOREM [3.15]

We first prove the following easier inequality

(6.1) /X.deSS/X*deS'

To this end it suffices to prove that for any 6 > 0

(6.2) /X.fdﬂgg/):fd’ﬂs,
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as (6.1)) will follow upon passing to the limit as 6 — 0. Assume that the right-hand side
of (6.2)) is finite. Given ¢ > 0, it follows from Lemma that there is a step function

[e.e]
F<) aixa, ai>0
=1

such that

[e.9]

> aH(A; <Za7—[$ / deS+—
i=1
For each i, there is a d-covering A; C U =1 Aij, satistying

3
ZC zg < H(; ) + 2“'—1@2
Then with ;5 = Qj,
F<D aixa < Z%‘(ZXA”) =Y aixa,
i=1 =1 j=1 ij=1
80 {(aij, Aij) }75-, is a weighted d-covering of f and hence

1o i —za@cw)

i,j=1

< Do (H5(4) + 7y ) zama s< [ faw e
=1
Since £ > 0 was chosen arbitrarily, (6 and hence 6.1]) follow.

Now we must prove the reverse inequality

(6.3) /X*deSS/X.deS'

Clearly, it is important to consider the set A = {x € X : f(x) > 0}, where the function f is
positive. We will split the proof into three cases. We shall also assume that the right-hand

side in (6.3)) is finite.
CASE 1. H*(A) < 0.

This case is similar to the proof of (3.6 - Let € > 0 be given. According to Theorem
there is a Borel set A such that A € A and H*(A) = H*(A). Applying Lemma - to A
regarded as a metric space, we have that there is a set £ C A, H*(E) = 0, such that

VeecA\E 36,>0VFCX (z€FCB(x,) = H(ANF)<(1+e)C(F)).
Let W; C A be the set of points x € A such that
(6.4) ve€F CBx,1/j) = H(ANF)<1+e)(F).
Clearly, W, C W, C ... and
A=EulJwW;, H(E)=0.

J=1
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It suffices to prove that for each j, we have

(6.5) /X*fXWjdwg(He) (/X°fd’+z§/j+g>,

because, (6.3)) will follow from Lemma upon passing to the limit, first as 7 — oo, and
then as e — 0%.

According to the definition of the weighted integral and Remark [3.2] for each j there is
a weighted 1/j-covering

N 1
ZakXA]k Aji-closed, diam Aj, < :
k=1

> anl(Ag) < / fdM;,; +e.
k=1 X
Let I ={k: W;NAj, # @}. We have

fXWj S ZakXAﬂAjk
kel

such that

and measurability of the right hand side yields

/fXW dH® <3 ayH (AN Ay) < O

kel

If ke, and x € W; N Ajx, then z € Aj, C B(z,1/5) so (6.4)) yields

0 < <1+6)ZakCS(Ajk) < (1—|—5)(/X.fd7-li/j+6>.

kel
This completes the proof of (6.5]).

Case 2. A= J:2, A;, where H*(4A;) < oo.

By replacing A; with Ulgjgi A;, we can assume further that A; C A C ... Since
H({z : (fxa,)(z) > 0}) < oo, inequality (6.3)) follows from Case 1 applied to fxa, and
from Lemma [2.2:

/ Fanr / Froa, dH° < / Frad e < / J .
X X X X

CASE 3. The measure H® of the set A is not o-finite.

In order to prove inequality (6.3]), it suffices to show that

(6.6) /X.fd’Hs = o

To prove this, we will use Theorem Since the H* measure of the set {f > 0} is not
o-finite, there is ¢t > 0 such that H*({f > t}) = oco. Therefore, for every M > 0, there is
0 > 0 such that

He({r e X o f(z) 2t}) > M
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so Theorem yields (C' = 8- 6°):

[ rae = [Covpaans = osr = 0) > (5 2 0) 2 ¢,
X X

and follows. The proof of Theorem (and hence that of Theorem is complete.

7. GENERALIZED COAREA INEQUALITY

The next result is a generalization of Theorem [I.1] and it is motivated by the results in
[2, 5, 12]. Recall that ®*! was defined in Definition [3.6]

Theorem 7.1. If f : X — Y s a uniformly continuous map between metric spaces,
0<t<s<ooand E C X, then

/Y H T () N E) dH () < 851, ).

Proof. It follows immediately from Lemma [3.10, Theorem [3.15] and Lemma [2.2] O

Proof of Theorem 1.1 Theorem and Lemma imply inequality (1.1) and it remains
to show measurability of the function (1.2) under the assumptions that X is boundedly
compact, E is H*-measurable and H*(F) < oco.

This fact is standard, but for the sake of completeness we will provide a short proof. Since
bounded and closed sets are compact, Lemma implies existence of a decomposition

E:NUUKZ-, H(N) =0, K;C K, C...compact sets.

=1

It follows from ([1.1]) that H*~*(f~'(y) N N) = 0 for H'-almost every y € Y so for almost
all y € Y we have

H (TN y)NE) =H"! (f‘l(y) N U Ki) = lim ®*7 (' (y) N K;).

11— 00

Therefore it remains to show measurability of the function y — H*~/(f~(y) N K), where
K C X is a compact set. To this end it suffices to prove measurability of the sets

Yo={yeY: H ' (f'(yynK)<u}, ueR
If u<0,Y, =9 so we may assume that u > 0.

Recall that in Section the content °~" was defined with open sets. Since it defines
the standard Hausdorff measure, we have

Y, = ﬂ{er: A5 (FHy) NK) <u+%}

so it suffices to show that the sets of the form

V={yeY: (" (y) NK) < v}
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are open (for v and § positive values). To this end it suffices to show that if y € V' and
yr — v, then y, € V for sufficiently large k. For y € V' fix an open covering

K c|JU;, diamU; <6, ) ¢H(U;) <w
j=1 j=1

Using a standard compactness argument, it follows that there exists a ko such that f~!(y)N
K c U2, Uj for k > k, and hence T yx) N K) < v, proving that y, € V for
k> k. O

7.1. The lower density and doubling spaces. Throughout Section [7.1, X and Y will
denote metric spaces. In this section we will improve Theorem under the assumption

that the Hausdorff measure on X is doubling. The main result of this section, Theo-
rem [7.16] is closely related to the coarea formula, see Corollary and Remark

Definition 7.2. For an arbitrary map f: £ - Y, F C X, s € (0,00), t € [0,00) and
d € (0, 00] we define

H'(f, B) = mfZ’HS ¢'(Ay),
where the infimum is taken over all (5—cover1ngs {A;}32, of E. If no such covering exists
then Hy'(f, F) =
The following elementary observation will be useful.

Lemma 7.3. For any map f : E =Y, EC X, s € (0,00), t € [0,00) and ¢ € (0,00] we
have 3
o5 (f, E) = Hy'(f, E).

Proof. Since H:_(f(A;)) < ¢°(f(A;)), the inequality 7:[§’t < @3 is obvious. Therefore, it
remains to prove that ®3'(f, F) < Hy'(f, E) and we can assume that H3'(f, E) < occ.

Given € > 0, let {A;}32, be a d-covering of F such that
D CANH(F(A)) < HF'(f.B) + 5
—1

For each i € N, let {C;;}52, be a covering of f(4;) such that

271(CH(A) + 1)

ch ) < M (F(A)) +

Let A;; = A; N f~HC; )Then

o0

3 (f, E) ZC f(Aij)) < ZCt(A¢)<ZCS(Cm‘)>

,j=1 i=1 j=1

<D CANH(F(A)) + 5 < H (£, B) +2
i=1

and the result follows. O
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Definition 7.4. Let X and Y be metric spaces, £ C X any subset, and s > 0. For any
mapping f : F — Y, we define the lower s-density of f as
s (f(B E
O;(f, E,x) = liminf Heo(f(Blz,r) N B)) )

r—0+ WsT?®

Remark 7.5. It is a routine exercise to show that we can replace open balls by closed
balls in the definition of the lower density i.e.,
s (f(B NE
0:(f, E.x) = limint "/ B&N) N E)).

r—0+ wgrs
Remark 7.6. Note that if f is Lipschitz, then ©3(f, E,x) < (Lip f)°.

Remark 7.7. In the case when X = R"™™, s =n, and Y is any metric space, the lower
(and upper) n-density of f was introduced in [I3] and it played an important role in the
implicit function theorem for Lipschitz mappings into metric spaces.

Definition 7.8. We say that a Borel measure p on X is doubling if 0 < p(B(z, 7)) < oo for
all z € X and r > 0, and if there is a constant C' > 0 such that u(B(x,2r)) < Cu(B(z,r))
for all z € X and r > 0.

The next definition provides a particularly important instance of a doubling measure.

Definition 7.9. We say that the Hausdorff measure H®, s > 0, on X is Ahlfors regqular,
if there are constants Cy, Cp > 0 such that Cyr® < H*(B(z,r)) < Cpr® for all x € X and
all » < diam X.

Definition 7.10. We say that a metric space is metric doubling if there is M > 0 such
that every ball B can be covered by no more than M balls of half the radius.

Note that if a metric space is metric doubling, then bounded sets are totally bounded.
Recall that a metric space is compact if and only it it is complete and totally bounded.
Therefore we have

Lemma 7.11. If X is metric doubling and complete, then X s boundedly compact.

The following lemma is an easy exercise

Lemma 7.12. If i is a doubling measure on X, then X s metric doubling.

Indeed, there cannot be too many points in B whose mutual distances are greater than
or equal to r/2, where r is the radius of B.

The next result is the Vitali covering theorem for doubling measures, see [14, Theo-
rem 1.6]

Lemma 7.13. Let p be a doubling measure on a metric space X and let E C X. If F s
a family of closed balls centered at E such that for every x € E

inf{r >0: B(z,r) € F} =0,
then there is a countable subfamily {Bi, By, ...} C F of pairwise disjoint balls such that

u(E\GBZ) ~0.
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The next result is the Lebesgue differentiation theorem for doubling measures. It is a
consequence of Lemma [7.13] see [14, Theorem 1.8]

Lemma 7.14. If g is a locally integrable function on a metric space with a doubling measure
i, then

(7.1) lim gdu = g(x) for p-almost all x € X.

r—0 B(IE,’I‘)

Lemma 7.15. Suppose the metric space X is metric doubling and E C X is bounded. If
s,t €[0,00), and f : E — Y is a mapping, then ®*(f, E) = 0 if and only if ®%(f, E) = 0.

Proof. Since ®%! < ®%! one implication is obvious and it remains to show that if
®H(f,E) = 0, then for any 6 > 0 we have ®;'(f, E) = 0. Since E is bounded and
X is metric doubling, E can be split into a finite number of pieces, say N(J) many, each
of diameter less than 9.

Given € > 0, let E C |J;2; 4; be a covering such that
3

;c%f(Ai))ct(Ai) < NG

By replacing A; with E'N A; we can further assume that A; C E. Each of the sets A; is a

union of N(§) sets {Aij}j-v:(f), each of diameter less that . Therefore,

oo N(6) 0o
O3 (f,B) <D0 3 CUF(AR)C (Ay) S N (@)D C(f(A))C! (A <&

i=1 j=1

O

Theorem 7.16. Suppose 0 <t < s < oo, the measure H* is Ahlfors reqular on a complete
metric space X, EE C X is closed, and f: E —Y 1is Lipschitz. Then

(72) [ nm ) < 5 [ ol B ana).
Y E
where Cy 1is the constant from Definition [7.9

Ws— Wy

A

Remark 7.17. The assumption that X is complete guarantees that X is boundedly com-
pact (Lemma . Since E is closed, B(z,r) N E is compact. We need this assumption
to prove measurability of ©L(f, E,-). We do not know if the theorem is true for any
H®-measurable set E, and without assuming that X is complete.

Proof. We can assume that E is bounded, because the general case will follow from the
inequality applied to E N B(z,, R) upon passing to the limit as R — oo. Note that in
order to pass to the limit on the left hand side, we need to use Lemma [2.2]

The density function ©L(f, F,-) is measurable. To see this it suffices to prove that the
function h,(z) = H: (f(B(z,7) N E)) (see Remark [7.5) is Borel and this is true since the
function is upper-semicontinuous meaning that limsup,_,, h.(y) < h.(7). Indeed, under
our assumptions, the set B (x,r) N E and its image are compact. We can approximate
HE (f(B(x,r)NE)) using an open covering {U;}22,. If y is close to x, then f(B(y,r)NE) C
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U;2, U; and we can use the same open covering {U;}°; to get the upper estimate for the

content H: (f(B(y,r) N E)).

Since H*(E) < oo (E is bounded and #H?® is Ahlfors regular), in view of Remark the
right hand side of ([7.2)) is finite.

According to Theorem [7.1], it suffices to prove that
/ O f, E,z)dH*(x) .
A JE

Let N be the set of points x € E for which (7.1)) does not hold with g = OL(f, E,-)xE.
Since H*(N) = 0, Lemma yields that ®**7*(f, N) = 0 and hence by Lemma ,

(7.4) OUTH(f E) = @V (f,N).

Ws— Wy

(7.3) OH(f ) <

Given e > 0 and § > 0, for each z € E\ N, there is a sequence r,; — 0%, B,; = B(z,r,,)
such that

HwﬂEmeng@ﬂﬁEwy+g§/ O'(f. E. 2)xs(2) dH*(2) + <.

B(z,rg,;)

WtT

Tt

Lemma applied to the family {B,,; : * € E\ N,r,; < 6/2} gives pairwise disjoint
balls B; with diameters less than ¢ such that

HS(E\GBZ) - HS<(E\N) \ GBZ) —0.
i=1 =1
Using a similar argument as in the proof of , one can easily show that
o ([ E) = @y (BN D B;).
i=1
Therefore, Lemma [7.3] yields

oy m) = (20 UB) = # (1 E0UB)
im1 =1

< CTHENB)HL(f(EN By))

st en)wrl({
i B

<= [ e ma) +<)

and the result follows by letting 6 — 0" and then ¢ — 0%, O

s

@
I
—

OL(f. B, 2)x(2) dM'(2) +2)

e

1 (x4,74)

(S

It was proved in [13, Proposition 5.2] that if f : E — R™ is a Lipschitz continuous map
defined on a measurable set £ C R", n > m, then ©7*(f, E,z) = |J™ f|(x), where

[T f|(z) = \/det(Df)(Df)T is the Jacobian.

This and the above result gives
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Corollary 7.18. If f : E — R™ is a Lipschitz map defined on a measurable set £ C R",
n > m, then

wn—mwm

[t nEy i) < 22 [ e i),

Remark 7.19. The celebrated coarea formula [9, Theorem 3.10], [10, Theorem 3.2.11],
states that under the above assumptions

/m”H"‘m(f (y) N E) dH™(y /IJmfI ) dH" ().

Since we obtained the Corollary as a consequence of rather general results valid in
metric spaces, it is not surprising that the result is not as sharp as the coarea formula. On
the other hand a localized version of Theorem would suggest a much weaker inequality
with | D f|™ instead of |J™ f| since | D f| can be regarded as a local Lipschitz constant of f.
This shows that Theorem and hence also Theorem are substantial improvements
of the coarea inequality.

7.2. Mapping Content. In the context of quantitative decomposition of Lipschitz map-
pings into metric spaces Azzam and Schul [2] defined the (n,m)-mapping content. This
notion was further investigated by David and Schul [5] (see also [13]).

Definition 7.20. Let Qg = [0, 1]""™ be the unit cube and X an arbitrary metric space.
For a Lipschitz map f : Qo — X the (n m)-mapping content of a set E C Q) is

HL(f, B mfZH" (Q))C™(Q1),
where the infimum is over all coverings of E by closed dyadic cubes with pairwise disjoint
interiors.
Remark 7.21. In fact their definition differs from ours by a constant factor depending on
n and m only.

It follows directly from the definitions and from Lemma [7.3] that
(7.5) LS, B) = H(f. B) < HL(f. B)
and David and Schul [5, Question 1.15] stated an open problem:
Is it true that 2™ (f, E) < C(n, m)H™™(f, E)?
As an application of Theorem [7.1] we obtain:
Corollary 7.22. Suppose f : Qo = [0,1]"™™ — X is a Lipschitz mapping into a metric
space and E C Qo. If H™(f, E) =0 then H™(f'(z) N E) =0 for H"-a.e. x € X.
Proof. 1t follows from ([7.5) and from Lemma that ®™™(f, E) = 0 and hence Theo-
rem [7.1] yields that
/ H™(f )N E)dH"(z) =0

and the result follows from . 0J
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