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Abstract: Poor workability is a common feature of calcium sulfoaluminate (CSA) cement paste.
Multiple chemical admixtures, such as set retarders and dispersants, are frequently employed to
improve the workability and delay the setting of CSA cement paste. A quantitative assessment of the
compatibility, efficiency, and the effects of the admixtures on cement paste workability is critical for
the design of an appropriate paste formulation and admixture proportioning. Very limited studies
are available on the quantitative rheology-based method for evaluating the workability of calcium
sulfoaluminate cement pastes. This study presents a novel and robust time-dependent rheological
method for quantifying the workability of CSA cement pastes modified with the incorporation of
citric acid as a set retarder and a polycarboxylate ether (PCE)-based superplasticizer as a dispersant.
The yield stress is measured as a function of time, and the resulting curve is applied to quantify
three specific workability parameters: (i) the rate at which the paste loses flowability, (ii) the time
limit for paste placement or pumping, marking the onset of acceleration to initial setting, and (iii)
the rate at which the paste accelerates to final setting. The results of the tested CSA systems show
that the rate of the loss of flowability and the rate of hardening decrease monotonously, while the
time limit for casting decreases linearly with the increase in citric acid concentration. The dosage
rate of PCE has a relatively small effect on the quantified workability parameters, partly due to the
competitive adsorption of citrate ions. The method demonstrated here can characterize the interaction
or co-influence of multiple admixtures on early-age properties of the cement paste, thus providing a
quantitative rheological protocol for determining the workability and a novel approach to material
selection and mixture design.

Keywords: calcium sulfoaluminate cement; chemical admixture; retarder; rheology; workability

1. Introduction

Calcium sulfoaluminate (CSA) cement is one of the widely researched, low-energy,
low-carbon alternatives to conventional Portland cement (PC) [1,2]. The production of
CSA cement emits 60% less CO2 than that of PC—the latter contributes to about 8% of
the global CO2 emissions [3–5]. The lower emission potential of CSA cement is primarily
due to the lower calcareous raw material (i.e., limestone) content required to produce
the main cementing phase in CSA clinker, ye’elimite (Ca4Al6SO16), that releases ~0.22 t
CO2/t compared to the main cementing phase of PC, alite (Ca3SiO5), that generates ~0.58 t
CO2/t [6]. Additionally, a lower processing kiln temperature of 1250 ◦C is required for CSA
cement production, in contrast to 1450 ◦C needed for PC production, leading to additional
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fuel-derived CO2 emission savings and a beneficial energy economy [2,6]. CSA cement is
also attractive due to its unique characteristics in specialty applications for rapid setting and
expansion-shrinkage compensating paste formulations, although unanswered questions
remain regarding the long-term durability of CSA cement [7].

Poor early-age workability arguably remains one of the major challenges that limit
the general applicability of calcium sulfoaluminate (CSA) cements in conventional build-
ing construction, wherein the poor workability is a trade-off on the quick setting and high
early strength development of CSA paste. Two approaches can be employed to control CSA
workability, namely: (i) reaction rate control by regulation of the clinker chemistry or the
proportions of the ye’elimite, belite, and anhydrite or gypsum in the cement powder [8–11],
and (ii) use of chemical admixtures to control the reaction rate and/or improve the dis-
persion and fluidity. The latter is the most common approach in the field as it is easy to
apply on-site [12,13]. Organic acid and sugars are often used to effectively delay the CSA
rapid hydration reaction, while polymer dispersants (i.e., superplasticizers) are employed
to enhance dispersion and fluidity [14–16]. In practice, multiple admixtures are frequently
employed simultaneously to improve the workability of CSA cement. For example, a combi-
nation of superplasticizer and set retarder can be used to improve the flowability of the CSA
system [17–19]. The superplasticizer provides electrostatic dispersion and steric hinderance,
while the set retarder delays the hydration of cement particles and the formation of hydration
products, thus enhancing the workability retention [19]. For such applications, where multi-
ple chemical admixtures are incorporated in CSA cement paste, it is crucial to evaluate the
compatibility and co-influence of the admixtures on the workability and its variation at an
early age [20–22]. This is especially important for advanced paste formulations, such as those
for 3D printing and oil well cementing applications [23–25].

The slump test is one of the common methods used to evaluate the workability and
consistency of fresh concrete and mortar [13]. Although the method provides some indirect
flow properties, it is limited [26] and inadequate for time-dependent characterization of the
workability and flow dynamics of advanced cement-based mixture designs [27]. A wide
range of other approaches have been reported for measuring the workability of cement-
based materials, which are classifiable under five major categories: confined flow, free
flow, vibration, moving object, and rheology-based test methods [28,29]. Amongst these
methods, the rheology-based approaches feature the best technical versatility [29].

Thus, advanced assessment of the workability of fresh cement-based materials often
involves the measurement of basic physical quantities of the fluid property, for example,
yield stress and viscosity [30]. These rheological parameters can be used to estimate
the flowability and provide insight on the workability. However, most of the available
rheology-based studies of CSA cement materials do not provide quantitative estimation
of the workability [31,32]. Various analytical models have been applied to describe the
rheological behavior of cement paste, including the Bingham, Casson, Herschel–Bulkley,
and De Kee models, etc., which are mainly used to extract yield stress and viscosity [33,34].
However, these models have not been used to extract quantitative workability parameters
that examine the various regimes of the hydration reaction progress to quantifying the
flowability retention, placement time, and hardening rate, as presented in the present study.

There are other relevant studies, such as those by Roussel [35] describing the transient
and steady flow behavior of cement paste, the bi-linear model by Kruger et al. [36,37],
and the non-linear model by Lecompte et al. [38]. However, these models mainly focused
on estimating the buildability and shape retention of 3D-printed cement pastes, rather
than the quantification of the comprehensive workability of the pastes. In the present
study, a unique quantitative approach is presented for determining the workability of CSA
cement using a time-dependent rheological method. The approach quantifies the influence
of multiple admixtures on the critical early-age hydration regimes to determine specific
workability metrics vis-à-vis flowability retention, placement limit, yield stress growth rate
constant, and hardening rate, as a function of admixture dosage, thereby providing a novel
approach to evaluating the workability of advanced CSA cement paste formulations.
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2. Materials and Experimental Methods
2.1. Materials

A commercial calcium sulfoaluminate cement received from Buzzi Unicem USA
was used. The oxide composition of the cement, analyzed by energy-dispersive X-ray
fluorescence (EDXRF; Oxford X-Supreme 8000, Abingdon, UK) and verified by X-ray
photoemission spectroscopy (XPS; Thermoscientific Nexsa Surface Analysis, Waltham,
MA, USA), is shown in Table 1. The X-ray diffraction (XRD) pattern of the CSA cement,
obtained by a PANalytical X’Pert Pro multipurpose diffractometer with a 2θ configuration
using CuKα (λ = 1.540 Å) radiation, is shown in Figure 1. The mineral compositions of
the materials were quantified by Rietveld refinement of the X-ray diffraction pattern [31],
with the aid of the FullProf Suite integrated into the Match!—phase analysis by powder
diffraction software. The quantitative phase analysis shows that the CSA cement is a
belite-ye’elimite cement composed of 41.0% ye’elimite (C4A3S), 29.2% belite (C2S), 27.0%
anhydrite (CS), and minor 2.8% aluminate (C3A) constituents (Figure 1). A reagent grade,
powder citric acid (CA) additive (citric acid monohydrate, 99.5%) was used as a set retarder,
and a commercially available ASTM C494 Type A and F and ASTM C1017 Type I compliant
polycarboxylate ether (PCE)-based superplasticizer was used to improve dispersion. The
authors acknowledge the expectation that potential competitive adsorption may limit the
effectiveness of PCE in the system, but it is anticipated that the presented rheological
method may provide some insight on the complex interactions.

Table 1. Oxide composition of CSA cement.

Element Na2O MgO CaO Al2O3 SiO2 P2O5 SO3 K2O TiO2 Mn2O3 Fe2O3 LOI

% Mass 0.01 0.84 43.59 18.68 10.36 0.43 21.14 0.30 0.47 0.08 2.64 1.46
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Figure 1. Rietveld refinement of the X-ray powder diffraction pattern of the CSA cement, showing 
percentages of the constituent minerals. The reference patterns for the identified phases, ye’elimite 
[39], belite (larnite [40]), anhydrite [41], and aluminate [42], are from the Crystallography Open Da-
tabase (COD). 

2.2. Mixing Protocol 

Figure 1. Rietveld refinement of the X-ray powder diffraction pattern of the CSA cement, showing per-
centages of the constituent minerals. The reference patterns for the identified phases, ye’elimite [39],
belite (larnite [40]), anhydrite [41], and aluminate [42], are from the Crystallography Open Database
(COD).

2.2. Mixing Protocol

Nine CSA cement paste specimens were prepared with three different dosage rates
of the PCE (0%, 0.1%, and 0.5% dry mass of PCE by mass of cement) and three different
contents of citric acid (1%, 2%, and 4% dry mass of CA by mass of cement). These dosage
rates were chosen in the range commonly reported in the literature [16,17,43]. It was
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difficult to continue the rheology experiments without any CA past 5 min given the quick
setting of the mixture. Deionized water (DI) was used in preparing the cement paste,
maintaining the water/cement mass ratio (w/c) as 0.5. The water content of the PCE and
hydration water of the powder citric acid (CA) were accounted for as part of the total water.

The target mixture proportions of solids (CA and CSA cement) were first homogenized
before mixing with liquids (a mixture of an appropriate quantity of water and PCE) to
prepare the paste. In every paste, 10 g of cement was used in a 250 mL plastic beaker
and mixed with a four-blade, impeller-type overhead stirrer (RW 20 Digital, IKA) for one
minute at 1000 rpm. The mixed slurry was immediately loaded onto the rheometer for
characterization. The same mixing protocol was used for the specimen used for the Vicat
set time test, with a relatively larger quantity of materials required.

2.3. Parallel Plate Rheometry

The yield stress development of the fresh cementitious pastes was measured as a
function of time, with a stress-controlled shear rheometer (DHR-2, TA Instruments) utilized
in a parallel plate alignment using 40 mm-diameter top and bottom plates. The surfaces of
the plates were crosshatched (serrated) to reduce slippage and ensure a uniform cement
particle concentration near the plates [44]. The instrument and the geometry were calibrated
each time before starting any run. The cement pastes were contained in a fixed geometry gap
of 700 µm between the top and bottom plates. The temperature during the measurements
was maintained at 25 ◦C by a Peltier plate connected to the bottom geometry. A solvent
trap on the top plate was filled with deionized (DI) water to maintain constant humidity
around the pastes during measurement.

The rheology measurements were started at ~5 min, from the time of cement’s contact
with the mixing water (liquid containing water and PCE), i.e., the total time for mixing
and setting up the paste sample on the rheometer. The pastes were first pre-sheared at
0.1 s−1 or 30 s, followed by a 30 s rest, and then sheared at a very low fixed shear rate of
0.01 s−1 for 180 s. The shear stress at which the paste began to flow (i.e., the transition
from elastic deformation to plastic flow) during the fixed shear strain rate of 0.01 s−1 was
used to determine the “yield stress”, as exemplified in Figure 2. The peak shear stress is
a realistic approximation of static yield stress [45,46]. This method is commonly referred
to as the stress growth method, and the basis for its adoption in the present study is
discussed in detail in Section 3.5. The above measurement steps were repeated at intervals
of 3 min on the same sample to track the time-dependent evolution of yield stress of the
CSA pastes until setting or when the pastes could no longer be sheared by the rheometer.
Figure 2a displays a representative flow curve at a shear rate of 0.01 s−1 for a paste showing
the determination of yield stress, and Figure 2b shows the time-dependent yield stress
evolution curve, showing two linear regimes with slopes m1 and m2, representing the
rate of loss of the paste’s flowability and the rate of hardening, respectively. The time, tp,
which marks the point of transition from the flowability regime to the rapid hardening
regime represents the placement time, i.e., the time at which rapid loss of flowability sets
in as the paste accelerates to setting, such that at tp the mixture is unsuitable to be placed
but remains finishable [47]. These parameters were analyzed to examine the co-influence
of the admixtures on the CSA cement paste workability, as presented in the Results and
Discussion Section. It is worth noting that similar curves to the one shown in Figure 2b can
be produced by measuring time-dependent dynamic yield stress or viscosity evolution, but
the present study focuses on static yield for simplicity and its relevance to placement and
3D printing of cement paste [48–50].
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Figure 2. (a) Representative flow curve for a paste showing how yield stress (σy) was determined.
(b) Representative time-dependent yield stress evolution of CSA paste, showing the flowability
retention regime with slope m1, the placement limit tp, acceleration angle θp, and the hardening
regime with slope m2.

2.4. Vicat Set Time

The time of initial set of the CSA cement pastes was also measured using a manual
Vicat apparatus according to ASTM C191 [51]. The Vicat needle penetration test was carried
out every 3 min. The time was counted from the mixing of CSA cement with water and
admixtures. The Vicat initial set time is compared with the placement limit, tp, from the
rheological experiments.

3. Results and Discussion
3.1. Time-Dependent Yield Stress Evolution

The time-dependent evolution of yield stress for the nine investigated mixtures is
presented in Figure 3a–c as a function of hydration time, showing the broad effect of the
dosage rates of PCE and CA. As expected, the duration of the flowability regime increases
with the increasing content of the CA, while the dosage of the PCE does not have any
observable influence on that duration. This dominant influence of CA is due to its retarding
effect on hydration of the CSA compared to the PCE, which often shows a negligible
retarding effect on the CSA cement reaction [14]. Interestingly, the cement paste containing
4% CA showed a significantly higher initial yield stress value than those with a lower CA
content. Figure 3d displays a graph of the average yield stress (σyi) determined in the
flowability regime as a function of CA content. A sharp increase of σyi is noted for mixtures
made with more than 2% of CA, reaching a 4-fold increase at 4% CA. Previous studies
indicate that citrate anions can adsorb to positively charged cement particles, creating a
particle bridging bond between interacting particles at certain pH levels [52]. Thus, an
increase in CA content leads to a stronger attractive force between the cement particles,
thereby increasing the yield stress. In the investigated CSA mixtures, this effect appears
to increase rapidly after a CA content of 2% (Figure 3d). Therefore, while 4%CA may be
beneficial for increased retardation or a prolonged flowability time of about 120 min, the
trade-off is a higher initial yield stress, which implies high energy to initiate cement paste
flow. Hence, in defining workability, all aspects of the yield stress curve need to be critically
investigated to determine the appropriate mixture design for a given application.
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The effect of the multiple admixtures on the hardening regime is not as distinguishable
by visual observation of Figure 3a–c, as all the pastes feature a steep rise in yield stress
immediately following the loss of flowability. To better understand the co-influence of the
PCE and CA admixtures on the rheological behavior of the CSA cement pastes, the three
workability metrics (i.e., rate of loss of flowability, placement limit, and hardening rate,
illustrated in Figure 2b) were determined from the time-dependent yield stress evolution
curves of Figure 3a–c, and discussed in the following sub-sections.

3.2. Flowability Retention Metrics

The slope of the flowability regime of the time-dependent yield stress evolution curve
(Figure 2b) was used to examine the effect of CA and PCE contents on workability retention.
As shown in Figure 4, the slope m1, which represents the rate of the loss of flowability,
decreases monotonously with increasing CA content. The PCE dosage, on the other hand,
shows a lesser influence, impacting a slight increase in flowability retention (i.e., decrease
in the rate of the loss of flowability) at 0.1% PCE. This effect shrunk with the increasing
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CA content, which is attributed to competitive adsorption of the citrate over PCE [53–56].
The result suggests that PCE and CA show little or no synergy in improving retention
of flowability of the CSA cement pastes, due to the PCE–CA competitive adsorption
phenomenon. This is in agreement with literature data wherein PCE is reported to display
higher synergy with sodium borate set retarder in improving the flowability of CSA cement
pastes compared to CA [18,57].
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It is widely reported that the performance of PCE-based superplasticizers can be
perturbed by various anionic species, leading to a loss of the dispersive effect of PCE due
to competitive adsorption [58]. For example, hydroxides [59,60], sulfate ions [61], citrates
and tartrates [56], and other polymeric admixtures [62] are among the chemical species
reported to compete for the solid surface with superplasticizers.

Plank and Winter [56] showed that in the presence of citrate, PCE adsorption dropped
to less than 10% of dosage added, leading to a complete loss of flowability of the paste,
whereas in the presence of tartrate, PCE adsorption was reduced but remained high enough
to still provide good flowability. The study revealed a direct correlation between the
admixtures’ adsorption behavior and their anionic charge density. Thus, admixtures with
a higher anionic charge density show higher affinity to the binder surface and hence
adsorb preferentially.

In general, when several admixtures are present, molecules with a lower anionic charge
density will adsorb only if there are any remaining adsorption surfaces after the adsorption
of the molecules with a higher anionic charge density has completed. Thus, given that
the anionic charge density of citrate is higher than PCE due to the comparatively smaller
molecular size of the citrate ion compared to the polycarboxylate anion, the CA dosage in
the present study adsorbed preferentially, thereby leaving limited surfaces available for the
PCE adsorption, and hence the observed limited dispersive effect of the PCE.

3.3. Placement Limit Metrics

The time at which the yield stress evolution curve transitions from the flowability
regime to the hardening regime, defined as the placement limit, tp, was determined, as
shown in Figure 2b. The results from all the pastes were plotted as a function of CA
content, as shown in Figure 5. As seen in Figure 5a, tp increases linearly with increasing CA,
whereas the increase in the PCE dosage has a negligible effect on tp. The result is expected,
given that the CA can inhibit ettringite formation in CSA systems leading to a significant
retardation of the hydration reaction [63]. On the other hand, PCE can adsorb onto cement
particles, causing mainly a dispersion effect via the provision of steric hindrance and
electrostatic repulsion with minimal retardation effect [64,65]. Figure 5b shows that tp
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correlates somewhat linearly with the initial time of set measured with the Vicat apparatus.
While both parameters (tp and Vicat set time) are different, the linear relationship, although
not as strong compared to similar data for Portland cement systems [47], indicates that the
study of the early-age rheological behavior of CSA can inform some aspects of setting, in
addition to providing a means to assess the co-influence of chemical admixtures in CSA
cement pastes for optimizing the workability.
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Figure 5. Placement time, tp, of CSA cement paste: (a) evolution of tp as a function of admixture
dosage, and (b) variation in initial time of set with rheology-based tp.

3.4. Hardening Rate Metrics

The hardening rate (m2), which is the slope of the regime with a steep increase in yield
stress as the paste rapidly accelerates to setting, was extracted from the time-dependent
yield stress evolution curve, as shown in Figure 2b. The m2 indicates a monotonous de-
crease with increasing CA content (Figure 6a), similar to the trend observed for the rate of
loss of flowability (Figure 4). However, there is slightly more influence of PCE dosage on
m2 than m1, where the hardening rate decreases with the increasing PCE dosage. An alter-
native outlook on the hardening regime is through the acceleration angle, θp = tan−1m2
(Figures 2b and 6b). As seen in Figure 6a,b, the m2 and θp show similar trends; how-
ever, the m2 curve features a steeper decline, especially between 1% and 2% CA con-
tent. This result suggests that paste mixtures with a lower CA content featuring high m2
and high θp would be more suitable for 3D printing, while the opposite is the case for
pumping applications.
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The exponential growth model σyt
= σy0

ekt was applied to the yield stress data, where
σyt

is the yield stress at time t, σy0
is the initial yield stress first measured after mixing, and

k is the yield stress growth rate constant. The result is presented in Figure 6c, showing that
the yield stress decreases exponentially with the increasing CA content without a noticeable
effect of the PCE dosage. Overall, it can be deduced that the CSA mixture with 2% CA
and 0.1% PCE featuring low average yield stress in the flowability regime (σyi

), low rate of
flowability loss (m1), moderate placement limit (tp), and hardening rate (m2) presents the
best workability performance. However, as the workability score is application-dependent,
the above selection may be unfavorable for certain applications. For instance, in 3D printing
of cement-based materials, where a layered deposition approach is followed, a paste with
a high yield stress growth rate (k), characterized by a high rate of flowability loss (m1),
and a high hardening rate (m2) would be desirable; in contrast, for oil well cementing or
extended pumping operations, a lower yield stress growth and a low rate of flowability
loss would be more suitable. Thus, this technique can be used as a novelty approach to the
selection of materials and mixture design for specific applications.

3.5. Reproducibility, Effect of Geometries, and Test Parameter Selection

This section illustrates the extent of variability of the measured rheology-based work-
ability metrics with respect to different procedures and geometries that were screened
prior to the selection of the stress growth static yield stress procedure presented in the
preceding sections. To assess the methods, triplicate measurements were performed for
time-dependent (1) static yield stress (i.e., using the stress growth method, with a fixed
shear rate), and (2) dynamic yield stress (i.e., using Bingham model fitting of the shear
stress vs. shear rate curve). These methods were tested with two geometries: (i) parallel
plate geometry with crosshatched surface, and (ii) vane rotor and cylinder cup geometry.
One of the nine cement paste specimens prepared in Section 2 (mix proportion: CSA + 0.1%
PCE + 2% CA (w/c = 0.5)) was selected to demonstrate the reproducibility and applicability
of each method. Similar to the procedure described in Sections 2.3, 2.4, 3 and 3.1–3.4, a
temperature of 25 ◦C was maintained for all tests in this section.

3.5.1. Static Yield Stress Tests

(i) Parallel plate geometry (crosshatched surface to reduce slippage), and (ii) vane
rotor and cylinder cup geometry.

First, triplicate measurements were performed using the stress growth method de-
scribed in Section 2.3, with a 700 and a 1000 µm gap between the parallel plates, to
demonstrate the effect of the geometry gap. Then, the experiment was repeated with a
vane rotor and cylinder cup geometry, to understand the effect of geometry. The diameter
and length of the vane rotor bob was 28 and 42 mm, while the inner diameter of the
cylindrical cup was 30.33 mm. The operating gap was maintained at 4000 µm. Note that
the gap is not comparable to the geometry gap of 700 or 1000 µm used for the parallel
plate geometry, because the shearing effect in the cup-vane system is radially distributed.
About 90 g of CSA cement was needed to prepare sufficient material for this geometry
(9 times the amount required for parallel geometry). Third, the test with the parallel plate
geometry gap of 700 µm was repeated, but this time a larger amount of the cement paste
was prepared and stored in a sealed beaker under a 95% relative humidity, such that the
paste was re-mixed ex situ with the IKA four-blade overhead mixer at 250 rpm for 30 s
to break any false structure formation prior to loading fresh sample for the second step
measurement, and the subsequent step intervals until setting. This was to understand the
effects of mixing ex situ compared to the in situ pre-shear technique described in Section 2.3,
and to help verify suspension integrity or potential sedimentation of the paste during the
in situ measurement.

Figure 7a–d show the static yield stress evolution for each triplicate test, and Table 2
presents the workability metrics, m1, m2, tp, and θp, obtained from the tests and their respec-
tive standard deviations. The static yield stress results indicate that the measured quantities
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were reasonably reproducible, wherein the relative standard errors [(std. deviation of mean/
mean)×100] for each of the parameters were mostly ≤5%. The value of the θp was the
most consistent across all the static yield stress methods. It was observed that increasing
the parallel plate geometry gap from 700 to 1000 µm led to a slight increase in m1, a slight
decrease in m2, and a notable increase in tp. A higher propensity for error due to the
slippage phenomenon near the tp point was observed for the 1000 µm compared to the
700 µm geometry gap. Thus, the overall reproducibility was better for the 700 µm than for
the 1000 µm geometry gap, as seen in Figure 7a,b. Note that both gaps were within the
commonly recommended range, >10× the particle size [66] (average D50 of the CSA cement
used is 1 µm).
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Figure 7. Time-dependent static yield stress evolution obtained with: (a) parallel plate geometry gap
of 700 µm, (b) parallel plate geometry gap of 1000 µm, (c) vane rotor and cylinder cup geometry,
(d) parallel plate geometry gap of 700 µm accompanied with ex situ re-mixing of pastes at 250 rpm
prior to loading sample for each subsequent interval measurement, and (e) representative shear
stress—shear rate curve for the ramp-up and -down between 0 and 200 s−1, showing a minimal
hysteresis loop below the shear rate of 160 s−1.
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Table 2. Results from static yield stress tests with: (i) parallel plate geometry and (ii) vane rotor and
cylinder cup geometry.

(a) Parallel plate geometry with a gap of 700 µm

m1 (Pa/min) m2 (Pa/min) tp (min) θp (deg.)

Run 1 3.68 248.88 56.45 89.77

Run 2 3.62 243.90 55.75 89.77

Run 3 3.97 266.66 56.70 89.79

Average 3.76 253.14 56.30 89.77

STDEV 0.18 11.96 0.49 0.01

(b) Parallel plate geometry with a gap of 1000 µm

m1 (Pa/min) m2 (Pa/min) tp min) θp (deg.)

Run 1 5.41 127.26 95.0 89.55

Run 2 10.59 110.06 101.0 89.48

Run 3 7.04 122.08 90.0 89.53

Average 7.67 119.79 95.3 89.51

STDEV 2.65 8.82 5.50 0.03

(c) Vane rotor and cylinder cup geometry, with a vane rotor bob diameter and length of 28 and
42 mm, and an inner diameter of the cylindrical cup of 30.33 mm.

m1 (Pa/min) m2 (Pa/min) tp (min) θp (deg.)

Run 1 5.682 52.47 57.6 88.91

Run 2 4.371 48.02 57.0 88.81

Run 3 5.654 48.44 51.8 88.82

Average 5.236 49.64 55.5 88.84

STDEV 0.749 2.456 3.19 0.055

(d) Parallel plate geometry at a 700 µm gap: with ex situ mixing at 250 rpm prior to loading for
each step measurement.

m1 (Pa/min) m2 (Pa/min) tp (min) θp (deg.)

Run 1 −6.916 218.12 49.5 89.73

Run 2 −23.45 267.81 51.5 89.78

Run 3 −16.53 279.77 48.5 89.79

Average −15.63 255.24 59.8 89.77

STDEV 8.30 32.69 1.53 0.031

As seen in Figure 7d, the ex situ mixing method exhibited two tp points. The first tp
value corresponds to the value obtained with both the in situ parallel plate geometry gap
of 700 µm and the in situ vane rotor and cylinder geometry. The flowability regime of the
yield stress curve displays a negative slope, which suggests that the ex situ mixing had
improved the action of the dispersant with time, by breaking any initial flocs. Additionally,
the ex situ mixing at 250 rpm is believed to have disrupted the initial onset of structuration,
leading to a quick drop in yield stress and eventual re-establishment of the structuration
at the second tp prior to acceleration to the final setting. However, in general, the first
hardening regime, m2, following the first tp point clearly agrees with the test results from
the in situ parallel plate geometry with the 700 µm gap. It can therefore be concluded that
there was no sedimentation issue in the in situ parallel tests.

Consistent with recommendations in the literature [67,68], a low shear rate of
0.01 s−1 as described in Section 2.3 was adopted for the parallel plate-based static yield
stress tests. Figure 7e shows a representative behavior of the paste in response to a shear



Materials 2022, 15, 5775 12 of 17

rate or 0–200 s−1, showing a minimal hysteresis loop between 0 and 160 s−1. The hys-
teresis loop appeared to decrease slightly with the increasing shear rate and disappeared
at about 160 s−1. However, a low shear rate is favored for the parallel plate geometry in
the present study because a high shear rate can break the cement structure even close to
setting [68], and the cement paste tends to bleed out of the parallel plate confinement at
high shear, creating voids and erroneous data. However, it is noteworthy that the measured
rheological values are generally dependent on the applied shear stress and strain [45]. To
better understand the effect of a variable shear rate, dynamic tests are investigated in the
following sub-section.

3.5.2. Dynamic Yield Stress and Plastic Viscosity Tests

(i) Parallel plate geometry and (ii) vane rotor and cylinder cup geometry:
It is known that both static yield stress and dynamic yield stress are important for

different field applications [69]. For example, the dynamic yield stress of cement pastes
will provide useful information regarding cement flow behavior in pumping applications,
whereas the static yield stress can provide helpful data to inform paste stability [70] and
3D printability of cement pastes [23–25], etc. To understand the differences and illustrate
the applicability of the dynamic yield stress and plastic viscosity evolution to estimating
workability metrics described in the preceding sections, we investigated the traditional
fitting of the Bingham model to the shear stress vs. shear rate curve [66]. The selected paste
sample (CSA + 0.1% PCE + 2% CA (w/c = 0.5)) was characterized by the Bingham model-
fitting method using both the parallel plate geometry and the vane rotor and cylinder
geometry. A variable shear rate was imposed on the paste with a ramp-up of 0–200 s−1 that
was immediately followed by a ramp-down after a short rest of 5 s. The ramp-up served
as pre-shear, while the dynamic yield stresses and the plastic viscosities were determined
from the ramp-down utilizing the Bingham model, σ* = σy +

.
γ· µpl, where σ* is the shear

stress in a step (variable), σy is the yield stress,
.
γ is the shear rate (0–200 s−1), and µpl is the

plastic viscosity (i.e., slope of the straight-line path).
The evolution of the result of the triplicate measurement of the time-dependent dy-

namic yield stress and the plastic viscosity are presented in Figure 8, and workability
parameters in Table 3. As expected, the dynamic yield stress was significantly lower than
the static yield stress discussed previously. Interestingly, the data from the parallel plate
geometry of 700 µm and the vane rotor and cylinder cup geometry were very similar,
suggesting comparable suitability of both methods. However, the values of all the work-
ability parameters obtained with time-dependent plastic viscosity were generally lower
than the corresponding values obtained with dynamic yield stress evolution, except for the
θp parameter. In general, the dynamic yield stress from vane rotor and cylinder geometry
showed slightly better reproducibility, while the plastic viscosity from the parallel plate ge-
ometry showed better reproducibility. Additionally, it is noted that deviations in the trends
were much more pronounced as the hydrating paste transitioned from the initial dormant
state to the rapid acceleration stage of the hydration. This is reflected in the magnitude
of the standard deviation on m2 compared to m1. There was also less reproducibility for
plastic viscosity compared to the dynamic yield stress measurement.

In summary, the in situ static yield stress procedure with a parallel plate geometry gap of
700 µm was adopted for the main demonstrations discussed in Sections 2.3, 2.4, 3 and 3.1–3.4,
for the simplicity, requirement of small material, reasonable reproducibility, and relevance
of static yield stress to 3D printing of cement slurry. However, any of the above-discussed
rheological methods and geometry can be used to produce “self-consistent” workability
metrics for assessing cement mixtures. It is also possible to use oscillatory rheology (not
covered in the present study), wherein the time-dependent evolution of the storage modulus
and loss modulus can be used to develop the workability metrics. However, it is well-known
in the literature that a small change in rheology procedures and test parameters, including
mixing protocols and shear history of the pastes, can affect the absolute value of the measured
rheological quantities [71–74]. Hence, a selection of a favorable protocol must be performed
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after screening for any specific materials being studied and the selected parameters must be
carefully maintained for all mix proportions under comparison to reduce errors. Additionally,
caution must be applied when using the measured workability metrics as absolute number
values, instead they should be used as a relative measure to assess mix proportions.
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Table 3. Results from dynamic yield stress and plastic viscosity-based tests, using (i) parallel plate
geometry and (ii) vane rotor and cylinder cup geometry.

(a) Parallel plate geometry with a gap of 700 µm

By dynamic yield stress evolution By plastic viscosity evolution

m1 (Pa/min) m2 (Pa/min) tp (min) θp (deg.) m1 (Pa·s/min) m2 (Pa·s/min) tp (min) θp (deg.)

Run 1 0.219 15.90 100.5 86.40 0.0009 0.0176 50.6 1.008

Run 2 0.384 20.65 94.0 87.22 0.0008 0.0194 48.8 1.111

Run 3 0.254 16.14 96.0 86.45 0.0011 0.0160 49.8 0.917

Average 0.286 17.56 96.8 86.69 0.0009 0.0177 49.7 1.012

STDEV 0.180 2.676 3.32 0.462 0.0002 0.0017 0.90 0.097

(b) Vane rotor and cylinder cup geometry, with a vane rotor bob diameter and length of 28 and 42 mm, and an inner diameter of the cylindrical cup of 30.33 mm.

By dynamic yield stress evolution By plastic viscosity evolution

m1 (Pa/min) m2 (Pa/min) tp (min) θp (deg.) m1 (Pa·s/min) m2 (Pa·s/min) tp (min) θp (deg.)

Run 1 0.05 19.23 90.3 87.02 0.0018 0.015 45.2 0.867

Run 2 0.04 18.89 97.5 86.96 0.0032 0.011 48.9 0.662

Run 3 0.03 24.10 94.4 87.62 0.0025 0.011 45.0 0.653

Average 0.04 20.74 94.1 87.20 0.0025 0.012 46.4 0.727

STDEV 0.01 2.916 3.61 0.360 0.0007 0.002 2.20 0.121



Materials 2022, 15, 5775 14 of 17

4. Conclusions

A rheology-based method was employed to develop quantitative metrics for assessing
the workability of CSA cement pastes prepared with citric acid set retarder (CA) and
polycarboxylate ether-based superplasticizer (PCE). The method utilizes a time-dependent
yield stress evolution curve to quantify specific workability parameters that describe the
various regimes of the early-age hydration of the cement paste. Specifically, the rate of
loss of flowability (or flowability retention in reverse), placement limit, hardening rate,
acceleration angle, and yield stress growth rate constant were quantified. The results
show that:

• The flowability retention and placement time were significantly enhanced by increas-
ing the content of CA. On the other hand, the hardening rate, acceleration angle,
and yield stress growth rate decreased with the increasing CA content. In contrast,
an increase in PCE dosage showed a limited effect on the flowability retention and
placement time due to the competitive adsorption of the citric acid in lieu of PCE.

• The effect of the PCE dosage was more noticeable on the hardening rate metrics,
wherein the hardening rate decreased with the increasing PCE dosage.

• The paste made with 2% CA and 0.1% PCE provided an overall best workability
performance in terms of low average yield stress in the flowability regime (σyi

), low
rate of flowability loss (m1), moderate placement time (tp), and moderate hardening
rate metrics (m2, θp). However, different applications, such as 3D printing, extended
pumping, or oil-well cementing, will feature different combinations of the metrics: σyi

,
m1, tp, m2, θp, and k, for favorable mix design.

Thus, the described rheology-based method can be useful to assess different workabil-
ity metrics to guide material selection and mixture proportioning for various construction
applications, from precast to pumping and additive manufacturing of concrete. Consistent
with the existing literature, it is noted that, while a variety of rheology geometry and
protocols can be applied to generate the workability metrics that show similar trends as
demonstrated in this study, different rheology procedures as well the shear history of the
cement paste clearly affect the actual values of the measured quantities. Therefore, the
measured rheological quantities are best used in a relative sense to assess mix proportions
rather than interpreted as absolute values.
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