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Analysis of Theoretical and Numerical
Properties of Sequential Convex Programming

for Continuous-Time Optimal Control
Riccardo Bonalli, Thomas Lew, and Marco Pavone

Abstract— Sequential Convex Programming (SCP) has
recently gained significant popularity as an effective
method for solving optimal control problems and has been
successfully applied in several different domains. However,
the theoretical analysis of SCP has received comparatively
limited attention, and it is often restricted to discrete-time
formulations. In this paper, we present a unifying theoret-
ical analysis of a fairly general class of SCP procedures
for continuous-time optimal control problems. In addition to
the derivation of convergence guarantees in a continuous-
time setting, our analysis reveals two new numerical and
practical insights. First, we show how one can more easily
account for manifold-type constraints, which are a defining
feature of optimal control of mechanical systems. Second,
we show how our theoretical analysis can be leveraged to
accelerate SCP-based optimal control methods by infusing
techniques from indirect optimal control.

Index Terms— Optimal control, Nonlinear systems, Con-
strained control, Algebraic/geometric methods, Variational
methods.

I. INTRODUCTION

S
INCE its first appearance more than five decades ago, Se-

quential Convex Programming (SCP) [1], [2] has proven

to be a powerful and reliable algorithmic framework for non-

convex optimization, and it has recently gained new popularity

in aerospace [3]–[6] and robotics [7]–[10]. In its most general

form, SCP entails finding a locally-optimal solution to a non-

convex optimization problem as the limit point of a sequence

of solutions to convex subproblems formed by successive ap-

proximations. The main advantage offered by this approach is

the ability to leverage a wide spectrum of numerical techniques

to efficiently solve each convex subproblem [11]–[14], leading

to near-real-time numerical schemes. For example, among

the most mature SCP paradigms we find the well-known

Sequential Quadratic Programming (SQP) method [15]–[17].

Through the years, SCP’s sound performance has pushed

the community towards deep investigations of the theoretical
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nature of this method. The most informative result states that

when convergence is achieved, SCP finds a candidate local

optimum for the original non-convex problem, i.e., a solution

that satisfies necessary conditions for local optimality [18]–

[20] (convergence rate results have also been derived, see,

e.g., [21]). When used in the context of non-convex optimal

control, the SCP convexification scheme is usually applied to

the non-convex program that stems from a discretization of the

original continuous-time problem, providing only partial in-

sights with respect to the original continuous-time formulation.

For instance, are those guarantees only applicable to specific

discretization schemes? Can insights from continuous-time

analysis be leveraged to improve SCP-based optimal control

methods? To the best of our knowledge, the only continuous-

time analysis of SCP-based optimal control is provided in [5],

though the optimal control context considered by the authors is

very specific and the conditions for optimality used are weaker

than those in the state-of-the-art for continuous-time optimal

control (see our discussion in Section III-C).

Statement of contributions: In this paper we contribute to

filling the existing gap in the theoretical analysis of SCP-based

optimal control methods by providing a unifying analysis of

a wide class of SCP procedures for continuous-time (non-

convex) optimal control. Our main result consists of proving

that, under mild assumptions, any accumulation point for the

sequence of solutions returned by SCP satisfies the Pontryagin

Maximum Principle (PMP) [22], [23] associated with the

original formulation. The PMP represents a set of necessary

conditions for optimality in continuous-time optimal control

that is stronger than the traditional Lagrange multiplier rules

(the latter were investigated in [5]), and it often represents

the best result one might hope for in nonlinear optimal

control. Our convergence result stems from an analysis on the

continuity with respect to convexification of the Pontryagin

cones of variations, tools originally introduced by Pontryagin

and his group to prove the PMP. In addition, we relax some

technical assumptions that are often difficult to verify in

practice and that have been considered in [5] (e.g., strong

compactness of the set of admissible controls is replaced by

weak compactness), thus enlarging the class of problems that

can be solved by SCP with guarantees.

Our continuous-time analysis provides a generalization of

several existing discrete-time results and reveals new insights

into the nature of SCP applied to optimal control, ultimately

offering three key advantages. First, we can transfer the-
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oretical guarantees to any discrete-time implementation of

the continuous-time SCP-based optimal control formulation,

regardless of the time-discretization scheme adopted. Second,

we can directly and effectively extend these guarantees to

the setting with manifold-type constraints, i.e., nonlinear state

equality constraints often found when dealing with mechanical

systems. Third, we can provide a powerful connection to

indirect methods for optimal control such as (indirect) shooting

methods [24], enabling the design of numerical schemes that

accelerate the convergence of SCP.

Specifically, our contributions are as follows: (1) We derive

theoretical guarantees for continuous-time SCP-based optimal

control methods, whose related sequence of convex subprob-

lems stems from the successive linearization of all nonlinear

terms in the dynamics and all non-convex functions in the

cost. In particular, we apply this analysis to finite-horizon,

finite-dimensional, non-convex optimal control problems with

control-affine dynamics. (2) Through a study of the continuity

of the Pontryagin cones of variations with respect to lineariza-

tion, we prove that whenever the sequence of SCP iterates con-

verges (under specific topologies), we find a solution satisfying

the PMP associated with the original formulation. In addition,

we prove that up to some subsequence, the aforementioned

sequence always has an accumulation point, which provides

a weak guarantee of success for SCP (“weak” in the sense

that only a subsequence of the sequence of SCP iterates can

be proved to converge). (3) We leverage the continuous-time

analysis to design a novel and efficient approach to account for

manifold-type constraints. Specifically, we show that, under

mild assumptions, one can solve the original formulation (i.e.,

with manifold-type constraints) with convergence guarantees

by applying SCP to a new optimal control problem where

those constraints are simply ignored, thereby simplifying

numerical implementation. (4) As a byproduct, our analysis

shows that the sequence of multipliers associated with the

sequence of convex subproblems converges to a multiplier for

the original formulation. We show via numerical experiments

how this property can be used to considerably accelerate

convergence rates by infusing techniques from indirect control.

Previous versions of this work have appeared in [9], [10].

In this paper, we provide as additional contributions (i) a

new formulation with more general cost functionals, (ii)

convergence proofs under weaker assumptions, (iii) detailed

explanations on “transferring” theoretical guarantees under

time discretizations, and (iv) extensive numerical simulations

for the acceleration procedure based on indirect methods.

We do highlight three main limitations of our work. First,

being SCP a local optimization algorithm, our theoretical

guarantees are necessarily local (this is arguably unavoidable

given the local nature of SCP). Second, the assumption of

control-affine dynamics plays a crucial (though technical) role

in our convergence analysis. The extension of our results to

the more general setting represents an open research question.

Organization: The paper is organized as follows. Section

II introduces notation and the continuous-time non-convex

optimal control problem we wish to study. Our convergence

analysis of SCP-based optimal control methods is split in two

sections: In Section III, convergence is analyzed in the absence

of manifold-type constraints, and in Section IV we account for

manifold-type constraints. We show in Section VI how our

theoretical analysis can be used to design convergence accel-

eration procedures through numerical experiments in Section

VII. Finally, Section VIII provides final remarks and directions

for future research.

II. PROBLEM FORMULATION

Our objective consists of providing locally-optimal solutions

to Optimal Control Problems (OCP) of the form:

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

min
u∈U

∫ tf

0

f0(s, x(s), u(s)) ds ,

∫ tf

0

(

G(s, u(s))

+H(s, x(s)) + L0(s, x(s)) +

m
∑

i=1

ui(s)Li(s, x(s))

)

ds

ẋ(s) = f(s, x(s), u(s))

, f0(s, x(s)) +

m
∑

i=1

ui(s)fi(s, x(s)), a.e. s ∈ [0, tf ]

x(0) = x0, g(x(tf )) = 0

x(s) ∈M ⊆ R
n, s ∈ [0, tf ]

where the variable x denotes state variables, and we optimize

over controls u ∈ U , L2([0, tf ];U), where tf > 0 is

some fixed final time and L2([0, tf ];U) is the space of square

integrable controls defined in [0, tf ] and with image in U ,

U ⊆ R
m being a convex compact subset. The set U contains

all the admissible controls. The mappings Li : Rn+1 → R,

fi : R
n+1 → R

n, for i = 0, . . . ,m, and g : R
n → R

ℓg

are assumed to be smooth (i.e., at least twice continuously

differentiable), whereas we consider smooth mappings G :
R

m+1 → R, H : Rn+1 → R that are convex with respect to

the variables u and x, respectively. We require that the vector

fields fi, i = 0, . . . ,m have compact supports (or alternatively

that fi, i = 0, . . . ,m and their first and second derivatives with

respect to x are bounded), and that 0 is a regular value for g,

so that g−1(0) is a submanifold of R
n, and that g(x0) 6= 0,

so that no trivial solutions exists. In addition, we may require

optimal trajectories to satisfy manifold-type constraints of the

form x(s) ∈ M , s ∈ [0, tf ], where M ⊆ R
n is a smooth

d-dimensional submanifold of R
n. In this case, the initial

condition x0 ∈ R
n lies within M . In OCP, the mappings

f and f0 model control-affine nonlinear dynamics which are

satisfied almost everywhere (a.e) in [0, tf ], and non-convex-in-

state cost, respectively. In particular, we leverage the fact that

controls u appear in the cost f0 through either convex or linear

terms only to establish convergence guarantees. Any (locally-

optimal) solution to OCP is denoted as (x∗, u∗), where the

control u∗ : [0, tf ]→ U is in L2([0, tf ];U) and x∗ : [0, tf ]→
R

n is an absolutely-continuous trajectory.

Remark 2.1: The requirement that the vector fields fi, i =
0, . . . ,m have compact supports is not restrictive in practice,

for we may multiply the fi by some smooth cut-off function

whose support is in some arbitrarily large compact set that

contains states x ∈ R
n which are relevant to the given

application domain. Importantly, as a standard result, this

property implies that the trajectory solutions to the dynamics

of OCP (and to the dynamics of every other problem that will
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be defined later) are defined and uniformly bounded for all

times s ∈ [0, tf ], see Lemma 3.1 for a more precise statement.

From this last observation and Filippov’s theorem, we infer the

existence of (at least locally) optimal solutions to OCP as long

as OCP is feasible (see, e.g., [25]). Sufficient conditions for

the feasibility of OCP exist and are related to the Lie algebra

generated by f1, . . . , fm. In particular, these conditions are

generic (more details may be found in [26]; see also Section

III-A).

Remark 2.2: Many applications of interest often involve

state constraints c(s, x(s)) ≤ 0, s ∈ [0, tf ], where the mapping

c : Rn+1 → R
ℓc is smooth and non-convex. One common

way of solving such constrained problems hinges on the

penalization of state constraints within the cost, thus reducing

the original problem to OCP. Specifically, given a penalization

weight ω = (ω1, . . . , ωℓc) ∈ [0, ωmax]
ℓc , one may introduce

the mapping L0
ω(s, x) , L0(s, x)+

∑ℓc
i=1 ωih(ci(s, x)), where

h : R → R+ is any continuously differentiable penalization

function such that h(z) = 0 for z ≤ 0 (e.g., h(z) = 0 for

z ≤ 0 and h(z) = z2 for z > 0). The constrained problem is

reduced to OCP by dropping state constraints and replacing

the running cost function L0 with L0
ω (note that L0

ω is smooth

but not necessarily convex). The parameter ω is selected by

the user and weighs the presence of state constraints; the

higher the value, the larger the penalization for the violation

of state constraints. We will use this remark for numerical

experiments in Section VII. We refer to [17] for the analysis

of the convergence for ω → ∞ of penalty methods toward

solutions of constrained optimization problems, which lies

outside the scope of this work.

OCP is in general difficult to solve because of the presence

of nonlinear dynamics and non-convex cost. The solution

strategy proposed in this work is based on SCP.

III. SEQUENTIAL CONVEX PROGRAMMING WITHOUT

MANIFOLD-TYPE CONSTRAINTS

As a first step, we develop our SCP framework without

considering manifold-type constraints, showing later how the

whole formalism can be adapted to the presence of those con-

straints. Dropping the manifold-type constraints, OCP takes

the simpler form:


















min
u∈U

∫ tf

0

f0(s, x(s), u(s)) ds

ẋ(s) = f(s, x(s), u(s)), a.e. s ∈ [0, tf ]

x(0) = x0, g(x(tf )) = 0.

SCP entails finding a locally-optimal solution to OCP as a limit

point of a sequence of solutions to convex subproblems com-

ing from successive approximations to OCP. Although several

different approximation schemes have been introduced in the

literature, in this work we focus on arguably the simplest one,

which is to linearize any nonlinear term in the dynamics and

any non-convex function in the cost. The two main advantages

of this approach are ease of computing linearizations and the

absence of high-order singular Jacobians, which can cause the

SCP problem to be ill-posed (e.g., SQP requires additional

procedures to ensure positive definiteness of Hessians [17]).

A. Design of Convex Subproblems

Assume we are given (x0, u0), where u0 : [0, tf ] → R
m

is piecewise continuous and x0 : [0, tf ] → R
n is absolutely

continuous. This tuple represents the initializing guess for

the SCP procedure. Importantly, we do not require (x0, u0)
to be feasible for OCP, though feasibility of (x0, u0) and

closeness to a satisfactory trajectory increases the chances

of rapid convergence (as it was empirically observed, e.g.,

in [9]). We will address this point further in the numerical

experiment section. A sequence of convex optimal control

problems is defined by induction as follows: Given a sequence

(∆k)k∈N ⊆ R+, the Linearized Optimal Control subProblem

(LOCP∆
k+1) at iteration k + 1 subject to trust-region radius

∆k+1 > 0 is







min
u∈U

∫ tf

0
f
0
k+1(s, x(s), u(s)) ds

,

∫ tf

0

(

G(s, u(s)) +H(s, x(s)) + L
0(s, xk(s))

+

m∑

i=1

u
i(s)Li(s, xk(s)) +

(
∂L0

∂x
(s, xk(s))

+
m∑

i=1

u
i
k(s)

∂Li

∂x
(s, xk(s))

)

(x(s)− xk(s))

)

ds

ẋ(s) = fk+1(s, x(s), u(s)), x(0) = x0

, f0(s, xk(s)) +

m∑

i=1

u
i(s)fi(s, xk(s)) +

(
∂f0

∂x
(s, xk(s))

+
m∑

i=1

u
i
k(s)

∂fi

∂x
(s, xk(s))

)

(x(s)− xk(s)), a.e. s ∈ [0, tf ]

gk+1(x(tf )) , g(xk(tf )) +
∂g

∂x
(xk(tf ))(x(tf )− xk(tf )) = 0

∫ tf

0
‖x(s)− xk(s)‖

2 ds ≤ ∆k+1

where all the non-convex contributions of OCP have been

linearized around (xk, uk), which for k ≥ 1 is a solution to

the subproblem LOCP∆
k at the previous iteration. Accordingly,

(xk+1, uk+1) always denotes a solution to the subproblem

LOCP∆
k+1. Each subproblem LOCP∆

k is convex in the sense

that after a discretization in time through any time-linear

integration scheme (e.g., Euler schemes, trapezoidal rule, etc.),

we end up with a finite-dimensional convex program that

can be solved numerically via convex optimization methods.

In particular, linearizations of G and H are not required

since these mappings are already convex. Finally, we have

introduced convex trust-region constraints
∫ tf

0

‖x(s)− xk(s)‖
2 ds ≤ ∆k+1. (1)

These are crucial to guiding the convergence of SCP in the

presence of linearization errors. Since the control variable al-

ready appears linearly within the non-convex quantities defin-

ing OCP, trust-region constraints are not needed for control.

We remark that although it might seem more natural to impose

pointwise trust-region constraints at each time s ∈ [0, tf ], the

L2-type constraints (1) are sufficient to perform a convergence

analysis, and importantly, they are less restrictive. The trust-

region radii (∆k)k∈N ⊆ R+ represent optimization parameters

and may be updated through iterations to improve the search
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for a solution at each next iteration. Effective choices of such

an updating rule will be discussed in the next section.

The definition of every convex subproblem by induction

makes sense only if we can claim that: (1) at each step, the

optimal trajectory xk is defined in the entire interval [0, tf ],
and (2) there exists (at least one) optimal solution at each

step. The answer to the first question is contained in the

following lemma, whose proof relies on routine application

of the Grönwall inequality and is postponed in the Appendix.

Lemma 3.1 (Boundness of trajectories): Let suppfi denote

the support of fi, i = 0, . . . ,m. If U and suppfi, i = 0, . . . ,m
are compact, then each xk is defined in the entire interval

[0, tf ] and uniformly bounded for every t ∈ [0, tf ] and k ∈ N.

To answer the second question, we should provide sufficient

conditions under which LOCP∆
k+1 admits a solution for each

k ∈ N. To this purpose, we assume the following:

(A1) For every k ∈ N, the subproblem LOCP∆
k+1 is feasible.

As a classical result, under (A1), for every k ∈ N, the

subproblem LOCP∆
k+1 has an optimal solution (xk+1, uk+1),

which makes the above definition of each convex subproblem

by induction well-posed (see, e.g., [25]).

Remark 3.1: In practical contexts, (A1) is often satisfied.

This assumption is well-motivated, because, up to a slight

modification, each subproblem LOCP∆
k is generically feasible

in the following sense. In the presence of (1), the feasibility

of each subproblem would be a consequence of the controlla-

bility of its linear dynamics, which is in turn equivalent to

the invertibility of its Gramian matrix (see, e.g., [25]; the

constraints (1) force any admissible trajectory of LOCP∆
k+1

to lie within a tubular neighborhood around xk, thus, as a

classical result, the controllability criterion in [25] applies

by restriction to this tubular neighborhood). Since the subset

of invertible matrices is dense, Gramian matrices are almost

always (i.e., in a topological sense) invertible. Linearized

dynamics are thus almost always controllable, which implies

that each subproblem is feasible. As an important remark,

feasibility is preserved through time discretization, making any

time-discretized version of the convex subproblems well-posed

numerically. Indeed, time discretization maps the continuous

linear dynamics into a system of linear equations. Since

the set of full-rank matrices is also dense, similar reasoning

shows that the discretized subproblems are also almost always

feasible. In conclusion, (A1) is a mild and well-justified

assumption.

B. Algorithmic Framework

The objective of our SCP formulation can be stated as

follows: to find locally-optimal solutions to OCP by itera-

tively solving each subproblem LOCP∆
k until the sequence

(∆k, xk, uk)k∈N, where (xk, uk) is a solution to LOCP∆
k ,

satisfies some convergence criterion (to be defined later, see

Section VII). We propose pursuing this objective by adopting

(pseudo-) Algorithm 1, which is designed to return a locally-

optimal solution to OCP, up to small approximation errors.

Algorithm 1 requires the user to provide a rule UpdateRule

to update the values of the trust-region radius. This rule

should primarily aim to prevent accepting solutions at each

Algorithm 1: Sequential Convex Programming

Input : Guess trajectory x0 and control u0.

Output: Solution (xk, uk) to LOCP∆
k for some k.

Data : Initial trust-region radius ∆0 > 0.

1 begin

2 k = 0, ∆k+1 = ∆k

3 while (uk)k∈N has not converged do

4 Solve LOCP∆
k+1 for (xk+1, uk+1)

5 ∆k+1 = UpdateRule(xk+1, uk+1, xk, uk)
6 k ← k + 1

7 return (xk−1, uk−1)

iteration that are misguided by significant linearization error.

A priori, we only require that UpdateRule is such that the

sequence of trust-region radii (∆k)k∈N converges to zero

(in particular, (∆k)k∈N is bounded). In the next section, we

show that this numerical requirement, together with other mild

assumptions, are sufficient to establish convergence guarantees

for Algorithm 1. An example for UpdateRule will be provided

in Section VII when discussing numerical simulations.

The algorithm terminates when the sequence of controls

(uk)k∈N converges with respect to some user-defined topology

(as we will see shortly, convergence is always achieved in

some specific sense by at least one subsequence of (uk)k∈N;

in Section VII, we propose an approximate stopping criterion

to check the convergence of the sequence (uk)k∈N). Whenever

such convergence is achieved (in some specific sense; see the

next section), we may claim Algorithm 1 has found a candidate

locally-optimal solution for OCP (see Theorem 3.3 in the

next section). The reason that only the convergence of the

sequence of controls suffices to claim success is contained in

our convergence result (see Theorem 3.3 in the next section).

To measure the convergence of (uk)k∈N, some topologies are

better than others, and in particular, under mild assumptions

one can prove that, up to some subsequence, (uk)k∈N always

converges with respect to the weak topology of L2. In turn,

this may be interpreted as a result of weak existence of

successful trajectories for Algorithm 1 when selecting the L2-

weak topology as convergence metric. In practice, Algorithm

1 is numerically applied to time-discretized versions of each

subproblem LOCP∆
k . Thus we will show that our conclusions

regarding convergence behavior still hold in a discrete context,

up to discretization errors (see the next section).

C. Convergence Analysis

We now turn to the convergence of Algorithm 1. Under mild

assumptions, our analysis provides three key results:

R1 When the sequence (uk)k∈N returned by Algorithm 1

converges, the limit is a stationary point for OCP in the

sense of the Pontryagin Maximum Principle (PMP).

R2 There always exists a subsequence of (uk)k∈N that con-

verges to a stationary point of OCP for the weak topology

of L2.

R3 This converging behavior transfers to time-discretization
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of Algorithm 1, i.e., versions for which we adopt time-

discretization of subproblems LOCP∆
k .

Result R1 is the core of our analysis and roughly states

that whenever Algorithm 1 achieves convergence, a candidate

locally-optimal solution to the original problem has been

found. For the proof of this result, we build upon the PMP.

Before focusing on the convergence result, we recall the

statement of the PMP and list our main assumptions. For the

sake of clarity, we introduce the PMP related to OCP and the

PMP related to each convexified problem LOCP∆
k separately.

PMP related to OCP: For every p ∈ R
n and p0 ∈ R, define

the Hamiltonian

H(s, x, p, p0, u) = p⊤f(s, x, u) + p0f0(s, x, u).

Theorem 3.1 (PMP for OCP [22]): Let (x∗, u∗) be a

locally-optimal solution to OCP. There exist an absolutely-

continuous function p : [0, tf ] → R
n and a constant p0 ≤ 0,

such that the following hold:

• Non-Triviality Condition: (p, p0) 6= 0.

• Adjoint Equation: Almost everywhere in [0, tf ],

ṗ(s) = −
∂H

∂x
(s, x∗(s), p(s), p0, u∗(s)).

• Maximality Condition: Almost everywhere in [0, tf ],

H(s, x∗(s), p(s), p0, u∗(s)) =

= max
v∈U

H(s, x∗(s), p(s), p0, v).

• Transversality Condition: It holds that

p(tf ) ⊥ ker
∂g

∂x
(x∗(tf )).

A tuple (x∗, p, p0, u∗) satisfying Theorem 3.1 is called (Pon-

tryagin) extremal for OCP. Note that, thanks to the equivalence

(ker A)⊥ = Im A⊤ for a matrix A, the transversality condition

entails that p(tf ) =
∑ℓg

i=1 λi∇gi(x
∗(tf )), for some λ ∈ R

ℓg .

PMP related to LOCP∆
k : For every k ≥ 1, p ∈ R

n, and

p0, p1 ∈ R, define the Hamiltonian

Hk(s, x, p, p
0, p1, u)= p⊤fk(s, x, u)

+p0f0k (s, x, u) + p1‖x− xk−1(s)‖
2.

Theorem 3.2 (Weak PMP for LOCP∆
k [27]): Let k ≥ 1

and (xk, uk) be a locally-optimal solution to LOCP∆
k . There

exist an absolutely-continuous function pk : [0, tf ]→ R
n and

two constants p0k ≤ 0, p1k ∈ R, such that the following hold:

• Non-Triviality Condition: (pk, p
0
k, p

1
k) 6= 0.

• Adjoint Equation: Almost everywhere in [0, tf ],

ṗk(s) = −
∂Hk

∂x
(s, xk(s), pk(s), p

0
k, p

1
k, uk(s)).

• Maximality Condition: Almost everywhere in [0, tf ],

Hk(s, xk(s), pk(s), p
0
k, p

1
k, uk(s)) =

max
v∈U

H(s, xk(s), pk(s), p
0
k, p

1
k, v).

• Transversality Condition: It holds that

pk(tf ) ⊥ ker
∂g

∂x
(xk(tf )).

A tuple (xk, pk, p
0
k, p

1
k, uk) satisfying Theorem 3.2 is called

extremal for LOCP∆
k .

Remark 3.2: Theorems 3.1 and 3.2 provide first-order nec-

essary conditions for optimality, thus extremals are candidate

local optima. It is worth noting that, thanks to the new variable

y(t) ,

∫ t

0

‖x(s)− xk(s)‖
2 ds, (2)

constraints (1) may be written as y(tf ) − ∆k+1 ≤ 0. By

leveraging this transformation, LOCP∆
k+1 may be reformulated

as an optimal control problem with final inequality constraints

but without state constraints. Thus, the multipliers introduced

in Theorems 3.1 and 3.2 are continuous functions of time (see

our proof in Section III-D; compare also with [27, Theorem

4.1] under final inequality constraints only). Finally, although

the conditions listed in Theorem 3.1 are essentially sharp, the

statement of Theorem 3.2 may be strengthened as follows. If

(xk+1, pk+1, p
0
k+1, p

1
k+1, uk+1) is an extremal for LOCP∆

k+1,

one can additionally prove that (see [27]; note that [27]

considers maximization of rewards rather than minimization

of costs, thus multipliers must change sign) p1k+1 ≤ 0 and

p1k+1

(∫ tf

0

‖xk+1(s)− xk(s)‖
2 ds−∆k+1

)

= 0

(the latter is know as slack condition), which motivates the

choice “weak PMP for LOCP∆
k+1” as name for Theorem 3.2.

Nevertheless, since the constraints (1) do not appear in the

original problem OCP, we do not need to leverage these latter

additional conditions on p1k+1, i.e., Theorem 3.2 suffices to

establish convergence for SCP when applied to solve OCP.

Assumption (A1) suffices to obtain the result R1 (see The-

orem 3.3 below). To prove result R2, additional regularity on

the data defining OCP is required. Specifically, we introduce

the following technical condition:

(A2) The mapping G : Rm+1 → R is u-strongly convex, i.e.,

there exists σ > 0 such that for every s ∈ R and every

u1, u2 ∈ R
m,

G(s, λu1 + (1− λ)u2) +
1

2
σλ(1− λ)‖u1 − u2‖

2 ≤

≤ λG(s, u1) + (1− λ)G(s, u2).

Our main convergence result reads as follows,

Theorem 3.3 (Guarantees of convergence for SCP):

Assume that (A1) holds and that Algorithm 1 returns a

sequence (∆k, uk, xk)k∈N such that ∆k → 0 and, for every

k ∈ N, the tuple (uk+1, xk+1) locally solves LOCP∆
k+1.

1) Assume that the sequence of controls (uk)k∈N converges

to some u∗ ∈ U for the strong topology of L2. Let

x∗ : [0, tf ] → R
n denote the solution to the dynamics

of OCP associated with the control u∗. Then, there exist

a sequence (pk, p
0
k, p

1
k)k∈N and a tuple (p, p0), with p :

[0, tf ]→ R
n absolutely continuous, p0 ≤ 0, such that:

a) (xk, pk, p
0
k, p

1
k, uk) is an extremal for LOCP∆

k and

these convergence results hold:

• xk → x∗ for the strong topology of C0.

• Up to some subsequence, pk → p for the strong

topology of C0, and p0k → p0.
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b) If (p(tf ), p
0) 6= 0, i.e., the value to which

(pk(tf ), p
0
k)k∈N converges is not zero, then

(x∗, p, p0, u∗) is an extremal for OCP.

2) Assume that (A2) holds and the sequence of controls

(uk)k∈N converges to u∗ ∈ U for the weak topology

of L2. If (pk, p
0
k, p

1
k)k∈N is such that p0k 6= 0 for every

k ≥ 1, then the statements in 1.a-1.b above remains true.

In addition, there always exists a subsequence (ukj
)j∈N

that converges to some u∗ ∈ U for the weak topology of

L2, such that the statements in 1.a-1.b above are true.

The guarantees offered by Theorem 3.3 read as follows.

Under (A1) and by selecting a shrinking-to-zero sequence

of trust-region radii, if iteratively solving problems LOCP∆
k

returns a sequence of extremals (xk, pk, p
0
k, p

1
k, uk)k∈N such

that (1) (uk)k∈N converges with respect to the strong topology

of L2, and (2) (pk(tf ), p
0
k) → ℓ 6= 0, then there exists

a Pontryagin extremal for the original problem, i.e., a can-

didate (local) solution to OCP to which (xk, pk, p
0
k, uk)k∈N

converges, which formalizes result R1. Moreover, under ad-

ditional regularity on the data defining OCP and the addi-

tional assumption that the generated sequence of extremals

(xk, pk, p
0
k, p

1
k, uk)k∈N is such that p0k 6= 0 for every k ≥ 1, a

converging sequence of controls (uk)k∈N always exists, which

formalizes result R2. This can be clearly interpreted as a

“weak” guarantee of success for SCP, where “weak” refers

to the fact that only a subsequence of (uk)k∈N converges,

a guarantee which is often sought and leveraged from the

optimization community, see, e.g., [28, Theorem 3.4], in which

“accumulation points” are considered.

Remark 3.3: When SCP achieves convergence, (A2) and

the requirement p0k 6= 0 for every k ≥ 1 are not needed for

the derivation of theoretical guarantees on local optimality.

On the other hand, the requirements (pk(tf ), p
0
k) → ℓ 6= 0

(or equivalently (p(tf ), p
0) 6= 0) and p0k 6= 0 for every k ≥ 1

play the role of “qualification conditions” (compare also with

condition (14) in [28, Theorem 3.4]), a standard requirement

in optimization which can be easily checked numerically, see

Section VII. In particular, the requirement p0k 6= 0 for every

k ≥ 1 means that each extremal (xk, pk, p
0
k, p

1
k, uk)k∈N is

normal (see [29] for a definition), and normality of extremals

naturally occurs in many optimal control problem settings (see

[30, Corollary 2.9], in which the authors show that normality

of extremals holds generically true as long as optimal controls

take value in the interior of the control domain; see also

[31], [32] for additional general settings where extremals are

normal), further justifying the requirement p0k 6= 0 for k ≥ 1.

Remark 3.4: Those guarantees adapt when time discretiza-

tion is adopted to numerically solve each convex subproblem,

which is the most frequently used and reliable technique

in practice. To see this, fix a time-discretization scheme

and consider the discretized version of OCP. Any candidate

locally-optimal solution to this discrete formulation satisfies

the Karush-Kuhn-Tucker (KKT) conditions. If a Pontryagin

extremal of OCP exists, the limit of points satisfying the

KKT for the discretized version of OCP as the time step

tends to zero converges to the aforementioned Pontryagin

extremal of OCP (more precisely, up to some subsequence;

the reader can find more details in [33]). Theorem 3.3 exactly

provides conditions under which the “if sentence” above

holds true, that is, conditions under which the aforementioned

Pontryagin extremal of OCP exists, thus endowing Algorithm

1 with correctness guarantees that are independent of any time

discretization the user may select (Euler, Runge-Kutta, etc.).

D. Proof of the Convergence Result

We split the proof of Theorem 3.3 in three main steps. First,

we retrace the main steps of the proof of the PMP to introduce

necessary notation and expressions. Second, we show the

convergence of trajectories and controls, together with the

convergence of Pontryagin variations (see the paragraph below

for a definition). The latter represents the cornerstone of the

proof and paves the way for the final step, which consists of

proving the convergence of the Pontryagin extremals.

1) Pontryagin Variations: Let u ∈ U be a feasible control

for OCP, with associated trajectory xu in [0, tf ]. For every

r ∈ [0, tf ] Lebesgue point of u, and v ∈ U , we define

ξ̃r,vu ,

(

f0(r, xu(r), v)− f
0(r, xu(r), u(r))

f(r, xu(r), v)− f(r, xu(r), u(r))

)

∈ R
n+1.

(3)

The variation trajectory z̃r,vu : [0, tf ] → R
n+1 related to r ∈

[0, tf ], to v ∈ U , and to the feasible control u ∈ U for OCP

is defined to be the unique (global in [0, tf ]) solution to the

following system of linear differential equations






















˙̃z(s) =









∂f0

∂x
(s, xu(s), u(s)) 0

...∂f

∂x
(s, xu(s), u(s)) 0









z̃(s)

z̃(r) = ξ̃r,vu .

(4)

The proof of the PMP goes by contradiction, considering

Pontryagin variations (see, e.g., [23]). We define those to be

all the vectors z̃r,vu (tf ), where r ∈ (0, tf ) is a Lebesgue point

of u and v ∈ U . In particular, if (xu, u) is locally optimal

for OCP, then one infers the existence of a nontrivial tuple

(p, p0) ∈ R
ℓg+1 (p is a row vector), with p0 ≤ 0, satisfying,

for all r ∈ (0, tf ) Lebesgue point of u and all v ∈ U ,
(

p0, p
∂g

∂x
(xu(tf ))

)

· z̃r,vu (tf ) ≤ 0. (5)

The non-triviality condition, the adjoint equation, the max-

imality condition, and the transversality condition listed in

Theorem 3.1 derive from (5). Specifically, it can be shown

that a tuple (xu, p, p
0, u) is a Pontryagin extremal for OCP if

and only if the nontrivial tuple

(

p(tf ) = p
∂g

∂x
(xu(tf )), p

0

)

∈

R
n+1 with p0 ≤ 0 satisfies (5) (see, e.g., [23]). For this reason,

(xu, p, p
0, u) is also called extremal for OCP.

Let us show how, thanks to the change of variable (2),

the previous conclusions adapt to each subproblem built in

Algorithm 1. Specifically, for every k ∈ N, assuming (A1),
let (xk+1, uk+1) denote a solution to LOCP∆

k+1, with related

trust-region radius ∆k+1, and introduce the smooth curve

yk+1 : [0, tf ]→ R : t 7→

∫ t

0

‖xk+1(s)− xk(s)‖
2 ds.
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Clearly, condition (1) is equivalent to yk+1(tf ) −∆k+1 ≤ 0.

Next, consider the extended smooth dynamics

f̃k+1(s, x, u) ,

(

f(s, x, u)
‖x− xk(s)‖

2

)

and for every r ∈ [0, tf ] Lebesgue point of uk+1 and every
v ∈ U define

ξ̃
r,v
k+1 =

(
f
0
k+1(r, xk+1(r), v)− f

0
k+1(r, xk+1(r), uk+1(r))

f̃k+1(r, xk+1(r), v)− f̃k+1(r, xk+1(r), uk+1(r))

)

.

(6)

Straightforward computations show that the control uk does

not explicitly appear within expression (6). Thus the time r ∈
[0, tk+1

f ] needs to be a Lebesgue point of uk+1 only. We define

the variation trajectory z̃
r,v
k+1 : [0, tf ] → R

n+2 related to r ∈
[0, tf ], to v ∈ U , and to the locally-optimal control uk+1 for

LOCP∆
k+1 to be the unique (global in [0, tf ]) solution to the

following system of linear differential equations






















˙̃z(s) =









∂f0k+1

∂x
(s, xk+1(s), uk+1(s)) 0 0

...
...

∂f̃k+1

∂x
(s, xk+1(s), uk+1(s)) 0 0









z̃(s)

z̃(r) = ξ̃
r,v
k+1.

(7)

The Pontryagin variations related to LOCP∆
k+1 are all the

vectors z̃
r,v
k+1(tf ), where r ∈ (0, tf ) is a Lebesgue point of

uk+1 and v ∈ U . At this step, one may easily extend the

proof of [23, Theorem 12.13] to the case of augmented final

constraints g(xk+1(tf )) = 0 and yk+1(tf ) −∆k+1 ≤ 0, and

from the local optimality of (xk+1, uk+1) for LOCP∆
k+1, infer

the existence of a nontrivial tuple (pk+1, p
0
k+1, p

1
k+1) ∈ R

ℓg+2

(pk+1 is a row vector), with p0k+1 ≤ 0, satisfying, for r ∈
(0, tf ) (Lebesgue for uk+1) and v ∈ U ,

(

p0k+1, pk+1
∂g

∂x
(xk+1(tf )), p

1
k+1

)

· z̃r,vk+1(tf ) ≤ 0. (8)

The non-triviality condition, the adjoint equation, the max-

imality condition, and the transversality condition listed in

Theorem 3.2 derive from algebraic manipulations on (8).

Again, we stress the fact that the necessary conditions for

optimality offered by (8) are not exhaustive, in that the sign

of the multiplier p1k+1 ∈ R and additional slack conditions may

be characterized as we mentioned in Remark 3.2. Nevertheless,

as we will show shortly (8) suffices to prove Theorem 3.3.

The main step in the proof of Theorem 3.3 consists of

showing that it is possible to pass the limit k →∞ inside (8),

recovering a nontrivial tuple (p, p0) ∈ R
ℓg+1 with p0 ≤ 0 that

satisfies (5). Due to the equivalence between the conditions

of the PMP and (5), this is sufficient to prove the existence

of a Pontryagin extremal for OCP. We will show that this

also implies the convergences stated in Theorem 3.3. We will

only focus on proving the last part of 2) in Theorem 3.3, by

adopting the additional assumption (A2) and the requirement

p0k 6= 0 for every k ≥ 1, since proofs of the remaining cases

are similar and easier to construct.

2) Convergence of Controls and Trajectories: By the com-

pactness of U , the sequence (uk)k∈N ⊆ L2([0, tf ];U) is

uniformly bounded in L2([0, tf ];R
m). Since L2([0, tf ];U) is

closed and convex in L2([0, tf ];R
m) (because U is compact

and convex) and L2([0, tf ];R
m) is reflexive, there exists a

control u∗ ∈ L2([0, tf ];U) (in particular u∗ ∈ U ) such that

we can extract a subsequence (still denoted (uk)k∈N) that

converges to u∗ for the weak topology of L2. We denote by

x∗ the trajectory solution to the dynamics of OCP related to

u∗, which is defined on [0, tf ] thanks to Lemma 3.1.

Next, recalling that thanks to Lemma 3.1 the trajectories xk
are defined in [0, tf ] and uniformly bounded, we show that

sup
s∈[0,tf ]

‖xk(s)− x
∗(s)‖ −→ 0 (9)

for k → ∞. This will provide the desired convergence of
trajectories. For t ∈ [0, tf ] we have that

‖xk+1(t)− x∗(t)‖ ≤

∫ t

0
‖f0(s, xk(s))− f0(s, x

∗(s))‖ ds

+
m∑

i=1

∥
∥
∥
∥

∫ t

0

(
ui
k+1(s)fi(s, xk(s))− ui(s)fi(s, x

∗(s))
)
ds

∥
∥
∥
∥

+

∫ t

0

∥
∥
∥
∥

∂f0

∂x
(s, xk(s))

∥
∥
∥
∥ ‖xk+1(s)− xk(s)‖ ds

+

m∑

i=1

∫ t

0

∥
∥
∥
∥u

i
k(s)

∂fi

∂x
(s, xk(s))

∥
∥
∥
∥ ‖xk+1(s)− xk(s)‖ ds

≤ C1

(∫ t

0
‖xk+1(s)− x∗(s)‖ ds+∆

1
2

k+1

+
m∑

i=1

∥
∥
∥
∥

∫ t

0
fi(s, x

∗(s))
(
ui
k+1(s)− (u∗)i(s)

)
ds

∥
∥
∥
∥

︸ ︷︷ ︸

,δ
u,1
k+1

(t)

)

where C1 ≥ 0 is a constant that stems from the uniform

boundedness of (xk)k∈N (see also the proof of Lemma 3.1 in

the Appendix). Now, the definition of weak convergence in L2

gives that, for every fixed t ∈ [0, tf ], δ
u,1
k+1(t)→ 0 for k →∞.

In addition, by the compactness of U and suppfi, there exists

a constant C2 ≥ 0 such that, for every t, s ∈ [0, tf ]

|δu,1k+1(t)− δ
u,1
k+1(s)| ≤ C2|t− s|

uniformly with respect to k ∈ N. Thus, by [34, Lemma 3.4],

δ
u,1
k+1(t)→ 0 for k →∞ uniformly in the interval [0, tf ]. We

conclude thanks to ∆k → 0 and a routine Grönwall inequality

argument (see also the proof of Lemma 3.1 in the Appendix).

Let us prove that the trajectory x∗ : [0, tf ]→ R
n is feasible

for OCP. To do so, we only need to prove that g(x∗(tf )) =
0. Note that from (9), ∆k → 0, and the boundedness and

convergence of the trajectories, we have that

‖g(x∗(tf ))‖= ‖g(x
∗(tf ))± g(xk(tf ))‖≤ ‖g(xk(tf ))‖

+sup
x∈K

∥

∥

∥

∥

∂g

∂x
(x)

∥

∥

∥

∥

‖x∗(tf )− xk(tf )‖ −→ 0,

where K ⊆ R
n is some compact set (see Lemma 3.1), from

which we conclude that x∗ : [0, tf ]→ R
n is feasible for OCP.

3) Convergence of Pontryagin Variations: Due to the conver-

gence of controls and trajectories, we can now prove that it is

possible to pass the limit k →∞ inside (8), showing that (5)

holds. First, thanks to (A2) and p0k 6= 0 for every k ≥ 1, by

[29, Lemma 5.3] every control uk+1 is continuous. Therefore,

the following result holds (see [35, Lemma 3.11]):

Lemma 3.2 (Pointwise convergence of controls): For every

r ∈ (0, tf ) Lebesgue point of u∗ there exists (rk)k∈N ⊆ (0, tf )
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such that rk is a Lebesgue point of uk, and the convergences

rk → r and uk(rk)→ u∗(r) hold for k →∞.

Now, fix r ∈ (0, t∗f ) Lebesgue point of u∗, and v ∈ U , and

let (rk)k∈N be the sequence provided by Lemma 3.2 related

to r and v. We prove the following convergence:

sup
s∈[r,tf ]

‖z̃
rk+1,v

k+1 (s)− (z̃r,vu∗ (s), 0)‖ −→ 0 (10)

for k → ∞, where z̃
rk+1,v

k+1 solves (7) with initial condition

z̃
rk+1,v

k+1 (rk+1) = ξ̃
rk+1,v

k+1 given by (6), whereas z̃
r,v
u∗ solves (4)

with initial condition z̃
r,v
u∗ (r) = ξ̃

r,v
u∗ given by (3). First,

‖ξ̃
rk+1,v

k+1 − (ξ̃r,vu∗ , 0)‖ ≤

≤
m∑

i=1

|vi|‖fi(rk+1, xk+1(rk+1))− fi(r, x
∗(r))‖

+

m∑

i=1

‖ui
k+1(rk+1)fi(rk+1, xk+1(rk+1))− (u∗)i(r)fi(r, x

∗(r))‖

+ ‖G(rk+1, v)−G(r, v)‖

+ ‖G(rk+1, uk+1(rk+1))−G(r, u∗(r))‖

+
m∑

i=1

|vi|‖Li(rk+1, xk+1(rk+1))− Li(r, x∗(r))‖

+
m∑

i=1

‖ui
k+1(rk+1)L

i(rk+1, xk+1(rk+1))− (u∗)i(r)Li(r, x∗(r))‖

≤ C3

(

|rk+1 − r|+ ‖xk+1(rk+1)− x∗(r)‖+ ‖uk+1(rk+1)− u∗(r)‖
)

where C3 ≥ 0 is a constant, and from Lemma 3.2 and (9) we

infer that ‖ξ̃
rk+1,v

k+1 − (ξ̃r,vu∗ , 0)‖ → 0 for k → ∞. Second, by

leveraging the uniform boundedness of the trajectories, with

the same exact argument proposed in the proof of Lemma

3.1 in the Appendix, one may show that the sequence of

variation trajectories (z̃rk,vk )k∈N is uniformly bounded in the

time interval [r, tf ]. From this, for every t ∈ [r, tf ]

‖z̃
rk+1,v

k+1 (t)− (z̃r,vu∗ (t), 0)‖ ≤ ‖ξ̃
rk+1,v

k+1 − (ξ̃r,vu∗ , 0)‖+C4|rk+1− r|

+

∫ t

r

(

2‖xk+1(s)− xk(s)‖+

∥
∥
∥
∥

∂fk+1

∂x
(s, xk+1(s), uk+1(s))

∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∂f0k+1

∂x
(s, xk+1(s), uk+1(s))

∥
∥
∥
∥
∥

)

‖z̃
rk+1,v

k+1 (s)−(z̃r,vu∗ (s), 0)‖ ds

+

∥
∥
∥
∥

∫ t

r

(









∂f0k+1

∂x
(s, xk+1(s), uk+1(s)) 0 0

∂fk+1

∂x
(s, xk+1(s), uk+1(s))

...
...

2(xk+1(s)− xk(s))
⊤ 0 0









−








∂f0

∂x
(s, x∗(s), u∗(s)) 0 0

∂f

∂x
(s, x∗(s), u∗(s))

...
...

0 . . . 0 0








)(
z̃
r,v
u∗ (s)
0

)

ds

∥
∥
∥
∥

≤ ‖ξ̃
rk+1,v

k+1 − (ξ̃r,vu∗ , 0)‖

+C4

(

|rk+1 − r|+

∫ t

r

‖z̃
rk+1,v

k+1 (s)− (z̃r,vu∗ (s), 0)‖ ds+∆
1
2
k+1

+

∫ t

r

‖xk(s)− x
∗(s)‖ ds+

∫ t

r

‖xk+1(s)− x
∗(s)‖ ds

)

+
m∑

i=1

∥
∥
∥
∥

∫ t

r

F (fi, L
i
, z̃

r,v
u∗ )(s)

(

u
i
k(s)− (u∗)i(s)

)

ds

∥
∥
∥
∥

︸ ︷︷ ︸

,δ
u,2
k+1

(t)

,

where the (overloaded) constant C4 ≥ 0 comes from the uni-

form boundedness of both (xk)k∈N and (z̃rk,vk )k∈N previously

stated. In particular, we introduce the terms F (fi, L
i, z̃

r,v
u∗ ) :

[r, tf ]→ R that are continuous and uniformly bounded map-

pings depending on fi, L
i, and z̃

r,v
u∗ . Following the exact same

argument we developed for δ
u,1
k+1, one prove that δ

u,2
k+1(t)→ 0

for k →∞, uniformly in the interval [r, tf ], so that (9) and a

routine Grönwall inequality argument allow us to obtain (10).

Importantly, convergence (10) implies that, for k →∞,

‖z̃rk,vk (tf )− (z̃r,vu∗ (tf ), 0)‖ −→ 0. (11)

4) Convergence of Extremals and Conclusion: At this step,

consider the sequence of tuples (pk, p
0
k, p

1
k)k∈N, with p0k ≤ 0

for k ≥ 1. It is clear that the variational expressions (8) remain

valid whenever (pk, p
0
k, p

1
k) is multiplied by some positive

constant. Therefore, without loss of generality, we may assume

that ‖(pk, p
0
k, p

1
k)‖ = 1 and p0k ≤ 0 for k ≥ 1. Then,

we can extract a subsequence (still denoted (pk, p
0
k, p

1
k)k∈N)

that converges to some nontrivial tuple (p, p0, p1) satisfying

p0 ≤ 0. At this step, we may leverage (9) and (11) to prove

that (t∗f , x
∗, p, p0, u∗) is the sought-after non-trivial extremal

for OCP when p0 6= 0. Indeed, for every r ∈ (0, t∗f ) Lebesgue

point of u∗, and v ∈ U , (9) and (11) we have that, for k →∞,

(

p0, p
∂g

∂x
(x∗(tf ))

)

· z̃r,vu∗ (tf ) =

(

p0, p
∂g

∂x
(x∗(tf )), p

1

)

· (z̃r,vu∗ (tf ), 0) ≤

≤

∣

∣

∣

∣

(

p0, p
∂g

∂x
(x∗(tf )), p

1

)

· (z̃r,vu∗ (tf ), 0)

−

(

p0k, pk
∂g

∂x
(xk(tf )), p

1
k

)

· z̃rk,vk (tf )

∣

∣

∣

∣

−→ 0

due to the inequality of (8), and we conclude.

The proof of Theorem 3.3 is achieved if we show that

sup
s∈[0,tf ]

‖pk+1(s)− p(s)‖ −→ 0 (12)

for k →∞, where pk+1 solves







ṗk+1(s) = −
∂Hk+1

∂x
(s, xk+1(s), pk+1(s), p

0
k+1, uk+1(s))

pk+1(tf ) = pk+1
∂g

∂x
(xk+1(tf )),

whereas p solves














ṗ(s) = −
∂H

∂x
(s, x∗(s), p(s), p0, u∗(s))

p(tf ) = p
∂g

∂x
(x∗(tf )).

To this end, by leveraging the uniform boundedness of the
trajectories, with the same exact argument proposed in the
proof of Lemma 3.1 (see the Appendix), one shows that the
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sequence (pk)k∈N is uniformly bounded in the interval [0, tf ].
From this, for every t ∈ [0, tf ] we have that

‖pk+1(t)− p(t)‖ ≤

∥
∥
∥
∥
pk+1

∂g

∂x
(xk+1(tf ))− p

∂g

∂x
(x∗(tf ))

∥
∥
∥
∥

+C5

(

|p1k+1|∆
1
2
k+1 + |p0k+1 − p

0|+

∫ tf

t

‖pk+1(s)− p(s)‖ ds

+

∫ tf

t

‖xk(s)− x
∗(s)‖ ds+

∫ tf

t

‖xk+1(s)− x
∗(s)‖ ds

)

+
m∑

i=1

∥
∥
∥
∥

∫ tf

t

F (fi, L
i
, p, p

0)(s)
(

u
i
k(s)− (u∗)i(s)

)

ds

∥
∥
∥
∥

︸ ︷︷ ︸

,δ
u,3
k+1

(t)

where the constant C5 ≥ 0 comes from the uniform bounded-

ness of both (xk)k∈N and (pk)k∈N, whereas F (fi, L
i, p, p0) :

[r, tf ] → R again denote continuous and uniformly bounded

mappings that depend on fi, L
i, p, and p0. Following the

exact same argument we developed for δ
u,1
k+1, one proves that

δ
u,3
k+1(t) → 0 for k → ∞, uniformly in the interval [0, tf ], so

that (9) and a routine Grönwall inequality argument allow us

to conclude (see also the Appendix).

IV. SEQUENTIAL CONVEX PROGRAMMING WITH

MANIFOLD-TYPE CONSTRAINTS

We now show how the framework described in Section III

can be applied verbatim to solve our optimal control prob-

lem when additional manifold-type constrains are considered,

under mild regularity assumptions on the dynamics. In this

context, we focus on problems OCPM defined as:


























min
u∈U

∫ tf

0

f0(s, x(s), u(s)) ds

ẋ(s) = f(s, x(s), u(s)), a.e. s ∈ [0, tf ]

x(0) = x0 ∈M, g(x(tf )) = 0

x(s) ∈M ⊆ R
n, s ∈ [0, tf ]

where M ⊆ R
n is a smooth d-dimensional submanifold of Rn

and, for the sake of consistency, we assume that g−1(0)∩M 6=
∅. We denote by (x∗, u∗) any solution to OCPM .

A. Unchanged Framework under Regular Dynamics

One possibility to solve OCPM would consist of penalizing

the manifold-type constraints within the cost (see Remark 2.2).

Although possible, this approach might add undue complexity

to the formulation. Interestingly, in several important cases for

applications, this issue can be efficiently avoided. To this end,

we assume that the following regularity condition holds:

(A3) For i = 0, . . . ,m, the vector fields fi : R
n+1 → R

n are

such that fi(s, x) ∈ TxM , for every (s, x) ∈ R×M .

In (A3), TxM denotes the tangent space of M at x ∈
M , which we identify with a d-dimensional subspace of

R
n. This requirement is often satisfied when dealing with

mechanical systems in aerospace and robotics applications (for

instance, consider rotation and/or quaternion-type constraints).

Under (A3), as a classical result, the trajectories of ẋ(s) =
f(s, x(s), u(s)) starting from x0 ∈M lie on the submanifold

M , and therefore, the condition x(s) ∈ M , s ∈ [0, tf ],

is automatically satisfied. In other words, we may remove

manifold-type constraints from problem OCPM so that it

exactly resembles OCP, i.e., the formulation adopted in Section

III with the additional constraint x0 ∈ M . At this step, we

may leverage the machinery built previously to solve OCP.

Specifically, the construction of each subproblem LOCP∆
k and

Algorithm 1 applies unchanged. Due to the linearization of

the dynamics, solutions to the convex subproblems are not

supposed to lie on M . However, convergence does force the

limiting trajectory to satisfy the manifold-type constraints.

B. Convergence Analysis

The convergence of Algorithm 1 applied to this new context

can be inferred from Theorem 3.3. However, despite the reg-

ularity assumption (A3), it is not obvious that the optimality

claimed by this result extends to the general geometric setting

brought on by manifold-type constraints. Specifically, if Algo-

rithm 1 converges to a trajectory satisfying the assumptions of

Theorem 3.3, although such a trajectory meets manifold-type

constraints, the related extremal satisfies the PMP for problems

defined in the Euclidean space by construction. In other

words, a priori the extremal does not carry any information

about the geometric structure of a problem with manifold-

type constraints, whereas extremals for OCPM are expected

to satisfy stronger geometrically-consistent necessary condi-

tions for optimality. Specifically, to recover a geometrically-

consistent candidate optimal solution for OCPM , we must

show that this satisfies the Geometric PMP (GPMP) (see, e.g.,

[23]), necessary conditions for optimality for OCPM which

are stronger than PMP. This is our next objective.

Before stating the GPMP related to formulation OCPM , we

first need to introduce some notation and preliminary results

(further details may be found in [23]). We denote TM and

T ∗M as the tangent and cotangent bundle of M , respectively.

Due to (A3), the mapping

fM : R×M × R
m → TM : (s, x, u) 7→ f(s, x, u)

is a well-defined, non-autonomous vector field of M . Thus,

trajectories related to feasible solutions (tf , x, u) for OCPM

may be seen as solutions to the geometric dynamical equations

ẋ(s) = fM (s, x(s), u(s)), x0 ∈M. (13)

In a geometric setting, given a feasible solution (x, u) for

OCPM , Pontryagin extremals are represented by the quantity

(λ, p0, u). In particular, the information concerning the trajec-

tory x that satisfies (13) is encapsulated within the cotangent

curve λ : [0, tf ] → T ∗M , i.e., x(s) = π(λ(s)), s ∈ [0, tf ],
where π : T ∗M → M is the canonical projection. At this

step, for λ ∈ T ∗M and p0 ∈ R, we may define the geometric

Hamiltonian (related to OCPM ) as

H(s, λ, p0, u) , 〈λ, fM (s, π(λ), u)〉+ p0f0(s, π(λ), u),

where 〈·, ·〉 denotes the duality in T ∗M . We remark that

whenever M = R
n, we recover the Hamiltonian introduced in

Section III. In the geometric framework, adjoint equations are

described in terms of Hamiltonian vector fields. Specifically,

as a classical result, for every (s, u) ∈ R
m+1 one can
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associate to H(s, ·, ·, u) a unique vector field
→

H(s, ·, ·, u) :
T ∗(M × R) → T (T ∗(M × R)) of the product cotangent

bundle T ∗(M×R) (known as Hamiltonian vector field) by the

rule σ(λ,p0)

(

·,
→

H(s, λ, p0, u)
)

=
∂H

∂(λ, p0)
(s, λ, p0, u), with σ

being the canonical symplectic form of T ∗(M × R). We are

now ready to state the GPMP related to OCPM .

Theorem 4.1 (GPMP for OCPM [23]): Let (x∗, u∗) be a

locally-optimal solution to OCPM . There exists an absolutely

continuous curve1 λ : [0, tf ] → T ∗M with x∗(s) = π(λ(s)),
s ∈ [0, tf ] and a constant p0 ≤ 0, such that the following hold:

• Non-Triviality Condition: (λ, p0) 6= 0.

• Adjoint Equation: Almost everywhere in [0, tf ],

d(λ, p0)

ds
(s) =

→

H(s, λ(s), p0, u∗).

• Maximality Condition: Almost everywhere in [0, tf ],

H(s, λ(s), p0, u∗(s)) = max
v∈U

H(s, λ(s), p0, v).

• Transversality Condition: It holds that

λ(tf ) ⊥ ker
∂gM

∂x
(x∗(tf )),

where we denote gM :M → R
ℓg : x 7→ g(x).

The tuple (λ, p0, u∗) is called geometric extremal for OCPM .

Remark 4.1: As discussed previously, thanks to (A3), each

convex problem LOCP∆
k may be correctly formulated as

in Section III-A by dropping manifold-type constraints and

considering dynamics as vector fields in R
n. Therefore, we

may again leverage Theorem 3.2 as necessary conditions for

optimality for each LOCP∆
k . Accordingly, for k ≥ 1, (weak)

extremals for LOCP∆
k are denoted by (xk, pk, p

0
k, p

1
k, uk).

Assuming that Algorithm 1 applied as described above

converges, we prove that the limiting solution is a candidate

local optimum for OCPM by showing that it is possible

to appropriately orthogonally project the extremal for OCP

provided by Theorem 3.3 to recover a geometric extremal

for OCPM . First, we need to introduce the notion of the

orthogonal projection to a subbundle. Specifically, given the

cotangent bundles T ∗M ⊆ T ∗
R

n ∼= R
2n, define T ∗

R
n|M ,

⋃

x∈M {x} × T
∗
xR

n ∼=M × R
n. Equipped with the structure

of the pullback bundle given by the canonical projection

T ∗
R

n|M → M , T ∗
R

n|M is a vector bundle over M of

rank n, and T ∗M may be identified with a subbundle of

T ∗
R

n|M . We build an orthogonal projection operator from

T ∗
R

n+1|R×M to T ∗(R × M) by leveraging the usual or-

thogonal projection in R
n+1. To do this, let x ∈ M and

(V, ϕ) = (V, y1, . . . , yn) be a local chart of x in R
n adapted

to M , i.e., satisfying ϕ(V ∩M) = ϕ(V ) ∩ R
d × {0}n−d. By

construction, {dyj(·)}j=1,...,n is a local basis for T ∗
R

n|M and

{dyj(·)}j=1,...,d is a local basis for T ∗M around x. Consider

the cometric 〈·, ·〉Rn in T ∗
R

n|M which is induced by the

Euclidean scalar product in R
n. The Gram-Schmidt process

1Continuity is meant with respect to the standard topology in T ∗M .

applied to {dyj(·)}j=1,...,n provides a local orthonormal frame

{Ej(·)}j=1,...,n for T ∗
R

n|M , that satisfies in V ∩M

span〈E1(·), . . . , Ej(·)〉 = span〈dy1(·), . . . , dyj(·)〉 (14)

for every 1 ≤ j ≤ n. It follows that, when restricted to V ∩M ,

the following orthogonal projection operator

Π : T ∗
R

n+1|R×M → T ∗(R×M) ∼= R
2 × T ∗M

(z, x, p0, p) 7→

(

(z, p0),

d
∑

j=1

〈p,Ej(x)〉Rn Ej(x)

)

is well-defined and smooth. Moreover, since the change of

frame mapping between two orthonormal frames is orthogonal,

from (14) it is readily checked that Π is globally defined.

Equipped with the GPMP and orthogonal projections, the

numerical strategy to solve OCPM detailed above becomes

meaningful and justified by the following convergence result

(similar to the discussion for Theorem 3.3, the convergences

stated therein readily extend to the discretized setting).

Theorem 4.2 (Convergence for SCP with manifold constraints):

Assume that (A1), (A2), and (A3) hold, and that applying

Algorithm 1 to OCPM when manifold-type constraints

are dropped returns a sequence (∆k, uk, xk)k∈N such that

∆k → 0 and, for every k ∈ N, the tuple (uk+1, xk+1) locally

solves LOCP∆
k+1. Then there exists a tuple (x∗, p, p0, u∗) that

is an extremal for OCPM when manifold-type constraints are

dropped and satisfies all the statements listed in Theorem 3.3,

if (p(tf ), p
0) 6= 0 (where the convergence of (uk)k∈N for the

strong topology of L2 may be replaced by the weak topology

of L2 whenever (A2) holds and, for k ≥ 1, each multiplier

(xk, pk, p
0
k, p

1
k, uk) for LOCP∆

k satisfies p0k 6= 0). In addition,

the limiting trajectory satisfies x∗(s) ∈ M , s ∈ [0, tf ], and

by defining the absolutely continuous curve

λ : [0, tf ]→ T ∗M : t 7→ π2

(

Π
(

z∗(t), x∗(t), p0, p(t)
)

)

, (15)

where π2 : T ∗(R ×M) → T ∗M : ((z, p0), ξ) 7→ ξ and z∗ :
[0, tf ]→ R satisfies ż(s) = f0(s, x∗(s), u∗(s)), z(0) = 0, the

tuple (λ, p0, u∗) is a geometric extremal for OCPM .

C. Proof of the Convergence Result

Let (x∗, p, p0, u∗) be an extremal for OCPM in the case

where manifold-type constraints are dropped, whose existence

is guaranteed by Theorem 3.3 (in particular, we assume that

(p(tf ), p
0) 6= 0). To avoid overcharging the notation, in the

rest of this section we denote (x, p, p0, u) , (x∗, p, p0, u∗).
Because (A3) implies that x(s) ∈ M , s ∈ [0, tf ], Theorem

4.2 is proved once we show that the tuple (λ, p0, u) with λ

built as in (15) satisfies the non-triviality condition, the adjoint

equation, the maximality condition, and the transversality

condition of Theorem 4.1. For the sake of clarity, we denote

dgx =
∂g

∂x
(x), d(gM )x =

∂gM

∂x
(x).

1) Adjoint Equation: Before getting started, we introduce

some fundamental notations. For every (t0, z0, p0) ∈ [0, tf ]×
R

n+1, the differential equation

ż(s) = f0(s, x(s), u(s)), ẋ(s) = f(s, x(s), u(s)) (16)
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with z(t0) = z0, x(t0) = p0 has a unique solution, which

may be extended to the whole interval [0, tf ]. We denote

by exp : [0, tf ]
2 × R

n+1 → R
n+1 the flow of (16), i.e.,

exp(·; t0, (z0, p0)) solves (16) with initial condition (z0, p0)
at time t0. As a classical result, for every (t, t0) ∈ [0, tf ]

2, the

mapping exp(t; t0, ·) : Rn+1 → R
n+1 is a diffeomorphism.

With this notation at hand, one can show that the solution p to

the adjoint equation of Theorem 3.3 is such that for s ∈ [0, tf ],

(p0, p(s)) = (exp(tf ; s, ·))
∗

(z,x)(tf )
· (p0, p(tf )), (17)

where we denote (z, x)(t) , exp(t, 0; (0, x0)) and (·)∗ de-

notes the pullback operator of 1-forms in R
n+1 (see, e.g.,

[23]). At this step, to prove that (λ, p0) satisfies the adjoint

equation of Theorem 4.2 with λ defined in (15) and (p0, p) sat-

isfying (17), we can leverage classical results from symplectic

geometry in the context of Hamiltonian equations (see, e.g.,

[23]) from which it is sufficient to prove the following lemma:
Lemma 4.1 (Projections of solutions to Hamiltonian systems):

For almost every t ∈ [0, tf ], let (V, ϕ) = (V, y0, . . . , yn) be a

local chart of (z, x)(t) , exp(t, 0; (0, x0)) (which is a point
in R×M due to (A4)) in R

n+1 adapted to R×M . For every
i = 0, . . . , d, it holds that

d

ds

(

Π
(

(exp(tf ; s, ·))
∗

(z,x)(tf )
· (p0, p(tf ))

)(
∂

∂yi

(
(x, z)(s)

)
))

(t)

= −
d∑

j=0

∂(f0, fM )j
∂yi

(t, x(t), u(t)) ·

Π
(

(exp(tf ; t, ·))
∗

(z,x)(tf )
· (p0, p(tf ))

)(
∂

∂yj

(
(x, z)(t)

)
)

,

where (·)∗ denotes the pullback operator of 1-forms in R
n+1.

Proof: For indices i = 0, . . . , n, we denote

ai(t) = Π
(

(exp(tf ; t, ·))
∗

(z,x)(tf )
· (p0, p(tf ))

)(
∂

∂yj

(
(x, z)(t)

)
)

.

Since by the definition of the pullback it holds that

(exp(tf ; t, ·))
∗

(z,x)(tf )
·(p0, p(tf )) =

n∑

j=0

bj(t)dy
j((z, x)(t)

)
(18)

for appropriate coefficients bj(t), j = 0, . . . , n, from (14),

Π
(
(exp(tf ; t, ·))

∗

(z,x)(tf )
· (p0, p(tf ))

)
=

d∑

j=0

bj(t)dy
j((z, x)(t)

)
,

which yields aj(t) = bj(t) for every j = 0, . . . , d. Therefore,

by inverting (18), we obtain

(p0, p(tf )) =

d
∑

j=0

aj(t)(exp(t; tf , ·))
∗

(z,x)(t) · dy
j
(

(z, x)(t)
)

+

n
∑

j=d+1

bj(t)(exp(t; tf , ·))
∗

(z,x)(t) · dy
j
(

(z, x)(t)
)

.

Now, let (A,α) = (A,w0, . . . , wn) be a local chart of

(z, x)(tf ) in R
n+1 adapted to R × M . Since due to (A4),

the trajectory (z, x)(t) lies entirely in R ×M and the chart

(V, ϕ) is adapted to R×M , for every i = 0, . . . , d and every

j ≥ d+ 1, one computes

(exp(t; tf , ·))
∗

(z,x)(t) · dy
j
(

(z, x)(t)
)

(

∂

∂wi

(

(z, x)(tf )
)

)

=
∂

∂wi
(yj ◦ exp(t; tf , ·) ◦ α

−1)
(

α((z, x)(tf ))
)

= 0.

This implies that for every i = 0, . . . , d,

(p0, p(tf ))

(

∂

∂wi

(

(z, x)(tf )
)

)

=

d
∑

j=0

aj(t)
∂

∂wi
(yj ◦ exp(t; tf , ·) ◦ α

−1)
(

α((z, x)(tf ))
)

.

The term on the left-hand side does not depend on t. Therefore,

a differentiation with respect to t together with (17) lead to2

d
∑

j=0

[

ȧj(t)

(

(exp(t; tf , ·))
∗

(z,x)(t)·

dyj
(

(z, x)(t)
)

(

∂

∂wi

(

(z, x)(tf )
)

))

+
d

∑

ℓ=0

aj(t)
∂(f0, f)j
∂yℓ

(t, x(t), u(t))

(

(exp(t; tf , ·))
∗

(z,x)(t)·

dyℓ
(

(z, x)(t)
)

(

∂

∂wi

(

(z, x)(tf )
)

))]

= 0, (19)

which must hold for every i = 0, . . . , n. At this step,

we notice that due to (A4), for every j = 0, . . . , d and

every ℓ = 0, . . . , d, we have
∂(f0, f)j
∂yℓ

(t, x(t), u(t)) =

∂(f0, fM )j
∂yℓ

(t, x(t), u(t)). Moreover, due to (A4), the restric-

tion exp(t; tf , ·) : R ×M → R ×M is well-defined and is

a diffeomorphism. Hence (exp(t; tf , ·))
∗ is an isomorphism

when restricted to 1-forms in T ∗M . Combining those with

(19) gives

d
∑

j=0

[

ȧj(t)dy
j
(

(z, x)(t)
)

+

d
∑

ℓ=0

aj(t)
∂(f0, fM )j

∂yℓ
(t, x(t), u(t))dyℓ

(

(z, x)(t)
)

]

= 0

and the conclusion follows.

2) Maximality, Transversality and Non-Triviality Conditions:

Before getting started, consider the following analysis of

tangent spaces. From (A3) and the definition of gM , it holds

that x(tf ) ∈ g
−1(0) ∩M = g−1

M (0). Note that g−1(0) ⊆ R
n

and g−1
M (0) ⊆ M are submanifolds of dimension n − ℓg and

d− ℓg , respectively, with tangent spaces given by

Txg
−1(0) = {v ∈ TxR

n ∼= R
n : dgx(v) = 0}, x ∈ g−1(0)

Txg
−1
M (0) = {v ∈ TxM : d(gM )x(v) = 0}, x ∈ g−1

M (0).

In particular, by subspace identification, for every x ∈ g−1
M (0),

one has Txg
−1
M (0) ⊆ Txg

−1(0) ∩ TxM . The inclusion above

2Note that, as long as i = 0, . . . , d, quantities in (19) evolve in R × M .
Therefore, indices greater than d do not explicitly appear in calculations.
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is actually an identity. To see this, let x ∈ g−1
M (0) ⊆ M and

(V, ϕ) = (V, y1, . . . , yn) be a local chart of x in R
n adapted

to M . The definition of adapted charts immediately gives that

dgx

(

∂

∂yj
(x)

)

= d(gM )x

(

∂

∂yj
(x)

)

, for j = 1, . . . , d. Thus,

if v =

d
∑

j=1

vj
∂

∂yj
(x) ∈ TxM such that dgx(v) = 0, we have

d(gM )x(v) =
d

∑

j=1

vjd(gM )x

(

∂

∂yj
(x)

)

= dgx(v) = 0,

and the sought after identity follows. A straightforward appli-

cation of Grassmann’s formula to this identity yields

R
n = Tx(tf )g

−1(0) + Tx(tf )M. (20)

Noticing that the maximality condition is a straightforward

consequence of (A3), we are now ready to prove the transver-

sality condition and the non-triviality condition.

To show the validity of the transversality condition, let us

prove that for every v ∈ Tx(tf )M ⊆ R
n, it holds that

〈λ(tf ), v〉 = p(tf )
⊤v, (21)

which provides the desired result because p(tf ) · v = 0
for v ∈ Tx(tf )g

−1(0), due to Theorem 3.3. To show this,

by the Gram-Schmidt process, we can build a local or-

thonormal frame {Ej(·)}j=1,...,n for T ∗

x(tf )
R

n around x(tf )

such that {Ej(·)}j=1,...,d is a local frame for T ∗

x(tf )
M

around x(tf ). The dual frames {E∗
j (x(tf ))}j=1,...,n and

{E∗
j (x(tf ))}j=1,...,d span T ∗∗

x(tf )
R

n ∼= Tx(tf )R
n ∼= R

n and

T ∗∗

x(tf )
M ∼= Tx(tf )M , respectively. Thus, for any tangent

vector v ∈ Tx(tf )M , the definitions of the dual frame and

of the orthogonal projection Π allow us to conclude that

〈λ(tf ), v〉 =

〈

d
∑

j=1

〈p,Ej(x)〉Rn Ej(x),

d
∑

j=1

vj E∗
j (x)

〉

=

〈

n
∑

j=1

〈p,Ej(x)〉Rn Ej(x),

d
∑

j=1

vj E∗
j (x)

〉

= p(tf )
⊤v.

Finally, let us focus on the non-triviality condition. By

contradiction, assume that there exists t ∈ [0, tf ] such that

(λ(t), p0) = 0. The linearity of the adjoint equation yields

λ(s) = 0 for all s ∈ [0, tf ], so that λ(tf ) = 0. On the other

hand, from the transversality condition of Theorem 3.3, we

know that p(tf ) ⊥ Tx(tf )g
−1(0). Now, given v ∈ R

n, from

(20) we infer that v = v1 + v2 with v1 ∈ Tx(tf )g
−1(0) and

v2 ∈ Tx(tf )M so that from (21), one obtains

p(tf )
⊤v = p(tf )

⊤v2 = 〈λ(tf ), v2〉 = 0.

This leads to (p, p0) = 0, in contradiction with the non-

triviality condition of Theorem 3.3. The conclusion follows.

V. EXTENSION TO PROBLEMS WITH FREE FINAL TIME

Algorithm 1 and related convergence guarantees, i.e., Theo-

rems 3.3 and 4.2, can be suitably extended to the case of OCP

(and OCPM ) with free final time tf ∈ [0, T ], where T > 0 is

a given upper bound, as we quickly summarize in this section.

By adapting the notation introduced in Section III accord-

ingly, each convex problem LOCP∆
k can be formulated as

presented in Section III-A, except for adding the additional

trust-region constraint |tk+1
f − tkf | ≤ ∆k+1 to (1). For what

concerns the theoretical analysis of the convergence of SCP

in such setting, our original assumptions require some major

modification. Specifically, the presence of free final times adds

an additional pointwise transversality condition in Theorems

3.1, 3.2, and 4.1, which in turn requires to replace (A2) with

the following stronger requirement:

(Ã2) For every k ∈ N, the following conditions hold:

– any optimal solution (tk+1
f , xk+1, uk+1) to LOCP∆

k+1

satisfies:

|tk+1
f − tkf |+

∫ T

0

‖xk+1(s)− xk(s)‖
2 ds < ∆k+1;

– any optimal control uk+1 to LOCP∆
k+1 is continuous.

In [36], through an analysis which is similar to the one

proposed in the present paper, under (Ã2) we showed that the

statements of Theorems 3.3 and 4.2 still hold when the final

time tf in OCP and OCPM , respectively, is let free (moreover,

due to (Ã2) the conditions (p(tf ), p
0) 6= 0 and p0k 6= 0 for

every k ≥ 1 are no longer required).

Due to lack of space, we do not report the proof of these

latter results, referring the reader to [36] for further details.

VI. ACCELERATING CONVERGENCE THROUGH

INDIRECT SHOOTING METHODS

An important result provided by Theorem 3.3 (and conse-

quently by Theorem 4.2) is the convergence of the sequence of

the extremals (related to the sequence of convex subproblems)

towards an extremal for the (penalized) original formula-

tion. This can be leveraged to accelerate the convergence

of Algorithm 1 by warm-starting indirect shooting methods

[15], [24]. Indirect shooting methods consist of replacing the

original optimal control problem with a two-point boundary

value problem formulated from the necessary conditions for

optimality stated by the PMP. When indirect shooting methods

succeed in converging to a locally-optimal solution, they

converge very quickly (quadratically, in general). Nevertheless,

they are very sensitive to initialization, which often presents

a difficult challenge (see, e.g., [24], [37]). In the following,

with the help of Theorem 3.3, we show how the initialization

of indirect shooting methods may be bypassed by extracting

information from the multipliers at each SCP iteration. The

resulting indirect shooting methods may thus be combined

with SCP to decrease (sometimes drastically decrease) the total

number of iterations, given that the convergence rate of SCP

is in general lower than that provided by shooting methods

(see, e.g., [20]). For the sake of clarity, we drop manifold-

type constraints, knowing from Theorem 4.2 that the same

reasoning can be applied to problems with such constraints.

From now on, without loss of generality we assume that

every extremal that is mentioned below is normal, that is,

by definition, p0 = −1 (as mentioned earlier, this is a

very mild requirement, see, e.g., [30]). Assume that a time-

discretized version of Algorithm 1 converges. In particular,
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due to the arguments in Section III-C, we can assume that

the convergence result stated in Theorem 3.3 applies to the

sequence of KKT multipliers related to the time discretization

of each convex subproblem LOCP∆
k . For every k ≥ 1, the

KKT multiplier γ0k that is related to the initial condition

x(0) = x0 approximates the initial value pk(0) of the extremal

related to LOCP∆
k (see, e.g., [33]). Therefore, Theorem 3.3

implies that up to some subsequence, for every δ > 0 there

exists a kδ ≥ 1 such that for every k ≥ kδ , it holds that

‖p(0)− γ0k‖ < δ, where p comes from an extremal related to

OCP. In particular, select δ > 0 to be the radius of convergence

of an indirect shooting method that we use to solve OCP

(a rigorous notion of radius of convergence of an indirect

shooting method may be inferred from the arguments in [15]).

Any such indirect shooting method is then able to achieve

convergence if initialized with γ0k , for k ≥ kδ . In other words,

we may stop SCP at iteration kδ and successfully initialize

an indirect shooting method related to the original (penalized)

formulation with γ0kδ
to find a locally-optimal solution be-

fore SCP achieves full convergence, drastically reducing the

number of SCP iterations used. Since in practice we do not

have any knowledge of δ > 0 and indirect shooting methods

report convergence failures quickly, we can just run an indirect

shooting method after every SCP iteration and stop whenever

the latter converges (eventual convergence is ensured by the

argument above). This acceleration procedure is summarized

in Algorithm 2. Details concerning the implementation of

indirect shooting methods are provided in the next section.

Algorithm 2: Accelerated SCP

Input : Guess trajectory x0 and control u0.

Output: Solution to OCP.

Data : Initial trust-region radius ∆0 > 0.

1 begin

2 k = 0, ∆k+1 = ∆k, flag = 0
3 while ((uk)k∈N has not converged) or flag = 0

do

4 Solve LOCP∆
k+1 for (xk+1, uk+1)

5 Solve an indirect shooting method on OCP to

(xk+1, uk+1) initialized with the multiplier

related to the constraint x(0) = x0, and if

successful, put flag = 1
6 ∆k+1 = UpdateRule(xk+1, uk+1, xk, uk)
7 k ← k + 1

8 return (xk−1, uk−1)

VII. IMPLEMENTATION AND NUMERICAL EXPERIMENTS

Next, we perform numerical experiments for the optimal

control of a nonlinear system subject to obstacle-avoidance

constraints and provide implementation details. In particular,

we demonstrate the performance of SCP and the gains from

the indirect shooting method acceleration procedure in Alg. 2.

1) Problem formulation: We consider a 3-dimensional non-

holonomic Dubins car, with state x = [rx, ry, θ] ∈ R
3

and control input u = [v, ψ] ∈ R
2. The dynamics are

ẋ= [v cos(θ), v sin(θ), kψ], where k = 0.1 is the constant

turning curvature. Starting from x0, the objective of the

problem is to reach the state xf while minimizing control

effort
∫ tf

0
(v(s)2 + ψ(s)2)ds and avoiding obstacles. Control

bounds are set to U = [0, v̄]× [−ψ̄, ψ̄] with (v̄, ψ̄) = (0.5, 1).
Note that this problem satisfies (A2), since G(u(s)) = v(s)2+
ψ(s)2 is u-strongly convex. We consider problems with both

fixed and free final angle θ(tf ). We consider nobs cylindrical

obstacles of radius εi centered at point ri ∈ R
2. For each

obstacle, we set up an obstacle avoidance constraint using the

smooth potential function ci : R
2 → R, defined as

ci(r) =

{

(‖r − ri‖
2 − ε2i )

2, if ‖r − ri‖ < εi

0, otherwise
, (22)

where r = [rx, ry]. To incorporate these constraints within

our problem formulation, we penalize them within the cost

function and define OCP to minimize
∫ tf

0

(

v(s)2 + ψ(s)2 +
ω
∑nobs

i=1 ci(r)
)

ds with ω = 100, which is convex in (r, u)
and continuously differentiable. Penalizing obstacle avoidance

violations with this value for ω is sufficient to guarantee

constraint satisfaction for the scenarios considered in the

experiments. This yields the following problem:


















min
u

∫ tf

0

(

v(s)2 + ψ(s)2 + ω
∑

i

ci(r(s))
)

ds

ṙx(s) = v(s) cos θ(s), ṙy(s) = v(s) sin θ(s),

θ̇(s) = kψ(s), x(0) = x0, x(tf ) = xf .

(23)

2) Indirect shooting method: As described in Section VI

and Algorithm 2, the solution at each SCP iteration can

be used to initialize an indirect shooting method for (23).

Accordingly, we next derive the associated two-point boundary

value problem using the necessary conditions for optimality of

the PMP. Assuming p0 =−1 (see Section VI), the Hamilto-

nian Hw(s, x, p, p
0, u) = p⊤f(s, x, u) + p0f0w(s, x, u) with

p= [px, py, pθ] is expressed as

Hw(x, u, p) = v(px cos θ + py sin θ) + kψpθ

−
(

v2 + ψ2 + ω

nobs
∑

i=1

ci(r)
)

.

Applying the adjoint equation and the maximality condition

of the PMP (Theorem 3.1), we obtain the following relations:

ṗx = ω
∂
(
∑

ci(r)
)

∂rx
, ṗy = ω

∂
(
∑

ci(r)
)

∂ry
,

ṗθ = v(px sin θ − py cos θ), and

(24)

v = ϕ1(x, p) =











v̄ if
(px cos θ+py sin θ)

2 ≥ v̄,
(px cos θ+py sin θ)

2 if
(px cos θ+py sin θ)

2 ∈ (0, v̄),

0 if
(px cos θ+py sin θ)

2 ≤ 0,

ψ = ϕ2(x, p) =











ψ̄ if pθk
2 ≥ ψ̄,

pθk
2 if pθk

2 ∈ (−ψ̄, ψ̄),

−ψ̄ if pθk
2 ≤ ψ̄.

Further, the transversality conditions of the PMP for both

problems with fixed and free final angle θf are shown in Figure
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iterations close to the optimal solution before convergence.

In contrast, once a good guess for p0 to initialize the root-

finding algorithm is available, the indirect shooting method is

capable of efficiently computing a (candidate) locally-optimal

trajectory solving OCP. In the worst case where the number

of SCP iterations until convergence NSCP is the same for both

methods, which occurs if the guess for p0 is never within

the radius of convergence of the shooting method at any SCP

iteration, the computation time for Algorithm 2 is NSCP ·
(TSCP + Ts-fail), with TSCP being the time to convexify OCP

and solve the resulting LOCP∆
k+1, and Ts-fail being the time

for the root-finding algorithm to report convergence failure.

In our non-optimized Julia implementation, Ts-fail = 25ms and

TSCP = 242ms on average, measured on a laptop equipped with

a 2.60GHz Intel Core i7-6700 CPU with 8GB of RAM. As

Ts-fail≪TSCP (see also computation times in [39]), there is

little computational overhead in using accelerated-SCP over

SCP only, and results in Figures 2 and 3 demonstrate that

leveraging the PMP significantly accelerates the optimization

process. Finally, as p0k 6= 0 holds at each SCP iteration in

100% of these scenarios which we approximately check using

the Lagrange multipliers γ0k ≈ p0k, from Theorem 3.3, all

trajectories are candidate locally-optimal solutions to OCPPω .

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we analyze the convergence of SCP when

applied to continuous-time non-convex optimal control prob-

lems, including in the presence of manifold-type constraints.

In particular, we prove that, up to some subsequence, SCP-

based optimal control methods converge to a candidate locally-

optimal solution for the original formulation. Under mild as-

sumptions, our approach can be effortlessly leveraged to solve

problems with manifold-type constraints. Finally, we leverage

our analysis to accelerate the convergence of standard SCP-

type schemes through indirect methods, and we investigate

their performance via numerical simulations on a trajectory

optimization problem with obstacles.

For future research, we plan to extend our approach to

more general optimal control formulations, which for instance

consider stochastic dynamics, risk functionals as costs, and

probabilistic chance constraints. In addition, we plan to inves-

tigate particular parameters update rules which guarantee the

convergence of the whole sequence of controls (uk) (compare

with Theorem 3.3 item 2). Finally, we plan to test the perfor-

mance of our approach by means of hardware experiments on

complex systems such as free-flyers and robotic manipulators.
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