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Abstract— Sequential Convex Programming (SCP) has
recently gained significant popularity as an effective
method for solving optimal control problems and has been
successfully applied in several different domains. However,
the theoretical analysis of SCP has received comparatively
limited attention, and it is often restricted to discrete-time
formulations. In this paper, we present a unifying theoret-
ical analysis of a fairly general class of SCP procedures
for continuous-time optimal control problems. In addition to
the derivation of convergence guarantees in a continuous-
time setting, our analysis reveals two new numerical and
practical insights. First, we show how one can more easily
account for manifold-type constraints, which are a defining
feature of optimal control of mechanical systems. Second,
we show how our theoretical analysis can be leveraged to
accelerate SCP-based optimal control methods by infusing
techniques from indirect optimal control.

Index Terms— Optimal control, Nonlinear systems, Con-
strained control, Algebraic/geometric methods, Variational
methods.

[. INTRODUCTION

INCE its first appearance more than five decades ago, Se-

S quential Convex Programming (SCP) [1], [2] has proven
to be a powerful and reliable algorithmic framework for non-
convex optimization, and it has recently gained new popularity
in aerospace [3]-[6] and robotics [7]-[10]. In its most general
form, SCP entails finding a locally-optimal solution to a non-
convex optimization problem as the limit point of a sequence
of solutions to convex subproblems formed by successive ap-
proximations. The main advantage offered by this approach is
the ability to leverage a wide spectrum of numerical techniques
to efficiently solve each convex subproblem [11]-[14], leading
to near-real-time numerical schemes. For example, among
the most mature SCP paradigms we find the well-known
Sequential Quadratic Programming (SQP) method [15]-[17].
Through the years, SCP’s sound performance has pushed
the community towards deep investigations of the theoretical
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nature of this method. The most informative result states that
when convergence is achieved, SCP finds a candidate local
optimum for the original non-convex problem, i.e., a solution
that satisfies necessary conditions for local optimality [18]-
[20] (convergence rate results have also been derived, see,
e.g., [21]). When used in the context of non-convex optimal
control, the SCP convexification scheme is usually applied to
the non-convex program that stems from a discretization of the
original continuous-time problem, providing only partial in-
sights with respect to the original continuous-time formulation.
For instance, are those guarantees only applicable to specific
discretization schemes? Can insights from continuous-time
analysis be leveraged to improve SCP-based optimal control
methods? To the best of our knowledge, the only continuous-
time analysis of SCP-based optimal control is provided in [5],
though the optimal control context considered by the authors is
very specific and the conditions for optimality used are weaker
than those in the state-of-the-art for continuous-time optimal
control (see our discussion in Section III-C).

Statement of contributions: In this paper we contribute to
filling the existing gap in the theoretical analysis of SCP-based
optimal control methods by providing a unifying analysis of
a wide class of SCP procedures for continuous-time (non-
convex) optimal control. Our main result consists of proving
that, under mild assumptions, any accumulation point for the
sequence of solutions returned by SCP satisfies the Pontryagin
Maximum Principle (PMP) [22], [23] associated with the
original formulation. The PMP represents a set of necessary
conditions for optimality in continuous-time optimal control
that is stronger than the traditional Lagrange multiplier rules
(the latter were investigated in [5]), and it often represents
the best result one might hope for in nonlinear optimal
control. Our convergence result stems from an analysis on the
continuity with respect to convexification of the Pontryagin
cones of variations, tools originally introduced by Pontryagin
and his group to prove the PMP. In addition, we relax some
technical assumptions that are often difficult to verify in
practice and that have been considered in [5] (e.g., strong
compactness of the set of admissible controls is replaced by
weak compactness), thus enlarging the class of problems that
can be solved by SCP with guarantees.

Our continuous-time analysis provides a generalization of
several existing discrete-time results and reveals new insights
into the nature of SCP applied to optimal control, ultimately
offering three key advantages. First, we can transfer the-



oretical guarantees to any discrete-time implementation of
the continuous-time SCP-based optimal control formulation,
regardless of the time-discretization scheme adopted. Second,
we can directly and effectively extend these guarantees to
the setting with manifold-type constraints, i.e., nonlinear state
equality constraints often found when dealing with mechanical
systems. Third, we can provide a powerful connection to
indirect methods for optimal control such as (indirect) shooting
methods [24], enabling the design of numerical schemes that
accelerate the convergence of SCP.

Specifically, our contributions are as follows: (1) We derive
theoretical guarantees for continuous-time SCP-based optimal
control methods, whose related sequence of convex subprob-
lems stems from the successive linearization of all nonlinear
terms in the dynamics and all non-convex functions in the
cost. In particular, we apply this analysis to finite-horizon,
finite-dimensional, non-convex optimal control problems with
control-affine dynamics. (2) Through a study of the continuity
of the Pontryagin cones of variations with respect to lineariza-
tion, we prove that whenever the sequence of SCP iterates con-
verges (under specific topologies), we find a solution satisfying
the PMP associated with the original formulation. In addition,
we prove that up to some subsequence, the aforementioned
sequence always has an accumulation point, which provides
a weak guarantee of success for SCP (“weak” in the sense
that only a subsequence of the sequence of SCP iterates can
be proved to converge). (3) We leverage the continuous-time
analysis to design a novel and efficient approach to account for
manifold-type constraints. Specifically, we show that, under
mild assumptions, one can solve the original formulation (i.e.,
with manifold-type constraints) with convergence guarantees
by applying SCP to a new optimal control problem where
those constraints are simply ignored, thereby simplifying
numerical implementation. (4) As a byproduct, our analysis
shows that the sequence of multipliers associated with the
sequence of convex subproblems converges to a multiplier for
the original formulation. We show via numerical experiments
how this property can be used to considerably accelerate
convergence rates by infusing techniques from indirect control.

Previous versions of this work have appeared in [9], [10].
In this paper, we provide as additional contributions (i) a
new formulation with more general cost functionals, (ii)
convergence proofs under weaker assumptions, (iii) detailed
explanations on “transferring” theoretical guarantees under
time discretizations, and (iv) extensive numerical simulations
for the acceleration procedure based on indirect methods.

We do highlight three main limitations of our work. First,
being SCP a local optimization algorithm, our theoretical
guarantees are necessarily local (this is arguably unavoidable
given the local nature of SCP). Second, the assumption of
control-affine dynamics plays a crucial (though technical) role
in our convergence analysis. The extension of our results to
the more general setting represents an open research question.

Organization: The paper is organized as follows. Section
I introduces notation and the continuous-time non-convex
optimal control problem we wish to study. Our convergence
analysis of SCP-based optimal control methods is split in two
sections: In Section III, convergence is analyzed in the absence

of manifold-type constraints, and in Section IV we account for
manifold-type constraints. We show in Section VI how our
theoretical analysis can be used to design convergence accel-
eration procedures through numerical experiments in Section
VII. Finally, Section VIII provides final remarks and directions
for future research.

[I. PROBLEM FORMULATION

Our objective consists of providing locally-optimal solutions
to Optimal Control Problems (OCP) of the form:
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where the variable x denotes state variables, and we optimize
over controls u € U = L*([0,tf];U), where ty > 0 is
some fixed final time and L?([0,¢]; U) is the space of square
integrable controls defined in [0,¢;] and with image in U,
U C R™ being a convex compact subset. The set U/ contains
all the admissible controls. The mappings L' : Rt — R,
fi : R — R™ for i = 0,...,m, and ¢ : R® — R
are assumed to be smooth (i.e., at least twice continuously
differentiable), whereas we consider smooth mappings G :
R™H 5 R, H : R**! — R that are convex with respect to
the variables u and x, respectively. We require that the vector
fields f;, i = 0, ..., m have compact supports (or alternatively
that f;, 2 = 0,...,m and their first and second derivatives with
respect to x are bounded), and that O is a regular value for g,
so that g~ 1(0) is a submanifold of R™, and that g(xq) # 0,
so that no trivial solutions exists. In addition, we may require
optimal trajectories to satisfy manifold-type constraints of the
form z(s) € M, s € [0,tf], where M C R™ is a smooth
d-dimensional submanifold of R™. In this case, the initial
condition 2 € R™ lies within M. In OCP, the mappings
f and Y model control-affine nonlinear dynamics which are
satisfied almost everywhere (a.e) in [0, t¢], and non-convex-in-
state cost, respectively. In particular, we leverage the fact that
controls v appear in the cost f¥ through either convex or linear
terms only to establish convergence guarantees. Any (locally-
optimal) solution to OCP is denoted as (z*,u*), where the
control u* : [0,¢] — U is in L*([0,¢;]; U) and x* : [0,¢5] —
R™ is an absolutely-continuous trajectory.

Remark 2.1: The requirement that the vector fields f;, i =
0,...,m have compact supports is not restrictive in practice,
for we may multiply the f; by some smooth cut-off function
whose support is in some arbitrarily large compact set that
contains states x € R™ which are relevant to the given
application domain. Importantly, as a standard result, this
property implies that the trajectory solutions to the dynamics
of OCP (and to the dynamics of every other problem that will



be defined later) are defined and uniformly bounded for all
times s € [0,ty], see Lemma 3.1 for a more precise statement.
From this last observation and Filippov’s theorem, we infer the
existence of (at least locally) optimal solutions to OCP as long
as OCP is feasible (see, e.g., [25]). Sufficient conditions for
the feasibility of OCP exist and are related to the Lie algebra
generated by fi,..., f;n. In particular, these conditions are
generic (more details may be found in [26]; see also Section
III-A).

Remark 2.2: Many applications of interest often involve
state constraints c(s, 2(s)) < 0, s € [0, ¢s], where the mapping
c : R*1 — R is smooth and non-convex. One common
way of solving such constrained problems hinges on the
penalization of state constraints within the cost, thus reducing
the original problem to OCP. Specifically, given a penalization
weight w = (w1,...,ws.) € [0,wWmax]’, one may introduce
the mapping L0 (s, ) 2 LO(s, )+ 4, wih(ci(s, x)), where
h : R — R, is any continuously differentiable penalization
function such that h(z) = 0 for z < 0 (e.g., h(z) = 0 for
z <0 and h(z) = 22 for z > 0). The constrained problem is
reduced to OCP by dropping state constraints and replacing
the running cost function Lo with LY (note that LY is smooth
but not necessarily convex). The parameter w is selected by
the user and weighs the presence of state constraints; the
higher the value, the larger the penalization for the violation
of state constraints. We will use this remark for numerical
experiments in Section VII. We refer to [17] for the analysis
of the convergence for w — oo of penalty methods toward
solutions of constrained optimization problems, which lies
outside the scope of this work.

OCP is in general difficult to solve because of the presence
of nonlinear dynamics and non-convex cost. The solution
strategy proposed in this work is based on SCP.

Il. SEQUENTIAL CONVEX PROGRAMMING WITHOUT
MANIFOLD-TYPE CONSTRAINTS

As a first step, we develop our SCP framework without
considering manifold-type constraints, showing later how the
whole formalism can be adapted to the presence of those con-
straints. Dropping the manifold-type constraints, OCP takes
the simpler form:

mln / fO(s,2(s),u(s)) ds
f(s,x(s), u(s)), ae. s €[0,ty]
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SCP entails finding a locally-optimal solution to OCP as a limit
point of a sequence of solutions to convex subproblems com-
ing from successive approximations to OCP. Although several
different approximation schemes have been introduced in the
literature, in this work we focus on arguably the simplest one,
which is to linearize any nonlinear term in the dynamics and
any non-convex function in the cost. The two main advantages
of this approach are ease of computing linearizations and the
absence of high-order singular Jacobians, which can cause the
SCP problem to be ill-posed (e.g., SQP requires additional
procedures to ensure positive definiteness of Hessians [17]).

A. Design of Convex Subproblems

Assume we are given (xo,ug), wWhere ug : [0,tf] — R™
is piecewise continuous and z¢ : [0,t;] — R™ is absolutely
continuous. This tuple represents the initializing guess for
the SCP procedure. Importantly, we do not require (xg,uq)
to be feasible for OCP, though feasibility of (xg,uo) and
closeness to a satisfactory trajectory increases the chances
of rapid convergence (as it was empirically observed, e.g.,
in [9]). We will address this point further in the numerical
experiment section. A sequence of convex optimal control
problems is defined by induction as follows: Given a sequence
(Ag) keN C R4, the Linearized Optimal Control subProblem
(Locp2 Jrl) at iteration k + 1 subject to trust-region radius
Ak-‘rl > 01is
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where all the non-convex contributions of OCP have been

linearized around (z,wy), which for k£ > 1 is a solution to
the subproblem LOCP,CA at the previous iteration. Accordingly,
(Tg+1,ur+1) always denotes a solution to the subproblem
LOCPZ, ;. Each subproblem LOCPZ is convex in the sense
that after a discretization in time through any time-linear
integration scheme (e.g., Euler schemes, trapezoidal rule, etc.),
we end up with a finite-dimensional convex program that
can be solved numerically via convex optimization methods.
In particular, linearizations of G and H are not required
since these mappings are already convex. Finally, we have
introduced convex trust-region constraints

tr
[ l2(6) = mu@)? ds < A, <1>
0

These are crucial to guiding the convergence of SCP in the
presence of linearization errors. Since the control variable al-
ready appears linearly within the non-convex quantities defin-
ing OCP, trust-region constraints are not needed for control.
We remark that although it might seem more natural to impose
pointwise trust-region constraints at each time s € [0, ¢s], the
L?-type constraints (1) are sufficient to perform a convergence
analysis, and importantly, they are less restrictive. The frust-
region radii (A)ren C R represent optimization parameters
and may be updated through iterations to improve the search



for a solution at each next iteration. Effective choices of such
an updating rule will be discussed in the next section.

The definition of every convex subproblem by induction
makes sense only if we can claim that: (1) at each step, the
optimal trajectory xj, is defined in the entire interval [0,%],
and (2) there exists (at least one) optimal solution at each
step. The answer to the first question is contained in the
following lemma, whose proof relies on routine application
of the Gronwall inequality and is postponed in the Appendix.

Lemma 3.1 (Boundness of trajectories): Let suppf; denote
the support of f;, 7 =0,...,m.If U and suppf;, ¢ =0,...,m
are compact, then each xj is defined in the entire interval
[0, /] and uniformly bounded for every ¢ € [0,¢;] and k € N.

To answer the second question, we should provide sufficient
conditions under which LOCP,CA+1 admits a solution for each
k € N. To this purpose, we assume the following:

(A1) For every k € N, the subproblem LOCPS, ; is feasible.

As a classical result, under (A;), for every k € N, the
subproblem LOCPkA+1 has an optimal solution (g1, Ug+1),
which makes the above definition of each convex subproblem
by induction well-posed (see, e.g., [25]).

Remark 3.1: In practical contexts, (A7) is often satisfied.
This assumption is well-motivated, because, up to a slight
modification, each subproblem LOCPkA is generically feasible
in the following sense. In the presence of (1), the feasibility
of each subproblem would be a consequence of the controlla-
bility of its linear dynamics, which is in turn equivalent to
the invertibility of its Gramian matrix (see, e.g., [25]; the
constraints (1) force any admissible trajectory of LOCPkA+1
to lie within a tubular neighborhood around zj, thus, as a
classical result, the controllability criterion in [25] applies
by restriction to this tubular neighborhood). Since the subset
of invertible matrices is dense, Gramian matrices are almost
always (i.e., in a topological sense) invertible. Linearized
dynamics are thus almost always controllable, which implies
that each subproblem is feasible. As an important remark,
feasibility is preserved through time discretization, making any
time-discretized version of the convex subproblems well-posed
numerically. Indeed, time discretization maps the continuous
linear dynamics into a system of linear equations. Since
the set of full-rank matrices is also dense, similar reasoning
shows that the discretized subproblems are also almost always
feasible. In conclusion, (A7) is a mild and well-justified
assumption.

B. Algorithmic Framework

The objective of our SCP formulation can be stated as
follows: to find locally-optimal solutions to OCP by itera-
tively solving each subproblem LOCPkA until the sequence
(Ag, Tk, ug)gen, Where (z,uy) is a solution to LOCP%,
satisfies some convergence criterion (to be defined later, see
Section VII). We propose pursuing this objective by adopting
(pseudo-) Algorithm 1, which is designed to return a locally-
optimal solution to OCP, up to small approximation errors.

Algorithm 1 requires the user to provide a rule UpdateRule
to update the values of the trust-region radius. This rule
should primarily aim to prevent accepting solutions at each

Algorithm 1: Sequential Convex Programming

Input : Guess trajectory xg and control uyg.
Output: Solution (7,u;) to LOCP for some k.

Data : Initial trust-region radius Ay > 0.
1 begin
2 k=0, Ak+1 = Ak
3 while (uj)ien has not converged do
4 Solve LOCPZ; for (@41, ukt1)
5 Ag+1 = UpdateRule(x gy 1, Upt1, Tk, Ug)
6 E+—Fk+1
7 return (z;_1,up—_1)

iteration that are misguided by significant linearization error.
A priori, we only require that UpdateRule is such that the
sequence of trust-region radii (Ag)ren converges to zero
(in particular, (Ag)gen is bounded). In the next section, we
show that this numerical requirement, together with other mild
assumptions, are sufficient to establish convergence guarantees
for Algorithm 1. An example for UpdateRule will be provided
in Section VII when discussing numerical simulations.

The algorithm terminates when the sequence of controls
(uk)ken converges with respect to some user-defined topology
(as we will see shortly, convergence is always achieved in
some specific sense by at least one subsequence of (uy)ren;
in Section VII, we propose an approximate stopping criterion
to check the convergence of the sequence (ug)ien). Whenever
such convergence is achieved (in some specific sense; see the
next section), we may claim Algorithm 1 has found a candidate
locally-optimal solution for OCP (see Theorem 3.3 in the
next section). The reason that only the convergence of the
sequence of controls suffices to claim success is contained in
our convergence result (see Theorem 3.3 in the next section).
To measure the convergence of (ug)gen, some topologies are
better than others, and in particular, under mild assumptions
one can prove that, up to some subsequence, (ux)ren always
converges with respect to the weak topology of L2. In turn,
this may be interpreted as a result of weak existence of
successful trajectories for Algorithm 1 when selecting the L2-
weak topology as convergence metric. In practice, Algorithm
1 is numerically applied to time-discretized versions of each
subproblem LOCP%. Thus we will show that our conclusions
regarding convergence behavior still hold in a discrete context,
up to discretization errors (see the next section).

C. Convergence Analysis

We now turn to the convergence of Algorithm 1. Under mild
assumptions, our analysis provides three key results:

R1 When the sequence (uy)ren returned by Algorithm 1
converges, the limit is a stationary point for OCP in the
sense of the Pontryagin Maximum Principle (PMP).

R2 There always exists a subsequence of (ug)gen that con-
verges to a stationary point of OCP for the weak topology
of L.

R3 This converging behavior transfers to time-discretization



of Algorithm 1, i.e., versions for which we adopt time-
discretization of subproblems LOCPkA.
Result R1 is the core of our analysis and roughly states
that whenever Algorithm 1 achieves convergence, a candidate
locally-optimal solution to the original problem has been
found. For the proof of this result, we build upon the PMP.
Before focusing on the convergence result, we recall the
statement of the PMP and list our main assumptions. For the
sake of clarity, we introduce the PMP related to OCP and the
PMP related to each convexified problem LOCP,CA separately.
PMP related to OCP: For every p € R™ and p° € R, define
the Hamiltonian

H(s,z,p,p% u) =p" f(s,z,u) +p°" s, z,u).

Theorem 3.1 (PMP for OCP [22]): Let (a*,u*) be a
locally-optimal solution to OCP. There exist an absolutely-
continuous function p : [0,%7] — R" and a constant p’ < 0,
such that the following hold:

« Non-Triviality Condition: (p, p°) # 0.

« Adjoint Equation: Almost everywhere in [0, %],

5) = =0 5,07 (5), )1 9),

» Maximality Condition: Almost everywhere in [0, %],

H(s,z*(s),p(s),p°, u*(s)) =

= max H(s,x*(S),p(S),POW)-
velU

o Transversality Condition: It holds that
99«
plts) L kerg=(z7(ty)).

A tuple (z*,p,p°, u*) satisfying Theorem 3.1 is called (Pon-
tryagin) extremal for OCP. Note that, thanks to the equivalence
(ker A)* =Im AT for a matrix A, the transversality condition
entails that p(ty) = Zfil A\iVgi(z*(ts)), for some \ € Rfs.

PMP related to LOCP: For every k > 1, p € R", and
p0, pt € R, define the Hamiltonian

Hy(s,z,p,p% p',u)=p" fr(s,z,u)
+p° fR (s, z,u) 4 pHl|z — zp—1(s)]|.

Theorem 3.2 (Weak PMP for LOCPkA [27]): Let k > 1
and (z1,u) be a locally-optimal solution to LOCPZ. There
exist an absolutely-continuous function py, : [0,t7] — R™ and
two constants pg <0, ]0,1C € R, such that the following hold:

« Non-Triviality Condition: (py, p{, pi) # 0.

« Adjoint Equation: Almost everywhere in [0, t¢],

) 0H
br(s) = = 3;

(s,xk(s),pk(s),pg,p}c,uk(s)).
» Maximality Condition: Almost everywhere in [0, %],

Hy(s, 2(5), pr(8), D Phs uk(8)) =

max H(s,x(8), pr(s), Py s v).-

o Transversality Condition: It holds that

pr(ty) L ker%(mk(tf)).

A tuple (zg,pk,pY, py, uk) satisfying Theorem 3.2 is called
extremal for LOCPkA.

Remark 3.2: Theorems 3.1 and 3.2 provide first-order nec-
essary conditions for optimality, thus extremals are candidate
local optima. It is worth noting that, thanks to the new variable

y(t) 2 / () — 2 (s)]2 ds,

constraints (1) may be written as y(ty) — Agy1 < 0. By
leveraging this transformation, LOCP,CA+1 may be reformulated
as an optimal control problem with final inequality constraints
but without state constraints. Thus, the multipliers introduced
in Theorems 3.1 and 3.2 are continuous functions of time (see
our proof in Section III-D; compare also with [27, Theorem
4.1] under final inequality constraints only). Finally, although
the conditions listed in Theorem 3.1 are essentially sharp, the
statement of Theorem 3.2 may be strengthened as follows. If
(Tht1, Ph+1 Py 15 Phy1» Ukt1) is an extremal for LOCPL, |,
one can additionally prove that (see [27]; note that [27]
considers maximization of rewards rather than minimization
of costs, thus multipliers must change sign) p;, 11 <0and

ty
Phis ( | rests) =~ en(o)? ds - Ak+1> 0
0

(the latter is know as slack condition), which motivates the
choice “weak PMP for LOCPZ ,” as name for Theorem 3.2.
Nevertheless, since the constraints (1) do not appear in the
original problem OCP, we do not need to leverage these latter
additional conditions on p,lC 11 i.e., Theorem 3.2 suffices to
establish convergence for SCP when applied to solve OCP.
Assumption (A1) suffices to obtain the result R1 (see The-
orem 3.3 below). To prove result R2, additional regularity on
the data defining OCP is required. Specifically, we introduce
the following technical condition:
(Ay) The mapping G : R™*! — R is u-strongly convex, i.e.,
there exists o > 0 such that for every s € R and every
uy, ug € R™,

2

1
G(s,Aup + (1 — Nug) + 50)\(1 — N |lug —ugl* <
< AG(s,u1) + (1 — N)G(s,uz).

Our main convergence result reads as follows,

Theorem 3.3 (Guarantees of convergence for SCP):
Assume that (A;) holds and that Algorithm 1 returns a
sequence (Ap,ug, Xk )ren such that Ay — 0 and, for every
k € N, the tuple (ug+1,Z4+1) locally solves LOCPSY, ;.

1) Assume that the sequence of controls (uy)ren converges

to some u* € U for the strong topology of L2. Let
x* : [0,tf] — R™ denote the solution to the dynamics
of OCP associated with the control «*. Then, there exist
a sequence (py,pY,p1)ken and a tuple (p,p°), with p :
[0,¢f] — R™ absolutely continuous, p® < 0, such that:
a) (z,pr, DY, Pr,uk) is an extremal for LOCPL and
these convergence results hold:
o 3, — x* for the strong topology of C°.
« Up to some subsequence, pr — p for the strong
topology of C°, and p — p°.



b) If (p(tf),p°) # 0, ie., the value to which
(pr(ts),pY)ken converges is not zero, then
(x*,p,p°,u*) is an extremal for OCP.

2) Assume that (As) holds and the sequence of controls
(ug)ren converges to u* € U for the weak topology
of L. If (pk,pY, p})ken is such that p) # 0 for every
k > 1, then the statements in 1.a-1.b above remains true.
In addition, there always exists a subsequence (u;);en
that converges to some u* € U for the weak topology of
L?, such that the statements in 1.a-1.b above are true.

The guarantees offered by Theorem 3.3 read as follows.
Under (A;) and by selecting a shrinking-to-zero sequence
of trust-region radii, if iteratively solving problems LOCP,CA
returns a sequence of extremals (zy, p, pg,p}f,uk)keN such
that (1) (ug)ren converges with respect to the strong topology
of L%, and (2) (pk(ts),pl) — ¢ # 0, then there exists
a Pontryagin extremal for the original problem, i.e., a can-
didate (local) solution to OCP to which (zy, pk, Py, Uk )ken
converges, which formalizes result R1. Moreover, under ad-
ditional regularity on the data defining OCP and the addi-
tional assumption that the generated sequence of extremals
(Tk, P, DY, Phy Uk )ken is such that p? # 0 for every k > 1, a
converging sequence of controls (ug)gen always exists, which
formalizes result R2. This can be clearly interpreted as a
“weak” guarantee of success for SCP, where “weak” refers
to the fact that only a subsequence of (ug)gen converges,
a guarantee which is often sought and leveraged from the
optimization community, see, e.g., [28, Theorem 3.4], in which
“accumulation points” are considered.

Remark 3.3: When SCP achieves convergence, (A3) and
the requirement p{ # O for every k > 1 are not needed for
the derivation of theoretical guarantees on local optimality.
On the other hand, the requirements (py(ts),p)) — ¢ # 0
(or equivalently (p(ty),p%) # 0) and pY # 0 for every k > 1
play the role of “qualification conditions” (compare also with
condition (14) in [28, Theorem 3.4]), a standard requirement
in optimization which can be easily checked numerically, see
Section VIL In particular, the requirement p) # 0 for every
k > 1 means that each extremal (xy,py,pY, Ph, Uk)ken is
normal (see [29] for a definition), and normality of extremals
naturally occurs in many optimal control problem settings (see
[30, Corollary 2.9], in which the authors show that normality
of extremals holds generically true as long as optimal controls
take value in the interior of the control domain; see also
[31], [32] for additional general settings where extremals are
normal), further justifying the requirement p9 # 0 for k > 1.

Remark 3.4: Those guarantees adapt when time discretiza-
tion is adopted to numerically solve each convex subproblem,
which is the most frequently used and reliable technique
in practice. To see this, fix a time-discretization scheme
and consider the discretized version of OCP. Any candidate
locally-optimal solution to this discrete formulation satisfies
the Karush-Kuhn-Tucker (KKT) conditions. If a Pontryagin
extremal of OCP exists, the limit of points satisfying the
KKT for the discretized version of OCP as the time step
tends to zero converges to the aforementioned Pontryagin
extremal of OCP (more precisely, up to some subsequence;

the reader can find more details in [33]). Theorem 3.3 exactly
provides conditions under which the “if sentence” above
holds true, that is, conditions under which the aforementioned
Pontryagin extremal of OCP exists, thus endowing Algorithm
1 with correctness guarantees that are independent of any time
discretization the user may select (Euler, Runge-Kutta, etc.).

D. Proof of the Convergence Result

We split the proof of Theorem 3.3 in three main steps. First,
we retrace the main steps of the proof of the PMP to introduce
necessary notation and expressions. Second, we show the
convergence of trajectories and controls, together with the
convergence of Pontryagin variations (see the paragraph below
for a definition). The latter represents the cornerstone of the
proof and paves the way for the final step, which consists of
proving the convergence of the Pontryagin extremals.

1) Pontryagin Variations: Let u € U be a feasible control
for OCP, with associated trajectory z,, in [0,%¢s]. For every
r € [0,ts] Lebesgue point of u, and v € U, we define

crov A fO(r, Ty (1), v) — fO(r, Ty (1), u(r)) -
v ( £, 2 (), 0) = (2 (r), u()) ) = ®

The variation trajectory zi;V : [0,t] — R™™! related to r €
[0,tf], to v € U, and to the feasible control u € U for OCP
is defined to be the unique (global in [0,%¢]) solution to the
following system of linear differential equations

0
. O (s vuls)uls)) 0 ”
%(s,mu(s),u(s)) 0 @)
) = .

The proof of the PMP goes by contradiction, considering
Pontryagin variations (see, e.g., [23]). We define those to be
all the vectors Z]"(ty), where r € (0,%5) is a Lebesgue point
of w and v € U. In particular, if (x,,u) is locally optimal
for OCP, then one infers the existence of a nontrivial tuple
(p,p°) € Rf%*! (p is a row vector), with p° < 0, satisfying,
for all r € (0,¢;) Lebesgue point of v and all v € U,

9 -
(po,pai(xu(tf))) <z (ty) <0. 5)

The non-triviality condition, the adjoint equation, the max-
imality condition, and the transversality condition listed in
Theorem 3.1 derive from (5). Specifically, it can be shown
that a tuple (., p, p°,u) is a Pontryagin extremal for OCP if

s,
and only if the nontrivial tuple (p(tf) = pai(xu(tf))mo) €

R™! with po < 0 satisfies (5) (see, e.g., [23]). For this reason,
(2, p,p°, u) is also called extremal for OCP.

Let us show how, thanks to the change of variable (2),
the previous conclusions adapt to each subproblem built in
Algorithm 1. Specifically, for every k € N, assuming (4;),
let (Tj41,uk+1) denote a solution to LOCP, |, with related
trust-region radius Ay 1, and introduce the smooth curve

t
Yiar (0,8 SR £ / e (5) — 24(s)]? ds.
0



Clearly, condition (1) is equivalent to yg41(tf) — Agg1 < 0.

Next, consider the extended smooth dynamics

et & (S50 )

[ — zx(s)
and for every r € [0,t;] Lebesgue point of uy4q and every

v € U define
ér,v _ <

h S (r 21 (r), w1 (r)) ©
Straightforward computations show that the control uj does
not explicitly appear within expression (6). Thus the time r €
[0, t';“] needs to be a Lebesgue point of uy1 only. We define
the variation trajectory Z,, : [0,ts] — R"™? related to r €
[0,tf], to v € U, and to the locally-optimal control w4 for
LOCP2 ; to be the unique (global in [0, ¢]) solution to the
following system of linear differential equations

For1(rpga(r),v) —

FRa1 (r pga (), upga () ) .
Sre1(r g1 (r),v) —

0
8,];k+1 (S, CUkJrl(s)’ uk+1(8)) 0 0
i(s) = af“" N
‘Z;kgl (8,2p+1(8), up+1(s)) 0 0

The Pontryagin variations related to LOCP,c ', are all the
vectors Z,/ (ts), where r € (0,t5) is a Lebesgue point of
ur+1 and v € U. At this step, one may easily extend the
proof of [23, Theorem 12.13] to the case of augmented final
constraints g(xk11(ts)) = 0 and yg41(ty) — Agy1 < 0, and
from the local optimality of (21, ug+1) for LOCPZ ,, infer
the existence of a nontrivial tuple (pri1,p) 1, Pp, ) € RfT2
(P41 is a row vector), with p), , < 0, satisfying, for r €
(0,tr) (Lebesgue for uy11) and v € U,

dg rw
<P2+1;Pk+1%(93k+1(tf)),p/£+1) 2 (tr) <00 ®)

The non-triviality condition, the adjoint equation, the max-
imality condition, and the transversality condition listed in
Theorem 3.2 derive from algebraic manipulations on (8).
Again, we stress the fact that the necessary conditions for
optimality offered by (8) are not exhaustive, in that the sign
of the multiplier p}. +1 € R and additional slack conditions may
be characterized as we mentioned in Remark 3.2. Nevertheless,
as we will show shortly (8) suffices to prove Theorem 3.3.

The main step in the proof of Theorem 3.3 consists of
showing that it is possible to pass the limit £ — oo inside (8),
recovering a nontrivial tuple (p,p°) € Rf*! with p° < 0 that
satisfies (5). Due to the equivalence between the conditions
of the PMP and (5), this is sufficient to prove the existence
of a Pontryagin extremal for OCP. We will show that this
also implies the convergences stated in Theorem 3.3. We will
only focus on proving the last part of 2) in Theorem 3.3, by
adopting the additional assumption (As) and the requirement
py # 0 for every k > 1, since proofs of the remaining cases
are similar and easier to construct.

2) Convergence of Controls and Trajectories: By the com-
pactness of U, the sequence (ug)ren < L*([0,ts];U) is
uniformly bounded in L2([0,¢;];R™). Since L?([0,t;];U) is
closed and convex in L*([0,t;];R™) (because U is compact

and convex) and L?([0,¢];R™) is reflexive, there exists a
control u* € L?([0,tf];U) (in particular u* € U) such that
we can extract a subsequence (still denoted (uy)gen) that
converges to u* for the weak topology of L. We denote by
x* the trajectory solution to the dynamics of OCP related to
u*, which is defined on [0, /] thanks to Lemma 3.1.

Next, recalling that thanks to Lemma 3.1 the trajectories xy,
are defined in [0, ¢] and uniformly bounded, we show that

sup |lzk(s) —z*(s)|| — O 9)

s€[0,t]

for k — oo. This will provide the desired convergence of
trajectories. For ¢ € [0,t;] we have that

t
[@kq1(t) — 2" (1)]] S/ [fo(s, zk(s)) — fo(s,z™(s))]| ds

‘(s)fi(s, z* (s))) ds

Uk+1 (8)fi(s,zx(s)) —

%

z (5. 2k(5))

zx+1(s) — zk(s) ds

/
0

(s,21(s))

lzkt1(s) = zr(s)l ds

1
<o (/ lzks1(s) — 2" ()] ds + AZ,,
0

(5,27 () (ukp1(s) = (w)'(5)) ds

'u 1
2600,

where C'; > 0 is a constant that stems from the uniform
boundedness of (x)ken (see also the proof of Lemma 3.1 in
the Appendix). Now, the definition of weak convergence in L?
gives that, for every fixed t € [0,t¢], 5,’:_:1( ) — 0 for k — oc.
In addition, by the compactness of U and suppf;, there exists
a constant C > 0 such that, for every ¢, s € [0, /]

6130 (1) — 63!y ()] < Calt — s

uniformly with respect to & € N. Thus, by [34, Lemma 3.4],
5Zi1(t) — 0 for k — oo uniformly in the interval [0,¢;]. We
conclude thanks to A, — 0 and a routine Gronwall inequality
argument (see also the proof of Lemma 3.1 in the Appendix).

Let us prove that the trajectory =* : [0,¢¢] — R™ is feasible
for OCP. To do so, we only need to prove that g(z*(t5)) =
0. Note that from (9), Ar — 0, and the boundedness and
convergence of the trajectories, we have that

“ED= g™ (85) £ g(ze(E )< Nlg(zr (i)

9]
o [0
zeK

lg(x

L) " (t) = anltr) | —> 0,
where K C R™ is some compact set (see Lemma 3.1), from
which we conclude that z* : [0,¢7] — R™ is feasible for OCP.

3) Convergence of Pontryagin Variations: Due to the conver-
gence of controls and trajectories, we can now prove that it is
possible to pass the limit k& — oo inside (8), showing that (5)
holds. First, thanks to (Az) and p{ # 0 for every k > 1, by
[29, Lemma 5.3] every control w1 is continuous. Therefore,
the following result holds (see [35, Lemma 3.11]):

Lemma 3.2 (Pointwise convergence of controls): For every
r € (0,ts) Lebesgue point of u* there exists (r)zen < (0,%5)




such that rj is a Lebesgue point of uy, and the convergences
ri — r and ug(rg) — w*(r) hold for k — oo.

Now, fix r € (0, t;}) Lebesgue point of u*, and v € U, and
let (ri)ren be the sequence provided by Lemma 3.2 related
to r and v. We prove the following convergence:

(s) = (Zu-'(s

Tk+1,V
sup szﬂ
s€[r,ty]

):0) —0 (10)

for k — oo, where z,:lf:ll solves (7) with initial condition

A (o) = fk"“ " given by (6), whereas 7,2 solves (4)

with initial condition /" (r) = £V given by (3). First,

u
€54 — (€0, 0)]| <

k+1

< Z [ fi (Pt Trg1 (Tg1))

i=1

= fi(r,z™(r))l

m

+ D Mg r o) fi(Phgrs @era (Pgn)) — () () fi(ry 2™ ()|
i=1
TG (rrt1,0) = Gr, )|

— G(r,u*(r))]|

m
+ D L (Pt @1 (rhg1)) = LE (2 ()|
i=1

+ G (rrq1, uks1(Te41))

+ D lufgr () L (1, g (ris)) = (@) ()L (ry 2" (r)|

=1
< Cs(Jrnr = 71+ lops1 (o) = O+ luga (rasa) —w* (@) P

where C'3 > 0 is a constant, and from Lemma 3.2 and (9) we

infer that ||§Z’_f11 —(€77,0)|| = 0 for k — co. Second, by
leveraging the uniform boundedness of the trajectories, with
the same exact argument proposed in the proof of Lemma
3.1 in the Appendix, one may show that the sequence of
variation trajectories (Z,*")ren is uniformly bounded in the
time interval [r,¢;]. From this, for every t € [r, ¢ ]

IV () — (B2 (1), 0) | < IERATY — (72, )+ Cilrigs — 7]
t 0
+f (2||xk+1<s>—mk ||+H fict1 ska(s),ukH(s))H
g ) .r v rov
|2 o 9), w0 90) )u SRR () (370 (5),0) | ds
a 0
a9 maa ) 0 0
S IA OTEL o,  (5), w11 (5))
2zpr1(s) — zx(s) | 00
0
O (5, a*(s),u*(s) 0 0 .
|z e Y
O (" (5), 0 () . 0
< JERETY @2 o))
t T v
+c4(|rk+1 [ ) - G0l dstal,

+/Tt la(s) — 2*(9)] d5+/: lzhy1(s) —z*(s)]] ds)

L’L ~'I’"U

7u*

/Ffz,

)(s) (uk(s) = (u")'(s)) ds

)

2502 ()

where the (overloaded) constant Cy > 0 comes from the uni-
form boundedness of both (zj)ken and (2,")ken previously
stated. In particular, we introduce the terms F'(f;, L, 22) :
[r,t7] — R that are continuous and uniformly bounded map-
pings depending on f;, L%, and Z z . Following the exact same
argument we developed for oy +1, one prove that J, +1( )—0
for k — oo, uniformly in the interval [r,¢s], so that (9) and a
routine Gronwall inequality argument allow us to obtain (10).
Importantly, convergence (10) implies that, for £ — oo,

1265 () = (2 (tp),

4) Convergence of Extremals and Conclusion: At this step,
consider the sequence of tuples (px,p%, pi)ken, with p) <0
for k > 1. It is clear that the variational expressions (8) remain
valid whenever (py,p),pl) is multiplied by some positive
constant. Therefore, without loss of generality, we may assume
that ||(px,p, i)l = 1 and p < 0 for k > 1. Then,
we can extract a subsequence (still denoted (py, pQ, pt.)ken)
that converges to some nontrivial tuple (p,p°,p') satisfying

p° < 0. At this step, we may leverage (9) and (11) to prove
that (¢}, 2", p, p°,u*) is the sought-after non-trivial extremal
for OCP when p° # 0. Indeed, for every r € (0, t}) Lebesgue
point of u*, and v € U, (9) and (11) we have that, for £k — oo,

(P05 ) 212 0) =
(1052 et ) - G e).0) <
<| (gl ) - G0
~ (epe S antep) k) )| — 0

O)ff — 0. (1)

due to the inequality of (8), and we conclude.
The proof of Theorem 3.3 is achieved if we show that

—p(s)[ —0 (12)

sup ||pr+1(s)

SE[Ovt.f]
for kK — oo, where py1 solves

OHp 41
Ox

. 0
Pr41(s) = — (8, 2p41(5), Prt1(8), Pht1, Ukt1(5))

0
Pry1(ty) = Pk+1£($k+1(tf)),

whereas p solves

SO (0, ) 6)

59
plts) = P9 (2" (1))

To this end, by leveraging the uniform boundedness of the
trajectories, with the same exact argument proposed in the
proof of Lemma 3.1 (see the Appendix), one shows that the



sequence (px)ken is uniformly bounded in the interval [0, ].
From this, for every ¢ € [0,t;] we have that

—p®)l <

lpr41(t)

dg 99, «
P g (on (7)) = B 92 " (07) |
1 5 0 0 ts
+C5 (1pha |2,y + 1041 — P°1 + /t Iprs1(s) — p(s)]| ds
tf .
+ [ nts) - w(s)\lds)
t

+§m: /tf F(fivLi’p’pO)(s) (u}c(s)—(u*)z(s)) ds
— e

t
(s)][ ds + / e (s) -

u,3
23 (1)

where the constant C5 > 0 comes from the uniform bounded-
ness of both (2)ren and (pi)ren, whereas F(f;, LY, p,p°) :
[r,tf] — R again denote continuous and uniformly bounded
mappings that depend on f;, L, p, and pO Following the
exact same argument we developed for 5k ' 1> one proves that
6Zf1( ) — 0 for k — oo, uniformly in the interval [0, %], so
that (9) and a routine Gronwall inequality argument allow us
to conclude (see also the Appendix).

V. SEQUENTIAL CONVEX PROGRAMMING WITH
MANIFOLD-TYPE CONSTRAINTS

We now show how the framework described in Section III
can be applied verbatim to solve our optimal control prob-
lem when additional manifold-type constrains are considered,
under mild regularity assumptions on the dynamics. In this
context, we focus on problems OCPM defined as:

Znelzr} / fO(s,z(s),u(s)) ds

x(s) = f(s,z(s), u(s)), ae. s € [0,ty]
fU(O):ﬂC €M, g(x(ty)) =0
z(s) e M CR", se|0,tf]

where M C R"™ is a smooth d-dimensional submanifold of R™
and, for the sake of consistency, we assume that g~ (0)NM #
(). We denote by (z*,u*) any solution to OCPM

A. Unchanged Framework under Regular Dynamics

One possibility to solve OCPM would consist of penalizing
the manifold-type constraints within the cost (see Remark 2.2).
Although possible, this approach might add undue complexity
to the formulation. Interestingly, in several important cases for
applications, this issue can be efficiently avoided. To this end,
we assume that the following regularity condition holds:
(A3) Fori=0,...,m, the vector fields f; : R"*! — R™ are

such that f;(s,x) € T, M, for every (s,z) € R x M.

n (As), T,M denotes the tangent space of M at x €
M, which we identify with a d-dimensional subspace of
R™. This requirement is often satisfied when dealing with
mechanical systems in aerospace and robotics applications (for
instance, consider rotation and/or quaternion-type constraints).
Under (Ajs), as a classical result, the trajectories of #(s) =
f(s,2(s),u(s)) starting from 2° € M lie on the submanifold
M, and therefore, the condition z(s) € M, s € [0,ty],

is automatically satisfied. In other words, we may remove
manifold-type constraints from problem OCPM so that it
exactly resembles OCP, i.e., the formulation adopted in Section
I with the additional constraint z° € M. At this step, we
may leverage the machinery built previously to solve OCP.
Specifically, the construction of each subproblem LOCPkA and
Algorithm 1 applies unchanged. Due to the linearization of
the dynamics, solutions to the convex subproblems are not
supposed to lie on M. However, convergence does force the
limiting trajectory to satisfy the manifold-type constraints.

B. Convergence Analysis

The convergence of Algorithm 1 applied to this new context
can be inferred from Theorem 3.3. However, despite the reg-
ularity assumption (As), it is not obvious that the optimality
claimed by this result extends to the general geometric setting
brought on by manifold-type constraints. Specifically, if Algo-
rithm 1 converges to a trajectory satisfying the assumptions of
Theorem 3.3, although such a trajectory meets manifold-type
constraints, the related extremal satisfies the PMP for problems
defined in the Euclidean space by construction. In other
words, a priori the extremal does not carry any information
about the geometric structure of a problem with manifold-
type constraints, whereas extremals for OCPM are expected
to satisfy stronger geometrically-consistent necessary condi-
tions for optimality. Specifically, to recover a geometrically-
consistent candidate optimal solution for OCPM | we must
show that this satisfies the Geometric PMP (GPMP) (see, e.g.,
[23]), necessary conditions for optimality for OCPM which
are stronger than PMP. This is our next objective.

Before stating the GPMP related to formulation OCPM, we
first need to introduce some notation and preliminary results
(further details may be found in [23]). We denote T'M and
T*M as the tangent and cotangent bundle of M, respectively.
Due to (As), the mapping

fau i Rx M xR™ = TM : (s,z,u) = f(s,z,u)

is a well-defined, non-autonomous vector field of M. Thus,
trajectories related to feasible solutions (¢, z,u) for OCPM
may be seen as solutions to the geometric dynamical equations

(s) = far(s, 2(s), u(s)), (13)

In a geometric setting, given a feasible solution (z,u) for
OCPM, Pontryagin extremals are represented by the quantity
(X, p°, u). In particular, the information concerning the trajec-
tory x that satisfies (13) is encapsulated within the cotangent
curve A : [0,tf] — T*M, ie., z(s) = w(A(s)), s € [0,tf],
where m : T*M — M is the canonical projection. At this
step, for A € T*M and p° € R, we may define the geometric
Hamiltonian (related to OCPM) as

H(sa)‘vp()?u) £ <)\,f}»j($,7‘l’(/\),u)> +p0f0(3,7r(/\),u),

where (-,-) denotes the duality in T*M. We remark that
whenever M = R"™, we recover the Hamiltonian introduced in
Section III. In the geometric framework, adjoint equations are
described in terms of Hamiltonian vector fields. Specifically,
as a classical result, for every (s,u) € R™T! one can

20 e M.



associate to H(s,-,-,u) a unique vector field ?I(s, o)

T*(M x R) — T(T*(M x R)) of the product cotangent

bundle T*(M xR) (known as HamiléoHnian vector field) by the
—

rule a(,\’po)(-,H(s,)\,po,u)) = W

being the canonical symplectic form of T*(M x R). We are

now ready to state the GPMP related to OCPM.

Theorem 4.1 (GPMP for OCPM [23]): Let (z*,u*) be a
locally-optimal solution to OCP* . There exists an absolutely
continuous curve! A : [0,¢7] — T*M with z*(s) = 7(A(s)),
s € [0,t7] and a constant p° < 0, such that the following hold:

« Non-Triviality Condition: (X, p°) # 0.
« Adjoint Equation: Almost everywhere in [0, %],

(5, A\, p°, u), with o

d();lsp )( ) Ijzf}(s,)\(s)vpo,u*).

» Maximality Condition: Almost everywhere in [0, t¢],

H(s, A(s),p", u*(s)) = max H(s,\(s),p’,v).

velU

« Transversality Condition: It holds that

Ognmr (
Ox

A(ty) L ker z*(ty)),

where we denote gy : M — R : z +— g(x).
The tuple (\,p°, u*) is called geometric extremal for OCPM

Remark 4.1: As discussed previously, thanks to (As), each
convex problem LOCP,CA may be correctly formulated as
in Section III-A by dropping manifold-type constraints and
considering dynamics as vector fields in R™. Therefore, we
may again leverage Theorem 3.2 as necessary conditions for
optimality for each LOCPkA. Accordingly, for £ > 1, (weak)
extremals for LOCP% are denoted by (zx, pk, pY, ph, uk).

Assuming that Algorithm 1 applied as described above
converges, we prove that the limiting solution is a candidate
local optimum for OCPM by showing that it is possible
to appropriately orthogonally project the extremal for OCP
provided by Theorem 3.3 to recover a geometric extremal
for OCPM . First, we need to introduce the notion of the
orthogonal projection to a subbundle. Specifically, given the
cotangent bundles T*M C T*R™ = R?", define T*R™| 5y £
Uzenr {2} x T;R™ = M x R™. Equipped with the structure
of the pullback bundle given by the canonical projection
T*R™|pr — M, T*R™|p is a vector bundle over M of
rank n, and T*M may be identified with a subbundle of
T*R™|5;. We build an orthogonal projection operator from
T*R" gy to T*(R x M) by leveraging the usual or-
thogonal projection in R™*!. To do this, let x € M and
(V,¢) = (V,y%,...,y™) be a local chart of z in R™ adapted
to M, i.e., satisfying p(V N M) = p(V)NR? x {0}"~%. By
construction, {dy’(-)};=1,....» is a local basis for T*R" |, and
{dy’(-)};j=1.....a is a local basis for T* M around x. Consider
the cometric (-,-)g» in T*R"™|p; which is induced by the
Euclidean scalar product in R™. The Gram-Schmidt process

!Continuity is meant with respect to the standard topology in T* M

applied to {dy’ (-)};=1,...» provides a local orthonormal frame
{E;(-)}j=1,...n for T*R™|ps, that satisfies in V N M

span(El(-),...,Ej(-» dyj(»

for every 1 < j < n. It follows that, when restricted to VN M,
the following orthogonal projection operator

II: T*R" M gypr = T*(Rx M) = R?x T*M

(z,2,0°,p) ( zd: j(@)

Jj=1

= span(dy' ("), ..., (14)

is well-defined and smooth. Moreover, since the change of
frame mapping between two orthonormal frames is orthogonal,
from (14) it is readily checked that II is globally defined.
Equipped with the GPMP and orthogonal projections, the
numerical strategy to solve OCPM detailed above becomes
meaningful and justified by the following convergence result
(similar to the discussion for Theorem 3.3, the convergences
stated therein readily extend to the discretized setting).

Theorem 4.2 (Convergence for SCP with manifold constraints):
Assume that (A;), (As), and (A3z) hold, and that applying
Algorithm 1 to OCPM when manifold-type constraints
are dropped returns a sequence (Ag,uy,xk)gen such that
Ay — 0 and, for every k € N, the tuple (ugy1,xr41) locally
solves LOCP4}, ;. Then there exists a tuple (z*, p, p°, u*) that
is an extremal for OCP™ when manifold-type constraints are
dropped and satisfies all the statements listed in Theorem 3.3,
if (p(ts),p") # 0 (where the convergence of (uy)xen for the
strong topology of L? may be replaced by the weak topology
of L? whenever (As) holds and, for & > 1, each multiplier
(zk, e, P, Pr, uy) for LOCPS satisfies p) # 0). In addition,
the limiting trajectory satisfies z*(s) € M, s € [0,t], and
by defining the absolutely continuous curve

)\:[07tf]—>T*M:tH>7r2(H(z*(t) “(1), p°, p(t ))), (15)

where o : T*(R x M) — T*M : ((z,p°), &) —
[0,27] — R satisfies 2(s) = fO(s, z*(s), u*(s)),
tuple (A, p°,u*) is a geometric extremal for OCPY

¢ and z*
( ) =0, the

C. Proof of the Convergence Result

Let (z*,p,p°,u*) be an extremal for OC in the case
where manifold-type constraints are dropped, whose existence
is guaranteed by Theorem 3.3 (in particular, we assume that
(p(tf),p°) # 0). To avoid overcharging the notation, in the
rest of this section we denote (z,p,p°, u) = (z*,p,p°, u*).
Because (A3) implies that z(s) € M, s € [0,t;], Theorem
4.2 is proved once we show that the tuple (\,p° u) with A
built as in (15) satisfies the non-triviality condition, the adjoint
equation, the maximality condition, and the transversality
condition of Theorem 4.1. For the sake of clarity, we denote

g = 322, dlgan). = 24 0)

1) Adjoint Equation: Before getting started, we introduce

P M

some fundamental notations. For every (%o, 20, po) € [0,1s] X
R"*1, the differential equation
Z(S) = fO(S’ $(8)7 u(s)), x(s) = f(s,x(s), U(S)) (16)



with 2(tg) = 20, 2(tp) = po has a unique solution, which
may be extended to the whole interval [0,%¢]. We denote
by exp : [0,t7]2 x R*"1 — R™*1 the flow of (16), i.e.,
exp(-; to, (20,p0)) solves (16) with initial condition (zg,po)
at time ¢o. As a classical result, for every (£,t9) € [0,¢¢]?, the
mapping exp(t;tg,-) : R**1 — R+ is a diffeomorphism.
With this notation at hand, one can show that the solution p to
the adjoint equation of Theorem 3.3 is such that for s € [0,t¢],

(v, p(s)) =

where we denote (z,7)(t) £ exp(t,0;(0,2°)) and (-)* de-
notes the pullback operator of 1-forms in R"*! (see, e.g.,
[23]). At this step, to prove that (\,p") satisfies the adjoint
equation of Theorem 4.2 with \ defined in (15) and (p°, p) sat-
isfying (17), we can leverage classical results from symplectlc
geometry in the context of Hamiltonian equations (see, e.g.,
[23]) from which it is sufficient to prove the following lemma:

(eXp(tf;sv'))z(z,x)(tf) : (povp(tf))v a7

Lemma 4.1 (Projections of solutions to Hamlltoman systems):

For almost every t € [0,t], let (V) = (V,y%,...,y") be a
local chart of (z,)(t) = exp(t,0; (0,2°)) (which is a point
in R x M due to (A4)) in R™™! adapted to R x M. For every

i=0,...,d, it holds that
e (1@t Dy - 6 00e)) (o (@200 ) )0
d
=3 Wi ), ey

7=0
11((exp(ti) ) 07000) (g (22200,

where (-)* denotes the pullback operator of 1-forms in R™*1,
Proof: For indices ¢ =0, ...,n, we denote

i) =T ((ex(tyst. ey 0 0(tr) (5o (@ 2)0) ).

Since by the definition of the pullback it holds that

n

(exp(t 3 t,)) (2o (P p(E£)) = D by z)(t)) (18)
=0
for appropriate coefficients b;(t), j = 0,...,n, from (14),
d
H((exp(tf;tv '))?z,m)(tf) p y P tf Z (t))a
7=0

which yields a;(t) = b;(t) for every j = 0,...,d. Therefore,

by inverting (18), we obtain

d
(0%, p(ts)) = D a; () (exp(tits, ))izmye) - 4y’ (2, 2)(1))
j=0
+ D biO)(exp(tits, ) -y ((2,2)(1)).
j=d+1

Now, let (A4, «) (A,w®, ..., w") be a local chart of
(z,z)(ty) in R™*1 adapted to R x M. Since due to (Ay),
the trajectory (z,x)(t) lies entirely in R x M and the chart

(V, ) is adapted to R x M, for every i =0, ...,
j > d+ 1, one computes

(eXp(t; ty, '))?27;5)(0 : dyj ((Za I)(t)) <8(’?U’

d and every

(<z,x><tf>))
= 8?ui (y/ oexp(tity,-)oa ") (a((z,2)(ty))) = 0.

This implies that for every ¢ =0,...,d,

<po,p<tf>><fi<<z,x><tf>)> _
d

2, o

The term on the left-hand side does not depend on ¢. Therefore,
a differentiation with respect to ¢ together with (17) lead to?

o™ ) (al(z,2)(ty)))-

y oexp(t tg,-)o

d

>~ [is ettt Wiy

j_ (. 0)0) (5 (22)07) ) )
t(0) o) Cexpltst7. )y
i((z,x)<tf>)))} =0, (19

which must hold for every ¢ = 0,...,n. At this step,
we notice that due to (Ay4), for every j = 0,...,d and

3(f0, f)j
Tyé(t, (t), u(t))

5 (t,z(t),u(t)). Moreover, due to (A4), the restric-
Y

tion exp(t;ty,-) : R x M — R x M is well-defined and is
a diffeomorphism. Hence (exp(t;ty,-))* is an isomorphism
when restricted to 1-forms in 7% M. Combining those with
(19) gives

' (1200 (2

every ¢ = 0,...,d, we have

a(foa f]\/f)j

d

3 [aju)dyj((z,x)(t))

j*()

+Za]

and the conclus1on follows. [ ]

2) Maximality, Transversality and Non-Triviality Conditions:
Before getting started, consider the following analysis of
tangent spaces. From (Ajs) and the definition of gy, it holds
that z(tf) € g='(0) N M = g, (0). Note that g~*(0) € R”
and g,,'(0) € M are submanifolds of dimension n — ¢, and
d — {4, respectively, with tangent spaces given by

T.9 1 (0) = {v € T,R" = R" : dg,(v) =0}, = € g~ *(0)
10) = {v € oM s d{gan)a(e) = 0}, 7 € g3 (0)

Tegnr
In particular, by subspace identification, for every x € g;/ll (0),
one has ng;j (0) € T,g~*(0) N T,,M. The inclusion above

f f]\/[)

Lt 2 (1), u(t)dy" ((z,2) (1) | =0

2Note that, as long as ¢ = 0, ..., d, quantities in (19) evolve in R x M.
Therefore, indices greater than d do not explicitly appear in calculations.



is actually an identity. To see this, let x € g;}(()) C M and
(V,¢) = (V,y%,...,y™) be a local chart of z in R™ adapted
to M. The definition of adapted charts immediately gives that

dg, <aaj(z)> = d(gnr)s (8 @ d. Thus,

5 (@)
1fv—Zv]a
yJ

=1

,forj=1,...,

) € T, M such that dg,(v) = 0, we have

= ivjd(gM)x ((sjj(x)) = dg.(v) =0,

and the sought after identity follows. A straightforward appli-
cation of Grassmann’s formula to this identity yields

R™ = Ty 19~ ' (0) + Tye, M. (20)

Noticing that the maximality condition is a straightforward
consequence of (As), we are now ready to prove the transver-
sality condition and the non-triviality condition.

To show the validity of the transversality condition, let us
prove that for every v € Tz(tf)M C R™, it holds that

(A(ts),v) = plts) v,

which provides the desired result because p(t;) - v = 0
for v € Tm(tf)g’l(()), due to Theorem 3.3. To show this,
by the Gram-Schmidt process, we can build a local or-
thonormal frame {E;(-)};=1,...n for Ty, R around x(ty)
such that {FE;(-)}j=1,.,q is a local frame for T( )M
around z(ty). The dual frames {Ej(z(ty))}j=1,.. . and
(B} (x(t7))}j=1,.a span T R™ = Ty R* = R™ and
T;‘(*t )M & Ty, M, respectively. Thus, for any tangent
vector v € Ty, M, the definitions of the dual frame and
of the orthogonal projection II allow us to conclude that

d d
(Alty);0) = <Z<p7 Ej(@)rn Bj(x), ) v E}‘(l‘)>

=1 =1
> =p(ts) v.

n d
= <Z<p,E Jen Ej(z), Y v Ej(x
j=1 j=1

Finally, let us focus on the non-triviality condition. By
contradiction, assume that there exists ¢ € [0,¢y] such that
(X(t),p°) = 0. The linearity of the adjoint equation yields
A(s) = 0 for all s € [0,tf], so that A(t;) = 0. On the other
hand, from the transversality condition of Theorem 3.3, we
know that p(tf) L Ty )9~ " (0). Now, given v € R”, from
(20) we infer that v = v; + vy with v; € Tz(tf)g_l(o) and
Vo € Tz(t f)M so that from (21), one obtains

p(ts)" (Alty), v2

This leads to (p,p’) = 0, in contradiction with the non-
triviality condition of Theorem 3.3. The conclusion follows.

2L

v=plty) s = )=o.

V. EXTENSION TO PROBLEMS WITH FREE FINAL TIME

Algorithm 1 and related convergence guarantees, i.e., Theo-
rems 3.3 and 4.2, can be suitably extended to the case of OCP
(and OCP™M) with free final time ¢ € [0,77, where T' > 0 is
a given upper bound, as we quickly summarize in this section.

By adapting the notation introduced in Section III accord-
ingly, each convex problem LOCP,CA can be formulated as
presented in Section III-A, except for adding the additional
trust-region constraint [t§™' — %] < Agyy to (1). For what
concerns the theoretical analysis of the convergence of SCP
in such setting, our original assumptions require some major
modification. Specifically, the presence of free final times adds
an additional pointwise transversality condition in Theorems
3.1, 3.2, and 4.1, which in turn requires to replace (As) with
the following stronger requirement:

(Ay) For every k € N, the following conditions hold:
— any optimal solution (t’;frl7
satisfies:

Th+1, Uk;+1) to LOCPkA+1

T
‘tlJﬁl - tlﬂ + / Zks1(s) — x(s)||* ds < Agyr;
0

— any optimal control . to LOCP,CAJrl is continuous.

In [36], through an analysis which is similar to the one
proposed in the present paper, under (/ng) we showed that the
statements of Theorems 3.3 and 4.2 still hold when the final
time ¢ in OCP and OCP™, respectively, is let free (moreover,
due to (Ay) the conditions (p(tf),p°) # 0 and p) # 0 for
every k > 1 are no longer required).

Due to lack of space, we do not report the proof of these
latter results, referring the reader to [36] for further details.

VI. ACCELERATING CONVERGENCE THROUGH
INDIRECT SHOOTING METHODS

An important result provided by Theorem 3.3 (and conse-
quently by Theorem 4.2) is the convergence of the sequence of
the extremals (related to the sequence of convex subproblems)
towards an extremal for the (penalized) original formula-
tion. This can be leveraged to accelerate the convergence
of Algorithm 1 by warm-starting indirect shooting methods
[15], [24]. Indirect shooting methods consist of replacing the
original optimal control problem with a two-point boundary
value problem formulated from the necessary conditions for
optimality stated by the PMP. When indirect shooting methods
succeed in converging to a locally-optimal solution, they
converge very quickly (quadratically, in general). Nevertheless,
they are very sensitive to initialization, which often presents
a difficult challenge (see, e.g., [24], [37]). In the following,
with the help of Theorem 3.3, we show how the initialization
of indirect shooting methods may be bypassed by extracting
information from the multipliers at each SCP iteration. The
resulting indirect shooting methods may thus be combined
with SCP to decrease (sometimes drastically decrease) the total
number of iterations, given that the convergence rate of SCP
is in general lower than that provided by shooting methods
(see, e.g., [20]). For the sake of clarity, we drop manifold-
type constraints, knowing from Theorem 4.2 that the same
reasoning can be applied to problems with such constraints.

From now on, without loss of generality we assume that
every extremal that is mentioned below is normal, that is,
by definition, p0 = —1 (as mentioned earlier, this is a
very mild requirement, see, e.g., [30]). Assume that a time-
discretized version of Algorithm 1 converges. In particular,



due to the arguments in Section III-C, we can assume that
the convergence result stated in Theorem 3.3 applies to the
sequence of KKT multipliers related to the time discretization
of each convex subproblem LOCPkA.. For every k > 1, the
KKT multiplier 7 that is related to the initial condition
x(0) = 2" approximates the initial value py(0) of the extremal
related to LOCP,CA (see, e.g., [33]). Therefore, Theorem 3.3
implies that up to some subsequence, for every § > 0 there
exists a ks > 1 such that for every £k > ks, it holds that
lp(0) — 42| < &, where p comes from an extremal related to
OCP. In particular, select § > 0 to be the radius of convergence
of an indirect shooting method that we use to solve OCP
(a rigorous notion of radius of convergence of an indirect
shooting method may be inferred from the arguments in [15]).
Any such indirect shooting method is then able to achieve
convergence if initialized with 72, for k > ks. In other words,
we may stop SCP at iteration ks and successfully initialize
an indirect shooting method related to the original (penalized)
formulation with '7135 to find a locally-optimal solution be-
fore SCP achieves full convergence, drastically reducing the
number of SCP iterations used. Since in practice we do not
have any knowledge of § > 0 and indirect shooting methods
report convergence failures quickly, we can just run an indirect
shooting method after every SCP iteration and stop whenever
the latter converges (eventual convergence is ensured by the
argument above). This acceleration procedure is summarized
in Algorithm 2. Details concerning the implementation of
indirect shooting methods are provided in the next section.

Algorithm 2: Accelerated SCP
Input : Guess trajectory x( and control ug.
Output: Solution to OCP.
Data : Initial trust-region radius Ay > 0.
1 begin
2 k=0, Ak+1 =Ay, flag=0
3 while ((ug)ren has not converged) or flag =0
do
4 Solve LOCPg, ; for (zj11, k1)
5 Solve an indirect shooting method on OCP to
(Zg+1, ugt1) initialized with the multiplier
related to the constraint z(0) = 2%, and if
successful, put flag =1

6 Ak+1 = UpdateRule(xk+1,uk+1,:z:k,uk)
7 | k< k+1
8 | return (Tr—1,Uk—1)

VII. IMPLEMENTATION AND NUMERICAL EXPERIMENTS

Next, we perform numerical experiments for the optimal
control of a nonlinear system subject to obstacle-avoidance
constraints and provide implementation details. In particular,
we demonstrate the performance of SCP and the gains from
the indirect shooting method acceleration procedure in Alg. 2.

1) Problem formulation: We consider a 3-dimensional non-
holonomic Dubins car, with state z = [ry, 7,0 € R3
and control input v = [v,9] € R2 The dynamics are

& =[vcos(d),vsin(f), kyp], where k& = 0.1 is the constant
turning curvature. Starting from z°, the objective of the
problem is to reach the state x; while minimizing control
effort fot " (v(s)? 4+ 1(s)?)ds and avoiding obstacles. Control
bounds are set to U = [0, 9] x [—,¢] with (7,¢) = (0.5,1).
Note that this problem satisfies (Az), since G(u(s)) = v(s)*+
(s)? is u-strongly convex. We consider problems with both
fixed and free final angle 6(¢ f). We consider nops cylindrical
obstacles of radius e; centered at point r; € R2. For each
obstacle, we set up an obstacle avoidance constraint using the
smooth potential function c; : R?2 — R, defined as

222 i =l < e
Ci(’l“> — (H’/‘ TLH 67,) , 1 ||7’ . TZ” i , (22)
0, otherwise
where r = [r;,r,]. To incorporate these constraints within

our problem formulation, we penalize them within the cost
function and define OCP to minimize fotf (v(s)? 4+ (s)* +
w i ¢;(r))ds with w = 100, which is convex in (r,u)
and continuously differentiable. Penalizing obstacle avoidance
violations with this value for w is sufficient to guarantee
constraint satisfaction for the scenarios considered in the
experiments. This yields the following problem:

A ! (U(S)2 + 1/1(3)2 +w Zci(r(s))) ds

m(s) =v(s)cosf(s), 7ry(s)=uv(s)sinf(s),
0(s) = ki(s), z(0)=2x° x(tf)=xs.

2) Indirect shooting method: As described in Section VI
and Algorithm 2, the solution at each SCP iteration can
be used to initialize an indirect shooting method for (23).
Accordingly, we next derive the associated two-point boundary
value problem using the necessary conditions for optimality of
the PMP. Assuming pO = —1 (see Section VI), the Hamilto-
nian H,(s,z,p,p°,u) = p' f(s,z,u) + p°f2(s, z,u) with
P = [Pa, Py, Po] is expressed as

Hy,(x,u,p) = v(py cos8 + pysin ) + kippg

min
u

(23)

Thobs

— (0 + ¢ erZci(T‘)).

i=1
Applying the adjoint equation and the maximality condition
of the PMP (Theorem 3.1), we obtain the following relations:

0rar) | a(Sal)
Ory o ary ’

Po = v(pgsinh — py cosd), and

by =w (24)

if (pe cos G;py sin 6) Z ’D,

v
v =1 (x7p) _ (pa cos@;—py sin 0) if (Pa 0056’42—173, sin 6) e (07@),
. 2 €os 0+p,, sin 0
0 if PecosOipysing) <
v if g >,
ko k o
¢:Sﬁ2(x>p): ;D% lf% € (_¢7¢)a
—if 28R <9,

Further, the transversality conditions of the PMP for both
problems with fixed and free final angle 6; are shown in Figure



O(ty) fixed O(ty) free
e(tf) -0y =0 (25a) pg(tf) =0 (26a)
H}(t;) =0 (25b) H(t;) =0 (26b)

Fig. 1. Transversality conditions of the PMP for Dubins car, de-
pending on whether or not the final angle is free. HZ, (ty) denotes

Heo(2(ty), p(2(ty), p(ty)), p(ts))-

1. Based on these conditions, we define the shooting function
F:R3xR3 = R3 as:

Fi(z(ty),p(ty)) =ra(ty) —ras
Fa(a(ty), p(ty)) = ry(ty) —rys

0ty) =0y,
Fy(x(ty),p(ty)) =

polty),
The PMP states that F;(x(t),p(t;)) =0 for all i =1,2,3 for
any locally-optimal trajectory. Thus, based on the conditions
of the PMP, we set the following root-finding problem:

Find p° s.t. Fy(x(tf),p(ty)) =0, i=1,2,3,
T = [SD]_(.T,]?) COSQ: Sol(xvp) Sine: kQOQ(fI%p)L
p =4, p(0) =p°, 2(0) ==’

Given (z%,p°), we obtain x(t;) and p(t;) by numerical
integration of the dynamics and the adjoint equation. Then,
given an initial guess, this problem can be solved using off-the-
shelf root-finding algorithms, e.g., Newton’s method. In this
work, we use a fourth-order Runge-Kutta integration scheme
to integrate differential equations and use the default trust-
region method from the Julia NLsolve. j1 package [38] as
the root-finding algorithm.

As discussed in Section VI, the success of solving this two-
point boundary value problem is highly sensitive to the initial
guess for pU. To address this issue, we leverage the insights
from Theorem 3.3. Given a solution to LOCPPZ , strictly
satisfying the trust-region constraints, we retrieve the KKT
multiplier 7} 1 associated with the initial condition z(0) = 20,
As discussed in Section VI, 7y, approaches p° as SCP
converges to a locally-optimal trajectory. Thus, as described
in Algorithm 2, we initialize the root-finding algorithm with
72, stemming from the solution of LOCPP% ;. If a solution
p° to the root-finding problem is found, the corresponding
candidate locally-optimal trajectory (x,u=¢(x,p)) has been
found and Algorithm 2 terminates.

3) Implementation details: To apply Algorithm 1 and 2, we
start from Ay = 50 and we let Agy; < 0.5A, to satisfy
the assumptions of Theorem 3.3. Note that different update
rules are also possible [9]. We initialize SCP with a straight-
line trajectory from 2 to z/, initialize all controls inputs with
v(s) = ||ry — rol|/ty and ¥(s) = 0 for s € [0,ty], and use
a trapezoidal discretization scheme with N = 51 nodes. To
check convergence of SCP, as a stopping criterion, we verify
that fot'f g1 — ugl|?(s) ds < 1072, We solve each convex-
ified problem using IPOPT. We release our implementation at
https://github.com/Stanford ASL/j1ISCP.

Remark 7.1: In this setting, the assumptions of Theorem
3.3 (e, p) # 0 for any k > 1 and (p(ts),p°) # 0) are
automatically satisfied. Indeed, at each k-th SCP iteration, if

if O(ty) fixed
if 0(tf) free

Avg. num. of SCP iterations
Problem SCP only | SCP+shooting
free 0 4.12 3.54
fixed 0 ¢ 4.52 3.78

Fig. 2. Number of SCP iterations until convergence averaged over 100
randomized experiments as described in Section VII-.4.

40 SCP only 30" SCP only
SCP + SCP +
30 {— shooting i — shooting
20
20
10 101
0 T ¢ 2 10 1 4 0 A T,
2 4 6 & 10 12 14 2 4 6 8 10 12 14
# SCP iterations # SCP iterations
Fig. 3. Results from randomized problems with fixed final angle (left)

and free final angle (right). These histograms show the number of SCP
iterations until convergence for SCP only (orange, Algorithm 1) and for
shooting-accelerated SCP (blue, Algorithm 2).

=== lnitializer
--e-- [terate 1

I e 2
-e-- Iterate 3
o-- Iterate 4
*-- Iterate 5

Control bounds

l/ E
—0.5 $ 3

—1.01

0.0 05 1.0
t

Fig. 4. Example of trajectory using an infeasible straight-line initializa-
tion that passes through obstacles (left) and associated controls (right).

IPOPT converges, then the critical point it finds satisfies the
KKT conditions, so that p(,z, = —1 # 0 (up to numerical errors,
see [33]). Moreover, if the shooting method (as described
above) converges, then it automatically finds a solution with
p! = —1, so that (p(ty),p°) # 0.

4) Results and discussion: We evaluate our method in 100
randomized experiments. Denoting Unif(a, b) as the uniform
probability distribution from a € R to b € R, we set

rg ~ Unif(—1,1), rg ~ Unif(—1, 1), 00 ~ Unif(—m, ),

Oy NUnif(HO—%,90+%), o/ ~Unif(00—%,00+£),
rd~ r2+(5+Unif(O, 3)) cos Oy, 7"5 ~ 7"8+(5+Unif(0, 3)) sin Ozy,
€;=0.4, ngps=2, 7 ¢ rvUnif(min(rg7 ri)—i—Se,—, max(rg., rg)—Bei),

and similarly for r; ,.

We consider the problems with both free and fixed fi-
nal angle 0f. In 100% of these scenarios, both SCP and
the shooting-accelerated SCP converge successfully. Figure 4
shows that the initialization does not need to be feasible for
SCP to converge successfully to a (candidate) locally-optimal
trajectory avoiding obstacles and satisfying input constraints.
Further, although the solution of the first iteration of SCP does
not respect the nonlinear dynamics constraints, those become
satisfied as the algorithm performs further iterations.

Results in Figures 2 and 3 demonstrate that leveraging
the PMP through an indirect shooting method decreases the
number of SCP iterations on average, significantly accelerat-
ing the algorithm. Indeed, SCP alone may require multiple



iterations close to the optimal solution before convergence.
In contrast, once a good guess for pU to initialize the root-
finding algorithm is available, the indirect shooting method is
capable of efficiently computing a (candidate) locally-optimal
trajectory solving OCP. In the worst case where the number
of SCP iterations until convergence Ngcp is the same for both
methods, which occurs if the guess for p® is never within
the radius of convergence of the shooting method at any SCP
iteration, the computation time for Algorithm 2 is Ngcp -
(TSCP + Ts_fail), with Tscp being the time to convexify OCP
and solve the resulting LOCPkAH, and T being the time
for the root-finding algorithm to report convergence failure.
In our non-optimized Julia implementation, 7§ ,; = 25ms and
Tscp = 242ms on average, measured on a laptop equipped with
a 2.60GHz Intel Core i7-6700 CPU with 8GB of RAM. As
Ty tait < Tscp (see also computation times in [39]), there is
little computational overhead in using accelerated-SCP over
SCP only, and results in Figures 2 and 3 demonstrate that
leveraging the PMP significantly accelerates the optimization
process. Finally, as p? # 0 holds at each SCP iteration in
100% of these scenarios which we approximately check using
the Lagrange multipliers 72 ~ p?, from Theorem 3.3, all
trajectories are candidate locally-optimal solutions to OCPP,,,.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we analyze the convergence of SCP when
applied to continuous-time non-convex optimal control prob-
lems, including in the presence of manifold-type constraints.
In particular, we prove that, up to some subsequence, SCP-
based optimal control methods converge to a candidate locally-
optimal solution for the original formulation. Under mild as-
sumptions, our approach can be effortlessly leveraged to solve
problems with manifold-type constraints. Finally, we leverage
our analysis to accelerate the convergence of standard SCP-
type schemes through indirect methods, and we investigate
their performance via numerical simulations on a trajectory
optimization problem with obstacles.

For future research, we plan to extend our approach to
more general optimal control formulations, which for instance
consider stochastic dynamics, risk functionals as costs, and
probabilistic chance constraints. In addition, we plan to inves-
tigate particular parameters update rules which guarantee the
convergence of the whole sequence of controls (uy) (compare
with Theorem 3.3 item 2). Finally, we plan to test the perfor-
mance of our approach by means of hardware experiments on
complex systems such as free-flyers and robotic manipulators.
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IX. APPENDIX

Proof: [Proof of Lemma 3.1] Fix £ € N. For every ¢ €
R4 where x4 is defined, we may compute

t m .
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Here, suppf; denotes the support of f;, ¢ = 0,...,m. The
constants C1,Cs,C3 > 0 depend on ¢y, f;, ¢ = 0,...,m,
and U, and they come from the compactness of U and of
supp f; (and therefore of supp %x" ), i =0,...,m. By applying
the Gronwall inequality, we finally have that ||xk41(2)] <
C3exp(Csty) for every t € Ry N[0, ty] where 241 is defined.
The compactness criterion for solution to ODE applies, and
we infer that x,; is defined in the entire interval [0, ¢]. Since
the constant C's > 0 does not depend on k € N, the trajectories
xy, are uniformly bounded in [0,%;] and in k € N. [ ]
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