QO OO R I == O (
HHHOROOOOO

o

e C

(@),

HOHORK K

> Convuex

Optimization
for Trajectory
Generation

A TUTORIAL ON GENERATING DYNAMICALLYf
FEASIBLE TRAJECTORIES RELIABLY

51 o 1 AND EFFICIENTL

O 1
1L 0mo

|9

il N B
1 10 O

utonomous vehicles and robots promise many excit-

ing new applications that will transform society.

For example, autonomous aerial vehicles (AAVs)

operating in urban environments could deliver

commercial goods and emergency medical sup-

plies, monitor traffic, and provide threat alerts for national

security [1]. At the same time, these applications present

significant engineering challenges related to performance,

trustworthiness, and safety. For instance, AAVs can be a

catastrophic safety hazard should they lose control or situ-

ational awareness over a populated area. Space missions,

self-driving cars, and applications of autonomous under-
water vehicles share similar concerns.

Digital Object Identifier 10.1109/MCS.2022.3187542
Date of current version: 15 September 2022

40 IEEE CONTROL SYSTEMS » OCTOBER 2022

'O O 0O 0O r K+ K
== O KF O r(k O K

(

P O ORr o o o0

OO0OFRMEHFOOKEOH
OQKIHKHREKEM OO O o ik OG
D000 O0OO0OFKRRFKFKFHOOO
L i ST

My O H O 0O 000 KM

W = OO
Ok KM}

OMMOR O
==l O H O H (000 O O =
O = =

1
1

OFOFRMFRQOMFQOOOMO — M- O (

/O = O O'Chinend

PO -~ OO KO K -

»

Generating a trajectory autonomously onboard the vehi-
cle is not only desirable for many of these applications but
also a necessity when considering the deployment of auton-
omous systems (either in remote areas with little to no com-
munication or at scale in a dynamic and uncertain world).
For example, it is not possible to remotely control a space-
craft during a Mars landing scenario [2]-[4], nor is it practi-
cal to coordinate the motion of tens of thousands of delivery
drones from a centralized location [1]. In these and many
other scenarios, individual vehicles must be endowed with
their own high-quality decision-making capability. Failure
to generate a safe trajectory can result in losing the vehicle,
payload, and even human life. Reliable methods for trajec-
tory generation are a fundamental need for maintaining
public trust and the high safety standard that is expected
from autonomous and automatic systems [5].

1066-033X/2202022|EEE

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

0
il
0
0
il
il
0]
0]
0)

O 00O K H

oG

. O O O)= et

OHO®RKKOHH

DANYLO MALYUTA, TAYLOR P. REYNOLDS,
MICHAEL SZMUK, THOMAS LEW,
RICCARDO BONALLI, MARCO PAVONE,

and BEHCET AGIKMESE

Computational resource requirements are the second
major consideration for onboard trajectory generation.
Historically, this has been the driving factor for much of
the practical algorithm development [6], [7]. Although
the modern consumer desktop is an incredibly powerful
machine, industrial CPUs can still be relatively modest
[8]. This is especially true for spaceflight, where the harsh
radiation environment of outer space prevents the rapid
adoption of new computing technologies. For example,
NASA's flagship Mars rover Perseverance landed in 2021
while using a BAE RAD750 PowerPC flight computer,
which is a 20-year-old technology [9], [10]. Factoring in
the energy requirements of powerful CPUs and the fact
that trajectory generation is a small part of all the tasks
that an autonomous vehicle must perform, it becomes
clear that modern trajectory generation is still confined

o

IS oA (©) (@) ©) @ [o) —le)
OFRHFHOFHOO0OO0OOOKHMHMHEFMHEHMFEHFOOOORH
@folall=) (=N

HOROOOO

== O Q = O

o'k O"0 O ©
SO R O R OR O OO0 OO FR RIE © O

D0 00O RKFRFEFMEFHEHOOOOHKEOOHFHOR.HOK
HFRPFOOHFHORRORORRM

DO FEHOOKFRORMEO
OO R HKFRHOOOOMHMEHOOMFPORHEOLHER O R K

O B O O OO0 O0ORKRMI

B OO0 O K
PO OO~ KFOC
PFHRRHROOOO

el O E QiR O@e@® O O B HEm=d— 2
O+ + @

OO QO F'™ HIF
PD'HHHOFEOOOO O Mk OC/(

DANYLO MALYUTA

to a small computational footprint. Consequently, real-time,
onboard trajectory generation algorithms must be com-
putationally efficient.

Trajectory generation is the computation of a multidi-
mensional temporal state and control signal that satisfies a
set of specifications while optimizing key mission objec-
tives. This article is concerned exclusively with dynami-
cally feasible trajectories (see “Summary”), which are
those that respect the equations of motion of the vehicle
under consideration. Although it is commonplace to track
dynamically infeasible trajectories by using feedback
control, a system can evolve only along dynamically fea-
sible paths (whether those are computed up front during
trajectory generation or are the result of feedback track-
ing). Performing dynamically feasible trajectory genera-
tion carries two important advantages. First, it provides a

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 41

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

OO K K ORKR O KK OMKO

method to systematically satisfy constraints (that is,
specifications) that are hard, if not impossible, to meet
through feedback control. This includes, for example,
translation—-attitude coupled sensor pointing constraints.
Second, dynamically feasible trajectories leave much less
tracking error for feedback controllers to “clean up,” which
usually means that tracking performance can be vastly
improved. These two advantages will become more appar-
ent throughout the article.

Numerical optimization provides a systematic mathe-
matical framework to specify mission objectives as costs or
rewards to be optimized and enforces state and control
specifications as well as the equations of motion via con-
straints. As a result, trajectory generation problems can be
expressed as optimal control problems, which are infinite—
dimensional optimization problems over function spaces
[11], [12]. Since the early 1960s, optimal control theory has
proved to be extremely powerful [6], [13]. Early develop-
ments were driven by aerospace applications, where every
gram of mass matters, and trajectories were typically
sought to minimize fuel or some other mass-reducing
metric (such as the aerodynamic load and thereby the
structural mass). This led to work on trajectory algorithms
for climbing aircraft, ascending and landing rockets, and
spacecraft orbit transfer, to name a few [14]-[19]. Following
these early applications, trajectory optimization problems
have now been formulated in many practical areas, includ-
ing aerial, underwater, and space vehicles, as well as for
chemical processes [20]-[22], building climate control [23]-
[25], robotics, and medicine [13].

At its core, optimization-based trajectory generation
requires solving an optimal control problem of the follow-
ing form (at this point, the problem is kept very general):

Summary

eliable and efficient trajectory generation methods are

a fundamental need for autonomous dynamical sys-
tems. The goal of this article is to provide a comprehensive
tutorial of three major convex optimization-based trajectory
generation methods: lossless convexification (LCvx) and
two sequential convex programming algorithms, successive
convexification (SCvx) and guaranteed sequential trajectory
optimization (GuSTO). Trajectory generation is defined as
the computation of a dynamically feasible state and control
signal that satisfies a set of constraints while optimizing key
mission objectives. The trajectory generation problem is al-
most always nonconvex, which typically means that it is dif-
ficult to solve efficiently and reliably onboard an autonomous
vehicle. The three algorithms that we discuss use problem
reformulation and a systematic algorithmic strategy to none-
theless solve nonconvex trajectory generation tasks using a
convex optimizer. The theoretical guarantees and computa-

42 |EEE CONTROL SYSTEMS » OCTOBER 2022

min /G, u,p, 1), (1a)
s.t.x(t)= f(x,u,p,t), (1b)
(x(®), u(®), p,ty) €C(t), VLEO,], (1c)
(x(0), p) € Xo, (x(tp), p)E Xy (1d)

The cost (1a) encodes the mission goal, the system dynam-
ics are modeled by the differential equation constraint (1b),
the state and control specifications are enforced through
(1c), and the boundary conditions are fixed by (1d). Note
that (1) makes a distinction between a control vector u(f)
(which is a temporal signal) and a so-called parameter
vector p (which is a static variable that encodes other deci-
sion variables, such as temporal scaling).

In most cases, the solution of such an infinite-dimen-
sional optimization problem is neither available in closed
form nor computationally tractable to numerically compute
(especially in real time). Instead, different solution meth-
ods have been proposed that typically share the following
three main components:

» Formulation: specification of how the functions J and fand
the sets C, Xo, and X are expressed mathematically

» Discretization: approximation of the infinite-dimen-
sional state and control signal by a finite—dimensional
set of basis functions

» Numerical optimization: iterative computation of an
optimal solution of the discretized problem.

Choosing the most suitable combination of these three
components is truly a mathematical art form that is highly
problem dependent and not an established plug-and-play
process like least-squares regression [26]. No single recipe
or method is the best, and methods that work well for some

tional speed offered by convex optimization have made the
algorithms popular in both research and industry circles. The
growing list of applications includes rocket landing, space-
craft hypersonic reentry, spacecraft rendezvous and docking,
aerial motion planning for fixed-wing and quadrotor vehicles,
robot motion planning, and more. Among these applications
are high-profile rocket flights conducted by organizations
such as NASA, Masten Space Systems, SpaceX, and Blue
Origin. This article equips the reader with the tools and un-
derstanding necessary to work with each algorithm and know
their advantages and limitations. An open source tool called
the SCP Toolbox accompanies the article and provides a
practical implementation of every numerical example. By the
end of the article, the reader will not only be ready to use the
lossless convexification and sequential convex programming
algorithms, but also to extend them and to contribute to their
many exciting modern applications.

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

problems can fare much worse for others. Trajectory algo-
rithm design is replete with problem-dependent tradeoffs
in performance, optimality, and robustness, among others.
Still, the optimization literature attempts to provide some
formal guidance and intuition about the process. The rest
of this article considers methods that solve the exact form of
(1), subject only to the initial approximation made by dis-
cretizing the continuous-time dynamics.

Many excellent references discuss the discretization
component [13], [27], [28]. Once the problem is discretized,
numerical optimization methods can be used to obtain a
solution. This is where the real technical challenges for reli-
able trajectory generation arise. Depending on the problem
formulation and discretization method, the finite—dimen-
sional optimization problem that must be solved can end
up being a nonlinear (that is, nonconvex) optimization prob-
lem (NLP). However, NLP optimization has high computa-
tional complexity, and there are no general guarantees of
either obtaining a solution or even certifying that a solution
does not exist [26], [29], [30]. Hence, general NLP methods
may not be appropriate for control applications since deter-
ministic guarantees are needed for reliable trajectory gen-
eration in autonomous control.

In contrast, if the discretized problem is convex, then it
can be solved reliably and with an efficiency that exceeds all
other areas of numerical optimization except linear program-
ming and least squares [26], [29], [31]-[34]. This is the key
motivation behind this article’s focus on a convex optimiza-
tion-based problem formulations for trajectory generation.
Building methods on top of convex optimization leverages
fast iterative algorithms with polynomial time complexity
[35, Th. 4.7]. That is, given any desired solution accuracy, a
convex optimization problem can be solved to within this
accuracy in a predetermined number of arithmetic opera-
tions that is a polynomial function of the problem size. Hence,
there is a deterministic bound on how much computation is
needed to solve a given convex optimization problem, and
the number of iterations cannot grow indefinitely as it can for
NLP. These special properties, together with a mature theo-
retical understanding and an ever-growing list of successful
real-world use cases, leave little doubt that convex optimiza-
tion-based solution methods are uniquely well suited to be
used in the solution of optimal control problems.

Among the successful real-world use cases of convex,
optimization-based trajectory generation are several inspiring
examples from the aerospace domain. These include auton-
omous drones, spacecraft rendezvous and docking, and,
most notably, planetary landing. The latter came into high
profile as an enabling technology for the reusability of the
SpaceX Falcon 9 and Falcon Heavy rockets [36]. Even ear-
lier, the NASA Jet Propulsion Laboratory (JPL) demon-
strated the use of a similar method for Mars pinpoint
landing aboard the Masten Xombie sounding rocket [37]-
[39]. Today, these methods are being studied and adopted
for several Mars, Moon, and Earth landing applications [8§],

[36]. Although each application has its own set of unique
challenges, they all share the need to use the full spacecraft
motion envelope with limited sensing, actuation, and fuel/
power [8]. These considerations are not unique to space
applications and can be found in almost all autonomous
vehicles, such as cars [40], [41], walking robots [42], [43],
and quadrotors [44].

Having motivated the use of convex optimization, we
note that many trajectory generation problems have common
sources of nonconvexity, among which are nonconvex con-
trol constraints, nonconvex and coupled state—control con-
straints, and nonlinear dynamics. The goal of a convex,
optimization-based trajectory generation algorithm is to
provide a systematic way of handling these nonconvexities
and generate a trajectory using a convex solver at its core.

Two methods stand out to achieve this goal. In special
cases, it is possible to reformulate the problem into a convex
one through a variable substitution and “lifting” (that s, aug-
mentation) of the control input into a higher-dimensional
space. In this case, Pontryagin’s maximum principle [11] can
be used to show that solving the new problem recovers a
globally optimal solution of the original problem. This gives
the approach the name lossless convexification (LCvx), and the
resulting problem can often be solved with a single call to a
convex solver. As one can imagine, however, LCvx tends to
apply only to very specific problems. Fortunately, these
include some important and practically useful forms of
rocket landing and other trajectory generation problems for
spacecraft and AAVs [6], [45], [46]. When LCvx cannot be
used, convex optimization can be applied via sequential
convex programming (SCP). This natural extension linearizes
all nonconvex elements of (1) and solves the convex problem
in a local neighborhood where the linearization is accurate.
Roughly speaking, the problem is then relinearized at the
new solution, and the whole process is repeated until a stop-
ping criterion is met. In the overall classification of optimiza-
tion algorithms, SCP is a trust region method [29], [47], [48].
While SCP is a whole class of algorithms, the primary focus is
on two particular and closely related methods called succes-
sive convexification (SCvx) and guaranteed sequential trajec-
tory optimization (GuSTO) [49], [50].

Let us go through the numerous applications where the
LCvx, SCvx, and GuSTO methods have been used. The
LCvx method was originally developed for rocket landing
[45], [51]. This was the method at the center of the aforemen-
tioned JPL multiyear flight test campaign for Mars pinpoint
landing [37]. The method also appears in applications for
fixed-wing and quadrotor AAV trajectory generation [46],
[52], spacecraft hypersonic reentry [53]-[55], and spacecraft
rendezvous and docking [56], [57]. The SCvx method,
which applies to far more general problems (albeit with
fewer runtime guarantees), has been used extensively for
the general rocket landing problem [58]-[63], quadrotor tra-
jectory generation [52], [64], [65], spacecraft rendezvous and
docking [66], and CubeSat attitude control [67]. Recently (as

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 43

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

part of the NASA Safe and Precise Landing—Integrated
Capabilities Evolution project to develop a next-generation
planetary landing computer [8]), the SCvx algorithm has
been tested as an experimental payload aboard the Blue
Origin New Shepard rocket [68]. The GuSTO method has
been applied to free-flyer robots, such as those used aboard
the International Space Station (ISS) [50], [69]-[71] and for
car motion planning [72], [73], aircraft motion planning
[50], and robot manipulator arms [69]. It is likely that LCvx
and SCP concepts are also closely related to the SpaceX
Falcon 9 terminal landing algorithm, which is known to
use convex optimization [36].

This article provides a first-ever comprehensive tutorial
of the LCvx, SCvx, and GuSTO algorithms. Placing these
related methods under the umbrella of a single article pro-
vides a unified description that highlights common ideas
and helps the practitioner know how, where, and when to
deploy each approach. Previous tutorials on LCvx and
SCvx provide a complementary technical discussion [74],
[75]. There are two reasons for focusing on LCvx, SCvx, and
GuSTO specifically. First, the authors are the developers of
the three algorithms. Hence, we feel best positioned to pro-
vide a thorough description of these particular methods,
given our experience with their implementation. Second,
these three methods have a significant history of real-
world applications. This should provide confidence that
the methods have withstood the test of time and proved
themselves to be useful when the stakes are were high. By
the end of the article, the hope is to have provided the
understanding and tools necessary to adapt each method
to thereader’s particular engineering application. Although
the discussion for SCP is restricted to SCvx and GuSTO,
both techniques are closely related to other SCP algorithms.
After reading this tutorial, the practitioner will be well
positioned to understand most if not all other SCP methods
for trajectory generation. Applications of these SCP alterna-
tives are discussed in the recent survey article [6].

Finally, note that this article is focused on solving a tra-
jectory optimization problem, such as (1), once in real time.

As illustrated in Figure 1, this results in a single optimal
trajectory that can be robustly tracked by a downstream
control system. The ability to solve for the trajectory in real
time, however, can allow for updating the trajectory as the
mission evolves and more information is revealed to the
autonomous vehicle. Repetitive trajectory generation pro-
vides a feedback action that can itself be used for control
purposes. This approach is the driving force behind model
predictive control (MPC), which has been applied to many
application domains over the past three decades [76]-[78].
Except for a brief discussion at the end of the section on
SCP, this article does not cover MPC, and the interested
reader should consult existing literature [78], [79]. Specifi-
cally, the application of LCvx and SCP algorithms in an
MPC-like fashion is discussed in [6].

The rest of this article is organized as follows. The dis-
cussion begins with a short section on convex optimization,
where the primary objective is to highlight why it is so
useful for trajectory generation. The article is then split into
three main sections. The “Lossless Convexification” section
surveys the major results of LCvx to solve nonconvex trajec-
tory problems in one shot. The “Sequential Convex Pro-
gramming” section discusses SCP, which can handle very
general and highly nonconvex trajectory generation tasks
by iteratively solving a number of convex optimization
problems. In particular, this part provides a detailed tuto-
rial on two modern SCP methods: SCvx and GuSTO [49],
[50]. Finally, the “Application Examples” section applies
LCvx, SCvx, and GuSTO to three complex trajectory genera-
tion problems: a rocket-powered planetary lander, a quadro-
tor, and a microgravity free-flying robotic assistant.

Some important naming conventions and notations
used throughout the article are defined in “Abbreviations”
and “Notation.” The terms “optimization” and “program-
ming” are used interchangeably, courtesy of linear opti-
mization historically being used for planning military
operations [80]. Similarly, the term “nonlinear program-
ming” means, more precisely, “nonconvex programming.”
Convexity is now known to be the true separator of efficient

— Feedforward

Trajectory

Input Data
P Generation

l Y
Feedback +
O

Control

& Feedback

System

(Inner Loops)

FIGURE 1 A typical control architecture consists of trajectory generation and feedback control elements. This article discusses algo-
rithms for trajectory generation, which traditionally provides reference and feedforward control signals. By repeatedly generating new
trajectories, a feedback action is created that can itself be used for control. Repeated trajectory generation for feedback control under-

lies the theory of model predictive control.

44 |EEE CONTROL SYSTEMS > OCTOBER 2022

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

algorithms. However, this discovery came only after linear
programming had already established itself as the domi-
nant class of problems that can be efficiently solved via the
Simplex method [30].

To complement the tutorial nature of this article, the
numerical instances in the “Application Examples” sec-
tion are accompanied by open source code linked in
Figure 2. This software, called the SCP Toolbox, provides a
parser interface to SCvx and GuSTO that is similar to
other popular optimization tools such as CVX [248], [249].
The toolbox allows the reader to quickly get started on
solving his or her own problems by using the methods
developed in this article. The code is written in Julia
because the programming language is simple to read, like
Python, and can be as fast as C/C++ [81]. By downloading
and running the code, the reader can recreate the exact
plots seen in this article.

CONVEX OPTIMIZATION BACKGROUND
Convex optimization seeks to minimize a convex objective
function while satisfying a set of convex constraints. The
technique is expressive enough to capture many trajectory
generation and control applications, and it is appealing due
to the availability of solution algorithms with the following
properties [26], [29]:
» A globally optimal solution is found if a feasible solu-
tion exists.
» A certificate of infeasibility is provided when a fea-
sible solution does not exist.
» The runtime complexity is polynomial in the prob-
lem size.
» The algorithms can self-initialize, eliminating the
need for an expert initial guess.

Abbreviations

LCvx: lossless convexification

LTV: linear time varying

SCP: sequential convex programming
SQP: sequential quadratic programming

QP: quadratic program

SOCP: second-order cone program
SDP: semidefinite program

NLP: nonlinear (nonconvex) program
IPM: interior point method

MPC: model predictive control
ISS: International Space Station
KKT: Karush—Kuhn—-Tucker

ODE: ordinary differential equation
ZOH: zeroth-order hold

FOH: first-order hold

DoF: degree of freedom

Programming: Optimization

These properties are inherited by trajectory generation and
control algorithms that use convex optimization. This makes
convex programming safer and faster than other optimiza-
tion methods for autonomous applications.

To appreciate what makes an optimization problem
convex, let us introduce some basic definitions here and
refer to [26] and [82] for further details. Two fundamental
objects must be considered: a convex function and convex
set. For reference, Figure 3 illustrates a notional convex set
and function. By definition, C CR" is a convex set if and

Notation

M Matrices are capitalized letters.

z This represents a scalar or vector variable.

S Sets are calligraphic capitalized letters.

(a, b, c) This represents a concatenation of column
or row vectors.

ei This is the jth standard basis vector.

Ine R™" This represents the identity matrix.

v* This is the skew-symmetric matrix repre-
sentation of a cross product.

diag(a, B,...) This represents a (block) diagonal matrix
from scalars and/or matrices.

dom f This indicates the domain of a function.

Vi f This is the gradient vector or Jacobian

matrix of f with respect to x.
f[t] This is shorthand for a function evalu-
ated at a particular time [for example,

(&, x(t), u(®))].

R+, Ris These indicate nonnegative and positive
real numbers, respectively.
[l x 1. This is the two-norm squared; it is the same

as x'x.

github.com/UW-ACL/SCPToolbox.jl/tree/csm

FIGURE 2 The complete implementation source code for the numeri-
cal examples at the end of this article can be found in the GitHub
repository of our open source sequential convex programming
(SCP) trajectory generation tool, called the SCP Toolbox. The
master branch provides even more algorithms and examples that
are not covered here.

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 45

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

only if it contains the line segment connecting any two of
its points:

x,yeC=[x,yleeC @)

for all 6 €[0, 1], where [x, y]o = 6x + (1 — 6)y. An important
property is that convexity is preserved under set intersec-
tion. This allows us to build complicated convex sets by
intersecting simpler sets. By replacing the word “sets” with
“constraints,” it can readily be appreciated how this prop-
erty plays into modeling trajectory generation problems
using convex optimization.

A function f:R" - R is convex if and only if dom fis a
convex set and f lies below the line segment connecting any
two of its points:

x,y €dom f = f(lx, ylo) =< [f(x), f(¥)]o ©)

for all 6 €[0,1]. A convex optimization problem is simply
the minimization of a convex function subject to a number
of convex constraints that act to restrict the search space:

E_rgg’(fb(x), (4a)
s.t. f,(x) < 0, i= 1, vy Mineq, (4b)
gi(x)=0, i=1,..., Neq, (40)

where fo:R"— R is a convex cost function, fi:R"—R are
convex inequality constraints, and gi:R"—R are affine
equality constraints. The problem contains 7ineq inequality
and neq equality constraints. Note that the equality con-
straints must be affine, which means that each function g is
a linear expression in x plus a constant offset. The equations
of motion are equality constraints. Therefore, basic convex
optimization restricts the dynamics to be affine [that is, linear
time varying (LTV), at most]. Handling nonlinear dynamics
will be a major topic of discussion throughout this article.
Each constraint defines a convex set so that, together,
(4b) and (4c) form a convex, feasible set of values that the

)

f(y)

[f(x), f(¥)]e
f(x) |-

\ AN

X o, ¥
(a) (b)

FIGURE 3 A notional convex set and convex function. In both cases,
the variable 6 €[0,1] generates a line segment between two
points. The epigraph epif CR"x R is the set of points that lie
above the function and itself defines a convex set. (a) A convex set
contains all line segments connecting its points. (b) A convex func-
tion lies below all line segments connecting its points.

46 IEEE CONTROL SYSTEMS » OCTOBER 2022

decision variable x may take. To explicitly connect this dis-
cussion back to the generic convex set introduced in (2), the
feasible set can be written as

C={x€R”:ﬁ(x)SO,i=1,..., nineq,
Qi(x)=0,i=1,..., eq}. 5)

A fundamental consequence of convexity is that any local
minimum of a convex function is a global minimum [26,
Sec. 4.2.2]. More generally, convex functions come with a
plethora of properties that allow algorithm designers to
obtain global information about function behavior from
local measurements. For example, a differentiable convex
function is globally lower bounded by its local first-order
approximation [26]. Thus, convexity may be viewed as a
highly beneficial assumption about function behavior that
enables efficient algorithm design. Indeed, a landmark dis-
covery of the 20th century was that it is convexity, not lin-
earity, that separates “hard” and “easy” problems [30].

For practitioners, the utility of convex optimization
stems not so much from the ability to find the global mini-
mum but rather the ability to find it (or, indeed, any other
feasible solution) quickly. The field of numerical convex
optimization was invigorated by the interior point method
(IPM) family of optimization algorithms introduced in
1984 by Karmarkar [83]. Today, convex optimization prob-
lems can be solved by primal-dual IPMs in a few tens of
iterations [26], [31]. Roughly speaking, IPMs can solve most
convex trajectory generation problems in less than 1s [9], [37],
[63]. In technical parlance, IPMs have a favorable polynomial
problem complexity: the number of iterations required to
solve the problem to a given tolerance grows polynomially in
the number of constraints #ineq +#eq. With some further
assumptions, it is even possible to provide an upper bound
on the number of iterations [35], [84]. Further details about
convex optimization algorithms can be found in [29, Chs. 14
and 19]. Throughout this article, the goal will be to leverage
existing convex problem solvers to create higher-level frame-
works for the solution of trajectory generation problems.

LOSSLESS CONVEXIFICATION
LCvx is a modeling technique that solves nonconvex opti-
mal control problems through a convex relaxation. In this
method, Pontryagin’s maximum principle [11] is used to
show that a convex relaxation of a nonconvex problem
finds the globally optimal solution to the original problem
(hence the method’s name). To date, the method has been
extended as far as relaxing certain classes of nonconvex
control constraints, such as an input norm lower bound (see
“Convex Relaxation of an Input Lower Bound”) and a non-
convex pointing constraint (see “Convex Relaxation of an
Input Pointing Constraint”).

The LCvx method has been shown to work for a large
class of state-constrained optimal control problems; how-
ever, a working assumption is that state constraints are

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

Convex Relaxation of an Input Lower Bound
typical rocket engine’s thrust is upper bounded by the en-
gine’s performance and lower bounded by combustion in-

stability issues for small thrusts. Thus, (6c) can be written as

Pmin = H u ”2 = Pmax, (S1)

so that go(u) = g1(u) = | u|,- The relaxation (7c) and (7d) then
becomes

Pin < 0, ||u]l, < mMin(c, pmax) - (S2)

Figure S1 shows how for u € R?, going from (S1) to (S2) lifts a
nonconvex annulus to a convex volume V:

V2 {(u,0) €R®: pmn < o,| U], < min(c, prmax) }. (S3)

The drawback is that inputs that were not feasible for
(S1) become feasible for (S2), in particular, any u for which
lull, < pmin is now feasible. However, for the special case of
(u,0) € dew V), where

AoV ={(u,0) €R®: pmin < 0, ul, = min(c, pman)}, (S4)
the input u is feasible. The goal of lossless convexification is

to show that this occurs at the global optimum of (7); in other
words, (u”,07) € dLew V. Theorem 1 guarantees this.

Pmin

(b)

FIGURE S$1 The relaxation of the nonconvex input constraint
set (S1) in (a) to the convex set (S2) in (b) by using a slack
input o. If the optimal input (u*,0") € dewV (S4), then u” is
feasible for the nonconvex constraint (S1).

Convex Relaxation of an Input Pointing Constraint

ractical mechanical systems, such as Segways and rock-

ets, may have a constraint on their tilt angle away from an
upright orientation. To model such cases, the inequality (9d)
can be specialized to an input pointing constraint. By choosing
Pg = cos(Bmax) and g (u) =| u|l,, the constraint becomes

Aiu = ull,cos (Bmax), (S5)

which constrains u to be no more than 6max radians from a nom-
inal pointing direction h.. The relaxed constraint (10e) becomes

ﬁJU > 0 CO0S (emax)s (SG)

which is a half-space constraint and thus convex, even for
Omax > 7/2, when (S5) becomes nonconvex.

Figure S2 shows how for u € R?, relaxing (S5) to (S6) lifts
an obtuse “pie slice” to a convex half-space V:

V2 {(u,0)eR®:Aju > 6 cos(Oma), |

ul, <o} (S7)

The drawback is that inputs that were not feasible for (S5) become
feasible for (S6), in particular, low-magnitude inputs for which Ag u <
||ul,cos (Bmax) become feasible. However, if (u, o) € dicwV,

AdewV = {(u,0) e R®: Aju = 6cos(Bma), |ull, =0}, (S8)

then the input u satisfies the original constraint (S5). The goal of
lossless convexification is to show that this occurs at the global opti-
mum; in other words, (u*,0”) € dLcw V. Theorem 2 guarantees this.

:3 >

(b)

FIGURE S2 The relaxation of (a) the nonconvex input set (S5)
to a convex set (S6) via an intersection with (b) a half-space
in the lifted (u, o) space. If the optimal input (u*, 0") € dLcwV,
then u” is feasible for the nonconvex constraint (S5).

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 47

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

convex. The lossless relaxation of nonconvex state con-
straints remains under active research, and some related
results are available [46] (which will be covered in this sec-
tion). As the reader goes through this part of the article,
note that the main concerns of LCvx are as follows:

» to find a convex lifting of the feasible input set

» to show that the optimal input of the lifted problem

projects back to a feasible (and, in fact, optimal) input
of the original nonlifted problem.

Figure 4 chronicles the development history of LCvx.
The aim of this part of the article is to provide a tutorial
overview of the key results, so theoretical proofs are omit-
ted in favor of a more practical and action-oriented descrip-
tion. Ultimately, the aim is for the reader to come away
with a clear understanding of how LCvx can be applied to
his or her own problems. Table 1 summarizes and illus-
trates the LCvx results presented in this part of the article.
Looking at the table from left to right provides a road map
for this section, which presents the LCvx results in the
same order. Our discussion begins by introducing LCvx
for the input norm lower bound and pointing nonconvexi-
ties using a baseline problem with no state constraints.
Then, the method is extended to handle affine and qua-
dratic state constraints, followed by general convex state
constraints. It is then described how the LCvx method can
also handle a class of dynamical systems with nonlinear

Input Lower Bound [45], [85]
— 2005

- Minimum Landing Error [102]
~ 2007
Generalized Input Nonconvexity [86]

Active State Constraints
at Discrete Times [86]

2010
2011
2012
2013

2014

Input Pointing Constraint [89]

Fusion With Mixed-Integer
Programming [46]

Persistently Active Quadratic
State Constraints [93]

Persistently Active
Linear State Constraints [92], [93]

- 2019
~ 2020
~ 2021

Semicontinuous Input Norms [118]

Disconnected Sets [119]
Fixed Final Time [109]

T T T T T T T T T T

FIGURE 4 The chronology of lossless convexification theory devel-
opment. Note the progression from state-unconstrained problems
to those with progressively more general state constraints and
(finally) to problems that contain integer variables.

48 IEEE CONTROL SYSTEMS » OCTOBER 2022

dynamics. For more general applications, embedding LCvx
into nonlinear optimization algorithms is also discussed.
At the very end of this part of the article, some of the newest
LCvx results from the past year are covered, and a toy
example is provided to demonstrate how LCvx can be used
in practice.

No State Constraints

It is natural to begin by stating perhaps the simplest opti-
mal control problem for which an LCvx result is available.
Its salient features are a distinct absence of state constraints
(except for the boundary conditions), and its only source of
nonconvexity is a lower bound on the input given by (6¢c). A
detailed description of LCvx for this problem may be found
in [45], [85], and [86]:

minm(t, x(t)) +¢ [(g w®)dt, (62)
st.x(t)=AM®x(t)+BEu)+EBw(d), (6b)
pmin < g1(1(1), g0(1 (1) < ponas, (6)
x(0)=xo, b(ts, x(t7)=0. (6d)

In (6), tf>0 is the terminal time; x()€R" is the state
trajectory; u () €R" is the input trajectory; w(-) € R” is an
exogenous additive disturbance; m: R X R" — R is a convex
terminal cost; 0: R — R is a convex and nondecreasing run-
ning cost modifier; { € {0, 1} is a fixed, user-chosen param-
eter to toggle the running cost; go, g1: R" — R+ are convex
functions; pmin > 0 and Pmax > Pmin are user-chosen bounds;
and b:R xR" - R™ is an affine terminal constraint func-
tion. Note that the dynamics in (6) define an LTV system.
For the LCvx discussion, the following two assumptions
are made about the problem data.

Assumption 1

If any part of the terminal state is constrained, then the
Jacobian Vib[tf]e R"*" is full row rank; that is, rank
V.b[ts]=np. This implies that the terminal state is not
overconstrained.

Assumption 2
The running cost is positive definite; in other words,
0(z) >0 for all z#0.

When faced with a nonconvex problem such as (6), an
engineer has two choices. Either devise a nonlinear optimi-
zation algorithm or solve a simpler problem that is convex.
The mantra of LCvx is to take the latter approach by “relax-
ing” the problem until it is convex. In the case of (6), the
following relaxation is proposed, which introduces a new
variable o (") € R, called the slack input:

min m(t, () +¢ [o ®)dt,
stx(t)=At)x(t)+BE)ut)+EH)w(t),

(7a)
(7b)

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

*SIUIBIISUOD 8U]} ||e MOYS Jou op Ady] ‘uwn|od Buipuodsaliod ey ul wajqoid ayy Jo ainjes) anbiun e moys suolensn||i ayl ,

su00 = (1)6

o=(x“q
ox =(0)x

(@GN 65y <@nju

weud < ((1)n) b
uwd = ((3)n) b

Mm@ 3+
MWna+mHx®mv

(@) B)a

(Enxw

n

0=(tx"1)q
ox = (0)x

®ud = (()n)°b
wd < (()n)+6

MHm@) 3+
MWna+mx0)v

((@n)+6)a7

(tnx)w

"olon weorox—ox 0 SRS o=(@macx=(o)x oM AHAWWMVM i
Xo0)x FS@)exH ()ex Us@xH
0s ()N os(no
L i B s s ns o ()95 wIS((In)0b s (()n)ob
rawd () a =7 g)'n | uad 2 ((G)n)b g = ((1)n) -6 wg < ((1)n) -6 ud < ((1)n) -6
W'ntzd + Q) xy B ng +()xy é@%@ ; MI+Ong+0)xy “ +%me _ mw N M3 +()ng + () xy
qarn) X (MmBo (Wn)+-b)a7 (@ n)+6)1 ((@)n)+6)022 ((@)n)+6)12
((xa)w ((Nx)w ((x)w ((nx)w

swajqoid Swa|qo.d awn| salweuhq sjulelsuoy ajels sjuIel}Su0g sjuIel}suoy

wajshs pLgAH [euty paxid ieaujjuoN X3Auog |eiauay ajels anelpenp alels auny

jJuieljsuoy
Bunuiod ynduj

sjuiessuo9
ajels oN

T
SUOI}IPU0I

Kiepunog
-
)
sjujelsuod
ajels Jayi0
-
)
Sjuleljsuod
indui 1ayio
-
)
spunoq
wJiou jnduj
-
SR
= Q)X
sajweuiqg
-

1509
|euiwia)

*3]9114e 3y} Jo uo1}9as s,wajqosd Buipuodsaliod ay) ur paure|dxa S| Jusawa|a yaea Joj uoijejou ayj "xa97 fuisn wajqosd XxaAuod e Se pan|os pue pajlanuod ag
ued jey} wajqoad joJjuod |ewiydo xaauoauou [eulfiio 3y} jo sjuawa|d sAejdsip uwnjoa yae3 -sjnsal (XA97) uol}ealjIxanAuoa ssajsso| }e-ayl-jo-ajes jo Alewwns y

OCTOBER 2022 « IEEE CONTROL SYSTEMS 49

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

pmin =0 (t), goU(t) = pmax, (70)
si)=o(), (7d)
x(0)=x0, b(ts, x(t))=0. (7€)

The relaxation of the nonconvex input constraint (6c) to
the convex constraints (7c) and (7d) is illustrated in “Convex
Relaxation of an Input Lower Bound” for the case of a throt-
tleable rocket engine. Note that if (7d) is replaced with equal-
ity, then (7) is equivalent to (6). Indeed, the entire goal of
LCvx is to prove that (7d) holds with equality at the globally
optimal solution of (7). Because of the clear importance of
constraint (7d) to the LCvx method, it is called the LCvx equal-
ity constraint. This special constraint will be highlighted in
red in all subsequent LCvx optimization problems. Now,
consider the following set of conditions, which arise natu-
rally when using the maximum principle to prove LCvx. The
theoretical details are provided in [86, Th. 2].

Condition 1

The pair {A(),B()} must be totally controllable. This
means that any initial state can be transferred to any final
state by a bounded control trajectory in any finite time
interval [0, t7] [46], [87]. If the system is time invariant, this
is equivalent to {A, B} being controllable, and it can be
verified by checking that the controllability matrix is full
rank or, more robustly, via the Popov-Belevitch-Hautus
(PBH) test [88].

Condition 2
Define the quantities
_ me [tf] n+1
mLCvx—[Vtm[tf]_‘ré,g(o_(tf)) ER 7 (Sa)
_ be[tf]T (n+1) X np
BLCVX - [th[tf]T eR . (Sb)

The vector micy and columns of Brcw must be linearly
independent.

Theorem 1 can now be stated, which is the main LCvx
result for (6). The practical implication of Theorem 1 is that
the solution of (6) can be found in polynomial time by solv-
ing (7) instead.

Theorem 1
The solution of (7) is globally optimal for (6) if Condition 1
and Condition 2 hold.

Input Pointing Constraint

There is a partial generalization of Theorem 1. On the one
hand, restrict (6) to the choices { =1 and go= g1 = g. On the
other hand, introduce a new pointing-like input constraint
(9d). The quantities 71, € R" and 71 € R are user-chosen
parameters. The new problem takes the following form:

50 IEEE CONTROL SYSTEMS » OCTOBER 2022

min m(ty, ¥(t0)) + [€(guE)dt, ©a)
st.x(t)=A)x()+BE)u)+EH)w(t), (9b)
Pmin < g1 (D) < pmars ©¢)

i (t) = fgg (u(t)), (9d)
x(0)=xo, b(ts, x(ts)=0. (%)

This problem is a partial generalization of (6) in the sense
that the input constraints are more general due to (9d);
however, there must be a running cost, and the form of
nonconvexity (9¢) is more restricted.

For example, an airborne vehicle’s tilt angle can be con-
strained using (9d). This constraint, however, is nonconvex
for i1y <0. This nonconvexity, along with the typical non-
convexity of the lower bound in (9¢), is addressed by solv-
ing the following relaxation of the original problem:

min m(t, x(t1) + fo Yoo (1) dt, (10a)
sti(t)=AMxE) + B ul)+E®w(d), (10b)
Pmin <0 () < Pmax, (10c)
gu®)=o(), (10d)
Alu(t)= o (t)fig, (10e)
x(0)=x0, b(t, x(t)=0. (10f)

As in (7), a slack input o () €R is introduced to strategi-
cally remove nonconvexity. Note again the appearance of the
LCvx equality constraint (10d). Meanwhile, the relaxation of
(9d) to (10e) corresponds to a half-space input constraint in
the (u,0)€R™"' space. A geometric intuition about the
relaxation is illustrated in “Convex Relaxation of an Input
Pointing Constraint” for a typical vehicle tilt constraint. LCvx
can again be shown under an extra Condition 3, yielding
Theorem 2. Theoretical details are provided in [89] and [90].

Condition 3

Let NeR™ ™™ be a matrix whose columns span the
null space of 71, in (9d). The pair {A(), B()N} must be
totally controllable.

Theorem 2
The solution of (10) is globally optimal for (9) if Conditions
1,2, and 3 hold.

Affine State Constraints

The logical next step after Theorem 1 and Theorem 2 is to
ask whether (6) can incorporate state constraints. It was
already shown in the context of the input pointing con-
straint (9d) that the addition of a convex input constraint
can change the LCvx guarantee. In particular, Theorem 2
is subject to more conditions than Theorem 1. The situa-
tion is even more intricate in the case of state constraints
since Pontryagin’s maximum principle statement is more

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

complicated for problems with state constraints [91]. Nev-
ertheless, an LCvx guarantee can be made in the presence
of state constraints by introducing a fairly mild set of
extra conditions.

Affine inequality constraints are the simplest class of state
constraints that can be handled in LCvx. The results pre-
sented in this section originate from [92]-[94]. The nonconvex
statement of the original problem is a close relative of (6):

min m(x(0) + ¢ [(g @) dt, (11a)
s.t. X () = Ax(H) + Bu(t) + Ew, (11b)
prin S G1(1(1), (1 (1) = P, (119
Cu(t)<c, (11d)
Hx(H) <h, (11e)
x(0)=x0, b(x(tr)=0. (11f)

First, note that (11) is autonomous; that is, the terminal cost
in (11a), the dynamics (11b), and the boundary constraint
(11f) are all independent of time. A limited form of time
variance can still be included by introducing an additional
time integrator state whose dynamics are z(t) = 1. The limi-
tation here is that time variance must not introduce noncon-
vexity in the cost, dynamics, and terminal constraint (11f).
The matrix of facet normals H € R"*" and the vector of
facet offsets h € R™ define a new polytopic (affine) state
constraint set. A practical use case for this constraint is
described in “Landing Glideslope as an Affine State

Constraint.” Similarly, C € R"*" and c € R™ define a new
polytopic subset of the input constraint set, as illustrated in
“Using Half Spaces to Further Constrain the Input Set.”

Note the following convex relaxation of (11), which takes
the familiar form of (7):

min m(x(t))+¢ [o ®)at, (12a)
s.t. x(t)= Ax(t) + Bu(t) + Ew, (12b)
pmin =0 (£), o(u(t)) = pmax, (120)
giu)=o(t), (12d)
Cu(t)<c, (12e)
Hx(H<h, (12f)
x(0)=x0, b(x(tr)=0. (12g)

To guarantee LCvx for this convex relaxation, Condition 1
can be modified to handle the new state and input con-
straints (11d) and (11e). To this end, the following notion of
cyclic coordinates from mechanics is used [95].

Definition 1

For a dynamical system &= f(x) with state x €R", any
components of x that do not appear explicitly in f() are
said to be cyclic coordinates. Without a loss of generality, the
state can be decomposed as

[xrc]
X
nc

(13)

Landing Glideslope as an Affine State Constraint

typical planetary landing problem may include a glideslope
constraint to ensure sufficient elevation during approach
that prevents the spacecraft from colliding with nearby terrain
[45]. Letting é3 € R® represent the local vertical unit vector at
the landing site, the glideslope requirement can be expressed
as a convex, second-order cone constraint:
éix =l x|l cos (res), (S9)
where vgs € [0, 7/2] is the glideslope angle, that is, the maxi-
mum angle that the spacecraft position vector is allowed to
make with the local vertical. As illustrated in Figure S3, (S9)
can be approximated as an intersection of four half spaces with
the following outward normal vectors:

: . (S10a)
—C0S(Ygs)

ng = 0 , . (S10b)
—sin(ygs)

FIGURE S3 A spacecraft planetary landing glideslope cone can
be approximated as an affine state constraint (11e). By adding
more facets, a cone with circular cross sections can be approx-
imated to arbitrary precision.
Thus, (S9) can be written in the form (11e) by setting
ni"
& T
’jZT ,h=0eR*.
n

3
T

H= (S11)

OCTOBER 2022 « IEEE CONTROL SYSTEMS 51

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

Using Half Spaces to Further Constrain the Input Set

he input constraint set defined by (6c) generally lacks the

ability to describe constraints on individual input compo-
nents and combinations thereof. To enhance the descriptive-
ness of the input constraint set, half-space constraints in (11d)
may be used. This is illustrated in Figure S4, where go(-)=|" |1,
g1(-)=1-l2 and

(S12)

For example, u; and u, may describe the concentrations of two
chemical reactants—hydrochloric acid and ammonia—to produce
ammonium chloride. Then, the first affine constraint may describe
the maximum concentration of ammonia, while the second affine
constraint may describe an interdependency in the concentrations
of both reactants. Meanwhile, the now familiar constraint (11c) de-
scribes the joint reactant concentration upper and lower bounds.

where x. € R™ are the cyclic and x. € R" are the noncyc-
lic coordinates such that 7.+ 1, =n. One can then write

X = fln).

Many mechanical systems have cyclic coordinates. For
example, quadrotor drone and fixed-wing aircraft dynamics
do not depend on the position [96]. Satellite dynamics in a
circular low-Earth orbit, frequently approximated with the
Clohessy-Wiltshire-Hill equations [97], do not depend on the
true anomaly angle that locates the spacecraft along the orbit.

Using Definition 1, a cyclic transformation ¥.:R" — R" is
any mapping from the state space to itself that translates the
state vector along the cyclic coordinates. In other words, with-
out loss of generality, assuming that the state is given by (13),

FIGURE 5 A landing glideslope constraint (shown in red, it is a side
view of Figure S3) that undergoes a cyclic shift in position along
the positive x,-axis to arrive at a new landing location (in blue).
Thanks to Condition 4, the lossless convexification guarantee
continues to hold for the new glideslope constraint even though
the new constraint facets are not subspaces.

52 |EEE CONTROL SYSTEMS » OCTOBER 2022

A Al
|, — Pmax

AN
| N
L 2

Prmin

FIGURE $4 The half-space constraints from (11d) can be used
to select only portions of the nonconvex input set defined by
(11c). The remaining feasible input set is filled in red.

Xc+ Axc] (14)

Xne

Ye(x)= [

for some translation Ax.€R™. The following condition
must then hold for the polytopic state constraint (12f).

Condition 4

Let H/ be the ith row of H in (12f). The set Hi={x<€R":
Hx = h;} thus corresponds to the ith facet of the constraint
polytope. For each facet where h;# 0, there must exist a
cyclic transformation ¥, such that

H¥.(x)=0. (15)

To visualize the implication of Condition 4, consider the
case of the landing glideslope constraint from “Landing
Glideslope as an Affine State Constraint.” Because the
position of a spacecraft in a constant gravity field is a cyclic
coordinate, Condition 4 confirms the intuitive understand-
ing that landing can be imposed at a coordinate other than
the origin without compromising LCvx. Figure 5 provides
an example.

According to linear systems theory [92], [98], [99], x (t) € H:
can hold for a nonzero time interval (that is, the state
“sticks” to a facet) if and only if there exists a triplet of
matrices {F; € R™*", G; € R™*"™, R; € R™**} such that

u(t)=Fx(t)+ Giov(t) + Riw. (16)
The “new” control input v(t) € R™ effectively gets filtered
through (16) to produce a control signal that maintains x(:)
on the hyperplane H;. The situation is depicted in Figure 6
in a familiar block diagram form. While the matrix triplet
is not unique, a valid triplet can be computed using

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

standard linear algebra operations [92], [98]. The proof
of LCvx for (11) was originally developed in [92] and [93].
The theory behind (16) is among the most abstract in all
of LCvx, and a proof is not attempted here. The ultimate
outcome of the proof is that the following condition
must hold.

Condition 5

For each facet H:CR" of the polytopic state constraint
(12f), the following “dual” linear system has no transmis-
sion zeros:

At)=—(A+BE)"A(t) — (CF) u(t),
y()=(BG) (1) +(CGi)" u().

Transmission zeros are defined in [100, Sec. 4.5.1].
Roughly speaking, if there are no transmission zeros,
then there cannot exist an initial condition 1(0) € R" and
input trajectory u(-) € R™ such that y(t)=0 for a nonzero
time interval.

The conditions for when LCvx holds for (12) can now be
stated. Note that the statement is very similar to Theorem 1.
Indeed, the primary contribution of [92] and [93] was to
introduce Condition 5 and show that LCvx holds by using
a version of the maximum principle that includes state con-
straints [91], [101]. Meanwhile, the actual LCvx procedure
does not change.

Theorem 3
The solution of (12) is globally optimal for (11) if Condi-
tion 2 and Condition 5 hold.

Quadratic State Constraints

The preceding section showed an LCvx result for state con-
straints that can be represented by the affine description
(11e). The natural next question is whether LCvx extends to
more complicated state constraints. A generalization of
LCvx exists for quadratic state constraints if one can accept
a slight restriction to the system dynamics. This result was
originally presented in [94] and [99]. The nonconvex prob-
lem statement is:

Maximum Velocity as a Quadratic State
Constraint
y setting A =1, and B =, in (17), the state x2 can be in-
terpreted as a vehicle’s velocity. A maximum velocity con-
straint || xz|l, < vmax can then be equivalently written in the form
of (17e) as

X3 (Vixln) X2 < 1. (S13)

Figure S5 illustrates the maximum velocity constraint.

min m(x(t)) +¢ [W)t (17a)
s.t. x1(t) = Axa(f), (17b)
%2(t) = Bu () + w, (170)

Pmin < g1(1 (), go(u(t)) < pmax, (17d)
x2(t) Hxa () <1, (17e)
x1(0) =x10, x2(0)=x20, b(x(ts)=0, (17f)

where (x1, x2) €R" X R" is the state that has been parti-
tioned into two distinct parts, u €R" is an input of the
same dimension, and the exogenous disturbance w € R" is
some fixed constant. The matrix H € R"" is symmetric
positive definite such that (17e) maintains the state in an
ellipsoid. An example of such a constraint is illustrated in
“Maximum Velocity as a Quadratic State Constraint.”
Although the dynamics (17b) and (17c) are less general
than (11b), they can still accommodate problems related to
vehicle trajectory generation. In such problems, the vehicle is
usually closely related to a double integrator system for
which A =1, and B=1, such that x; is the position and x»
is the velocity of the vehicle. The control u in this case is the
acceleration. The following assumption further restricts the
problem setup and is a consequence of the LCvx proof [93].

Assumption 3
The matrices A, B, and H in (11) are invertible. The functions
go()) and g1 (") satisfy pmin < g1(—B~'w) and go(—B ' w) < pmax.

Assumption 3 has the direct interpretation of requiring
that the disturbance w can be counteracted by an input that

x(t) = Ax(t) + Bu(t) + Ew
x(0) € H;

u(t) Il x(t) e H,

4[,,(1) = Fix(f) + G(t) + Hiwfi v(t)

FIGURE 6 Given x(0) € H., the dynamical system (11b) evolves on
H. if and only if u(t) is of the form (16).

FIGURE S5 The boundary of the maximum velocity constraint,
which can be expressed as (17e).

OCTOBER 2022 « IEEE CONTROL SYSTEMS 53

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

is feasible with respect to (17d). The relaxed problem once
again simply convexifies the nonconvex input lower bound
by introducing a slack input:

min mx(t))+¢ [o B)dt, (18a)
s.t. i1 (f) = Axa(b), (18b)
2t = Bu(t) + w, (18¢)

pmin <0 (), g0(1(E) < Pmar, (18d)
si(u(t)=o(t), (18¢)
x2(t)" Hxa () <1, (18f)
x1(0)=x10, x2(0)=2x20, b(x(tf)=0. (18g)

Thanks to the structure of the dynamics (18b) and (18¢), it
can be shown that Condition 1 is automatically satisfied.
On the other hand, Condition 2 must be modified to account
for the quadratic state constraint.

Condition 6
If £=0, the vector V,m[t;]€ R* and columns of the fol-
lowing matrix must be linearly independent:

Vab[tA]" 0

Ran(nH—l).
Vab[t]" 2Hxa(tr)| S

19)

Brow =

Note that Condition 6 carries a subtle but important implica-
tion. Recall that due to Assumption 1, V.b[ts] " must be full
column rank. Hence, if { =0, then we must have n, < 2n,
and if 1, =2n—1, the vector (0, 2Hx2(tf))€ R*" and col-
umns of V.b[t;]" must be linearly dependent. Otherwise,
Bicux is full column rank, and Condition 6 cannot be satis-
fied. With this in mind, the following LCvx result was
proved in [99, Th. 2].

Theorem 4
The solution of (18) is globally optimal for (17) if Condi-
tion 6 holds.

A x
Solve the State-
/ Unconstrained Problem
—intX PR -~
4 \ 4 SN
4 SNl \
0xX
P / \ .
® — —1 >
4 ’ b
— —1 _ 1
=t +a le=thb—a

FIGURE 7 The dashed curve represents any segment of the optimal
state trajectory for (20) that evolves in the interior of the state con-
straint set (20d). Because the optimal control problem is autono-
mous, any such segment is the solution to the state-unconstrained
problem (6). When ¢ =1 and taking the limit as a — o, lossless con-
vexification applies to the entire (open) segment inside int X’ [86].

54 |EEE CONTROL SYSTEMS » OCTOBER 2022

General Convex State Constraints
The preceding two sections discussed problem classes
where an LCvx guarantee is available even in the presence
of affine and quadratic state constraints. For obvious rea-
sons, an engineer may want to impose more exotic con-
straints than afforded by (11) and (17). Luckily, an LCvx
guarantee is available for general convex state constraints.
As may be expected, generality comes at the price of a
somewhat weaker result. In the preceding sections, the LCvx
guarantee was independent from the way in which the affine
and quadratic state constraints get activated: instantaneously,
for periods of time, or for the entire optimal trajectory dura-
tion. In contrast, for the case of general convex state constraints,
an LCvx guarantee will hold only as long as the state con-
straints are active pointwise in time. In other words, they get
activated at isolated time instances and never persistently over
a time interval. This result was originally provided in [86].
The nonconvex problem statement is

min m(x(t)+ ¢ [0(gi(u(@) dt, (20a)
s.t. ¥ (f) = Ax(t) + Bu(t) + Ew, (20b)
prin < Q1(4(1)), g0(1(8) < P (209
x(heX, (20d)
x(0)=x0, b(x(tf))=0, (20e)

where X CR" is a convex set that defines the state con-
straints. Without the state constraint, (20) is nothing but the
autonomous version of (6). As for (11), time variance can be
introduced in a limited way by using a time integrator state
(as long as this does not introduce nonconvexity).

The relaxed problem uses the now familiar slack vari-
able relaxation technique for (20c):

min mx(t)) +¢ [o ®)dt, (21a)
s.t. ¥(t) = Ax(#) + Bu(t) + Ew, (21b)
pmin <0 (), g0(1 () < Prmars (210)
giu®) <o), (21d)
x(heX, (1le)
x(0)=x0, b(x(ty)=0. 21f)

The LCvx proof is provided in [86, Corollary 3] and

relies on recognizing the following two key facts:

1) When x(t) € intX for any time interval t €[t1, t2], the
state of the optimal control problem is unconstrained
along that time interval.

2) For autonomous problems [recall the description after
(17)], every segment of the trajectory is itself optimal [99].

As a result, whenever x(f) € int X, the solution of (21) is

equivalent to the solution of (7). Consider an interior trajec-
tory segment, as illustrated in Figure 7. The optimal trajec-
tory for the dashed portion in Figure 7 is the solution of the
following fixed final state, free final time problem:

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

min m(z(t9) + ¢ [U), 222)
s.t. 2(t) = Az(f) + Bu(f) + Ew, (22b)
pmin = g1(1(£), go(u(t)) = pPmax, (220)

2(t) = x(ts), z(t)=x(t). (22d)

Note that (22) is an instance of (6), and, as long as { =1
(for Condition 2 to hold), Theorem 1 applies. Because a >0
can be arbitrarily large in Figure 7, LCvx applies over the
open time interval (¢, t,). Thus, the solution segments of the
relaxed problem that lie in the interior of the state con-
straint set are feasible and globally optimal for the original
(20). The same cannot be said when x(t) € 9X. During these
segments, the solution can become infeasible for (20).

However, as long as x(f)€9X at isolated time instances,
LCvx can be guaranteed to hold. This idea is further illus-
trated in “Permissible State Constraint Activation for Gen-
eral Convex State Constraints.”

When =0, the situation becomes more complicated
because Condition 2 does not hold for (22). This is clear
from the fact that the terms defined in Condition 2 become

Micvx = 0 ’ LCvx — 0/

which are clearly not linearly independent since Bicyx is
full column rank. Thus, even for interior segments, the
solution may be infeasible for (20). To remedy this, [86, Cor-
ollary 4] suggests Algorithm 1. At its core, the algorithm

Permissible State Constraint Activation for General Convex State Constraints

eturn to the landing glideslope constraint for a spacecraft,

which was motivated in “Landing Glideslope as an Affine
State Constraint.” Because (20) allows for using any convex
state constraint, the second-order cone constraint (S9) can be
used directly. As illustrated in Figure S6, lossless convexifica-
tion (LCvx) in this case will hold only if the spacecraft touches
the “landing cone” a finite number of times.

In Figure S6(a), the glideslope constraintis activated once at
timet, priortolanding. Hence, 7 = {t € [0, t/]: x(t) € 90X} = {t1, 1}
is a discrete set, and Theorem 5 holds. Note that the constraint
may be activated at other times (for example, 7 = {t1, t2, t1}) as
long as these times are all isolated points. In Figure S6(b) there
is an interval of time for which the glideslope constraint is ac-
tive. This results in a nondiscrete set of state constraint acti-
vation times 7 = [t1,t2] U{ts}. For t € [t1, 2], there is no LCvx

X1

guarantee, and the solution to (21) may be infeasible for (20)
over that interval.

For historical context, LCvx theory was initially developed
specifically for planetary rocket landing. For this application,
glideslope constraint activation behaves like Figure S6(a), so
LCvx holds for that application. Indeed, the constraint (S9) was
part of the NASA Jet Propulsion Laboratory’s optimization-
based rocket landing algorithm flight tests [S1], [S2], [37]-[39].

REFERENCES

[S1] B. Acikmese et al., “Flight testing of trajectories computed by G-
FOLD: Fuel optimal large divert guidance algorithm for planetary land-
ing,” in Proc. 23rd Amer. Astronaut. Soc. Amer. Inst. Aeronaut. Astro-
naut. Space Flight Mech. Meeting, Kauai, HI, USA, Feb. 2013, pp. 1-14.
[S2] D. P. Scharf et al., “ADAPT demonstrations of onboard large-divert
guidance with a VTVL rocket,” in Proc. IEEE Aerosp. Conf., Mar. 2014,
pp. 1-18, doi: 10.1109/aero0.2014.6836462.

v Lossless /5%

(a) ;

1\’,"
/\ TBJ"’-/-/‘/"

X Not Lossless %

Lossy Interval [t;, &] |

! /

(b) ‘

NN)

25

W

o
S\

FIGURE 86 An illustration of when lossless convexification with general convex state constraints may fail. In (a), the glideslope constraint
is activated once prior to landing. Hence, the solution is lossless. In (b), the constraint is activated for a nontrivial duration, and the
solution may be infeasible over that interval. Note that the two figures (a) and (b) are in-plane projections of the 3D figure on the left.

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 55

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

relies on the following simple idea. By solving (21) with the
suggested modifications on line 3 of Algorithm 1, every
interior segment once again becomes an instance of (6), for
which Theorem 1 holds. Furthermore, due to the constraint
x(ts) =x"(t7), any solution to the modified problem will be
optimal for the original formulation, where { =0 [since
m(x(t) = m(x (1)

This modification can be viewed as a search for an equiv-
alent solution for which LCvx holds. As a concrete example,
(21) may be searching for a minimum miss distance solution
for a planetary rocket landing trajectory [102]. The ancillary
problem in Algorithm 1 can search for a minimum-fuel
solution that achieves the same miss distance. Clearly, other
running cost choices are possible. Thus, the ancillary prob-
lem’s running cost becomes an extra tuning parameter.

It is now possible to summarize the LCvx result for
problems with general convex state constraints.

Theorem 5

Algorithm 1 returns the globally optimal solution of (20) if
the state constraint (20d) is activated at isolated time
instances and Condition 1 and Condition 2 hold.

Nonlinear Dynamics

A commonality among the previous sections is the assump-
tion that the system dynamics are linear. Across all LCvx
results that were mentioned so far, the dynamics did not vary
much from the first formulation in (6b). Many engineering
applications, however, involve nonnegligible nonlinearities.
A natural question is then whether the theory of LCvx can be
extended to systems with general nonlinear dynamics.

An LCvxresult is available for a class of nonlinear dynamical
systems. The groundwork for this extension was presented in
[46]. The goal here is to show that the standard input set relax-
ation based on the LCvx equality constraint is also lossless when
the dynamics are nonlinear. Importantly, note that the dynamics
themselves are not convexified, so the relaxed optimization
problem is still nonconvex. Reliably solving for the global opti-
mum is possible in special cases, for example, if the nonlineari-
ties are approximated by piecewise affine functions. This yields
a mixed-integer convex problem whose globally optimal solu-
tion can be found via mixed-integer programming [103].

ALGORITHM 1 The solution algorithm for (20).

When ¢ =0, a two-step procedure is used, where an auxiliary
problem with { =1 searches over the optimal solutions to the
original problem.
1: Solve (21) to obtain x’(t7)
2: if {=0 then
3: Solve (21) again, with the modifications

* Use the cost [70(o (t))dt

e Set b(x(tr)) = x(tr) — x"(t7)

56 IEEE CONTROL SYSTEMS » OCTOBER 2022

Since the relaxed problem is still nonconvex, it is instruc-
tive to dwell on the distinction between locally and globally
optimal solutions. So far, only globally optimal solutions
have been used since every locally optimal solution is glob-
ally optimal for a convex problem [26]. However, LCvx
proofs rely on Pontryagin’s maximum principle, which pro-
vides necessary conditions of optimality [104]. As a result,
LCvx holds even for locally optimal solutions in the sense
that such solutions are also locally optimal for the original
problem and vice versa. Similarly, a globally optimal solu-
tion of the relaxed problem is also globally optimal for the
original problem.

With this nuance in mind, the generalization of (6) is
introduced that will be solved using LCvx:

min m(ty, x(t))+¢ [(gw®)dt, (23a)
st ()= f(t, x(t), u(t), gu(®)), (23b)
Pmin < g(u (t)) < Pmax, (23C)
x(0)=x0, b(ts, x(t)=0, (23d)

where f:RXR"xR"XR —R" defines the nonlinear dy-
namics. As for (9), it is required that go=g1 = g.

Consider the following convex relaxation of the input
constraint by using a slack input:

min m(tr, x(t)+¢ [0o ®)dt, (24a)
s.t.x(t)= f(t, x(t), u(t), o(t)), (24b)
Pmin < O-(t) < Pmax, (24C)
gu®)=o®, (24d)
x(0)=xo, b(ts, x(t5)=0. (24e)

Note that the slack input ¢ makes a new appearance in
the dynamics (24b). The more complicated dynamics
require an updated version of Condition 1 to guarantee
that LCvx holds.

Condition 7
The pair {V.f[t], V.f[t]} must be totally controllable on [0, ¢]
for all feasible sequences of x(-) and u(-) for (24) [46], [87].

Using this condition, the following quite general LCvx
guarantee is stated for problems that fit the template of
problem (23).

Theorem 6
A locally (globally) optimal solution of (24) is locally (glob-
ally) optimal for (23) if Condition 2 and Condition 7 hold.

Condition 7 is generally quite difficult to check. Never-
theless, two general classes of systems have been shown to
automatically satisfy this condition, thanks to the structure
of their dynamics [46]. These classes accommodate vehicle
trajectory generation problems with double integrator

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

dynamics and nonlinearities, such as mass depletion, aero-
dynamic drag, and nonlinear gravity. The following dis-
cussion of these system classes can appear hard to parse at
first sight. For this reason, two practical examples of sys-
tems that belong to each class are provided in “Examples of
Losslessly Convexifiable Nonlinear Systems.”

The first corollary of Theorem 6 introduces the first class
of systems. A key insight is that the null space conditions of
the corollary require that 2m > n; that is, there are at least half
as many control variables as there are state variables. This is
satisfied by some vehicle trajectory generation problems in
which 2m=n (for example, when the state consists of the
position and velocity, while the control is an acceleration that
acts on all velocity states). This is a common approximation
for flying vehicles. An example for rocket landing is shown in
the third part of the article.

Corollary 1
Suppose that the dynamics (23b) are of the form

filt, x)

At x)] @)

2} s

where null(V.f2) ={0} and null(V.fi1)={0}. Then, Theo-
rem 6 applies if Condition 2 holds.

The next corollary to Theorem 6 introduces the second
class of systems, for which 2m <n is allowed. This class is
once again useful for vehicle trajectory generation prob-
lems where the dynamics are given by (26) and g(u) is a
function that measures control effort. A practical example
is when the state x> is mass, which is depleted as a function
of the control effort (such as thrust for a rocket).

Corollary 2
Suppose that the dynamics (23b) are of the form
RE:! | A® X, w)
x= [xZ]’ f(t, x,u, (1)) = At gw) | (26)
Define the matrix
(Vi)'
M=2|d(V.A)' . 27
SO @ufy vy)

Furthermore, suppose that the terminal constraint function
b is affine and that x2(tf) is unconstrained such that
V,b=0. Then Theorem 6 applies if null(M)={0}, and
Condition 2 holds.

It must be emphasized that, due to the nonlinear
dynamics, (24) is still a nonconvex program that can be
hard to solve. For Theorem 6 to hold, at least a locally opti-
mal solution must be found. In the special case when the
dynamics f are piecewise affine, the problem can be solved

to global optimality via mixed-integer programming [103],
[105], [106]. In this case, the convexification of the noncon-
vex input lower bound reduces the number of disjunctions
in the branch-and-bound tree and hence lowers the prob-
lem complexity [46]. Several examples of nonlinear sys-
tems that can be modeled in this way and comply with
Corollary 1 and Corollary 2 are provided in “Approximat-
ing Nonlinear Systems With Piecewise Affine Functions.”

Embedded Lossless Convexification

Note that the LCvx theory of the previous sections
addresses special cases of problems whose nonconvexity is
“just right” for an LCvx guarantee to be provable using the
maximum principle. Although such problems have found
practical use in problems such as spaceflight [37] and
quadrotor path planning [52], this restriction leaves out
many trajectory generation applications that do not fit the
tight mold of original problems and conditions of the previ-
ous sections.

Despite this apparent limitation, LCvx is still highly rel-
evant for problems that simply do not conform to one of the
forms given in the previous sections. For such problems,
suppose that the reader is facing the challenge of solving a
nonconvex optimal control problem that fits the mold of (38)
(the subject of the “Sequential Convex Programming” sec-
tion) and considering whether LCvx can help. There is evi-
dence that the answer is affirmative if one uses LCvx theory
only on the constraints that are losslessly convexifiable.
This is called embedded LCvx because it is used to convexify
only part of the problem, while the rest is handled by
another nonconvex optimization method, such as presented
in the second part of this article. Because LCvx reduces the
amount of nonconvexity present in the problem, it can sig-
nificantly improve the convergence properties and reduce
the computational cost to solve the resulting problem. An
example of this approach for quadrotor trajectory genera-
tion is demonstrated in the “Application Examples” section
at the end of this article.

The basic procedure for applying embedded LCvx is
detailed in Figure 8. As shown in Figure 8(b), LCvx is not a
computation scheme but a convex relaxation with an accom-
panying proof of equivalence to the original problem. Thus,
it happens prior to the solution and simply changes the
problem description seen by the subsequent numerical opti-
mization algorithm. There are a number of examples of
embedded LCvx worth mentioning. First, the previous sec-
tion on nonlinear dynamics can be interpreted as embed-
ded LCvx. For example, [46] solves a rocket landing problem
in which only the nonconvex input constraint (23c) is con-
vexified. This leaves behind a nonconvex problem due to
nonlinear dynamics, and mixed-integer programming is
used to solve it.

Another example is provided in [107], where LCvx is
embedded in a mixed-integer AAV trajectory generation
problem to convexify a stall speed constraint of the form

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 57

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

0 < Umin <[Vemd () ||, < Umax, (28)
where the input vemd() € R is the commanded velocity
while Umin and Umax are lower and upper bounds that guar-
antee a stable flight envelope. The same constraint is also
considered in [46]. In [53], the authors develop a highly
nonlinear planetary entry trajectory optimization problem,
where the control input is the bank angle 8 € R parameter-
ized via two inputs u1 = cos(B) and u2 £ sin (). The associ-
ated constraint |[u[;=1 is convexified to |u[}<1, and
equality at the optimal solution is shown in an LCvx-like
fashion (the authors call it “assurance of active control con-
straint”). Similar methods are used in [55] in the context of
rocket landing with aerodynamic controls.

A survey of related methods is available in [108]. Finally,
a noteworthy approach is taken in [52] and [58], where
embedded LCvx is used to convexify an input lower bound
and an attitude-pointing constraint for rocket landing and
agile quadrotor flight. SCP from the “Sequential Convex
Programming” section is then used to solve the remaining
nonlinear optimal control problems. The quadrotor appli-
cation, in particular, is demonstrated as a numerical exam-
ple in the “Application Examples” section at the end of this
article. As a result of the success of these applications, there

are likely to be further unexplored opportunities to use
LCvx as a strategy to derive simpler problem formulations.
The results would speed up computation for optimization-
based trajectory generation.

The Future of Lossless Convexification

LCvxis a method that solves nonconvex trajectory generation
problems with one or a small number of calls to a convex
solver. This places it among the most reliable and robust
methods for nonconvex trajectory generation. The future of
LCvx therefore has an obvious motivation: to expand the
class of problems that can be losslessly convexified. The most
recent result discussed in the previous sections is for prob-
lems with affine state constraints [92], which dates back to
2014. In the last several years, LCvx research has been rejuve-
nated by several fundamental discoveries and practical
methods that expand the approach to new and interesting
problem types. This section briefly surveys these new results.

Fixed Final Time Problems

The first new LCvx result applies to a fixed final time and
fixed final state version of (6) with no state constraints. To
begin, recognize that the classical LCvx result from Theo-
rem 1 does not apply when both t; and x(tf) are fixed. In

Examples of Losslessly Convexifiabhle Nonlinear Systems

t first sight, the discussion around Corollary 1 and Corollary 2
may be hard to parse into something useful. On the con-
trary, let us describe two concrete and very practical examples
of dynamical systems that satisfy these corollaries. Both ex-
amples originate from [46].

NONLINEAR ROCKET LANDING

First, lossless convexification (LCvx) can be used for rocket land-
ing with nonlinear gravity and aerodynamic drag. Both effects
are important for landing either on small celestial bodies with a
weak gravitational pull or planets with a thick atmosphere (such as
Earth). In this case, the lander dynamics can be written as

()

HO) = 9r(0) = 7 1FO lf O+ 70

m (S14a)

m(t) =—o| T(0) ., (S14b)

where r denotes the position, m is the mass, T is the thrust, ¢
is the drag coefficient, o is inversely proportional to the rock-
et engine’s specific impulse, and g:R®— R® is the nonlinear
gravity model. An illustration is given in Figure S7(a).

The preceding dynamics can be rewritten using the tem-
plate of (23b) by defining the state x = (r,r,m) € R’, input
u =T e R® and input penalty function g(u) | u|l,. The equa-
tions of motion can then be written as (omitting the time argu-
ment for concision)

58 IEEE CONTROL SYSTEMS » OCTOBER 2022

fr(x, u)
fi (x)
fr (g (u))

f(t,x,u,g()) =

r
g(r)—cm || i loi + Tm™|.
—af T,

This system belongs to the class in Corollary 2. In particu-
lar, let f1 = (f,, f;) and f> = fn. Applying the algebra in (27),

0 m'l

M=[m"l Mo I

(S15)
where Mz = —(c/m?) (| F |2/ + i#"/| F|2) + «TT /(m?|| T |.,).
Thanks to the off-diagonal terms, null(M) = {0} uncondition-
ally, so the rocket lander dynamics satisfy the requirements
of Corollary 2.

AUTONOMOUS AERIAL VEHICLE TRAJECTORY
GENERATION WITHOUT STALLING

An autonomous aerial vehicle can lose control and fall out of
the sky if its airspeed drops below a certain value. This oc-
curs because the wings fail to generate enough lift, resulting
in an aerodynamic stall. It was shown in [46] that a stall speed
constraint of the form vmin <| v |, can be handled by LCvx via
the following dynamics:

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

this case, Brcw =1Is+1 in (8b), and therefore its columns
(which span all of R"*") cannot be linearly independent
from muicvx. Thus, one traditionally could not fix the final
time and the final state simultaneously. Recently, Kunhip-
purayil et al. [109] showed that Condition 2, in fact, is not
necessary for the following version of (6):

min [o(g @), (292)
s.t.x(H) = Ax(t) + Bu(b), (29b)
Pmin = g (U () = pmax, (29¢)
x(0)=x0, x(ty)=xy, (29d)

where ff is fixed and xr € R" specifies the final state.
The lossless relaxation is the usual one, which is a spe-
cialization of (7) for (29):

min fo "o (t))dt, (30a)
s.t. & () = Ax () + Bu(t)w(t), (30b)
Pmin < 0 (£) < Prmax,s (300)
gu() =o(t), (30d)
x(0)=xo0, x(ty)=xs. (30e)

F(t) = v(f) + v (2), (S16a)
v(t) = k(va(t) —v({®)) —cllv®) v (t), (S16b)

where v is the airspeed, r is the ground veloci-
ty, and v.. is the velocity of the air mass relative
to the ground (also known as the freestream
velocity). An illustration is provided in Fig-
ure S7(b).

The key transformation in (S16) is to make
the desired airspeed vq the control variable
and include a velocity control inner loop via a
proportional controller with gain k. Because
the velocity dynamics are first order, v converg-
es to vq along a straight path in the velocity
phase plane. Hence, the stall speed constraint
is closely approximated for small control errors
|lva—v],. The dynamics can then be rewritten
using the template of (23b) by defining the state
x = (r,v) € R® and input u = vq € R®. The equa-
tions of motions can then be written as

f(t,
f(t, x,u, g () = [fv((f(,)l(l)) ’
V+ Vs
- [—l{v—CH VI|2V+’<"d]'

The following result is then proved in [109]. By dropping Condi-
tion 2, the result generalizes Theorem 1 and significantly expands
the reach of LCvx to problems without state constraints.

Theorem 7

The solution of (30) is globally optimal for (29) if Condi-
tion 1 holds and ¢ is between the minimum feasible time
and the time that minimizes (29a). For longer trajectory
durations, there exists a feasible solution of (30) that is glob-
ally optimal for (29).

Perhaps the most important part of Theorem 7, and a
significant future direction for LCvx, is in its final sentence.
Although a lossless solution “exists,” how does one find it?
An algorithm is provided in [109] to find the lossless solu-
tion, that is, one solution among many others that may not
be lossless. This is similar to Theorem 5 and Algorithm 1: it
is known that slackness in (30d) may occur, so an algorithm
is devised that works around the issue and recovers an
input for which (30d) holds with equality. Most traditional
LCvx results place further restrictions on the original prob-
lem to “avoid” slackness. However, this limits the applica-
bility of LCvx. By instead providing algorithms that recover
lossless inputs from problems that do not admit LCvx

This system belongs to the class in Corollary 1. In particular,
let fi =f. and f=f,. Then, Vu.fa =kl and Vi.fi = [. Therefore,
null(Vuf2) = {0} and null(Vx.fi) = {0}, so the aircraft dynamics
satisfy the requirements of Corollary 1.

(@) (b)

FIGURE S7 Examples of two nonlinear systems for which the lossless convexi-
fication result of Theorem 6 can be applied. (a) Landing a rocket in the pres-
ence of nonlinear gravity and atmospheric drag. (b) Autonomous aircraft
trajectory generation with a stall constraint and aerodynamic drag.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 59

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

naturally, LCvx can be addressed “head on,” and the class
of losslessly convexifiable problems can be expanded. A
similar approach is used for spacecraft rendezvous in
[56], where an iterative algorithm modifies the dynamics
to extract bang—bang controls from a solution that exhib-
its slackness.

Hybrid System Problems

Many physical systems contain discrete on—off elements,
such as valves, relays, and switches [46], [106], [110]-[112].
Discrete behavior can also appear through interactions
between the autonomous agent and its environment, such
as through foot contact for walking robots [113]-[115]. Mod-
eling discrete behavior is the province of hybrid system
theory, and the resulting trajectory problems typically

combine continuous variables and discrete logic elements
(that is, “and” and “or” gates) [110], [112], [116]. Because
there is no concept of an infinitesimally small local pertur-
bation for values that, for example, can be equal only to
zero or one, problems with discrete logic are fundamen-
tally more difficult to solve. Traditional solution methods
use mixed-integer programming [103]. The underlying
branch-and-bound method, however, has poor (combinato-
rial) worst-case complexity. Historically, this made it very
difficult to put optimization with discrete logic onboard
computationally constrained and safety-critical systems
throughout aerospace, automotive, and even state-of-the-
art robotics sectors [117].

Two recent results showed that LCvx can be applied to
certain classes of hybrid optimal control problems that are

Approximating Nonlinear Systems With Piecewise Affine Functions

iecewise affine functions can be used for arbitrarily accurate

approximation of any nonlinear function. This is the technique
used by [46] to write the nonlinear dynamics (24b) in piecewise
affine form. Doing so enables solving (24) to global optimality via
mixed-integer programming, which is one possible way to meet
the lossless convexification requirements of Theorem 6. It is now
shown how a piecewise affine approximation can be obtained in
the general case and concretely in the case of the dynamics from
“Examples of Losslessly Convexifiable Nonlinear Systems.”

GENERAL CASE

Begin by finding a first-order approximation of the nonlinear
equation f:RXR"xXR"x R - R" from (24b) about an operat-
ing point (¢, X', &) € Rx R" x R™, where i is an integer index that
will become clear in a moment. Without loss of generality, as-
sume that f is decomposable into an affine and a nonaffine part:

f="fa+fna. (S17)

The first-order Taylor expansion of f is given by

f = fatfia,
fia 2 Foa + (VxFaa) (X = X) + (VuFoa) (U — 0), (S18)
where the following shorthand is used:

fia = fra(t, X, u, g (U)), (S19a)
fra = fra(t, X', &', g (&), (S19Db)
Vufaa = Vufaa + (Vgfaa) (V) T (S19¢)

In (S19c¢), it is understood that V,fna is the Jacobian of fna
with respect to its fourth argument. Suppose that the lineariza-
tion in (S18) is sufficiently accurate over only the hyperrectan-
gular region R’ ¢ R” x R™ defined by the following inequalities:

X +bl<xX<X+bly, (S20a)

0+bl,<u<d+by,, (S20b)

60 IEEE CONTROL SYSTEMS » OCTOBER 2022

where b}, and by, represent the upper and lower bounds
on the state, while b}, and b}, relate to the input. The index
i now takes on a clear meaning: it represents the ith “validity”
region. Without loss of generality, assume R'NR/ =0 if j #}.
In general, i=1,...,N, which means that f is approximated by
affine functions over N regions. The piecewise affine approxi-
mation of f can then be written as
fowa = fa + fha, for i such that (x,u) € R'. (S21)
The big-M formulation can be used to write (S21) in a form
that is readily employed in a mixed-integer program [106]. To this
end, let M > 0 be a sufficiently large fixed scalar parameter, and
let z' € {0,1} be a binary variable indicating that (x,u) € R’ if and
onlyif z' = 1. Then, the piecewise affine dynamics in mixed-integer
programming form are encoded by the following set of constraints:

x="f(t x,u,gu))+ ﬁ: Z'fla(t, X, u, g (u)),

(S22a)
i=1
x> X+ bl —MA -2, (S22b)
X <X +blyx+MA -2, (S22¢)
u>d'+bl,—MA -2, (S22d)
U< +byu+MA -2, (S22¢)
N .

1=>7. (S22f)

NONLINEAR ROCKET LANDING

Consider the rocket dynamics in (S14a), and, for simplicity, sup-
pose that the mass is constant. Define the state x = (r, /) € R®
and input u = T € R®. The nonaffine part of the dynamics (S17)
then takes the particular form

0

foa =g () = cm 1| i

(S23)

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

useful for trajectory generation [118], [119]. While the results ~ where M is the number of individual input vectors and the
are more general, the following basic problem will help binary variables y; are used to model the on-off nature of
ground the discussion: each input. Compared to the traditional (6), this new problem

min [G2 (31a)
s.t.x(t)= Ax(H) + B f wih), (31b)
Vi(t) pmini <[wi(t) [, < vi(t) pmaxi (Blo)
vi(t)€1{0,1}, (31d)
Ciui(t) <0, (31le)
x(0)=xo, b(x(ty)=xy, (31f)

g, A

9zpwa

—OTO—O—) ry
_" .
Iz R!

FIGURE S8 A piecewise affine approximation of g,, the z-com-
ponent of the nonlinear gravity force, using (S24).

For ease, consider only the nonlinear gravity term, g(r).
Atmospheric drag is addressed below for autonomous
aerial vehicle (AAV) trajectory generation. Suppose that
g(r)= (0,0, 9:(rz)), which means that only the vertical com-
ponent g-:R—R must be considered. A typical profile is
g2(r;) =—pu/r?, where u is the gravitational parameter. Given
a reference point 7%,

9t =g:(F) +g: (F) (r-—). (22

Using (S21) and (S24), Figure S8 draws gz, pwa.

AUTONOMOUS AERIAL VEHICLE TRAJECTORY
GENERATION WITHOUT STALLING

Consider the AAV dynamics in (S16) and, for simplicity, as-
sume constant-altitude flight. Define the state x = (r,v) € R*
and input u=vqy < R?. The nonaffine part of the dynamics
(S17) then takes the particular form

fra = [_ C”?, sz]‘ (S25)

Examine the aerodynamic drag term, fo =—c| v |,v. The first-
order Taylor expansion about a reference airspeed V' is

can be seen as a system controlled by M actuators that can be
either “off” or “on” and norm bounded in the [pmin,i, Pmax,i]
interval. The affine input constraint (31e) represents an affine
cone and is a specialized version of the earlier constraint (11d).
Figure 9 illustrates the kind of input set that can be modeled.

Imitating the previous results, the convex relaxation
uses a slack input for each control vector:

min fo v f oi(t)dt, (32a)
st 1(t)= Ax()+ B3 ui(h), (32b)

i=1

FIGURE 89 A piecewise affine approximation of fs,, the x-com-
ponent of the aerodynamic drag force, using (S26). (a) The
surface of the continuous function —fysx. The dots display
operating points at which the gradient is evaluated. (b) The
surface of the discontinuous piecewise affine approximation
—fa..pwa- The dashed rectangle in the airspeed space shows
the boundary of the approximation validity region R'.

fy=—cll v o[+ 7' 27 T l(v — 7). (S26)

Using (S21) and (S26), Figure S9 draws fq,pwa-

OCTOBER 2022 « IEEE CONTROL SYSTEMS 61

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

Yi(t) pmini < 0i(t) < ¥i(t) Pmaxis (320)
lui(t) [, < oi(t), (32d)
0=yi(th=1, (32e)
Ciui(t) <0, (32f)
x(0)=xo, b(x(t)=xys, (32g)

where the novelty is in that the y; variables have also been
relaxed to the continuous [0, 1] interval.

Taking (32) as an example, [118] and [119] prove LCvx
from slightly different angles. In [119], it is recognized

)

Original Nonconvex

Problem Optimizer
| —

(@)

—

Original \‘ P Nonconvex

Problem Optimizer

LCvx (Simpler Problem)

Relaxation

(b)

FIGURE 8 An illustration of how embedded lossless convexification
(LCvx) can be used to solve an optimal control problem that does
not fit any of the templates presented in the “Lossless Convexifica-
tion” section. (a) The solution process for a nonconvex optimal
control problem, without using LCvx. (b) The solution process for
a nonconvex optimal control problem, where LCvx is embedded to
convexify part of the original problem.

. A Uiz y

\ /

\/—\/

7 Pmin,2 = Pmax,2

\ /
/
Cou, < O~{\ /
\ /
\ / Pmin,1 = Pmax,1
\ /
i} .
- /// & U,"1
Pmin3 Ciuy <0
4N
Pmaxd D’ ~Ciuz<0

FIGURE 9 A feasible input set that can be modeled in (31). It is a
nonconvex, disconnected set composed of the origin, a point, an
arc, and a nonconvex set with an interior. For example, this setup
can represent a satellite equipped with thrusters and drag plates
or a rocket with a thrust—gimbal coupled engine [118], [119].

62 IEEE CONTROL SYSTEMS » OCTOBER 2022

that (32) will losslessly convexify (31) if the dynamical
system is “normal” due to the so-called bang-bang prin-
ciple [12], [120]. Normality is related to, but much stronger
than, the notion of controllability from Condition 1. Nev-
ertheless, it is shown that the dynamical system can be
perturbed by an arbitrarily small amount to induce nor-
mality. This phenomenon was previously observed in a
practical context for rocket landing LCvx with a pointing
constraint, which was discussed for (9) [89]. Practical
examples are given for spacecraft orbit reshaping, mini-
mum energy transfer, and CubeSat differential drag and
thrust maneuvering. Note that while mixed-integer pro-
gramming fails to solve the latter problem, the convex
relaxation is solved in less than 100 ms.

The results in [57] and [118] also prove LCvx for (32).
However, instead of leveraging normality and perturbing
the dynamics, the nonsmooth maximum principle [91],
[121], [122] is used directly to develop a set of conditions for
which LCvx holds. These conditions are an interesting mix
of problem geometry [that is, the shapes and orientations of
the constraint cones (32f)] and Condition 1 and Condition 2.
Notably, they are more general than normality, so they can
be satisfied by systems that are not normal. Practical exam-
ples are given for spacecraft rendezvous and rocket landing
with a coupled thrust-gimbal constraint. The solution is
observed to take on the order of a few seconds and be more
than 100 times faster than mixed-integer programming,.

The developments in [118] and [119] are viewed as com-
plementary: the work of [118] shows that for some systems,
the perturbation proposed by [119] is not necessary. On the
other hand, the authors of [119] provide a method to recover
LCvx when the conditions of [118] fail. Altogether, the fact
that an arbitrarily small perturbation of the dynamics can
recover LCvx suggests a deeper underlying theory for how
and why problems can be losslessly convexified. The search
for this theory will be a running theme of future LCvx
research, and its eventual discovery will lead to more gen-
eral LCvx algorithms.

Developing New Lossless Convexifications
The previous sections covered a variety of LCvx guarantees.
With some luck, one of these results might fit the reader’s
particular problem. The corresponding relaxation can then
be applied to solve the nonconvex trajectory generation
problem through convex optimization. However, it is quite
likely that the reader’s problem will not fit the rigid mold of
“original problems” from the previous sections. In this case,
the more important lesson of this article is how to think
about developing a new or adapted LCvx guarantee.
Suppose that one is faced with a problem that does not
fit the aforementioned LCvx results. In this case, a viable
first approach is to consider embedded LCvx from the pre-
vious section. The combination of an LCvx relaxation and
an SCP method from the “Sequential Convex Program-
ming” section can result in a real-time algorithm that is

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

applicable to problem types with a more general set of non-
convexities [6], [108].

When developing a new convex relaxation, the suggestion
is to adopt a “simulate first, prove later” approach. Begin by
proposing a relaxation, then implement the problem and
verify that the solution is “empirically lossless.” In other
words, the method seems to work but without a proof for
why or when it does. Next, use the maximum principle to
develop a rigorous set of conditions under which LCvx holds.
This will most likely be an iterative process in which the
insights from the proof affect the numerical implementation
and vice versa. In fact, this is exactly the process by which the
lossless convexification in (32) was obtained. If the reader is
able to complete the proof, he or she can expect to be rewarded
with a much faster and more robust solution method as well
as a newfound deep insight into the original problem.

The most difficult case arises when the problem’s non-
convexities are all different from those discussed in the pre-
ceding sections and it is unclear which constraint to relax.
For example, there may be no constraint such as (6¢) that
can be relaxed to create the LCvx equality constraint (7d). In
this case, the reader must propose a different convex relax-
ation. Fortunately, developing an LCvx guarantee remains
fundamentally the same. Once the relaxed convex problem
is written, Pontryagin’s maximum principle is used to show
that its optimal solution achieves the global optimum of the
original problem. Some researchers have used this approach
extensively, and inspiration can be gained from their pub-
lished methods [53], [55], [108], [123], [124].

Toy Example

The following example provides a simple illustration of
how LCvx can be used to solve a nonconvex problem. This
example is meant to be a “preview” of the practical appli-
cation of LCvx. More challenging and realistic cases are
given in the “Application Examples” section at the end of
this article. The problem to be solved concerns the mini-
mum effort control of a double integrator system (such as a
car) with a constant “friction” term, g. This can be written
as a linear time-invariant instance of (6):

min fo Y u(b?dt, (33a)
st x1(f) = x2(t), (33b)
() =u(t)—g, (33¢)
1<|u@)|<2, (33d)
x1(0)=x2(0) =0, 33e)
x1(tp)=s, x2(tp)=0, tr=10. (33f)

The input u(-) €R is the acceleration of the car. The con-
straint (33d) is a nonconvex, 1D version of the constraint (S1).
Assuming that the car has unit mass, the integrand in (33a)
has units of watts. The objective of (33) is therefore to move a
car by a distance s in tf =10 s while minimizing the average

power. Following the relaxation template provided by (7),
the following convex relaxation of the problem is proposed:

min _/[; tfo(t)zdt, (34a)
s.t. x1(t) = x2(b), (34b)
n)=ult)—g, (340)
1<0(t) <2, (34d)
lu()|=o(t), (34e)
x1(0)=x2(0) =0, (34f)
x1(tf)=s, x2(ty)=0, ty=10. (34g)

To guarantee that LCvx holds [in other words, (34) finds
the globally optimal solution of (33)], the first attempt is to
verify the conditions of Theorem 1. In particular, it must be
shown that Condition 1 and Condition 2 hold. First, from (33b)
and (330), the following state-space matrices can be extracted:

01 0
a=ly ol 23]
It can be verified that Condition 1 holds by either showing
that the controllability matrix is full rank or by using the

PBH test [88]. Next, from (34a) and (34g), extract the follow-
ing terminal cost and terminal constraint functions:

©5)

tr—10
m(ts, x(tr) =0, bty x(t)=|x1(tr) = s|. (36)
x2(tr)
Now substitute (36) into (8) to obtain
0
Mycvx = 0 P BLCVX = 13~ (37)
o(ty)?

Thus, Bicvx is full column rank, and its columns cannot
be linearly independent from micyx. It is concluded that
Condition 2 does not hold, so Theorem 1 cannot be applied.
In fact, (33) has both a fixed final time and a fixed final
state. This is exactly the edge case for which traditional
LCvx does not apply, as mentioned in the previous section
on the future of LCvx. Instead, refer to Theorem 7, which
says that Condition 2 is not needed as long as ¢/ is between
the minimum and optimal times for (33). This holds for the
problem parameters used in Figure 10. The minimum time
is just slightly shorter than 10 s, and the optimal time is
~13.8 s for Figure 10(a) and = 13.3 s for Figure 10(b). Most
interestingly, LCvx fails [that is, (34e) does not hold with
equality] for t; values almost exactly past the optimal time
for Figure 10(a) and just slightly past it for Figure 10(b).

Although (34) is convex, it has an infinite number of
solution variables because time is continuous. To find an
approximation of the optimal solution by using a numeri-
cal convex optimization algorithm, the problem must be

OCTOBER 2022 « IEEE CONTROL SYSTEMS 63

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

temporally discretized. To this end, apply a first-order hold
(FOH) discretization with N =50 temporal nodes, as
explained in “Discretizing Continuous-Time Optimal Con-
trol Problems.”

Reviewing the solutions in Figure 10 for two values of
the friction parameter g, the nonconvex constraint (33d)
holds in both cases. Note that this is despite the fact that
trajectories with |u(t)| <1 constitute feasible solutions of
(34). The fact that this does not occur is the salient feature of
LCvx theory, and for this problem this outcome is guaran-
teed by Theorem 7. Finally, note that Figure 10 also plots the
analytical globally optimal solution obtained via the maxi-
mum principle, where no relaxation or discretization is
made. The close match between this solution and the numeri-
cal LCvx solution further confirms the theory as well as the
accuracy of the FOH discretization method. Note that the
mismatch at £ =0 in the acceleration plot in Figure 10(b) is a
benign, single-time-step discretization artifact that is com-
monly observed in LCvx numerical solutions.

SEQUENTIAL CONVEX PROGRAMMING

Now consider a different kind of convex optimization-
based trajectory generation algorithm: sequential convex
programming (SCP). This opens a world of possibilities
beyond the restricted capabilities of LCvx. One could say

50
T 401 — Maximum Principle
= e LCvx
x 30
=
£ 20
(72}
£ 101
0
10
2 8
E
S 6
>
£ 4
5 ol — Maximum Principle
= « LCvx
(0]
o 2
£ \-o.—o
E 1]
S
s 0
© Feasible Input Set
2 -1 4|— Maximum Principle
8 o LCvx e
< -2 : - : °

0 2 4 6 8 10
Time (s)

(a)

that if LCvx is a surgical knife to remove acute nonconvex-
ity, then SCP is a catch-all sledgehammer for nonconvex tra-
jectory design [6]. A wealth of industrial and research
applications, including high-profile experiments, support
this statement. Examples can be found in many engineering
domains, ranging from aerospace [59], [124]-[126] and
mechanical design [127], [128] to power grid technology
[129], chemical processes [130], and computer vision [131],
[132]. Just last year, the Tipping Point Partnership between
NASA and Blue Origin started testing an SCP algorithm
aboard the New Shepard rocket [8], [68]. Another applica-
tion of SCP methods is for the SpaceX Starship landing flip
maneuver [133]. Although SpaceX’s methods are undis-
closed, convex optimization is used by the Falcon 9 rocket,
and SCP algorithms are highly capable of solving such chal-
lenging trajectories [36], [134].

Further afield, examples of SCP can be found in medi-
cine [135], [136], economics [137], [138], biology [139], [140],
and fisheries [141]. Of course, in any of these applications,
SCP is not the only methodology that can be used to obtain
good solutions. Others might include IPMs [13], [142],
dynamic programming [143], augmented Lagrangian tech-
niques [144], genetic and evolutionary algorithms [145], and
machine learning and neural networks [146], to name a few.
However, it is commonly accepted that SCP methods are

30
€ — Maximum Principle
= o004l LCvx
X
c
i)
@ 10 -
o
o
0
6

— Maximum Principle
e LCvx

1.\..........

Feasible Input Set

Velocity x, (m/s)
N

Acceleration u (m/s?)
o

_q1 4|— Maximum Principle
o LCvx
-2 ; T . T
0 2 4 6 8 10

Time (s)

(b)

FIGURE 10 The lossless convexification (LCvx) solutions of (34) for two scenarios. The close match of the analytic solution using the
maximum principle (drawn as a continuous line) and the discretized solution using LCvx (drawn as discrete dots) confirms that LCvx
finds the globally optimal solution of the problem. (a) The solution of (34) for g = 0.1 m/s® and s = 47 m. (b) The solution of (34) for

g=0.6m/s?ands =30m.

64 IEEE CONTROL SYSTEMS » OCTOBER 2022

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

fast, flexible, and efficient local optimization algorithms for
trajectory generation. They are a powerful tool to have in a
trajectory engineer’s toolbox, and they will be the focus of
this part of the article.

As the name suggests, at the core of SCP is the idea of
iterative convex approximation. Most, if not all, SCP algo-
rithms for trajectory generation can be cast in the form
demonstrated by Figure 11. Strictly speaking, SCP methods
are nonlinear local optimization algorithms. In particular,
the reader will recognize that SCP algorithms are special-
ized trust region methods for continuous-time optimal
control problems [29], [47], [48].

All SCP methods solve a sequence of convex approxima-
tions, called subproblems, to the original nonconvex prob-
lem and update the approximation as new solutions are
obtained. Going around the loop of Figure 11, all algo-
rithms start with a user-supplied initial guess, which can
be very coarse (more on this later). At @, the SCP algorithm
has available a so-called reference trajectory, which may be
infeasible with respect to the problem dynamics and con-
straints. The nonconvexities of the problem are removed by
a local linearization around the reference trajectory, while
convex elements are kept unchanged. Well-designed SCP
algorithms add extra features to the problem to maintain
subproblem feasibility after linearization. The resulting
convex continuous-time subproblem is then temporally
discretized to yield a finite—dimensional convex optimiza-
tion problem. The optimal solution to the discretized sub-
problem is computed at @, where the SCP algorithm makes
a call to any appropriate convex optimization solver. The
solution is tested at @ against stopping criteria. If the test
passes, the algorithm has converged, and the most recent
solution from @ is returned. Otherwise, the solution is
used to update the trust region (and possibly other param-
eters) that are internal to the SCP algorithm. The solution
then becomes the new reference trajectory for the next iter-
ation of the algorithm.

The SCP approach offers two main advantages. First, a
wide range of algorithms exists to reliably solve each convex
subproblem at @. Because SCP is agnostic to the particular
choice of subproblem optimizer, well-tested algorithms can
be used. This makes SCP very attractive for safety-critical
applications, which are ubiquitous throughout disciplines
such as aerospace and automotive engineering. Second, one
can derive meaningful theoretical guarantees for algorithm
performance and computational complexity, as opposed to
general NLP optimization, where the convergence guaran-
tees are much weaker. Taken together, these advantages
have led to the development of very efficient SCP algorithms
with runtimes short enough to enable real-time deployment
for some applications [63].

A fundamental dilemma of NLP optimization is that
one can either compute locally optimal solutions quickly or
globally optimal solutions slowly. SCP techniques are not
immune to this tradeoff despite the fact that certain

subclasses of convex optimization can be viewed as “easy”
from a computational perspective, due to the availability of
IPMs. Some of the aforementioned applications may favor
the ability to compute solutions quickly (that is, in near real
time), such as aerospace and power grid technologies.
Others, such as economics and structural truss design, may
favor global optimality and put less emphasis on solution
time (although early trade studies may still benefit from a
fast optimization method). Given the motivation from the
beginning of this article, the focus is on the former class of
algorithms that provide locally optimal solutions in near
real time.

This part of the article provides an overview of the
algorithmic design choices and assumptions that lead to
effective SCP implementations. The core tradeoffs include
how the convex approximations are formulated, what
structure is devised for updating the solutions, how prog-
ress toward a solution is measured, and how all of these
enable theoretical convergence and performance guaran-
tees. The goal is for the reader to develop the following
view of SCP: it is an effective and flexible way to do trajec-
tory optimization that inherits some but not all of the
theoretical properties of convex optimization. SCP works
well for complex problems; however, it is definitely not a
panacea for all of nonconvex optimization. SCP can fail
to find a solution, but a slight change to the algorithm
parameters usually recovers feasibility and local optimal-
ity. This part of the article provides the reader with all the
necessary insights to get started with SCP. The numerical
examples in the “Application Examples” section provide a
practical and open source implementation of the algo-
rithms herein.

Historical Development of Sequential

Convex Programming

Tracing the origins of SCP is not a simple task. Since the
field of nonlinear programming gained traction as a popu-
lar discipline in the 1960s and 1970s, many researchers have
explored the solution of nonconvex optimization problems
via convex approximations. This section attempts to cata-
log some of the key developments, with a focus on provid-
ing insight into how the field moved toward the present
version of SCP for trajectory generation.

The idea to solve a general (nonconvex) optimization
problem by iteratively approximating it as a convex pro-
gram was perhaps first developed using branch-and-bound
techniques [147]-[150]. Early results were of mainly aca-
demic interest, and computationally tractable methods
remained elusive. One of the most important ideas that
emerged from these early investigations appears to be that
of McCormick relaxations [151]. These are a set of atomic
rules for constructing convex/concave relaxations of a spe-
cific class of functions that everywhere under/overestimate
the original functions. These rules result in a class of SCP
methods, and algorithms based on McCormick relaxations

OCTOBER 2022 « IEEE CONTROL SYSTEMS 65

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

continue to be developed with increasing computational
capabilities [152]-[155].

Difference-of-convex programming is a related class of
SCP methods [156], [157]. These types of algorithms rely on
the formulation of nonconvex constraints as the difference
between two convex functions, say, f = fi — f», where both
firand f» are convex functions. The advantage of this decom-
position is that only the function f> must be linearized to
approximate the nonconvex function f. The convex—concave
procedure presented in [158] is one example of a successful
implementation of this idea, and it has been applied (among
other places) in machine learning to support vector machines
and principal component analysis [159].

Perhaps the earliest and simplest class of SCP methods
whose structure resembles the one in Figure 11 is, unsur-
prisingly, sequential linear programming (SLP). These algo-
rithms linearize all nonlinear functions about a current
reference solution so that each subproblem is a linear pro-
gram. These linear programs are then solved with a trust
region to obtain a new reference, and the process is
repeated. Early developments came from the petroleum

industry and were intended to solve large-scale problems
[160], [161]. From a computational perspective, SLP was ini-
tially attractive due to the maturity of the simplex algo-
rithm. Over time, however, solvers for more general classes
of convex optimization problems have advanced to the
point that restricting oneself to linear programs to save
computational resources at @ in Figure 11 has become unnec-
essary except, perhaps, for very large-scale problems.
Another important class of SCP methods is that of
sequential quadratic programming (SQP). The works of
Han [162], [163], Powell [164]-[166], Boggs and Tolle [167]-
[169], and Fukushima [170] appear to have exerted signifi-
cant influence on the early developments of SQP-type
algorithms, and their impact remains evident today. An
excellent survey was written by Boggs and Tolle [171], and
an exhaustive monograph is available by Conn et al. [47].
SQP methods approximate a nonconvex program with a
quadratic program using some reference solution, then use
the solution to this quadratic program to update the approx-
imation. Byrd et al. provide a general theory for inexact SQP
methods [172]. The proliferation of SQP-type algorithms

Discretizing Continuous-Time Optimal Control Problems

ssume a continuous-time linear time-varying (LTV) dynam-
ical system governed by the ordinary differential equation
(ODE) (44b). To temporally discretize this system, choose a set
of N temporal nodes
O=t1 <tr < - <ty=1 (S27)
that do not need to be evenly spaced. The objective of any
discretization method is to represent the state trajectory
x(-):[0,1] — R" at each of these temporal nodes as a function
of the state, control, and parameters at the temporal nodes.
Mathematically, this transforms the ODE (44b) into an LTV dif-
ference equation.

There are countless ways to achieve this objective, and
[191] provides a comparative study of several such methods for
motion planning problems. When choosing a method, it is im-
portant to remember that not all discretizations perform equal-
ly well. Coarse discretization techniques can render a convex
subproblem infeasible even if the original optimal control prob-
lem is feasible. Moreover, different discretization methods will
change the sparsity properties of the resulting convex sub-
problem, impacting the computational requirements for solving
each subproblem at stage @ in Figure 11.

In practice, two methods appear to be the most appropri-
ate for sequential convex programming-based trajectory gen-
eration: pseudospectral and interpolating polynomial methods.
Pseudospectral discretization has gained popularity after its
original introduction to the optimal control community, by Vlas-
senbroeck [S3], [S4]. This method approximates both the state

66 IEEE CONTROL SYSTEMS » OCTOBER 2022

and control trajectories using a basis of so-called Lagrange in-
terpolating polynomials. Time is discretized into a nonuniform
temporal grid defined by the roots of a polynomial that is a
member of a family of orthogonal polynomials [S5]-[S7], [28].
In contrast, interpolating polynomial methods approximate
only the control signal. This enables the exact solution of the
LTV system (44b) over each time interval, yielding an “exact”
discrete-time representation [59]. Here, exact means that the
continuous- and discrete-time states match at the temporal
nodes. A key attribute of interpolating polynomial discretization
is that upon convergence, a sequential convex programming
solution satisfying the discretized dynamics (S32a) will exactly
satisfy the original nonlinear differential equation (38b). On the
other hand, pseudospectral methods have the advantage of
being able to discretize a nonlinear system “directly,” without
first going through a linearization process to obtain the LTV
system (44b). Pseudospectral and interpolating polynomial
methods for trajectory generation are described in detail in [6]
and [191].

As an example, consider a discretization approach from
the class of interpolating polynomial methods. This method,
called first-order hold (FOH) interpolation, provides a suitable
balance between optimality, feasibility, and computation time.
It was found to work well for many problems [37], [59], [191]. In
FOH, the control signal u(-):[0,1] — R™ is constrained to be a
continuous and piecewise affine function of time. By defining
the inputs at the temporal nodes, {ux}+-+, the continuous-time
signal is obtained by linear interpolation inside each time in-
terval [t tk+1]:

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

can be attributed to three main aspects: 1) their similarity
with the familiar class of Newton methods, 2) the fact that
the initial reference need not be feasible, and 3) the exis-
tence of algorithms to quickly and reliably solve quadratic
programs. The iterates obtained by SQP algorithms can be
interpreted either as solutions to quadratic programs or the
application of Newton’s method to the optimality condi-
tions of the original problem [29]. SQP algorithms are argu-
ably the most mature class of SCP methods [173], and
modern developments continue to address both theoretical
and applied aspects [174], [175].

Their long history of successful deployment in NLP
solvers notwithstanding [173], SQP methods do come with
several drawbacks. Gill and Wong nicely summarize the
difficulties that can arise when using SQP methods [176],
and only the basic ideas are outlined here. Most impor-
tantly (and the same applies for any “second-order”
method), it is difficult to accurately and reliably estimate
the Hessian of the nonconvex program’s Lagrangian. Even
if this is done (for example, analytically), there is no guar-
antee that it will be positive semidefinite, and an indefinite

teer — 1t t—tk
= +
il ter1 — bk L tk+1 — Lk

20-(Yuk+o+(t)Uk+1.

Uk+1,

(S28)
The dynamics (44b) can then be expressed for t € [tk tk+1] as

x(t) =A@Q)x(E) + BO) o (Oux+BE) 0+ () Ukt

+F(®)p +r(), (S29)

which is again an LTV system except for the fact that the con-
trol is no longer a continuous-time function u(-). Instead, it is
fully determined by the two vectors ux, ux+1 € R™. A standard
result from linear systems theory is that the unique solution of
(S29) is given by [88]:

x() = (¢, ta) X (t4) +['<1>(t, 7)[B(7) 0 (T)ux + B(T) 0+ (T) ks 1
+F(t)p +r(7)]dr, (S30)

where ®(t,tx) is the state transition matrix that satisfies the fol-
lowing matrix differential equation:

Ot t) = A@)D(t, t), D(te, tk) = In. (S31)
By setting t = tx+1, (S30) creates an LTV difference equa-

tion that updates the discrete-time state xx = x(tx) to the next
discrete-time state Xk+1 = X (tk+1):

Xk+1 =Aka+B/?Uk+B;Uk+1+ka+l’k, (S32a)

Ak = D (tkr1,t4), (S32b)

Hessian results in an NP-hard, nonconvex quadratic pro-
gram. Hessian approximation techniques must therefore
be used, such as keeping only the positive semidefinite
part or using the Broyden-Fletcher-Goldfarb—Shanno
update [177]. In the latter case, additional conditions must
be met to ensure that the Hessian remains positive defi-
nite. These impose both theoretical and computational
challenges that, if unaddressed, can both impede conver-
gence and curtail the real-time applicability of an SQP-
type algorithm. Fortunately, a great deal of effort has gone
into making SQP algorithms highly practical, resulting in
mature algorithm packages, such as the Sparse Nonlinear
OPTimizer (SNOPT) [173].

One truly insurmountable drawback of SQP methods for
trajectory generation in particular is that quadratic pro-
grams require all constraints to be affine in the solution vari-
ables. Alas, many motion planning problems are naturally
subject to nonaffine convex constraints. An example of a
second-order cone constraint was already presented that
arises from a spacecraft glideslope requirement in “Landing
Glideslope as an Affine State Constraint,” as illustrated in

By = Ax [“®(7,t) ' B(r)o_(1)dr, (S320)

Bi=Ac [®(r,t) ' B(r)0-(1)dr, (S32d)

Fe= Ak /t " @ (7,t) " F(r)dr, (S32¢)
th+1 1

re = Ax fr @ (7,t) 'r(r)dr. (S32f)

In a practical implementation, the state transition matrix, the
integrals (S32c)—(S32f), and the reference trajectory’s state x(-)
are computed simultaneously over each interval [tx, tk+1]. This
procedure is explained in more detail in [191], and pseudocode
can be found in [63]. Ultimately, the update equation (S32a) is
used to write N — 1 affine equality constraints for k =1,...,N -1,
that represent the discretized dynamic feasibility constraint on
the trajectory. Equation (54b) provides an example of embed-
ding such constraints into an optimization problem.

REFERENCES

[S3] J. Vlassenbroeck, “A Chebyshev polynomial method for optimal
control with state constraints,” Automatica, vol. 24, no. 4, pp. 499-506,
1988, doi: 10.1016/0005-1098(88)90094-5.

[S4] J. Vlassenbroeck and R. Van Dooren, “A Chebyshev technique for
solving nonlinear optimal control problems,” IEEE Trans. Autom. Con-
trol, vol. 33, no. 4, pp. 333—-340, 1988, doi: 10.1109/9.192187.

[S5] C. de Boor and B. Swartz, “Collocation at Gaussian points,”
SIAM J. Numer. Anal., vol. 10, no. 4, pp. 582—-606, Sep. 1973, doi:
10.1137/0710052.

[S6] V. Rao, “A survey of numerical methods for optimal control,” Adv.
Astronaut. Sci., vol. 135, no. 1, pp. 497-528, 2010.

[S7]. M. Ross and M. Karpenko, “A review of pseudospectral optimal
control: From theory to flight,” Annu. Rev. Contr., vol. 36, no. 2, pp.
182-197, Dec. 2012, doi: 10.1016/j.arcontrol.2012.09.002.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 67

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

Figure S6. For problems with nonaffine convex constraints,
the use of an SQP algorithm may require more iterations to
converge compared to a more general SCP algorithm, lead-
ing to a reduction in computational efficiency. Moreover,
since nonaffine convex constraints are linearized, each SQP
iterate is not guaranteed to be feasible with respect to the
original convex constraints, whereas the SCP iterates will be.

There are several classes of SCP algorithms that general-
ize the idea of SQP to address this limitation. Semidefinite
programs (SDPs) are the most general class of convex opti-
mization problems for which efficient off-the-shelf solvers
are available. Fares et al. introduced sequential semidefi-
nite programming [178], which uses matrix variables that
are subject to definiteness constraints. Such algorithms
find application most commonly in robust control, where
problems are formulated as (nonconvex) SDPs with linear
and bilinear matrix inequalities [179]. Recent examples
have appeared for robust planetary rocket landing [180],
[181]. Sequential semidefinite programming can be viewed
as the furthest possible generalization of SLP to the idea of
exploiting existing convexity in the subproblems.

This article focuses on the class of SCP methods that
solve a general convex program at each iteration, without a
priori restriction to one of the previously mentioned classes
of convex programs [for example, LPs, QPs, second-order
cone programs (SOCPs), and SDPs]. This class of SCP meth-
ods has been developed largely over the past decade and
represents the most active area of current development, with
successful applications in robot and spacecraft trajectory
optimization [6], [53], [59], [62], [63], [123]-[125], [182]-[184].

Two specific algorithms are discussed that belong to
this class of SCP methods: SCvx and GuSTO. These two

Algorithm
Start
®

algorithms are complementary in a number of ways and
enjoy favorable theoretical guarantees. The theoretical
analysis of SCvx works with the temporally discretized
problem and provides guarantees in terms of the Karush—
Kuhn-Tucker (KKT) optimality conditions [49], [64], [185].
On the other hand, GuSTO is analyzed for the continuous-
time problem and provides theoretical guarantees in
terms of the Pontryagin maximum principle [11], [12], [50],
[69]. The trajectory problems in the “Application Exam-
ples” section at the end of this article are solved using
both SCvx and GuSTO exactly as they are presented here.
These examples illustrate that the methods are, to some
degree, interchangeable.

Typically, although not necessarily, the convex solver
used at @ in Figure 11 is based on an IPM [31], [142]. This
leads to a nice interpretation of SCP as the “next layer up” in
a hierarchy of optimization algorithms described in [26, Ch.
11] and illustrated in Figure 12. The bottommost layer con-
tains the unconstrained Newton’s method, which solves a
sequence of unconstrained QPs. The next layer solves linear
equality constrained convex problems. This again uses New-
ton’s method but with a more complicated step computation.
The third layer is the IPM family of methods that solve a
convex problem with linear equality and convex inequality
constraints as a sequence of linear equality constrained prob-
lems. Thus, IPMs iteratively call the algorithm in layer @ of
Figure 12. Analogously, SCP solves a nonconvex problem as a
sequence of convex problems with linear equality and convex
inequality constraints. Thus, SCP iteratively calls an IPM
algorithm from layer ®. Numerical experience has shown
that for most problems, IPMs require on the order of tens of
iterations (that is, calls to layer @) to converge [26]. Similarly,

Convex

Y
Initial
Trajectory ’

Y

Linearize

Guess Nonconvexities

Y

Starting

Update |

Handle Atrtificial
Infeasibility and
Unboundedness

Optimizer

Solve
Convex
Subproblem

Temporally
Discretize

Y

Trust Region|

lteration

Fall Tost» (3)

Pass

Stopping

Algorithm Y.
Stop (Converged) @

FIGURE 11 A typical sequential convex programming (SCP) algorithm. Every SCP-based trajectory generation method is composed of three
major components: a way to guess the initial trajectory (“Starting”), an iteration scheme that refines the trajectory until it is feasible and
locally optimal (“lteration”), and an exit criterion to stop once a sufficiently accurate trajectory has been computed (“Stopping”). In a well-
designed SCP scheme, the test (convergence) criterion is guaranteed to trigger, but the solution may be infeasible for the original problem.

68 IEEE CONTROL SYSTEMS » OCTOBER 2022

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

our experience has been that SCP requires on the order of
tens of iterations (that is, calls to layer @) to converge.

The rest of this part of the article is organized as follows.
First, the general continuous-time optimal control prob-
lem is described, and the common algorithmic under-
pinnings of SCP are discussed. The SCvx and GuSTO
algorithms are then described in full detail. The end of this
part compares SCvx and GuSTO and gives some advice on
using SCP in the real world. The “Application Examples”
section that follows presents two numerical experiments
that provide practical insight and highlight the capabilities
of each algorithm.

Problem Formulation
The goal of SCP methods is to solve continuous-time opti-
mal control problems of the following form:

rrul,ipn J(x, u, p), (38a)
s.t.x(t)= f(t, x(t), u(t), p), (38b)
(x (), p)e X (1), (38¢)
(u(t), ppet(), (38d)
s(t,x(t), u(t), p)<0, (38e)
Qic(x(0), p) =0, (38f)
gwe(x(1), p) =0, (38g)

where x()) € R" is the state trajectory, u(-) € R" is the control
trajectory, and p € R? is a vector of parameters. The func-
tion f:RxR"XR" xR~ R" represents the (nonlinear)
dynamics, which are assumed to be at least once continu-
ously differentiable. Initial and terminal boundary condi-
tions are enforced by using the continuously differentiable
functions gic: R” X RY -~ R™ and gi. : R* x R? - R™. Convex
and nonconvex path (that is, state and control) constraints
are separated by using the convex sets X(f) and U(t) to
represent convex path constraints, and the continuously
differentiable function s:RXR"xR" xR? - R™ repre-
sents nonconvex path constraints. It is assumed that the sets
X(t) and U(f) are compact (that is, closed and bounded).
This means the vehicle cannot escape to infinity or apply
infinite control action, which is obviously reasonable for all
practical applications. Finally, (38) is defined on the [0, 1]
time interval, and the constraints (38b)—(38e) must hold at
each time instant.

Note that the parameter vector p can be used, among
other things, to capture free initial and/or free final time
problems by making to and ¢ elements of p. In particular,
an appropriate scaling of time can transform the [0, 1] time
interval in (38) into a [to, t7] interval. Therefore the problem
statement’s restriction to the [0, 1] time interval is without
loss of generality [27]. This transformation is used in the
numerical examples at the end of the article.

Hybrid systems, such as bouncing balls, colliding
objects, and bipedal robots, require integer variables in

their optimization models. The integer variable type, how-
ever, is missing from (38). Nevertheless, methods exist to
embed integer variables into the continuous-variable for-
mulation. Among these methods are state-triggered con-
straints [59], [61], [62], [65], [66], [111], [186] and homotopy
techniques, such as the relaxed autonomously switched
hybrid system and composite smooth control [6], [187],
[188]. This work therefore moves forward using (38) “with-
out a loss of generality,” noting that there are methods to
embed integer solution variables exactly or as an arbitrarily
accurate approximation [6].

Note that (38) is not the most general optimal control
problem that SCP methods can solve. However, it is general
enough for the introductory purpose of this article and can
already cover the vast majority of trajectory optimization
problems [6]. The numerical implementation code associ-
ated with this article (see Figure 2) was applied to solve
problems ranging from quadrotor trajectory generation to
spacecraft rendezvous and docking [66], [111].

The cost function in (38a) is assumed to be of the Bolza
form [104]:

1

J(x, 1, p) = ¢(x(1), p) +f0 L (x(®), u(t), p)dt, 39)
where the terminal cost ¢ : R" X R - R is assumed to be a
convex function and the running cost I' : R" x R" X R‘-R
can be, in general, a nonconvex function. Note that con-
vexity assumptions on ¢ are without a loss of generality.
For example, a nonconvex ¢ can be replaced by a linear
terminal cost 7¢ (where 7f becomes an element of p), and
a nonconvex terminal boundary condition is added to the
definition of g in (38g):

¢(x(1), p) == (40)

SCP

Equality-Constrained
Newton

V Unconstrained Newton

FIGURE 12 Sequential convex programming (SCP) can be placed
atop of a hierarchy of classical optimization algorithms. Here, the
“width” of each layer is representative of the corresponding algo-
rithm’s implementation and runtime complexity (to be used only as
an intuitive guide). Each layer embeds within itself the algorithms
from the layers below it.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 69

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

Sequential Convex Programming

Algorithm Foundations

All SCP methods work by solving a sequence of local convex
approximations to (38), which are called subproblems. As
shown in Figure 11, this requires access to an existing refer-
ence trajectory at location @©. This is called a reference solu-
tion, with the understanding that this trajectory need not be
a feasible solution to the problem (neither for the dynamics
nor for the constraints). SCP methods update this reference
solution after each passage around the loop of Figure 11,
with the solution obtained at @ becoming the reference for
the next iteration. This begs the question: Where does the
reference solution for the first iteration come from?

Initial Trajectory Guess

A user-supplied initial trajectory guess is responsible for pro-
viding the first SCP iteration with a reference solution.
Henceforth, the notation {x (), it (t), p}; denotes a reference
trajectory on the time interval [0, 1]. It is shown in the follow-
ing sections that the SCP algorithms SCvx and GuSTO are
guaranteed to converge almost regardless of the initial trajec-
tory guess. In particular, this guess can be grossly infeasible
with respect to both the dynamics (38b) and the nonconvex
constraints (38e)—(38g). However, the algorithms do require
the guess to be feasible with respect to the convex path con-
straints (38c) and (38d). Assuring this is almost always an
easy task, either by manually constructing a simplistic solu-
tion that respects the convex constraints or by projecting an
infeasible guess onto the X (t) and U(t) sets. For reference,
both strategies are implemented in the open source code
linked in Figure 2.

Numerical experience has shown that both SCvx and
GuSTO are extremely adept at morphing coarse initial
guesses into feasible and locally optimal trajectories. This
represents a significant algorithmic benefit since most tra-
ditional methods, including SQP and NLP, require good (or
even feasible) initial guesses, which can be very hard to
obtain [27], [28]. To give an idea of what kind of initial guess
can be provided, an initialization method called straight-
line interpolation is presented. It is observed that this tech-
nique works well for a wide variety of problems, and it is
used in the numerical examples at the end of this article.
However, this is merely a rule of thumb and not a rigor-
ously derived technique.

Begin by fixing the initial and final states xic and xi
that represent either single-point boundary conditions or
points in a desired initial and terminal set defined by (38f)
and (38g). The state trajectory is then defined as a linear
interpolation between the two endpoints:

X(t) =1 —t)xic + txee, fortel0,1]. 41
If a component of the state is a nonadditive quantity, such
as a unit quaternion, then linear interpolation is not the
most astute choice. In such cases, the simplest alternative to

70 |EEE CONTROL SYSTEMS » OCTOBER 2022

linear interpolation is chosen. For unit quaternions, this
would be spherical linear interpolation (SLERP) [189].

Whenever possible, select the initial input trajectory based
on insight from the physics of the problem. For example, for
an aerial vehicle, choose an input that opposes the pull of
gravity. In the case of a rocket, the choice canbe uic = —1wetgr
and uw = —Marygr, where mwer and mary are the initial and
estimated final masses of the vehicle and gr is the inertial
gravity vector. If the problem structure does not readily
admit a physics-based choice of control input, the go-to
approach is to set the input to the smallest feasible value that
is compliant with (38d). The intuition is that small inputs are
often associated with a small cost (38a). The initial control
solution is interpolated using an expression similar to (41):

u(t)=1—tHuic +tux, fortel0,1]. 42)

The initial guess for p can have a significant impact on
the number of SCP iterations required to obtain a solution.
For example, if p represents the final time of a free final time
problem that evolves on the [0, tf] interval, then it is best to
guess a time dilation value that is reasonable for the expected
trajectory. Since parameters are inherently problem specific,
however, it is unlikely that any generic rule of thumb akin to
(41) and (42) will prove reliable. Fortunately, since SCP run-
time is usually on the order of a few seconds or shorter, the
user can experiment with different initial guesses for p and
identify a good initialization strategy relatively quickly.

For all but the simplest problems, the initial guess
{x(t), i(t), p}, constructed in the preceding is going to be
(highly) infeasible with respect to the dynamics and con-
straints of (38). Nevertheless, SCP methods, such as SCvx
and GuSTO, can, and often do, converge to usable trajecto-
ries through such a coarse initial guess. However, this does
not relieve the user entirely from choosing an initial guess
that exploits the salient features of the particular problem.
A well-chosen initial guess will (likely) have the following
three benefits for the solution process:

1) It will reduce the number of iterations and the time
required to converge. This is almost always a driving
objective in the design of a trajectory optimization
algorithm since fast convergence is not only a wel-
come feature but also a hard requirement for onboard
implementation in an autonomous system.

2) Itwill encourage the converged solution to be feasible
for (38). As mentioned, SCP methods, including SCvx
and GuSTO, will always converge to a trajectory but
without a guarantee that the trajectory will be feasi-
ble for the original problem. The fact that the solution
often is feasible with respect to (38) is a remarkable
“observation” that researchers and engineers have
made, and it is a driving reason for the modern inter-
est in SCP methods. Nevertheless, an observation is
not a proof, and there are limits to how bad an initial
guess can be. The only rule of thumb that is always

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

valid is that one should embed as much problem
knowledge as possible in the initial guess.

3) A better initial guess may also improve the con-
verged trajectory’s optimality. However, the level of
optimality is usually difficult to measure because a
globally optimal solution is rarely available for the
kinds of difficult trajectory problems that are typi-
cally solved using SCP. Nevertheless, some attempts
to characterize the optimality level have been made
in recent years [63], [190].

Linearization
Now consider location @ in Figure 11, and imagine that the
algorithm is at some iteration during the SCP solution pro-
cess. The first task for constructing a convex subproblem is
to remove the nonconvexities of (38). For this purpose, recall
that the algorithm has access to the reference trajectory
{x(t), i(t), p},-. If every nonconvexity is replaced by its first-
order approximation around the reference trajectory, then
the resulting subproblem is guaranteed to be convex. Fur-
thermore, first-order approximations are computationally
inexpensive to compute relative to second-order approxi-
mations (that is, those involving Hessian matrices). As noted
in the previous section on SCP history, the linearization of
all nonconvex elements is not the only choice for SCP; it is
simply a very common one, and it is used for this article.
To formulate the linearized nonconvex terms, the fol-
lowing Jacobians must be computed (the time argument is
omitted where necessary to keep the notation short):

A(t) 2 Vof(t, x(t), iL(t), p), (43a)
B(H) = V.f(t, x(t), iL(t), p), (43b)
E(#) = V,f(t, x(b), u(t), p), (430)
r(t) = f(t, x(t), i (), p) — Ax(t)— Bu(t)—Fp, ~ (43d)
C(t) = Vas(t, x(t), iL(t),), (43e)
D(t) 2 Vus(t, x(t), iL(t), p), (43f)
G(8)=Vys(t, x(t), u(t), p), (43g)
r(H)=s(t, x(t), i(t), p)— Cx() —Di(t) - Gp, (43h)
Ho % V:gie(x(0), p), (431)
Ko=V,8:(x(0), p), “3))
002 gic(x(0), p) — Hox (0) — Kop, (43K)
Hi = V.gie(x(1), p), (431)
Ki2 Vg (x(1), p), (43m)
0r = gie(x(1), p) — Hex (1) — Kep. (43n)

These matrices can be used to write the first-order Taylor
series approximations for f, s, gic, and g«. Note that the cost
function (39) is not linearized at this point since SCvx and
GuSTO make different assumptions about its particular
form. The convexification of the cost function will be
addressed separately in later sections on SCvx and GuSTO.

Using the terms in (43) yields the following approxima-
tion of (38) around the reference trajectory:

rrullipn J(x, u, p), (44a)
st.x()=A)x{t)+BH)u(t)+Ft)p+r(t), (44b)
(x(B), p) e X(1), (44¢)
(u(t), p)eU(®), (44d)
CHyx(t)+Du(t)+G(t)p+r(t) <0, (44e)
Hox(0) + Kop+00=0, (44f)
Hix (1) + Ksp + : = 0. (44g)

Equation (44) is convex in the constraints and potentially
nonconvex in the cost. Note that the convex path constraints
in (38c) and (38d) do not require an approximation. This is
a key advantage of SCP over methods such as SLP and SQP,
as discussed in the previous section on SCP history.

Because the control trajectory u(-) belongs to an infi-
nite—dimensional vector space of continuous-time func-
tions, (44) cannot be implemented and solved numerically
on a digital computer. To do so, consider a finite—dimen-
sional representation of the control function u(t), which
can be obtained via temporal discretization and direct col-
location [27], [191]. These representations turn the original
infinite—dimensional optimal control problem into a finite—
dimensional parameter optimization problem that can be
solved on a digital computer.

In general, and rather unsurprisingly, solutions to dis-
cretized problems are only approximately optimal and fea-
sible with respect to the original problem. In particular, a
discrete-time control signal has fewer degrees of freedom
(DoF) than its continuous-time counterpart. Therefore, it
may lack the flexibility required to exactly match the true
continuous-time optimal control signal. By adding more
temporal nodes, the approximation can become arbitrarily
accurate, albeit at the expense of problem size and compu-
tation time. Another problem with discretization is that the
path constraints are usually enforced only at the discrete
temporal nodes and not over the entire time horizon. This
can lead to (typically mild) constraint violation between
the discrete-time nodes, although some techniques exist to
remedy this artifact [192], [193].

The bad news notwithstanding, there are well-established
discretization methods that ensure the exact satisfaction of the
original continuous-time nonlinear dynamics (38b). Thus, the
discretized solution can still produce strictly dynamically fea-
sible continuous-time trajectories. Refer to [6], [59], [62], and
[191] for detailed explanations of discretization methods that
ensure the exact satisfaction of the continuous-time nonlinear
dynamics. An introduction to the technique that is used for the
numerical examples at the end of this article is given in “Dis-
cretizing Continuous-Time Optimal Control Problems.”

The systematic linearization of all nonconvex elements has
ensured that (44) is convex in the constraints, which is good

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 71

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

news. However, linearization unsurprisingly has a price. It has
inadvertently introduced two artifacts that must be addressed:
artificial unboundedness and artificial infeasibility.

Artificial Unboundedness

Linear approximations are accurate only in a neighborhood
around the reference solution {x(t), it(t), p} o. Thus, for each
t€[0,1], the subproblem solution must be kept “suffi-
ciently close” to the linearization point defined by the ref-
erence solution. Another reason to not deviate too far from
the reference is that, in certain malicious cases, lineariza-
tion can render the solution unbounded below [that is, the
convex cost (44a) can be driven to negative infinity]. This
phenomenon is referred to as artificial unboundedness. To
mitigate this problem and quantify the meaning of “suffi-
ciently close,” add the following trust region constraint:

Sx(t) = x(t) = x(t),

Su(t) = u(t) —u(t),

Sp=p-p

ax||x(®) [, + ol su(®) |, + oyl 8p [, = 7, for t [0, 1], (45)

for some choice of g€{1,2,2", o} and constants
ax, o, ap € {0,1}. Use g = 2" to denote the ability to impose
the trust region as the quadratic two-norm squared. The
trust region radius 7 is a fixed scalar that is updated

2
f(2)22,- 22=0
1 4

H(2) 2 2 0.1 2, = 0.6

et 051 {
L7 Decreasing
f(2)+ V()T (z-2) =0 Cost

11

FIGURE 13 A 2D nonconvex toy problem that exemplifies a convex
subproblem obtained during a sequential convex programming
iteration. In this case, the cost function J(z) = z> and level curves
of the cost are shown as gray dashed lines. The blue curve repre-
sents a nonconvex equality constraint, and its linearization is
shown as the blue dash—dot line. Another convex equality con-
straint is shown in green, and a convex inequality constraint is
shown as the vertical, red dashed line. The trust region is the red
circle centered at the linearization point z, and has radius 7. The
optimal solution of the original (nonconvex) problem is shown as
the black square. The convex subproblem is artificially infeasible.
Without the trust region and green constraint, it would also be arti-
ficially unbounded.

72 |EEE CONTROL SYSTEMS » OCTOBER 2022

between SCP iterations (that is, passages around the loop
in Figure 11). The update rule associated with the trust
region measures how well the linearization approxi-
mates the original nonconvex elements at each iterate.
This informs the algorithm whether to shrink, grow, or
maintain the trust region radius. SCP methods can be
differentiated by how they update the trust region, and
this is discussed separately for SCvx and GuSTO in the
upcoming sections.

Figure 13 shows a 2D toy problem that exemplifies a
single iteration of an SCP convergence process. In this
example, the “original problem” consists of one parabolic
(nonconvex) equality constraint (blue), a convex equality
constraint (green), and a convex half-space inequality con-
straint (feasible to the left of the vertical red, dashed line).
The original problem is approximated around the refer-
ence solution z, resulting in the blue dash—dot equality
constraint and the same convex equality and inequality
constraints. The trust region is shown as the red circle and
represents the region in which the SCP algorithm has
deemed the convex approximation valid. If the new solu-
tion z deviates too much from z, the linear approximation
of the parabola becomes poor. Moreover, had the green
equality constraint been removed, eliminating the trust
region would lead to artificial unboundedness, as the cost
could be decreased indefinitely.

Clearly, there is another problem with the linearization
in Figure 13: the resulting subproblem is infeasible. This is
because the green and blue dash—dot equality constraints
do not intersect inside the set defined by the trust region
and the convex inequality constraint half space. This issue
is known as artificial infeasibility.

Artificial Infeasibility

Linearization can make the resulting subproblem infeasi-
ble. Two independent cases can arise wherein the con-
straints imposed in (44) are inconsistent (that is, no feasible
solution exists), even though the original constraints admit
a nonempty feasible set. The cases are as follows:

» In the first case, the intersection of the convexified
path constraints may be empty. This occurs in the
example of Figure 13, where no feasible solution
exists because the linearized constraints (green and
blue dash—dot lines) do not intersect to the left of the
red inequality constraint.

» In the second case, the trust region may be so small
that it restricts the solution variables to a part of the
solution space that is outside of the feasible set. In
other words, the intersection of the trust region with
the (nonempty) feasible region of the convexified
constraints may itself be empty. This would have
been the case in Figure 13 if the green and blue dash-
dot lines were to intersect outside of the red trust
region circle but to the left of the half-space inequal-
ity (for example, if z were slightly farther to the right).

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

The occurrence of either case would prevent SCP from
finding a new reference solution at @ in Figure 11. Thus,
the solution loop would not be able to continue, and the
algorithm would fail. As a result, even if the original prob-
lem admits a feasible solution (shown as the black square
in Figure 13), either of the two aforementioned scenarios
would prevent SCP from finding it. This phenomenon is
referred to as artificial infeasibility.

This edge case was recognized early in the develop-
ment of SCP algorithms [161], [164]. Two equivalent rem-
edies exist. One approach adds an unconstrained, but
penalized, slack variable to each linearized constraint.
This variable is sometimes called a virtual control when
applied to the dynamics constraint (38b) and a virtual
buffer when applied to other constraints [49]. To keep the
language succinct, both applications will be referred to as
virtual control. The second approach penalizes constraint
violations by augmenting the original cost function (44a)
with soft penalty terms. When the same functions and
weights are used to penalize the virtual control terms,
this strategy results in the same optimality conditions.
The ultimate result of both strategies is that the subprob-
lem is guaranteed to be feasible.

Because the virtual control is a new term that is added to
the problem, it follows that the converged solution must
have a zero virtual control in order to be feasible and phys-
ically meaningful with respect to the original problem. If,
instead, the second strategy is used and constraint viola-
tions are penalized in the cost, the converged solution must
not violate the constraints (that is, the penalty terms should
be zero). Intuitively, if the converged solution uses a non-
zero virtual control or has a nonzero constraint violation
penalty, then it is not a solution of the original optimal con-
trol problem.

The fact that trajectories can converge to an infeasible
solution is one of the salient limitations of SCP. However, it
is not unlike the drawback of any other NLP optimization
method, which may fail to find a solution entirely, even if
one exists. When SCP converges to an infeasible solution, it
is called a “soft” failure since usually only a few virtual
control terms are nonzero. A soft failure carries important
information because the temporal nodes and constraints
with nonzero virtual control hint at how and where the
solution is infeasible. Usually, relatively mild tuning of the
algorithm parameters or problem definition will recover
convergence to a feasible solution. In relation to the optimi-
zation literature at large, the soft failure exhibited by SCP is
related to one-norm regularization, lasso regression, and
basis pursuit, all of which are used to find sparse approxi-
mate solutions [26, Sec. 11.4.1].

The specific algorithmic choices made to address artifi-
cial unboundedness (for example, selection of the trust
region radius update rule) and artificial infeasibility (for
example, virtual control versus constraint penalization)
lead to SCP algorithms with different characteristics. The

next two sections review two such algorithms, SCvx and
GuSTO, and highlight their design choices and algorithmic
properties. To facilitate a concise presentation, the time
argument t is suppressed whenever possible.

The SCvx Algorithm
In light of the preceding discussion, the SCvx algorithm
makes the following algorithmic choices:

» The terminal and running costs in (39) are both
assumed to be convex functions. It was previously
mentioned that this is without loss of generality for
the terminal cost, and the same reasoning applies for
the running cost. Any nonconvex term in the cost can
be offloaded into the constraints, and an example
was given in (40).

» To handle artificial unboundedness, SCvx enforces
(45) as a hard constraint. While several choices are
possible [49], [185], this article uses ax = au = ap = 1.
The trust region radius 7 is adjusted at each iteration
by an update rule, which is discussed in this section.

» To handle artificial infeasibility, SCvx uses virtual
control terms.

Begin by describing how SCvx uses virtual control to
handle artificial infeasibility. This is done by augmenting
the linear approximations (44b) and (44e)—-(44g) as follows:

X=Ax+Bu+Fp+r+Ev, (46a)
vi2Cx+Du+Gp+r, (46b)
0 = Hox (0) + Kop + 0o + vic, (460)
0=Hisx (1) + Kep + U + v, (46d)

where v (1) € R™, vs(-) € R™, vic € R"™, and vi. € R"" are the
virtual control terms. To keep the notation manageable, use
the symbol v as a shorthand for the argument list
v, Vs, Vie, Vic)-

The virtual control v in (46a) can be viewed simply as
another control variable that can be used to influence the
state trajectory. Like the other virtual control terms, the
goal is for v to be zero for any converged trajectory because
it is a synthetic input that cannot be used in reality. Note
that it is required that the pair (A, E) in (46a) is controllable,
which is easy to verify using any of several available con-
trollability tests [88]. A common choice is E = I,;, in which
case (A, E) is unconditionally controllable.

The use of nonzero virtual control in the subproblem
solution is discouraged by augmenting the cost function
with a virtual control penalty term. Intuitively, this means
that virtual control is used only when it is necessary to
avoid subproblem infeasibility. To this end, define a posi-
tive definite penalty function P:R" X R” — R, where p is
any appropriate integer. The following choice is typi-
cal in practice:

Py, 2) =yl +lzl 47)

OCTOBER 2022 « IEEE CONTROL SYSTEMS 73

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

where y and z are placeholder arguments. The cost function
(44a) is augmented using the penalty function, as follows:

]l(x/ u,p, .‘}) = ¢/1(.X(1), P, Vi, Vtc)

+ /;1 Ia(x,u, p, Ev,vs)dt, (48)
da(x (1), p, Vie, Vie) = ¢ (x(1), p) + AP (0, vic) + AP (0, vio),
Ca(x, u, p, Ev,vs) =T (x, u, p) + AP(Ev, vs). 49)

The positive weight A € R+ is selected by the user and
must be sufficiently large. This statement is made more
precise later in the section on SCvx convergence guaran-
tees. For now, note that in practice, it is quite easy to find an
appropriately large A value by selecting a power of 10.
Although A can generally be a function of time, this rarely
appears in practice.

Observe an important notational feature of (49), where
Ev is used in place of v for the argument list of I's. This
will help to highlight that the continuous-time matrix E is
substituted with its discrete-time version after temporal
discretization [see (52)]. The continuous-time convex sub-
problem that is solved at each iteration of the SCvx algo-
rithm can then be stated formally as

min J1(x, 1, p,), (502)
st.x=Ax+Bu+Fp+r+Ev, (50b)
xpeX wpeld, (50¢)
Cx+Du+Gp+r <vs (50d)
Hox(0) + Kop + o+ vic =0, (50e)
Hix(1) + Kip + 0+ v =0, (50f)
loxll, + sull, +lspl, <n (50g)

It was mentioned in the previous section that (50) is
not readily implementable on a computer because it is a
continuous-time, hence, infinite-dimensional, optimiza-
tion problem. To solve the problem numerically, a tempo-
ral discretization is applied, such as the one discussed
in “Discretizing Continuous-Time Optimal Control
Problems.” In particular, select a set of temporal nodes
te€[0,1] for k=1,...,N, and recast the subproblem as a
parameter optimization problem in the (overloaded) vari-
ables x = {xg i1, u = {udity, p, v = (Vidi=t, ve = veihio, vie,
and Vic.

Depending on the details of the discretization scheme,
there may be fewer decision variables than there are tem-
poral nodes. For simplicity, a zeroth-order hold (ZOH)
assumption (that is, a piecewise constant function) is used
to discretize the dynamics virtual control v(-). This means
that the virtual control takes the value v(t) = vy inside
each time interval [k, tk+1), and the discretization process
works like any other interpolating polynomial method

74 |EEE CONTROL SYSTEMS > OCTOBER 2022

from “Discretizing Continuous-Time Optimal Control
Problems.” Because this leaves vy undefined, vn =0 is
used for notational convenience whenever it appears in
future equations.

The continuous-time cost function (48) can be dis-
cretized using any appropriate method. Pseudospectral
methods, for example, specify a numerical quadrature that
must be used to discretize the integral [28]. For simplicity,
assume that the time grid is uniform (that is, tr+1 — t = At
for all k=1,...,N—1) and that trapezoidal numerical inte-
gration is used. This allows for writing the discrete-time
version of (48) as

Ll (x/ u, p/ 19) = ¢A (x(l)/ pl Vie, Vfc) + trapZ (Fa\l)/ (51)

I = Ta(xk, g, p, Exvi, vsp), (52)
where trapezoidal integration is implemented by the func-
tion trapz:RY - R, defined as

= At
T2

N-1
trapz(z) D zk+ zke1 (53)
k=1

Equation (51) is called the linear augmented cost function. This
name is a slight misnomer because (51) is, in fact, a generally
nonlinear convex function. However, the “linear” qualifier
emphasizes that the cost relates to the convex subproblem
for which all nonconvexities have been linearized. In partic-
ular, the virtual control terms can be viewed as linear mea-
surements of dynamic and nonconvex path and boundary
constraint infeasibility.

Finally, the constraints (50c), (50d), and (50g) are enforced
at the discrete temporal nodes tx for each k=1,...,N. In
summary, the following discrete-time convex subproblem
is solved at each SCvx iteration (that is, location @ in
Figure 11):

{ruuprl Li(x,u,p,7), (54a)
s.t. xx+1 = Akxx + Brur + Fep + 1+ Exvy, (54b)
(xx, p) € X, (ux, p) € Uy, (540)
Cixx+ Diux+ Grp + 1t S v, (54d)
Hox1+ Kop+0+vie =0, (54e)
Hixn+Kep+ e+ vie =0, (54f)
&, + I s, +1 8pll, < . (54g)

Note that (54b) is written as a shorthand convenience for
discretized dynamics and it is not representative of every
possible discretization choice. For example, (54b) is correct
if ZOH discretization is used. However, as specified in
(S32a), FOH discretization would lead to the following con-
straint that replaces (54b):

Xk+1 = AxXxk + Biux + Bl ugs1 + Fep + re + Exvi.

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

The most general interpolating polynomial discretization
fits into the following discrete-time dynamics constraint:

N .
Xi+1 = ArXk+ z Biu/ + Fxp + 1+ Exvy,
j=1

where the j superscript indexes different input coefficient
matrices. Other discretization methods lead to yet other
affine equality constraints, all of which simply replace
(54b) [191]. With this in mind, (54b) is written for simplic-
ity. Furthermore, it is implicitly understood that the con-
straints (54b)—(54d) and (54g) hold at each temporal node.
Because (54) is a finite—dimensional convex optimization
problem, it can be solved to global optimality using an off-
the-shelf convex optimization solver [26]. Denote the opti-
mal solution by x"={xilioy, u’ = {uilicy, p’, v' ={vitiz1,
Vi = {Viriot, vie and vie.

SCvx Update Rule
The preceding discussion enables taking a nonconvex opti-
mal control problem such as (38) and 1) convexify it to (44),
2) add a trust region (45) to avoid artificial unboundedness,
3) add virtual control terms (46) to avoid artificial infeasi-
bility, 4) penalize virtual control usage in the cost (48), and
5) apply discretization to obtain a finite—dimensional
convex problem (54). This gives all the necessary ingredi-
ents to go around the loop in Figure 11 except for one thing:
how to update the trust region radius 7 in (45). In general,
the trust region changes after each pass around the loop.
This section discusses this missing ingredient.

First, define a linearization accuracy metric, called
the defect,

Sk = Xk+1— W (be trr1, Xk, U, P) (55)

for k=1,...,N—1. The function y is called the flow map,
and its role is to “propagate” the control input u through
the continuous-time nonlinear dynamics (38b), starting at
state xx at time tx and evolving until the next temporal grid
node tx+1 [194]. It is important that the flow map be imple-
mented in a way that is consistent with the chosen discreti-
zation scheme, as defined below.

Definition 2
The flow map y in (55) is consistent with the discretiza-
tion used for (54) if the following equation holds for all
k=1,..,.N-1:

v (tx, tes1, X, i, p) = AxXe + Britx + Fep + 1. (56)
There is an intuitive way to think about the consistency
property of y. The reader may follow along using the illus-
tration in Figure 14. On the one hand, v (tx, tk+1, Xx, il, P)
maps an initial state Xx through the continuous-time non-
linear dynamics (38b) to a new state Xx+1. On the other

hand, the right-hand side of (56) does the same except that
it uses the linearized and discretized dynamics and out-
puts a new state Xi+1. Because the linearization is being
evaluated at the reference trajectory (that is, at the linear-
ization point), the linearized continuous-time dynamics
will yield the exact same trajectory. Thus, the only differ-
ence between the left- and right-hand sides of (56) is that
the right-hand side works in discrete time. Consistency,
then, simply means that propagating the continuous-time
dynamics yields the same point as performing the discrete-
time update (that is, Xx+1 = Xx+1). For every discretization
method that is used to construct (54), there exists a consis-
tent flow map.

The reader is likely already familiar with several flow
maps, even if the term sounds new. Consider the following
concrete examples. When using forward Euler discretiza-
tion, the corresponding consistent flow map is simply

W (tk, tke1, Xk, U, p) = X+ AF- f(tx, Xk, Uk, P). 57)
When using an interpolating polynomial discretization
scheme, such as the one described in “Discretizing Contin-
uous-Time Optimal Control Problems,” the corresponding
consistent flow map is the solution to the dynamics (38b)
obtained through numerical integration. In other words,
the flow map satisfies the following conditions at each time
instant t € [t, tr+1]:

(58a)
(58b)

v (te, te, Xi, 1, p) = Xx,
l/./(tk/ t/ Xk, U, P) :f(t/ W(tk/ t, Xk, U, p)/ M(f), p)

As demonstrated in Figure 15, the defect (55) captures
the discrepancy between the next discrete-time state xk+1
and the state obtained by using the flow map starting at

b xeR"

w(t t, Xi, U, P)

2 e 1

FIGURE 14 The flow map consistency property in Definition 2.
When the flow map is consistent with the discretization scheme,
the state Xx+1 propagated through the flow map (the circle)
and the state X«+1 propagated through the discrete-time linear-
ized update equation (the dashed green circle) match. When the
reference trajectory is not dynamically feasible, it generally devi-
ates from the flow map trajectory; hence, Xx+1 # Xk+1.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 75

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

time tr. The defect has the following interpretation: a non-
zero defect indicates that the solution to the subproblem is
dynamically infeasible with respect to the original noncon-
vex dynamics. For a dynamically feasible subproblem solu-
tion, the flow map trajectories in Figure 15 coincide with
the discrete-time states at the discrete-time nodes. This is a
direct consequence of the consistency property from Defi-
nition 2. It will be shown that this happens for the con-
verged solutions of the numerical examples presented in
the “Application Examples” section.

The defects obtained from (55) can now be leveraged to
update the trust region radius in SCvx. First, define a non-
linear version of (51) as follows:

T, u, p) = ¢a(x(1), p, gic(x(0), p), e (x(1), p))

+trapz (I7), 39

T2 = Talxx, uk, p, 8k, [5(t, X, ur, p)]), (60)

where the positive part function [- |* returns zero when its
argument is negative and otherwise just returns the argu-
ment. A salient feature of (59) is that it evaluates the penalty
function (47) based on how well the actual nonconvex con-
straints are satisfied. To do so, when compared to (51), Exvi
is replaced with the defect 6r measuring dynamic infeasi-
bility, and vsx is replaced with the actual nonconvex path
constraints (38e), while vic and v are replaced by the
actual boundary conditions (38f) and (38g). Because evalu-
ation of the defect and nonconvex path and boundary con-
straints is a nonlinear operation, (59) is called the nonlinear
augmented cost function.

The SCvx algorithm uses the linear augmented cost (51)
and nonlinear augmented cost (59) to, roughly speaking,
measure the accuracy of the convex approximation of (38)
by (44). Using the reference solution and the optimal solu-
tion to (54), SCvx defines the following scalar metric to
measure convexification accuracy:

a j},(j{, il/ P) _jl(-X*r M*, p*)
T, i, p) = Lalx", ', p', 7))

(61)

n
XeR v(ts, 1, X3, U, P)
- o
. 5. X
0o O3 5, 5 X
Lo X3 X4
X2
Xq ¢
0 = t1 tz t3 t4 t5 te = tN = 1

FIGURE 15 The defect calculation according to (55). The flow map
computation restarts at each discrete-time node. At each temporal
node, the defect is computed as the difference between the dis-
crete solution output by (54) and the corresponding flow map value.

76 1EEE CONTROL SYSTEMS » OCTOBER 2022

Let us carefully analyze the elements of (61). First, the
denominator is always nonnegative because the following
relation holds [49, Th. 3.10]:

Ja(x, i, p) = La(x",u’, p’,v0). (62)

The proof of (62) works by constructing a feasible
subproblem solution that matches the cost Ja(%, i, p).
Begin by setting the state, input, and parameter values to
the reference solution {x(t), i (t), p}i. The virtual controls
must be chosen to make this solution feasible for (54) and
yield a matching cost (54a). The consistency property
from Definition 2 ensures that this is always possible to
do. In particular, choose the dynamics virtual control to
match the defects and the other virtual controls to match
the constraint values at the reference solution. This repre-
sents a feasible solution of (54) whose cost equals 71 (%, i, p).
The optimal cost for the subproblem cannot be worse, so
the inequality (62) follows. If the denominator of (61) is zero,
it follows from the preceding discussion that the reference
trajectory is an optimal solution of the convex subproblem.
This signals that it is appropriate to terminate SCvx and
exit the loop in Figure 11. Hence, the denominator of (61)
can be used as part of a stopping criterion that avoids a
division by zero. The stopping criterion is discussed fur-
ther in the next section.

Examining (61) holistically, it is essentially a ratio between
the actual cost improvement (the numerator) and the pre-
dicted cost improvement (the denominator), achieved during
one SCvx iteration [48]:

_actual improvement
"~ predicted improvement

) (63)

In fact, the denominator can be loosely interpreted as a
lower-bound prediction: the algorithm “thinks” that the
actual cost improves by at least that much. The following
intuition can thus be adopted based on seeing (54) as a local
model of (38). A small p value indicates that the model is
inaccurate because the actual cost decrease is much smaller
than predicted. If p is close to unity, the model is accurate
because the actual cost decrease is similar to the prediction.
If the p value is greater than unity, the model is “conserva-
tive” because it underestimates the cost reduction. As a
result, large p values incentivize growing the trust region
because the model is trustworthy and the algorithm can
make faster progress by utilizing more of it. On the other
hand, small p values incentivize shrinking the trust region
to not “overstep” an inaccurate model [49].

The SCvx update rule for the trust region radius 7 for-
malizes the preceding intuition. Employing three user-
defined scalars po, p1, p2 € (0,1) that split the real number
line into four parts, the trust region radius and reference
trajectory are updated at the end of each SCvx iteration
according to Figure 16. The user-defined constants s, Bgr > 1

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

are the trust region shrink and growth rates, respectively.
Practical implementations of SCvx also let the user define
minimum and maximum trust region radii by using
no, 71 > 0. The choice of the user-defined scalars po, p1, and
p2 greatly influences the algorithm runtime. As shown in
Figure 16, when p < po, the algorithm will actually outright
reject the subproblem solution and solve the subproblem
again with a smaller trust region. This begs the question: Can
rejection go on indefinitely? If this occurs, the algorithm will
be stuck in an infinite loop. The answer is no; the metric (61)
must eventually rise above po [49, Lemma 3.11].

SCvx Stopping Criterion

The previous sections provide a complete description of the
“Starting” and “Iteration” regions in Figure 11. A crucial
remaining element is how and when to exit the “SCP loop”
of the “Iteration” region. This is defined by a stopping cri-
terion (also called an exit criterion), which is implemented at
location ® in Figure 11. When the stopping criterion trig-
gers, the algorithm has converged, and the final iteration’s
trajectory {x"(t), u"(t), p’}} is output.

The basic idea of the stopping criterion is to measure
how different the new trajectory {x"(t), u"(t), p°}} is from
the reference trajectory {X(t), it(t), p}i. Intuitively, if the dif-
ference is small, then the algorithm considers the trajectory
unworthy of further improvement, and it is appropriate to
exit the SCP loop. The formal SCvx exit criterion uses the
denominator of (61) (that is, the predicted cost improve-
ment) as the stopping criterion [49], [64], [185], [193]:

Ja(x, i, p)—La(x", u, p5,v7) < ¢, (64)
where € € R+ is a user-defined (small) threshold. For nota-
tional simplicity, write (64) as

Jr—Li<e
Numerical experience has shown a control-dependent

stopping criterion to sometimes lead to an unnecessarily
conservative definition of convergence [62]. For example, in

an application such as rocket landing, common vehicle char-
acteristics (for example, inertia and engine-specific impulse)
imply that relatively large changes in control can have little
effect on the state trajectory and optimality. When the cost is
control dependent (which it often is), (64) may be a conserva-
tive choice that will result in more iterations without provid-
ing a more optimal solution. In such cases, a simpler and less
conservative stopping criterion may be used:

lp"=pl,+ mai(N;II xi—xcl; < e, (65)

kefl,..
where §€({1,2,2% 0} defines a norm similarly to (45).
Importantly, the following correspondence holds between
(64) and (65). For any & choice in (65), there is a (generally
different) & choice in (64) such that if (64) holds, then (65)
holds. This is called an “implication correspondence”
between stopping criteria.

SCvx guarantees that there will be an iteration for which
(64) holds. By implication correspondence, this guarantee
extends to (65). In general, the user can define yet another
stopping criterion that is tailored to the specific trajectory
problem, as long as implication correspondence holds. This is
done for the numerical examples at the end of the article,
where the following stopping criterion that combines (64) and
(65) is used:

(65) holds, or J2 — Li < & 1|, (66)
where e: € Ry is a user-defined (small) threshold on the
relative cost improvement. The second term in (66) allows
the algorithm to terminate when relatively little progress is
being made in decreasing the cost, which signals that the
algorithm has achieved local optimality.

SCvx Convergence Guarantee

The SCvx trust region update rule in Figure 16 is designed to
permit a rigorous convergence analysis of the algorithm. A
detailed discussion is given in [49]. To arrive at the conver-
gence result, the proof requires the following (mild) technical
condition that is common to most, if not all, optimization

Case 1: p< p, Case 2: pe [pg, p1) Case 3: pe [py, po) Case 4: p>p,
7 < max (1o, 1/Bsn) 1 < max (1o, 1/fBsn) nen 1 < min (14, Byn)
XX X « x* X < x* X « x*
U«u U« u* U« u* U« u*
p<p p < p* p < p* p < p*
R < | | | >
Po P1 P2

FIGURE 16 The sequential convex programming trust region update rule. The accuracy metric p is defined in (61) and provides a mea-
sure of how accurately the convex subproblem given by (54) describes the original problem (38). Note that case 1 actually rejects the
solution to (54) and shrinks the trust region before proceeding to the next iteration. In this case, the convex approximation is deemed so
poor that it is unusable.

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 77

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

algorithms. This condition is truly “mild” because it is almost
never checked in practice, and SCvx just works.

Condition 8

The gradients of the equality and active inequality con-
straints of (38) must be linearly independent for the final
converged trajectory output by SCvx. This is known as a
linear independence constraint qualification [29, Ch. 12].

Itis also required that the weight A in (48) be sufficiently
large. This ensures that the integral penalty term in (48) is a
so-called exact penalty function. A precise condition for
“large enough” is provided in [49, Th. 3.9], and a possible
strategy is outlined following the theorem in that article.
However, in practice, simply iterate over a few powers of 10
until SCvx converges with zero virtual control. An approx-
imate range that works for most problems is 102 to 10%. Once
a magnitude is identified, it usually works well across a
wide range of parameter variations for the problem.

The SCvx convergence guarantee is stated in the follow-
ing theorem that is proved in [49, Th. 3.21]. Besides Condi-
tion 8, the theorem requires a few more mild assumptions
on the inequality constraints in (38) and the penalized cost
(51). They are not stated here due to their technical nature.
It is enough to say that, like Condition 8, these assumptions
are mild enough that they are rarely checked in practice.

Theorem 8

Suppose that Condition 8 holds and that the weight 1 in
(48) is large enough. Regardless of the initial reference tra-
jectory provided in Figure 11, the SCvx algorithm will
always converge at a superlinear rate by iteratively solving
(54). Furthermore, if the virtual controls are zero, then the
converged trajectory is a stationary point of (38) in the
sense of having satisfied the KKT conditions.

Theorem 8 confirms that SCvx solves the KKT condi-
tions of the original (38). Because these are first-order, nec-
essary conditions of optimality, they are also satisfied by
local maxima and saddle points. Nevertheless, because
each convex subproblem is minimized by SCvx, the likeli-
hood of converging to a stationary point that is not a local
minimum is very small.

Theorem 8 also states that the convergence rate is super-
linear [29], which is to say that the distance from the con-
verged solution decreases superlinearly [49, Th. 4.7]. This is
better than general NLP methods and on par with SQP
methods that usually also attain, at most, superlinear con-
vergence [171].

In conclusion, note that Theorem 8 is quite intuitive and
confirms the basic intuition. If one is “lucky” to obtain a
solution with zero virtual control, then itis a local minimum
of the original nonconvex problem (38). The reader will be
surprised, however, at just how easy it is to be “lucky.” In
most cases, it is a simple matter of ensuring that the penalty

78 |EEE CONTROL SYSTEMS » OCTOBER 2022

weight A in (48) is large enough. If the problem is feasible
but SCvx is not converging or is converging with nonzero
virtual control, the first thing to try is to increase A. In more
difficult cases, some nonconvex constraints may need to be
reformulated as equivalent versions that play nicer with the
linearization process (the free-flyer example in the “Applica-
tion Examples” section discusses this in detail). However,
there is no a priori hard guarantee that the converged solu-
tion will satisfy v = 0. In fact, since SCvx always converges,
even an infeasible optimal control problem can be solved,
and it will return a solution for which v is nonzero.

The GuSTO Algorithm
The GuSTO algorithm is another SCP method that can be
used for trajectory generation. The reader will find that
GuSTO has a familiar feel to that of SCvx. Nevertheless, the
algorithm is subtly different from both computational and
theoretical standpoints. For example, while SCvx works directly
with the temporally discretized (54) and derives its conver-
gence guarantees from the KKT conditions, GuSTO performs
all of its analysis in continuous time by using Pontryagin’s
maximum principle [11], [12], [49], [50]. Temporal discretiza-
tion is introduced only at the end to enable numerical solu-
tions of the problem. GuSTO applies to versions of (38) where
the running cost in (39) is quadratic in the control variable:
(v, u,p)=u"Sp)u+u'o(x, p)+g(x p), (67)
where the parameter p, as before, can be used to capture
free final time problems. The functions S, ¢, and g must all be
continuously differentiable. Furthermore, the function S must
be positive semidefinite. The dynamics must be affine in the
control variable:

f(t,x,u, p)= fot, x, p) + Zl uifi(t, x, p), (©8)
where fi:R x R" X R?— R" are nonlinear functions repre-
senting a decomposition of the dynamics into terms that
are control independent and terms that linearly depend on
each of the control variables u;. Note that any Lagrangian
mechanical system can be expressed in the control affine
form, so (68) is applicable to the vast majority of real-world
vehicle trajectory generation applications [195]. Finally, the
nonconvex path constraints (38e) are independent of the
control terms; that is, s(t, x,u, p)=s(t, x, p). Altogether,
these assumptions specialize (38) to problems that are
convex in the control variable.

At its core, GuSTO is an SCP trust region method just like
SCvx. Thus, it has to address the same issues of artificial
infeasibility and artificial unboundedness. To this end, the
GuSTO algorithm makes the following algorithmic choices:

» To handle artificial unboundedness, GuSTO aug-
ments the cost function with a soft penalty on the
violation of (45). Because the original problem (38) is
convex in the control variables, there is no need for a

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

trust region with respect to the control, and o, =0 is
used. In its standard form, GuSTO works with
default values ox=a, =1. However, one can choose
different values ax, o, > 0 without affecting the con-
vergence guarantees.

» To handle artificial infeasibility, GuSTO augments the
cost function with a soft penalty on nonconvex path
constraint violation. As the algorithm progresses, the
penalty weight increases.

From these choices, it can already be deduced that a
salient feature of the GuSTO algorithm is its use of soft pen-
alties to enforce nonconvex constraints. Recall that in SCvx,
the trust region (45) is imposed exactly, and the linearized
constraints are (equivalently) relaxed by using virtual con-
trol (46). By penalizing constraints, GuSTO can be analyzed
in continuous time via the classical Pontryagin maximum
principle [11], [12], [50], [69]. An additional benefit of having
moved the state constraints into the cost is that the virtual
control term employed in the dynamics (46a) can be safely
removed since linearized dynamics are almost always con-
trollable [72].

Begin by formulating the augmented cost function used
by the GuSTO convex subproblem at @ in Figure 11. This
involves three elements: the original cost (39), soft penalties
on path constraints that involve the state, and a soft penalty
on trust region violation. The latter two elements are now
discussed. To formulate the soft penalties, consider a con-
tinuously differentiable, convex, and nondecreasing pen-
alty function /;:R — R+ that depends on a scalar weight
A=1 [50], [72]. The goal of h; is to penalize any positive
value and be agnostic to nonpositive values. Thus, a simple
example is a quadratic rectifier,

hi(z)=A([2]")’, (69)
where higher A values indicate higher penalization. Another
example is the SoftPlus function [196]:

ha(z) = Ao ' log (1 +e™), (70)
where o € R+ is a sharpness parameter. As o grows, the
SoftPlus function becomes an increasingly accurate approx-
imation of Amax{0, z}.

Note that /1, is used to enforce soft penalties for violat-
ing the constraints (38c) and (38e) that involve the state and
parameter. To this end, let w:R" x R? - R"™ be a convex,
continuously differentiable indicator function that is non-
positive if and only if the convex state constraints in (38c)
are satisfied:

wx,p)<0 e (x,p) eX.
Observe that because X is a convex set, such a function

always exists. Using w, s from (38e), and /1, all the state con-
straints can be grouped into a single soft penalty function:

gsp(t, x, p) = n; ha(wi(t, x)) + 2 ha(si(t, x, p)). (71)

Another term is added to the augmented cost function
to handle artificial unboundedness. This term penalizes
violations of the trust region constraint and is defined in a
similar fashion to (71):

gel,p) = In(l8x], +3pll, ~n), 72
although hard-enforced versions of the trust region con-
straint can also be used without changing the algorithm’s
properties [72].

The overall augmented cost function is obtained by
combining the original cost (38a) with (71) and (72). The
resulting function is generally nonconvex, and it can be
decomposed into its convex and nonconvex parts:
Ja(x, u, p) = Lalx, p) + Ja(x, u, p), (73a)

Nw

T,)= ¢ D), p)+ [g, p)+ L hateoitt, 0)d, (730)

T w, p)= [T p)+ 2 hatsitt, %, p))dt (73¢)
i=1

The terms gu(x, p) and ha(wi(x)) in (73b) are convex func-

tions since they are formed by composing a convex nonde-

creasing function hy with a convex function [26]. Thus,

(73b) is the convex part of the cost, while (73c) is the non-

convex part.

The ultimate goal is to construct a convex subproblem
that can be solved at location @ in Figure 11. Thus, the non-
convex part of the cost (73c) must be convexified around the
reference trajectory {x(t), it(t), p};. This requires the fol-
lowing Jacobians in addition to the initial list (43):

AT 2 V.T(%, 1, p), (74a)
BT 2V,[(%, i, p), (74b)
F'2v,T'(x, i, p). (74c)

Using (43e), (43 g), and (74), the convex approximation of
(73c) can be written as

La(x,u, p)= fol T (%, ii, p) + AT6x + BT su + F'p

+ 3 ha(silt, X, p) + Ciox + Gidp) dt, (75)
i=1

where C; and G; are the ith rows of the Jacobians (43e)
and (43g), respectively. Note that, strictly speaking, Lais
not a linearized version of], because the second term in
(73c¢) is linearized only inside the /1:(-) function. Replac-
ing J» in (73a) with L; yields a convexified augmented
cost function:

La(x, u, p) = Ja(x, p) + La(x, u, p). (76)

OCTOBER 2022 « IEEE CONTROL SYSTEMS 79

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

To summarize the preceding discussion, the continu-
ous-time convex subproblem that is solved at each iteration
of the GuSTO algorithm can be stated formally as:

r%n La(x, u, p), (77a)
st.x=Ax+Bu+Fp+r, (77b)
(w,p)el, (77¢)
Hox(0) + Kop + 00 =0, (77d)
Hix (1) + Kep + 0:=0. (77e)

Equation 77 can be compared to the SCvx continuous-
time convex subproblem given by (50). Broadly speaking,
the problems are quite similar. Their main differences stem
from how the SCvx and GuSTO algorithms handle artifi-
cial infeasibility and artificial unboundedness. In the case
of SCvx, virtual control terms are introduced, and a hard
trust region (50g) is imposed. In the case of GuSTO, every-
thing is handled via soft penalties in the augmented cost.
The result is that penalty terms in the cost (77a) replace the
constraints (50c), (50d), and (50g).

There is another subtle difference between (77) and (50),
which is that GuSTO does not use virtual control terms for
the linearized boundary conditions (77d) and (77e). In
SCvx, these virtual control terms maintain subproblem fea-
sibility when the linearized boundary conditions define
hyperplanes that do not intersect with the hard-enforced
convex state path constraints in (50c). This is not a problem
in GuSTO since the convex state path constraints are penal-
ized only in the cost (71), and violating them for the sake of
retaining feasibility is allowed. Furthermore, the linear-
ized dynamics (77b) are theoretically guaranteed to be
almost always controllable [72]. This implies that the
dynamics (77b) can always be steered between the linear-
ized boundary conditions (77d) and (77e) [88].

Similar to the treatment of (50), a temporal discretization
scheme must be applied to numerically solve the subprob-
lem. Discretization proceeds in the same way as for SCvx:
select a set of temporal points t €[0,1] for k=1,..., N, and
recast (77) as a parameter optimization problem in the
(overloaded) variables x ={x}}_,, u={w}}_,, and p. The
same discretization choices are available as for SCvx, as
described in “Discretizing Continuous-Time Optimal Con-
trol Problems.”

The integrals of the continuous-time cost function
(77a) must also be discretized. This is done in a similar
fashion to the way (51) was obtained from (48) for SCvx.
For simplicity, again assume that the time grid is uni-
form, with step size At, and that trapezoidal numerical
integration (53) is used. For notational convenience, by
combining the integral terms in (73b) and (75), the con-
vexified augmented cost function (76) can be written
compactly as

LiGou,p) = @D, p)+ [Litxu,pdt, (78)

80 IEEE CONTROL SYSTEMS » OCTOBER 2022

where the convex function L} is formed by summing the
integrands of (73b) and (75). Then, compute the discrete-time
version of (78), which is the GuSTO equivalent of its SCvx
counterpart (51):

Li(x, u, p)=¢(x(1), p)+ trapz (L),

Lit =LY (k, xx, uz, p).

(79)
(80)

Finally (as in SCvx), the constraint (77c) is enforced only
at the discrete temporal nodes. In summary, the following
discrete-time convex subproblem is solved at each GuSTO
iteration (that is, location @ in Figure 11):

rﬂ}? La(x, u, p), (81a)
s.t. Xk+1 = Axxk + Brux + Fep + 1, (81b)
(ux, p) €Uy, (81c)
Hox1+ Kop + 00 =0, (81d)
Hexn + Kep+0:=0, (81e)

where it is implicitly understood that the constraints (81b)
and (81c) hold at each temporal node.

GuSTO Update Rule
The development has now reached a similar point to SCvx
from the previous section: by using (81) as the discrete-time
convex subproblem, all the necessary elements are available
to go around the loop in Figure 11, except for how to update
the trust region radius 7 and penalty weight A. Both values
are generally different at each GuSTO iteration, and the
method by which they are updated is now described. The
reader will find the concept to be similar to SCvx.

First, recall that GuSTO imposes the trust region (45) as
a soft constraint via the penalty function (72). This means
that the trust region constraint can possibly be violated. If
the solution to (81) violates (45), GuSTO rejects the solution
and increases the penalty weight A by a user-defined factor
Yril > 1. Otherwise, if (45) holds, the algorithm proceeds by
computing the following convexification accuracy metric
that is analogous to (61):

W, p) — Latx, ut, pt) [+©°
[La(x™, u”, p") +f01| »dt

where, based on (38b) and (77b), the following quantities
are defined:

i

X"2Ax"+Bu'+Fp' +r,

e’ efoll\ ft, x',u, p) =i |,dt.

(83a)
(83b)

Equation (83a) integrates to yield the continuous-time
state solution trajectory. This is done in accordance with the
temporal discretization scheme, such as the one described in
“Discretizing Continuous-Time Optimal Control Problems.”
As a result, the value of O is nothing but a measure of the

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

total accumulated error that results from linearizing the
dynamics along the subproblem’s optimal solution. In a way,
0" is the counterpart of SCvx defects defined in (55), with
the subtle difference that while defects measure the discrep-
ancy between the linearized and nonlinear state trajectories,
O measures the discrepancy between the linearized and
nonlinear state dynamics.

The continuous-time integrals in (82), in principle, can be
evaluated exactly (that is, to within numerical precision)
based on the discretization scheme used. In practice, they can
be approximated by directly numerically integrating the solu-
tion of (81) by using (for example) trapezoidal integration (53).
This means the following approximation of (82) is evaluated:

T, p) = Lo, ut, pr) [+ 0
- |.£/1(x*,u*,p*)|+trapz (x")
0"~ trapz (Af7),
Af/: = H f(tkr X;;, M;;, P*) - x7<+l HZ’ X; = ” X7<+1 HZ (84)

7

The nonlinear augmented cost J1 in the numerator of
(84) is a temporally discretized version of (73a). In particular,
combine the integrals of (73b) and (73¢) to express (73a) as

I, u,p) =,)+ [5%, p)dt, (85)
which enables computing 7 as follows:

Ta(x, u, p)=(x(1), p)+ trapz (i), (86)

Tk =5 (k, xx, wx, p). (87)

Examining (82) holistically, it can be interpreted as a nor-
malized error that results from linearizing the cost and
dynamics:

__ cost error + dynamics error
- normalization term

(88)

Note that as long as the solution of (81) is nontrivial (that is,
x'(t)=0 for all t [0, 1] does not hold), the normalization
term is guaranteed to be strictly positive. Thus, there is no
danger of dividing by zero.

For comparison, SCvx evaluates convexification accu-
racy through (63), which measures accuracy as a relative
error in the cost improvement prediction. This prediction is
a “higher-order” effect: linearization error indirectly influ-
ences cost prediction error through the optimization of (54).
GuSTO takes a more direct route with (88) and measures
convexification accuracy directly as a normalized error that
results from linearizing both the cost and dynamics.

Examining (88), the following intuition about the size of p
can be adopted. Similarly to SCvx, (81) can be viewed as a
local model of (38). A large p value indicates an inaccurate
model since the linearization error is large. A small p value
indicates an accurate model since the linearization error is
relatively small compared to the normalization term. Hence,
large p values incentivize shrinking the trust region to not
overstep the model, while small p values incentivize grow-
ing the trust region to exploit a larger area of an accurate
model. Note that the opposite intuition holds for SCvx,
where small p values are associated with shrinking the
trust region.

The GuSTO update rule formalizes the preceding intu-
ition. Employing two user-defined constants po, p1€(0,1)
that split the real number line into three parts, the trust
region radius 1 and penalty weight A are updated at the
end of each GuSTO iteration according to Figure 17. Just
like in SCvx, the user-defined constants B, Bg > 1 are the
trust region shrink and growth rates, respectively. The
sizes of the trust region and penalty weight are restricted
by user-defined constants: 7o is the minimum trust region
radius, 771 is the maximum trust region radius, and 10 =1 is
the minimum penalty weight. Importantly, for cases 1
and 2 in Figure 17, whenever the solution of (81) is accepted,

. . k= F_ o
update (1) £ {/10, if s(x*, p*) <0, x* e X, if lxg— Xillg * lp"~pllg>n
Haith, else. i forsome ke {1,..., N}
e N e i R
Case 1: p< p, Case 2: p e [pg, p1) Case 3: p> p, | Case4:
1 < min (14, Byn) nen 1 <= max (1o, 7/fsn) (| onen
X x* X x* XX { XX
U« ut U u* UeT | UeT
p <« p* p«p* p<p | Pep
A < update (1) A < update (1) A2 A Yald
N\ VAN \ y € J
R < >
Po P

FIGURE 17 The GuSTO trust region update rule. The accuracy metric p is defined in (82) and provides a measure of how accurately the
convex subproblem given by (81) describes the original (38). Note that cases 3 and 4 reject the solution to (81). In case 3, this is due to
the convex approximation being deemed so inaccurate that it is unusable, and the trust region is shrunk accordingly. In case 4, this is

due to the trust region constraint (45) being violated.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 81

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

the penalty weight A is increased by a factor yr if any of
the nonconvex state constraints in (38e) are violated. This
incentivizes subsequent iterates to become feasible with
respect to (38e).

In addition, GuSTO requires that n eventually shrinks
to zero as the SCP iterations progress (this is addressed in
more detail below in the section on GuSTO convergence)
[72]. However, if the trajectory is converging, then 8x, du,
8p — 0 and the linearizations in (77) are bound to become
more accurate. Hence, near-zero p values are expected
when the trajectory is converging, which means that Figure
17 will grow the trust region instead of shrinking it. A
simple remedy is to apply the following exponential shrink
factor following the update in Figure 17:

7 ﬂ[1+k—k,]+nl (89)
where 1 €(0,1) is an exponential shrink rate and k.>1 is
the first SCP iteration where shrinking is applied. The user
sets both x# and k. and, in this manner, can regulate how
fast the trust region shrinks to zero. Low u values and high
k. values are viewed as setting the algorithm up for a longer
“exploration” phase prior to tightening the trust region.

GuSTO Stopping Criterion

To complete the description of the GuSTO algorithm, it
remains to define the stopping criterion used at location ®
of Figure 11. The formal GuSTO exit criterion directly
checks if the control and parameters are almost unchanged
[50], [71]:

<Hf9—P*Hr’7 <gand /(;1”1,[*(,5)—1:[(0 |‘é§£> Oor > Amax, (90)

where e € Riy and § €11, 2, 2%, oo} have the same meaning
as before in (65) and the new parameter Amax€R:+ is a
(large) maximum penalty weight.

When (90) triggers due to Ama, GuSTO exits with an
unconverged trajectory that violates the state and/or trust
region constraints. This is equivalent to SCvx exiting with
nonzero virtual control, and it indicates that the algorithm
has failed to solve the problem, due to inherent infeasibility
or numerical issues. Computing (90) can be computation-
ally expensive due to numerical integration of the control
deviation. The calculation can be simplified by directly
using the discrete-time solution. This leads to the following
stopping criterion:

p = pl,+trapz (Au’) < eor 2> Ama,
1)

Auie = || ui — i .

As discussed for SCvx, an implication correspondence
holds between the stopping criteria (90) and (91). In prac-
tice, following the example of (66), an option is typically
added for exiting when relatively little progress is made in

82 |EEE CONTROL SYSTEMS » OCTOBER 2022

decreasing the cost, which can often signal local optimality
sooner than (91) is satisfied:

(91) holds, or | T2 — T3l <&l Tal, ©2)

where (as before) e: € R+ is a user-defined (small) thresh-
old on the relative cost improvement. The numerical exam-
ples at the end of the article implement (92).

GuSTO Convergence Guarantee

Each iteration of the GuSTO numerical implementation is
composed of three stages. Reviewing Figure 11, the convex
problem (81) is first constructed and solved with a convex
optimizer at location @. Using the solution, the stopping
criterion (92) is checked at ®. If the test fails, the third and
final stage updates the trust region radius and soft penalty
weight according to Figure 17 and (89). In this context, a
convergence guarantee ensures that the stopping criterion
at @ in Figure 11 eventually triggers. GuSTO is an SCP
algorithm that was designed and analyzed in continuous
time by using the Pontryagin maximum principle [50], [72].
Thus, the first convergence guarantee assumes that the
GuSTO algorithm solves the continuous-time subproblem
[that is, (77)] at each iteration [50, Corollary 3.1], [72, Th. 3.2].

Theorem 9

Regardless of the initial reference trajectory provided in
Figure 11, the GuSTO algorithm will always converge by
iteratively solving (50). Furthermore, if A < Amax (in particu-
lar, the state constraints are exactly satisfied), then the solu-
tion is a stationary point of (38) in the sense of having
satisfied the necessary optimality conditions of the Pontry-
agin maximum principle.

Note once again the following duality between the
GuSTO and SCvx convergence guarantees. Both algorithms
can converge to infeasible points of the original problem
(38). For SCvx, this corresponds to a nonzero virtual control
(recall Theorem 8). For GuSTO, this corresponds to
A > Amax. The situations are completely equivalent and cor-
respond simply to the different choices made by the algo-
rithms to impose nonconvex constraints either with virtual
control (as in SCvx) or as soft cost penalties (as in GuSTO).

Theorem 9 should be viewed as the GuSTO counterpart
of Theorem 8 for SCvx. Despite the similarities between the
two statements, there are three important nuances of Theo-
rem 9 that are now discussed.

The first difference concerns how the GuSTO update
rule in Figure 17 and (89) plays into the convergence proof.
In SCvx, the update rule from Figure 16 plays a critical role
in proving convergence. Thus, SCvx is an SCP algorithm
that is intimately linked to its trust region update rule. This
is not the case for GuSTO, whose convergence proof does
not rely on the update rule definition at all. The only thing
assumed by Theorem 9 is that the trust region radius 7
eventually shrinks to zero [72]. Ensuring this is the reason

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

for (89). Thus, GuSTO is an SCP algorithm that accepts any
update rule that eventually shrinks to zero. Clearly, some
update rules may work better than others, and the one pre-
sented in this article is simply a choice that is implemented
in practice. Another simple update rule is given in [72].
Overall, the GuSTO update rule can be viewed as a mecha-
nism by which to accept or reject solutions based on their
convexification accuracy and not as a function designed to
facilitate formal convergence proofs.

The reason why it is necessary to shrink the trust region
to zero is the second nuanced detail of Theorem 9. In the
nonlinear optimization literature, most claims of conver-
gence fall into the so-called weak convergence category
[29], [197]. This is a technical term, which means that a sub-
sequence among the trajectory iterates (X' (b), u' (), p'ly con-
verges. Forexample, thesubsequencemaybei=1,3,5,7,...,
while the iterates i=2,4,6,... behave differently. As a
baseline, both SCvx and GuSTO provide the weak conver-
gence guarantee. The next step is to provide a strong con-
vergence guarantee, which ensures that the full sequence
of iterates converges. For SCvx, this is possible by leverag-
ing properties of the update rule in Figure 16. As mentioned
in the previous paragraph, GuSTO is more flexible in its
choice of update rule. To get a converging iterate sequence,
the additional element (89) is introduced to force all subse-
quences to converge to the same value. Because analysis of
SCvx has shown the strong convergence guarantee to be
intimately tied to the choice of update rule, GuSTO can
likely achieve a similar guarantee with an appropriately
designed update rule.

The third and final nuanced detail is that Theorem 9
assumes that a continuous-time subproblem [that is, (77)]
is solved at each iteration. In reality, a discrete-time ver-
sion (81) is implemented on the computer. This difference
between proof and reality is similar to LCvx, where proofs
are also given using the continuous-time Pontryagin’s
maximum principle even though the implementation is in
discrete time. If the discretization error is small, the
numerically implemented GuSTO algorithm will remain
in the vicinity of a convergent sequence of continuous-
time subproblem solutions. Thus, given an accurate tem-
poral discretization, Theorem 9 can be reasonably
assumed to apply for the numerical GuSTO algorithm [72].

The default choice in research has been to use an inter-
polating polynomial method, such as described in “Dis-
cretizing Continuous-Time Optimal Control Problems.”
This approach has three advantages [191]: 1) the continu-
ous-time dynamics (77b) are satisfied exactly, 2) there is a
cheap way to convert the discrete-time numerical solution
into a continuous-time control signal, and 3) the discretized
dynamics (81b) result in a sparser problem than alterna-
tive formulations (for example, pseudospectral methods),
which benefits a real-time solution [191]. With this choice,
discretization introduces only two artifacts: the control signal
has fewer degrees of freedom (DoF), and the objective

function (81a) is off from (77a) by a discretization error.
Thus, using an interpolating polynomial discretization
enables rigorously stating that (81) finds a “local” optimum
for a problem that is “almost” (77). The term “local” is used
because the control function has fewer degrees of freedom,
and “almost” is employed because of discretization error in
the objective function. At convergence, this means that the
GuSTO solution satisfies the Pontryagin maximum princi-
ple for a slightly different problem than (38). In practice, this
technical discrepancy makes little to no difference.

Implementation Details

A complete description of the SCvx and GuSTO algorithms
has now been provided, in particular, all the elements
that are needed to go around, and eventually exit, the SCP
loop in Figure 11. This section discusses two implementa-
tion details that significantly improve the performance of
both algorithms. The first detail concerns the temporal
discretization procedure, and the second detail is about
variable scaling.

Temporal Discretization

The core task of discretization is to convert a continuous-
time LTV dynamics constraint into a discrete-time con-
straint. For SCvx, this means converting (50b) to (54b). For
GuSTO, this means converting (77b) to (81b). In all cases, the
approach is to find the equivalent discrete-time representa-
tion of the consistent flow map y from Definition 2. The
details of this conversion depend entirely on the type of dis-
cretization. One example is given in detail for FOH, which
is an interpolating polynomial method, in “Discretizing
Continuous-Time Optimal Control Problems.” This exam-
ple encapsulates a core issue with many other discretization
schemes, so it will be used to ground the discussion.

In FOH discretization, the integrals in (532) require the
continuous-time reference trajectory {x(t), it(t), p}} to evalu-
ate the corresponding Jacobians in (43). However, the convex
subproblem solution yields only a discrete-time trajectory.
To obtain the continuous-time reference, use the continu-
ous-time input obtained directly from (528) and integrate
(58) in tandem with the integrals in (532). This operation is
implemented over a time interval [tk tk+1] as one big inte-
gration of a concatenated time derivative composed of (58)
and all the integrands in (532) [63]. This saves computational
resources by not repeating multiple integrals and has the
numerical advantage of letting an adaptive step integrator
automatically regulate the temporal resolution of the con-
tinuous-time reference trajectory. Because the integration is
reset at the end of each time interval, the continuous-time
reference state trajectory is discontinuous, as illustrated in
Figure 15. Further details are provided in [63] and [191] and
the source code of the numerical examples for this article,
which is linked in Figure 2.

In theory, discretization occurs in the forward path of
the SCP loop, just before the subproblem solution, as shown

OCTOBER 2022 « IEEE CONTROL SYSTEMS 83

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

in Figure 11. However, by integrating (58) as described pre-
viously, it is actually possible obtain the SCvx defects that
are needed at stage ® in Figure 11. Integrating the flow map
twice (once for discretization and another time for the
defects) is clearly wasteful. Hence, in practice, discretiza-
tion is implemented at stage ® in Figure 11, and the resultis
stored in memory to be used at the next iteration. Note that
there is no computational benefit when the flow map does
not need to be integrated, such as in (57). This is the case for
many discretization schemes, including forward Euler,
Runge—Kutta, and pseudospectral methods. The unifying
theme of these methods is that the next discrete-time state
is obtained algebraically as a function of (a subset of) the
other discrete-time states rather than through a numerical
integration process.

Variable Scaling

Convex SCP subproblems consist of the following optimiza-
tion variables: the states, inputs, parameter vector, and pos-
sibly a number of virtual controls. The wvariable scaling
operation uses an invertible function to transform the opti-
mization variables into a set of new “scaled” variables. The
resulting subproblems are completely equivalent, but the
magnitudes of the optimization variables are different [26],
[29]. SCvx and GuSTO are not scale-invariant algorithms.
This means that good variable scaling can significantly
impact not only how quickly a locally optimal solution is
found but also the solution quality (that is, the level of opti-
mality it achieves). Hence, it is imperative that the reader
applies good variable scaling when using SCP to solve trajec-
tory problems. A standard variable scaling technique is now
presented that is routinely used successfully in practice.

To motivate the scaling approach, let us review the two
major effects of variable magnitude on SCP algorithms.
The first effect is common throughout scientific computing
and arises from the finite precision arithmetic used by
modern computers [13], [29], [32], [198], [199]. When vari-
ables have very different magnitudes, a lot of numerical
error can accumulate over the iterations of a numerical
optimization algorithm [29]. Managing variables of very
different magnitudes is a common requirement for numer-
ical optimal control, where optimization problems describe
physical processes. For example, the state may include the
energy (measured in Joules) and angle (measured in radi-
ans). The former might be on the order of 10°, while the
latter is on the order of 10° [200]. Most algorithms will
struggle to navigate the resulting decision space, which is
extremely elongated along the energy axis.

The second effect of different variable magnitudes
occurs in the formulation of the trust region constraint (45).
This constraint mixes all the states, inputs, and parameters
into a single sum on its left-hand side. We have long been
taught not to compare apples and oranges, and yet (without
scaling), this is exactly what is done in (45). Reusing the
previous example, a trust region radius n=1 means

84 IEEE CONTROL SYSTEMS » OCTOBER 2022

different things for an angle state than it does for an energy
state. It would effectively bias progress to the angle state
while allowing almost no progress in the energy state.
However, if the variables are scaled to nondimensionalize
their values, then the components in the left-hand side of
(45) become comparable, and the sum is valid. Thus, vari-
able scaling plays an important role in ensuring that the
trust region radius n is “meaningful” across states, inputs,
and parameters. Without variable scaling, SCP algorithms
usually have a very hard time converging to feasible solu-
tions.

There is now an understanding that variable scaling
should seek to nondimensionalize the state, input, and
parameter vector to make them comparable. Furthermore,
it should bound the values to a region where finite preci-
sion arithmetic is accurate. To this end, the following affine
transformation has been successfully deployed across a
broad spectrum of trajectory optimization research:

X =S5.X+cy, (93a)
u=S,i+cy (93b)
p=Spp+tcy (93¢)

where x e R", i1 e R", and p e R? are the new scaled vari-
ables. The user-defined matrices and offset vectors in (93)
are chosen so that the scaled state, input, and parameter
vectors are roughly bounded by a wunit hypercube:
x€[0,1]", 2 €[0,1]", and p €[0,1]%. Another advantage
of using a [0, 1] interval is that box constraint lower bounds
on the variables can be enforced “for free” if the low-level
convex solver operates on nonnegative variables [63].

To give a concrete example of (93), suppose that the state
is composed of two quantities: a position that takes values
in [100,1000]m and a velocity that takes values in
[-10,10] ms™". Then, choose S: = diag (900, 20) € R*** and
cx = (100, — 10) € R?. Most trajectory problems have enough
problem-specific information to find an appropriate scal-
ing. When exact bounds on possible variable values are
unknown, an engineering approximation is sufficient.

Discussion

The previous two sections make it clear that SCvx and
GuSTO are two instances of SCP algorithms that share many
practical and theoretical properties. The algorithms even
share similar parameters sets, which are listed in Table 2.
From a practical point of view, SCvx can be shown to have
superlinear convergence rates under some mild additional
assumptions. On the other hand, the theory of GuSTO allows
one to leverage additional information from dual variables
to accelerate the algorithm, providing quadratic convergence
rates. Finally, the theoretical analysis of both methods can be
extended to account for dynamics manifold-type constraints
without modifying the algorithms [69], [72]. For example, the
orientation of a quadrotor can be parameterized with a unit

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

quaternion by representing it as a 4D vector that is con-
strained to lie on the surface of a sphere [201]. The GuSTO
algorithm has also been extended to handle stochastic prob-
lem settings [71], [73].

Making Algorithm Modifications

The end of the “Lossless Convexification” section gave
advice for the development of new LCvx methods. For
LCvx, new developments are primarily motivated by the
fact that the existing set of LCvx results is restricted to a
rather specific set of trajectory generation problems.
Although SCP methods can solve a much more general set
of optimal control tasks, it is still true that particular prob-
lem instances might encourage the reader to introduce new
elements into the solution algorithm to improve perfor-
mance and handle new features. In this case, the reader
will wonder whether the properties of SCvx and GuSTO
will be inherited by the new algorithm.

Although theoretical convergence proofs of SCvx and
GuSTO do rely on a set of assumptions, these assumptions
are not strictly necessary for the algorithms to work well in
practice. Numerical experience suggests that SCP methods
can be deployed to solve diverse and challenging problem
formulations that do not necessarily satisfy the theory of
the previous two sections. It is often the case that what

works best in practice cannot (yet) be proved rigorously in
theory [186]. As Renegar writes regarding convex optimi-
zation [202, p. 51], “It is one of the ironies of the IPM litera-
ture that algorithms which are more efficient in practice
often have somewhat worse complexity bounds.” The same
applies for SCP methods, where algorithms that work
better in practice may admit weaker theoretical guarantees
in the general case [203].

The reader should thus feel free to modify and adapt the
methods based on the requirements of their particular prob-
lem. In general, a “modify first, prove later” approach to algo-
rithm development is suggested. For example, when using
SCvyx, it is possible to significantly speed up convergence by
entirely replacing the trust region update step with a soft
trust region penalty in the cost function. This results in a so-
called penalized trust region method that has been used suc-
cessfully to solve a variety of rocket landing and quadrotor
trajectory generation tasks [6], [52], [59], [62], [63], [65].

Trajectory Replanning

This article focuses on the problem of generating complete
trajectories between certain boundary conditions. Once gen-
erated, the trajectory remains fixed, and a separate feedback
control law is used to make the vehicle follow the trajectory
robustly and reliably [37], [204], [205]. Figure 1 shows a block

A summary of the user-selected parameters for the SCvx and GuSTO algorithms.

Parameter Dependence

SCvx N g g P A no M M P P P B PBor e &
GuSTO N g g P hm Ao Amax 7 Mo T B P Bsh Bar Yrai U k. & &
Parameter Key

N N Density of temporal discretization

q {1,2,2%, 00} Trust region norm

q {1,2,2% o0} Stopping criterion norm

P R"xRP - R, Positive definite penalty function

ha R-Rs Convex nondecreasing soft penalty function

A Riv Penalty weight

20, Amax >1 Minimum (initial) and maximum penalty weight

n Rais Initial trust region radius

10,71 Rt Minimum and maximum trust region radii

00, P1,P2 0,1) Trust region update parameters

Bsh, Bar >1 Trust region shrinking and growth factors

Y tail Rt Penalty weight growth factor

Y7 0, 1) Trust region exponential shrink rate

k. N First iteration when shrinking is applied

£ Rt Absolute trajectory change tolerance

er Rt Relative cost improvement tolerance

OCTOBER 2022 « IEEE CONTROL SYSTEMS 85

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

diagram of this setup. However, one may naturally be curi-
ous to apply the same SCP (or LCvx) methods to replan trajec-
tories at some frequency. This can allow the trajectory
generation algorithm to account for newly arriving informa-
tion about the vehicle’s state and the environment.

Several variations of the replanning idea have appeared
in the literature. One standard approach is to simply solve
the trajectory problem again, using the current trajectory as
the initial guess. As illustrated in Figure 18, the final time
is reduced such that only the remaining portion of the tra-
jectory is computed. This method was demonstrated for
real-time mobile obstacle avoidance with a quadrotor [206].
However, there is no guarantee, at present, of recursive fea-
sibility, meaning that a replanning step might fail to con-
verge despite a sequence of prior successful solutions.
Recursive feasibility and the associated task of character-
izing the “domain of attraction” for SCP convergence are
open research questions.

Funnel libraries offer an alternative methodology for
trajectory replanning that guarantees recursive feasibility.
The core idea is to synthesize robust controllers around a

Second Obstacle
Perceived at t,

Obstacle
New (Shorter)
/ Trajectory

FIGURE 18 lllustration of trajectory replanning with sequential
convex programming. At time t,, the quadrotor plans a trajectory to
the destination, with one obstacle in the environment. At time t,,
there is a tracking error in addition to a second obstacle that comes
into the quadrotor camera’s field of view. A new trajectory is planned
for the remaining segment of the flight, which avoids the new obsta-
cle. Attime t,, a third trajectory is generated that accounts for track-
ing error, this time with no new obstacles. At each solution instance,
the previous trajectory serves as the initial guess. The trajectories
are tracked using the quadrotor’s own feedback controllers.

86 IEEE CONTROL SYSTEMS » OCTOBER 2022

batch of SCP trajectories. Each controller induces a funnel-
like region of space, where it locally asymptotically stabi-
lizes the vehicle around the associated trajectory. By
composing these controllers and trajectories, a so-called
funnel library is created that can be used as a lookup table
for robust and optimization-free onboard trajectory gener-
ation. This is a relatively new approach, and examples of its
usage have appeared for vehicles such as quadrotors, fixed-
wing airplanes, and rocket-powered planetary landers
[180], [181], [207]-[209]. The primary challenge of this family
of algorithms is to efficiently fill the required portion of the
state space with funnels, which becomes an increasingly
challenging proposition for high-dimensional spaces. A
secondary challenge is numerical sensitivity since robust
controller synthesis relies on semidefinite programming,
which is the most algorithmically challenging form of
convex optimization.

Distinct from the approach of tracking trajectories with
a separate feedback controller, the theory and practice of
MPC have also been applied to simultaneous trajectory
generation and control. For example, the methodology was
used for planetary as well as asteroid rocket landing [125],
[210], [211]. Notably, the temporal aspect of MPC can be lev-
eraged to approximate a nonconvex trajectory generation
problem as a convex quadratic optimization problem at
each time step. Some research has also appeared on using
SCP to solve nonlinear (nonconvex) MPC problems. Appli-
cations include the control of hydroelectric power plants
[212], ground vehicles [213], swarm reconfiguration for
orbiting spacecraft [214], [215], continuous stirred-tank
chemical reactors, and electromagnetically actuated mass—
spring-damper systems [216]. The interested reader can
find more discussion of MPC for trajectory generation in
the dedicated survey articles [6] and [78].

To conclude this section, note that SCvx, GuSTO, and
related SCP methods have been used to solve a plethora
of trajectory generation problems, including reusable
launch vehicles [217]-[219], robotic manipulators [182],
[220], [221], robot motion planning [207], [222], [223], and
other examples mentioned in the introduction and at the
beginning of this part of the article. All these SCP vari-
ants and applications should inspire the reader to develop
his or her own SCP method that works best for a particu-
lar application.

APPLICATION EXAMPLES

The first and second parts of this article provided the theo-
retical background necessary to start solving nonconvex
trajectory generation problems by using LCvx, SCvx, and
GuSTO. This part is dedicated to doing just that: providing
examples of how trajectory generation problems can be
solved using the three algorithms. Rocket landing is cov-
ered first, followed by quadrotor flight with obstacle avoid-
ance and, finally, 6-DoF flight of a robot inside a space
station. The implementation code that produces the exact

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

plots in this part of the article is entirely available in the
SCP Toolbox linked in Figure 2.

Lossless Convexification: Three-Degrees-of-Freedom,
Fuel-Optimal Rocket Landing

Rocket-powered planetary landing guidance, also known
as powered descent guidance (PDG), was the original motiva-
tion for the development of LCvx. It makes use of several
LCvx results presented in the “Lossless Convexification”
section, making it a fitting first example. Work on PDG
began in the late 1960s [19] and has since been extensively
studied [224]. The objective is to find a sequence of thrust
commands that transfer the vehicle from a specified initial
state to a desired landing site without consuming more
propellant than what is available. Using optimization to
compute this sequence can greatly increase the range of
feasible landing sites and precision of the final landing
location [225]-[227].

LCvx for PDG was first introduced in [45] and [85],
where minimizing fuel usage was the objective. It was the
first time that convex optimization was shown to be appli-
cable to PDG. This discovery unlocked a polynomial time
algorithm with guaranteed convergence properties for
generating optimal landing trajectories. The work was
later expanded to handle state constraints [86], [93], [99],
minimize the landing site miss distance [102], include

FIGURE 19 The Masten Xombie rocket near the end of a 750-m
divert maneuver. (Source: [37, Fig. 1]; used with permission.)
(a) Close-up of the rocket executing an optimal divert trajectory.
(b) Preflight checkout by the Masten Space Systems staff.
(c) A zoomed-out view with the Mojave desert in the background.

nonconvex pointing constraints [S1], [89], and handle non-
linear terms in the dynamics, such as aerodynamic drag
and nonlinear gravity [46]. Today, it is known that SpaceX
uses convex optimization for the Falcon 9 rocket landing
algorithm [36]. Flight tests have also been performed using
LCvx in a collaboration between NASA and Masten Space
Systems [37], as shown in Figure 19.

An LCvx PDG example is now presented based on a
mixture of original ideas from [45] and [89]. Note that
LCvx considers the 3-DoF PDG problem, where the vehi-
cle is modeled as a point mass. This model is a good
approximation as long as the rotational and translational
states are weakly coupled such that the attitude can be
changed rapidly and without significantly perturbing the
vehicle’s position. This is a valid approximation for many
vehicles, including quadrotors and rockets with high atti-
tude control authority. For example, the Mars Science Lab-
oratory uses differential throttling for attitude control
and can be approximated in this way [225], [228]. In the
3-DoF model, the thrust vector is taken as the control
input, where its direction serves as a proxy for the vehi-
cle’s attitude.

Let us begin by stating the raw minimum-fuel 3-DoF
PDG problem:

min [Te(6) L, (94a)
s.t.i(t) = o(b), (94b)
o) = g+ ;g; 0 () —2070(), (940
m(t) =—a| Te(t) [, (%4d)
Prin <[Te(t) [, < pmax, (O4e)
Te(t) "e- = || Te(t) [,cos (vy), (94f)
Hgsr (t) < hgs, (%94g)
lo®) |, < Vmax, (94h)
Mary < m(ty), (941)
7(0) = 10, v(0) = vo, M (0) = Mer, (94))
r(t) =o(ty) = 0. (94K)

The vehicle translational dynamics correspond to a
double integrator with variable mass, moving in a constant
gravitational field and viewed in the planet’s rotating frame.
In particular, r € R® is the position, v € R’ is the velocity,
g € R? is the gravitational acceleration, and w € R? is the
planet’s constant angular velocity. The notation @™ denotes
the skew-symmetric matrix representation of the cross
product X (). The mass m € R is depleted by the rocket
engine according to (94d), with the fuel consumption rate

ozél

. 95
Toge ©5)

OCTOBER 2022 « IEEE CONTROL SYSTEMS 87

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

where g.~9.807 ms™ is Earth’s standard gravitational
acceleration and Isp is the rocket engine’s specific impulse.

As illustrated in Figure 20, T. € R? is the rocket engine
thrust vector, which is upper and lower bounded via (94e).
The lower bound was motivated in “Convex Relaxation of
an Input Lower Bound.” The thrust vector, and therefore
the vehicle attitude, also has a tilt angle constraint (94f)
that prevents the vehicle from deviating by more than
angle y, away from the vertical. Following the discussion
in “Landing Glideslope as an Affine State Constraint,” an
affine glideslope constraint is also imposed via (94g) with
a maximum glideslope angle ygs. The velocity is con-
strained to a maximum magnitude vmax by (94h). The final
mass must be greater than may (94i), which ensures that
no more fuel is consumed than what is available. Con-
straints (94j) and (94k) impose fixed boundary conditions
on the rocket’s state. In particular, the starting mass is
Mwet > Mdry-

To begin the LCvx process, the standard input slack
variable o € R from “Convex Relaxation of an Input Lower
Bound” is introduced to remove the nonconvex lower
bound in (94e). As a consequence, the familiar LCvx equal-
ity constraint appears in (96f). Following “Convex Relax-
ation of an Input Pointing Constraint,” this also replaces
[Te(t) |, in (94f) with o (f) in (96g), resulting in the follow-
ing problem:

Initial Position Feasible Thrust Set

{Tse R® :pin < ITo(t)llo < proasd

Prmax
Pmin

Cryr}lr}f v o(t)dt, (96a)
s.ti() = o(b), (96b)
0 = 3+ SIS

i (t) =—ao (t), 96d)
Pmin < 0 (1) < Prmas,y (96e)
IT-t)], < o (b), 6f)
T.(t)"é:= o (t)cos(yy), (96g)
Hgsr(f) < hys, (96h)
lo®) |, < Vmax, (96i)
Mary < m(ty), (96j)
r(0) = ro, ©(0) = vo, M (0) = Mwer, (96k)
r(tp) =o(ty) =0 6l)

Next, the nonlinearity Tc/m in (94c) must be approxi-
mated. To this end, [45] showed that the following change
of variables can be made:

£ uele s onim) 97)

2o

Feasible Pointing Set
{T,e R®

T ()6, 2 ITs(t) o cos (1,)}

Feasible Glideslope Set

{r(t) € R® :Hyer(t) < hgs}
\%ez

FIGURE 20 The three-degrees-of-freedom powered descent guidance problem, showing some of the relevant constraints on the rocket-
powered lander’s trajectory. The thrust direction T.(t) /|| To(t) [, servers as a proxy for the vehicle attitude.

88 IEEE CONTROL SYSTEMS » OCTOBER 2022

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

Using the new variables, note that

Z_Eg = af(t) = 2(t) = 2(0) —afot‘f(f)df'

98)
Since the cost in (96a) maximizes m(ty) and because a > 0,
an equivalent cost is to minimize fo ff (t)dt. The new vari-
ables linearize all the constraints except for the upper
bound part of (96e). In the new variables, (96e) becomes
pmine 20 < E(1) < pmaxe Y. 99)

To keep the optimization problem an SOCP, it is desir-
able to also do something about the lower bound in (99),
which is a convex exponential cone. In [45], it was shown
that the following Taylor series approximation is accurate
to within a few percentage points and therefore acceptable:

fmin(B] 1= 82 (1) + %éz(t)z] <&@, (100a)
tmax (D [1 =82 (1)] = £(8), (100b)
where
Umin (F) = pmine ™", (101a)
Umax (t) = pmaxe ™, (101b)
8z(t) = z(t) — zo(t), (1010)
zo(t) = In(Mwet — APmaxt). (101d)

The reference profile zo(-) corresponds to the maximum
fuel rate; thus, zo(t) lower bounds z(f). To ensure that physi-
cal bounds on z(f) are not violated, the following extra con-
straint is imposed:

zo(t) < z(t) < In(Mwet — APmint). (102)
The constraints (100) and (102) together approximate (99)
and have the important property of being conservative
with respect to the original constraint [45, Lemma 2].
Hence, using this approximation will not generate solutions
that are infeasible for the original problem. The finalized convex
relaxation of (94) can now be written:

min fo Yemdt, (103a)
sti(t) = o(b), (103b)
o) =g+u(t)— o o*r{t) - 20 v(t), (103¢)

() =—ak(h), (103d)
fmin (D[1= 82 (1) + %52(1?)2] <&@, (103e)
Lmax (D[1 = 82(8)] = £(1), (103f)
luel, < £, (103g)
u(t)"e.= E(t)cos(y,), (103h)
Heer () < Iigs, (103i)

lo@®) [, < vmax, (103j)
In(maw) < z(t), (103k)
zo(t) < z(t) < In(Mwet — Pmint), (1031)
7(0) = 1o, v(0) = vo, 2(0) = In (Mwet), (103m)
r(t) =0(ty) = 0. (103n)

Several conditions must now be checked to ensure
LCvx, that is, the solution of (103) is globally optimal for
(94). To begin, view z in (103d) as a “fictitious” state that is
used for concise notation. In practice, it is explicitly known
that z(t) =In(mwe) — o fo t.f(t)dt, and thus, every instance
of z(t) in (103e)—(1031) can be replaced with this expression.
Therefore, z is not considered part of the state. Furthermore,
(103e), (103f), (103k), and (103l) are input and not state con-
straints. Defining the state as x = (r,v) € R®, the state-space
matrices are

|t o Blr)e-
A_ _wxwx _2a)><,B— 13 E—B

The pair {A, B} is unconditionally controllable, and hence,
Condition 1 is satisfied. Condition 3 must also be verified
due to the presence of the pointing constraint (103h). In this
case 71, = ¢;, and N =[é, &,]. Condition 3 holds as long as
w™é. # 0, which means that the planet does not rotate about
the local vertical of the landing frame.

The glideslope constraint (103i) can be treated either via
Condition 5 or by checking that it can be only instantaneously
active. In this case, the latter can be proved by considering
a force balance in the glideslope plane’s normal direction
flgs, as illustrated in Figure 21. To aid the proof, recall that
the optimal thrust profile for the rocket landing problem is
a bang-bang one [45]. This allows for distilling the verifi-
cation down to a conservative condition that the following
inequalities hold for all 6 €[7/2 —yp — Ve, 7/2 4+ 7y — Ygs:

(104)

Pmin€0s (6) < Mary || & ||, SIn (Y gs), (105a)

FIGURE 21 A force balance in the normal direction ngs can be used
to guarantee that the glideslope constraint can be activated only
instantaneously.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 89

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

(105b)

For the problem parameters (107) of this example, the pre-
ceding inequalities hold. This means that if the rocket is
situated on the glideslope, either the glideslope constraint
will be violated at the next time step when using minimum
thrust, or a higher glideslope angle will be achieved when
using maximum thrust. Therefore, (103i) can be only
instantaneously active and does not pose a threat to LCvx.

Condition 2 must also be checked, which relates to the
transversality condition of the maximum principle [11],
[12], [104]. In the case of (103), the current problem has
mltg]=0 and b[ts]=x(tr). Hence,

Prmax €08 (6) > et g ||, Sin (V) -

0eR°®
E(tp)

MmMyicvx =

I
| Biw=| | (106

Thus, as long as £(ts) > 0, Condition 2 holds. Since £(ty) >0
is guaranteed by the fact that the lower bound in (100) is greater
than the exact lower bound pmine **” >0 [45, Lemma 2],
Condition 2 holds.

The remaining constraint to be checked is the maximum
velocity bound (103j). Although it can be written as the qua-
dratic constraint vms2v(t)"v(t) <1, the dynamics (103b)
and (103c) do not match the form (17b) and (17c) required by
the LCvx result for quadratic state constraints. Thus, the
more restricted statement for general state constraints in
Theorem 5 must be used. According to Theorem 5, LCvx
will hold as long as the maximum velocity bound (103j) is
activated, at most, a discrete number of times. In summary,
the solution of (103) is guaranteed to be globally optimal for
(94) as long as (103j) is never persistently active.

Alanding trajectory example is obtained by solving (103)
using a ZOH discretized input signal with a At=1s time
step (see “Discretizing Continuous-Time Optimal Control
Problems”). Let us solve the problem with the following
numerical parameters:

g=—3.71¢. ms~, mary = 1505 kg, (107a)
Mwet = 1905 kg, I =225, (107b)

© = (356, + 2610757, (1070)

pomin = 4.971 KN, prmax = 13.258kN, (107d)
Yes =867, yp=40¢, Umax =500km/h ", (107e)
ro= 28, +1.5¢, km, (107f)

00 = 2888, + 1082, — 2702 km /h™". (107g)

Golden search [48] is used to find the optimal time of flight
t This is a valid choice because the cost function is unimodal
with respect to #;[102]. For the problem parameters in (107), an
optimal rocket landing trajectory is found with a minimum-
fuel time of flight t7 = 75 s. Figure 22 visualizes the computed
optimal landing trajectory. Figure 22(a) clearly shows that
the glideslope constraint is not only satisfied, it is also acti-
vated only twice (once during midflight and another time

90 |EEE CONTROL SYSTEMS » OCTOBER 2022

at touchdown), as required by the LCvx guarantee. Figure 22(c)
clearly shows that the velocity constraint is never activated.
Hence, in this case, it does not pose a threat to LCvx.

Several other interesting views of the optimal trajectory
are plotted in Figure 22(d)—(g). In all cases, the state and
input constraints of (94) hold. The fact that (103) is an LCvx
of (94) is most evident during the minimum-thrust segment
from approximately 40 to 70 s in Figure 22(f). Here, it is
important to realize that || Tc(f) |, < pmin is feasible for the
relaxed problem. The fact that this never occurs is a conse-
quence of the LCvx guarantee that (103g) holds with equal-
ity. In conclusion, it is worth emphasizing that the trajectory
presented in Figure 22 is the globally optimal solution to
this rocket landing problem. This means that one can do no
better for the given problem parameters and description.

Sequential Convex Programming: Quadrotor

Obstacle Avoidance

Now consider trajectory generation for problems that cannot
be handled by LCvx. The objective of this first example is to
compute a trajectory for a quadrotor that flies from one
point to another through an obstacle-filled flight space.
This example is sourced primarily from [52], and a practical
demonstration is shown in Figure 23.

The quadrotor is modeled as a point mass, which is a rea-
sonable approximation for small and agile quadrotors whose
rotational states evolve over much shorter time scales than the
translational states [45]. The equations of motion are expressed
in an East-North-Up (ENU) inertial coordinate system, and
the state vector is composed of the position and velocity.
Using a simple double-integrator model, the continuous-time
equations of motion are expressed in the ENU frame as

Ft) =a(t) — g, (108)

where r € R® denotes the position, g €R is the (constant)
acceleration due to gravity, 71=(0,0,1)€R’ is the “up”
direction, and a () € R? is the commanded acceleration, which
is the control input.

The time t spans the interval [0, t/]. Because the previ-
ous section on SCP used a normalized time t &[0, 1], t is
called the absolute time, and a special font is used to denote
it. The trajectory duration is optimized, and the following
constraint is imposed to keep the final time bounded:

trmin < tf ="t fmax, (109)

where tfmin € R and fsmax € R are user-defined parameters.
Boundary conditions on the position and velocity are
imposed to ensure that the vehicle begins and ends at the
desired states:

r(0)=ro, 7(0)=0y, (110a)

r(ty)=rs 7(tf)=vy. (110b)

The magnitude of the commanded acceleration is limited
from above and below by the electric motor and propeller

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

1.75

400
350 1.5 1
< 300 1.25 A
€ €
£ 2508 & 11
= Y
> 20008 075,
g £ R
® 100
0.25 -
50
0 4
0.0 0.5 1 1.5 2 25 &
Downrange (km)
(a)
1.75 600
1.5 1 . [e e
=
125 = — vt
g 1 5’2 - Vil =
(0] Tc,k % d @
S 0.75 1| —r(1) < 300 . 8
< 054 "' 8 200 -
Hgsrk= hgs 4 (%
0.25 1 //\ 100 -
0 i s S 0
-0.5 0 0.5 0 20 40 60 75 0 20 40 60 75
Crossrange (km) Time (s) Time (s)
(b) (c) (d)
50 16 16
14 - 14 1
40 | R ™
e U —0 - 2 g2
[0) - = N
E} 30 | L _] é 10 q;’ 10 1
< h | % 81 s 8
2] = G
= 20]]]7 IJ £ 67 - _ B 6
& 1] 4 < 4]
10 - 1 =
! 2 2
0 T T T 0 T T T 0 T T T
0 20 40 60 75 0 20 40 60 75 0 20 40 60 75
Time (s) Time (s) Time (s)
— arccos (8] T ()/|Ts(D), — |To ()], — élgmy (hover)
- arccos (8] Ty /| To ko ATekds ok — &I T) - & Tk
(e) () (9@

FIGURE 22 Various views of the globally optimal rocket landing trajectory obtained via lossless convexification (LCvx) for (94). Circular
markers show the discrete-time trajectory directly returned from the convex solver. Lines show the continuous-time trajectory, which is
obtained by numerically integrating the zeroth-order hold discretized control signal through the dynamics (94b)—(94d). The exact match
at every discrete-time node demonstrates that the solution is dynamically feasible for the actual continuous-time vehicle. (a) The side
view of the optimal landing trajectory. The glideslope constraint (104i) is activated at a single time instance in midflight. (b) The front-on
view of the optimal landing trajectory. (c) The velocity history. Constraint (104)) is never activated. (d) The mass history. The vehicle uses
a feasible amount of fuel. (e) The pointing angle history. Constraint (104h) gets activated. (f) The thrust magnitude history. The LCvx
equality constraint (97f) is tight. (g) The vertical thrust projection. The rocket never hovers.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 91

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

configuration, and its direction is constrained to model a
tilt angle constraint on the quadrotor. In effect, the accelera-
tion direction is used as a proxy for the vehicle attitude.
This is an accurate approximation for a “flat” quadrotor
configuration, where the propellers are not canted with
respect to the plane of the quadrotor body. Specifically, the
following control constraints are enforced:

(111a)
(111b)

amin < [[a(®) [, < amax,

[at)]l,cosOmx <nTa(t),

where 0 < amin < amax are the acceleration bounds and Omax €
(0, 180°] is the maximum angle by which the acceleration
vector is allowed to deviate from the “up” direction.

Finally, obstacles are modeled as 3D ellipsoidal keep-out
zones described by the following nonconvex constraints:

IHG® =) ,=1 j=1,..., 1w, (112)

where c; € R® denotes the center and H; € S1: defines the
size and shape of the jth obstacle. Note that the formulation
allows the obstacles to intersect. Using the preceding equa-
tions, the following free final time optimal control problem
is to be solved:

.1 [2
mint;' []a) [dt (113a)

s.t. (108)~(112). (113b)

The cost function (113a) seeks to minimize the average
specific (that is, per-unit mass) control power, normalized
by the flight time. The normalization yields a measure of
the average control power sustained over a 1-s time inter-
val. For short, refer to this as a “minimum control power”
cost. In the literature, this cost is sometimes called “mini-
mum control energy” despite the slight misnomer.

Due to the presence of nonconvex state constraints (112),
only embedded LCvx applies to the preceding problem. In

(a) (b)

FIGURE 23 A quadrotor at the Autonomous Controls Laboratory,
University of Washington, executing a collision-free trajectory com-
puted by sequential convex programming [52], [245], [246]. (a) The
quadrotor at the start of its trajectory in the indoor flight space. (b)
A graphical user interface showing an obstacle-avoiding trajectory
planned by SCP that is to be flown.

92 |EEE CONTROL SYSTEMS » OCTOBER 2022

particular, LCvx can be used to handle the nonconvex input
lower bound in (111a) along with the tilt constraint in (111b).
This removes some of the nonconvexity. However, it is only
a partial convexification, which still leaves behind a non-
convex optimal control problem. Thus, SCP techniques
must be used for the solution.

SCvx Formulation
Begin by demonstrating how SCvx can be used to solve (113).
The first and main step is to cast the problem into the template
of (38). Once this is done, the rest of the solution process is com-
pletely automated by the mechanics of the SCvx algorithm,
as described in the previous section. To make the notation
lighter, the argument of time is omitted whenever possible.
Start by defining the state and input vectors. For the
input vector, note that the nonconvex input constraints in
(111) can be convexified via embedded LCvx. In particular,
the relaxation used for (10) can losslessly convexify both
input constraints by introducing a slack input o € R and
rewriting (111) as

min < 0 < Amax, (114a)
lal,<o, (114b)
0COSOmax <114, (114¢)

where (114b) is the familiar LCvx equality constraint. Thus,
the following state and “augmented” input vectors can

be defined:
x:meRf’, u:[”]eR4. (115)

i o

Next, one must deal with the fact that (38) uses normal-
ized time t € [0,1], while (113) uses absolute time t € [0, /].
To reconcile the two quantities, a 1D parameter vector

p € R is used. The parameter defines a time dilation such
that the following relation holds:

t=rpt, (116)

from which it follows that p=t;. In absolute time, the
dynamics are given directly by writing (108) in terms of
(115), which gives a set of time-invariant, first-order, ordi-
nary differential equations (ODEs):

flx,u) = . (117)

7
a—gn

For (38), convert the dynamics to normalized time by
applying the chain rule:

dr_drdt_pinu), (118)
which yields the dynamics (38b) in normalized time:
fle,u,p) = pflx,u). (119)

The convex path constraints (38c) and (38d) are simple to
write. Although there are no convex state constraints, there

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

are convex final time bounds (109). These can be included
as a convex state path constraint (38c), which is mixed in the
state and parameter. Using (116), define the convex state
path constraints as
X={(p) ER*XR:tsmin <P <tfmax}- (120)
On the other hand, the convex input constraint set I/ is
given by all the input vectors that satisfy (114). The noncon-
vex path constraints (38e) are given by the vector function
s:R® -~ R™*, whose elements encode the obstacle avoid-
ance constraints:
i) =1=[Hir—c)ly j=1,..., tow. (121)
It is worthwhile to mention how to evaluate the Jacobian
(43e) for (121). Suppose that a reference position trajectory
{7(t)}} is available, and consider the jth obstacle constraint in
(121). The following gradient then allows for evaluating (43e):

H/H;(r—c))

VSO =T =),

(122)

The boundary conditions (38f) and (38g) are obtained
from (110):

ie(x(0), p) = [:((8)) :;ﬂ (123a)
ge(x(1), p) = [:((11)) :;’;{ . (123b)

Finally, the cost (113a) is converted into the Bolza form
(39). There is no terminal cost; hence, ¢ = 0. On the other
hand, the direct transcription of the running cost is
[(x,u,p) = o> since the time dilation p and inverse final
time t}l cancel out when the integral is expressed in normal-
ized time. However, because SCvx augments the cost with
penalty terms in (48), it is best to normalize the running cost
by its nominal value to make it roughly equal to one for a
“mild” trajectory. This greatly facilitates the selection of the
penalty weight 1. By taking the nominal value of ¢ as the
hover condition, the following running cost is defined:

T (x,1,p) = (2)2. (124)

8
This completes the specialization of (38) for the quadrotor
obstacle avoidance problem. The only remaining task is to
choose the SCvx algorithm parameters listed in Table 2.
The rest of the solution process is completely automated by
the general SCvx algorithm description in the “Sequential
Convex Programming” section.

GuSTO Formulation
The GuSTO algorithm can also be used to solve (113). The
formulation is almost identical to SCvx, which underscores

the fact that the two algorithms can be used interchange-
ably to solve many of the same problems. The quadratic
running cost (67) encodes (124) as follows:

S(p) = diag(0,0,0, g7%), (125a)
{(x,p) =0, (125b)
gx,p)=0. (125¢)

The dynamics (117) can also be cast into the control
affine form (68):

folx) = _;ﬁ, (126a)
ﬁ(x)=[g], i=1,2,3, (126b)
fa(x) =0, (1260)

where e; € R® is the ith standard basis vector. The reader
may be surprised that these are the only changes required
to convert the SCvx formulation from the previous section
into a form that can be ingested by GuSTO. The only
remaining task is to choose the GuSTO algorithm parame-
ters listed in Table 2. Just like for SCvx, the rest of the solu-
tion process is completely automated by the general GuSTO
algorithm description in the “Sequential Convex Program-
ming” section.

Initial Trajectory Guess
The state trajectory initial guess is obtained by a simple
straight-line interpolation, as provided by (41):
H=(1-t [TO]H[”] for t € [0,1 127
x(B)=1=b |, o) for €[0,1]. (127)

The initial parameter vector, which is just the time dilation, is
chosen to be in the middle of the allowed trajectory durations:

_ tf,mir\ + tf,max

5 (128)

The initial input trajectory is guessed based on physical
insight about the quadrotor problem. Ignoring any particu-
lar trajectory task, it is known that the quadrotor must gen-
erally support its own weight under the influence of
gravity. Thus, a constant initial input guess is chosen that
would make a static quadrotor hover:

a(ty=gn, o(t)=g, forte[0,1]. (129)
This initial guess is infeasible with respect to both the
dynamics and the obstacle constraints, and it is extremely
cheap to compute. The fact that it works well in practice
highlights two facts: SCP methods are relatively easy to ini-
tialize, and they readily accept infeasible initial guesses.
Note that in the particular case of this problem, an initial
trajectory could also be computed using a convex version of

OCTOBER 2022 « IEEE CONTROL SYSTEMS 93

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

the problem obtained by removing the obstacle constraints
(112) and applying the LCvx relaxation (114).

Numerical Results

The preceding discussion defines a specialized instance of
(38) and an initialization strategy for the quadrotor obstacle
avoidance problem. The solution is obtained via SCP
according to the general algorithm descriptions for SCvx
and GuSTO. For temporal discretization, use the FOH

The algorithm parameters for the quadrotor obstacle
avoidance example.

Problem Parameters

tr, min 0 s Minimum final time

tr, max 2.5 s Maximum final time
g 9.81 ms—2 Gravity

@min 0.6 ms2 Minimum acceleration
Amax 23.2 ms 2 Maximum acceleration
Omax 60 ° Maximum tilt angle
C1 (1,2,0) m Center of obstacle 1
C2 (2,5,0) m Center of obstacle 2
H4 diag(2,2,0) m- Shape of obstacle 1
H» diag(1.5,1.5,0) m- Shape of obstacle 2
ro (0,0,0) m Initial position vector
Vo (0, 0,0) ms Initial velocity vector
Iy (2.5, 6,0) m Final position vector
Vi (0,0, 0) ms™ Final velocity vector

Algorithm Parameters

SCvx GuSTO
N 30 30
q oo o0
f] e} oo
P (48) (48)
ha (71)
2 30
Ao, Amax 10%,10°
n 1 10
7o, 171 107310 107310
Po,P1,P2 0,0.1,0.7 0.1,0.9, -
Bsh,Bar 2,2 2,2
Y fail 5
Y% 0.8
k. 6
£ 0 0
er 0 0

94 |EEE CONTROL SYSTEMS » OCTOBER 2022

interpolating polynomial method from “Discretizing Con-
tinuous-Time Optimal Control Problems.” The algorithm
parameters are provided in Table 3, and the full implemen-
tation is available in the code repository linked in Figure 2.
An embedded conic solver (ECOS) is used as the numerical
convex optimizer at @ in Figure 11 [229]. The timing results
are obtained on a Dell XPS 13 9260 laptop powered by an
Intel Core i5-7200U CPU clocked at 2.5 GHz. The computer
has 8 GiB of low-power double data rate third generation
(LPDDR3) random-access memory and 128 KiB level 1, 512
KiB level 2, and 3 MiB level 3 caches.

The convergence process for both algorithms is pre-
sented in Figure 24. The convergence tolerances £ = £ = 0
are used, and both algorithms are terminated after 15 itera-
tions. At each iteration, the algorithms must solve subprob-
lems of roughly equal sizes, as documented in Table 4.
Differences in the sizes arise from the slightly different
subproblem formulations of each algorithm. Among the
primary contributors are how artificial infeasibility and
unboundedness are treated as well as differences in the
cost penalty terms. Notably, GuSTO has no one-norm cones
because it does not have a dynamics virtual control term
like SCvx [compare (54b) and (81b)].

Despite their differences, Figure 24 shows that GuSTO
and SCvx are equally fast. Notably, temporal discretization
takes much longer than actually solving the SCP subprob-
lem. This is a simple consequence of the fact that discretiza-
tion is done by unoptimized Julia code, whereas the
solution is computed using the optimized C code of the
ECOS solver. The timing results are thus not representative
of the runtime distribution between the problem formula-
tion and solution. Instead, the roughly equal per-iteration
times show that the subproblem difficulty stays constant
across iterations. Furthermore, this timing is a conservative
upper bound for an optimized SCP implementation [63].
For example, SCP for similar quadrotor trajectory genera-
tion tasks has been demonstrated to execute in as few as 40
ms on embedded platforms [52].

The trajectory solutions for SCvx and GuSTO are given
in Figures 25 and 26. The fact that these practically identi-
cal trajectories were produced by two different algo-
rithms can be spotted only from the different convergence
histories on the left side of Figure 25. These histories
show how the SCP algorithms morph an infeasible initial
guess into a feasible and locally optimal trajectory. Recall
that this is a free final time problem, and both algorithms
are able to increase the initial guess (128) until the maxi-
mum allowed flight time t¢max. This is optimal since a
quadrotor minimizing the average specific control power
per unit time (113a) will opt for a slow trajectory with the
lowest acceleration.

Finally, note that temporal discretization results in some
clipping of the obstacle keep-out zones in Figure 25. This is
the direct result of imposing constraints only at the dis-
crete-time nodes. Various strategies exist to mitigate the

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

clipping effect, such as increasing the radius of the keep-
out zones, increasing the number of discretization points,
imposing a sufficiently low maximum velocity constraint,
and numerically minimizing a function related to the state
transition matrix [192], [193].

Sequential Convex Programming:
Six-Degrees-of-Freedom Free Flyer

Having demonstrated the use of LCvx on a relatively
simple quadrotor trajectory, a substantially more challeng-
ing example is now presented that involves nonlinear
6-DoF dynamics and a more complex set of obstacle avoid-
ance constraints. The objective is to compute a trajectory
for a 6-DoF free-flying robotic vehicle that must navigate
through an environment akin to the International Space
Station (ISS). Free flyers are robots that provide assistance
to human operators in microgravity environments [230],

N
|
x| %
J X
x|=
c 10724
ke
=
o
N
g 1074 3
C
(0]
o
=
3
e 123456 7 8 91011121314
lteration Number
F 1
0.06 1 Py
O ¥
= Hnﬂ - 0.8
ke
© i
:@ 0.04 L 0.6
@
g - 0.4
£ 0.02
= - 0.2

1234567 8 91011121314
lteration Number

Discretize == Formulate

(a)

mm Solve

[231]. As shown in Figure 27, the Astrobee, Japan Aerospace
Exploration Agency Internal Ball Camera, and European
Space Agency Crew Interactive Mobile Companion are

A breakdown of the subproblem size for the quadrotor
obstacle avoidance example.

SCvx GuSTO
Variables 640 542
Affine equalities 186 186
Affine inequalities 240 360
One-norm cones 29 0
Infinity-norm cones 61 31
Second-order cones 30 30

N
% |«

x| %
1 x
X |=—10713

=

2

3 10731

(%))

€

(<

(T

g 107°7%

c

3

e 123456 7 8 91011121314

Iteration Number
0.061 B
5 @ ﬂ"' O
o < 0.8 o
E % 0.04 £
F - - 065
2 = 2
8 o s
S o 043
E o 0.02- g
3 E 3
O F L 0.2 ©
o_

1234567 891011121314
lteration Number

Discretize == Formulate

(b)

== Solve

FIGURE 24 The convergence and runtime performance for the quadrotor obstacle avoidance problem. Both algorithms take a similar
amount of time and number of iterations to converge to a given tolerance. The top row shows the distance of the concatenated solution
vector at the ith iteration, X', from its final converged value, X*. The runtime subplots in the bottom row show statistics on algorithm perfor-
mance over 50 executions. The solution times per subproblem are roughly equal, which shows that the subproblem difficulty stays constant
over the iterations. “Formulate” measures the time taken to parse the subproblem into the input format of the convex optimizer, “Discretize”
measures the time taken to temporally discretize the linearized dynamics (44b), and “Solve” measures the time taken by the core convex
numerical optimizer. Each bar shows the median time. The trace across the diagonal shows the cumulative time obtained by summing the
runtimes of all preceding iterations. Its markers are placed at the median time, and the error bars show the 10% (bottom) and 90% (top)
quantiles. Because small runtime differences accumulate over iterations, the error bars grow with the iteration count. (a) SCvx. (b) GuSTO.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 95

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

three recent successful deployments of such robots. Their
goals include filming the ISS, assisting with maintenance
tasks, and looking after the astronauts” mental health [232]-
[234]. The particulars of this SCP example are taken pri-
marily from [50].

The quadrotor in the previous section was modeled as a
point mass whose attitude was approximated by the direc-
tion of the acceleration vector. The free flyer, on the other

hand, is a more complex vehicle that must generally perform
coupled translational and rotational motion by using an
assembly of multiple thrusters. Maneuvers may require point-
ing a camera at a fixed target and emulating nonholonomic
behavior for the sake of predictability and operator comfort
[235], [236]. This calls for whole-body motion planning, so
the free flyer is modeled as a full 6-DoF rigid body with both
translational and rotational dynamics.

4
6 - 6
3.5
5 a7 5 a0)
4 3
E 4 € 4- = Q)
S o - 25 £
c c - =S
2 4 2 4 . =
g g - 3
£ £ S
2 24 ? § 2 4 1.5 o
o
-
4 1
14 @ i1
o .
o Initial r r
i e Converged r a (Scaled) 0.5
O [Obstacle 0 1 1 Obstacle
T T T T T T T O
-0.5 0.5 1.5 2.5 3.5 -0.5 0.5 15 2.5 &5
East Position ry (m) East Position ry (m)
(a)
6 6 4
%
o 815
5 3 5 A
d y 3
E 4 > E 4 e 7
o o S - 25 E
5 d 5 -~ =
=) 2 o .
I I %91 < : =
o S o ~~ =
= = S
2 24 o@ g 255 15 2
o N
[]
14 o 14 L
: Initial r o« r
§ e Converged r —— a(Scaled) 0.5
0+ [Obstacle 0 1 1 Obstacle
T T T T T T T 0
-0.5 0.5 1.5 2.5 815 -0.5 0.5 1.5 2.5 3.5

East Position ry (m)

(b)

East Position ry (m)

FIGURE 25 The position trajectory evolution (left) and final converged trajectory (right) for the quadrotor obstacle avoidance problem. The
continuous-time trajectory in the right plots is obtained by numerically integrating the dynamics (130). The fact that this trajectory passes
through the discrete-time subproblem solution confirms dynamic feasibility. The red lines in the right plots show the acceleration vector,
as seen from above. (a) SCvx. (b) GuSTO.

96 IEEE CONTROL SYSTEMS » OCTOBER 2022

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

To describe the equations of motion, introduce two ref-
erence frames. First, let F7 be an inertial reference frame
with a conveniently positioned, but otherwise arbitrary,
origin. Second, let F5 be a rotating reference frame affixed
to the robot’s center of mass, whose unit vectors are aligned
with the robot’s principal axes of inertia. Here, Fz is the
inertial frame, and g is the body frame. Correspond-
ingly, vectors expressed in Fr are inertial vectors and
carry an Z subscript (for example, x7), while those
expressed in Fz are body vectors and carry a 3 subscript
(for example, x5). For the purpose of trajectory generation,
the orientation of Fz with respect to Fz is encoded using
a vector representation of a unit quaternion, qs.z € R*.

The convention is to represent the translational dynam-
ics in Fz and the attitude dynamics in F5. This yields the
following Newton-Euler equations that govern the free
flyer’s motion [59]:

iz (t) =vz(t), (130a)

br(t) = m Tz (1), (130b)

gs-1(0) = 395-2() ®@s(0) (1300
as(t) =] (Ms(t) — ws(t)“Jos(t)). (130d)

(&}

= N N
o o o o
L

—_

Acceleration ||al|, (m/s?)

o

A o))
o o
L L

N
o
L

Tilt arccos (h'a ||a\|;1) ©)

o

0 0.5 1 15 2

Time (s)

2.5

FIGURE 26 The acceleration norm and tilt angle time histories for
the converged trajectory of the quadrotor obstacle avoidance prob-
lem. These are visually identical for SCvx and GuSTO, so a single
plot is shown. The continuous-time acceleration norm is obtained
from the first-order hold assumption (S28), while the continuous-
time tilt angle is obtained by integrating the solution through the
nonlinear dynamics. Similar to Figure 22, the acceleration time his-
tory plot confirms that lossless convexification holds [that is, con-
straint (114b) holds with equality].

The state variables in the preceding equations are the iner-
tial position rz € R?, inertial velocity vz € R®, aforemen-
tioned unit quaternion attitude 5.z € R*, and body angular
velocity ws € R®. The latter variable represents the rate at
which Fp rotates with respect to Fz. The free flyer’s motion
is controlled by an inertial thrust vector Tz € R®and a body
torque vector Mp € R®. The physical parameters of the free
flyer (the mass m > 0 and principal moment of inertia matrix
J € R*) are fixed. The dynamics are written in absolute
time ¢ that spans the interval [0, ¢s]. The final time ¢ is opti-
mized and bounded using the previous constraint (109).

The initial and final conditions for each state are speci-
fied in this example to be fixed constants:

rz(0) =ro, rz(ts) =775, (131a)
vz(0) =vo, vz(ty)=vy, (131b)
q5-z(0) =qo, qs-z(ty) =4y, (131c)
ws(0)=0, ws(ty) =0. (131d)

FIGURE 27 Three examples of free-flyer robots at the International
Space Station. (a) The Japan Aerospace Exploration Agency Inter-
nal Ball Camera, with Peggy Whitson. (b) The European Space
Agency/German Aerospace Center/Airbus/IBM Crew Interactive
Mobile Companion, with Alexander Gerst. (c) The Naval Postgradu-
ate School/NASA Astrobee, with Victor Glover [233], [234], [247].
These robots provide a helping hand aboard the space station.
Photos used with permission.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 97

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

The free-flyer robot implements a 6-DoF holonomic actu-
ation system based on a centrifugal impeller that pressurizes
air, which can then be vented from a set of nozzles distrib-
uted around the body [237], [238]. Holonomic actuation
means that the thrust and torque vectors are independent of
the vehicle’s attitude [239]. The capability of this system can
be modeled by the following control input constraints:

ITz(@) I, < Tmax, [M(1) [, < Mmax, (132)
where Tmax > 0 and Mmax > 0 are user-defined constants
representing the maximum thrust and torque.

This problem involves both convex and nonconvex state
constraints. Convex constraints are used to bound the velocity
and angular velocity magnitudes to user-defined constants:

[oz(V) [, < vmax, @B (1) [, < @max. (133)
Nonconvex state constraints are used to model the (fic-
tional) ISS flight space and avoid floating obstacles. The
latter are modeled exactly as in the quadrotor example,
using the constraints in (112). The flight space, on the other
hand, is represented by a union of rectangular rooms. This
is a difficult nonconvex constraint, and its efficient model-
ing requires some explanation.

At the conceptual level, the space station flight space is
represented by a function ds:R*>— R that maps the iner-
tial position to a scalar number. This is commonly referred
to as a signed distance function (SDF) [240]. Let us denote the
set of positions that are within the flight space by Os C R®.
A valid SDF is given by any function that satisfies the fol-
lowing property:

r1 € O & dss(rz) = 0. (134)

If a continuously differentiable dss can be formulated, then
the flight space can be modeled using (134) as the following
nonconvex path constraint (38e):
dss(rz) = 0. (135)

Open source libraries, such as Bullet [241], are available
to compute the SDF for obstacles of arbitrary shape. This
example uses a simpler custom implementation. To begin,
the space station is modeled as an assembly of several
rooms. This is expressed as a set union,

Tss.

Os=Jo, (136)
i=1
where each room O; is taken to be a rectangular box:
0i2{rreR*: 1P <rr<uP}. (137)

The coordinates I;* and u;® represent the “rear bottom-
left” and the “ahead top-right” corners of the ith room

98 |EEE CONTROL SYSTEMS » OCTOBER 2022

when looking along the positive axis directions. Equiva-
lently, but more advantageously for implementing the SDF,
the set (137) can be represented as

rZ_C?S H = 1}
ss — 7
S o

i

Oié{I’zERs:

(138)

where vector division is entry-wise, and the new terms ¢
and si° are the room’s centroid and diagonal:

B T

o202

(139)

To find the SDF for the overall flight space, begin with
the simpler task of writing an SDF for a single room. This is
straightforward using (138):

re—ci

Ss
Si

dui(r) 21 —\

, (140)
which is a concave function that satisfies a property similar
to (134):

rz€0i & dsi(rr) = 0. (141)
Because dss,i is concave, the constraint on the right side of
(141) is convex. This means that constraining the robot to be
inside room O; is a convex operation, which makes sense
since O; is a convex set.

As the free flyer traverses the flight space, one can imag-
ine the individual room SDFs to evolve based on the robot’s
position. When the robot enters the ith room, ds; becomes
positive and grows to a maximum value of one as the robot
approaches the room center. As the robot exits the room,
dssi becomes negative and decreases in value as the robot
flies farther away. To keep the robot inside the space station
flight space, the room SDFs must evolve such that there is
always at least one nonnegative room SDF. This require-
ment precisely describes the overall SDF, which can be
encoded mathematically as a maximization:

dss(r7) = . :l'{la)’(h’dss,i(T’I) . (142)
This SDF definition satisfies the required property (134).
Figure 28(a) provides an example scalar field generated by
(142) for a typical space station layout. Visually, when
restricted to a plane with a fixed altitude rz3, the individ-
ual room SDFs form four-sided “pyramids” above their
corresponding room.

The room SDFs d,; are concave. However, the maximi-
zation in (142) generates a nonconvex function. Two possi-
ble strategies to encode (142) are to introduce integer
variables or to work with a smooth approximation [46]. The
former strategy generates a mixed-integer convex subprob-
lem, which is possible to solve but does not fit the SCP algo-
rithm mold of this article. As mentioned before for (38), the
SCP subproblems do not involve integer variables. Thus, a
smooth approximation strategy is pursued, which yields

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

------ 1 — T—
| ™ [
I i i ! !
_ | : : | ! 0
= : i i ! !
= I ! f i i o
&l I i i ; I q 2
8 - L\ l_'l |._I - - g
| |
é | J - {\ j i w
.g L s | | __ o \.,I === T L 2 W0
€ [- L
______ 5 (S T
] ® |-
12 10 12 6 8 10 12
Position r7 1 (m) Position rz 4 (m) Position r7 1 (m) Position r7 ¢ (m)
(@) (b) (© (d)

FIGURE 28 A heatmap visualization of the exact signed distance function (SDF) (142) and the approximate SDF (145) for several values of the
sharpness parameter o. Each plot also shows the SDF zero-level set boundary as a dashed line. This boundary encloses the feasible flight
space, which corresponds to nonnegative values of the SDF. (a) dss (exact), (b) dss for o =1, (c) dss for 0 =10, and (d) dss for o =50.

an arbitrarily accurate approximation of the feasible flight
space Oss and carries the significant computational benefit
of avoiding mixed-integer programming.

The crux of this strategy is to replace the maximization
in (142) with the softmax function. Given a general vector
v € R", this function is defined by

Lo(@) = o' log > e, (143)
i=1
where o > 0 is a sharpness parameter such that L, upper
bounds the exact value max;v; with an additive error of at
most log (1) /o. To develop intuition, consider the SDF (142)
for two adjacent rooms and restricted along the jth axis of
the inertial frame. The SDF can then be written as

rz,;—C% 7, —C%

7

}. (144)

Ss
52j

dss(rz,j) = max{l -

Ss
S1j

Figure 29 illustrates the relationship between the exact
SDF (144) and its approximation, which is obtained by
replacing the max operator with L.. Note that ds is indeed
highly nonconvex, and the approximation quickly con-
verges to the exact SDF as ¢ increases. This 1D example can
now be generalized, and (142) is replaced with the follow-
ing approximation:

&ss(rl') = Lc(sss(rz))/

8ssi(r7) < dssi(rz), i=1,..., nss,

(145a)
(145b)

where the new functions & are so-called slack room
SDFs. The model (145) admits several favorable properties.
First, (145a) is smooth in the new slack SDFs and can be
included directly in (38e) as the following nonconvex path
constraint:

dss(r7) = 0. (146)

Second, the constraints in (145b) are convex and can be
included directly in (38c). Overall, the approximate SDF
(145a) satisfies the following property:

r1 € O o 38s(rz) such that (146) holds, (147)
where Oy C R? is an approximation of Oss that becomes
arbitrarily more accurate as the sharpness parameter o
increases. The geometry of this convergence process is
illustrated in Figure 28(b)—(d) for a typical space station
layout. Crucially, the fact that L, is an upper bound of the
maximum means that the approximate SDF des is nonnega-
tive at the interfaces of adjacent rooms. In other words, the
passage between adjacent rooms cannot be artificially
blocked by the approximation.

SDF Value

FIGURE 29 The correspondence between the exact signed dis-
tance function (SDF) (142) and its approximation dss using the
softmax function (143). As the sharpness parameter o increases,
the approximation quickly converges to the exact SDF. This figure
illustrates a sweep for o €[1, 5], where lower values are associ-
ated with darker colors.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 99

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

Summarizing the preceding discussion, in a similar
way to (113), the goal is to solve the following minimum
control power, free final time optimal control problem:

. _ t
omin 7 [V TR+ Ms@ idt, (1489)
s.t. (109), (112), (130)—(133), and (146). (148b)

SCvx Formulation
Like for the quadrotor example, begin by demonstrating
how to cast (148) into the standard template of (38). While
this process is mostly similar to that of the quadrotor, the
particularities of the flight space constraint (146) will reveal
a salient feature of efficient modeling for SCP. Once the
modeling step is done and an initial trajectory guess is
defined, the solution process is completely automated by
the general SCvx algorithm description in the “Sequential
Convex Programming” section. To keep the notation light,
the argument of time is omitted where possible.
Examining the dynamics (130), define the following
state and control vectors:

x =(rz, vz, -1, ®8) € R,

u=(Tz, M) € R®.

(149)
(149b)

Next, define the parameter vector to serve two purposes.
First, as for the quadrotor, define a time dilation a: such
that (116) holds, yielding t = a:t. Second, take advantage of
the fact that (38c) is mixed in the state and parameter in
order to place the slack room SDFs in (145b) into the param-
eter vector. In particular, according to (54c), the constraint
(145b) is imposed only at the discrete-time grid nodes.
Thus, for a grid of N nodes, there are only Nnss instances
of (145b) to be included. The following vector can therefore
be defined:

Ass = (5%5/ LRy é‘é\é) € RN"SS’ (150)

where 6% = 64 (rz(fy)) and Asi+@-1yn. denotes the slack
SDF value for the ith room at time ¢x. To keep the notation
concise, use the shorthand A ik = Assi+(-1)n.. The overall
parameter vector is then given by

p=| 0 |emo (151)

ASS

In absolute time, the dynamics (38b) are given directly
by (130). As for the quadrotor, this forms a set of time-
invariant, first-order ODEs:

(%3
m' Tz

S u) = %qzsez® B

J N (Ms— wijws)

(152)

The boundary conditions (38f) and (38g) are obtained
from (131):

100 IEEE CONTROL SYSTEMS » OCTOBER 2022

rz (0) —To
v7(0) —vo
q5-7(0) = qo
5(0)

gic(x(0), p) = , (153a)

rr(1) =7y
vz (1) — vy
qs-z(1) —qs|
ws5(1)

ge(x(1), p) = (153b)

The dynamics are converted to normalized time in the
same way as (119):
fx, 1, p) = enf(x, u). (154)
The convex state and input path constraints (38c) and
(38d) are straightforward. The quadrotor example lever-
ages the mixed state—parameter nature of (38c) to include
all the convex state and parameter constraints. In particu-
lar, these are (109), (133), and (145b). Using the definition of
time dilation, (109) is translated into the constraint
tf,mi.n S = tf,max- (155)
Using the definition of the concatenated slack SDF
vector (150), one can transform (145b) into the following
constraints:
Assix <dssi(rz(ty)), i=1,...,ns, k=1,...,N. (156)
Consequently, the convex path constraint set X in (38¢) is
given by

X = {(x, p) € R®x RN : (133), (155), and (156) hold}.
(157)

The convex input constraint set ¢/ in (38d) is given by all
the input vectors that satisfy (132).

The nonconvex path constraints (38e) for the free-flyer
problem involve the ellipsoidal floating obstacles (112) and
approximate flight space constraint (146). The floating
obstacle constraints are modeled exactly like for the
quadrotor by using (121). The flight space constraint lever-
ages the concatenated slack SDF vector (150) and eventual
temporal discretization of the problem to impose (146) at
each temporal grid node as

Lo(85%)=0, k=1,... (158)
Hence, the nonconvex path constraint function in (38e) can
be written as s:R*x RY" — R"**'. The first nos compo-
nents are given by (121), and the last component is given by
the negative left-hand side of (158). It remains to define the
running cost of the Bolza cost function (39). As for the
quadrotor, the integrand in (148a) is scaled to be mindful of

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

the penalty terms that will be added by the SCvx algorithm.
This yields the following convex running cost definition:

2 2
- (2],

At this point, it may seem as though formulating (38) for
SCvx is complete. However, the seemingly innocuous flight
space constraint (158) actually hides an important diffi-
culty that will now be addressed. The importance of the
following discussion cannot be overstated, as it can mean
the difference between successful trajectory generation
and convergence to an infeasible trajectory (that is, one
with nonzero virtual control). In the case of the 6-DoF free
flyer, omission of the following discussion incurs a 40%
optimality penalty for the value of (148a).

The investigation of (158) begins by writing down its
Jacobians, which SCvx will use for linearizing the con-
straint. Note that (158) is a function of only 5% € R"™, which
is part of the concatenated slack SDF (150) and thus resides
in the parameter vector. Hence, only the Jacobian (43g) is
nonzero. Using the general softmax definition (143), the ith
element of VL (8%) is given by

3L (655 _(feoﬁﬁ/) 655;,,

sk

(159)

(160)

When the slack SDF satisfies the lower-bound (156) with
equality, the Jacobian (160) is an accurate representation of
how the overall SDF (145a) changes due to small perturba-
tions in the robot’s position. The problematic case occurs
when this bound is loose. To illustrate the idea, suppose
that the robot is located near the center of O; such that
desi(rz(tr)) = 0.8. Assume that the rooms do not overlap
and that the slack SDF values of the other rooms satisfy
8% =dsj(rz(t))=—1 for all j#i. Since the robot is
uniquely inside O;, the exact SDF (142) is locally a linear
function of dss; and has a gradient ddss/9dss,i = 1. Because
the SCP subproblem should be an accurate local approxi-
mation of the nonconvex problem, the same behavior is
expected for the approximate SDF (145a) for high values of
o. However, this may not be the case.

Figure 30 illustrates what happens to the approximate
SDF gradient (160) as the slackness in (156) increases. First,
note that when there is no slackness, increasing the o
parameter does indeed make the approximate gradient
converge to the exact value of one. However, as slackness
grows, there is a distinct cutoff value, below which (160)

becomes zero. This is known as a vanishing gradient prob-
lem and was studied extensively for machine learning
[242]. The core issue is that SCP relies heavily on gradient
information to determine how to improve the feasibility
and optimality of the subproblem solution. As an analogy,
the gradient acts like a torchlight that illuminates the local
surroundings in a dark room and allows one to take a step
closer to a light switch. When the gradient vanishes, so
does the torchlight, and SCP no longer has information
about which direction is best to take. Unless the solution is
already locally optimal, a vanished gradient most often
either blocks SCP from finding more optimal solutions or
forces it to use nonzero virtual control. The result is that the
converged trajectory is either (heavily) suboptimal or even
infeasible.

Looking at Figure 30, one may ask why SCP does not
simply increase 5%, above the vanishing threshold to
recover gradient information. Remember, however, it is the
gradient that indicates that increasing 5k is a good
approach in the first place. The situation is much like focus-
ing one’s eyes on the flat region of the o = 50 curve on the
very left in Figure 30. If one saw only the part of the curve
for 8%:/dsi(rz(ty)) € [-3,—2], then one would also not
know whether it was best to increase or decrease 5%,;.

Fortunately, the remedy is quite simple. Because (134) is
a necessary and sufficient condition, it is known that slack-
ness in (156) cannot be used to make the trajectory more

L, (6%)
98

o=50

Vanishing Gradient
Threshold,

55};.]// >
(dss.i (rI (tk)> e y 2
% ‘ 0

-3 -2 -1

k
é‘ss,i

dss,i (Iz (tk))

o
-

FIGURE 30 The effect of slackness in the signed distance function
(SDF) lower-bound constraint (145b) on the gradient of the approxi-
mate SDF (145a). This plot is obtained by setting nss=6 and
dssj=—T1forall j #i. The individual curves are obtained by gradually
reducing J&ss; from its maximum value of dssi. As the sharpness
parameter ¢ increases, a “cutoff” value appears, below which the
approximate SDF becomes insensitive to changes in §ss,i.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 101

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

The algorithm parameters for the six-degrees-of-freedom

free-flyer example.

Problem Parameters

tr, min 60

tr, max 200

m 7.2

J 0.1083 /3
Ve 20

Mimax 100

Vimax 0.4

Wmax 1

C1 (8.5, -0.15, 5)
C2 (11.2, 1.84, 5)
C3 (11.3, 3.8,4.8)
H1,Hz2,Hs 3.33-/3

= See code

uss See code

ro (6.5,-0.2, 5)
Vo (0.035, 0.035, 0)
go —40(0, 1, 1)

re (11.3, 6, 4.5)
% 0, 0,0)

qr 0(0, 0, 1)

o 50

Ess 10~

Algorithm Parameters

SCvx
N 50
q o
g s
P 48)
ha
A 10°
Ao, Amax
n 1
71011 107,10
po,p1,p2 0,0.1,0.7
Bsn,Bar 2,2
Y fail
U
K.
£
&r

s Minimum final time

s Maximum final time

kg Free-flyer mass

kg m? Free-flyer inertia matrix

mN Maximum two-norm of thrust

uN-m Maximum two-norm of torque

ms-! Maximum free-flyer speed

°s~! Maximum free-flyer angular velocity

m Center of obstacle 1

m Center of obstacle 2

m Center of obstacle 3

m~' Shape of obstacles 1, 2, and 3

m Room rear bottom-left corner

m Room ahead top-right corner

m Initial position vector

ms-! Initial velocity vector
Initial attitude quaternion

m Final position vector

ms~' Final velocity vector
Final attitude quaternion
Softmax sharpness parameter
Slack room signed distance
function weight

GuSTO

30

S

o

(48)

(71)

104, 10°

1

107%,10

0.1,0.5, -

2,2

5]

0.8

6

0

0

102 IEEE CONTROL SYSTEMS » OCTOBER 2022

optimal. In other words, a trajectory with non-
zero slackness will not achieve a lower cost (148a).
Hence, one needs a way to incentivize the convex
subproblem optimizer to make (156) hold with
equality. The simplest approach is to introduce a
terminal cost that maximizes the concatenated
slack SDF:

¢(Ass) =—E&ss i f Ass,ik, (161)

k=1i=1

where & € R++ is any user-chosen positive number.
To make sure that (161) does not interfere with the
extra penalty terms introduced by SCvx, set &ss to
a very small but numerically tolerable value, as
shown in Table 5.

In summary, the investigation into (158) enabled
the identification of a vanishing gradient issue.
This resulted in a simple yet effective remedy in
the form of a terminal cost (161). This discussion
highlights three salient features of good model-
ing for SCP-based trajectory generation. First,
SCP does not have equal performance for mathe-
matically equivalent problem formulations [such as
the free-flyer problem with and without (161)].
Second, favorable gradient behavior is instru-
mental for good performance. Third, remedies to
recover good performance for difficult problems
are often surprisingly simple.

GuSTO Formulation

As for the quadrotor example, the GuSTO formu-
lation is very similar to SCvx. Equation (159) can
be expressed as the quadratic running cost (67):

S(p) = diag(Trmaxls, MmaxI3), (162a)
{(x,p) =0, (162b)
g(x,p) =0. (1620)

The dynamics (152) are also cast into the con-
trol affine form (68):

(%8
0
folxp) = % G5 1@ s | (163a)
—J Y wiJws)
0
m e
fiep) ="} i=123, (163b)
0
0
0| .
fitep) =] o | =456 (163¢)
] e

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

where e; € R® is the ith standard basis vector. Like for the
quadrotor example, the rest of the optimization model is
exactly the same as for SCvx in the last section.

Initial Trajectory Guess

The initial trajectory guess is based on some simple intu-
ition about what a feasible free-flyer trajectory might look
like. Although this guess is more complicated than the
straight-line initialization used for the quadrotor, it is
based on purely kinematic considerations. This makes it
quick to compute. However, it also means that the guess
does not satisfy the dynamics and obstacle constraints.
The fact that SCP readily morphs this coarse guess into a
feasible and locally optimal trajectory corroborates the
effectiveness of SCP methods for high-dimensional, non-
convex trajectory generation tasks.

To begin, the time dilation a: is obtained by averaging
the final time bounds as in (128). An “L-shape” path is
then used for the position trajectory guess. In particular,
recall that according to (131a), the free flyer has to go from
7o to 7 Define a constant velocity trajectory that closes
the gap between r; and r; along the first axis (then the
second and, finally, the third) in a total time of a: sec-
onds. The trajectory thus consists of three straight legs
with sharp 90° turns at the transition points, which is
akin to the Manhattan or taxicab geometry of the one-
norm [243]. The velocity is readily derived from the posi-
tion trajectory and is a constant-norm vector whose direction
changes twice to align with the appropriate axis in each
trajectory leg. Furthermore, initialize the concatenated
slack SDF parameter vector (150) by evaluating (140) along
the position trajectory guess for each room and discrete-
time grid node.

The attitude trajectory guess is slightly more involved,
however, it can be obtained by a general procedure that is
recommended for attitude trajectories. According to
(131c), the free flyer must rotate between the attitudes
encoded by ¢, and g, Since quaternions are not additive
and must maintain a unit norm to represent rotation,
straight-line interpolation from g, to gy is not an option.
Instead, the spherical linear interpolation (SLERP) proce-
dure is used [189], [201]. This operation performs a continu-
ous rotation from g, to gy at a constant angular velocity
around a fixed axis. To define the operation, introduce the
logarithmic and exponential maps for unit quaternions:

Log(q) 2 au, wherea €R, u € R?, (164a)
L [usin(a/2)
Exp(ou) =[cos(@/2) | (164b)

The exponential map converts a unit quaternion to its
equivalent angle—axis representation. The logarithmic map
converts an angle—axis rotation back to a quaternion, which
is written here in the vectorized form used to implement

gs-z in (130c). SLERP for the attitude quaternion gs.z can
then be defined by leveraging (164):

qe=q0®qy, (165a)

q5-z(t) = 0o ® Exp(tLog(q.)), (165b)
where ¢, is the error quaternion between g, and g, and
t € [0,1] is an interpolation parameter such that g5.-z(0) = g0
and gs-z(1) = g5. The angular velocity trajectory guess is
simple to derive since SLERP performs a constant velocity
rotation around a fixed axis. Using (165a),
ws(t) = o 'Log(qe). (166)
The free flyer is a very-low-thrust vehicle to begin with.
By using (148a), the optimization is, in some sense, search-
ing for the lowest of low thrust trajectories. Hence, it is
expected that the control inputs Tz and Mg will be small.
Without any further insight, it is hard to guess what the
thrust and torque would look like for a 6-DoF vehicle in a
microgravity environment. Thus, the initial control guess
is simply set to zero.

Numerical Results

There is now a specialized instance of (38) and an initializa-
tion strategy for the 6-DoF free-flyer problem. The trajec-
tory solution is generated using SCvx and GuSTO, with
temporal discretization performed using the FOH interpo-
lating polynomial method in “Discretizing Continuous-
Time Optimal Control Problems.” The algorithm parameters
are provided in Table 5, where the initial and final quater-
nion vectors are expressed in degrees using the angle-axis
representation of (164a). The ECOS solver is used as the core
numerical convex optimizer, and the full implementation is
available in the code repository linked in Figure 2.

The convergence processes for SCvx and GuSTO are
shown in Figure 31. Again, set £ =¢,=0 to observe the
convergence process for exactly 15 iterations. At each itera-
tion, the algorithms solve a convex subproblem whose
size is documented in Table 6. Note that the subprob-
lems of both algorithms are substantially larger than for
the quadrotor example and represent a formidable increase
in dimensionality for the numerical problem. However,
modern IPMs easily handle problems of this size, and it
will be shown that the increased variable and constraint
count is of little concern. Further note that the larger
number of variables and affine inequalities for GuSTO is
due to how the implementation uses extra slack variables to
encode the soft penalty function (69). Because GuSTO does
not use a dynamics virtual control, it has no one-norm
cones, while SCvx has several such cones to model the vir-
tual control penalty (47). Due to its larger subproblem size
and slightly more complicated code for including con-
straints as soft penalties, the “solve” and “formulate” times

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 103

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

per subproblem are slightly longer for GuSTO in this exam-
ple. Nevertheless, both algorithms have roughly equal run-
times, and GuSTO has the advantage of converging to a
given tolerance in slightly fewer iterations.

The converged trajectories are plotted in Figures 32
and 33. The left subplots in Figures 32(a) and 32(b) show a
remarkably similar evolution from the initial guess to the
converged trajectory. The final trajectories are visually
identical, and both algorithms discover that the maximum
allowed flight time of f;m.x minimizes the control power
cost (148a), as expected. Finally, Figure 34 plots the evolu-
tion of the nonconvex flight space and obstacle avoidance
inequalities (146) and (112). The first observation is that the
constraints hold at the discrete-time nodes, and the free
flyer approaches the ellipsoidal obstacles quite closely.
This is similar to how the quadrotor brushes against the
obstacles in Figure 25 and is a common feature of time- or
energy-optimal trajectories in a cluttered environment.

The second observation concerns the sawtooth-like,
nonsmooth nature of the SDF time history. Around t =25s

N
* | _«
x g
l
X | 107
c
il
2 10743
n
€
(<
T 107°4
(0]
(8]
=
S
e 123456 7 891011121314
Iteration Number
O | '
; g
il
©
2
)
o
(0]
£
'_

1234567 8 91011121314
Iteration Number

Discretize = Formulate

(a)

| == Solve

Cumulative Time (s)

and t=125s, the approximate SDF comes close to zero
even though the position trajectory in Figure 32 is not near
awall at those times. This is a consequence of the modeling
approach since the SDF is near zero at the room interfaces
(see Figures 28 and 29) even though these are not physical
“walls.” However, around t=100s, the flight space con-
straint (146) is actually activated as the free flyer rounds a

A breakdown of the subproblem size for the six-
degrees-of-freedom free-flyer example.

SCvx GuSTO
Variables 2267 3352
Affine equalities 663 663
Affine inequalities 350 1650
One-norm cones 49 0
Infinity-norm cones 401 351
Second-order cones 200 200

_«
U
x g
J -3 3
X -—~10
S 106
5
3
= 10794
<
(T
8 10_121
c
ol
ko)
= T R

123456 7 8 91011121314
Iteration Number

1 L 15
O H H 9% 1 O
c i [0}
S 0.8 £
o - 10
S 06 o
® k]
g 0.4 g
£ S 3
F 021 =

0-

1234567 8 91011121314
lteration Number

Discretize == Formulate

(b)

== Solve

FIGURE 31 The convergence and runtime performance for the six-degrees-of-freedom free-flyer problem. Both algorithms take a similar
amount of time to converge. The runtime subplots in the bottom row show statistics on algorithm performance over 50 executions.
GuSTO converges slightly faster for this example and, although both algorithms reach numerical precision for practical purposes,
GuSTO converges all the way down to a 10~'* tolerance. The plots are generated according to the description for Figure 24. (a) SCvx.

(b) GuSTO.

104 IEEE CONTROL SYSTEMS » OCTOBER 2022

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

consequence is that this results in minor clipping of the
continuous-time flight space constraint. The issue can be
mitigated by the same strategies as proposed in the previ-
ous section for the quadrotor example [192], [193].

corner. Roughly speaking, this is intuitively the optimal
thing to do. Like a Formula One driver rounding a corner
by following the racing line, the free flyer spends less con-
trol effort by following the shortest path. An unfortunate

0.06
6 - 6 H
0.05
] | 5 Q
= ‘ E ¢ O 004 £
o (] S ' [
o & N 5
s 21 § 21 \\\\\ S 003 =
2 3 7 \\\“— 8
ot ok - o o
0 A 04 il 0.02 >
5'(\ O
et R
0.01
-2 4 -2 4
T T T T T T T T 0-00
6 8 10 12 6 8 10 12
Position rz ¢ (m) Position rz 4 (m)
” e I7
. 'C”'“a' T — T; (Scaled)
dOnVerg_eo rr dss ("z) =0
(935 (rI) = = 0,—
— Olbstacle =3 Obstacle
(@)
0.06
6 - 6 H
: 0.05
4 4 : Q)
g4 £ 4] D | fomE
o o o _a
& & ! \\.‘_ o
S 21 § 27 \\\\\\ C 0.03 =
2 3 i e ey 8
& - ol 0.02 2
0 - 0 - \\\\1‘
B -
0.01
-2 d -2 4
8 10 12 8 10 12
Position rz 4 (m) Position rz 4 (m)
Initial ry o IT
e Converged ry — T; (Scaled)
gss (rr)=0 dss (r7) =0
=1 Obstacle = 8;3 |
= Obstacle
(b)

FIGURE 32 The position trajectory evolution (left) and final converged trajectory (right) for the six-degrees-of-freedom free-flyer problem.
In the right plots for each algorithm, the continuous-time trajectory is obtained by numerically integrating the dynamics (130). The fact
that this trajectory passes through the discrete-time subproblem solution confirms dynamic feasibility. (a) SCvx. (b) GuSTO.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 105

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

CONCLUSIONS

Modern vehicle engineering is moving in the direction of
increased autonomy. This includes aerospace, automotive, and
marine transport as well as robots on land, in the air, and in
domestic environments. No matter the application, a common
feature across autonomous systems is the basic requirement to
generate trajectories. In a general sense, trajectories serve like
plans to be executed for the system to complete its task. Due to
the large scale of deployment and/or the safety-critical nature
of the system, reliable real-time onboard trajectory generation
has never been more important.

This article took the stance that convex optimization is a
prime contender for the job, thanks to more than 40 years of
optimization research having produced a remarkable suite
of numerical methods for quickly and reliably solving
convex problems [26], [29], [34]. Many of these methods are
now packaged as either commercial or open source off-the-
shelf codes [229], [244]. This makes the injection of convex

20 Foooo oo oo oo oo TTIC
ceme [Tzllp —— Tz

- TI,1

— TI,B)

Thrust T (mN)

0 50 100 150 200
Time (s)

\(7; e (p
g 20 e 8
C
< el 4
3 10 A

=)
w
X0+
N

@

w —10

J

&

o —20
el

=
< 30 ,] ,
0 50 100 150 200
Time (s)

optimization into an autonomous system easier than ever
before, provided that the right high-level algorithms exist
to leverage it.

To leverage convex optimization for the difficult task of
nonconvex trajectory generation, this article provided an
expansive tutorial on three algorithms. First, the LCvx algo-
rithm was introduced to remove acute nonconvexities in the
control input constraints. This provides a method sup-
ported by optimal control theory to transform certain fami-
lies of nonconvex trajectory generation tasks into ones that
can be solved in one shot by a convex optimizer. A variable-
mass rocket landing example at the end of the article illus-
trated a real-world application of the LCvx method.

Not stopping there, the article then motivated an entire family
of optimization methods: sequential convex programming.
These methods use a linearize—solve loop, whereby a
convex optimizer is called several times until a locally opti-
mal trajectory is obtained. SCP strikes a compelling middle

100 == === SooooooooEs
—mee Mzl —— Mz,
- 80 - —— MI,1 e MI,S
€
Z
S 60 A
N
=
S 40+
S
=
20 A
0 <M-
0 50 100 150 200
Time (s)
1 e e e c e cc e c e - --
eeee [0l —— wpo
) 0.8 —e— g4 —o— Wpgg3
=
S 0.6
(0]
T
o
5 0.4
> coeae
=) Prlg S~
c Uad Y
< 0.2
0 | p
0 50 100 150 200
Time (s)

FIGURE 33 The state and control time histories for the converged trajectory of the six-degrees-of-freedom free-flyer problem. These are
visually identical for SCvx and GuSTO, so only a single plot is shown. Euler angles using the intrinsic Tait—Bryan convention are shown
in place of the quaternion attitude. As in Figure 26, the dots represent the discrete-time solution, while the continuous lines are obtained
by propagating the solution through the actual continuous-time dynamics (38b).

106 IEEE CONTROL SYSTEMS » OCTOBER 2022

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

ground between “what is possible” and “what is accept-
able” for safety-critical, real-time trajectory generation. In
particular, SCP inherits much from trust region methods in
numerical optimization, and its performance is amenable
to theoretical analysis using standard tools of analysis,

SDF d.(rz)

0 50 100 150 200
Time (s)
(a)
—e—Obstacle j= 1
20 1 ——Obstacle j= 2
——QObstacle j=3
= 15
=
|
10 A
T
5 4
o+
0 50 100 150 200
Time (s)

(b)

FIGURE 34 The (a) signed distance function (SDF) and (b) obsta-
cle avoidance time histories for the converged trajectory of the
six-degrees-of-freedom free-flyer problem. As for Figure 33,
these are visually identical for SCvx and GuSTO, so only a single
plot is shown. Note the highly nonlinear nature of the SDF, whose
time history exhibits sharp corners as the robot traverses the fea-
sible flight space. Although the SDF constraint (158) is satisfied at
the discrete-time nodes, minor intersample constraint clipping
occurs around 100 s as the robot rounds a turn in the middle of its
trajectory (see Figure 32).

constrained optimization, and optimal control theory [11],
[29], [47]. This article provided a detailed overview of two
specific and closely related SCP algorithms: SCvx and
GuSTO [49], [50]. To corroborate their effectiveness for dif-
ficult trajectory generation tasks, two numerical examples
were presented based on a quadrotor and a space station
free-flyer maintenance robot.

The theory behind LCvx, SCvx, and GuSTO is relatively
new and under active research, with the oldest method in
this article (that is, classical LCvx [85]) being just 17 years
old. No method has yet attained the full potential of its
capabilities, and this presents the reader with an exciting
opportunity to contribute to the research and development
effort. It is clear that convex optimization has a role to play
in the present and future of advanced trajectory genera-
tion. With the help of this article and the associated source
code, the reader now has the knowledge and tools to join
the adventure.

ACKNOWLEDGMENTS

The University of Washington authors were supported, in
part, by the National Science Foundation (NSF) Cyber-
Physical Systems (CPS) program, under award 1931744;
NSF CAREER grant CNS-1619729; Office of Naval Research
(ONR) grant N00014-17-1-2433; Air Force Office of Scientific
Research grant FA9550-20-1-0053; and NASA cooperative
agreement NNX17AHO02A. The Stanford University authors
were supported, in part, by NSF CPS program award
1931815, ONR Young Investigator Program contract N00014-
17-1-2433, and King Abdulaziz City for Science and Tech-
nology. The authors would like to extend their gratitude to
the following collaborators, in particular: Jonathan P. How,
for his encouragement to write this article; Matthew W.
Harris, for his expert commentary on the nuances of LCvx;
Yuangi Mao, for his invaluable inputs on SCP algorithms;
and Abhinav G. Kamath, for his meticulous review of the
full article. The authors are also indebted to the control and
optimization research communities at large, whose efforts
have resulted in the theory and software that is instrumen-
tal to our work.

AUTHOR INFORMATION

Danylo Malyuta (danylo@malyuta.name) received the
B.Sc. degree in mechanical engineering from the Swiss
Federal Institute of Technology Lausanne (EPFL); M.Sc.
degree in robotics, systems, and control from ETH Ziirich;

OCTOBER 2022 « IEEE CONTROL SYSTEMS 107

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

and Ph.D. degree in aerospace engineering from the Uni-
versity of Washington. His doctoral research was carried
out at the Autonomous Controls Lab, Department of Aero-
nautics and Astronautics, primarily focusing on compu-
tationally efficient optimization-based control of dynami-
cal systems. He has interned at the NASA Jet Propulsion
Laboratory, the NASA Johnson Space Center, and Amazon
Prime Air. His present research lies at the intersection of
software engineering, computer science, and mathemat-
ics, with the goal of creating fast, reliable, and scalable
decision-making systems. He currently works at SpaceX in
Redmond, Washington, 98053, USA on the Starlink satellite
Internet constellation.

Taylor P. Reynolds received the B.Sc. degree in math-
ematics and engineering from Queen’s University in 2016.
He received the Ph.D. degree from the Department of
Aeronautics and Astronautics, University of Washington,
in 2020, under the supervision of Mehran Mesbahi. Dur-
ing his Ph.D., he worked with the NASA Johnson Space
Center and Draper Laboratories to develop advanced
guidance algorithms for planetary landing in the Safe
and Precise Landing—Integrated Capability Evolution
project, and he cofounded the Aeronautics and Astronau-
tics CubeSat Team at the University of Washington. He now
works as a research scientist at Amazon Prime Air in Se-
attle, Washington, USA.

Michael Szmuk received the B.S. and M.S. degrees in
aerospace engineering from the University of Texas at Aus-
tin. In 2019, he received the Ph.D. degree while working in
the Autonomous Controls Lab, Department of Aeronautics
and Astronautics, University of Washington, under the su-
pervision of Behget Agikmese. During his academic career,
he completed internships at NASA, the Air Force Research
Laboratory, Emergent Space, Blue Origin, and Amazon
Prime Air. He now works as a research scientist at Amazon
Prime Air, in Seattle, Washington, USA, specializing in the
design of flight control algorithms for autonomous air de-
livery vehicles.

Thomas Lew is a Ph.D. candidate in aeronautics and
astronautics at Stanford University, Stanford, California,
94305, USA. He received the B.Sc. degree in microengineer-
ing from Ecole Polytechnique Fédérale de Lausanne in 2017
and the M.Sc. degree in robotics from ETH Ziirich in 2019.
His research focuses on the intersection between optimal
control and machine learning techniques for robotics and
aerospace applications.

Riccardo Bonalli obtained the M.Sc. degree in mathe-
matical engineering from Politecnico di Milano in 2014 and
the Ph.D. degree in applied mathematics from Sorbonne
Université in 2018, in collaboration with the French Nation-
al Office for Aerospace Studies and Research (ONERA). He
is the recipient of the 2018 ONERA Department of Informa-
tion Processing and Systems Best Ph.D. Student Award. He
was a postdoctoral researcher in the Department of Aero-
nautics and Astronautics, Stanford University. Currently,

108 IEEE CONTROL SYSTEMS » OCTOBER 2022

he is a tenured CNRS researcher with the Laboratory of
Signals and Systems (L2S), Université Paris-Saclay, Nation-
al Center for Scientific Research (CNRS), CentraleSupélec,
France. His research interests include theoretical and nu-
merical robust optimal control with techniques from dif-
ferential geometry, statistical analysis, and machine learn-
ing, and applications in aerospace systems and robotics.
Marco Pavone is an associate professor of aeronautics
and astronautics at Stanford University, Stanford, Califor-
nia, 94305, USA, where he is the director of the Autono-
mous Systems Laboratory. Before joining Stanford, he was
a research technologist within the Robotics Section at the
NASA Jet Propulsion Laboratory. He received the Ph.D.
degree in aeronautics and astronautics from the Massa-
chusetts Institute of Technology in 2010. His main research
interests are in the development of methodologies for the
analysis, design, and control of autonomous systems, with
an emphasis on self-driving cars, autonomous aerospace
vehicles, and future mobility systems. He is a recipient of
a number of awards, including a Presidential Early Career
Award for Scientists and Engineers, an Office of Naval
Research Young Investigator Program Award, a National
Science Foundation CAREER Award, and a NASA Early
Career Faculty Award. He was identified by the American
Society for Engineering Education as one of America’s 20
most highly promising investigators under the age of 40.
He is an associate editor of IEEE Control Systems Magazine.
Behget A¢ikmese is a professor at the University of
Washington, Seattle, Washington, 98195, USA. He received
the Ph.D. degree in aerospace engineering from Purdue
University. He was a senior technologist at the NASA Jet
Propulsion Laboratory (JPL) and a lecturer at the Califor-
nia Institute of Technology. At the JPL, he developed con-
trol algorithms for planetary landing, spacecraft formation
flying, and asteroid and comet sample return missions.
He developed the “flyaway” control algorithms used suc-
cessfully in NASA’s Mars Science Laboratory and Mars
2020 missions during the landings of the Curiosity and Per-
severance rovers. He is a recipient of the National Science
Foundation CAREER Award, the IEEE Award for Techni-
cal Excellence in Aerospace Control, and numerous NASA
Achievement Awards for his contributions to NASA mis-
sions and technology development. His research interests
include optimization-based control, nonlinear and robust
control, and stochastic control. He is a Fellow of IEEE.

REFERENCES

[1] R. D’Andrea, “Guest editorial can drones deliver?” IEEE Trans. Autom.
Sci. Eng. (from July 2004), vol. 11, no. 3, pp. 647-648, Jul. 2014, doi: 10.1109/
tase.2014.2326952.

[2] A. San Martin, E. Lee, and S. W. Wong, “The development of the MSL
guidance, navigation, and control system for entry, descent, and landing,”
in Proc. 23rd Space Flight Mech. Meeting, 2013, pp. 1-20.

[3] A. D. Steltzner, A. M. S. Martin, T. P. Rivellini, A. Chen, and D. Kipp,
“Mars science laboratory entry, descent, and landing system development
challenges,” J. Spacecraft Rockets, vol. 51, no. 4, pp. 994-1003, Jul. 2014, doi:
10.2514/1.a32866.

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

[4] D. W. Way et al., “Mars science laboratory: Entry, descent, and landing
system performance,” in Proc. 2007 IEEE Aerosp. Conf., pp. 1-19, doi: 10.1109/
aero.2007.352821.

[5] G. Stein, “Respect the unstable,” IEEE Control Syst. Mag. (through 2019),
vol. 23, no. 4, pp. 12-25, Aug. 2003, doi: 10.1109/mcs.2003.1213600.

[6] D. Malyuta, Y. Yu, P. Elango, and B. Acikmese, “Advances in trajectory
optimization for space vehicle control,” Annu. Rev. Contr., vol. 52, pp. 282—
315, Dec. 2021, doi: 10.1016/j.arcontrol.2021.04.013.

[7]1 D. A. Mindell, Digital Apollo. Cambridge, MA, USA: MIT Press, 2008.
[8]]. M. Carson Il et al., “The SPLICE project: Continuing NASA development
of GN&C technologies for safe and precise landing,” in Proc. Amer. Inst. Aero-
naut. Astronaut. Scitech Forum, Jan. 2019, p. 1, doi: 10.2514/6.2019-0660.

[9] D. Dueri, B. Acikmese, D. P. Scharf, and M. W. Harris, “Customized re-
al-time interior-point methods for onboard powered-descent guidance,” J.
Guid., Contr., Dyn., vol. 40, no. 2, pp. 197-212, Feb. 2017, doi: 10.2514/1.g001480.
[10] “The Mars 2020 rover’s ‘Brains,’” National Aeronautics and Space
Administration, Washington, DC, USA, 2020. [Online]. Available: https://
mars.nasa.gov/mars2020/spacecraft/rover/brains/

[11] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mish-
chenko, The Mathematical Theory of Optimal Processes. Montreux, Switzer-
land: Gordon & Breach, 1986.

[12] L. D. Berkovitz, Optimal Control Theory. New York: Springer-Verlag, 1974.
[13]]. T. Betts, Practical Methods for Optimal Control and Estimation using Non-
linear Programming. Philadelphia, PA, USA: SIAM, 2010.

[14] D. Lawden, Optimal Trajectories for Space Navigation. London, U.K.: But-
terworth, 1963.

[15] J.-P. Marec, Optimal Space Trajectories. Amsterdam, The Netherlands:
Elsevier, 1979.

[16] A. E. Bryson Jr. and Y.-C. Ho, Applied Optimal Control. Washington, DC,
USA: Hemisphere, 1975.

[17] D. E. Kirk, Optimal Control Theory: An Introduction. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1970.

[18] J. M. Longuski, J. J. Guzman, and J. E. Prussing, Optimal Control with
Aerospace Applications. New York: Springer-Verlag, 2014.

[19]]. Meditch, “On the problem of optimal thrust programming for a lunar
softlanding,” IEEE Trans. Autom. Control, vol. 9, no. 4, pp. 477-484, Oct. 1964,
doi: 10.1109/tac.1964.1105758.

[20] M. Morari and J. H. Lee, “Model predictive control: Past, present and
future,” Comput. Chem. Eng., vol. 23, nos. 4-5, pp. 667682, 1999, doi: 10.1016/
50098-1354(98)00301-9.

[21] . W. Eaton and J. B. Rawlings, “Model-predictive control of chemical
processes,” Chem. Eng. Sci., vol. 47, no. 4, pp. 705-720, 1992, doi: 10.1016/0009
-2509(92)80263-C.

[22] P.J. Campo and M. Morari, “Robust model predictive control,” in Proc.
1987 Amer. Contr. Conf., pp. 1021-1026, doi: 10.23919/ACC.1987.4789462.

[23] F. Oldewurtel et al., “Use of model predictive control and weather fore-
casts for energy efficient building climate control,” Energy Buildings, vol. 45,
pp- 15-27, Feb. 2012, doi: 10.1016/j.enbuild.2011.09.022.

[24] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves, “Model
predictive control for the operation of building cooling systems,” IEEE
Trans. Control Syst. Technol., vol. 20, no. 3, pp. 796-803, 2011, doi: 10.1109/
TCST.2011.2124461.

[25] S. C. Bengea, A. D. Kelman, F. Borrelli, R. Taylor, and S. Narayanan,
“Implementation of model predictive control for an HVAC system in a mid-
size commercial building,” HVAC&R Res., vol. 20, no. 1, pp. 121-135, 2014,
doi: 10.1080/10789669.2013.834781.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK.
Cambridge Univ. Press, 2004.

[27]]. T. Betts, “Survey of numerical methods for trajectory optimization,”
J. Guid., Contr., Dyn., vol. 21, no. 2, pp. 193-207, 1998, doi: 10.2514/2.4231.
[28] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Rev., vol. 59, no. 4, pp. 849-904, Jan. 2017, doi:
10.1137/16m1062569.

[29] J. Nocedal and S. Wright, Numerical Optimization. New York: Springer-
Verlag, 1999.

[30] R. T. Rockafellar, “Lagrange multipliers and optimality,” SIAM Rev.,
vol. 35, no. 2, pp. 183-238, Jun. 1993, doi: 10.1137/1035044.

[31] S. J. Wright, Primal-Dual Interior-Point Methods. Philadelphia, PA, USA:
SIAM, Jan. 1997.

[32] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. Philadel-
phia, PA, USA: SIAM, Jan. 2019.

[33] C. Roos, T. Terlaky, and J.-P. Vial, Theory and Algorithms for Linear Op-
timization: An Interior Point Approach. Hoboken, NJ, USA: Wiley, Oct. 2000.

[34] M. H. Wright, “The interior-point revolution in optimization: History,
recent developments, and lasting consequences,” Bull. Amer. Math. Soc., vol.
42, no. 1, pp. 39-56, 2005, doi: 10.1090/50273-0979-04-01040-7.

[35]]. Peng, C. Roos, and T. Terlaky, “Primal-dual interior-point methods for
second-order conic optimization based on self-regular proximities,” SIAM
J. Optim., vol. 13, no. 1, pp. 179-203, Jan. 2002, doi: 10.1137/s1052623401383236.
[36] L. Blackmore, “Autonomous precision landing of space rockets,” Bridge,
vol. 4, no. 46, pp. 15-20, Dec. 2016.

[37] D. P. Scharf, B. Acikmese, D. Dueri, J. Benito, and]. Casoliva, “Implemen-
tation and experimental demonstration of onboard powered-descent guid-
ance,” J. Guid., Contr., Dyn., vol. 40, no. 2, pp. 213-229, Feb. 2017, doi: 10.2514/
1.g000399.

[38] JPL and Masten Space Systems. 500 Meter Divert Xombie Test Flight for
G-FOLD, Guidance for Fuel Optimal Large Divert. (Aug. 2012). [Online Video].
Available: http://www.youtube.com/watch?v=1GRwimol AwY

[39] JPL and Masten Space Systems. 750 Meter Divert Xombie Test Flight for
G-FOLD, Guidance for Fuel Optimal Large Divert. (Jul. 2012). [Online Video].
Available: http://www.youtube.com/watch?v=jl6pw200ssU

[40] B. Paden, M. Cép, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey
of motion planning and control techniques for self-driving urban vehi-
cles,” IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33-55, Mar. 2016, doi: 10.1109/
tiv.2016.2578706.

[41] M. Buehler, K. Jagnemma, and S. Singh, Eds., The DARPA Urban Chal-
lenge: Autonomous Vehicles in City Traffic. Berlin, Heidelberg: Springer-
Verlag, 2009.

[42] R. Buchanan, L. Wellhausen, M. Bjelonic, T. Bandyopadhyay, N. Kot-
tege, and M. Hutter, “Perceptive whole-body planning for multilegged ro-
bots in confined spaces,” J. Field Robot., vol. 38, no. 1, pp. 68-84, Jun. 2020,
doi: 10.1002/r0b.21974.

[43] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified
MPC framework for whole-body dynamic locomotion and manipulation,”
IEEE Robot. Automat. Lett., vol. 6, no. 3, pp. 4688-4695, Jul. 2021, doi: 10.1109/
1ra.2021.3068908.

[44] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: Learning agile flight in dynamic en-
vironments,” in Proc. 2nd Conf. Robot Learn., A. Billard, A. Dragan, J. Peters,
and J. Morimoto, Eds. Oct. 2018, vol. 87, pp. 133-145.

[45] B. Agikmesge and S. R. Ploen, “Convex programming approach to pow-
ered descent guidance for Mars landing,” J. Guid., Contr., Dyn., vol. 30, no. 5,
pp- 1353-1366, Sep. 2007, doi: 10.2514/1.27553.

[46] L. Blackmore, B. Agikmese, and J. M. Carson III, “Lossless convexifica-
tion of control constraints for a class of nonlinear optimal control prob-
lems,” Syst. Contr. Lett., vol. 61, no. 8, pp. 863-870, Aug. 2012, doi: 10.1016/j.
sysconle.2012.04.010.

[47] A.R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods. Phila-
delphia, PA, USA: SIAM, 2000.

[48] M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization. Cam-
bridge, MA, USA: MIT Press, 2019.

[49] Y. Mao, M. Szmuk, and B. Acikmese, “Successive convexification: A
superlinearly convergent algorithm for non-convex optimal control prob-
lems,” 2018, arXiv:1804.06539.

[50] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “GuSTO: Guaranteed
sequential trajectory optimization via sequential convex programming,”
in Proc. IEEE Int. Conf. Robot. Automat., 2019, pp. 6741-6747, doi: 10.1109/
ICRA.2019.8794205.

[51] M. W. Harris and B. Agikmese, “Maximum divert for planetary land-
ing using convex optimization,” J. Optim. Theory Appl., vol. 162, no. 3, pp.
975-995, Dec. 2013, doi: 10.1007/s10957-013-0501-7.

[52] M. Szmuk, C. A. Pascucci, D. Dueri, and B. Agikmese, “Convexification
and real-time on-board optimization for agile quad-rotor maneuvering and
obstacle avoidance,” in Proc. IEEE/RS] Int. Conf. Intell. Robots Syst., Vancou-
ver, CA, USA, 2017, pp. 4862-4868, doi: 10.1109/IR0OS.2017.8206363.

[53] X. Liu, Z. Shen, and P. Lu, “Entry trajectory optimization by second-
order cone programming,” J. Guid., Contr., Dyn., vol. 39, no. 2, pp. 227-241,
Feb. 2016, doi: 10.2514/1.g001210.

[54] Z. Wang and M. J. Grant, “Constrained trajectory optimization for
planetary entry via sequential convex programming,” J. Guid., Contr., Dyn.,
vol. 40, no. 10, pp. 2603-2615, Oct. 2017, doi: 10.2514/1.g002150.

[55] X. Liu, “Fuel-optimal rocket landing with aerodynamic controls,” J.
Guid., Contr., Dyn., vol. 42, no. 1, pp. 65-77, Jan. 2019, doi: 10.2514/1.g003537.
[56] M. W. Harris and B. Acikmese, “Minimum time rendezvous of multiple
spacecraft using differential drag,” J. Guid., Contr., Dyn., vol. 37, no. 2, pp.
365-373, Mar. 2014, doi: 10.2514/1.61505.

OCTOBER 2022 « IEEE CONTROL SYSTEMS 109

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

[57] D. Malyuta and B. Acikmese, “Lossless convexification of non-convex
optimal control problems with disjoint semi-continuous inputs,” Nov. 2019,
arXiv:1902.02726.

[58] M. Szmuk, B. Acikmese, and A. W. Berning, “Successive convexifica-
tion for fuel-optimal powered landing with aerodynamic drag and non-
convex constraints,” in Proc. Amer. Inst. Aeronaut. Astronaut. Guid., Navig.,
Contr. Conf,, Jan. 2016, pp. 1-16, doi: 10.2514/6.2016-0378.

[59] M. Szmuk, T. P. Reynolds, and B. Agikmese, “Successive convexifica-
tion for real-time 6-dof powered descent guidance with state-triggered
constraints,” J. Guid., Contr., Dyn., vol. 48, no. 8, pp. 1399-1413, 2020, doi:
10.2514/1.G004549.

[60] M. Szmuk and B. Acikmese, “Successive convexification for 6-DoF Mars
rocket powered landing with free-final-time,” in Proc. Amer. Inst. Aeronaut. As-
tronaut. Guid., Navig., Contr. Conf, Jan. 2018, pp. 1-14, doi: 10.2514/6.2018-0617.
[61] M. Szmuk, T. Reynolds, B. Acikmese, M. Mesbahi, and J. M. Carson
III, “Successive convexification for 6-DoF powered descent guidance with
compound state-triggered constraints,” in Proc. Amer. Inst. Aeronaut. Astro-
naut. Scitech Forum, Jan. 2019, pp. 1-16, doi: 10.2514/6.2019-0926.

[62] T. P. Reynolds, M. Szmuk, D. Malyuta, M. Mesbahi, B. Acikmese, and J.
M. Carson, “Dual quaternion-based powered descent guidance with state-
triggered constraints,” J. Guid., Contr., Dyn., vol. 43, no. 9, pp. 15841599, Sep.
2020, doi: 10.2514/1.g004536.

[63] T. P. Reynolds, D. Malyuta, M. Mesbahi, B. Acikmese, and J. M. Car-
son III, “A real-time algorithm for non-convex powered descent guidance,”
in Proc. Amer. Inst. Aeronaut. Astronaut. Scitech Forum, 2020, pp. 1-24, doi:
10.2514/6.2020-0844.

[64] Y. Mao, D. Dueri, M. Szmuk, and B. A¢ikmese, “Successive convexi-
fication of non-convex optimal control problems with state constraints,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 4063-4069, 2017, doi: 10.1016/
j.ifacol.2017.08.789.

[65] M. Szmuk, D. Malyuta, T. P. Reynolds, M. S. Mceowen, and B. Acikmese,
“Real-time quad-rotor path planning using convex optimization and com-
pound state-triggered constraints,” in Proc. IEEE/RS] Int. Conf. Intell. Robots
Syst. (IROS), Nov. 2019, pp. 7666-7673, doi: 10.1109/ir0s40897.2019.8967706.
[66] D. Malyuta, T. Reynolds, M. Szmuk, B. Acikmese, and M. Mesbahi,
“Fast trajectory optimization via successive convexification for spacecraft
rendezvous with integer constraints,” in Proc. Amer. Inst. Aeronaut. Astro-
naut. Scitech Forum, Jan. 2020, pp. 1-24, doi: 10.2514/6.2020-0616.

[67] T. P. Reynolds et al., “SOC-i: A CubeSat demonstration of optimization-
based real-time constrained attitude control,” in Proc. IEEE Aerosp. Conf.,
Mar. 2021, pp. 1-18, doi: 10.1109/AERO50100.2021.9438540.

[68] “NASA tipping point partnership with Blue Origin to test precision
lunar landing technologies,” National Aeronautics and Space Administra-
tion, Washington, DC, USA, Sep. 2020. [Online]. Available: https://www.
nasa.gov/directorates/spacetech/NASA_Tipping_Point_Partnership_to_
Test_Precision_Lunar_Landing_Tech/

[69] R. Bonalli, A. Bylard, A. Cauligi, T. Lew, and M. Pavone, “Trajectory op-
timization on manifolds: A theoretically-guaranteed embedded sequential
convex programming approach,” in Proc. Robot., Sci. Syst., 2019, pp. 1-10,
doi: 10.15607/rss.2019.xv.078.

[70] S. Banerjeeet al., “Learning-based warm-starting for fast sequential con-
vex programming and trajectory optimization,” in Proc. IEEE Aerosp. Conf.,
Big Sky, MT, USA, Mar. 2020, pp. 1-8, doi: 10.1109/AERO47225.2020.9172293.
[71] T. Lew, R. Bonalli, and M. Pavone, “Chance-constrained sequential con-
vex programming for robust trajectory optimization,” in Proc. Eur. Contr.
Conf. (ECC), May 2020, pp. 1871-1878, doi: 10.23919/ecc51009.2020.9143595.
[72] R. Bonalli, T. Lew, and M. Pavone, “Analysis of theoretical and numeri-
cal properties of sequential convex programming for continuous-time op-
timal control,” IEEE Trans. Autom. Control, submitted for publication. [On-
line]. Available: https://arxiv.org/abs/2009.05038

[73] R. Bonalli, T. Lew, and M. Pavone, “Sequential convex programming
for non-linear stochastic optimal control,” ESAIM Control Optim. Calc.
Var., submitted for publication. [Online]. Available: https://arxiv.org/
abs/2009.05182

[74] Y. Mao, M. Szmuk, and B. Agikmese, “A tutorial on real-time convex
optimization based guidance and control for aerospace applications,” in
Proc. Annu. Amer. Contr. Conf. (ACC), Jun. 2018, pp. 24102416, doi: 10.23919/
acc.2018.8430984.

[75] Y. Mao, D. Dueri, M. Szmuk, and B. Agikmese, “Convexification and
real-time optimization for MPC with aerospace applications,” in Handbook
of Model Predictive Control, S. Rakovic and W. Levine, Eds. Cham: Springer
International Publishing, Sep. 2018, pp. 335-358, doi: 10.1007/978-3-319
-77489-3_15.

110 |EEE CONTROL SYSTEMS » OCTOBER 2022

[76] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967-2986, Dec. 2014, doi:
10.1016/j.automatica.2014.10.128.

[77] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—A survey,” Automatica, vol. 25, no. 3, pp. 335-348, May
1989, doi: 10.1016/0005-1098(89)90002-2.

[78] U. Eren, A. Prach, B. B. Koger, S. V. Rakovi¢, E. Kayacan, and B.
Acikmese, “Model predictive control in aerospace systems: Current state
and opportunities,” . Guid., Contr., Dyn., vol. 40, no. 7, pp. 1541-1566, Jul.
2017, doi: 10.2514/1.g002507.

[79]]. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive Control:
Theory, Computation and Design, 2nd ed. Madison, W1, USA: Nob Hill Pub-
lishing, 2017.

[80] M. H. Wright. “Fast times in linear programming: Early success,
revolutions, and mysteries.” Documents.pub. https://documents.pub/
document/fast-times-in-linear-programming-university-of-washington
-2011-10-24-fast-times.html (Accessed: Mar. 20, 2020).

[81] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65-98, 2017,
doi: 10.1137/141000671.

[82] R. T. Rockafellar, Convex Analysis. Princeton, NJ, USA: Princeton Univ.
Press, 1970.

[83] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” Combinatorica, vol. 4, no. 4, pp. 373-395, Dec. 1984, doi: 10.1007/
bf02579150.

[84] J. Peng, C. Roos, and T. Terlaky, Self-Regularity: A New Paradigm for Primal-
Dual Interior-Point Algorithms. Princeton, NJ, USA: Princeton Univ. Press, 2002.
[85] B. Agikmese and S. Ploen, “A powered descent guidance algorithm
for Mars pinpoint landing,” in Proc. Amer. Inst. Aeronaut. Astronaut. Guid.,
Navig., Contr. Conf. Exhib., Aug. 2005, p. 1, doi: 10.2514/6.2005-6288.

[86] B. Agikmese and L. Blackmore, “Lossless convexification of a class of
optimal control problems with non-convex control constraints,” Automati-
ca, vol. 47, no. 2, pp. 341-347, Feb. 2011, doi: 10.1016/j.automatica.2010.10.037.
[87] H. D’Angelo, Linear Time-Varying Systems: Analysis and Synthesis. Bos-
ton, MA, USA: Allyn & Bacon, 1970.

[88] P. J. Antsaklis and A. N. Michel, Linear Systems. Basel, Switzerland:
Birkhauser, 2006.

[89] J. M. Carson III, B. Acikmese, and L. Blackmore, “Lossless convexifi-
cation of powered-descent guidance with non-convex thrust bound and
pointing constraints,” in Proc. Amer. Contr. Conf., Jun. 2011, pp. 26512656,
doi: 10.1109/acc.2011.5990959.

[90] B. Agikmese, J. M. Carson III, and L. Blackmore, “Lossless convexifica-
tion of nonconvex control bound and pointing constraints of the soft land-
ing optimal control problem,” IEEE Trans. Control Syst. Technol., vol. 21, no.
6, pp- 2104-2113, Nov. 2013, doi: 10.1109/tcst.2012.2237346.

[91] R. F. Hartl, S. P. Sethi, and R. G. Vickson, “A survey of the maximum
principles for optimal control problems with state constraints,” SIAM Rev.,
vol. 37, no. 2, pp. 181-218, Jun. 1995, doi: 10.1137/1037043.

[92] M. W. Harris and B. Agikmese, “Lossless convexification of non-convex
optimal control problems for state constrained linear systems,” Automatica,
vol. 50, no. 9, pp. 2304-2311, Sep. 2014, doi: 10.1016/j.automatica.2014.06.008.
[93] M. W. Harris and B. Agikmese, “Lossless convexification for a class of
optimal control problems with linear state constraints,” in Proc. 52nd IEEE
Conf. Decis. Contr., Dec. 2013, pp. 71137118, doi: 10.1109/cdc.2013.6761017.
[94] M. W. Harris, “Lossless convexification of optimal control problems,”
Ph.D. dissertation, Univ. Texas, Austin, TX, USA, 2014.

[95] L. D. Landau and E. M. Lifshitz, Mechanics, 2nd ed. Bristol, UK.: Per-
gamon, 1969.

[96] W. F. Phillips, Mechanics of Flight. Hoboken, NJ, USA: Wiley, 2010.

[97] A. H. J. de Ruiter, C.]J. Damaren, and J. R. Forbes, Spacecraft Dynamics
and Control: An Introduction. Hoboken, NJ, USA: Wiley, 2013.

[98] H. L. Trentelman, A. A. Stoorvogel, and M. Hautus, Control Theory for
Linear Systems. London, U.K.: Springer-Verlag, 2001.

[99] M. W. Harris and B. Agikmese, “Lossless convexification for a class of
optimal control problems with quadratic state constraints,” in Proc. Amer.
Contr. Conf.,, Jun. 2013, pp. 3415-3420, doi: 10.1109/acc.2013.6580359.

[100] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analy-
sis and Design, 2nd ed. Hoboken, NJ, USA: Wiley, 2005.

[101] A. Milyutin and N. Osmolovskii, Calculus of Variations and Optimal
Control. Providence, RI, USA: American Mathematical Society, 1998.

[102] L. Blackmore, B. Acikmese, and D. P. Scharf, “Minimum-landing-error
powered-descent guidance for Mars landing using convex optimization,” J.
Guid., Contr., Dyn., vol. 33, no. 4, pp. 1161-1171, Jul. 2010, doi: 10.2514/1.47202.

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

[103] T. Achterberg and R. Wunderling, “Mixed integer programming:
Analyzing 12 years of progress,” in Facets of Combinatorial Optimization, M.
Jinger and G. Reinelt, Eds. Berlin, Heidelberg: Springer-Verlag, 2013, pp.
449-481, doi: 10.1007/978-3-642-38189-8_18.

[104] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise
Introduction. Princeton, NJ, USA: Princeton Univ. Press, 2012.

[105] T. Achterberg, “Constrained integer programming,” Ph.D. disserta-
tion, Technische Universitit Berlin, Berlin, Germany, 2007.

[106] T. Schouwenaars, B. D. Moor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in Proc. Eur. Contr. Conf.
(ECC), Sep. 2001, pp. 2603-2608, doi: 10.23919/ecc.2001.7076321.

[107] Z. Zhang,]J. Wang, and J. Li, “Lossless convexification of nonconvex
MINLP on the UAV path-planning problem,” Optimal Contr. Appl. Methods,
vol. 39, no. 2, pp. 845-859, Dec. 2017, doi: 10.1002/0ca.2380.

[108] X. Liu, P. Lu, and B. Pan, “Survey of convex optimization for aerospace
applications,” Astrodynamics, vol. 1, no. 1, pp. 23-40, Sep. 2017, doi: 10.1007/
542064-017-0003-8.

[109] S. Kunhippurayil, M. W. Harris, and O. Jansson, “Lossless convexifica-
tion of optimal control problems with annular control constraints,” Auto-
matica, vol. 133, p. 109,848, Nov. 2021, doi: 10.1016/j.automatica.2021.109848.
[110] A. Bemporad and M. Morari, “Control of systems integrating logic, dy-
namics, and constraints,” Automatica, vol. 35, no. 3, pp. 407-427, Mar. 1999,
doi: 10.1016/50005-1098(98)00178-2.

[111] D. Malyuta and B. A¢ikmese, “Fast homotopy for spacecraft rendez-
vous trajectory optimization with discrete logic,” . Guid., Contr., Dyn., to be
published, doi: 10.48550/arXiv:2107.07001.

[112] T. Schouwenaars, “Safe trajectory planning of autonomous vehicles,”
Ph.D. dissertation, Massachusetts Inst. Technol.,, Cambridge, MA, USA, 2006.
[113] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” Int. J. Robot. Res., vol. 33, no.
1, pp. 69-81, Oct. 2013, doi: 10.1177/0278364913506757.

[114] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robot. Automat. Lett., vol. 3, no. 2, pp. 895—
902, Apr. 2018, doi: 10.1109/1ra.2018.2792536.

[115] K. Yunt and C. Glocker, “Trajectory optimization of mechanical hy-
brid systems using SUMT,” in Proc. 9th IEEE Int. Workshop Adv. Motion
Contr., May 2006, pp. 665-671, doi: 10.1109/amc.2006.1631739.

[116] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical sys-
tems,” IEEE Control Syst. Mag. (through 2019), vol. 29, no. 2, pp. 28-93, Apr.
2009, doi: 10.1109/mcs.2008.931718.

[117] R. Tedrake, “MIT’s entry into the DARPA robotics challenge,” in
Brains, Minds and Machines Summer Course. Cambridge MA, USA: MIT
OpenCourseWare, 2015.

[118] D. Malyuta and B. Acikmese, “Lossless convexification of optimal
control problems with semi-continuous inputs,” IFAC-PapersOnLine, vol.
53, no. 2, pp. 6843-6850, 2020, doi: 10.1016/j.ifacol.2020.12.341.

[119] M. W. Harris, “Optimal control on disconnected sets using extreme
point relaxations and normality approximations,” IEEE Trans. Autom. Con-
trol, vol. 66, no. 12, pp. 6063—-6070, 2021, doi: 10.1109/tac.2021.3059682.

[120] H. Hermes and J. P. LaSalle, Functional Analysis and Time Optimal Con-
trol. Amsterdam, The Netherlands: Elsevier, 1969.

[121] R. Vinter, Optimal Control. Cambridge, MA, USA: Birkhauser, 2000.
[122] E. Clarke, “The Pontryagin maximum principle and a unified theory
of dynamic optimization,” Proc. Steklov Inst. Math., vol. 268, no. 1, pp. 58-69,
Apr. 2010, doi: 10.1134/50081543810010062.

[123] X. Liu, Z. Shen, and P. Lu, “Solving the maximum-crossrange problem
via successive second-order cone programming with a line search,” Aerosp.
Sci. Technol., vol. 47, pp. 10-20, Dec. 2015, doi: 10.1016/j.ast.2015.09.008.

[124] X. Liu and P. Lu, “Solving nonconvex optimal control problems by
convex optimization,” J. Guid., Contr., Dyn., vol. 37, no. 3, pp. 750-765, 2014,
doi: 10.2514/1.62110.

[125] U. Lee and M. Mesbahi, “Constrained autonomous precision landing
via dual quaternions and model predictive control,” J. Guid., Contr., Dyn.,
vol. 40, no. 2, pp. 292-308, 2017, doi: 10.2514/1.G001879.

[126] R. Bonalli, B. Hérissé, and E. Trélat, “Optimal control of endo-atmo-
spheric launch vehicle systems: Geometric and computational issues,”
IEEE Trans. Autom. Control, vol. 65, no. 6, pp. 2418-2433, 2020, doi: 10.1109/
TAC.2019.2929099.

[127] M. Koévara, “On the modelling and solving of the truss design prob-
lem with global stability constraints,” Structural Multidisciplinary Optim.,
vol. 23, no. 3, pp. 189-203, 2002, doi: 10.1007/s00158-002-0177-3.

[128] A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric con-
vex approximation method with applications to nonconvex truss topology

design problems,”]. Global Optim., vol. 47,no. 1, pp. 29-51, 2010, doi: 10.1007/
510898-009-9456-5.

[129] W. Wei, J. Wang, N. Li, and S. Mei, “Optimal power flow of radial
networks and its variations: A sequential convex optimization approach,”
IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2974-2987, 2017, doi: 10.1109/
TSG.2017.2684183.

[130] L. T. Biegler, “Recent advances in chemical process optimization,” Chemie
Ingenieur Technik, vol. 86, no. 7, pp. 943-952, 2014, doi: 10.1002/cite.201400033.
[131] H. Jiang, M. S. Drew, and Z.-N. Li, “Matching by linear programming
and successive convexification,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
29, no. 6, pp. 959-975, 2007, doi: 10.1109/ TPAMI.2007.1048.

[132] T. F. Chan, S. Esedoglu, and M. Nikolova, “Algorithms for finding
global minimizers of image segmentation and denoising models,” SIAM J.
Appl. Math., vol. 66, no. 5, pp. 1632-1648, 2006, doi: 10.1137/040615286.
[133]S. E. T. Corp., Starship — SN10 — High-Altitude Flight Recap. (Mar. 2021).
[Online Video]. Available: https://www.youtube.com/watch?v=gA6ppby3]JC8
[134] D. Malyuta et al. “Starship landing SCP example.” GitHub. https://
github.com/UW-ACL/SCPToolbox jl/ tree/master / test/ examples /starship_flip
(Accessed: Aug. 8, 2022).

[135] D. Rocha, C. J. Silva, and D. F. M. Torres, “Stability and optimal con-
trol of a delayed HIV model,” Math. Methods Appl. Sci., vol. 41, no. 6, pp.
2251-2260, 2018, doi: 10.1002/mma.4207.

[136] C.]. Silva, H. Maurer, and D. F. M. Torres, “Optimal control of a tuber-
culosis model with state and control delays,” Math. Biosci. Eng., vol. 14, no.
1, pp. 321-337, 2017, doi: 10.3934/mbe.2017021.

[137] R. Dorfman, “An economic interpretation of optimal control theory,”
Amer. Econ. Rev., vol. 59, no. 5, pp. 817-831, 1969. [Online]. Available: https://
www.jstor.org /stable/1810679.

[138] M. Caputo, Foundations of Dynamic Economic Analysis. Cambridge,
U.K.: Cambridge Univ. Press, 2005.

[139] J. R. Banga, “Optimization in computational systems biology,” BMC
Syst. Biol., vol. 2, no. 1, 2008, Art. no. 47, doi: 10.1186/1752-0509-2-47.

[140] A. Goelzer, V. Fromion, and G. Scorletti, “Cell design in bacteria as
a convex optimization problem,” Automatica, vol. 47, no. 6, pp. 1210-1218,
2011, doi: 10.1016/j.automatica.2011.02.038.

[141] M. Liski, P. M. Kort, and A. Novak, “Increasing returns and cycles in
fishing,” Resour. Energy Econ., vol. 23, no. 3, pp. 241-258, 2001, doi: 10.1016/
50928-7655(01)00038-0.

[142] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in
Convex Programming. Philadelphia, PA, USA: SIAM, Jan. 1994.

[143] D. Bertsekas, Dynamic Programming and Optimal Control, 4th ed. Nash-
ua, NH, USA: Athena Scientific, 2017.

[144] D. Bertsekas, Convex Optimization Algorithms. Nashua, NH, USA: Athe-
na Scientific, 2015.

[145] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1996.

[146] R. S. Sutton and A. G. Barto, Reinforcement Learning, 2nd ed. Cam-
bridge, MA, USA: MIT Press, 2018.

[147] J. E. Falk and R. M. Soland, “An algorithm for separable nonconvex
programming problems,” Manage. Sci., vol. 15, no. 9, pp. 550-569, 1969, doi:
10.1287/mnsc.15.9.550.

[148] R. M. Soland, “An algorithm for separable nonconvex programming
problems II: Nonconvex constraints,” Manage. Sci., vol. 17, no. 11, pp. 759—
773,1971, doi: 10.1287/mnsc.17.11.759.

[149] R. Horst, “An algorithm for nonconvex programming problems,”
Math. Program., vol. 10, no. 1, pp. 312-321, 1976, doi: 10.1007/BF01580678.
[150] R. Horst, “On the convexification of nonlinear programming prob-
lems: An applications-oriented survey,” Eur.]. Oper. Res., vol. 15, no. 3, pp.
382-392, 1984, doi: 10.1016/0377-2217(84)90107-3.

[151] G. P. McCormick, “Computability of global solutions to factorable
nonconvex programs: Part I — Convex underestimating problems,” Math.
Program., vol. 10, no. 1, pp. 147-175, 1976, doi: 10.1007/BF01580665.

[152] A. Mitsos, B. Chachuat, and P. I. Barton, “Mccormick-based relaxations of
algorithms,” SIAM J. Optim., vol. 20, no. 2, pp. 573—601, 2009, doi: 10.1137/080717341.
[153] A. Tsoukalas and A. Mitsos, “Multivariate McCormick relaxations,”
J. Global Optim., vol. 59, nos. 2-3, pp. 633-662, 2014, doi: 10.1007/s10898-014
-0176-0.

[154] A. B. Singer and P. 1. Barton, “Global solution of optimization problems
with parameter-embedded linear dynamic systems,” J. Optim. Theory Appl.,
vol. 121, no. 3, pp. 613—-646, 2004, doi: 10.1023/B:JOTA.0000037606.79050.a7.
[155] A. B. Singer and P. I. Barton, “Bounding the solutions of parameter de-
pendent nonlinear ordinary differential equations,” SIAM]. Sci. Comput.,
vol. 27, no. 6, pp. 2167-2182, 2006, doi: 10.1137/040604388.

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 111

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

[156] R. Horst and N. V. Thoai, “DC programming: Overview,”]. Optim.
Theory Appl., vol. 103, no. 1, pp. 1-43, 1999, doi: 10.1023/a:1021765131316.
[157] T. Lipp and S. Boyd, “Variations and extension of the convex-concave
procedure,” Optim. Eng., vol. 17, no. 2, pp. 263-287, 2016, doi: 10.1007/s11081
-015-9294-x.

[158] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,” Neu-
ral Comput., vol. 15, no. 4, pp. 915-936, 2003, doi: 10.1162/08997660360581958.
[159] G. R. Lanckriet and B. K. Sriperumbudur, “On the convergence of the
concave-convex procedure,” in Proc. 22nd Adv. Neural Inf. Process. Syst., Cur-
ran Associates, Inc., 2009, pp. 1759-1767.

[160] E. Palacios-Gomez, L. Lasdon, and M. Engquist, “Nonlinear optimiza-
tion by successive linear programming,” Manage. Sci., vol. 28, no. 10, pp.
1106-1120, 1982, doi: 10.1287/mnsc.28.10.1106.

[161] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz, “An algorithm
for nonlinear optimization using linear programming and equality con-
strained subproblems,” Math. Program., B, vol. 100, pp. 27-48, Nov. 2003, doi:
10.1007/510107-003-0485-4.

[162] S. P. Han, “A globally convergent method for nonlinear programming,”
J. Optim. Theory Appl., vol. 22, no. 3, pp. 297-309, 1977, doi: 10.1007/BF00932858.
[163] S. P. Han and O. L. Mangasarian, “Exact penalty functions in non-
linear programming,” Math. Program., vol. 17, no. 1, pp. 251-269, 1979, doi:
10.1007/BF01588250.

[164] M. J. D. Powell, “A fast algorithm for nonlinearly constrained optimi-
zation calculations,” in Numerical Analysis, G. A. Watson, Ed. Berlin, Heidel-
berg: Springer-Verlag, 1978, pp. 144-157, doi: 10.1007/BFb0067703.

[165] M.]J. D. Powell, “Algorithms for nonlinear constraints that use La-
grangian functions,” Math. Program., vol. 14, pp. 224-248, Dec. 1978, doi:
10.1007/BF01588967.

[166] M. J. D. Powell and Y. Yuan, “A recursive quadratic programming al-
gorithm that uses differentiable exact penalty functions,” Math. Program.,
vol. 35, no. 3, pp. 265-278, 1986, doi: 10.1007/BF01580880.

[167] P. T. Boggs,]J. W. Tolle, and P. Wang, “On the local convergence of
quasi-newton methods for constrained optimization,” SIAM]. Control Op-
tim., vol. 20, no. 2, pp. 161-171, 1982, doi: 10.1137/0320014.

[168] P. T. Boggs and J. W. Tolle, “A family of descent functions for con-
strained optimization,” SIAM]. Numer. Anal., vol. 21, no. 6, pp. 1146-1161,
1984, doi: 10.1137/0721071.

[169] P. T. Boggs and W. J. Tolle, “A strategy for global convergence in a se-
quential quadratic programming algorithm,” SIAM]. Numer. Anal., vol. 26,
no. 3, pp. 600-623, 1989, doi: 10.1137/0726036.

[170] M. Fukushima, “A successive quadratic programming algorithm with
global and superlinear convergence properties,” Math. Program., vol. 35, no.
3, pp. 253-264, 1986, doi: 10.1007/BF01580879.

[171] P. T. Boggs and W. J. Tolle, “Sequential quadratic programming,” Acta
Numerica, vol. 4, pp. 1-52, Jan. 1995, doi: 10.1017/50962492900002518.

[172] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, “Approximate solution of
the trust region problem by minimization over two-dimensional subspaces,”
Math. Program., vol. 40, nos. 1-3, pp. 247-263, Jan. 1988, doi: 10.1007/bf01580735.
[173] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm
for large-scale constrained optimization,” SIAM Rev., vol. 47, no. 1, pp. 99—
131, 2005, doi: 10.1137/s0036144504446096.

[174] J. T. Betts and W. P. Huffman, “Path-constrained trajectory optimiza-
tion using sparse sequential quadratic programming,” J. Guid., Contr., Dyn.,
vol. 16, no. 1, pp. 59-68, Feb. 1993, doi: 10.2514/3.11428.

[175] C. T. Lawrence and A. L. Tits, “A computationally efficient feasible
sequential quadratic programming algorithm,” SIAM]. Optim., vol. 11, no.
4, pp. 10921118, 2001, doi: 10.1137/51052623498344562.

[176] P. E. Gill and E. Wong, “Sequential quadratic programming methods,”
in Mixed Integer Nonlinear Programming, J. Lee and S. Leyffer, Eds. New York:
Springer-Verlag, 2012, pp. 147-224, doi: 10.1007/978-1-4614-1927-3_6.

[177] R. Fletcher, Practical Methods of Optimization. Hoboken, NJ, USA: Wi-
ley, 2013.

[178] B. Fares, D. Noll, and P. Apkarian, “Robust control via sequential semi-
definite programming,” SIAM]. Control Optim., vol. 40, no. 6, pp. 1791-1820,
2002, doi: 10.1137/50363012900373483.

[179] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA, USA: STAM, 1994.
[180] T. Reynolds, D. Malyuta, M. Mesbahi, B. Acikmese, and J. M. Carson,
“Funnel synthesis for the 6-DOF powered descent guidance problem,” in
Proc. Amer. Inst. Aeronaut. Astronaut. Scitech Forum, Jan. 2021, pp. 1-21, doi:
10.2514/6.2021-0504.

[181] T. P. Reynolds, “Computation guidance and control for aerospace sys-
tems,” Ph.D. dissertation, Univ. of Washington, Seattle, WA, USA, 2021.

112 |EEE CONTROL SYSTEMS » OCTOBER 2022

[182] J. Schulman et al., “Motion planning with sequential convex optimi-
zation and convex collision checking,” Int. . Robot. Res., vol. 33, no. 9, pp.
1251-1270, 2014, doi: 10.1177/0278364914528132.

[183] M. Sagliano, “Pseudospectral convex optimization for powered de-
scent and landing,” J. Guid., Contr., Dyn., vol. 41, no. 2, pp. 320-334, 2017,
doi: 10.2514/1.G002818.

[184] P. Simplicio, A. Marcos, and S. Bennani, “Guidance of reusable launch-
ers: Improving descent and landing performance,” . Guid., Contr., Dyn.,
vol. 42, no. 10, pp. 2206-2219, 2019, doi: 10.2514/1.G004155.

[185] Y. Mao, M. Szmuk, and B. Agikmese, “Successive convexification of non-
convex optimal control problems and its convergence properties,” in Proc.
IEEE 5th Conf. Decis. Contr., 2016, pp. 3636—3641, doi: 10.1109/CDC.2016.7798816.
[186] M. Szmuk, “Successive convexification & high performance feedback
control for agile flight,” Ph.D. dissertation, Univ. of Washington, Seattle,
WA, USA, 2019.

[187] H. Saranathan and M. J. Grant, “Relaxed autonomously switched hy-
brid system approach to indirect multiphase aerospace trajectory optimiza-
tion,” J. Spacecraft Rockets, vol. 55, no. 3, pp. 611-621, May 2018, doi: 10.2514/
1.a34012.

[188] E. Taheri, J. L. Junkins, I. Kolmanovsky, and A. Girard, “A novel ap-
proach for optimal trajectory design with multiple operation modes of pro-
pulsion system, part 1,” Acta Astronaut., vol. 172, pp. 151-165, Jul. 2020, doi:
10.1016/j.actaastro.2020.02.042.

[189] K. Shoemake, “Animating rotation with quaternion curves,” in Proc.
1985 12th Annu. Conf. Comput. Graph. Interact. Techn. (SIGGRAPH), pp. 245—
254, doi: 10.1145/325334.325242.

[190] T. P. Reynolds and M. Mesbahi, “Optimal planar powered descent
with independent thrust and torque,” J. Guid., Contr., Dyn., vol. 43, no. 7, pp.
1225-1231, Jul. 2020, doi: 10.2514/1.g004701.

[191] D. Malyuta, T. P. Reynolds, M. Szmuk, M. Mesbahi, B. Acikmese, and
J. M. Carson III, “Discretization performance and accuracy analysis for the
rocket powered descent guidance problem,” in Proc. Amer. Inst. Aeronaut.
Astronaut. SciTech Forum, 2019, pp. 1-20, doi: 10.2514/6.2019-0925.

[192] B. Agikmese, D. Scharf, L. Blackmore, and A. Wolf, “Enhancements on
the convex programming based powered descent guidance algorithm for
Mars landing,” in Proc. Amer. Inst. Aeronaut. Astronaut. Amer. Astronaut. Soc.
Astrodyn. Specialist Conf. Exhib., Aug. 2008, pp. 1-16, doi: 10.2514/6.2008-6426.
[193] D. Dueri, Y. Mao, Z. Mian, J. Ding, and B. Acikmese, “Trajectory opti-
mization with inter-sample obstacle avoidance via successive convexifica-
tion,” in Proc. IEEE 56th Annu. Conf. Decis. Contr., Dec. 2017, pp. 11501156,
doi: 10.1109/cdc.2017.8263811.

[194] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dy-
namical Systems, and an Introduction to Chaos. Amsterdam, The Netherlands:
Elsevier, 2013.

[195] E. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems. New
York: Springer-Verlag, 2005.

[196] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, “Incorporat-
ing second-order functional knowledge for better option pricing,” in Proc.
13th Int. Conf. Neural Inf. Process. Syst., MIT Press, Cambridge, MA, USA,
2000, pp. 451-457.

[197] P. A. Absil, R. Mahony, and B. Andrews, “Convergence of the iterates
of descent methods for analytic cost functions,” SIAM . Optim., vol. 16, no.
2, pp. 531-547, Jan. 2005, doi: 10.1137/040605266.

[198] N. Schorghofer, Lessons in Scientific Computing: Numerical Mathemat-
ics, Computer Technology, and Scientific Discovery. Boca Raton, FL, USA: CRC
Press, 2018.

[199] I. M. Ross, Q. Gong, M. Karpenko, and R. J. Proulx, “Scaling and bal-
ancing for high-performance computation of optimal controls,” J. Guid.,
Contr., Dyn., vol. 41, no. 10, pp. 2086-2097, 2018, doi: 10.2514/1.G003382.
[200] D. Malyuta, “An optimal endurance power limiter for an electric race car
developed for the AMZ racing team,” Semester Project, ETH Zurich, In-
stitute for Dynamic Systems and Control, Zurich, Switzerland, Sep. 2016.
[201] J. Sola, “Quaternion kinematics for the error-state Kalman filter,” 2017,
arXiv:1711.02508.

[202] J. Renegar, A Mathematical View of Interior-Point Methods in Convex Op-
timization. Philadelphia, PA, USA: SIAM, Jan. 2001.

[203] T. P. Reynolds and M. Mesbahi, “The crawling phenomenon in se-
quential convex programming,” in Proc. Amer. Contr. Conf., Denver, CO,
USA, 2020, pp. 3613-3618, doi: 10.23919/ACC45564.2020.9147550.

[204] A. G. Kamath, “Robust thrust vector control for precision rocket-land-
ing,” Ph.D. dissertation, Univ. of California Davis, Davis, CA, USA, 2021.
[205] A. G. Kamath, F. F. Assadian, and S. K. Robinson, “Multivariable ro-
bust control for the powered-descent of a multibody lunar landing system,”

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

in Proc. Amer. Inst. Aeronaut. Astronaut. Amer. Astronaut. Soc. Astrodyn. Spe-
cialist Conf., Aug. 2020, pp. 1-19.

[206] M. Szmuk, C. A. Pascucci, and B. Acikmese, “Real-time quad-rotor
path planning for mobile obstacle avoidance using convex optimization,”
in Proc. IEEE/RS] Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 1-9, doi:
10.1109/IR0OS.2018.8594351.

[207] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” Int. J. Robot. Res., vol. 36, no. 8, pp. 947-982, 2017,
doi: 10.1177/0278364917712421.

[208] T. P. Reynolds, D. Malyuta, M. Mesbahi, and B. Acikmese, “Temporal-
ly-interpolated funnel synthesis for nonlinear systems,” in Proc. RSS Work-
shop Robust Autonomy, Jul. 2020, pp. 1-4.

[209] B. Agikmese, J. M. Carson III, and D. S. Bayard, “A robust model predic-
tive control algorithm for incrementally conic uncertain/nonlinear systems,”
Int. J. Robust Nonlinear Contr., vol. 21, no. 5, pp. 563-590, Jul. 2010, doi: 10.1002/
rnc.1613.

[210] T. P. Reynolds and M. Mesbahi, “Small body precision landing via
convex model predictive control,” in Proc. Amer. Inst. Aeronaut. Astronaut.
SPACE Astronaut. Forum Expo., Sep. 2017, pp. 1-13, doi: 10.2514/6.2017-5179.
[211] C. A. Pascucci, S. Bennani, and A. Bemporad, “Model predictive con-
trol for powered descent guidance and control,” in Proc. Eur. Contr. Conf.
(ECC), Jul. 2015, pp. 1388-1393, doi: 10.1109/ecc.2015.7330732.

[212] Q. T. Dinh, C. Savorgnan, and M. Diehl, “Real-time sequential convex
programming for nonlinear model predictive control and application to a
hydro-power plant,” in Proc. IEEE Conf. Decis. Contr. Eur. Contr. Conf, Dec.
2011, pp. 5905-5910, doi: 10.1109/cdc.2011.6160919.

[213] D. Lee, K. Turitsyn, and J.-J. Slotine, “Robust model predictive control
for nonlinear systems using convex restriction,” Apr. 2021, arXiv:2003.00345.
[214] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control
of swarms of spacecraft using sequential convex programming,” J. Guid.,
Contr., Dyn., vol. 37, no. 6, pp. 1725-1740, Nov. 2014, doi: 10.2514/1.g000218.
[215] D. Morgan, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh, “Swarm
assignment and trajectory optimization using variable-swarm, distributed
auction assignment and sequential convex programming,” Int.]. Robot.
Res., vol. 35, no. 10, pp. 1261-1285, Feb. 2016, doi: 10.1177/0278364916632065.
[216] M. J. Tenny, S. J. Wright, and J. B. Rawlings, “Nonlinear model predic-
tive control via feasibility-perturbed sequential quadratic programming,”
Comput. Optim. Appl., vol. 28, no. 1, pp. 87-121, Apr. 2004, doi: 10.1023/b:coap.
0000018880.63497.eb.

[217] R. H. Goddard, “A method of reaching extreme altitudes,” Nature, vol.
105, pp. 809-811, Aug. 1920, doi: 10.1038/105809a0.

[218] P. Lu, “Entry guidance and trajectory control for reusable launch vehi-
cle,” J. Guid., Contr., Dyn., vol. 20, no. 1, pp. 143-149, 1997, doi: 10.2514/2.4008.
[219] B. Bonnard, L. Faubourg, G. Launay, and E. Trélat, “Optimal control
with state constraints and the space shuttle re-entry problem,” J. Dyn. Con-
tr. Syst., vol. 9, no. 2, pp. 155-199, 2003, doi: 10.1023/A:1023289721398.

[220] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in Proc. IEEE Int.
Conf. Robot. Automat., 2009, pp. 489-494, doi: 10.1109/ROBOT.2009.5152817.
[221] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in Proc. IEEE
Int. Conf. Robot. Automat., 2011, pp. 45694574, doi: 10.1109/ICRA.2011.5980280.
[222] L. E. Kavraki, P. Svestka,].-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom. (1989—June 2004), vol. 12, no. 4, pp. 566—
580, 1996, doi: 10.1109/70.508439.

[223] S. M. LaValle and J. J. Kuffner Jr., “Randomized kinodynamic plan-
ning,” Int. J. Robot. Res., vol. 20, no. 5, pp. 378-400, 2001, doi: 10.1177/
02783640122067453.

[224] S. Ploen, B. Acikmese, and A. Wolf, “A comparison of powered descent
guidance laws for Mars pinpoint landing,” in Proc. Amer. Inst. Aeronaut.
Astronaut. Amer. Astronaut. Soc. Astrodyn. Specialist Conf. Exhib., Aug. 2006,
pp- 1-16, doi: 10.2514/6.2006-6676.

[225] J. M. Carson, B. Acikmese, L. Blackmore, and A. A. Wolf, “Capabilities of
convex powered-descent guidance algorithms for pinpoint and precision land-
ing,” in Proc. Aerosp. Conf,, Mar. 2011, pp. 1-8, doi: 10.1109/aero.2011.5747244.
[226] A. Wolf,]. Tooley, S. Ploen, M. Ivanov, B. Acikmese, and K. Gromov,
“Performance trades for Mars pinpoint landing,” in Proc. 2006 IEEE Aerosp.
Conf., p. 16, doi: 10.1109/aero.2006.1655793.

[227] A. A. Wolf,]J. Casoliva, J. B. Manrique, B. Acikmese, and S. Ploen, “Improv-
ing the landing precision of an MSL-class vehicle,” in Proc. IEEE Aerosp.
Conf., Mar. 2012, pp. 1-10, doi: 10.1109/aero0.2012.6187005.

[228] A. B. Mandalia and R. D. Braun, “Supersonic retropropulsion thrust
vectoring for Mars precision landing,” |. Spacecraft Rockets, vol. 52, no. 3, pp.
827-835, May 2015, doi: 10.2514/1.a33119.

[229] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embed-
ded systems,” in Proc. Eur. Contr. Conf. (ECC), Jul. 2013, pp. 3071-3076, doi:
10.23919/ecc.2013.6669541.

[230] M. A. Estrada, B. Hockman, A. Bylard, E. W. Hawkes, M. R. Cutkosky,
and M. Pavone, “Free-flyer acquisition of spinning objects with gecko-in-
spired adhesives,” in Proc. IEEE Int. Conf. Robot. Automat., Stockholm, Swe-
den, 2016, pp. 4907-4913, doi: 10.1109/ICRA.2016.7487696.

[231] M. Mote, M. Egerstedst, E. Feron, A. Bylard, and M. Pavone, “Collision-
inclusive trajectory optimization for free-flying spacecraft,” J. Guid., Contr.,
Dyn., vol. 43, no. 7, pp. 1247-1258, 2020, doi: 10.2514/1.G004788.

[232] T. Smith et al., "ASTROBEE: A new platform for free-flying robotics
on the international space station,” in Proc. Int. Symp. Artif. Intell., Robot.
Automat. Space, Beijing, China, 2016, pp. 1-8.

[233] “Meet CIMON-2, a new and improved Al robot astronaut.” Discover
Magazine. https://www.discovermagazine.com/technology/meet-cimon
-2-a-new-and-improved-ai-robot-astronaut (Accessed: Aug. 8, 2022).

[234] “What is Astrobee?” National Aeronautics and Space Administration,
Washington, DC, USA, Nov. 2020. [Online]. Available: https://www.nasa.
gov/astrobee

[235] J. Barlow ef al., “Astrobee: A new platform for free-flying robotics on
the international space station,” in Proc. Int. Symp. Artif. Intell., Robot., Au-
tomat. Space (i-SAIRAS), 2016, pp. 1-8.

[236] D. Szafir, B. Mutlu, and T. Fong, “Communicating directionality in
flying robots,” in Proc. 10th Annu. ACM/IEEE Int. Conf. Hum.-Robot Interact.,
Mar. 2015, pp. 19-26, doi: 10.1145/2696454.2696475.

[237] M. Bualat, J. Barlow, T. Fong, C. Provencher, and T. Smith, “Astrobee:
Developing a free-flying robot for the international space station,” in Proc.
Amer. Inst. Aeronaut. Astronaut. SPACE Conf. Expo., Aug. 2015, pp. 1-10, doi:
10.2514/6.2015-4643.

[238] JAXA. Ultra-Compact Triaxial Attitude Control Module-Application to
‘Kibo” Inboard Drone (Int-Ball). (Jul. 2017). [Online Video]. Available: https://
youtu.be/ZtIARUS7Lqc

[239] P. Roque and R. Ventura, “Space CoBot: Modular design of an holo-
nomic aerial robot for indoor microgravity environments,” in Proc. IEEE/
RS] Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 4383-4390, doi:
10.1109/IR0OS.2016.7759645.

[240] T. Akenine-Moller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and
S. Hillaire, Real-Time Rendering, 4th ed. Boca Raton, FL, USA: CRC Press,
Jul. 2018.

[241] E. Coumans and Y. Bai. “Pybullet, A python module for physics simu-
lation for games, robotics and machine learning.” GitHub. http://pybullet.
org (Accessed: Aug. 8, 2022).

[242] 1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[243] S. M. LaValle, Planning Algorithms. Cambridge, UK.: Cambridge Univ.
Press, 2006.

[244] A. Zanelli, A. Domahidj, J. Jerez, and M. Morari, “FORCES NLP: An
efficient implementation of interior-point methods for multistage nonlin-
ear nonconvex programs,” Int. J. Control, vol. 93, no. 1, pp. 13-29, May 2017,
doi: 10.1080/00207179.2017.1316017.

[245] S. Mceowen, D. Sullivan, B. Chasnov, D. Calderone, and M. Szmulk,
“Visual modeling system for real-time optimal trajectory planning for au-
tonomous aerial drones,” in Proc. IEEE Aerospace Conf., 2022.

[246] Autonomous Control Laboratory. Scenario 5: Quadrotor Vehicle Tracking
Performance. (Oct. 2020). [Online Video]. Available: https://www.youtube.
com/watch?v=0u7ZfyiXeyw

[247] “First disclosure of images taken by the Kibo’s internal drone ‘Int-
Ball’” Japan Aerospace Exploration Agency. https://issjaxa.jp/en/kiboexp/
news/170714_int_ball_en.html (Accessed: Aug. 8, 2022).

[248] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming,” CVX Research, Version 2.1, Mar. 2014. [Online]. Available:
http://cvxr.com/cvxr

[249] M. Grant and S. Boyd, “Graph implementations for nonsmooth con-
vex programs,” in Recent Advances in Learning and Control (Lecture Notes
in Control and Information Sciences), V. Blondel, S. Boyd, and H. Kimura,
Eds., London, UK.: Springer-Verlag Ltd., 2008, pp. 95-110. [Online]. Avail-
able: http://stanford.edu/~boyd/graph_dcp.html

_ IEEE
L CSS

OCTOBER 2022 <« IEEE CONTROL SYSTEMS 113

Authorized licensed use limited to: Stanford University. Downloaded on October 29,2022 at 03:01:51 UTC from IEEE Xplore. Restrictions apply.

