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Abstract. Combinatorial group testing and compressed sensing both focus on recovering a sparse
vector of dimensionality n from a much smaller number m < n of measurements. In the first approach,
the problem is defined over the Boolean field — the goal is to recover a Boolean vector and measurements
are Boolean; in the second approach, the unknown vector and the measurements are over the reals. Here,
we focus on real-valued group testing setting that more closely fits modern testing protocols relying
on quantitative measurements, such as qPCR, where the goal is recovery of a sparse, Boolean vector
and the pooling matrix needs to be Boolean and sparse, but the unknown input signal vector and the
measurement outcomes are nonnegative reals, and the matrix algebra implied in the test protocol is over
the reals. With the recent renewed interest in group testing, focus has been on quantitative measurements
resulting from qPCR, but the method proposed for sample pooling were based on matrices designed
with Boolean measurements in mind. Here, we investigate constructing pooling matrices dedicated for
the real-valued group testing. We provide conditions for pooling matrices to guarantee unambiguous
decoding of positives in this setting. We also show a deterministic algorithm for constructing matrices
meeting the proposed condition, for small matrix sizes that can be implemented using a laboratory robot.
Using simulated data, we show that the proposed approach leads to matrices that can be applied for
higher positivity rates than combinatorial group testing matrices considered for viral testing previously.
We also validate the approach through wet lab experiments involving SARS-CoV-2 nasopharyngeal
swab samples.
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1 Introduction

Widely-available, fast-turnover molecular testing for the presence of highly contagious infectious diseases
is considered a key tool in limiting their spread [36]. For newly emerging viral diseases, the gold-standard
detection approach involves molecular assays based on polymerase chain reaction (PCR) [10], which can be
quickly designed once the genetic sequence of the virus becomes available. However, rapid scaling of testing to
cover affected communities may face obstacles, leading to interest in pooling strategies that allow for using m
tests to screen many more than m samples, out of which k are positive [13,30,33,29,34]. Traditional, adaptive
pooling approaches, such as Dorfman pooling [13,1] and its improved variants [30,21], combine biological
material from multiple individuals into pools, each tested using one test. This allows for quickly eliminating
a large fraction of virus-negative pools of samples. However, follow-up testing is required to confirm which
individual samples in the pools that tested positive are positive, introducing delays and requiring protocols
for storing and retrieving previously tested samples for re-testing.



Non-adaptive, single-step protocols in which tests do not depend on each other and can be done in parallel
have been studied under the umbrella of combinatorial group testing [14,2] or Boolean compressed sensing
[3,27], and also in information retrieval [23]. The key challenge in non-adaptive group testing protocols
is the design of a binary measurement matrix A (see Figure 1), which prescribes that sample j should
be assigned to pool 7 if A;; = 1. In many applications, the matrix should be sparse, and several authors
considered combinatorial group testing with sparse matrices [17,18]. The matrix needs to guarantee that the
identity of the positive samples can be decoded from measurements of the sample pools. Probabilistic group
testing relaxes that requirement to allow the decoding guarantee to fail with some low probability [7]. These
approaches all share the underlying Boolean algebra — the measurement result for each pool is binary, and
only provides information whether the tested pool is all-negative or whether it contains at least one positive
sample. Combinatorial quantitative group testing [37] extends this approach to measurements that provide
the number of positive samples in the pool. The focus on binary or integer measurements puts a limit on how
small the number of pools, m, can be for a given number of tests, n.

Contemporary molecular assays often provide more than a binary readout — for example, cycle threshold
(C}) values in qPCR can be used to provide an estimate of the quantity of the measured molecule — but the
availability of this quantitative information is underutilized in pooling matrix design. Compressed sensing
[6,11,4,9] approaches generalize group testing to quantitative, real-valued measurements resulting from real-
valued linear algebra involving A and the unknown vector z*, similar to how qPCR would provide an estimate
of the combined abundance of the molecule in the pool. However, matrices designed for compressed sensing
typically involves real-valued elements, for example sampled from a normal distribution, and thus are not
feasible to implement for laboratory pooling of samples. Compressed sensing also focuses on the quality of
approximating the real-valued unknown signal vector, instead of just its pattern of nonzeros that indicates
which samples are positive, and on applications with high-dimensional signals, such as 3D imaging [26].
Nonnegative compressed sensing [12,5,24,25] is more aligned with molecular testing by focusing on unknown
vectors that, like molecular abundance vectors, involve nonnegative reals, but is still optimizing the matrix
design towards approximating the vector x* instead of recovering its pattern of nonzeros.

Combination group testing and compressed sensing have gained renewed interest recently in the context of
SARS-CoV-2 testing. It has been argued that combinatorial, nonadaptive pooling designs become advantageous
compared to multi-step, adaptive pooling and to testing individual samples as the positivity rate, the fraction
of samples in the tested group, increases [8]. One recent nonadaptive pooling method, P-BEST, achieves
8-fold reduction in the number of tests for groups of samples with positivity rate of around 1% or less.
Another method, Tapestry [19], achieves 2.3-fold reduction for 1.9% positivity rates, extending to 10-fold
reduction for 0.2% positivity rates. Both P-BEST and Tapestry utilize quantitative measurements and employ
decoding techniques from compressed sensing domain, but both use matrix construction strategies designed
for Boolean-measurement combinatorial group testing: P-BEST relies on Reed-Solomon codes, and Tapestry
utilizes Kirkman Triple Systems resulting in 2-disjunct matrices. Neither of these approaches considered
whether the matrix design can be improved if measurements are assumed to be real-valued.

1.1 Problem Statement and Contribution

We introduce real-valued group testing: an approach that exploits the quantitative nature of molecular assays
and aims at recovering the nonzero patterns in sparse vector. Consider an unknown nonnegative vector
x* € RY of molecular abundances in samples from n individuals, with up to k positives; we call such vectors
k-sparse. Equal amounts of biological sample from individual ¢ are placed by a laboratory robot into d; distinct
testing pools, with pool j having material from p; samples. The initial amount of sample, and the time it
takes for the laboratory robot to perform the work, puts limits on d; and p;. The assignment of samples to
pools is given by a binary matrix A, where A;; = 1 indicates that a portion of sample 7 is placed in pool j.
The total abundances in the pools are then equal to y* = Ax*. The abundances are quantified by a molecular
assay, such as qPCR, leading to observed measurement vector §j € R™. Readouts are estimated, from C}
values, on a logarithmic scale, leading to noise that is approximately multiplicative, that is, |§; — y;| X y;.
The goal is to design matrix A that will allow us to uncover supp(z*), the support of z*, from ¢, that is, find
which samples are positive. Matrices designed specifically for real-valued group testing allows for reducing the
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Fig. 1. Conceptual illustration of the proposed real-valued group testing. A: According to matrix A, genetic material
from sample no. 1 (left-most column) goes into testing pool 4 and 6, and testing pool no. 1 (top row) will contain
genetic material from samples 6 — 10. B: A robot programmed according to matrix A will distribute samples to pools,
then qPCR assays will provide quantitative readout of the amount of viral genetic material in each pool. A decoding
algorithm will resolve which cases are positive. C: Comparison of real-valued group testing with existing approaches.
Note that in our approach, we construct a binary matrix but we column-normalize it to have unit column norms prior
to use in testing; this ensures samples have equal contribution to the measurement vector.

number of pools for a given number of samples compared to matrices designed for Boolean combinatorial
group testing. For example, for the matrix in Figure 1, quantitative measurements allow for distinguishing
between the scenario with one positive at the third column and a scenario with two positives, at first and
third columns. The matrix would not be appropriate for Boolean measurements, which would not be able to
distinguish between these two scenarios.

We show a new necessary and sufficient condition for binary matrices to guarantee unambiguous recovery
of support of k-sparse nonnegative signals. We also provide a deterministic method for constructing matrices
meeting the proposed condition, for small values of k, m, n that are relevant for the viral testing setting. The
approach is validated using simulated data as well as limited laboratory experiments.

2 Methods

2.1 Notation

Let [n] = {1,...,n}. Define support of a vector x by supp(z) = {i € [n] : z; # 0}. The Ly pseudo-norm is
llzllo = |supp(z)|. A vector is k-sparse if ||z||o < k, that is, if it has up to k non-zeros. For n-dimensional
vector z, for S C [n], we use g to denote a vector of dimensionality equal to x, with entries z; of vector x
where i € S, and with null entries elsewhere.

By B™*"™ we denote the space of m x n binary matrices normalized to have unit sum of each column;
we use B for brevity even though these matrices are not binary, but instead have entries 1/||A4;||o for each
column A; of matrix A. By ker A we denote the nullspace of A, a set of solutions to Az = 0. For m x n
matrix A, given S C [n], Ag is a submatrix of A formed by its columns A; = A(-,4), where ¢ € S. Similarly,
for T C [m], Ar is a submatrix of A formed by its rows A; = A(j,-), where j € T. By S we will denote the
complement of S in [n] or [m]. It will be clear from the context whether we are considering a rows or columns.



2.2 Overview of the Matrix Design and Decoding Algorithms

Our approach to constructing pooling matrices is based on three observations. First, in Sections 2.3 and 2.3,
we prove conditions that a matrix must meet to allow for unambiguous decoding of the positive samples.
Next, in Section 2.3, we show that a matrix meeting the conditions can be obtained by starting with a wide
initial matrix and removing some columns. Finally, in Section 2.3, we show that the computational cost of
finding which columns to remove can be substantially reduced by focusing on a series of submatrices instead
of on the initial wide matrix, and that all the submatrices are essentially the same up to permutation of rows
and columns, so in fact only one submatrix needs to be considered.

These observations together allow us to formulate a deterministic matrix design method (Algorithm 1)
and a corresponding algorithm for decoding positive samples from noisy measurements (Algorithm 2).

Algorithm 1 Pooling Matrix Design Algorithm
Input: m - number of rows; k - sparsity; d - maximum

number of nonzeros per matrix column Algorithm 2 COMP-NNLS Decoding Algorithm

Output: A - pooling matrix Input: § - measurements; A - pooling matrix

1: POOLINGMATRIX(m, k, d) Output: P - set of positives

2: D,, = WidestBinaryMatrix(m, d) 1: COMP-NNLS(g, A)

3: Dgj, = WidestBinaryMatrix(dk, d) 2 for all i do

4: Var, = ViolatingColumnSubsets( Dy ) 3 if §; = 0 then

5: Vin =10 4: remove columns j from A if A;; =1
6: for all S : dk-row subset of D,, do 5: remove row i from A, ¢

T Vir = MapColumnlDsp, | _,p (Vak, S) 6 % = arg min,, ||Az — |2 s.t. 2 >0

8: Vin = Vin UV, 7 P = supp(2)

9: H = HittingSet(columns of Dy, sets Vi) 8 return P

10: A = remove columns H from D,,

11: return column-normalized A

Pooling Matrix Design Algorithm The pooling matrix construction proceeds in three broad steps. First,
(In. 2 in Alg. 1), an initial wide binary m-row matrix is constructed by concatenating all possible binary
columns containing between 2 and d nonzeros. This matrix will lead to many ambiguities if used in group
testing. Second (In. 3-8), we analyze which sets of columns lead to ambiguities — we perform the analysis on a
smaller, dk-row binary matrix (In. 3-4), and translate the results to the initial matrix (In. 5-8). These steps
rely on our main technical contribution, Theorems 2 and 4 and Lemmas 1 and 2 described below in Sections
2.3-2.3. Each of these column sets needs to be broken apart by removing at least one column from each set
from the initial matrix, which can be achieved (In. 9) by solving an instance of the hitting set problem, as
described in Section 2.3.

Decoding Algorithm The decoding algorithm (Alg. 2) has two steps. First, in a manner similar to
combinatorial orthogonal matching pursuit (COMP) [7], to simplify computations, we eliminate from A all
columns that have nonzero entry in rows with null measured y;, and we also eliminate these rows from A and
y (Alg. 2, In. 2-6). This leaves us with a smaller set of possible positives. For pooling matrices constructed by
the proposed approach, in the noise-free case Theorem 2 shows that the set of positives can be unambiguously
decoded from measurements y* by solving y* = Ax s.t. x > 0 and taking the support of the solution vector.
When noisy measurements ¢ are available instead of y*, this constrained linear system may have empty set
of sparse solutions. Indeed, the space of possible measurement noise vectors § — y* is m-dimensional, while
the set of k-sparse nonnegative solutions to y = Ax s.t. > 0 is a union of a finite number of k-dimensional
sets, with m typically much higher than k. Thus, to find a sparse = we use (Alg. 2, In. 7) nonnegative least
squares (NNLS), that is, we find the signal with the smallest, in the Lo sense, change in § needed to find a
nonnegative solution. This approach is aligned with the decoding guarantee for the noisy case provided by
Theorem 4.



2.3 Constructing Matrices for Real-valued Group Testing

Necessary and Sufficient Condition in Noise-free Case We will show that any matrix with the
following property allows for recovering the pattern of non-zeros of any unknown nonnegative signal with
sparsity k.

Definition 1 k-balanced nullspace property. Matriz A € B™*" has k-balanced nullspace property if for
all n € ker A\ {0}, at least k + 1 entries n; are positive and at least k + 1 entries n; are negative.

Intuitively (see Fig. 2), the property precludes having n = z’ — " with a k-sparse, nonnegative ' and
another nonnegative, nonzero z’" with supp(z’) # supp(z”) that could serve as an alternative set of positive
cases. If we recover a set of up to k positive cases from the measurement vector y*, we are guaranteed that
there is no other set of positive cases, not just with up to k cases but of any cardinality, consistent with y*.
Thus, the guarantee is stronger than in group testing based on k-disjunct matrices, where the guarantee is
limited to alternative sets of positives with cardinality up to k. The intuition is formalized as follows.

Theorem 2. A matrix A € B™*" allows for decoding supp(x*) from y* given by y* = Azx* if and only if it
meets the k-balanced nullspace property.

Proof. ( <= ): Let «* be a k-sparse vector with support S, let y* = Az*, and let * # z* be another
nonnegative vector with different pattern of non-zeros (i.e., supp(z*) # supp(z)) such that y* = Ax. Take
17 = a* — x; then i € ker A\ {0}. Vector n constructed this way will have at most k positive entries, since
—x only contributes negative or null entries and x* is k-sparse nonnegative; k-balanced nullspace property
will not hold. Thus, the property implies no such = exists. The unknown pattern of non-zeros in z* can be
recovered from the unique solution to the constrained linear system of equations y* = Az, x > 0.

( = ): Assume k-balanced nullspace property is violated. We will show that recovering supp(z*) unam-
biguously is not possible for some nonnegative x*, that is, k-balanced nullspace property is necessary for
real-valued group testing. For A with only positive entries, any n € ker A \ {0} must have at least one
positive and one negative entry. Let S be the support of the positive entries in 7, and —S the support of the
negative entries; both are nonempty. Both g and —7_g are nonnegative, at least one of them is k-sparse, and
supp(ng) # supp(—n_g). We have An = Ang + An_g = 0. Both ng and —n_g lead to the same measurement
vector y = Ang = A(—n_g); given y and A, S and —S resulting from 7 provide two different, equally possible
sets of positive cases.

Sufficient Condition for the Multiplicative Noise Case The measurements of y = Ax are expected to
be noisy, with the observed ¢ # y. For nonnegative = and A, the true y is also nonnegative, and in qPCR. and
similar settings, ¢ is also constrained to be nonnegative by the nature of the measurement process. Often,
with high probability, null y; leads to null §;. To fit these characteristics, we focus on multiplicative noise.

Consider a k-sparse solution = € R’} resulting in noise-free measurement y € R™. The observed results
of the measurements is §, with noise of magnitude limited by § > 0 in the sense |§; — y;| < dy;. This noise
bound is not symmetric, that is, bound on g;/y; is 1 + 6 while the bound on y;/§; is not 1/(1 4 ¢); for small
values of § it approximates the symmetric multiplicative noise model that captures qPCR noise well.

The bound on the magnitude of noise can help us establish how much the measurement noise can impact
the decoding of the positive cases from §.

A: B: s —1-s
’—‘ n € ker A\ {0} l s Ans = A(—n_g) @

T

Fig. 2. [llustration of k-balanced nullspace property for k = 2. A: Vector n that violates it by having only k& = 2 positive
entries. B: The violation allows for two alternative solutions, ©* = ns and x = —n_g, with the same measurement
outcome.



Definition 3 k,[-sparse é-robustness property. Matriz A € B™*" has k,[-sparse §-robustness property
if for all k-sparse x' € RY with ||2'||; = 1, for all l-sparse z" € R’} with supp(z') # supp(z”), we have
[|Azx" — Az ||2 > 26.

The é-robustness property is an extension of the k-balanced property, which is a special case for § = 0 and
Il =n — 1. The property guarantees, via Theorem 4, that for two different sets of positives, the corresponding
noise-free measurements are so different that even in the presence of measurement noise, the two sets of
positives can be distinguished by the decoding algorithm (see Fig. 3).

Theorem 4. Consider A € B™*", and noisy measurements such that for every x € R we observe § instead
of y = Az, with multiplicative error |§; — y;| < dy; of magnitude limited by a constant § € Ry. Consider a
k-sparse x* € R} and a set X C R} of alternative, I-sparse solutions with different support than x*. If A has
k,l-sparse §-robustness property, then supp(arg min,, ||Az — §||2 s.t. & > 0) will correctly decode supp(z*).

Proof. For any A € B™*" we have ||y||1 = ||Az||1 = ||z||1, since columns of A € B™*™ add up to one. Noise
of the form |§; — y;| < 0y; guarantees that ||§ — y|l2 < d||yll2 < d]ly|l1 = d]|z||1. Consider any =’ € X and
let ¥/ = Ax’; also, let y* = Ax*. For 2’ to possibly be a solution 2’ = arg min,, ||Az — §l||2 s.t. > 0 instead
of z*, we need ||y' — g|l2 < ||y* — 9||2. This implies ||y' — §||2 < d||z||1. From triangle inequality, it further
implies [|y" —y*|l2 < [[y" = dll2+ |ly" — 9ll2 < 26[|z*[|x, that is, |[Az’ — Az*[|s < 26[[z*[|1. If A has k, I-sparse
d-robustness property, we have a contradiction.

B: |

Fig. 3. lllustration of k, [-sparse J-robustness property. A: Violation of the property may lead to ambiguity in decoding
noisy measurement . B: If the property holds, z* can be decoded from .

Property-violating Column Sets To arrive with a matrix meeting the k-balanced nullspace property and
the k, [-sparse §-robustness property, we can start with a matrix that does not meet the property, and then
trim the matrix, as shown by the following result.

Definition 5 Violating set. A violating set of a matrix A € B™*" is a subset V' of columns of A such that
submatriz Ay does not meet k-balanced nullspace property, or the k,l-order §-robustness property. A minimal
violating set is a violating set that contains no smaller violating sets.

Lemma 1. For a matriz D, a submatrix A € B™*", formed by eliminating columns from D, meets the
k-balanced nullspace property and the k,l-order §-robustness property if one column has been removed from
all minimal violating sets of D.

Proof. Removing columns from a matrix does not introduce new violating sets, but removing even one
column from a minimal violating set removes the violating set. Thus, removing one column from each minimal
violating set eliminates all violating sets.

All minimal violating sets for the k-balanced nullspace property can be obtained by enumerating all
minimal linearly dependent sets of the matrix and filtering them according to the number of positive and



negative linear weights. Finding minimal dependent sets is a special case of enumerating all circuits in a
matroid [22]. For our experiments, we use the implementation in the function circuits of 4ti2 [35]. For
the d-robustness property, quadratic programming iterated over sets of up to k + [ columns can produce all
minimal violating sets.

Reducing the Search for Property-violating Sets to a Small Base Problem Detecting all minimal
dependent sets for a large m X n matrix in B"*™ has combinatorial complexity and is computationally
infeasible. For matrices A € B™*™ with up to d non-zeros in each column, y = Az will be sparse for
nonnegative, k-sparse x, and we have the following decomposition that can make the search for testing
matrices with m rows more efficient, by allowing us to focus on a small submatrices with dk rows, irrespective
of how large m is.

Lemma 2. Decomposition into Base Problem. Consider A € B™*" with ||4;|lo < d for each column
i. The matriz meets the k-balanced nullspace property or the k,l-sparse d-robustness property if and only if
for every dk-sized subset T € [m], the submatriz Ay formed by taking only rows in T, and then eliminating
columns that have support extending beyond T, has those properties.

Proof. Whether a set of matrix columns violates either of the properties is not affected by removing rows
that have all-null values in these columns. If the property is violated for A, it is violated by some specific
columns of Ar. Extending these columns by bringing back the remaining rows of A, which have all-null
values, does not remove the violation involving the columns, and A does not meet the property. Conversely, if
A does not meet the property, then some k-sparse vector = that leads to a measurement with at most dk
nonzeros has an alternative =’ that also has to lead to a measurement with up to dk nonzeros, in the same
set T, and the property that guaranties lack of ambiguity must be violated for submatrix Ar.

It is not necessary to detect all minimal dependent sets in all the submatrices A7, we only need to do
it once, for a small matrix. Up to permutation of columns and rows, all these submatrices are identical
to, or a submatrix of, of a single small matrix Dy with dk rows and 2512 (dik) columns that results from
concatenating all possible binary columns with two ones, with three ones, and up to dk ones. Given all
minimal violating column sets in Dy, a simple, efficient procedure can compute column indices in A from
indices in Dg,. We can iteratively translate minimal violating sets of Dy to minimal violating sets of each

kd-row subset of A, which together form all the minimal violating sets of A.

Constructing the Pooling Matrix based on Property-violating Column Sets For a given k and d,
finding matrix A with the largest n for a given m by starting from some initial matrix D,,, and then removing
smallest number of columns that break up all minimal violating sets corresponds to the hitting set problem.
The hitting set problem involves a universe U, and a set X' of subsets of U. The goal is to select the smallest
number of items from U such that each set from X contains at least one of those items. Here, the initial
matrix D,, is an m-row matrix that has all N = (7;) + ...+ (Tg) possible binary vectors with 2, ..., d ones as
columns. Universe U is the set of columns of the initial matrix D,,, and X' are all the minimal violating sets
of D,,. We aim to break each minimal violating set by removing as few columns from D,, as possible. The
problem, through equivalence with set cover problem, is NP-hard. The trivial approach of checking every
subset of columns of D,, matrix has complexity of | 2|2V, and algorithms that require instead N|X|2/*| also
have been formulated [16], but in our case |X| > N. While an approximation algorithm can be used for large
set cover problems, for small values of m, k, and d considered here, integer programming is effective. We used
GUROBI [20] solver with the number of threads limited to 32, limiting the time of calculations for each m to
500,000 seconds. All calculations were performed on a machine with 4 Intel Xeon E7-8894V4 2.4GHz CPUs,
with 24 cores per CPU, and 6TB RAM.



3 Results

3.1 Comparison of Matrix Properties with Existing Approaches

We used the proposed approach to construct two k = 2, d = 3 testing matrices, for m = 12 and m = 16.
These two numbers of pools correspond well to the standard dimensions of a 384 = 16224 well plate. A robot
with a multichannel pipette can work on multiple columns (for m = 16) or half-rows (for m = 12) in parallel.
We used the noise limit of 6 = 0.125 for m = 12 and § = 0.15 for m = 16. The properties of the two pooling
matrices are presented in Table 1. For comparison, we also summarized the properties of matrices of similar
sizes resulting from existing approaches for combinatorial group testing or nonnegative compressed sensing.

In combinatorial group testing, unambiguous decoding of k-sparse signals from Boolean measurements is
guaranteed for a binary pooling matrix if the matrix is k-disjunct [15], that is, if for any set of k columns,
every other column has at least one non-zero element in a row where all the k& columns are null. Reed-Solomon
codes [32] with Kautz-Singleton construction [23] are a popular way of constructing k-disjunct matrices. The
three RS/KS matrices with smallest m, comparable to o m in our matrices, are 12 x 16 (RS code: [3,2]4 ),
15 x 25 ([3,2]5), and 21 x 49 ([3, 2]7); these have lower compression rates than our matrices.

RS/KS construction is not optimal [31]. To find optimal codes for a given m, we used integer programming
to find 2-disjunct matrices with highest possible n for values of m = 12,16 used in our matrices. The resulting
widest-possible 2-disjunct matrices are 12 x 20 and 16 x 37. These have much lower compression rates n/m
than matrices constructed using our approach that exploits the fact that the matrices will be used with
real-valued measurements instead of Boolean measurements.

RS codes are better suited for larger m and n, and have been used recently in SARS-CoV-2 testing for
settings that involve lower positivity rates. P-BEST [33], a method based on RS codes, involves a 48 x 384
matrix designed for positivity rates up to 1%, much lower rate than our matrices; it also has much higher
sample dilution rate. However, it offers two-fold higher compression rate than our matrices, and is a better
choice in low-positivity scenarios.

Table 1. Properties of pooling matrices resulting from our approach for k = 2, d = 3, compared with existing methods
for matrix construction. For each m X n matrix, we provide the maximum number of non-zeros per column (dymaz)
and per row (Pmaz), the maximum sample dilution dilmq, resulting from dmaz and pmaz, maximum sparsity assumed
in matrix design, kmaz, the maximum positivity rate, kmas/n the matrix is designed for, and the testing compression
rate, n/m.

MATRIX DESIGN METHOD m N dmaez Pmaz dilmaz kmaz Kmaz/n n/m
PROPOSED METHOD 16 66 3 14 42 2 3.03% 4.13:1
PROPOSED METHOD 12 36 3 10 30 2 5.55% 3.00:1
COMBINATORIAL GROUP TESTING MATRICES
TAPESTRY [19] 45 105 3 8 24 2 1.90% 2.33:1
P-BEST [33] 48 384 6 48 288 4 1.04% 8.00:1
[3,2]7 REED-SOLOMON/KAUTZ-SINGLETON 21 49 3 7 21 2 4.08% 2.33:1
[3,2]s RS/KS [32,23] 15 25 3 5 15 2 8.00%1.67:1
[3,2]4 RS/KS [32,23] 12 16 3 4 12 212.50% 1.33:1
OPTIMAL 2-DISJUNCT [15] 16 37 3 7 21 2 5.40% 2.32:1
OPTIMAL 2-DISJUNCT [15] 12 20 3 5 15 210.00% 1.67:1

NONNEGATIVE COMPRESSED SENSING MATRICES

RANDOM-PERMUTATION [24] 16 66 3 15 45 - -4.13:1
RANDOM-PERMUTATION [24] 12 36 3 12 36 - - 3.00:1
RANDOM-BINOMIAL [25] 16 66 7 17 119 - -4.13:1
RANDOM-BINOMIAL [25] 12 36 5 13 65 - —-3.00:1
ONE-SIDED COHERENCE [5] 16 20 4 5 20 210.00% 1.25:1
ONE-SIDED COHERENCE [5] 12 9 4 3 12 222.20% 0.75:1




Another method proposed for SARS-CoV-2 testing is Tapestry [19], which relies on Kirkman Triple Systems
[28] for constructing 2-disjunct matrices. The 45 x 105 Tapestry matrix, while having lower compression rate
than our 16 x 66 matrix, also only has unambiguous decoding guarantees for positivity of up to 1.9%.

In addition to matrices used in combinatorial group testing, we also evaluated matrix design approaches
proposed in the nonnegative compressed sensing domain which, unlike our matrices, are designed with
the goal of recovering the vector, not only its support. One-side coherence [5] has been proposed as a
computationally-efficient sufficient condition for sparse recovery of nonnegative signals. It uses a condition
p/(1+ p) < 1/2k with p = max,,; |AT A;|/||A;||3; for k=2, one needs p < 1/3. The condition was initially
used for random [0, 1]-uniform matrices, which have low AT A;, but which are not feasible to use in laboratory
setting. For binary matrices, AT A; reduces to overlap and || A;||3 to || A;||o; to have a chance of finding A with
p < 1/3 we need ||A;]lo > 4, that is, columns with at least four non-zeros. Maximum independent set on the
graph of all possible ||A;||o > 4 columns, with edge if AT A; > 1, is tractable for small m, but highest-n-for-m
matrices are very poor: 12 x 9, and 16 x 20.

Other approaches [25,24] for creating matrices for nonnegative compressed sensing use random binary
matrices. We tested matrices with entries sampled from Bernoulli distribution, an approach that has been
used previously to construct sensing matrices that meet sparse recovery guarantees with high probability,
including in the nonnegative case [25]. In order to increase the quality of the random matrices we used as
comparison to our approach, instead of single random matrix, we sampled 100 Bernoulli matrices, and we
picked the matrix that has highest mean of sensitivity and specificity when tested on 100 random 2-sparse
inputs x. Bernoulli matrices may have highly varying number of ones between columns; as an alternative, we
used a permutation approach that guarantees that the number of elements in each column is between 2 and
3, as in matrices resulting from our method. A similar approach was used previously in nonnegative sparse
recovery [24]. Again, we picked the best of 100 random matrices for comparison with our approach. Random
matrices only provide probability guarantees that hold with high probability for large n, large m. The small
random matrices used here do not come with guarantees for unambiguous recovery for any sparsity value k,
which is indicated by a dash in Table 1.

3.2 Effectiveness on Simulated Data

We have used synthetic, simulated data to evaluate the sensitivity and specificity of decoding the positive
cases from real-valued measurements using the matrices in Table 1. For each m X n matrix, we simulated
10,000 random input vectors of dimensionality n and with given number of nonzeros. The nonzero elements
of each vector were sampled uniformly at random from [1.0,1000.0] range, that is, from a range spanning
around 10 qPCR C} cycles. True, noise-free measurements were obtained by setting y = Ax. To simulate
noisy qPCR measurements ¢, we used a realistic model of gPCR noise [19], of the form §; = (1 + q)N(O’UQ)yZ-,

Table 2. Sensitivity and specificity of pooling matrices resulting from our approach for varying positivity rates in
simulated noise-free and noisy measurements scenarios, for 10,000 simulated experiments. For each matrix, we provide
its dimensions and its compression rate. Maximum positivity rate for which the matrix was designed is marked with
an asterisk.

POSITIVITY NOISE-FREE MEASUREMENTS MEASUREMENTS WITH SIMULATED NOISE

MATRIX RATE  SENSIT. [%] SPECIF. [%] SENSIT. [%] SPECIF. [%)]
PROPOSED 16 X 66, 4.13:1 1.52% 100.0 100.0 100.00 99.99
PROPOSED 16 x 66, 4.13:1 3.03% * 100.0 100.0 99.48 99.18
PROPOSED 16 x 66, 4.13:1  4.55% 100.0 99.25 98.06 96.50
PROPOSED 12 x 36, 3:1 2.78% 100.0 100.0 100.00 99.91
PROPOSED 12 x 36, 3:1 5.56% * 100.0 100.0 99.26 97.88
PROPOSED 12 X 36, 3:1 8.33% 100.0 97.39 97.72 92.36




with the hyperparameters set to ¢ = 0.95 and o0 = 0.1. Given A and ¢, we used COMP-NNLS decoding
algorithm (Alg. 2) to identify the positive samples.

First, we focused on the matrices resulting from the proposed method, and analyzed how they behave
when the set of samples have varying positivity rates. We used three positivity rates: two that are within the
rate range for which the matrix is designed for, and one that exceeds the rate by half. Results in Table 2 show
that within the designed range of positivity rates, the matrices have high sensitivity, above 99%, and high
specificity, above 99% for the 16 x 66 matrix and above 97% for the 14 x 36 matrix. When the maximum
number of positives that the matrix was designed for is exceeded by half, the sensitivity drops by about 1.5%
and remains above 97%, while the specificity drops to between 92% and 96%, indicating a small increase in
the number of false negatives and a moderate increase in the number of false positives.

Next, we compared the proposed matrices with matrices from existing approaches in experiments with
k = 2 positives, that is, the highest number of positives the matrices are designed for (only P-BEST is designed
for higher number of positives, ka0 = 4). As Table 3 show, in the scenario with noise-free measurements, all
the matrices, with the exception of some of the random matrices, exhibit perfect accuracy.

As expected, matrices originating from Boolean combinatorial group testing, which are designed to work
without quantitative information available for the decoding process, are not significantly affected by the
presence of multiplicative measurement noise. This comes at the cost of having relatively low compression
rates, (small m,n matrices) or being limited to low positivity rates (large m,n P-BEST and Tapestry).

Random matrices originating from nonnegative compressed sensing approaches are by design of the same
shape as matrices from our approach, with the same compression rates. Permutation-based matrices exhibit
slightly lower sensitivity than our deterministically-designed matrices, and show specificity lower by 0.78%
for the 16 x 66 matrix, and by 1.44% for the 12 x 36 matrix — in both cases, this drop translates to almost
doubling of the number of false positives. Binomial random matrices have lower specificity and sensitivity.
Matrices based on one-sides coherence, while having high sensitivity and specificity, achieve that by offering
very low compression rate.

Table 3. Sensitivity and specificity pooling matrices resulting from our approach compared to existing approaches in
simulated noise-free and noisy measurements scenarios, for 10,000 simulated experiments with k = 2 positive samples.
For each matrix, we provide its dimensions and its compression rate.

NOISE-FREE MEASUREMENTS MEASUREMENTS WITH SIMUL. NOISE

MATRIX SENSIT. [%] SPECIF. [%]  SENSIT. [%] SPECTF. [%)]
PROPOSED METHOD 16 X 66, 4.13 : 1 100.0 100.0 99.48 99.18
PROPOSED METHOD 12 x 36, 3:1 100.0 100.0 99.26 97.88
TAPESTRY 45 x 105, 2.33: 1 100.0 100.0 99.93 100.0
P-BEST 48 x 384, 8:1 100.0 100.0 99.92 100.0
[3,2]7 RS/KS 21 x 49, 2.33: 1 100.0 100.0 99.87 100.0
[3,2]s RS/KS 15 x 25, 1.67: 1 100.0 100.0 99.81 100.0
[3,2]4 RS/KS 12 x 16, 1.33: 1 100.0 100.0 99.84 100.0
OpT. 2-DISJ. 16 x 37, 2.31: 1 100.0 100.0 99.85 100.0
OpT. 2-DISJ. 12 x 20, 1.67: 1 100.0 100.0 99.79 100.0
RAND-PERM 16 x 66, 4.13 : 1 100.0 99.77 99.10 98.40
RAND-PERM 12 x 36, 3:1 100.0 99.19 98.87 96.44
RAND-BINOM 16 X 66, 4.13 : 1 95.39 98.18 94.50 95.30
RAND-BINOM 12 x 36, 3: 1 100.0 97.57 99.00 93.09
1-SIDED COH. 16 x 20, 1.25: 1 100.0 100.0 99.77 100.0
1-SIDED COH. 12 x 9, 0.75: 1 100.0 100.0 99.76 100.0
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3.3 Effectiveness in Wet Lab

To validate the proposed approach in a laboratory setting, we performed limited testing of biological
samples using qPCR assay. We focused on the 12 x 36 pooling matrix that offers higher maximum positivity
rate, k/n = 5.5%, than the 16 x 66 matrix. We used one set of 36 human samples: two samples were
previously confirmed to be positive for SARS-CoV-2, and the remaining 34 were confirmed negatives. Briefly,
nasopharyngeal swabs were collected and immediately transferred to 3 ml of PrimeStore MTM medium to
deactivate the virus. Nucleic acids were purified using ThermoFisher MagMAX Viral/Pathogen Nucleic Acid
Isolation Kit. Nucleic Acid-extracts were stored at -80°C. Virus detection and viral loads were performed by
qPCR using IDT 2019-uCoV CDC qPCR Probe Assay targeting the SARS-CoV-2 nucleocapsid gene (N1 and
N2). The human RNase P gene was used as a control for sample integrity. Amplification was performed in
our ViiA7 Real-Time PCR System using the TaqgMan Fast Virus 1-Step Master Mix.

We randomly assigned the two positive samples to two columns of the pooling matrix. Samples were
thawed in ice and spun down for 5 seconds. We then prepared 12 master wells. For each A;; = 1 in the
sensing matrix A, we pipetted 3 ul of biological material from sample j into master well . We then pipetted
5 pl of volume from each master well into a separate testing well. The qPCR, assay was performed in a 20 ul
volume containing 5 ul of 4xTagMan Fast Virus 1-Step Master Mix (Thermo Fisher Scientific), 1.5 ul of
primers/probe set, and 8.5 ul DEPC-treated water. The qPCR was performed using ViiA7 Real-Time PCR
System (Thermo Fisher Scientific) with the following cycling conditions: reverse transcription at 50°C for 15
min. and 95°C for 2 min., followed by 40 cycles of PCR at 95°C for 3 sec. and 55°C for 30 seconds. We ran
12 individual qPCR assays, one per testing well. Total viral load in each testing well was estimated from the
qPCR C; value. Briefly, a standard curve was obtained by amplification of known amounts of SARS-CoV-2
(IDT 2019-CoV Plasmid Controls). Five consecutive dilutions (dilution factor 1:10) were prepared containing
from 104 to 1 copies/reaction. The amounts of SARS-CoV-2 in samples were obtained by plotting C; values
onto the standard curve.

A second round of 12 qPCR assays was carried out using 5 pl volume from each master wells, leading to a
second set of measurements, with the same underlying viral loads but differing due to technical variability of
the qPCR assay. Finally, we performed the same experiment on the same pooled master wells, by diluting the
master well 1:5, then pipetting 5 ul of volume into a testing well, and performing qPCR. This set of tests was
again performed in duplicate, resulting in two additional data sets differing due to technical variability. For
all four data sets, we used NNLS to recover the viral loads and, subsequently, the sparsity pattern of the 36
samples. In all four data sets, the method correctly identified both positive samples, and correctly labeled the
remaining 34 samples as negative.

4 Conclusion

We provided a theoretical and empirical exploration of real-valued group testing, a setting that is relevant
for improving efficiency of community testing for viral diseases. The proposed approach is focused on small-
to-medium sized matrices that are convenient in a laboratory setting. The resulting matrices are useful for
positivity rates below 5%, where they offer higher reduction in the number of tests than matrices designed for
Boolean combinatorial group testing while maintaining high sensitivity and specificity. For higher positivity
rates, the approach is not recommended. For much lower positivity rates, up to about 1%, existing approaches
such as P-BEST offer higher reduction in the number of tests.
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