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Flexible thermoelectric generators (TEGs) have shown immense potential for serving as a power source
for wearable electronics and the Internet of Things. A key challenge preventing large-scale application
of TEGs lies in the lack of a high-throughput processing method, which can sinter thermoelectric (TE)
materials rapidly while maintaining their high thermoelectric properties. Herein, we integrate high-
throughput experimentation and Bayesian optimization (BO) to accelerate the discovery of the optimum
sintering conditions of silver—selenide TE films using an ultrafast intense pulsed light (flash) sintering
technique. Due to the nature of the high-dimensional optimization problem of flash sintering processes,
a Gaussian process regression (GPR) machine learning model is established to rapidly recommend the
optimum flash sintering variables based on Bayesian expected improvement. For the first time, an
ultrahigh-power factor flexible TE film (a power factor of 2205 pW m~* K=2 with a zT of 1.1 at 300 K) is
demonstrated with a sintering time less than 1.0 second, which is several orders of magnitude shorter
than that of conventional thermal sintering techniques. The films also show excellent flexibility with 92%
retention of the power factor (PF) after 10° bending cycles with a 5 mm bending radius. In addition, a
wearable thermoelectric generator based on the flash-sintered films generates a very competitive power
density of 0.5 mW cm™2 at a temperature difference of 10 K. This work not only shows the tremendous
potential of high-performance and flexible silver—selenide TEGs but also demonstrates a machine
learning-assisted flash sintering strategy that could be used for ultrafast, high-throughput and scalable
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rsc.li/ees processing of functional materials for a broad range of energy and electronic applications.

Broader context

Thermoelectric devices offer great opportunities in direct conversion of waste heat into electricity and solid-state refrigeration with no moving parts or
environmental emission from refrigerants. To realize their broad applications in energy harvesting and cooling, significant advances are required to not only
increase the thermoelectric figure of merit 2T but also improve the mechanical flexibility and reduce the manufacturing time and cost. Although nanoscale
materials offer opportunities to enhance 2T by tailoring the electron and phonon transport, challenges still remain in processing these nanoscale materials into
high-performance and low-cost devices. Here, we demonstrate a machine learning-assisted high-throughput and ultrafast (<1 second) photonic flash
processing method that sinters silver-selenide nanoparticles into flexible films with room temperature z7' > 1, which is among the highest in flexible
thermoelectric materials. Bayesian optimization was applied to accelerate the discovery of the optimum sintering conditions using less than 40 experiments,
despite the complexity of photonic flash sintering processes. The successful integration of high-throughput photonic flash processing and machine learning
can be generalized to highly scalable and low-cost manufacturing of a broad range of energy and electronic materials.
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1. Introduction

Flexible thermoelectric generators (TEGs) are promising
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candidates for developing self-powered wearable devices and
industrial Internet of Things.' Flexible TEGs are light weight,
compact, and maintenance-free solid-state energy convertors
with no moving parts that directly convert heat into electricity,
and they can easily conform to a variety of heat sources with
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curved surfaces (e.g., body heat). The efficiency of thermo-
electric (TE) materials largely depends on the dimensionless
2

figure of merit (27) defined as z7 = %T, where S, g, Kk, and T
denote the Seebeck coefficient, electrical conductivity, thermal
conductivity, and absolute temperature, respectively.’”® Despite
the significant progress achieved in thermoelectric materials
to date, Bi,Tes-based alloys remain as dominant materials for
thermoelectric applications near room temperature, and the z7'
for n-type TE materials still remains below or around unity at
room temperature.>>'® In addition, the scarcity of tellurium
(Te) necessitates the development of new tellurium-free thermo-
electric materials for use in widespread industrial and wearable
applications. Silver-selenide (Ag,Se) is a narrow-band gap n-type
chalcogenide and an ideal candidate for room-temperature
applications owing to its high power factor (PF) and low intrinsic
thermal conductivity."'2°

Sintering is an essential step in material processing to
improve transport properties. Sintering transforms TE particles
into a dense structure with improved thermoelectric properties.
Conventional thermal sintering requires hours of processing
time at elevated temperatures, which hinders the widespread
development of flexible TEGs on organic substrates of a low
melting point (e.g., polymers and fabrics). In addition, it
hampers the high-throughput discovery and energy-efficient
manufacturing of high-performance TE materials with optimized
compositions. Substantial effort has been devoted to the develop-
ment of innovative sintering methods, such as microwave-assisted
sintering, spark plasma sintering (SPS), chemical sintering,
and intense pulsed light (flash) sintering.”’® Among these
techniques, flash sintering using intense pulsed light is uniquely
advantageous. For example, it is ultrafast, energy-efficient, and
can sinter the TE films at elevated temperatures on low-melting
point substrates without damaging the underneath substrate.
Although flash sintering has been used for a variety of conductive
materials such as silver, copper, and graphene, it remains rela-
tively underexplored for semiconducting nanomaterials, particu-
larly TE materials.>® Sintering of TE nanoparticles constitutes a
complex process involving solvent evaporation, decomposition
of organic ingredients, formation of inter-particle conduction
pathways, and densification, which highlights the imperative role
of optimized flash sintering variables in the resulting TE properties.

Previous efforts to discover the optimum flash sintering vari-
ables relied on expert-driven Edisonian trial-and-error search,
which is time- and labor-intensive.**> Enabled by recent advances
in machine learning, data-driven approaches such as Bayesian
optimization (BO) have rapidly permeated many fields including
TE materials,*>® smart manufacturing,’*>*®* and molecular
modeling of chemical products.***° Novel artificial intelligence
(AI) systems enable automated prediction and optimization of
materials and additive manufacturing processes.>*~**"*% Moreover,
machine learning algorithms can help to both intelligently max-
imize specific performance metrics and aid in revealing the
underlying physical mechanisms. Although classical statistical
design of experiments (e.g., full/partial factor design, response
surface methods, and ANOVA analysis) has been used to improve
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TE materials and manufacturing,*’™** these approaches require
experimental designs to be fixed at the beginning of an optimization
iteration and the experimental design cannot be updated as new
data become available during the optimization iteration. This is
inefficient and requires many experiments to optimize multiple
factors simultaneously. BO overcomes these limitations by adap-
tively determining a sequence of experiments without assuming
a parametric model for the data. In BO, the non-parametric GPR
model is updated after each experiment is completed such that
decisions are made based on all of the available data. For this
reason, BO is replacing response surface design of experimental
methods as the state-of-the-art for statistical optimization of labora-
tory experiments.***>
Despite the renewed interest and recent success of Al and
machine learning, there are often significant barriers in trans-
lating these methods into new application domains. In this
work, we integrate, for the first time, flash sintering with a
Gaussian process regression (GPR) machine learning model
and BO to predict the optimum flash sintering variables for
n-type silver-selenide TE films that leads to maximum PF at
room temperature. The proposed methodology successfully
optimized four sintering variables - voltage, pulse duration,
number of pulses, and pulse delay time - resulting in a PF of
2205 pW m™ ' K ? and a corresponding zT of 1.1 at room
temperature (among the highest in the reported flexible TE
films) with a sintering time less than 1.0 second after only 32
experiment-machine learning iterations. This methodology
could be easily generalized to ultrafast and high-throughput
flash sintering of a diverse range of energy and electronic
materials and other manufacturing processes in general.

2. Results and discussion

Fig. 1 depicts our machine learning-assisted workflow to find
the optimum flash sintering variables for silver-selenide TE
films fabricated using vacuum-assisted filtration technique.
The aim of this framework is to find a set of variables including
voltage, pulse duration, the number of pulses, and pulse delay
that yield the maximum power factor with a minimum number
of experimental iterations. The workflow starts with flash
sintering of silver-selenide films and then measuring the
power factor of the films (Fig. 1). The sintering variables and
measured power factor are then used as an input for BO to
predict the next set of variables to test.

The preparation of silver-selenide nanostructures was based
on the process reported in previous studies.'"?° Details of the
synthesis are provided in the Materials and methods section
and Fig. S1 (ESIt). The as-prepared products were dispersed in
ethanol by sonication and then deposited on a flexible porous
filtration membrane with an average pore diameter of 0.22 pm
(Tisch Scientific) by vacuum filtration. The as-prepared films
were dried in a vacuum and then cold-pressed at 25 MPa for
15 min prior to flash sintering (Fig. S2, ESIf). During the
fabrication process, the film thicknesses were controlled by
varying the silver-selenide particle concentration (Fig. S3, ESIt).

This journal is © The Royal Society of Chemistry 2022
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Fig. 1 Schematic workflow of the machine learning-assisted flash sintering of silver—selenide TE films. (i) Intense pulsed light (flash) sintering.

(i) Thermoelectric property measurement of the sintered film including the electrical conductivity and the Seebeck coefficient. (iii) Bayesian optimization
algorithm for the evaluation and suggestion of new sintering variables (voltage, pulse duration, number of pulses, and pulse delay) to test.

The structure and phase composition of the as-prepared silver-
selenide powder was characterized by X-ray diffraction (XRD).
Fig. S4(a) (ESIt) displays the XRD pattern of the synthesized
silver-selenide nanostructures before flash sintering. All the
peaks in the pattern can be indexed to orthorhombic silver—
selenide (JCPDF 24-1041), indicating that there are no obvious
impurities.”® Fig. S4(b) and (c) (ESIf) shows the surface SEM
images of the fabricated film before sintering, exhibiting a
porous microstructure with randomly distributed silver-selenide
nanostructures with diameters in the range of 50-200 nm.

Fig. 2 shows the TE properties and microstructure of the
films under different sintering conditions listed in Table S1
(ESIT). Details of the TE property measurement process are
described in the Materials and methods section. Overall, 37
experiments with a unique set of sintering variables were
tested, and three films were sintered under each condition to
ensure the reproducibility of the results. The SEM-EDS map of
the element distribution of unsintered silver-selenide films
confirms the Ag/Se molar ratio of 1.9:1 (see Fig. S5 and Table
S2, ESIT). A previous study has shown that adding a small excess
of anions (Se) to the stoichiometric composition leads to a sig-
nificant increase in the power factor over stoichiometric Ag,Se.*”
This extra Se significantly enhances carrier mobility and inhibits
the formation of the metastable structure. Thus, we synthesized
silver-selenide nanostructures with ~5% excess of selenium
(Ag10Se) to maximize the power factor. The silver-selenide films

This journal is © The Royal Society of Chemistry 2022

were fabricated with eight different thicknesses (16.5 pm, 14.3 pm,
13.3 um, 9.0 um, 3.8 pm, 2.7 um, 2.4 um, and 2.3 um) and were
classified into two general groups. Experiments 1-22 and 23-37
were conducted with films with average general thicknesses of
12.5 + 3.2 pm and 2.6 + 0.5 pm, respectively (Table S1, ESIt).

The typical light emission from the flash lamp (xenon, type C)
is within 200-700 nm. Room-temperature in-plane TE properties
of the sintered films are shown in Fig. 2(a) and (b). Sintered films
under the BO-optimized variables in experiment 32 (2.3 kV,
1.5 ms pulse time, 4 pulses, and 293 ms pulse delay) led to a
Seebeck coefficient and an electrical conductivity of —161.7 pv K *
and 8.4 x 10* S m™ ", respectively, with a maximum PF of 2205 +
73.1 yW m~ " K2 at room temperature, which is among the highest
in the reported flexible TE films and comparable to that of the bulk
Ag,Se.'**¥0 It is worth noting that the total sintering time was
less than a second whereas conventional thermal sintering usually
takes 30 min or more (Table 1).

Fig. 2(c)-(e) demonstrates the surface SEM images of unsin-
tered films and flash-sintered films with representative
non-optimum (experiment 24) and optimum (experiment 32)
variables. As shown in Fig. 2(c), unsintered silver-selenide
nanostructures are randomly distributed with a porous micro-
structure and limited carrier mobility, which result in a very low
PF of 101.3 yW m ™" K. A single pulse with a deposition energy
of ~1J (experiment 24) on the film causes coarsening and grain
size growth, leading to an improved PF of 813.9 yW m ' K >

Energy Environ. Sci.
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Fig. 2 Room-temperature in-plane TE properties of flash-sintered silver—selenide TE films under different sintering conditions (details of each
experiment and sintering variables are summarized in Table S1, ESIt). (a) Electrical conductivity and the Seebeck coefficient. (b) Power factor. Surface
SEM images showing the (c) unsintered silver—selenide film, (d) flash-sintered film under non-optimum sintering variables (experiment 24), and (e) flash-
sintered film under optimized sintering variables (experiment 32). Scale bars are 500 nm. Cross-sectional SEM images of the (f) unsintered film. Scale bar
is 5 um. (g) Film with 14.3 um thickness (experiment 6). The scale bar is 5 um. (h) Film with 2.3 um thickness (experiment 28). The scale bar is 2 pm.

Table 1 Room-temperature TE properties of organic and inorganic TE materials including silver—selenide films with different compositions

Seebeck Electrical Thermal
Sintering coefficient conductivity conductivity Power factor

Composition time (s) (VK™ (Sm™h Wm'K (LW m™' K ?) 2T Ref.
Cu,Ag,Se; 1800 —45.7 7.6 x 10" 1.32 1594 0.4 11
PVP-Ag,Se 1800 —143.4 9.3 x 10* 0.51 1910 1.1 12
Ag,Se 1800 —143.0 9.2 x 10* 0.69 1882 0.8 13
Ag, sSe 1800 —120.3 6.7 x 10* NA 975¢ NA 17
Ag,Se/Se/polypyrrole 1800 —144.0 10.6 x 10* 0.71 2240 0.9 19
B-Ag,Se 1800 —140.7 4.9 x 10* 0.48 987 0.6 20
Sb, ¢Biy.4Tes/Te 2700 204 7.2 x 10* 0.9 3000 1 52
Sb,Te;/Te 3600 130 7.8 x 10* NA 1370 NA 53
Te/PEDOT 600 115 2.1 x 10* 0.22 284 0.39 54
CNT/PANI 72000 61 6.1 x 10* 0.7 220 0.1 55
Bi,Te; 600 —141 6.7 x 10* 1.2 1332 0.3 56
Bi,Te, ,Seq 3 1.5 —163 2.7 x 10* NA 730 NA 32
Ag1.065€ <1 —161.7 8.4 x 10* 0.61 2205 1.1 This work

“ Digitized from the reference.

(Fig. 2(d)). With optimized sintering variables and input energy

(experiment 32), the grain size grows and porosity decreases,
which results in the maximum PF and almost 22-fold enhance-
ment compared to that of the unsintered film (Fig. 2(e)). It is

Energy Environ. Sci.

worth mentioning that the thickness of silver-selenide films in
experiments 32 and 24 is 2.4 um and 2.3 pm, respectively;
however, the optimal input energy in experiment 32 is 6.9 J,
which is almost 7-fold higher compared to that of experiment 24

This journal is © The Royal Society of Chemistry 2022
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(Table S1, ESIT). This highlights the impact of optimal sintering
conditions on the TE properties. The corresponding TE proper-
ties in the SEM images are shown in Fig. S6 (ESIt).

Hall effect measurements were carried out to provide insight
into the charge carrier transport behavior of the flash-sintered
films. As shown in Table S3 (ESIY), the carrier mobility u increases
dramatically from 64.9 in unsintered films to 721.3 cm*V "' s " in
the sintered film under the optimized conditions (experiment 32).
Here, the increased mobility can be ascribed to the increased film
density and grain sizes with decreased grain boundaries, as
shown in Fig. 2(e). The decreased carrier concentration in the
sintered film explains the increase in the Seebeck coefficient after
flash sintering. EDS analysis of sintered films under the optimized
conditions revealed a slight shift in composition from Ag;¢Se
(unsintered film) to Ag;osSe (Table S4, ESIT). In addition, we
conducted XRD analysis of silver-selenide films before and after
flash sintering (experiment 32). The increase in X-ray diffraction
intensity (Fig. S7, ESIt) indicates an improvement in crystallinity
due to grain growth, which is consistent with the observation in
SEM analysis. The unsintered sample shows weak characteristic
peaks of (112) and (121) of silver-selenide and wide peaks near
16°-26°, of which the latter may correspond to the polymer
substrate of the vacuum-filtrated films. The sintered film also
exhibits an almost identical phase to the bulk silver-selenide
crystal in the Inorganic Crystal Structure Database (ICSD#52603),
indicating no obvious impurities.

In addition, we found that the thicknesses of silver-selenide
films played an important role in the flash sintering process
and the resulting TE properties. Fig. 2(f)-(h) shows cross-
sectional SEM images of unsintered and sintered films under
the same input energy but with varying thicknesses. As shown
in Fig. S8 (ESIY), sintering films under the same input energy of
~2.54 J (experiments 6 and 28) but with varying thicknesses of
14.3 um and 2.3 pm result in PF values of 523.5 pW m ™' K2
and 1145.2 yW m ' K2, respectively. The films with reduced
thicknesses undergo more uniform heating and sintering
across the entire thickness, thus possessing the potential to
achieve a greater PF using the flash sintering [Fig. 2(g) and (h)].
Room-temperature TE properties (Fig. S8, ESIT) show a 128%
enhancement of the electrical conductivity under the same
input energy with reducing thickness. We observed that an
excessive input energy on thin films could cause sublimation of
the silver-selenide nanostructures and create disconnected and
porous microstructures with very low PF (see Fig. S9, ESIt).

Among the optimized sintering variables, the pulse delay
time between two adjacent pulses does not alter the input
energy, but it impacts the microstructure and the resulting
TE properties of the sintered films. Fig. S10 (ESIT) shows the
room-temperature TE properties of the films under three sets of
sintering variables with the same input energy for each set but
different pulse delay times. We found that the PF increased
with decreasing pulse delay time. For example, decreasing
the pulse delay time from 1500 ms to 248 ms in experiments
13 and 15 (details in Table S1, ESI{), respectively, led to a 76.7%
increase in PF. This is attributed to elevated temperatures
because of the decreased pulse delay time between adjacent

This journal is © The Royal Society of Chemistry 2022
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pulses that leads to densified microstructures.®" This phenom-
enon was also observed for the other TE material system (n-type
Bi,Te, ,Sey3) in our previous study.*?

The thermal diffusivity of the silver-selenide film was mea-
sured using the Angstrom method, and the in-plane thermal
conductivity x was determined using the relationship x = apc,
where «, ¢p, and p are thermal diffusivity, specific heat capacity,
and density, respectively. The in-plane x of the silver-selenide
films is 0.5 W m ' K ' before sintering. The in-plane x
increases to 0.61 W m~ " K ' under the optimized sintering
conditions (experiment 32), which leads to a zT value of 1.1 at
room temperature. As shown in Fig. 2(h) and Fig. S11, and S12
(ESIt), the sintered film contains numerous pores of different
sizes, which can effectively scatter phonons with short to long
wavelengths and reduce lattice thermal conductivity. Details of
the thermal conductivity measurement process are described in
the Materials and methods section and the ESI.{

Fig. 3 demonstrates and explains the efficacy of the GPR
machine learning model to predict the PF of the flash-sintered
films as a function of four sintering variables (voltage, pulse
duration, number of pulses, and pulse delay) and the thickness
of the silver-selenide films.

The predicted power factors in Fig. 3(a) are generated
iteratively (with constant hyperparameters) using data from
the prior experiments. For example, the GPR prediction for
experiment 7 uses data from the six prior experiments for
training. Out of the five variables, the four sintering variables
can be controlled by adjusting the flash sintering processing
parameters, while the film thickness can be controlled by
adjusting the silver-selenide particle concentration during the
vacuum filtration process. Table S1 (ESIt) further divides
the two groups of samples shown in Fig. 3(a) with average
thicknesses of 2.6-12.5 um into eight subgroups. Analysis of
Fig. 3(a) and Table S1 (ESIT) shows that the GPR rapidly learns
the process-property relationship and only needs one or two
experiments in each thickness subgroup to make confident
predictions on experiments with close distance (as explained in
the Materials and methods section, each prediction is a
“weighted sum” of prior experiments). For example, experi-
ments 14-22 are in the 9 pm-thickness subgroup; experiment
14 has a high prediction uncertainty of £545 pW m ' K ? as
there are no prior experimental data for a sample with 9 pm
thickness. Experiment 15 has close distance with experiment
14; thus, after incorporating experiment 14 into the GPR
model, the prediction uncertainty of experiment 15 reduced
to £192 uW m~* K 2. Experiment 16 is far away in distance
compared with both experiment 14 and 15, leading to a high
prediction uncertainty of £508 pW m™' K 2; on comparing
experiment 16 with experiment 14, the prediction uncertainty
decreased 6.7% because the prior experiments 14 and 15
enhance the confidence of the GPR model. As more data are
added to each thickness subgroup near the optimal sintering
conditions, one expects the GPR prediction uncertainty to con-
verge to the experimental measurement uncertainty. In addition,
Table S1 (ESIT) includes data for 8 experiments in which the thin
film burned due to the excessive energy input, and the PF was

Energy Environ. Sci.
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Fig. 3 (a) Comparison of the measured and machine learning-predicted power factors for sintered films. The red dots and error bars correspond to the
GPR prediction mean and standard deviation. The black squares and error bars show the measured power factor. (b)—(e) Heatmaps show the sensitivity of
the expected improvement (BO objective) as a function of thickness and (b) voltage, (c) pulse duration, (d) number of pulses, and (e) pulse delay time. The
color scale from blue to red shows the expected improvement, where the red region indicates the range of optimal sintering variables. The black star
marks the conditions of experiment 32 which had the maximum measured power factor.

measured to be zero. These experiments are not shown in
Fig. 3(a) for clarity but were included in the GPR analysis.
Inspecting the GPR hyperparameters, /; = 0.625 (voltage), I, =
0.459 (pulse duration), I; = 5 (number of pulses), [, = 2.36 (pulse
delay), and /5 = 0.0477 (thickness), reveals that the film thickness
can influence effectiveness of the flash sintering process (as
explained in the Materials and methods section, the importance
of a feature is inversely proportional to its length scale /) and the
thinner films typically have a higher PF compared to similar
thicker films. As aforementioned, the films with reduced thick-
nesses experience more uniform heating and sintering across
the entire thickness, leading to dense microstructures and a
greater PF. These GPR results motivated the team to prepare the
second group of thinner films shown in Fig. 3(a), which under-
scores the synergy between experiments and machine learning
models. Fig. 3(b)-(e) shows the sensitivity of the expected

Energy Environ. Sci.

improvement metric (objective for BO) as a function of thickness
and the other four flash sintering variables. Fig. S13 in the ESIT
shows similar heatmaps for the prediction mean, prediction
uncertainty, and expected improvement over a wider thickness
range (1-16 pm). These heatmaps confirm that the GPR model
predicts a narrow thickness range, 2.2-2.6 pm, which maximizes
the expected improvement. Moreover, Fig. 3(b)-(e) and Fig. S13
(ESIt) show that voltage and pulse duration are important
factors for the PF. Similarly, there is a wide range of pulse delay
time and number of pulses that give a high expected improve-
ment. This finding is consistent with the importance of features
indicated by the length scales and the Pearson correlation matrix
shown in Fig. S14 (ESIt). Furthermore, the gradual improvement
in the PF in each thickness group emphasizes the importance of
optimizing all flash sintering variables. In this application, the
film thickness was determined by the vacuum filtration process.

This journal is © The Royal Society of Chemistry 2022


https://doi.org/10.1039/D2EE01844F

Published on 21 October 2022. Downloaded by University of Notre Dame on 10/21/2022 4:43:02 PM.

Energy & Environmental Science

The GPR model was then used to optimize the remaining four
sintering variables with the thickness being held constant.

A key contribution of this work is the integration of BO
recommendations and expert intuition to maximize the PF
of flash-sintered silver-selenide TE films. To illustrate this
integration, the results from experiments 23-30 in the second
thickness group (2.6 + 0.5 pm) were considered. Experiment
23 is chosen by intuition from previous experiments 1-22 as it
is the first experiment in the 2.3 um-thickness subgroup. The
GPR was then updated to incoporate the result from experi-
ment 23, and BO recommended up to five optimal conditions
for the next experiment, which were then downselected by the
experimental expert. Following this same procedure, the con-
ditions for the next eight experiments (24-32) were chosen,
resulting in a steady increase in the power factor. The maximum
PF was achieved at experiment 32 (see details of sintering condi-
tions in Table S1, ESIT), which is the final experiment in the sixth
thickness subgroup (2.4 pm). We observed that the PF decreases
for all subsequent five sintering experiments, which correspond to
the seventh and eighth thickness subgroups (2.7 and 3.8 pm,
respectively). One possibility, suggested in Fig. 3(b)-(e), is that
there is a narrow range of thickness values, approximately 2.3-
2.6 um, for which the PF is maximized. The final five experiments
(and two thickness subgroups) are outside this range.

Table 1 lists the room-temperature TE properties of several
reported studies on organic and inorganic TE materials including
flexible silver-selenide films fabricated using the vacuum-assisted
filtration method. Our approach using machine learning for
optimizing the flash sintering process not only results in an
ultrahigh PF and z7, among the highest in n-type flexible TE
materials, but also significantly decreases the sintering time to
less than 1 second.

Apart from the TE properties, the flexibility and mechanical
durability of the silver-selenide films play a vital role in
fabricating flexible TEGs for practical applications (e.g, wearable
electronics). Fig. 4 demonstrates the average ratio of the elec-
trical conductivity (a/g,), Seebeck coefficient (S/S,), and power

4100

PF/PFo (%)

100 200 300 400 500 600 700 800 900 1000

Bending cycles

Fig. 4 Flexibility test of the flash-sintered films. The electrical conductivity,
the Seebeck coefficient, and the PF change of the films after bending for
1000 cycles. The bending radius is 5 mm.
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factor (PF/PF,) as a function of bending cycles. Three samples
were tested, and the error bar represents the standard deviation
from these samples. We used a programmable linear motion
slide for the bending test with a bending radius of 5 mm.
Fig. S15 (ESIt) demonstrates the film at different bending
angles. As shown in Fig. 4, the electrical conductivity decreases
slightly with the increase in bending cycles whereas the Seebeck
coefficient is almost stable. This leads to an about 8% decrease
in the PF after 10° bending cycles, which confirms the excellent
flexibility and robustness of the sintered films. Table S5 (ESIY)
lists flexibility of several recently reported studies on silver—
selenide films fabricated using the vacuum-assisted filtration
method.

A flexible TEG was assembled with six silver-selenide legs
sintered under the optimum conditions (experiment 32:2.3 kV
voltage, 1.5 ms pulse duration, 4 pulses, and 293 ms pulse
delay time) with an internal resistance of 75.8 Q. Fig. S16
(ESIT) shows the fabricated TEG and the measurement setup.
Details are included in the Materials and methods section.
The theoretical internal resistance of the six silver-selenide legs
is calculated to be 75.4 Q using the resistivity and dimensions
of the TE legs, which is in good agreement with the measured
internal resistance. The small difference (<0.5%) between the
measured and the theoretical resistances is attributed to the
silver electrodes and the contact resistance between the TE legs
and silver electrodes. Fig. 5(a) shows the measured device open-
circuit voltage (V,) under different temperature gradients up to
70 K. The measured values are almost equal to the theoretical
values, which are calculated according to the expression V,. =
N|S|AT, where N is the number of TEG legs, S is the Seebeck
coefficient, and AT is the corresponding temperature gradient
with the maximum output voltage of 67.5 mV at AT of 70 K.

Fig. 5(b) shows the device operating voltage as a function of
electrical current, where there is a linear negative correlation
between the output voltage and the output current. Fig. 5(c)
shows the device power output at different AT values with the
maximum power output of almost 16 uW at AT of 70 K. As
conventionally calculated,""*” the power density can be obtained
by dividing the generated power by the number of legs N and the
cross-sectional area A =w x t, where w is the width of films and ¢ is
the thickness of silver-selenide films. As shown in Fig. 5(d), the
maximum power density is calculated to be 0.5 and 26.6 mW cm >
at AT of 10 and 70 K, respectively. This is sufficient to power a
variety of low-energy consumption Internet of Things sensors.
In addition, we demonstrated a wearable TEG to harvest heat from
the human body and convert it to electricity. Fig. 6 shows the
flexible TEG with an internal resistance of 56 Q, which was tied
around an arm with a generated voltage of 1.4 mV at AT of ~1.8 K
between the hot side and the cold side of the device.

We also tested the stability of the TEG by exposing it to the
air for a month and monitored the internal resistance change
over time. After being exposed to air, the internal resistance of
the device increased by ~0.5% to 76.2 Q, showing an excellent
stability of the sintered silver-selenide films even without
encapsulation. The flexible TEG can be applied to harvest
energy from other heat sources with higher temperatures than
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Fig. 5 Performance of a flexible TEG fabricated using flash-sintered silver—selenide films. (a) Open-circuit voltage at different temperature gradients.
(b) Device operating voltage versus current at various AT values. (c) Power output versus electrical current. (d) Electrical power density at various AT values.

the human body, such as power plants, factories, industrial
machines, geothermal and other low-grade waste heat sources.
In addition to energy harvesting, an alternative application
could be thermoelectric coolers (TECs) based on the Peltier
effect. TECs have exhibited significant advantages compared to
conventional vapor-compression refrigeration systems, including
small size, free of noise, moving parts, working fluid, and
chemical reaction.”®>®

(@)

As demonstrated by these results, this study highlights the
synergies between machine learning-enabled Bayesian optimiza-
tion and expert-driven experimental search. Human intuition is
critical to defining the BO problem by identifying the experi-
mental decision variables and their bounds. GPR is especially
well-suited for sparse noisy data arising from expensive experi-
ments as GPR “intelligently interpolates” from prior experiments.
Early in the experimental campaign, we purposefully explored a

Fig. 6 Performance of a wearable TEG. (a) Internal resistance of the TEG fabricated using six silver—selenide films. (b) Digital photograph of 1.4 mV open-
circuit voltage generated at a AT of ~1.8 K between the hot side and the cold side of the device. The inset is the corresponding infrared thermal image.

Energy Environ. Sci.

This journal is © The Royal Society of Chemistry 2022


https://doi.org/10.1039/D2EE01844F

Published on 21 October 2022. Downloaded by University of Notre Dame on 10/21/2022 4:43:02 PM.

Energy & Environmental Science

mix of BO and human-recommended sintering conditions. The
latter helped bias the search to consider unexplored regions of
the decision space based on prior knowledge. Later in the
campaign, we used expert intuition to downselect the recom-
mended experimental conditions with similar EI scores. We
found these strategies to be less cumbersome than designing
custom GPR kernels to incorporate the said prior knowledge.***
Moreover, this study demonstrates the robustness and flexibility
of the GPR strategy as we successfully extended the GPR input
space to include thickness partway through the experimental
campaign. Although GPR models do not offer full mechanistic
insights, analysis of the kernel length scales provides a relative
importance of each input variable. We used this information to
design one-dimensional sensitivity analyses under the optimal
sintering conditions and perform the corresponding material
characterization to develop a mechanistic understanding of the
results (Fig. 2 and Fig. S5, S7, S11, and S12, Tables S2-S4, ESI¥).
Moreover, emerging physics-based machine learning models can
be incorporated into the proposed framework. In our opinion,
these synergies between machine learning and expert intuition
are key factors to success.

3. Conclusions

In summary, we report the first machine learning-assisted
ultrafast flash sintering of flexible silver-selenide TE devices
for energy harvesting applications. BO significantly accelerated our
findings of a set of intense pulsed light (flash) sintering variables,
leading to an ultrahigh power factor of 2205 YW m * K 2 and a
ZT of 1.1 at room temperature realized with a sintering time less
than 1.0 second. Flash-sintered films demonstrate outstanding
flexibility with 92% retention of the PF after 10° bending cycles.
The maximum power density of a six-leg TEG is 0.5 and
26.6 mW cm™> at AT of 10 K and 70 K, respectively. The
ultrahigh-performance, low-cost, and highly flexible silver-
selenide TE films show great potential for energy harvesting
and wearable devices. Although this study focuses on the
optimization of flash sintering for silver-selenide TE materials,
this machine learning-assisted experimentation strategy pos-
sesses the potential for ultrafast sintering of other TE material
systems (e.g., Bi;Te; and Sb,Te;) and roll-to-roll manufacturing
of a broad range of energy, thermal, and electronic devices.

4. Materials and methods
Synthesis of silver-selenide nanostructures

The silver-selenide nanostructures were prepared by a bottom-up
synthesis approach. Selenium dioxide (2.5 g) and polyvinylpyrro-
lidone (PVP, 0.05 g) are dissolved in 200 mL of deionized water,
followed by the addition of 60 mL of ethanol to adjust the surface
tension of the solution. The above solution was then added
dropwise to a stirred solution of ascorbic acid (3.2 wt%,
200 mL) in water, leading to the formation of selenium nanowires
(red). After vigorously stirring for 1 h, a stoichiometric amount of
silver precursor solution (AgNO; in water) was introduced to the
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above mixture and left to react overnight. The final product was
collected by centrifugation and then washed with water and
ethanol each three times before use.

Characterization

Crystal structures of the synthesized nanostructures were examined
via X-ray diffractometry (XRD; MiniFlex; Rigaku) using Cu Ka
radiations over a 20 range of 20-60. Microstructures and chemical
compositions of the TE films were examined using a scanning
electron microscope (Helios G4 Ux Dual Beam) coupled with an
energy-dispersive X-ray spectrometer (Bruker).

Flash sintering of silver-selenide films

Flash sintering was performed using a Sinteron 2100 system
(Xenon Corp., USA) with a 107 mm xenon spiral lamp. The
S-2100 system was configured for maximum pulse durations of
3 ms with the sintering carried out in an ambient environment.
The S-2100 produced the pulse energy (single) ranging from
30 to 2850 J.

Measurement of TE properties

The room-temperature Seebeck coefficient and electrical
conductivity are measured using a custom-built setup. We used
the four-point probe method for electrical conductivity
measurement. To measure the thickness of the films precisely,
we used cryogenic cooling of the films by liquid nitrogen to
create sharp edges for measuring the thickness using SEM, as
shown in Fig. S5 (ESIt). For Seebeck coefficient measurement,
we applied a temperature gradient (6 K) across the film and
measured the induced voltage and temperatures using k-type
thermocouples. The Seebeck coefficient is calculated as
—-AV

S= AT The measurement error of the custom-built appara-

tus was ~5% for both the electrical conductivity and Seebeck
coefficient. Details of the measurements are described in our
previous work.®" We used the Angstrom method for in-plane
thermal conductivity measurement of the silver-selenide films.
The room-temperature in-plane thermal conductivity k was
determined by measuring the thermal diffusivity «, specific
heat capacity ¢, and density p, using the relationship x = apcp,.
Thermal diffusivity was measured using the Angstrom method
by applying a sinusoidal heat signal at one end of the sample
and measuring the temperature response as a function of time
at two different locations along with the sample. Fig. S12 (ESI{)
shows the cross-sectional SEM image of the film used for
thermal diffusivity measurement. The thermal diffusivities of both
the porous filtration membrane and the combined membrane and
silver-selenide films are measured. Modified effective medium
theory was used to extract the thermal conductivity of the silver—
selenide film itself. Details of the measurement process and
thermal conductivity extraction are described in the ESL} The
thermal conductivity measurement error was estimated to be
around 10%. Specific heat capacity and density values are adopted
from a previous report.>’
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Hall effect measurement

The Hall effect measurement is conducted to measure the
room-temperature carrier transport properties of unsintered
and flash-sintered silver-selenide films under the optimized
conditions (experiment 32). Table S3 (ESIt) shows the carrier
mobility (¢) and carrier concentration (n). We used an auto-
matic Hall effect measurement system (INSTEC, H8200) for
room-temperature carrier mobility and concentration measure-
ment. We measured two films (10 mm x 10 mm) for each
condition (unsintered and sintered). To minimize the electrical
contact resistance between the leads and the film, four corners
of the film (100 pm x 100 pm) were sputter-coated with a 30 nm
layer of 80% Au and 20% Pd.

TEG fabrication and testing

Two thermoelectric generators were assembled with six silver-
selenide films sintered under the optimum conditions (experiment
32:2.3 kV voltage, 1.5 ms pulse duration, 4 pulses, and 293 ms
pulse delay) on mica and flexible polyimide substrates with 150 um
and 25 pum thickness, respectively. Each leg with a size of 12 mm x
4 mm x 2.5 um was attached to the substrate using double-sided
tape. To minimize the contact resistance, both ends of each film
(1 mm x 4 mm) were sputter-coated with a 30 nm layer of 80% Au
and 20% Pd and then the legs were connected by silver paste
(Flash-dry, SPI). We used a custom-built in-house apparatus for
measuring the device performance under different temperature
gradients with two k-type thermocouples for measuring cold- and
hot-side temperatures as shown in Fig. S16 (ESIT).

Design of initial experiments

Special care is required to select the initial training data used
for machine learning-based optimization of experiments.®>
In this work, to determine the parameters for experiments 1 to
6 in Table S1 (ESIt), we consider two factors for three sintering
variables: voltage (2.2 or 2.4 kV), pulse duration (1 or 2 ms) and
number of pluses (1 pulse or 5 pulses with 1000 ms pulse delay).
Thickness was held constant. Instead of performing a full
factorial design (2° = 8), we decided to omit the two experiments
with 2 ms pulse duration and 5 pulses to avoid burning any
samples (based on our prior experience). The data from these
first six experiments were used for training the initial machine
learning models.

Machine learning and Bayesian optimization

Gaussian Process Regression (GPR) and Bayesian Optimization
(BO) are popular machine learning techniques to intelligently
improve expensive experiments through adaptive learning.
In this section, we describe the underlying mathematics behind
GPR and BO and emphasize specific details for implementation
with TE materials.

Let f(x) represent an unknown function that maps experiment
conditions x (input, vector) and power factor y (output, scalar).
Mathematically, we seek to solve the optimization problem
max,.x f(x), where the set x contains all possible (feasible)
experimental conditions. However, experiments are expensive
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and time-consuming. BO recommends a sequence of experiments
to maximize the power factor using three main steps: first the GPR
machine learning model is trained on the available data to
emulate the unknown function f(x). Second, decision theory is
used to recommend the most valuable experiments; third, the
proposed experiments are conducted, measured, and recorded.
The process is repeated multiple times until the desired power
factor is obtained or the experimental budget is exhausted.

A single flash sintering experiment requires specifying five
input variables - voltage (x;;), pulse duration (x;), pulse delay
(x:3), number of pulses (x;,), and thickness (x;5) - which result in
a corresponding power factor (y,). Here the subscript i denotes
the experiment (sample) number. All samples are combined for
the data set D ={(x;, y:),|x; € R®,y; € R, i € 1,...,N}, abbreviated
as D = (X, y).

We now construct a GPR model to predict the outcome of a
new experiment, f(x.), under conditions x.. GPR is a non-
parametric model, which means that the data D are directly
embedded into the model. The GPR model is fully specified
using the data set D, the mean function m(x), and the kernel
(covariance) function K(X, X’) In this work, we use the radial

N\ 2

£
basis function as the kernel krpp(x,x'|[[) =¢ = \ ~ /  which
measures the distance between each pair of experimental
conditions x and x’. Thus, when making a prediction under a
new experimental condition x«, the GPR incorporates all infor-
mation from data set D using the kernel to “weight” the
importance of all prior experiments using the distance between
x» and all x; € D. In this way, the GPR is a sophisticated ML
approach to interpolate between all prior experiments in D
without requiring an assumed parametric model to map inputs
x; to output y. Instead, the GPR model assumes the experi-
mental outcomes are described by a multivariate normal dis-

tribution N(.,.):
{f(X)} ([m(X) K(KJ@)D
~N (1)
/() m(x.) k(. x.)

Applying Bayes rule of probability gives the following analytical
expressions for predicting mean and variance under the new
experimental condition x.:%

K(X,X)

)

K(x.,X)

pex) = B(f(x)ly) = m(x.) + K(x., X)[K(X, X) + o’1] " (y — m(X)

(2a)

o (%) = Var(f(x)|y) = k(x-, x-) — K(x+, X)[K(X, X) + o°1] " K(X, x.))
(2b)

Eqn (2) also includes normally distributed observation errors
with mean zero and variance ¢”. The hyperparameters I = (I, I,
I3, I3, Is)" in the kernel function kggp(x, x’), also called length
scales, determine the importance of the features. If length scale
l; is small, then the corresponding feature x; is more important
to predict the output y. Optimal length scales are computed
by maximizing log marginal likelihood (LML).®*%*

Expected Improvement (EI) in a popular acquisition func-
tion is used to recommend an optimal x. in a BO framework.

This journal is © The Royal Society of Chemistry 2022
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EI balances the trade-offs between exploration, i.e., choosing x-
in regions with high uncertainty and exploitation, i.e., choosing
x» in regions that will maximize f(x.). EI achieves this balance
by computing the expected value of the improvement between
f(x.) and f(x"), where x' is the experimental condition in data
set D that has the highest power factor. Thus mathematically
El(x.) = E[max(f(x-) — f(x"), 0)]. By exploiting mathematical
properties of the normal distribution, EI(x) has the following
analytical formula:

{(#*(x*)—f(x+))4’(2(x*))+0*(x*)¢>(2(x*)), 7.(x.) >0
El(x.)=

0, otherwise
(3a)
(n.0e) /()
)= o) (x.)>0 ob)
0, otherwise

Here, @(-) is the cumulative distribution function, and ¢(-) is
the probability density function, respectively, for the standard
normal distribution. The GPR and BO workflows were imple-
mented in Scikit learn.®® The entire workflow, including the
interaction between BO and human experts (experimentalist),
is illustrated in Fig. 7. The entire procedure including hyper-
tuning training and EI optimization requires less than 2
minutes on a MacBook with a 2.6 GHz Intel Core i7 CPU.

Experiment Dataset, D = (X, y)

Data Normalization

SplitData D_; = (X_3y-1)  (x5,i)

uoljepi|eA ssoud
}N0-2auO-aAed]

Trainthe GPR model by LML

Calculate Expected Improvement, EI(x)

Hll Recommend New Experiments, x, = argmax, EI(x)

Record new experiments

Fig. 7 The proposed workflow integrates Bayesian optimization (BO) and
human intuition. The overall procedure contains three steps: Gaussian
process regression (GPR) model training (green box), expected improvement
(EI) calculation (blue box), and experimentalist downselection and fabrication
(yellow box). The BO is implemented in first two steps, and expert intuition is
incorporated in the last one. The data set, D = (X, y), contains N samples of
recorded sintering variables x;, which consist of voltage (x;1), pulse duration
(x2), pulse delay (x;3), number of pulses (xi4), and thickness (x;), and the
corresponding power factor (y;). In each iteration, data set D is provided to
BO, and d new experiments, {(Xn+1.Yn+1).- - XnrayYned)) are selected by
human intuition, performed, and added to data set D; the procedure
terminates when the expected improvement approaches zero or the experi-
mental budget is exhausted.
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