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Abstract. We construct, under standard hardness assumptions, the
first non-malleable commitments secure against quantum attacks. Our
commitments are statistically binding and satisfy the standard notion of
non-malleability with respect to commitment. We obtain a log⋆(λ)-round
classical protocol, assuming the existence of post-quantum one-way
functions.

Previously, non-malleable commitments with quantum security were
only known against a restricted class of adversaries known as synchro-
nizing adversaries. At the heart of our results is a new general technique
that allows to modularly obtain non-malleable commitments from any
extractable commitment protocol, obliviously of the underlying extrac-
tion strategy (black-box or non-black-box) or round complexity. The
transformation may also be of interest in the classical setting.

1 Introduction

Commitments are one of the most basic cryptographic primitives. They enable a
sender to commit to a string to be opened at a later stage. As long as the commit-
ment is not opened, it is hiding—efficient receivers learn nothing about the com-
mitted value. Furthermore, the commitment is statistically binding—with over-
whelming probability, the commitment can be opened to a single, information-
theoretically determined value in the commitment phase. While these basic secu-
rity guarantees go a long way in terms of applications, they do not always suffice.
In particular, they do not prevent a man-in-the-middle adversary from receiving
a commitment to a given value v from one party and trying to send to another
party a commitment to a related value, say v−1 (without knowing the committed
value v at all).

Such attacks are called “mauling attacks” and in some settings could be devas-
tating. For instance, consider the scenario where a city opens a bidding process for
the construction of a new city hall. Companies are instructed to commit to their
proposed bid using a commitment scheme, and these commitments are opened at
the end of the bidding period. If the scheme is “malleable”, company Amay man-
age to underbid company B, by covertly mauling B’s commitment to create their
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own commitment to a lower bid. More generally, ensuring independence of private
values is vital inmany applications of commitments, such as coin tossing, federated
learning, and collaborative computation over private data.

In their seminal work, Dolev, Dwork and Naor introduced the concept of
non-malleable commitments to protect against mauling attacks [DDN03]. They
guarantee that the value ṽ a man-in-the-middle adversary commits to is com-
putationally independent of the value v in the commitment it receives (unless
the man-in-the-middle simply “copies”, by relaying messages between the honest
sender and receiver it interacts with, in which case ṽ = v). From its onset, the
study of non-malleable cryptography has put stress on achieving solutions with-
out any reliance on trusted parties or any form of trusted setup, and solutions
that hold when honest parties may not even be aware of the existence of a man-
in-the-middle, and the way it manipulates the messages they send over time. The
latter is particularly important in applications where the man-in-the-middle acts
“in the dark”. For instance, in the aforementioned example, company A may not
be aware of the competing company B.

Since their conception, non-malleable commitments have indeed proved to
be a useful and versatile building block for ensuring independence of val-
ues. They have been used in coin-tossing protocols, secure multiparty compu-
tation protocols, non-malleable proof systems (zero-knowledge, witness indis-
tinguishability, multi-prover interactive proofs), and more. Techniques devel-
oped for non-malleable commitments are also useful for building non-malleable
codes, non-malleable extractors (and two source extractors), and non-malleable
time-lock puzzles. The work of [DDN03] constructed the first non-malleable
commitments against classical adversaries based on one-way functions. Since
then, a plethora of constructions have been proposed achieving different, some-
times optimal, tradeoffs between round-complexity, efficiency, and underlying
assumptions (c.f. [Bar02,PR05a,PPV08,LPV09,PW10,Wee10,Goy11,GLOV12,
COSV16,GPR16a,GKS16,Khu17,KS17,LPS17,BL18,KK19,GR19,GKLW20]).

Non-Malleability Against Quantum Adversaries. In contrast to the com-
prehensive understanding of non-malleability in the classical setting, our under-
standing of non-malleability against quantum adversaries is very much lacking.
The threat of quantum attacks has prompted the development of post-quantum
cryptography, and yet despite its important role in cryptography, post-quantum
non-malleability has yet to catch up. In this work, we construct, under standard
assumptions, the first non-malleable commitments with post-quantum security,
namely, the hiding and non-malleability properties hold even against efficient
quantum adversaries (and binding continues to be information theoretic).

Prior to our work, post-quantum non-malleable commitments were not
known under any assumption. Partial progress was made by Agrawal, Bartusek,
Goyal, Khurana, and Malavolta [ABG+20] who, assuming super-polynomial
quantum hardness of Learning With Errors, construct post-quantum non-
malleable commitments against a restricted class of adversaries known as syn-
chronizing adversaries. A synchronizing adversary is limited as follows: When
acting as a man-in-the-middle between a sender and a receiver, it is bound to
synchronize its interactions with the honest parties; namely, when it receives
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the i-th message from the sender, it immediately sends the i-th message to the
receiver and vice versa. Such synchronicity may often not exist for example due
to network’s asynchronicity, lack of synchronized clocks, or concurrent execu-
tions where parties are unaware of the existence of other executions. Enforcing
synchronizing behaviour in general requires a trusted setup (like a broadcast
channel) and coordination among parties to enforce message ordering.

The gold standard of non-malleability (since its introduction in [DDN03])
requires handling general, non-synchronizing adversaries, who can arbitrarily
schedule messages in the two interactions (without awareness of the sender and
receiver). In this work, for the first time, we achieve this gold standard non-
malleability in the post-quantum setting. As we shall explain later on, the chal-
lenge stems from the fact that classical techniques previously used to obtain
non-malleability against non-synchronizing adversaries (e.g., as robust extrac-
tion [LP09], simulation extractability [PR05a,PR05b] and so on) do not gen-
erally apply in the quantum setting. This is due to basic quantum phenomena
such as unclonability [WZ82] and state disturbance [FP96].

Our Results in More Detail.We construct statistically binding non-malleable
commitments against quantum non-synchronizing adversaries, assuming post-
quantum one-way functions. Our main result is a modular construction of
post-quantum non-malleable commitments from post-quantum extractable com-
mitments. The latter is a statistically binding commitment protocol that is
extractable in the following sense: There exists an efficient quantum extractor-
simulator, which given the code of any quantum sender, can simulate the arbi-
trary output of the sender up to, while extracting the committed value. The
construction, in fact, only requires ε-extractability, meaning that the extractor-
simulator obtains an additional simulation accuracy parameter 11/ε, and the
simulation only guarantees ε-indistinguishability

Theorem 1 (Informal). Assuming k-round post-quantum ε-extractable com-
mitments, there exist kO(1) · log⋆ λ-round post-quantum non-malleable commit-
ments, where λ is the security parameter.

By default, when we say “post-quantum” we mean protocols that can be
executed by classical parties, but which are secure against quantum adversaries.
In particular, starting from a post-quantum classical ε-extractable commitment,
we obtain a post-quantum classical non-malleable commitment. Constant-round
ε-extractable commitments were constructed by Chia et al. [CCLY21] based on
post-quantum one-way functions. Hence, we get the following corollary.

Corollary 1. Assuming there exist post-quantum one-way functions, there
exist O(log⋆ λ)-round post-quantum non-malleable commitments.

2 Technical Overview

We now give an overview of the main ideas behind our construction. Following
the convention in the non-malleability literature, we refer to the interaction
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between Sen and A as the left interaction/commitment, and that between Rec
and A the right interaction/commitment. Similarly, we refer to v, tg (and ṽ, t̃g)
as the left (and right) committed values or tag.

2.1 Understanding the Challenges

Before presenting our base commitments, we explain the main challenges that
arise in the quantum setting. First, we recall a basic approach toward proving
non-malleability in the classical setting via extraction. Here the basic idea is to
provide a reduction that given a MIM adversary A, can efficiently extract the
value ṽ that A commits to on the right. Accordingly, if the MIM A manages
to maul the commitment to v on the left and commit to a related value ṽ on
the right, the reduction will gain information about v, and be able to break the
hiding of the commitment.

The Difficulty in MIM Extraction. Extractable commitments allow for effi-
cient extraction from adversarial senders in the stand-alone setting. Such extrac-
tion is traditionally done by either means of rewinding, or more generally using
the sender’s code. In the MIM setting, whereA acts as a sender on the right, while
acting as a receiver on the left, extraction from A is much more challenging. The
problem is that the interaction of A with the receiver Rec on the right may occur
concurrently to its interaction with the sender Sen on the left. This means that a
reduction attempting to rewindA to extract the right committed value, may effec-
tively also need to rewind the sender Sen on the left. (This may happen for example
if, when the reduction rewinds A and sends A a new message, A also sends a new
message in the left commitment and expects a reply from Sen before proceeding
in the right commitment.) In such a case, extraction does not generally work—the
“actual” sender of the right commitment is essentially the MIM A combined with
the sender Sen on the left. However, the reduction does not posses the code of Sen,
specifically, it does not posses its randomness. The challenge is to perform such
extraction without access to the secret randomness of the sender on the left, and
thus without compromising the hiding of the left commitment.

Indeed, classical non-malleable commitments tend to require more than plain
extractable commitments. A long array of works (c.f., [DDN03,PR05b,PR05a,
LP09,PW10,LP11,Goy11]) design various safe extraction techniques, which guar-
antee extraction on the right without compromising hiding of the left committed
value. These safe-extraction techniques rely on properties of specific protocols and
extraction strategies, rather than general (stand-alone) extractable commitments.
For instance, the protocols of [DDN03,LP09,LP11,Goy11,GPR16a] rely on three-
message witness-indistinguishable protocols satisfying an extraction guarantee
known as special soundness, whereas the protocols in [PR05b,PR05a] rely on the
specific structure of Barak’s non-black-box zero knowledge protocol.

The Quantum Barrier. The (safe) extraction techniques used to obtain non
malleability in the classical setting fail in the quantum setting. For once, rewind-
ing does not generally work. We cannot record the adversary’s quantum state
between rewinding attempts due to the no-cloning theorem [WZ82]. Also, we
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cannot simply measure between rewindings, as this disturbs that the adver-
sary’s state [FP96]. In this case, even if we do extract, we may not be able to
faithfully simulate the adversary’s output state in the protocol1. Similarly, non-
black-box techniques do not generally apply. For instance, it is unclear how to
apply Barak’s non-black-box simulation technique [Bar02], due to the lack of
universal arguments [BG08] for quantum computations (this is just to mention
one difficulty in using Barak’s strategy in the quantum setting).

The difficulty of applying classical proof techniques in the setting of quan-
tum adversaries is indeed a well known phenomena, and in some settings, quan-
tum proof techniques have been successfully developed to circumvent this dif-
ficulty. Perhaps the most famous example of this is in the context of zero-
knowledge simulation. Here Watrous [Wat09] shows that in certain settings quan-
tum rewinding is possible and used it to obtain zero-knowledge protocols. Sev-
eral other rewinding techniques enable extraction, but disturb the adversary’s
state in the process [Unr12,CCY20,CMSZ21]. Alternatively, several recent works
[AP19,BS20,ABG+20] obtain constant round zero-knowledge via non-black-box
quantum techniques, using quantum FHE (and assuming LWE). While post-
quantum extractable commitments do exist, they do not satisfy the specific
properties that the classical safe-extraction techniques require.

Given the above state of affairs, in this work, we aim to construct post-quantum
non-malleable commitments modularly based on any post-quantum extractable
(or ε-extractable) commitment. The equivalence between extractability and non-
malleability is interesting on its own from a theoretical perspective. It turns out
that doing so is challenging, and requires designing completely new safe-extraction
techniques that work with general quantum extractable commitments, which we
explain next.

For the sake of simplicity, and toward highlighting the main new ideas in
this work, we ignore the difference between fully-extractable and ε-extractable
commitments through the rest of this overview. We note that the transition
from full extractable commitments to ε-extractable ones is quite direct and is
based on the common knowledge that ε-simulation is sufficient when aiming
to achieve indistinguishability-based definitions. Indeed, the definition of non-
malleability is an indistinguishability-based definition, and accordingly showing
ε-indistinguishability for any inverse polynomial ε is sufficient. In this case, the
simulators invoked in the reduction are all still polynomial-time.

The Synchronizing Setting. As observed in [ABG+20], if restricted to syn-
chronizing adversaries, such a modular construction exists using ideas from early
works [CR87,DDN03]: When committing under a tag tg ∈ [τ ] for τ ≤ λ, in every
round i ̸= tg send an emptymessage, and in round tg, send an extractable commit-
ment to the value v. Indeed, in the synchronizing setting, a commitment on the left
under tag tg would never interleave with the commitment on the right under tag

1 Recall that non-malleability requires that the joint distribution of the output state
of the adversary and the committed value are indistinguishable regardless of the
committed value on the left. Hence the reduction needs to extract the committed
value without disturbing the state of the quantum adversary.
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t̃g ̸= tg. Thus, safe-extraction opportunities come for free, circumventing the real
challenge in achieving non-malleability. It is not hard to see, however, that in the
non-synchronizing setting, this approach would completely fail as the adversary
can always align the extractable commitment on the right with that on the left.
The work of [ABG+20] further constructed constant-round non-malleable com-
mitments for a super-constant number of tags, based on mildly super-polynomial
security of quantumFHEandLWE.The non-malleabilty of the newprotocol, how-
ever, still relies on the synchronization of the left and right commitments.

2.2 Leveraging Extractable Com in Non-synchronizing Setting

We design a base protocol for a constant number of tags that, using any (post-
quantum) extractable commitment scheme. The protocol guarantees extraction
on the right while preserving hiding on the left, even against a quantum non-
synchronizing MIM adversary. In this overview, we explain our base commit-
ments in three steps:

– First, we introduce our basic idea in the simplified one-sided non-malleability
setting where the MIM is restricted to choose a smaller tag on the right than
the tag on the left, t̃g < tg.

– Then, we extend the basic idea to the general setting where the MIM may
also choose a right tag that is larger t̃g > tg. We illustrate the main ideas
here under the simplifying assumption of a certain honest behavior of the
adversary.

– Finally, we show how to remove the simplifying assumption on the adversary.

Step 1: One-sided Non-malleability Let us first consider a MIM adversary
that given a commitment on the left under tag tg, produces a commitment on
the right under a smaller tag t̃g < tg. In our commitment, the sender first secret
shares the value v to be committed into shares u1, . . . , un. It then sequentially
sends extractable commitments to each of the shares u1, . . . , un – we refer to the
entire batch of these sequential extractable commitments as a block-commitment
to v. The binding and hiding of this protocol follow directly from those of the
underlying extractable commitment. We focus on non-malleability.

To achieve non-malleability, the number of shares n is chosen as a function
of the tag tg. The goal is to guarantee that in every execution where the tag
t̃g on the right is smaller than the tag tg on the left, there will exist, on the
left, a commitment to one of the shares ui that is free in the sense that it does
not interleave with the interaction on the right; namely, during the commitment
to ui on the left, no message is sent in the right execution (see Fig. 1). Before
explaining how freeness is achieved, let us explain how we use it to establish
non-malleability.

Extracting While Preserving Hiding and First-Message Binding. To argue non-
malleability, we show that we can efficiently extract all shares ũ1, . . . , ũñ on the
right, while preserving the hiding of the free share ui on the left, and by the
security of secret sharing, also the hiding of the committed value v.
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MIM

free

Fig. 1. Freeness Example. Each share commitment has 4 messages and there are n = 3
shares on the left, and ñ = 2 shares on the right. The second commitment on the left
is free. Note that it splits the second commitment on the right.

Freeness guarantees that almost all commitments on the right do not interleave
with the commitment to ui on the left, more precisely, a single commitment on the
right could be “split” by the commitment to ui on the left (as in Fig. 1), which
prevents extraction of that right split commitment. To deal with this, we rely on
extractable commitments that are first-message binding; namely their first sender
message fixes the value of the commitment. This gives rise to a simple extraction
strategy: for any commitment on the right, where the first sender’s message is sent
before the free commitment (on the left), we can extract the corresponding share
non-uniformly; for the commitments where the first sender’s message occurs after-
wards, we use the efficient extractor. Accordingly, we get a non-uniform reduction
to the hiding of the free extractable commitment on the left.

We observe that any extractable commitment can be made first-message bind-
ing without any additional assumptions, andwhile increasing round complexity by
at most a constant factor. For simplicity we describe how to achieve this assum-
ing also non-interactive commitments.2 We append to the original extractable
commitment a first message where the sender sends a non-interactive commit-
ment to the committed value and add at the end a zero-knowledge argument that
this commitment is consistent with the commitment in the original extractable
commitment. Extractability follows from the extractability of the original scheme
and soundness of the argument, whereas hiding follows from that of the origi-
nal scheme and the zero knowledge property. We note that (post-quantum) zero-
knowledge arguments follow from (post-quantum) extractable commitments with
a constant round complexity overhead (see e.g. [BS20]), and the same holds for
ε-zero-knowledge and ε-extractable commitments, respectively.
2 In the body, we observe that Naor commitments [Nao91], which can be obtained from
(post-quantum) one-way functions, and thus also from any commitment, are in fact
sufficient.



526 N. Bitansky et al.

Guaranteeing Freeness. To achieve the required freeness property, it suffices to
guarantee that whenever t̃g < tg, the number of shares n(tg) (and hence the
number of extractable commitments) on the left is larger than the total number
of messages on the right, which is k · n(t̃g), where k is the number of messages
in each extractable commitment. Accordingly, we choose n(tg) = (k + 1)tg.

Step 2: Dealing with General Adversaries. The above commitment does
not prevent mauling of commitments under tag tg to commitments under tags
t̃g > tg. To deal with general adversaries, we invoke the above idea again in
reverse order. That is, the sender now secret shares the value v twice indepen-
dently: once to n shares u1, . . . , un, and again to n̄ shares ū1, . . . , ūn̄. It then
sequentially sends extractable commitments to the shares u1, . . . , un, ū1, . . . , ūn̄,
that is, sending two sequential block-commitments to v. To understand the basic
idea, we assume for simplicity, in this step, that the MIM attacker always com-
mits to shares of the same value ṽ in the two block-commitments on the right
(in Step 3, we will remove this assumption using zero-knowledge arguments).

Our goal now is to set the number of shares n(·), n̄(·), based on the tags,
to guarantee that there exists a block-commitment on the right with respect to
which there exist two extractable commitments to shares ui and ūī on the left
(one from each left block-commitment) that are free. This means we can extract
every share from that right block-commitment, while keeping the shares ui and
ūī, and hence the left committed value, hidden. We say that the corresponding
block-commitment on the right is ideally scheduled (see Fig. 2).

Fig. 2. Examples of an ideally scheduled block of shares (on the right). The first block
of share commitments is colored in (light/dark) blue and the second in (light/dark)
yellow. We mark the commitments on the left that are free with respect to the ideally
scheduled block. (Color figure online)



Non-malleable Commitments Against Quantum Attacks 527

Once we establish the existence of an ideally scheduled block, we can prove
non-malleability using a non-uniform reduction to the hiding of the extractable
commitments to ui and ūī similar to the one we used in the first step. Since we
are only able to extract from one of the two block-commitments on the right,
it is important that both commit to the same value ṽ, and thus our reduction
would work, regardless of which one of the two it is able to extract from. Before
we explain how to enforce this using ZK in Step 3, we explain how the existence
of an ideally scheduled block is established.

Guaranteeing an Ideally Scheduled Block-Commitment.We prove that by setting
the parameters n, n̄ appropriately, an ideally scheduled block of shares always
exists. For this purpose we generalize the combinatorial argument from before.
Concretely, we set n, n̄ to guarantee that:

1. Either, the number of shares n = n(tg) in the first left block-commitment
is larger than the total number of messages k · n(t̃g) in the first right block-
commitment,

2. Or, the number of shares n̄ = n̄(tg) in the second left block-commitment is
larger than the total number of messages k · n̄(t̃g) in the second right block-
commitment.

In addition, we require that n, n̄ are both at least 2. These conditions can be
satisfied for example by setting n = (k+1)tg, n̄ = (k+1)τ−tg +1, where τ is the
total number of tags (namely, tg ∈ [τ ]).

To see why the above is sufficient, let us assume for instance that Condition 2
of the two above conditions holds (at this point, both are treated symmetrically).
We consider two cases:

– Case 1 (depicted in Fig. 2a): the commitment to share u1 (i.e., the first
share of the first block-commitment) on the left ends before the second block-
commitment starts on the right. In this case, the commitment to u1 on the
left is free with respect to the second block-commitment on the right. Further-
more, since Condition 2 holds, (by the argument in Step 1,) there also exists
a commitment to a share ūi (in the second block-commitment) on the left
that is also free with respect to the second block-commitment on the right.
Accordingly, the second block-commitment on the right is ideally scheduled.

– Case 2 (depicted in Fig. 2b): the commitment to share u1 on the left
ends after the second block of share commitments starts on the right. In this
case, the commitments to shares u2, . . . , un, ū1, . . . , ūn̄ on the left are all free
with respect to the first block-commitment on the right, and thus it is ideally
scheduled. (We use the fact that n ≥ 2, to deduce that a free share u2 indeed
exists.)

Step 3: Use ZK to Ensure Consistency of Right Block-Commitments.
Recall that in the last step, we made the simplifying assumption that the
MIM adversary always commits to the same value ṽ in the two right block-
commitments. The expected approach to removing this assumption, would be to
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require that the sender gives a (post-quantum) zero-knowledge argument that
such consistency indeed holds.

While the soundness of the argument guarantees the required consistency on
the right, the addition of a zero knowledge proof brings about new challenges in
the reduction of non-malleability to hiding on the left, due to non-synchronizing
advesaries. Indeed, in the proof of non-malleability, before using the hiding of the
extractable commitments on the left, we must use the zero knowledge property
on the left to argue that the proof does not compromise the hidden shares. The
problem is that the zero-knowledge argument on the left might interleave with
our ideally scheduled block-commitment on the right, and thus with our extrac-
tion procedure. For instance, if the extractor wants to rewind the MIM, it might
have to rewind the zero knowledge prover on the left, which is not possible. More
generally, there could be a circular dependency: The zero-knowledge simulation
needs to be applied to the verifier’s code which depends on the extractor’s code;
however, extraction needs to be applied to the sender’s code which depends on
the simulator’s code.

To circumvent this difficulty, we would like to guarantee that an ideally sched-
uled block-commitment would also be free of the zero knowledge messages on
the left, namely, during its execution, no zero knowledge messages should be
sent in the left execution (see Fig. 3). Indeed, if this is the case, then we can
apply the zero knowledge simulator to the verifier that when needed runs the
extractor on the right in its head. Note that since the right block-commitment
is free from zero knowledge messages on the left, the code of the extractor, and
induced verifier, is independent of the simulator’s code, breaking the circularity.

MIM

ideally scheduled

free
free

free
free

Fig. 3. The zero knowledge argument on the left is colored in green. The ideally sched-
uled block of shares on the right is required to be free of any zero knowledge messages
(as well as satisfy the same conditions as before). (Color figure online)
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Guaranteeing (the Stronger Form of) Ideal Scheduling. To achieve the stronger
form of ideal scheduling, we augment the protocol yet again. Specifically, we
repeat sequentially for ℓ + 1 times the second block-commitment to shares
ū1, . . . , ūn̄, where ℓ is the number of rounds in the zero knowledge protocol.
We now require that there is a block-commitment I among the ℓ+2 right block-
commitments (one of u1, . . . , un, and ℓ+1 of ū1, . . . , ūn̄) that is ideally scheduled
in the following stronger sense:

1. There exist shares ui and ūī such that all commitments to these shares (one to
ui and ℓ+1 ones to ūi) on the left, are free of the I’th right block-commitment.

2. The I’th right block-commitment is free of the zero knowledge argument on
the left.

We provide a more involved combinatorial argument (and choice of parameters
n, n̄) showing that an ideally scheduled right block-commitment I always exists.
Concretely, we set n, n̄ to guarantee that:

1. Either, the number of shares n = n(tg) in the first left block-commitment as
well as the number of shares n̄ = n̄(tg) in each of the left block-commitments
2, . . . , ℓ+ 2 are both larger than the total number of messages k · n(t̃g) in the
first right block-commitment.

2. Or, the number of shares n̄ = n̄(tg) in each of the left block-commitments
2, . . . , ℓ + 2 is larger than the total number of messages k · n̄(t̃g) in each of
the right block-commitments 2, . . . , ℓ + 2.

Again, we also require that n, n̄ are both at least 2. The above conditions can
be satisfied for example by setting n = (k + 1)tg, n̄ = (k + 1)2τ−tg + 1, where τ
is the total number of tags. The above two conditions can no longer be treated
symmetrically as before. We explain separately, how each one of them implies
the existence of an ideally scheduled block on the right (in the stronger sense
defined above).

– Case 1 (applies for either one of the two conditions): the first block-
commitment on the right ends after the knowledge argument on the left had
started. In this case, block commitments 2, . . . , ℓ + 2 on the right do not
interleave with any of the block commitments on the left. Thus, we only need
to establish that one of them does not interleave with the zero knowledge
argument on the left. This follows from the fact that there are ℓ+1 of them,
but only ℓ messages in the zero knowledge argument.

– Case 2: Condition 1 holds, but Case 1 above does not hold. First, since
Case 1 does not hold, the first right block commitment does not interleave
the zero knowledge argument on the left (which only starts after this block
commitments ends). Accordingly, it is left to establish that there exist share
commitments ui in left block commitment 1 and ūī in each of the left block
commitments 2, . . . , ℓ + 2 that are free with respect to the first right block
commitment. This is where we use Condition 1—since the number of messages
in this right block is strictly smaller than the number of shares n, n̄ in each
left block, the required free share commitments are guaranteed to exist.
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– Case 3 (applies for either one of the two conditions): the commitment
to share u1 on the left ends after the second block of share commitments starts
on the right. In this case, the commitments to shares u2, . . . , un, ū1, . . . , ūn̄,
as well as the zero knowledge argument on the left are all free with respect
to the first block-commitment on the right, and thus it is ideally scheduled.
(This case is similar to the simplified case depicted in Fig. 2a.)

– Case 4: Condition 2 holds, but Case 3 above does not hold. First, since
Case 3 does not hold, all the right block commitments 2, . . . , ℓ + 2 do not
interleave with the commitment to share u1 in the first left block commitment.
Furthermore, one of these right blocks blk ∈ {2, . . . , ℓ + 2} does not interleave
with the zero knowledge argument on the left (which consists of ℓ messages).
To deduce that blk is ideally schedule, it is left to show that there is a free
share ūī in each of the left blocks 2, . . . , ℓ + 2. Here we invoke Condition 2—
the number of messages in blk is strictly smaller than the number of shares
n̄ in each of the left blocks 2, . . . , ℓ + 2, the required free share commitments
are again guaranteed to exist.

2.3 Tag Amplification

We now briefly overview the tag amplification process, which takes a non-
malleable commitment ⟨Sen,Rec⟩ for t ∈ [3, O(log λ)] bit tags and transforms it
into ⟨Ŝen, R̂ec⟩ for T = 2t−1 bit tags. The amplification procedure is an adapta-
tion of existing procedures from the literature mostly similar to [KS17,ABG+20]
which in turn is based on that of [DDN03]; however, unlike the first of the two,
it relies on polynomial hardness assumptions, and avoids complexity leveraging,
and unlike the second, it works against non-synchronizing adversaries and not
only synchronizing ones.

The basic way that previous amplification schemes work is as follows: to
commit to a value v, under a tag t̂g ∈ {0, 1}T for T = 2t−1, we consider t − 1
tags of the form tgi = (i, t̂g[i]) ∈ {0, 1}t corresponding to the base scheme (here
t̂g[i] is the i-th bit of t̂g). The committer then sends t − 1 commitments to
the value v in parallel under each one of the tags tgi, using the base protocol
⟨Sen,Rec⟩. Finally, a proof that all t − 1 commitments are consistent is added.

The basic idea behind the transformation is that if all the commitments are
consistent, then in order to maul a commitment to value v under tag t̂g to a
commitment to a related value ṽ under tag t̂g

′ ̸= t̂g, the MIM must create a
commitment to ṽ using the base protocol under tag tg ′

i = (i, t̂g ′[i]) for every
i ∈ [t − 1], by potentially mauling from some of the left commitments to v
under tags {tgi = (i, t̂g[i])}i∈[t−1]. However, the fact that t̂g ̸= t̂g

′ means that
they differ on at least one bit, that is, t̂g[j] ̸= t̂g

′[j] for some j. Thus, tag
tg ′

j = (j, t̂g ′[j]) on the right is different from all the tags {tgi = (i, t̂g[i])}j∈[t−1]

on the left. By the non-malleability of the base protocol, the value committed
to under tag tg ′

j = (j, t̂g ′[j]) on the right must be independent of the value v

committed under tags {tgi = (i, t̂g[i])} on the left. Given additionally that the
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values committed to in all base commitments on the right are the same, the
non-malleability of ⟨Ŝen, R̂ec⟩ with respect to t̂g, t̂g

′ then follows.
In the setting of synchronizing MIM adversaries the above intuition can be

formalized as expected, when the proof of consistency is instantiated with a zero-
knowledge argument. In the more general setting of non-synchronizing adver-
saries, things become more subtle. Specifically, if the zero knowledge argument
on the left interleaves with the non-malleable commitments on the right, then it
is not clear how to leverage the non-malleability of the base protocol ⟨Sen,Rec⟩.
(More specifically, we need to apply zero-knowledge simulation on the code of the
verifier, which however might depend on the honest receiver Rec’s code. Then,
we can no longer reduce to the non-malleability of the base protocol.)

To overcome this difficulty, we rely on the Feige-Lapidot-Shamir trapdoor
paradigm [FLS99]. The first receiver message in our protocol sets up a trapdoor
(a solution to a hard problem), and the final proof of consistency is a witness
indistinguishable (WI) proof that either: (1) the t − 1 commitments are con-
sistent, or (2) the sender “knows” the trapdoor (where formally knowledge is
enforced using an extractable commitment). The idea behind the FLS paradigm
is that the trapdoor cannot be obtained by a sender running the protocol, and
thus the validity of assertion (1) is guaranteed on right. In contrast, we would
like to ensure that the reduction of non-malleability to hiding on the left would
be able to obtain the trapdoor and use it in order to simulate the WI proof.

We can show that the reduction can indeed do this, but only provided certain
scheduling conditions. Specifically, the trapdoor on the left should be set up
before the non-malleable commitment on the right occurs. In this case, we can
non-uniformly obtain the witness. To deal with the other case, we augment the
protocol yet again, adding a plain non-interactive commitment to the committed
value v between the trapdoor set up phase and the non-malleable commitment
phase. In case the non-malleable commitment on the right starts before the
trapdoor set up on the left, then in particular the plain commitment on the
right occurs before any commitment was made on the left. In this case, we have
a direct reduction from non-malleability to hiding, which non-uniformly obtains
the value of the plain commitment on the right (this is akin to our earlier use
of “first-message binding”). We refer the reader to Fig. 5 for the amplification
scheme and Sect. 5 for the proof.

Robustness. One challenge in the proof above is that even in the case that
we can obtain the trapdoor witness on the left, it is not immediate that non-
malleability holds when the commitments on the right interleave with the proof.
For this, we require that the base non-malleable commitment satisfies an extra
property known as r-robustness [LP12]. This property essentially says that the
committed value on the right can be extracted without rewinding an arbitrary r-
message protocol (the WI proof in our case) executed concurrently. This allows to
switch the witness used in the WI on the left, and argue that the right committed
value stays the same after the switch.

We show that our base protocol (described in Sect. 2.2) is indeed robust for
an appropriate choice of parameters. We further show that the tag amplification
transformation described here, preserves r-robustness.
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Two-Sided Extraction via Watrous’ Rewinding Lemma. One challenge
in our analysis of both the base protocol and the tag amplification procedure
is that the adversary’s scheduling of messages is adaptive. In particular, even
though the protocol’s design guarantees that executions always contain certain
extraction opportunities, we do not know ahead of time when they will occur.
This is not a problem in the classical setting, where one can typically run first the
so called main thread to identify the extraction opportunities and then rewind
back to extract. However, such rewinding in the quantum setting might disturb
the adversary’s state.

The analysis of our base scheme circumvents this difficulty by showing a
reduction to adversaries that commit ahead of time to the timing of the so
called extraction opportunities. This reduction strongly relies on the fact that
the definition of non-malleability is an indistinguishability-based definition. In
contrast, r-robustness is a simulation based definition—it requires a simulator
that given the code of the MIM adversary can extract on the right, while inter-
acting with an r-message protocol on the left. Let us briefly explain the difficulty
in this setting.

To achieve r-robustness, we make sure there are more than r extraction oppor-
tunities on the right. Consider a simplified scenario where the MIM gives r + 1
extractable commitments, and we want to extract from the “free” extractable
commitment that does not interleave with any of the r left messages—we refer
to this as non-interleaving extraction. The difficulty is that the simulator does
not know which extractable commitment would be “free”. If the simulator starts
an extractable commitment without applying the extractor, it might miss the
sole extraction opportunity. On the other hand, if it always applies the extractor,
extraction may halt when the adversary expects a message on the left, and the
simulator should give up extraction but still faithfully simulate the left and right
interactions from here. To resolve this conundrum, we need the extractor of an
extractable commitment protocol to be able to interchangeably simulate two types
of interactions, ones that will eventually constitute an extraction opportunity and
ones that will turn out not to be extractable due to the adversary’s scheduling.

Toward this, we prove a two-sided simulation lemma for extractable commit-
ments. This lemma shows that we can always enhance the extractor so that in
case the sender in the commitment prematurely aborts, not only can we simulate
the sender’s state at that point, but also the state of the receiver (in case of abort,
extraction is not required); otherwise, the extractor simulates the sender’s state
and extracts the committed value as usual (without simulating the state of the
receiver). Using this two-sided extractor we can deal with cases where a commit-
ment on the right turns out not to be extractable due to scheduled messages on
the left by viewing this event as a premature abort, and then using the simulated
state of the receiver to faithfully continue the interaction (without extracting).

The proof of the lemma is inspired by [BS20] and uses the fact that up to the
point of abort a real execution and an execution simulated by the extractor are
indistinguishable. Our two-sided extractor first tosses a random coin to decide
whether to simulate with extraction or to honestly simulate the receiver antici-
pating an abort; if the guess failed, it tries again (the expected number of trials
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is negligibly close to two). While this works smoothly in the classical setting,
in the quantum setting it should be done with care, as rewinding without state
disturbance is typically a problem. In this specific setting, however, we meet
the conditions of Watrous’ quantum rewinding lemma [Wat09]—our extractor is
guaranteed to succeed with probability close to 1/2, obliviously of the quantum
internal state of the adversarial sender.

3 Preliminaries

We rely on standard notions of classical Turing machines and Boolean circuits:

– A PPT algorithm is a probabilistic polynomial-time Turing machine.
– For a PPT algorithm M , we denote by M(x; r) the output of M on input
x and random coins r. For such an algorithm and any input x, we write
m ∈ M(x) to denote the fact that m is in the support of M(x; ·).

We follow standard notions from quantum computation.

– A QPTalgorithm is a quantum polynomial-time Turing machine.
– An interactive algorithm M , in a two-party setting, has input divided into
two registers and output divided into two registers. For the input, one register
Im is for an input message from the other party, and a second register Ia is
an auxiliary input that acts as an inner state of the party. For the output,
one register Om is for a message to be sent to the other party, and another
register Oa is again for auxiliary output that acts again as an inner state.
For a quantum interactive algorithm M , both input and output registers are
quantum.

TheAdversarialModel.Throughout, efficient adversaries aremodeled as quan-
tumcircuitswith non-uniformquantumadvice (i.e. quantumauxiliary input). For-
mally, a polynomial-size adversaryA = {Aλ, ρλ}λ∈N, consists of a polynomial-size
non-uniform sequence of quantumcircuits {Aλ}λ∈N, and a sequence of polynomial-
size mixed quantum states {ρλ}λ∈N.

For an interactive quantum adversary in a classical protocol, it can be
assumed without loss of generality that its output message register is always
measured in the computational basis at the end of computation. This assump-
tion is indeed without the loss of generality, because whenever a quantum state
is sent through a classical channel then qubits decohere and are effectively mea-
sured in the computational basis.

3.1 Indistinguishability in the Quantum Setting

– Let f : N → [0, 1] be a function.
• f is negligible if for every constant c ∈ N there exists N ∈ N such that
for all n > N , f(n) < n−c.

• f is noticeable if there exists c ∈ N, N ∈ N such that for every n ≥ N ,
f(n) ≥ n−c.



534 N. Bitansky et al.

• f is overwhelming if it is of the form 1−µ(n), for a negligible function µ.
– We may consider random variables over bit strings or over quantum states.
This will be clear from the context.

– For two random variables X and Y supported on quantum states, quantum
distinguisher circuit D with, quantum auxiliary input ρ, and µ ∈ [0, 1], we
write X ≈ D,ρ,µ Y if

|Pr[D(X; ρ) = 1] − Pr[D(Y ; ρ) = 1]| ≤ µ.

– Two ensembles of random variables X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ over
the same set of indices I = ·∪λ∈NIλ are said to be computationally indistin-
guishable, denoted by X ≈ c Y, if for every polynomial-size quantum distin-
guisher D = {Dλ, ρλ}λ∈N there exists a negligible function µ(·) such that for
all λ ∈ N, i ∈ Iλ,

Xi ≈ Dλ,ρλ,µ(λ) Yi .

For a (non-negligible) function ε(λ) ∈ [0, 1], the ensembles X ,Y are ε-
indistinguishable if the above requirement is replaced with

Xi ≈ Dλ,ρλ,ε(λ)+µ(λ) Yi .

– The trace distance between two distributions X,Y supported over quan-
tum states, denoted TD(X,Y ), is a generalization of statistical distance to
the quantum setting and represents the maximal distinguishing advantage
between two distributions supported over quantum states, by unbounded
quantum algorithms. We thus say that ensembles X = {Xi}λ∈N,i∈Iλ , Y =
{Yi}λ∈N,i∈Iλ , supported over quantum states, are statistically indistinguish-
able (and write X ≈ s Y), if there exists a negligible function µ(·) such that
for all λ ∈ N, i ∈ Iλ,

TD (Xi, Yi) ≤ µ(λ) .

Standard Tools. Due to the lack of space, some of the basic definitions such as
Witness Indistinguishability, Zero Knowledge, and Commitments, are omitted
and can be found in the full version of the paper.

3.2 Non-malleable Commitments

Standard commitment schemes are defined in the full version of the paper Let
⟨Sen,Rec⟩ be a commitment scheme. In an interaction between a malicious sender
Sen∗ and honest receiver Rec, we say that Sen∗ is non-aborting if the Rec accepts
(i.e., outputs 1) at the end of the commitment stage. Let open⟨Sen,Rec⟩(c, v, d)
be the function for verifying decommitments of ⟨Sen,Rec⟩. Define the following
value function:

val(c) =

{
v if ∃ unique v s.t. ∃d, open⟨Sen,Rec⟩(c, v, d) = 1
⊥ otherwise
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A commitment c is valid if val(c) ̸= ⊥ , and otherwise invalid.

Tag-Based Commitment Scheme. Following [DDN03,PR05b], we consider
tag-based commitment schemes where, in addition to the security parameter, the
sender and the receiver also receive a “tag”—a.k.a. the identity—tg as common
input.

We recall the definition of non-malleability from [LPV08], adapted to quan-
tum polynomial-size man-in-the-middle adversaries.

Let ⟨Sen,Rec⟩ be a tag-based commitment scheme, and let λ ∈ N be a security
parameter. Consider a man-in-the-middle (MIM) adversary A that participates
in one left and one right interactions simultaneously. In the left interactions the
MIM adversary A, on auxiliary quantum state ρ, interacts with Sen, receiving
commitments to value v, using a tag tg ∈ [T ] of its choice. In the right inter-
actions A interacts with Rec attempting to commit to a related value ṽ, again
using a tag t̃g of length t of its choice. If the right commitment is invalid, or
t̃g = tg, set ṽi = ⊥ —i.e., choosing the same tags in the left and right inter-
actions is considered invalid. Let mim⟨Sen,Rec⟩(A, ρ, v) denote a random variable
that describes the value ṽ along with the quantum output of A(ρ) at the end of
the interaction where Sen commits to v on the left.

Definition 1. A commitment scheme ⟨Sen,Rec⟩ is said to be non-malleable if for
every quantum polynomial-size man-in-the-middle adversary A = {Aλ, ρλ}λ∈N
and a polynomial ℓ : N → N,

{
mim⟨Sen,Rec⟩(Aλ, ρλ, v)

}
λ,v,v′ ≈ c

{
mim⟨Sen,Rec⟩(Aλ, ρλ, v

′)
}

λ,v,v′ ,

where λ ∈ N is the security parameter and v, v′ ∈ {0, 1}ℓ(λ) are two committed
values by the honest sender.

Generally, the distributions in the MIM experiment include a quantum algo-
rithm with a quantum auxiliary state. A standard strengthening of indistin-
guishability definitions for distributions of the above-mentioned type is to let the
distinguisher prepare an entangled register, which is entangled with the register
that contains the auxiliary state of the quantum algorithm in the distribution.
In our specific case of MIM distributions the stronger definition (defined below)
is equivalent as we prove next.

Definition 2 (Stronger Definition of Non-malleability). A commitment
scheme ⟨Sen,Rec⟩ is said to be non-malleable (with respect to entanglement) if
for every quantum polynomial-size man-in-the-middle adversary A = {Aλ}λ∈N
that can obtain a quantum auxiliary state, a polynomial-size quantum state σ =
{σλ}λ∈N of size at least what A obtains, and a polynomial ℓ : N → N,
{
mim⟨Sen,Rec⟩(Aλ,σ1,λ, v),σ2,λ

}
λ,v,v′ ≈ c

{
mim⟨Sen,Rec⟩(Aλ,σ1,λ, v

′),σ2,λ

}
λ,v,v′ ,

where λ ∈ N is the security parameter, v, v′ ∈ {0, 1}ℓ(λ) are two committed values
by the honest sender and σ1 is the first register of the state σ such that it is in
the size of the auxiliary state for A and σ2 is the rest of the state.
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Claim. Any commitment scheme ⟨Sen,Rec⟩ satisfying security Definition 1 also
satisfy security Definition 2.

Proof. Assume ⟨Sen,Rec⟩ is secure with respect to Definition 1 and assume
toward contradiction that it is not secure with respect to Definition 2. Let
A = {Aλ}λ∈N a MIM adversary and let D = {Dλ,σλ} a distinguisher that
distinguishes between,
{
mim⟨Sen,Rec⟩(Aλ,σ1,λ, v),σ2,λ

}
λ,v,v′ ,

{
mim⟨Sen,Rec⟩(Aλ,σ1,λ, v

′),σ2,λ

}
λ,v,v′ ,

for some v, v′. Consider A′ a new MIM adversary: A′ has quantum auxiliary state
σ. The MIM execution of A′ is to run A with auxiliary state σ1, and keep the
rest of σ, which we denote by σ2, untouched on the side. D can thus distinguish
between the distributions

{
mim⟨Sen,Rec⟩(A′

λ,σλ, v)
}

λ,v,v′ ,
{
mim⟨Sen,Rec⟩(A′

λ,σλ, v
′)

}
λ,v,v′ ,

in contradiction to the security of ⟨Sen,Rec⟩ with respect to Definition 1.

3.3 Committed Value Oracle

Let ⟨Sen,Rec⟩ be a (possibly tag-based) commitment scheme. A sequential
committed-value oracle O∞[⟨Sen,Rec⟩] of ⟨Sen,Rec⟩ acts as follows in interac-
tion with a sender Sen∗: it interacts with Sen∗ in many sequential sessions; in
each session,

– it participates with Sen∗ in the commit phase of ⟨Sen,Rec⟩ as the honest
receiver Rec (using a tag chosen adaptively by Sen∗), obtaining a commitment
c, and

– if Sen∗ is non-aborting in the commit phase and sends request break, it returns
val(c).

The single-session oracle O1[⟨Sen,Rec⟩] is similar to O∞, except that it interacts
with the adversary in a single session.

Throughout, when the commitment scheme is clear from the context, we
write O∞, O1 for simplicity.

3.4 Extractable Commitments

We define the standard notion of post-quantum extractable commitments (and ε-
extractable) along with several enhancements of this notion. These enhancements
of extractable commitments are for both the ε-extractable and (fully) extractable
versions.

Definition 3. Let ⟨ExCom.Sen,ExCom.Rec⟩ be a (possibly tag-based) commit-
ment scheme and O1 its (single-session) committed value oracle. We say that
⟨ExCom.Sen,ExCom.Rec⟩ is ε-extractable if there exists a QPT simulator Sim1,
such that, for every quantum polynomial-size sender Sen∗ = {Sen∗

λ, ρλ}λ∈N and
function ε(λ) ∈ [0, 1],
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– For every quantum polynomial-time distinguisher D∗ = {D∗
λ, ρλ}λ∈N,

{
OUTSen∗

λ

(
Sen∗

λ
O1

(ρλ)
)}

λ∈N
≈ ε

{
Sim1(Sen∗

λ, ρλ, 11/ε)
}

λ∈N
.

We say the scheme is (fully) extractable if there is a QPT simulator Sim1, such
that, for every quantum polynomial-size sender Sen∗ = {Sen∗

λ, ρλ}λ∈N,
{
OUTSen∗

λ

(
Sen∗

λ
O1

(ρλ)
)}

λ∈N
≈ c

{
Sim1(Sen∗

λ, ρλ)
}

λ∈N .

Sequential Extraction. We analogously define sequential extractability.

Definition 4. Let ⟨ExCom.Sen,ExCom.Rec⟩ be a (possibly tag-based) commit-
ment scheme and O∞ its sequential committed value oracle. We say that
⟨ExCom.Sen,ExCom.Rec⟩ is sequentially extractable if there exists a QPT sim-
ulator Sim∞, such that, for every quantum polynomial-size sender Sen∗ =
{Sen∗

λ, ρλ}λ∈N,
{
OUTSen∗

λ

(
Sen∗

λ
O∞

(ρλ)
)}

λ∈N
≈ c {Sim∞(Sen∗

λ, ρλ)}λ∈N .

Sequential ε-extractability is defined analogously when considering ε-
indistinguishability instead of (plain) computational indistinguishability.

Constructions of post-quantum extractable commitments with have been
known for a while either in polynomially many rounds assuming post-quantum
oblivious transfer [HSS15,LN11] or in constant rounds assuming Learning with
Errors in quantum fully homomorphic encryption [BS20]. More recently Chia
et al. [CCLY21] constructed post-quantum ε-extractable commitments with in
constant rounds, assuming the existence of post-quantum one-way functions.
(Lombardi, Ma, and Spooner [LMS21] also construct such commitments, but
relying super-polynomial hardness of the one-way functions.)

These constructions address the single-session oracle. However, a standard
proof shows that sequential extraction follows.

Lemma 1. Any extractable commitment is sequentially extractable. This applies
also for ε-extractability.

r-Robustness. The work of [LP12] introduced the notion of r-robustness w.r.t.
committed value oracle, following similar notions of r-robustness introduced
in [CLP16,LP09]. We here recall their definition, adapted to working with quan-
tum polynomial-size adversaries. Let ⟨Sen,Rec⟩ be a (possibly tag-based) com-
mitment scheme. Consider a man-in-the-middle adversary that participates in an
arbitrary left interaction with a limited number r of rounds, while having access
to the committed value oracle O∞[⟨Sen,Rec⟩]. Roughly speaking, ⟨Sen,Rec⟩ is
r-robust if the output of A in any r-round interaction, with access to the ora-
cle O∞[⟨Sen,Rec⟩], can be simulated without the oracle. In other words, having
access to the oracle does not help the adversary in breaking the security in any
r-round protocol much.
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Definition 5 (r-robust extraction). Let ⟨Sen,Rec⟩ be a (possibly tag-based)
commitment scheme. We say that ⟨Sen,Rec⟩ is r-robust w.r.t. the committed-
value oracle, if there exists a QPT simulator Simr, such that, for every QPT
adversary A = {Aλ, ρλ}λ∈N, the following holds:

– Simulation: For every PPT r-round machine B,
{
OUTAλ⟨B(z, 1λ), AO∞[⟨Sen,Rec⟩]

λ (ρλ)⟩
}

λ∈N,z∈{0,1}∗

≈ c

{
OUTSim⟨B(z, 1λ),Simr(Aλ, ρλ)⟩

}
λ∈N,z∈{0,1}∗ .

(ε, r)-robustness is defined analogously when considering ε-indistinguishability
instead of (plain) computational indistinguishability.

First-Message Binding. We define an additional property of extractable com-
mitments which will come in handy later in the construction of post-quantum
non-malleable commitments. The property, which we call first-message binding,
asserts that the first message of the sender determines the committed value.
Additionally, if the first message in the extractable commitment protocol is a
receiver message, then the extractor simulates it honestly, in particular, inde-
pendently of the malicious sender’s circuit.

Definition 6. Let ⟨ExCom.Sen,ExCom.Rec⟩ be an extractable commitment
scheme. We say that the scheme has first-message binding if:

1. With overwhelming probability over the choice of the honest receiver random-
ness, the first sender message in the protocol fixes the committed value.

2. If the first message in the protocol is a receiver message, in a simulated ses-
sion, the extractor ExCom.Ext samples this message by invoking the honest
receiver (independently of the malicious sender circuit).

We observe that every extractable commitment can easily be turned into an
extractable commitment with first-message binding. A proof sketch is provided
in supplemental material.

Lemma 2. Let ⟨ExCom.Sen,ExCom.Rec⟩ be an extractable commitment scheme.
Then there exists an extractable commitment scheme ⟨Sen,Rec⟩ with first-message
binding. Furthermore, the sequential extractor Sim∞ for the scheme also satisfies
Property 2 in the above definition. The same also holds for ε-extractability.

3.5 Two-Sided Extraction

In this section, we state a two-sided extraction lemma for any extractable com-
mitment. We then use it to prove a non-interleaving extraction lemma, which we
later rely on.
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Two-Sided Extractor. We define the following variant O1
⊥ of the committed

value oracle O1. Recall that O1 participates in a session of the commit phase
of ⟨ExCom.Sen,ExCom.Rec⟩ with Sen∗, acting as the honest receiver ExCom.Rec.
If Sen∗ is non-aborting in the commit phase and requests break, O1 returns the
value val(c) committed in the produced commitment c.

O1
⊥ does the same, except that in the case that Sen∗ aborts, it sends back

the internal state of the honest receiver ExCom.Rec in that session. That is,

O1
⊥ returns

⎧
⎪⎨

⎪⎩

internal state of ExCom.Rec if Sen∗ aborts

val(c) if Sen∗ is non-aborting in c and requests break

nothing otherwise

In the full version of this work, we prove that every extractable commitment
satisfies such two-sided extractability:

Claim. Let ⟨ExCom.Sen,ExCom.Rec⟩ be an extractable commitment scheme and
O1

⊥ its enhanced committed value oracle. There exists a QPT simulator Sim1
⊥,

such that, for every quantum polynomial-size sender Sen∗ = {Sen∗
λ, ρλ}λ∈N, the

following two ensembles are computationally indistinguishable,
{
OUTSen∗

λ

(
Sen∗

λ
O1

⊥(ρλ)
)}

λ∈N
≈ c

{
Sim1

⊥(Sen
∗
λ, ρλ)

}
λ∈N .

The same also holds for ε-extractability.

ε-Extractability vs Full Extractability. To simplify notation, the technical
sections in this extended abstract are based on fully extractability (and cor-
responding indistinguishability) rather than full extractability. As mentioned
in the introduction, the transition between the two is quite direct. In more
detail, our final goal is to achieve an indistinguishability-based definition of
non-malleability. The proof toward that is based on a fixed polynomial number
h(λ) = poly(λ) of hybrid distributions that depends only on the security parame-
ter. Thus when relying on indistinguishability between a simulated execution and
a real execution, the corresponding indistinguishability between hybrids is only
ε indistinguishability. Accordingly, for any polynomial p(λ), to overall obtain
1/p(λ) indistinguishability, we can set ε = 1/(h(λ) · p(λ)). All corresponding
simulators still run in polynomial time, and hence all intermediate reductions
still hold.
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4 Post-quantum Non-malleable Commitment for Few
Tags

In this section, we present our construction of a classical post-quantum non-
malleable commitment protocol with at most a logarithmic number of tags
τ . It makes use of A quantumly-extractable classical commitment scheme
(ExCom.Sen,ExCom.Rec) with first-message binding, and a post-quantum clas-
sical zero-knowledge argument (P,V). We describe the protocol in Fig. 4.

Using post-quantum ε-extractable commitments with k rounds one can obtain
post-quantum ε-zero-knowledge arguments with k+O(1) rounds [Ros04,BS20].
It follows that the number of rounds in Protocol 4 is kO(τ). Statistical bind-
ing of the commitment scheme follows readily from the statistical binding of
the extractable commitment scheme. Hiding of any commitment scheme follows
directly from non-malleability, so it remains for us to show that our commitment
protocol is non-malleable. Later, we also show that our commitment scheme sat-
isfies r-robustness, a property of the commitment protocol which we use in our
tag amplification scheme in Sect. 5.

Proposition 1. The protocol in Fig. 4 is non malleable.

4.1 Ideally-Scheduled Block Commitments

Before turning to prove Proposition 1, we state and prove a combinatorial
claim regarding the structure of executions. We first fix relevant terminology
for addressing different parts of the protocol.

Block Commitments. For m,N ∈ N, a block commitment of length N and
sub-block length m for a string s = s1, s2, . . . , sN ∈ {0, 1}m×N (such that ∀i ∈
si ∈ {0, 1}m) consists of N sequential extractable commitment to each of the
strings s1, . . . , sN in their respective order. In particular, note that in Phase 1 of
our Protocol 4, the sender gives one block commitment of length n with sub-block
length |v| to u = (u1, . . . , un) and ℓ+1 block commitments to ū = (ū1, . . . , ūn̄),
each of length n̄ and sub-block length |v|.

Ideally Scheduled Block Commitments. Consider a two-sided MIM execu-
tion of Protocol 4; that is, the MIM adversary A interacts with Sen on the left
and Rec on the right.

We call an execution of a block commitment on the left free on index i with
respect to a given block commitment on the right, if interaction during the i-th
extractable commitment in that block commitment does not interleave with the
interaction during the given right block commitment. We call an execution of a
block commitment on the right free if it does not interleave with the interaction
during Phase 2 of the protocol on the left.

An execution I of a block commitment on the right is ideally scheduled if all
of the above hold:

– It is free (with respect to the second phase on the left).
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Fig. 4. A τ -tag post-quantum non-malleable commitment (Sen,Rec).

– There is some index i ∈ [n] such that the block commitment to u on the left
is free on index i with respect to I.

– There is some index j ∈ [n̄] such that all ℓ + 1 block commitments to ū on
the left are free on the same index j with respect to I.
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In case, the MIM adversary aborts, we assume w.l.o.g it keeps sending messages
⊥ according to some schedule, so that the above notion is always defined. The
proof of the following claim is provided in the full version of this work.

Claim. In every MIM execution of Protocol 4 with tag tg on the left and tag
t̃g on the right, if tg ̸= t̃g, there is an ideally scheduled execution of a block
commitment on the right.

4.2 Adversaries with Predetermined Ideal Schedule

Before proving Proposition 1, we prove a lemma that basically says that we
can restrict attention to MIM adversaries that always announce ahead of time
the structure of the ideal schedule. This lemma will later simplify our proof of
Proposition 1.

In what follows, let N be a bound on the size of n := (k + 1)tg, n̄ := (k +
1)2τ−tg, for every possible tg. We consider configurations of the form

C = (i, c, c̄, w) ∈ [ℓ + 2] × [N ] × [N ] × {IP2, P2I} .

We say that a given MIM execution is consistent with such a configuration C if:

– The i-th block commitment on the right is the first ideally scheduled block.
– The commitment to uc (in the first block) on the left is free with respect to
the ideally scheduled block i.

– The commitment to ūc̄ in every one of the blocks 2, . . . , ℓ + 2 on the left is
free with respect to the ideally scheduled block i.

– If the first ideally scheduled block i on the right ends before Phase 2 on the
left begins, w = IP2. Otherwise (Phase 2 on the left begins before the first
ideally scheduled block i has ended), w = P2I. Note that in case w = P2I,
due to the fact that block i on the right is ideally scheduled and in particular
is continuous with respect to Phase 2 on the left, we can also say that block i
on the right begins after Phase 2 on the left has started (rather than say that
it only ends after the beginning of Phase 2 on the left).

Note that the number of possible configurations is bounded by ∆ := (ℓ + 2) ×
N × N × 2 = poly(λ) .

Definition 7 (MIM with predetermined ideal schedule). A MIM QPT
adversary A = {Aλ, ρλ}λ has a predetermined ideal schedule C = {Cλ}λ, if any
execution in which Aλ participates is consistent with configuration Cλ.

Lemma 3. If the protocol in Fig. 4 is secure against MIM QPT adversaries with
predetermined ideal schedule, then it is also secure against arbitrary MIM QPT
adversaries.
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Proof. Given an arbitrary MIM QPT A and QPT distinguisher D that break
non-malleability for some values v, v′ with advantage δ, we construct an MIM
QPT adversary with predetermined schedule, which breaks the scheme with
probability δ/∆.

Consider an adversary A′ that first samples uniformly at random a configu-
ration C ← [ℓ + 2] × [N ] × [N ] × {IP2, P2I}. It then emulates A, and if at any
point the execution is about to become inconsistent with C, A′ stops emulating
A, completes the execution consistently with C, and eventually outputs ⊥ . If
the emulation of A is completed consistently with C, A′ outputs the same as A.

Then, since every execution has an ideally scheduled block (Claim 4.1), A′

breaks non-malleability with probability exactly δ/∆ (with respect to the same
distinguisher D and v, v′). Finally, by an averaging argument, we fix the choice
of A′ for a configuration to be the configuration C that maximizes D’s distin-
guishing advantage. We obtain a corresponding MIM with predetermined ideal
schedule with the same advantage δ/∆.

4.3 Proof of Proposition 1

We prove the Proposition by a hybrid argument, specifically, we show that the
MIM experiment output distribution for any value v on the left is indistinguish-
able from an experiment independent of v. Following Lemma 3, we restrict atten-
tion to a MIM adversary with a predetermined ideal schedule C = (i, c, c̄, w).

H0 : The original MIM experiment output. This includes the output of
the MIM adversary in the experiment and the committed value on the right.

H1 : Inefficient extraction from ideally-scheduled block. In this hybrid,
instead of the committed value ṽ on the right, we consider the value ṽ1 recon-
structed from the shares of the ideally scheduled block i on the right. If the
value of any of the commitments to these shares is ⊥ , we set ṽ1 = ⊥ . H0 and
H1 are statistically indistinguishable following the from the soundness of the
ZK argument that A gives to the receiver on the right in Phase 2.

H2: Alternative description via oracle extraction. In this hybrid we con-
sider an augmented adversary AO∞

2 , which is given access to the sequential
committed-value oracle O∞ = O∞[ExCom.Sen,ExCom.Rec] and acts as follows:

– A2 emulates A. On the left, A2 relays all messages between A and the sender.
On the right,
• During the ideally scheduled block i, A2 interacts with its oracle O∞,

in every extractable commitment. Recall that O∞ acts as the honest
receiver, and answers break requests with the corresponding committed
value. A2 submits such a break request after each of the commitments
and stores the received share value.

• In any other (than i) block in Phase 1, A2 internally emulates the receiver
on the right.

• In Phase 2, A2 internally emulates the zero knowledge verifier on the
right.
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– Eventually, A2 outputs the output of A as well as the value ṽ1 reconstructed
from the ideal block shares obtained from the oracle O∞.

The output of this hybrid is the output of A2. It follows directly from the con-
struction of AO∞

2 and the definition of O∞ that H1 ≡H2.

H3 : Efficient extraction on the right when w = P2I. This hybrid, differs
from the previous hybrid only if w = P2I; namely, Phase 2 on the left begins
before the ideally scheduled block commitment i on the right had started. In such
executions, for the ideally scheduled block commitment i, we perform sequential
extraction to obtain the corresponding shares.

In more detail, let ψ be the (quantum) state ofA2 when it initiates the ideally
scheduled block i on the right, and let ĀO∞

2 be the adversary that starting from
ψ, emulates AO∞

2 during block i and outputs its state at the end (Note that since
block i is ideally scheduled and also starts after Phase 2 on the left, it follows
that Ā2 does not perform any interaction on the left during the right block i).

In H3, we consider another augmented adversary A3 that acts like A2,
only that instead of executing ĀO∞

2 during block i, it invokes the sequentially-
extracting simulator Sim∞(Ā2,ψ), given by Lemma 1, which eliminates the use
of the commitment oracle O∞. Computational indistinguishability of H2 and
H3 follows directly from the sequential extraction guarantee (Lemma 1).

H4 : Simulating the ZK argument on the left. In this hybrid, the ZK
argument on the left is generated by the zero knowledge simulator.

Specifically, let ψ be the state of A3 when the zero-knowledge argument is
initiated on the left. We consider the zero-knowledge verifier V∗ that starting
from ψ emulates A3 in the rest of the interaction while forwarding its messages
on the left to the zero-knowledge prover, and eventually outputs the same. In
particular, if w = P2I then the code of V∗ includes the code of the simulator
Sim∞, which is applied to (Ā2,ψ) as part of the execution of A3. Note that in
both cases w = IP2 and w = P2I, once Phase 2 on the left starts, A3 no longer
makes oracle calls to O∞, so the code of V∗ is fully specified and executes in
polynomial time.

In H4, we consider an augmented adversary A4 that acts as A3, only that
when Phase 2 starts on the left, instead of executing V∗ and interacting on
the left with the zero knowledge prover, A4 runs the zero knowledge simulator
Sim(V∗,ψ), and outputs the same.

H3 ≈ c H4. This is because by construction, the output of V∗ is identically
distributed to the output of H3. Computational indistinguishability of H3 and
H4 now follows from the zero knowledge simulation guarantee (we note that any
use of the inefficient oracle O∞, in case w = IP2, occurs before Phase 2 on the
left, and can thus be non-uniformly fixed).
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H5 and H6 : Interchangeably, changing left committed values and effi-
cient extraction threshold. As a preliminary high-level explanation to the
next step, at this point in our hybrid distributions, we consider the 1 + (ℓ + 1)
block commitments given to the MIM adversary on the left, and in each block,
we’ll switch a commitment for a secret share (of v), to a commitment for a string
of zeros. For this, we will need to use the computational hiding property of the
extractable commitments. The point, however, is to be able to use the hiding
of the extractable commitments while still being able to efficiently extract the
value ṽ1 from the right interaction with the MIM adversary3.

Formally, we next define two sequences of hybrids H5,j and H6,j (for j ∈
[ℓ + 3]) that augment one another interchangeably:

H4 = H5,ℓ+3 → H6,ℓ+2 → H5,ℓ+2 → · · · → H5,2 → H6,1 → H5,1 .

In what follows, recall that A4 in H4 is following a predetermined ideal schedule
C = (i, c, c̄, w).

H5,j, for j = ℓ+3, . . . , 1: Swapping one more free commitment to zeros.
In this hybrid, we simulate the most bottom free commitment on the left. For-
mally:

– H5,ℓ+3 is defined as H4.
– For j ≤ ℓ+2, H5,j is defined exactly as H6,j , except that the left extractable

commitment cj (to share uc or ūc̄) in the left block j is replaced with a
commitment to 0|v|.

H6,j, for j = ℓ + 2, . . . , 1: Raising the threshold for efficient extraction.
Recall A4 in H4 interacts with the sender in Phase 1 on the left and in case
w = IP2, namely, the ideally scheduled block on the right ends before Phase 2
on the left begins, A4 interacts with the sequential commitment oracle O∞ on
the right during block i. For a left block index j ∈ [ℓ + 2], we denote by cj the
corresponding free extractable commitment; namely, cj = c if j = 1, and cj = c̄
if j ≥ 2.

Informally, in hybrid H6,j , we move to simulating the oracle O∞ in any right
extractable commitment that starts after the free left commitment cj . Formally,
H6,j is different from H5,j+1 only if w = IP2. In this case, we consider an
augmented adversary A6,j defined as follows for j ∈ [ℓ + 2]:

– A6,j acts as AO∞

6,j+1 until the first right extractable commitment (in the ideally
scheduled right block i) in which the first sender message is sent after the free
left commitment cj .

– A6,j simulates the remaining calls to O∞ as follows:
• Let ψ be the state of AO∞

6,j+1 at the abovementioned point, just before the
right extractable commitment begins.

3 Recall that currently, if w = IP2, we extract ṽ1 inefficiently using the sequential
committed-value oracle O∞ = O∞[ExCom.Sen,ExCom.Rec]. If w = P2I we don’t
have this problem, as the ideally scheduled right block commitment i starts after
the beginning of Phase 2 on the left.
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• Let ĀO∞

6,j+1 be the adversary that starting from ψ emulates AO∞

6,j+1 in the
following right extractable commitments, up to those that are already
simulated, while internally emulating the sender in any left commitment.

• A6,j invokes the sequentially-extracting simulator Sim∞(Ā6,j+1,ψ) to
remove the use O∞.

– A6,j then completes the execution as A6,j+1 and outputs the same.

In the full version of this work, we prove the following claim, which concludes
Proposition 1,

Claim. 1) The output of H5,1 is independent of the committed value v. 2) ∀j ∈
[ℓ + 2] : H5,j+1 ≈ c H6,j . 3) ∀j ∈ [ℓ + 2] : H6,j ≈ c H5,j .

Due to space limits, we prove that our protocol is robust in the full version
of this work.

5 Tag Amplification

In this section, we present a tag amplification transformation that converts a
non-malleable commitment scheme ⟨Sen,Rec⟩ for t ∈ [3, O(log(λ))] bit tags into
a non-malleable commitment scheme ⟨Ŝen, R̂ec⟩ for T = 2t−1 bit tags. The trans-
formation can be applied iteratively to amplify the number of tags from constant
to exponential in the security parameter λ,

The transformation uses the following ingredients: 1) A post-quantum
secure one-way function f . 2) Naor’s 2-message statistically binding commit-
ment [Nao91] instantiated with a post-quantum secure pseudo-random genera-
tor, which in turn can be based on post-quantum one-way functions. The receiver
of Naor’s protocol is public coin and sends a random string a as the first message,
the sender then responds with c = Coma(m; d) depending on a; the decommit-
ment is simply sender’s private random coins. The receiver can reuse a across
many commitments sent to it, and we can effectively use the second message
of Naor’s commitments as a non-interactive commitment. 3) A post-quantum
secure ε-extractable commitment scheme ECom. Let k1 be the number of rounds
in this commitment scheme. 4) A post-quantum secure WI protocol which can be
based on any post-quantum one-way functions. Let k2 be the number of rounds
of WI. 5) A non-malleable commitment scheme ⟨Sen,Rec⟩ for t ≥ 3 bit tags that
is also r-robust for r = k1 + k2. Let n be the length of messages the scheme can
commit to. The transformed non-malleable commitment ⟨Ŝen, R̂ec⟩ for T = 2t−1

tags is presented in Fig. 5.
In the full version of this work, we show that ⟨Ŝen, R̂ec⟩ is statistically binding,

r-robust and post-quantum non-malleable as well as the detailed analysis of the
complexity growth and security loss.
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Fig. 5. Post-quantum tag amplification.
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