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Abstract
Many models of self-assembly have been shown to be capable of performing computation. Tile Automata was recently

introduced combining features of both Cellular Automata and the 2-Handed Model of self-assembly both capable of

universal computation. In this work we study the complexity of Tile Automata utilizing features inherited from the two

models mentioned above. We first present a construction for simulating Turing machines that performs both covert and fuel

efficient computation. We then explore the capabilities of limited Tile Automata systems such as 1-dimensional systems

(all assemblies are of height 1) and freezing systems (tiles may not repeat states). Using these results we provide a

connection between the problem of finding the largest uniquely producible assembly using n states and the busy beaver

problem for non-freezing systems and provide a freezing system capable of uniquely assembling an assembly whose length

is exponential in the number of states of the system. We finish by exploring the complexity of the Unique Assembly

Verification problem in Tile Automata with different limitations such as freezing and systems without the power of

detachment.

Keywords Tile automata � Turing machines � Unique assembly verification

1 Introduction

Self-assembly systems have quickly become an intense

area of research due to fabrication simplicity (Kanaras

et al. 2003), the ability to create systems at the DNA level

(Kimna and Lieleg 2019), the control of nanobots (Kawano

2018), and the maturity of experimental techniques (Evans

2014). Self-assembly is a naturally occurring process

where simple particles come together to form complex

structures. These are computationally of interest since

computing at the molecular level yields a lot of power.

There are several models of tile self-assembly, and they

each strive to capture some aspect of self-assembling sys-

tems. A few of the better known models are the Abstract

Tile Assembly Model (aTAM) (Winfree 1998), the

2-Handed Assembly Model (2HAM) (Cannon et al. 2013),

the Staged self-assembly model (Demaine et al. 2011), and

the Signal-passing Tile Assembly Model (STAM) (Padilla

et al. 2013). There are several other models designed to

model different aspects of DNA/RNA or laboratory con-

ditions. A recent model of tile self-assembly, called Tile

Automata (Chalk et al. 2018a), was introduced as an

intentional mathematical abstraction designed to imple-

ment the key features of active algorithmic self-assembly

while avoiding specifics tied to any one particular imple-

mentation (using state change rules and tile attachments/

detachments based on local affinities between states). By

abstracting away implementation details, TA strives to

serve as a proving ground for exploring the power of active

algorithmic self-assembly, along with providing a central

hub through which various disparate models of self-

assembly can be related by way of comparison to TA. One

example of this type of application includes (Alumbaugh

et al. 2019) in which TA is shown capable of simulating

the Amoebots model (Daymude et al. 2019) of
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programmable matter. More recently a connection between

the STAM and Tile Automata was established in (Cantu

et al. 2020) where it was shown that the STAM is capable

of simulating any Tile Automata system.

Given the goal of TA to connect many models of self

assembly, in this paper we explore the computational

power of limited Tile Automata systems such as versions

of TA that do not allow detachment (not possible in some

models). To facilitate this, we first show how to create

general Turing machines, and then we explore the com-

plexity of a common question within self-assembly mod-

els: the unique assembly verification problem. If given a

system, can the output be guaranteed? This is a natural

problem that is polynomial in some models, yet uncom-

putable in others.

This is the full extended version of the conference paper

(Caballero et al. 2020) with additional results, proofs, and

content to make the paper more accessible. Additional

results and proofs may be found in Sects. 4 and 8.

1.1 Previous work

In his Ph.D. thesis, Winfree presented the Abstract Tile

Assembly model (aTAM) and showed it was capable of

universal computation by simulating a Turing machine

(Winfree 1998), and the computational power is explored

in depth in other works such as Keenan et al. (2016). The

2-Handed Assembly Model (2HAM) (Cannon et al. 2013)

introduced a more powerful model and is capable of fuel

efficient computation (Schweller and Sherman 2013) along

with the Signal-passing Tile Assembly Model (Padilla

et al. 2013), which has tiles that can interact to turn glues

on or off.

In Demaine et al. (2011), Winslow (2015), the authors

show a connection between finding the smallest Context

Free Grammar and optimization problems in the Staged

Assembly model. In the staged assembly model, with only

a constant number of tile types, a system can construct

length-n lines using Oðlog nÞ bins and mixes (Demaine

et al. 2008). Repulsive forces have been shown to aid in

constructing shapes at constant scale (Luchsinger et al.

2018). Further, by utilizing the temperature to encode

information, shapes can be constructed with constant (or

nearly) tile types (Chalk et al. 2018b; Schweller et al.

2019a).

The Unique Assembly Verification (UAV) problem asks

if a given system uniquely produces a given assembly. In

the aTAM, this problem is solvable in polynomial time

(Adleman et al. 2002). In the 2HAM, however, UAV was

shown to be in coNP with certain generalizations being

coNP-complete (Cannon et al. 2013; Schweller et al.

2017). In the staged assembly model, this problem is

known to be PSPACE-complete (Caballero et al. 2021;

Schweller et al. 2019b). Adding the power of negative

glues also vastly changes the complexity of this problem

making in uncomputable in models that include it due to

the ability for pieces of assemblies to break off (Doty et al.

2013). However, adding negative glues but restricting the

ability for assemblies to detach we still see an increase in

difficulty with UAV in aTAM without detachment being

coNP-complete (Cantu et al. 2020).

Cellular Automata has been shown to be Turing

Universal even in one dimension (Cook 2004). Other

stronger results have been shown proving intrinsic uni-

versality of many versions of Cellular Automata (Goles

et al. 2011; Worsch 2013).

The Tile Automata model was introduced in Chalk et al.

(2018a) merging ideas from Cellular Automata and Tile

Self-Assembly. The authors showed that freezing tile

automata (where a tile cannot repeat states) is capable of

simulating non-freezing systems. This powerful model has

also been shown to be capable of simulating models of

programmable matter (Alumbaugh et al. 2019). A model

motivated by real-world implementations, the Signal-

passing Tile Assembly Model, is able to simulate Tile

Automata (Cantu et al. 2020) meaning results shown in the

TA model carry over to STAM at scale.

1.2 Our contributions

In Tile Automata, cases may occur where systems contain

one terminal assembly but exhibit behavior that does not

naturally seem to uniquely produce that assembly. We

define unique assembly later, but note that the final

requirement addresses a feature of Tile Automata and other

models with detachment where there exist assemblies that

are not terminal but are never part of the final assembly.

Cycles in the production graph are not possible in many

self-assembly models, so we add this restriction. However,

many of our results work with or without this restriction, so

we explore both cases.

In this work, we explore Tile Automata systems that

uniquely assemble n-length lines and the complexity of

determining whether a system uniquely assembles a given

assembly. We first present a 1-dimensional Turing machine

simulation capable of covert and fuel-efficient computa-

tion. We use this construction to show a connection

between the largest finite assembly problem and Busy

Beaver Machines (Turing machines that print the largest

number of symbols before halting for a given number of

states). In the more restricted case of freezing systems, we

design a Turing machine simulation that utilizes only

height-2 assemblies. We also present freezing systems that

can construct n-length lines using OðnÞ states. Results are
shown in Table 1.
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We then explore the Unique Assembly Verification

problem. An overview of the results are shown in Table 2.

We show that UAV is uncomputable via Turing machine

simulation. We also extend this to 2-dimensional freezing

systems (even with a max height of 2 for all assemblies).

By removing the ability for assemblies to break apart we

achieve a model closer to traditionally studied models. We

restrict this by studying what we call Affinity Strengthening

systems where a state can never lose affinity by a transi-

tion. In this case, we show the UAV problem is PSPACE-

complete utilizing a bounded-space Turing machine sim-

ulation. When restricting the model to both affinity

strengthening and freezing, we show membership in

coNPNP. We then provide a reduction to show coNPNP-

completeness even for height-2 Tile Automata systems.

When restricted to one dimension, we show the UAV

problem is in the class PNPjj and provide a reduction from

Max True 3SAT Equality (Spakowski 2006) to show PNPjj -

completeness. PNPjj is the class of problems solvable by a

polynomial time Turing machine with parallel access to an

NP oracle, that is it may make a single oracle call to a

polynomial number of NP oracles that run in parallel.

2 Model and definitions

A Tile Automata system is a marriage between cellular

automata and 2-handed self-assembly. Systems consist of a

set of monomer tile states, along with local affinities

between states denoting the strength of attraction between

adjacent monomer tiles in those states. A set of local state-

change rules are included for pairs of adjacent states.

Assemblies (collections of edge-connected tiles) in the

model are created from an initial set of starting assemblies

by combining previously built assemblies given sufficient

binding strength from the affinity function. Further, exist-

ing assemblies may change states of internal monomer tiles

according to any applicable state change rules. An example

system is shown in Fig. 1.

2.1 States, tiles, and assemblies

Tiles and States. Consider an alphabet of state types1 R. A
tile t is an axis-aligned unit square centered at a point

LðtÞ 2 Z2. Further, tiles are assigned a state type from R,
where S(t) denotes the state type for a given tile t. We say

two tiles t1 and t2 are of the same tile type if Sðt1Þ ¼ Sðt2Þ.
Affinity Function. An affinity function takes as input an

element in R2 � D, where D ¼ f?;‘g, and outputs an

element in N. This output is referred to as the affinity

strength between two states, given direction d 2 D.

Directions ? and ‘ indicate above-below and side-by-side

orientations of states, respectively.

Transition Rules. Transition rules allow states to

change based on their neighbors. A transition rule is a 5-

tuple ðS1a; S2a; S1b; S2b; dÞ with each S1a; S2a; S1b; S2b 2 R
and d 2 D ¼ f?;‘g. (S1a and S1b being the left state or the

top state.) Essentially, a transition rule says that if states S1a
and S2a are adjacent to each other, with a given orientation

d, they can transition to states S1b and S2b respectively.

Table 1 Given a Turing machine M ¼ ðQ;R;C; d; qa; qr; qsÞ, simulating Tile Automata systems are given in Theorems 1 and 9, respectively

Turing machine Tile Automata system States Transition rules

Deterministic Non-Freezing 1D OðjQjjCjÞ OðjdjÞ
Deterministic Freezing height-2 OðjQjjCjÞ OðjdjÞ

Table 2 Results for the Unique Assembly Verification in Tile

Automata. Transition Rules describes the types of transition rules

allowed in the system. In Affinity Strengthening Systems all transition

rules increase affinity so no detachment may occur. Freezing

indicates whether the system is freezing where tiles cannot repeat

states. Result 1D is the complexity of UAV in one dimension and

Result 2D is the complexity of UAV in two dimensions. Theorem is

where these results can be found

Transition rules Freezing 1D Result 2D Result Theorem

Affinity Strengthening Freezing PNPjj -Complete coNPNP-Complete Theorems 11 and 10

Affinity Strengthening Non-freezing PSPACE-Complete PSPACE-Complete Theorem 8

General Freezing Open Undecidable Theorem 7

General Non-freezing Undecidable Undecidable Theorem 6

1 We note that R does not include an ‘‘empty’’ state. In tile self-

assembly, unlike cellular automata, positions in Z2 may have no tile

(and thus no state).
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Assemblies. A positioned shape is any subset of Z2. A

positioned assembly is a set of tiles at unique coordinates in

Z2, and the positioned shape of a positioned assembly A is

the set of coordinates of those tiles, denoted as SHAPEA.
For a positioned assembly A, let Aðx; yÞ denote the state

type of the tile with location ðx; yÞ 2 Z2 in A.

For a given positioned assembly A and affinity function

P, define the bond graph GA to be the weighted grid graph

in which:

– each tile of A is a vertex,

– no edge exists between non-adjacent tiles,

– the weight of an edge between adjacent tiles T1 and T2
with locations ðx1; y1Þ and ðx2; y2Þ, respectively, is

– PðSðT1Þ; SðT2Þ;?Þ if y1 [ y2,

– PðSðT2Þ; SðT1Þ;?Þ if y1\y2,

– PðSðT1Þ; SðT2Þ;‘Þ if x1\x2,

– PðSðT2Þ; SðT1Þ;‘Þ if x1 [ x2.

A positioned assembly A is said to be s-stable for positive
integer s provided the bond graph GA has min-cut at least

s.
For a positioned assembly A and integer vector

v ¼ ðv1; v2Þ, let Av denote the positioned assembly

obtained by translating each tile in A by vector v. An

assembly is a set of all translations Av of a positioned

assemblyA. A shape is the set of all integer translations for

some subset of Z2, and the shape of an assembly A is

defined to be the set of the positioned shapes of all posi-

tioned assemblies in A. The size of either an assembly or

shape X, denoted as |X|, refers to the number of elements of

any positioned assembly or positioned shape of X.

Breakable Assemblies. An assembly is s-breakable if it
can be split into two assemblies along a cut whose total

affinity strength sums to less than s. Formally, an assembly

C is breakable into assemblies A and B if the bond graph

GC for some positioned assembly C 2 C has a cut (A;B) for
positioned assemblies A 2 A and B 2 B of affinity strength

less than s. We call assemblies A and B pieces of the

breakable assembly C.

Combinable Assemblies. Two assemblies are s-com-
binable provided they may attach along a border whose

strength sums to at least s. Formally, two assemblies A and

B are s-combinable into an assembly C provided GC for any
C 2 C has a cut ðA;BÞ of strength at least s for some

positioned assemblies A 2 A and B 2 B. C is a combina-

tion of A and B.

Transitionable Assemblies. Consider some set of

transition rules D. An assembly A is transitionable, with

respect to D, into assembly B if and only if there exist

A 2 A and B 2 B such that for some pair of adjacent tiles

ti; tj 2 A:

– 9 a pair of adjacent tiles th; tk 2 B with LðtiÞ ¼ LðthÞ
and LðtjÞ ¼ LðtkÞ

– 9 a transition rule d 2 D s.t. d ¼
ðSðtiÞ; SðtjÞ; SðthÞ; SðtkÞ;?Þ or

d ¼ ðSðtiÞ; SðtjÞ; SðthÞ; SðtkÞ;‘Þ
– A� fti; tjg ¼ B � fth; tkg

2.2 Tile Automata model (TA)

A tile automata system is a 5-tuple ðR;P;K;D; sÞ where R
is an alphabet of state types,P is an affinity function, K is a

set of initial assemblies with each tile assigned a state from

R, D is a set of transition rules for states in R, and s 2 N is

the stability threshold. When the affinity function and state

types are implied, let ðK;D; sÞ denote a tile automata sys-

tem. An example tile automata system can be seen in

Fig. 1.

Definition 1 (Tile Automata Producibility) For a given

tile automata system C ¼ ðR;K;P;D; sÞ, the set of pro-

ducible assemblies of C, denoted PRODC, is defined

recursively:

– (Base) K � PRODC
– (Recursion) Any of the following:

– (Combinations) For any A;B 2 PRODC such that A

and B are s-combinable into C, then C 2 PRODC.

CA B D E
States

A
B

=2

C
D

=2

A C =1

B D =1

B E =2

Affinity Functions

B EB D
TransitionRules

A B C D
Initial Assemblies

Stability Threshold=2

(a) Tile Automata System Γ.

CA B D

A
B

C
D

A
B

C
D

A
B

C
E

A
B E

Producibles

A
B E

Terminals

(b) The producibles and terminals of Γ.

Fig. 1 An example of a tile automata system C. Recursively applying

the transition rules and affinity functions to the initial assemblies of a

system yields a set of producible assemblies. Any producibles that

cannot combine with, break into, or transition to another assembly are

considered to be terminal
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– (Breaks) For any C 2 PRODC such that C is s-
breakable into A and B, then A;B 2 PRODC.

– (Transitions) For any A 2 PRODC such that A is

transitionable into B (with respect to D), then

B 2 PRODC.

For a system C ¼ ðR;K;P;D; sÞ, we say A !C
1 B for

assemblies A and B if A is s-combinable with some pro-

ducible assembly to form B, if A is transitionable into B

(with respect to D), if A is s-breakable into assembly B and

some other assembly, or if A ¼ B. Intuitively this means

that A may grow into assembly B through one or fewer

combinations, transitions, and breaks. We define the rela-

tion !C to be the transitive closure of !C
1 , i.e., A !C B

means that A may grow into B through a sequence of

combinations, transitions, and/or breaks.

Definition 2 (Production Graph) The production graph

of a Tile Automata system C is a directed graph where each

vertex corresponds to an assembly in PRODC and there

exists a directed edge between assemblies A and B if

A !C B.

Definition 3 (Terminal Assemblies) A producible

assembly A of a tile automata system C ¼ ðR;K;P;D; sÞ is
terminal provided A is not s-combinable with any pro-

ducible assembly of C, A is not s-breakable, and A is not

transitionable to any producible assembly of C. Let

TERMC � PRODC denote the set of producible assemblies of

C that are terminal.

Definition 4 (Transition Stable Assembly) An assembly

A is Transition Stable if it is not transitionable to any

producible assembly of C

Definition 5 (Freezing) Consider a tile automata system

C ¼ ðR;K;P;D; sÞ and a directed graph G constructed as

follows:

– each state type r 2 R is a vertex

– for any two state types a; b 2 R, an edge from a to b
exists if and only if there exists a transition rule in D s.t.

a transitions to b

C is said to be freezing if G is acyclic and non-freezing

otherwise. Intuitively, a tile automata system is freezing if

any one tile in the system can never return to a state that it

held previously. This implies that any given tile in the

system can only undergo a finite number of state

transitions.

Definition 6 (Affinity Strengthening) An Affinity

Strengthening system is a Tile Automata system where all

transition rules must maintain or increase a state’s affinity

with all other states so no detachments ever occur. For-

mally a tile automata system C ¼ ðR;K;P;D; sÞ is an

Affinity Strengthening system if for each s; s0 2 R where s

transitions to s0, Pðs; tÞ�Pðs0; tÞ8t 2 R.

Definition 7 (Bounded) A tile automata system C is

bounded if and only if there exists a k 2 Z[ 0 such that for

all A 2 PRODC, jAj\k.

Definition 8 (Height-k Systems) A tile automata system

is said to have Height-k if all producible assemblies have a

height of less than or equal to k.

Definition 9 (Unique Assembly) A Tile Automata system

C uniquely produces an assembly A if

– A is the only assembly in TERMC

– for all B 2 PRODC, B !C A.

– C is bounded.

– there does not exist a pair of assemblies B;C 2 PRODC,

such that B !C C !C B.2

3 One-dimensional turing machine

Since Tile Automata is a generalization of 2HAM and

borrows from Cellular Automata it is expected that it is as

powerful as both of these models. Here we present a con-

struction that is capable of both covert and fuel-efficient

computation. We present informal definitions of each of

these. For rigorous definitions, we refer the reader to

Padilla et al. (2013); Schweller and Sherman (2013) for

fuel-efficiency, and Cantu et al. (2020) for covert

computation.

Definition 10 (Simulation) A Tile Automata system T is

said to simulate a Turing machine M if every producible

assembly a of T can be mapped to a configuration m of M

and for any other producible assembly b such that a !C
1 b,

b either also maps to m or maps to another configuration m0

such that m0 is the next step of m. Finally, each terminal

assembly of T maps to an output of M.

Definition 11 (Covert Computation) Given a Tile

Automata system T that simulates a Turing machine M,

T covertly simulates M if there exists two assemblies A and

R, such that for any input x that M accepts, A is the unique

terminal assembly when M is simulated on x, and for any

input y that M rejects R is the unique terminal assembly.

Definition 12 (Fuel Efficient Computation) A fuel effi-

cient Turing machine simulation in Tile Automata

2 When we refer to Unique Assembly allowing cycles, this require-

ment is omitted.
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represents the tape of a Turing machine as one assembly,

and requires that each computational step of the Turing

machine occurs by way of the attachment of at most a

constant number of assemblies of at most constant size.

Thus, the simulation of n steps of a computation ‘‘uses up’’

at most O(n) tiles worth of fuel.

Theorem 1 For any Turing machine

M ¼ ðQ;R;C; d; qa; qr; qsÞ, there exists a covert, fuel-effi-

cient, 1-dimensional Tile Automata system T ¼ ðRTA;

P;K;DÞ that can simulate M such that jRTAj ¼ OðjQjjCjÞ
and jDj ¼ OðjdjÞ.3

Proof Given a Turing machine M ¼ ðQ;R;C; d; qa; qr;
qsÞ, we construct the Tile Automata system T ¼
ðRTA;P;K;DÞ as follows.

States. Conceptually, we partition the set of states (RTA)

into three subsets for clarity: head states H, symbol states

S, and utility states W. Let H ¼ fhðq;sÞjq 2 Q; s 2 Rg and

let S ¼ frsjs 2 Rg (Fig. 2a). All states in H and S have

affinity with all states in RTA. There are eight states in W:

signal accept states, final accept states, signal reject states,

final reject states, and four buffer states BL, B
0
L, BR, and B0

R.

The signal accept state has affinity with all states in RTA,

and the final accept state has affinity with all states other

than itself and the four buffer states. The two reject states

have corresponding affinity rules as those of the accept

states. The buffer states ensure that no two assemblies

attach during the computation. Each of the four buffer

states have affinity with each state in H and S. BL and BR

have affinity with B0
L or B0

R respectively.

Transitions. We create a transition rule such that for

each Tile Automata state hðq;sÞ 2 H and ri 2 S, the rule

represents a step in M (Fig. 2b). WLOG, assume an

assembly A representing a configuration of a Turing

machine M has the state hðq;sÞ with states, rL; rR 2 S to

the left and right of hðq;sÞ, respectively. If the head of M

moves right then the transition rule will take place between

hðq;sÞ and rR. If the TM head moves left then the transition

rule will be between rL and hðq;sÞ. hðq;sÞ will transition into

the state representing the symbol that is to be written on the

tape in M after a state q reads symbol s. Either rL or rR
would then transition into the state hðq0;rLÞ or hðq0;rRÞ
respectively where q0 is the new state of the head ofM after

reading s from state q. There also exists an additional

transition rule if rL or rR is a buffer state. This will

transition BL or BR to state B0
L or B0

R respectively. B0
L/B

0
R

transitions into the symbol state representing the blank

symbol when it is to attached to state BL/BR.

Accept/Reject. For transitions where M enters the

accept state, we create transition rules where both tiles

enter the signal accept state. This state has transition rules

with each other state transitioning that state into the signal

accept state as well. If it transitions with a buffer state or

the final accept state, both tiles enter the final accept state.

The final accept state also transitions with every other state

and both tiles become the final accept state. The reject

states follow the same rules.

Input. We construct a Tile Automata system that runs

M on a string x. We construct the system as described and

create an initial assembly A that represents x. A will have a

length of jxj þ 2. The left most state of A will be BL.

(WLOG assume the head of M starts on the left most cell).

The next state of A will be sðq;sÞ where q is the initial state

ofM and s is the first symbol in x. The next states of A each

represent the symbols in the string x in order. The

rightmost state of A is BR (Fig. 2c, d).

The buffer states BL and BR are always an initial

assembly and are used to extend the tape if the head

attempts to move past the right edge. The process can be

seen in Fig. 2e. First, the head state causes BR to transition

to B0
R. With B0

R on the edge of the assembly a new BR tile

will attach. Once this attachment occurs B0
R transitions to

Q = {q1, q2, ... qk}

q1,0 q2,0 qk,0

q1,1 q2,1 qk,1

(a)

q1,0 1

q1, 0           q2, 0, R

q2,10

(b)

q1

1 010

q1,0 1 1 0B B

(c)

q2

1 011

q2,11 1 0 BRBL

(d)

q1,0 1BL

q1,0 1B'L

BL
q1,0 1B'L

_BL
q1,0 1

(e)

Fig. 2 a Tile automata states (below) created from the states of

Turing machine (above) over a binary alphabet. b State change rules

(below) created from the Turing machine transition rules (above). c A
Turing machine (above) configuration and the representative TA

assembly (below). d The same Turing machine (above) after making

one step and the assembly (below) after the same step. e The process
that takes place to extend the tape

3 One-dimensional Tile Automata systems always have s ¼ 1, so we

omit that parameter from T.

D. Caballero et al.

123



the symbol state representing the blank symbol on the tape.

Then the head state may transition with the blank symbol if

needed. The same process occurs with BL when the head

attempts to move off the left end of the tape.

Terminal Assemblies. If M accepts the input x, then by

the rules of our system the accept states will appear in our

assembly. The signal accept state will be the first to appear

and will propagate to the edges of the assembly. Once the

signal accept state reaches the buffer states on the edge of

the assembly they will transition into the final accept states.

Any final accept state that is attached to any other state will

change the state of that tile into a final accept state. Any

two final accept states that are next to each other do not

have affinity and will detach. After the accept state appears

in an assembly the only terminal assemblies that will exist

are single final accept states. The same will occur if the

machine rejects.

Since there are only two possible terminal assemblies,

the final accept state and the final reject state, this

construction performs covert computation. This computa-

tion is also fuel efficient since the only time a new

assembly is attached is when the Turing machine writes on

a blank symbol at the edge of the tape, which can only

occur once per computation step. h

4 Thin freezing turing machines

In this section we explore the abilities of bounded height

freezing Tile Automata systems. We present a freezing Tile

Automata system that can simulate general Turing

machines that have producible assemblies of height-2.

4.1 Overview

This construction functions in a similar way to the previous

Turing machine simulation for non-freezing systems.

However, in this case transitions do not take place between

tiles on the tape but through the help of a transition

assembly. This transition assembly attaches in the row y ¼
1 while the Turing machine tape exists in row y ¼ 0. This

system also uses s ¼ 1. This system can be broken into

three parts: the Tape Assembly, which functions similar to

the previous construction, the Transition Assembly, which

is used to control the steps of the computation and replace

tiles, and the Inactive States, which are the removed tiles

that can no longer transition. The Transition Assembly

attaches to the Tape Assembly to perform a single step of

the computation. In doing so tiles are removed from the

tape assembly resulting in an inactive state being produced.

Since our system is freezing the transition assembly will

eventually reach an inactive state as well. At the end of our

computation our output states will clean up these inactive

states to ensure our system uniquely produces a single

assembly.

4.2 Tape assembly

As with the previous construction, we have head states and

symbol states that represent the current state of the Turing

machine and the contents of the tape. However, here these

tiles do not have transition rules with each other and only

change states via the transition assembly. The input

assembly is constructed in the same way as the previous

simulation by encoding the initial tape contents with

symbol states and a single head state representing the

starting location and state of the Turing machine head. We

call this row of tiles the tape assembly. Our system further

includes empty state tiles. These tiles are different from

blank states and are used by the transition assembly to

write a new value to the tape during computation.

4.3 Transition assembly

The transition assembly is made of three unique tiles and

exists as an initial assembly in our system. The center tile

w0

w0

Transition Assembly Attaches
10 h1,0

hL R

State change reads head state 
h1,0L R

10

Center tile represents new value to write
If head moves the right tile has a new state 

Transition other side (Left) to gain affinity

Center tile on tape changes states 
to an inactive state

h2

10

w0L

Inactive state deattaches
from assembly

A empty state tile may attach 

h2L

10

w0

0
The blank state transitions to a 
symbol state to write to the tape 

h2L

10 0
The head is moving right 
The right tile transitions

The new head state is written 
to the tape

h2,1

L

0 0

h2,1

L

0 0

h2,10 0

The transition assembly 
begins to lose affinity

L h2

10

w0

w0 h2

10

L

h2

10

w0L

h2

10

w0L

BL BR

BRBL

BL BR0

BRBL

0

0

0

BR0

BR0

BR0

BR0

BL

BL

BL

BL

BR0

BR0

BR0

BR0

BL

BL

BL

BL

The transition assembly
will now deattach

Fig. 3 Transition process for one computation step of the height-2

freezing Turing machine. The transition assembly starts by attaching

to the tape assembly through the head state to start the process. Once

the process is complete, the transition goes to inactive states that fall

off the assembly, which exposes a new head state so another transition

assembly may attach

Verification and computation in restricted Tile Automata

123



has affinity with the head states of our tape. The process of

transitioning the assembly can be seen in Fig. 3. This can

be seen as three parts, Attachment, Writing, and

Movement.

In the first Attachment step, the transition assembly

attaches to the tape assembly via affinity with the center

tile. Once attached, the center tile transitions to a state

representing the transition rule of the Turing machine and

changes the head state. The center tile then transitions in

the direction of the head movement. W.L.O.G. assume the

head moves right. The right and center tiles will transition

and the right tile will now represent the next state of the

head and gains affinity with the tape assembly. The

opposite direction (in this case left) tile then transitions to

gain affinity with the tape assembly. This transition is the

last of the attachment step and the center tile transitions to

start the next step.

In the Writing step, the previous head state transitions to

an inactive head state. This state does not have affinity with

symbol states or the states of the transition assembly so it

detaches from the assembly. This allows for an empty state

tile to attach. This tile changes states with the center state

of the transition assembly to write the new value to the

tape. The center tile also transitions to another state sig-

naling the start of the next step.

The final Movement step starts with the center tile

transitioning with the right tile (still assuming the head

moves right). The right tile may now transition with the

tape assembly to change the tile directly underneath into a

head state. This transition also changes the right tile of the

transition assembly to an inactive state. This transition

propagates through the assembly, which then falls off after

losing affinity. The inactive states of the transition

assembly have affinity with each other but not with the tape

assembly. This exposes the next head state so a new tran-

sition assembly can attach, allowing the computation to

continue.

If the next head state would result in the Turing machine

accepting, an accept state will appear on the tape and the

same process occurs as in the non freezing construction to

deconstruct the assembly into single accept state tiles.

4.4 Inactive states and clean up

Since this is a freezing system we use detachment to

replace tiles that have reached what we call an inactive

state. These inactive states do not have affinity with the

states of the tape assembly. Each tile of the transition

assembly has an inactive state that it transitions to at the

end of the computation step. Further, the previous head

states of the Turing machine go to an inactive state when

replaced. These tiles only attach to accept/reject states that

have already fallen off the tape assembly after the

computation is complete. The accept/reject states ‘‘clean

up’’ the inactive states so there is only one terminal

assembly.

Theorem 2 For any Turing machine

M ¼ ðQ;R;C; d; qa; qr; qsÞ, there exists a covert, fuel-effi-

cient, height-2 freezing Tile Automata system T ¼ ðRTA;

P;K;DÞ that can simulate M such that. jRTAj ¼ OðjQjjCjÞ
and jDj ¼ OðjdjÞ.

Proof The initial assemblies in this system are the initial

tape assembly, which encodes the input to M, the transition

assembly, and empty state tiles. Each tape assembly maps

to a configuration of M. For each transition step of M, a

transition assembly will attach to the tape assembly to

remove the old head state, attach a new tile in that position,

write the new symbol, and finally write the next head state.

The transition assembly then detaches from the tape

assembly and the new head state on the tape allows for

another transition assembly to attach.

If the head of M were to move off the edge of the tape,

the process to extend the assembly is similar to the

previous construction as well. The system still includes the

buffer states BL;BR;B
0
L and B0

R. When the Transition

assembly would write the new head state to the tape if it is

above a buffer state BL or BR, the buffer state will transition

to B0
L or B0

R respectively. This will allow another buffer

state to attach then transition the previous state to the state

representing the blank symbol. The transition assembly

then writes the head state to the tape and begins

detachment.

The only possible terminal assemblies for this system

are either the accept state with inactive tiles attached to it if

M accepts, or the same assembly with a reject state if M

rejects. Each possible output ofM has a unique assembly so

this simulation is covert. This system is fuel efficient as

well since at each computation step the only attachments

that occur are the transition assembly (of size 3), and the

empty tile that attaches to write a new symbol to the

tape. h

5 Shapebuilding and the largest assembly
problem

Given a Tile Automata system with limited states, we

examine how large of an assembly may be constructed. We

first consider the case of 1-dimensional assemblies and

leverage Theorems 1 and 3 to show that the longest

buildable line’s length is related to the Busy Beaver

function in general, and exponential in the case of freezing

systems. We then consider the Largest Assembly problem,

and apply Theorem 3 to show that this problem is
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uncomputable for general Tile Automata even in one

dimension.

5.1 General

The Busy Beaver function BB(n), for any positive integer

n, is the maximum number of symbols printable by a

halting Turing machine using n states.4

Definition 13 (String Representation) An assembly A is

said to represent a string x if there exists a mapping of the

states in A to the symbols in x such that the nth state of A

maps to the nth symbol of x for all 0\n� jxj.

Lemma 1 For any n-state 2-symbol (not including the

blank symbol) Turing machine M that produces an output

x, there exists a OðnÞ-state Tile Automata System T that

uniquely assembles an assembly A, such that A represents

x.

Proof We modify the construction from Theorem 1, so

that once M halts the head state transitions into a symbol

state. The resulting assembly will be terminal since symbol

states do not transition with each other. This final assembly

will consist of symbol states that each represent the sym-

bols in x. The number of states used by T is 2n head states,

2 symbol states, and 4 buffer states, and is bounded by

OðnÞ. Note there is no need for accept or reject states since

the head state turns into a symbol state when the TM

halts. h

Theorem 3 For any positive integer n, there exists a 1-

dimensional Tile Automata system that uniquely assembles

a BB(n)-length line using OðnÞ states.

Proof Using Lemma 1, we can take any Busy Beaver

Machine and create a Tile Automata system that uniquely

produces an assembly the same size as the number of

symbols printed on the tape. h

5.2 Freezing

For freezing Tile Automata systems, we can create systems

that uniquely produce n-length lines and only require states

that are logarithmic in the length of the line. This con-

struction draws some inspiration from the result in

Demaine et al. (2008). For clarity, we begin with a helping

lemma.

Lemma 2 For all n ¼ 2x for x 2 N, there exists a 1-di-

mensional freezing Tile Automata system that uniquely

assembles an n length line using Oðlog nÞ states.

Proof The cases for x ¼ 0; 1; 2 are trivial. A system that

uniquely builds a length 23 line is shown in Fig. 4. The only

initial states are 1A and 1B. The affinities are between

adjacent states. Pairs of tile that have transition rules

between them are highlighted, with the resulting assembly

shown as well. Our unique terminal assembly is a length 23

line. By adding a constant number of states, transitions, and

affinities to this system, the length of the uniquely

assembled line will double, and this process can be repe-

ated to uniquely assemble any length 2x line.

For n[ 3 and x ¼ log n, let Tn be the system that

uniquely assembles a length 2x line derived by recursively

applying the following process to T3 ðx� 3Þ times.

Assuming that Tn uniquely assembles a length 2x line of

the form ð1A; nD; . . .; nD; nA; nB; nF; . . .; nF ; 1BÞ, Tnþ1 is

constructed as follows. First, we add the non-initial states

nþ 1A; . . .; nþ 1F , and a transition from ðnA; nBÞ to both

ðnþ 1E; nBÞ and ðnA; nþ 1CÞ. We add six new transitions

involving nþ 1C or nþ 1E that allow the state to propagate

left and right, respectively, and then transition to nþ 1D
and nþ 1F , respectively, when the end of the line assembly

is reached. There will be 6 additional transition rules added

to allow states nþ 1D and nþ 1F to propagate in the

opposite direction and eventually transition 1A and 1B to

nþ 1B and nþ 1A, respectively. Adding the affinity rule

ðnþ 1A; nþ 1BÞ will allow the two length 2x lines to bond

and uniquely assemble a length 2xþ1 line. This new system

uniquely produces a length 2xþ1 line of the same form as

previously described, and the process can be repeated to

double the length of the unique assembly again. h

Theorem 4 For all positive integers n, there exists a 1-

dimensional freezing Tile Automata system that uniquely

assembles an n length line using Oðlog nÞ states.

Proof We modify the construction from Lemma 2 to build

arbitrary length-n lines. To build any length-n line using

Oðlog nÞ states, let T ¼ Tdlog2 ne. Let bi indicate the i
th least

significant bit of n’s binary expansion (the left most bit is

b0). For all i� 1 such that bi is equal to 1, we add a tran-

sition rule from ðiA; iBÞ to ðiL; iLÞ in T. When these two

states are adjacent, they exist in an assembled line of length

2i. This transition ‘‘locks’’ this producible, and stops it

from growing. Four more transition rules are added to

allow this state to propagate to the ends of the line. Finally,

we add transitions between all iL states and the states 1B
and 1A, which are the endpoints of the lines. These end-

points transition to states that have affinity with the next

largest locked assembly to its left, and the next smallest

locked assembly on its right. The locked assembly that is

the most significant bit (leftmost), does not attach to any-

thing on its left side. The same for the least significant on

4 For this definition we consider Turing machines using a binary

alphabet.
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its right. For the case of the bit b0, if it is equal to one we

will add an additional state, 0L, which starts in our initial

assemblies and acts as a length-1 locked assembly. h

5.3 Largest finite assembly problem

Given a positive integer n, the Largest Finite Assembly

Problem asks what is the largest assembly that can be

uniquely assembled in a Tile Automata system using

n states.

Theorem 5 The Largest Finite Assembly problem in Tile

Automata is uncomputable.

Proof Let rn be the size of the largest assembly that can

be constructed using n states. From Theorem 3, there exists

a system that can construct a line of length BB(n) using

OðnÞ states so rOðnÞ �BBðnÞ. This means rn grows

asymptotically as fast as the Busy Beaver function, which

grows faster than any computable function. Thus, rn is

uncomputable. h

6 Unique assembly verification

A well-studied problem in self-assembly is the Unique

Assembly Verification problem. This asks whether a given

system uniquely produces a given assembly. We show that

the general problem in TA, even in one dimension, is

undecidable. Again, we consider two definitions of unique

assembly: one where systems with cycles are allowed in

the production graph, and the other where they are not.

6.1 Undecidability

Theorem 6 Tile Automata Unique Assembly Verification

is undecidable in one dimension.

Proof Using Theorem 1, we reduce from the halting

problem. Given a Turing machine M, we can construct a

Tile Automata system C that simulates M. If M halts, then

there exists a single terminal assembly that is the final

accept state tile that is our target assembly. If M does not

halt, then there exists no terminal assemblies. This is true

under both definitions of uniquely assembly since the only

time a cycle exists in the production graph of C is if M ever

revisits a configuration. If M revisits a configuration, then

M will not halt, and thus our system will not uniquely

assemble the final accept state tile. h

Theorem 7 Freezing 2-dimensional Tile Automata Unique

Assembly Verification is undecidable even when all

assemblies are of max height-2.

Proof Using Theorem 9, we can perform a similar

reduction as above. Given a Turing machine M, we con-

struct a freezing Tile Automata system C that simulates M.

If M halts, C uniquely produces an assembly with the

inactive states attached to the accept state. This assembly is

our target assembly. If M does not halt, C does not have

any terminal assemblies and does not uniquely produce the

target assembly. h

7 Affinity strengthening UAV

Many self-assembly models where UAV is well-studied do

not have detachment (and are thus decidable). Here, we

investigate versions of TA without this power and show

hardness of the UAV problem. We explore Affinity

Strengthening Tile Automata (ASTA). We start by con-

sidering the non-freezing case, then consider the added

restriction of freezing in the following section.

Lemma 3 The Unique Assembly Verification problem in

Affinity Strengthening Tile Automata is in PSPACE.

Proof The UAV problem can be solved by the following

co-nondeterministic algorithm. Given an Assembly A and

an ASTA system T, nondeterministically build an assembly

B of less than size 2|A| where |A| is the size of the given

assembly. We now have a branch for every producible

assembly and we check the following about B in order. If

any branch rejects, the algorithm rejects.

– If B ¼ A, accept.

– If jBj � jAj, reject.
– If B 6¼ A and B is terminal, reject.

1A 1B

1A 1B

1A 2A 2B 1B

1A 2A 3C 1B 1A 3E 2B 1B

1A 3C 3C 1B 1A 3E 3E 1B

1A 3D 3C 1B 1A 3E 3F 1B

1A 3D 3D 1B 1A 3F 3F 1B

1A 3D 3D 3A 3B 3F 3F 1B

1A 3D 3D 3A 3B 3F 3F 1B

1A 2A 2B 1B 1A 3D 3C 1B 1A 3E 3F 1B

1A 2A 2B 1B

...

...

...

...Fig. 4 A system that uniquely

builds a length 23 line. The only

initial states are 1A and 1B. The

affinities are between adjacent

states. The states that have

transition rules between them

are highlighted in red, with the

next assembly showing the

resulting states
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– Continue nondeterministically performing construction

steps (attachments and transitions) on B. If B is reached

again, reject. If A is reached, accept.

Only assemblies up to size 2|A| need to be checked since

any assembly larger than 2|A| would have been built using

at least one assembly of size greater than |A|, which would

have already been rejected. We can check if B is terminal

by nondeterministically building a second assembly and

checking if it can attach to B. Checking if an assembly is

breakable, or if it is transitionable, can be done in poly-

nomial time and space. The final step of the algorithm

checks for cycles in the production graph. By the definition

of unique assembly, B !C A. By continuing to perform

construction steps on B, we will eventually reach A. If we

ever reach B again, there exists a cycle in the production

graph (cycle checking in a directed graph is in P).

This algorithm shows the UAV problem for Affinity

Strengthening Tile Automata is in coNPSPACE, which

equals PSPACE. For the case of unique assembly where

cycles in the production graph are allowed, the last step of

the algorithm is skipped. h

Lemma 4 The Unique Assembly Verification problem in

Affinity Strengthening Tile Automata is PSPACE-hard.

Proof We show UAV in Affinity Strengthening TA is

PSPACE-hard by describing how to reduce from any

problem L 2 PSPACE. Consider a Turing machine M that

decides L in polynomial space. The construction from

Theorem 1 can be modified to be an affinity strengthening

system that results in a system capable of performing

bounded space computation (a Linear Bounded Automata,

which is equivalent to parsing a context-sensitive grammar

and is PSPACE-complete Kuroda (1964)). The only tran-

sition where a state loses affinity is from the signal accept

and reject state to the final accept and reject state. We

remove the final states from the system. This results in two

possible terminal assemblies: one consisting of a buffer

state, then accept states, then another buffer state, and the

other being the same with reject states. The assembly with

the accept states will be our target assembly. We remove

the buffer state from the set of initial assemblies. We

change the length of the assembly representing the input to

be the amount of space used by M. Figure 5 shows our

input assembly, the assembly where the accept state first

appears, and the target assembly.

Given a bounded space deterministic Turing machine

and its input, construct a Tile Automata system that

uniquely produces the assembly with accept states if and

only if the Turing machine accepts. If the Turing machine

rejects, then the reject assembly will be the only terminal

assembly. If the TM ever enters an infinite loop, then there

exists a cycle in our system and there will not exist any

terminal assemblies, so the TA system will not uniquely

produce any assembly regardless of whether there exists a

restriction on cycles. h

Theorem 8 The Unique Assembly Verification problem in

Affinity Strengthening Tile Automata is PSPACE-complete.

Proof Follows from Lemmas 3 and 4. h

8 Freezing ASTA UAV

In this section, we explore the Unique Assembly Verifi-

cation problem for freezing affinity strengthening systems.

We begin by presenting a bounded time Turing machine

simulation and use that to design a SAT evaluator, a

freezing ASTA system that provides the information for

which assignments satisfy a given formula. This SAT

evaluator system is used as a basis for the two reductions in

this section. We first show coNPNP-completeness for the

UAV problem in systems with a max assembly height of 3,

utilizing the SAT evaluator to show hardness. We then

explore this problem in one dimension. We show mem-

bership in the class PNPjj , which is the class of problems

solvable by a deterministic Turing machine in polynomial

time using a polynomial number of NP oracles that can

only be accessed a single time in parallel. We then provide

a reduction from a known PNPjj -complete problem.

8.1 Freezing ASTA UAV membership

We first show that the freezing ASTA UAV problem is in

the class coNPNP.

1 1 0x x0 1 01 1acc

q1,0 1 1 0x x_ _ _ _ _

Input Assembly

x xacc accaccacc accaccacc accacc

Target Assembly

Fig. 5 An overview of the construction in Lemma 4. The reduction

starts with a fixed-length tape. Once the machine accepts/halts, the

accept state appears on the assembly. This causes a transition that

‘‘hides’’ the tape by transitioning to the target assembly shown
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Lemma 5 The Unique Assembly Verification problem in

freezing Affinity Strengthening Tile Automata is in coNP
NP.

Proof We use the algorithm from Lemma 3 to prove that

the running time is polynomial for freezing systems. When

building an assembly B, since the system is freezing, the

time to build B is jRjjBj where jRj is the number of states in

the system. Since we reject if one branch rejects, this is a

coNP algorithm.

We utilize a subroutine in coNP to check if B is

terminal. This is done in polynomial time by nondeter-

ministically building a second assembly and checking if

they can attach. If there is an assembly that can attach to B,

then the assembly is not terminal. Using the coNP

algorithm and the subroutines as oracles, this problem is

in coNPNP. h

8.2 Freezing ASTA SAT evaluator

The next two hardness results will utilize a method for

creating a 1D freezing affinity-strengthening system C that

evaluates the assignments that satisfy a formula /. This
system will produce a terminal assembly for each assign-

ment to / that contains a flag for whether that assignment

evaluates to true or false. We call these assignment

assemblies. We first show how 1D freezing ASTA can

simulate bounded-time Turing machines.

Theorem 9 For any bounded-time Turing machine

M ¼ ðQ;R;C; d; qa; qr; qsÞ, there exists a 1-dimensional

freezing Tile Automata system T ¼ ðRTA;P;K;DÞ that can
simulate M such that. jRTAj ¼ OðjQjjCjTIMEðMÞÞ and

jDj ¼ OðjdjTIMEðMÞ2Þ.

Proof We modify the construction from Theorem 1. We

have RTA partitioned into three sets H, S, and W. In a

freezing system, states can not be repeated, so for each

state in H and S, we create a number of states equal to the

number of steps the Turing machine M can take. Assume

we are given an oblivious Turing machine M, which means

the movement of the head is a function of the current step

of the Turing machine. Thus, we know when certain cells

will be written to and can expand the state space of the Tile

Automata system so that a tile will never need to repeat

states. Since we know the run time of M is bounded, we

only need a finite number of states for each cell. The states

on the tape will keep track of the current symbol on the

tape, if the current head state is at that tile, and how many

times the cell has been modified. If the head of M moves to

cell c a total of x times, then the tile representing c will

have xjRj symbol states and xjCjjRj head states.

This increase in state-space ensures no tile will ever

become the same state twice since each cell will only need

to change states a finite number of times. h

8.2.1 SAT evaluator construction

Consider an oblivious Turing machine M that solves the

Circuit Value problem for a circuit with n variables that

computes /, and then prints T or F to the tape representing

this evaluation.

We want to simulateM on the 2n different inputs that are

length-n bit strings (assignments to /). By Theorem 9,

there is a 1D freezing Tile Automata System that can

simulate this Turing machine with the starting input

assembly representing a single input to /. Now consider a

modification to the system with 2n input assemblies in C
representing every possible input to /. This will now result

in a system that computes all 2n assignments, but contains

an exponential number of starting assemblies. This can be

fixed, however, using the nondeterminism inherent to Tile

Automata.

This process is shown in Fig. 6. We start with 2n

dominoes, an initial 0 and 1 domino for each variable.

Starting with the two dominoes representing the first

variable x1, one of them will be selected for attachment.

Then either of the two tiles representing x2 may attach to

the first domino. This process repeats to construct a length-

n line. Since at each position one of the two tiles will be

selected, this results in a total of 2n possible assemblies.

Using this method, we can create all 2n possible input

assemblies, which can then be used as input assemblies to a

simulation of M. This method is only used to construct the

section of the input assembly containing the input to

M. The other tiles, such as the buffer states and the work

tape of M, attach to this section to form the full input

assembly (Fig. 6).

At the end of the computation simulation, we have either

a True (T tile) or False (F tile) state on each assembly.

Then the T and F state propagate left and right through

transition rules, erasing computation history, but preserving

the section of the assembly that contains the original

assignment. The assembly is flagged true or false depend-

ing on the presence of the T or F, respectively.

Using this method, we black box this functionality for

evaluating a SAT formula with 2n assemblies (representing

each possible assignment), which are flagged true or false

depending on whether that assignment evaluates to true or

false. We say the system Cð/Þ is the system created from

formula /.
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8.3 Height-3 freezing ASTA UAV is coNPNP-
complete

In this section we prove that a special case of freezing

ASTA UAV, where the system is guaranteed to only pro-

duce assemblies of height � 3, is coNPNP-complete.

Lemma 5 shows coNPNP membership, We now present a

reduction from 89SAT to show hardness.

Definition 14 (893SAT) Given a 3SAT formula

/ðx1; . . .; xk; xkþ1; . . .; xnÞ, is it true that for every assign-

ment to variables x1; . . .; xk, there exists an assignment to

xkþ1; . . .; xn such that /ðx1; . . .; xnÞ is satisfied?

8.3.1 Overview

We utilize the SAT evaluator construction to derive a

system that has a terminal assembly for every assignment

flagged as true or false. We modify the system so that those

assemblies grow geometry that encodes their assignment in

geometric bumps and dents. A second set of assemblies,

called test assemblies, is also constructed. A test assembly

encodes an assignment to x1; . . .; xk. It can attach to an

assembly representing an assignment if it is flagged true,

and has the same assignment to x1; . . .; xk.

8.3.2 Creation of height-3 freezing ASTA system

Given an instance of 89SAT ¼ 8x1; . . .; xk9xkþ1; . . .; xnð/Þ,
create the system Cð/Þ as defined in Sect. 8.2. Recall the

current terminal assemblies of the system are the 2n as-

signment assemblies- each flagging their corresponding

assignment as True/False, and then they can grow the

geometry on each assignment assembly that reflects the

assignment (Fig. 7a). We add transition rules with the

output states (T/F), which propagate left and transition the

states that represent assignments to the variables in

x1; . . .; xk, and allowing single tiles to attach from above.

This is done from left to right, with a transition happening

after each attachment that is required for the process to

continue. This acts as a confirmation that each single tile is

attaching. The tiles encode the assignment geometrically

like so: The tile will attach directly above the variable if its

value is one, and will attach above the tile on its left if the

value is zero. The pattern of tile positions encodes a binary

string. Once all tiles have attached, transitions will propa-

gate to the leftmost output tile (T/F), changing state T to

state A, and state F to state B.

Test Assemblies. We add additional initial tiles to the

system that grow into test assemblies (Fig. 7b). These test

assemblies have a section for each variable (a horizontal

domino). The sections representing a variable in x1; . . .; xk
have an additional tile attached that represents an

1

Formula ϕ
ϕ = (x1 ^ x2) v (¬x3 ^ ¬x4)

11

0 0
BL

0

1 1

0 11

0 0

0

1 1

0
x1 x2 x3 x4

1BR

Build Bit String Nondeterministically

11 0 0BL CBR0 0 0 0q0,_

11 0 0BL CBR0 0 0 1q0,_

11 0 0BL CBR1 1 1 1q0,_

... ...

2n Turing Machine Simulations

11 0 0BL

x1 x2 x3 x4

CBR0 1 1 0 T T T T

11 0 0BL

x1 x2 x3 x4

CBR0 1 0 0 F F F F

...

...

...

...

2n Terminal Assemblies

Fig. 6 An overview of the steps taken by the SAT Evaluator. First an assembly for each possible input is built, then the Turing machine is

simulated on all inputs. If any of the assemblies result in a terminal accept assembly, then the instance of SAT is true

11 0 0BL CBR0 1 1 0 T T T T...

0

11 0 0BL CBR0 1 1 0 T T T T...

0
0

11 0 0BL CBR0 1 1 0 T T T...

0 0

x1 x2 x3 x4

A

Additional Tiles attaching to 
Assignment Assembly

(a)

0

0 0
0

0 0

0 0

0 0

0 0 0 0
0
00 0

0 0

x1 x2 x3 x4

0 0

1 1

0
0 0 0

0
1 0 0

0
0

0
00 0 0 0

x1 = 1 x3 x4

Test Assembly Creation

x2 = 0

0
0 0 0

0
1 0 0

0
1

0
00 0 0 0

x1 = 1 x3 x4x2 = 1

...

(b)

0
0 0 0

0
1 0 0

0
0

0
00 0 0 0

11 0 0BL CBR0 1 1 0 T T T...

0 0
A

x1 x2 x3 x4

11 0 0BL CBR1 0 1 0 T T T...

0 0
A

0
0 0 0

0
1 0 0

0
0

0
00 0 0 0

Matching Assignment to x1,x2

Different Assignment to x1,x2

(c)

Fig. 7 Example of 89SAT over 4 variables with k ¼ 2. (a) Transition

rules pass a signal to the left that transitions the tile next to the state

representing x1, allowing a tile to attach. This allows more transitions

that allow a tile to attach over the state representing x2 (since it is

¼ 1). Finally, the leftmost T is transitioned to state A. (b) Four test
assemblies are built, each representing an assignment to x1; x2. A test

assembly can attach to an assignment assembly with the A state if they

encode the same assignment to x1; x2
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assignment. The positioning is complementary to that of

the assignment assemblies (1 ¼ tile on the left, 0 ¼ tile on

the right). They grow two tiles on each side, and the lower

tiles on the left/right have affinity 1 with the BL/A state,

respectively.

The system will also build one ‘‘blank’’ test assembly

that has no tiles encoding the assignment for any of its

variables. It can connect using affinity with either the

A state or the B state, so it attaches to every assignment

assembly. This means the assignment assemblies that

represent a false output are not terminal.

Test Assembly/Assignment Assembly Interaction The

assignment assemblies, or test assemblies, can attach to

each other utilizing affinity involving the BL state and the A

state, which appears only after all additional tiles have

attached. Figure 7c shows how attachment is not possible if

the partial assignment to x1; . . .; xk is not the same- the

tiles representing unequal variable assignments would

overlap, and therefore the two assemblies are not able to

attach. If the partial assignment matches, the two assem-

blies fit together.

Transition to Target Assembly The target assembly is

the size of an assignment assembly flagged true with a test

assembly attached. Each tile is enumerated; if BL is the

point of origin, then each tile at position x, y is the state

Xx;y in the target assembly (Fig. 8). An assignment

assembly flagged True attaches to a test assembly, and a

transition with the state BL occurs, transitioning the two

states to X0;0 and X0;1. These states propagate throughout

the entire assembly. For each state Xx;y, it has transition

rules with any state it is possible for its neighbors to be in,

and transitions them to Xx�1;y or Xx;y�1, based on its relative

position. The ‘‘blank’’ test assemblies attach to any

assignment assembly, but the resulting assembly will be

missing tiles relative to the target assembly, so there is a

single ‘‘filler’’ tile in the set of initial assemblies. State Xx;y

has affinity with the filler tile on any side where that

location is nonempty in the target assembly. Therefore, the

filler tile occupies the empty spots and allows the assembly

to transition to the target.

Theorem 10 Unique Assembly Verification in height-3

freezing Affinity Strengthening Tile Automata is coNP NP-

complete.

Proof This reduction takes as input an instance of 89SAT
P ¼ 8x1; . . .; xk 9xkþ1; . . .; xnð/Þ, and outputs an instance

of height-3 freezing Affinity Strengthening Tile Automata

UAV P0 ¼ ðC;AÞ, such that the instance of P is true ()
the instance of P0 is true.

Note that all assemblies representing an assignment to /
will grow to the target, as the ‘‘blank’’ test assembly can

attach to every one of them and allow it to grow to the

target. The test assemblies that represent an assignment to

x1; . . .; xk only grow to the target assembly if they can

attach to some assignment assembly that evaluated to true.

If instance P is true, then for all assignments x1; . . .; xk,
there exists some assignment to xkþ1; . . .; xn that evaluated

to true. Therefore, for all test assemblies, there exists some

assignment assembly it can attach to, and all test assem-

blies grow to the target assembly. The target assembly is

uniquely assembled, so P0 is true.
If instance P is false, there exists an assignment

x1; . . .; xk with no satisfying assignment to variables

xkþ1; . . .; xn. The test assembly that represents assignment

x1; . . .; xk is not able to attach to any assignment assembly

including any assignment assembly with a different

assignment to x1; . . .; xk due to geometric blocking. Since

all assignments that start with x1; . . .; xk evaluate to false,

there is no assignment with the A state that the test

assembly can attach to. The test assembly representing the

assignment x1; . . .; xk is terminal, and is not the target

assembly, so the instance P0 is false.
This shows that Unique Assembly Verification in

height-3 freezing Affinity Strengthening Tile Automata is

coNPNP-hard, while Lemma 5 shows membership for

X0,1 X1,1 X2,1 X3,1 X4,1 X9,1

X0,2 X1,2 X2,2 X3,2 X4,2 X5,2 X6,2 X7,2 X8,2 X9,2

X0,0 X1,0 X2,0 X3,0 X4,0 X5,0 X6,0 X7,0 X8,0 X9,0 X10,0 X11,0 Xy,0 Xz,0
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Target Assembly

True Assignment False AssignmentFig. 8 An overview of how all

assignment assemblies

transition to the target assembly.

Assignment assemblies marked

true can grow to the target

assembly by attaching to a test

assembly. Those flagged false

can attach to ‘‘blank’’ test

assemblies, and the filler tile

fills in the spots missing relative

to the target assembly
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coNPNP. Therefore the problem is coNPNP-complete.

h

8.4 One-dimensional freezing ASTA UAV

In this section we will show 1-dimensional freezing ASTA

UAV is complete for PNPjj . We provide a PNPjj algorithm,

as well as reduce from a known PNPjj -complete problem

Max True 3SAT Equality.

Definition 15 (P NP
jj ) Class of problems solvable by a

deterministic Turing machine in polynomial time that is

allowed a single query to a polynomial number of parallel

NP oracles.

8.4.1 Hardness

Definition 16 (Max True 3SAT Equality) For a 3-CNF

formula F, let max-1ðFÞ denote the maximum number of

variables set to true in a satisfying assignment to F. Given

two 3-CNF formulas F1 and F2, is it true that

max-1ðF1Þ ¼ max-1ðF2Þ?

Max True 3SAT Equality is complete for the class

PNPjj Spakowski (2006). Given an instance of this problem,

the reduction provides an instance of 1D freezing ASTA

UAV.

8.4.2 Overview

At a high level, given an instance of Max True 3SAT

Equality ðF1;F2Þ, we utilize the SAT evaluator construc-

tion in Sect. 8.2 to represent each assignment/formula pair

with an assembly, and flag these assemblies as True or

False. We modify the system to allow it to count the

number of ones that are contained in the true assemblies,

and add a ‘‘count’’ state to the left/right edge of these

assemblies that reflects this number. To reach the target

assembly, an assembly representing an F1 assignment has

to find a counterpart assembly representing an F2 assign-

ment to attach to. This attachment is done through the

count state that represents the number of ones in the

assignment. The affinities between separate count states are

designed such that all assemblies can find a necessary

counterpart if and only if max-1ðF1Þ ¼ max-1ðF2Þ.

8.4.3 Creation of 1D Freezing ASTA System

From F1 and F2 over n variables, we create two SAT

evaluator systems C1 ¼ CSðF1Þ and C2 ¼ CSðF2Þ, as

defined in Sect. 8.2. We merge these two systems into C in

a way that allows them both to operate independently

within the same system. This is done by distinguishing the

states of C1 and C2, and letting C be the union of C1 and

C2’s states, transition rules, affinity rules, and initial

assemblies. Due to this, states that we reference with the

same label, e.g. the T/F states, are different states in C1 and

C2. For simplicity, however, we will reference them by this

common label.

(a) (b)

(d)(c)

Fig. 9 (a) An assembly that

represents a true assignment to

F1 counts the number of 1’s on

the tape and sets the rightmost

state accordingly. (b) An

assembly that represents a true

assignment to F2 counts the

number of 1’s on the tape and

sets the leftmost state

accordingly. (c) An assembly

that represents a false

assignment to F1 ignores the

number of 1’s and sets the

rightmost state to �1b. (d) An

assembly that represents a false

assignment to F2 ignores the

number of 1’s and sets the

leftmost state to �1b
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At this point, the system will produces 2� 2n unique

terminal assemblies. Let Ay;x be the assembly that repre-

sents the assignment x 2 f0; 1gn to Fy. For all x 2
f0; 1gn; ðFyðxÞ () Ay;x contains state T and

:FyðxÞ () Ay;x contains state F). We refer to an assembly

that contains state T/F as a true/false assembly,

respectively.

True assemblies are now flagged with the number of

ones they contain. We modify C for this purpose. Transi-

tion rules are added involving the states that are contained

in terminal assemblies (this means they are not terminal

with the included changes). For the assemblies A1;x, if the

‘‘T’’ state exists, transition rules are added that allow a

signal to be passed down the assembly. This signal counts

the number of 1s the assignment x contains (let N be that

number), and then propagates right. When it reaches the

right end of the assembly, it nondeterministically transi-

tions the right buffer state BR to one of two ‘‘count’’ states,

‘‘Na’’ or ‘‘Nb’’ (Fig. 9a). If instead, the ‘‘F’’ state exists, the

assembly passes a signal to the right and changes the right

buffer state BR to the count state ‘‘�1b’’ (Fig. 9c).

Assemblies A2;x act in a similar, but complementary,

way. The difference is that the transition to count states

(‘‘Na’’, ‘‘Nb’’, and ‘‘�1b’’) happen with the left buffer state

BL rather than the right buffer state BR (Fig. 9b, d).

To the affinity function P 2 C, for all values

N;M 2 f�1; 0; 1; . . .; ng, and their corresponding count

states Na;Ma;Nb;Mb, we add the following affinity rules

conditionally (Note that state �1a does not exist, so the

affinity rules that would include that state are not added):

– PðNa;Ma;‘Þ () N �M

– PðNa;Mb;‘Þ () N[M

– PðNb;Ma;‘Þ () N\M

– PðNb;Mb;‘Þ () N �M

Additional transition rules are added to C such that when

two count states are adjacent, they transition to state X.

State X transitions with nearly every other state, transi-

tioning said state to X. This is done to wipe any compu-

tation history from the assembly. The only states it does not

transition with are the buffer states BL and BR. This allows

the attached A1;x and A2;x0 assembly to build towards the

target assembly for the created instance of UAV, a 1-di-

mensional assembly of the form BL;X;X; . . .;X;X;BR

(Fig. 10).

Theorem 11 Unique Assembly Verification in 1-dimen-

sional freezing Affinity Strengthening Tile Automata is

PNPjj -hard.

Proof The construction shown takes as input an instance

of Max True 3SAT Equality PMAX and provides an instance

of 1D freezing Affinity Strengthening UAV

PUAV ¼ ðC;ATÞ, where C is the Tile Automata system

described, and AT is the target assembly. Let N ¼
max-1ðF1Þ (�1 if F1 is unsatisfiable) and M ¼ max-1ðF2Þ
(or �1 similarly). For a boolean assignment x 2 f0; 1gn,
and for a boolean string x 2 f0; 1g	, we denote the number

of 1s in x as jxj1.
Let Ay;x be the assembly that evaluated FyðxÞ. Let Rh be

a transition stable assembly with count state h on its right

edge, and Lh be a transition stable assembly with count

state h on its left edge. Note that all A1;x and A2;x

assemblies grow to some Rh and Lh0 , respectively. A Rh

assembly can attach to a Lh0 , if h and h0 meet the conditions

for the affinity rule Pðh; h0;?Þ to be added. When they

attach, their count states are adjacent, allowing both states

to transition to state X, which further allows the assembly

to grow to the target assembly AT . Therefore, for every

producible Rh and Lh0 , ensuring they can each attach to

some counterpart, ensures that the target assembly is

uniquely assembled.

If the instance PMAX is true, then N ¼ M. Therefore,

there exists some producible RNa
;RNb

; LMa
; and LMb

.

– For all producible RN0
b
assemblies, RN0

b
attaches to some

LMb
. Either N 0 ¼ M ¼ �1 (both F1 and F2 are unsat-

isfiable), or N 0 �M (since M is the max). Therefore, for

all producible RN0
b
assemblies, RN0

b
is not terminal.

– For all producible RN 0
a
assemblies: if N 0 ¼ M then RN 0

a

attaches to some LMa
. If N 0\M, there exists some

producible LM0
b
such that N 0 [M0 (Either 9xð:F2ðxÞÞ

or 9xðjxj1\N 0 ^ F2ðxÞÞ must be true).

– For all producible LM0
b
assemblies, LM0

b
attaches to some

RNb
, Either M0 ¼ N ¼ �1 (both F1 and F2 are unsat-

isfiable), or M0 �N (since M is the max).

– For all producible LM0
a
assemblies: if M0 ¼ N then LM0

a

attaches to some RNa
. If M0\N, there exists some

producible RN0
b
such thatM0 [N 0 (Either 9xð:F1ðxÞÞ or

9xðjxj1\M0 ^ F1ðxÞÞ must be true).

Fig. 10 Two assemblies connecting to reach the target assembly. The

top right assembly is produced because F1ð0; 1; 1; 0Þ ¼ True, and the

count state 2a represents the number of ones in the assignment. This

can attach to the assembly on the right, which is produced because

F2ð0; 1; 1; 0Þ ¼ True. Since that assignment also has two 1’s, the

corresponding count state is on its left edge. The affinity rules

described allow for these two to attach
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Thus, every producible Rh and Lh, it can find its necessary

counterpart and grow to the target assembly, showing the

instance of PUAV is true.

If the instance PMAX is false, N 6¼ M. Assume w.l.o.g.

that N[M. Consider the assembly RNb
. It is terminal if

there does not exist a producible LMa
;N\M or a

producible LMb
;N�M. Since N[M; 6 9xðjxj1 �N ^ F2

ðxÞÞ, so none of the necessary assemblies will ever be

produced, so RNb
is terminal, and is not AT . Therefore, the

instance of PUAV is false. h

8.5 Membership

We show membership in PNPjj by giving a deterministic

polynomial time algorithm using oracles for problems in

NP. We first show a generalized version of the pro-

ducibility problem is in NP for freezing affinity-strength-

ening systems. We then show how the solutions to these

problems can be used to find terminal assemblies that are

not our target assembly.

Definition 17 (Edge-Producibility Problem (eprod))

Given a Bounded Tile Automata System C ¼ ðR;P;K;D;
sÞ, two states rL; rR 2 R, and an assembly A, does there

exist a producible assembly B where the following holds?

1. jBj\jAj.
2. B 6¼ A.

3. Að0Þ ¼ rL.
4. AðjAj � 1Þ ¼ rR.

Definition 18 (Edge-Transition Terminal Problem

(ett)) Given a Bounded Tile Automata System

C ¼ ðR;P;K;D; sÞ, states rL; rR 2 R, and an assembly A,

does there exist a producible assembly B where the fol-

lowing holds?

1. jBj � jAj.
2. B 6¼ A.

3. Bð0Þ ¼ rL.
4. BðjAj � 1Þ ¼ rR.
5. B is not a transitionable assembly.

Lemma 6 The edge-producibility and edge-transition

terminal problem is in NP for freezing Affinity Strength-

ening systems.

Proof In a freezing Affinity Strengthening system

C ¼ ðR;P;K;D; sÞ, the max build sequence length for any

producible assembly B is OðjBjjRjÞ and we only need to

consider assemblies of less than size |A|. These problems

can be verified in polynomial time using an assembly B and

its build sequence, which allows us to verify that B is

producible. Checking the other conditions can be done in

OðjAj þ jBjÞ time by looking at each tile in A and B. h

Theorem 12 Unique Assembly Verification in 1-dimen-

sional freezing Affinity Strengthening Tile Automata is in

PNPjj .

Proof Given C ¼ ðR;P;K;D; sÞ and a target assembly A,

our algorithm uses 2jRj2 þ 2 oracles. Two oracle calls

check that A is producible, and that C is bounded by |A|.

Now, we only need to verify that A is terminal, and that A

is the only terminal assembly. We create two tables P and T

indexed by R� R, and then use the remaining 2jRj2 oracle
calls to fill out these tables. The value in each cell is cal-

culated using the oracle to solve the edge-producibility and

edge-transition terminal problems, PðrL; rRÞ ¼
eprodðC; rL; rR;AÞ and TðrL; rRÞ ¼ ettðC; rL; rR;AÞ for

the two states that index that cell.

Note that in 1-dimensional systems, two assemblies can

only attach using a single tile. This means that two

assemblies with the same left and rightmost state attach to

the same set of assemblies. We use this to help find

terminal assemblies. First, we verify that A is a terminal

assembly. We may check that A is not transitionable by

checking each pair of neighboring states. For each state r0

that has affinity on the left side of A(0), we check table P to

see if there exists any producible assembly with r0 as its

rightmost state. Such an assembly would be able to attach

to the left side of A, and thus it is not terminal. We perform

the same process for state AðjAj � 1Þ, the rightmost state of

A, to find if anything can attach on its right side.

Using the table T, we can find assemblies that are not

transitionable. If the value at TðrL; rRÞ is 1, the same

method as above is used to check if an assembly with those

states can attach to another assembly. If it cannot, then this

means C does not uniquely assemble A.

This algorithm makes a constant number of checks to

each cell of the table OðjRj2Þ, and verifying that A is

terminal takes OðjAjÞ time. The final resulting runtime is

OðjRj2 þ jAjÞ. h

9 Conclusion

In this paper we looked at a powerful new model of self-

assembly that combines properties of both cellular auto-

mata and hierarchical self-assembly models. We showed

that even extremely limited and simple constructions in

Tile Automata are powerful and capable of arbitrary

computation. We also showed how difficult it is to deter-

mine the output of these limited systems. This opens sev-

eral directions for future work.
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One direction is further exploring the assembly of

length-n lines in freezing systems. Does there exist a bound

on buildable length? Is the finite assembly problem in

freezing or other restricted systems decidable? Also

attempting to construct lines in systems with additional

restrictions such as limits on the number of transition rules

per state.

For the UAV problem, we show that the general case is

undecidable. However, the complexity of the problem in

freezing 1-dimensional systems is open. If the problem of

asking whether a system is bounded is decidable, then

UAV is decidable by first identifying whether a system is

bounded and then constructing the production graph and

finding the terminal assemblies. The problem for freezing

2-dimensional systems with no cycles is also open.

Since Tile Automata can be seen as a generalization of

2HAM, our results can be compared to the open problem of

UAV in that model, which is known to be in coNP. The

most restricted version of Tile Automata we explore is

affinity-strengthening and freezing, which is only one level

of the polynomial hierarchy above other generalizations of

2HAM such as allowing tiles to go into three dimensions or

allowing a variable temperature. Further limiting Tile

Automata may provide more insight into the hardness of

these problems.
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