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Abstract

Many models of self-assembly have been shown to be capable of performing computation. Tile Automata was recently
introduced combining features of both Cellular Automata and the 2-Handed Model of self-assembly both capable of
universal computation. In this work we study the complexity of Tile Automata utilizing features inherited from the two
models mentioned above. We first present a construction for simulating Turing machines that performs both covert and fuel
efficient computation. We then explore the capabilities of limited Tile Automata systems such as 1-dimensional systems
(all assemblies are of height 1) and freezing systems (tiles may not repeat states). Using these results we provide a
connection between the problem of finding the largest uniquely producible assembly using » states and the busy beaver
problem for non-freezing systems and provide a freezing system capable of uniquely assembling an assembly whose length
is exponential in the number of states of the system. We finish by exploring the complexity of the Unique Assembly
Verification problem in Tile Automata with different limitations such as freezing and systems without the power of
detachment.

Keywords Tile automata - Turing machines - Unique assembly verification

1 Introduction

Self-assembly systems have quickly become an intense
area of research due to fabrication simplicity (Kanaras
et al. 2003), the ability to create systems at the DNA level
(Kimna and Lieleg 2019), the control of nanobots (Kawano
2018), and the maturity of experimental techniques (Evans
2014). Self-assembly is a naturally occurring process
where simple particles come together to form complex
structures. These are computationally of interest since
computing at the molecular level yields a lot of power.
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There are several models of tile self-assembly, and they
each strive to capture some aspect of self-assembling sys-
tems. A few of the better known models are the Abstract
Tile Assembly Model (aTAM) (Winfree 1998), the
2-Handed Assembly Model (2HAM) (Cannon et al. 2013),
the Staged self-assembly model (Demaine et al. 2011), and
the Signal-passing Tile Assembly Model (STAM) (Padilla
et al. 2013). There are several other models designed to
model different aspects of DNA/RNA or laboratory con-
ditions. A recent model of tile self-assembly, called Tile
Automata (Chalk et al. 2018a), was introduced as an
intentional mathematical abstraction designed to imple-
ment the key features of active algorithmic self-assembly
while avoiding specifics tied to any one particular imple-
mentation (using state change rules and tile attachments/
detachments based on local affinities between states). By
abstracting away implementation details, TA strives to
serve as a proving ground for exploring the power of active
algorithmic self-assembly, along with providing a central
hub through which various disparate models of self-
assembly can be related by way of comparison to TA. One
example of this type of application includes (Alumbaugh
et al. 2019) in which TA is shown capable of simulating
the Amoebots model (Daymude etal. 2019) of
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programmable matter. More recently a connection between
the STAM and Tile Automata was established in (Cantu
et al. 2020) where it was shown that the STAM is capable
of simulating any Tile Automata system.

Given the goal of TA to connect many models of self
assembly, in this paper we explore the computational
power of limited Tile Automata systems such as versions
of TA that do not allow detachment (not possible in some
models). To facilitate this, we first show how to create
general Turing machines, and then we explore the com-
plexity of a common question within self-assembly mod-
els: the unique assembly verification problem. If given a
system, can the output be guaranteed? This is a natural
problem that is polynomial in some models, yet uncom-
putable in others.

This is the full extended version of the conference paper
(Caballero et al. 2020) with additional results, proofs, and
content to make the paper more accessible. Additional
results and proofs may be found in Sects. 4 and 8.

1.1 Previous work

In his Ph.D. thesis, Winfree presented the Abstract Tile
Assembly model (aTAM) and showed it was capable of
universal computation by simulating a Turing machine
(Winfree 1998), and the computational power is explored
in depth in other works such as Keenan et al. (2016). The
2-Handed Assembly Model (2HAM) (Cannon et al. 2013)
introduced a more powerful model and is capable of fuel
efficient computation (Schweller and Sherman 2013) along
with the Signal-passing Tile Assembly Model (Padilla
et al. 2013), which has tiles that can interact to turn glues
on or off.

In Demaine et al. (2011), Winslow (2015), the authors
show a connection between finding the smallest Context
Free Grammar and optimization problems in the Staged
Assembly model. In the staged assembly model, with only
a constant number of tile types, a system can construct
length-n lines using O(logn) bins and mixes (Demaine
et al. 2008). Repulsive forces have been shown to aid in
constructing shapes at constant scale (Luchsinger et al.
2018). Further, by utilizing the temperature to encode
information, shapes can be constructed with constant (or
nearly) tile types (Chalk et al. 2018b; Schweller et al.
2019a).

The Unique Assembly Verification (UAV) problem asks
if a given system uniquely produces a given assembly. In
the aTAM, this problem is solvable in polynomial time
(Adleman et al. 2002). In the 2HAM, however, UAV was
shown to be in coNP with certain generalizations being
coNP-complete (Cannon et al. 2013; Schweller et al.
2017). In the staged assembly model, this problem is
known to be PSPACE-complete (Caballero et al. 2021;
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Schweller et al. 2019b). Adding the power of negative
glues also vastly changes the complexity of this problem
making in uncomputable in models that include it due to
the ability for pieces of assemblies to break off (Doty et al.
2013). However, adding negative glues but restricting the
ability for assemblies to detach we still see an increase in
difficulty with UAV in aTAM without detachment being
coNP-complete (Cantu et al. 2020).

Cellular Automata has been shown to be Turing
Universal even in one dimension (Cook 2004). Other
stronger results have been shown proving intrinsic uni-
versality of many versions of Cellular Automata (Goles
et al. 2011; Worsch 2013).

The Tile Automata model was introduced in Chalk et al.
(2018a) merging ideas from Cellular Automata and Tile
Self-Assembly. The authors showed that freezing tile
automata (where a tile cannot repeat states) is capable of
simulating non-freezing systems. This powerful model has
also been shown to be capable of simulating models of
programmable matter (Alumbaugh et al. 2019). A model
motivated by real-world implementations, the Signal-
passing Tile Assembly Model, is able to simulate Tile
Automata (Cantu et al. 2020) meaning results shown in the
TA model carry over to STAM at scale.

1.2 Our contributions

In Tile Automata, cases may occur where systems contain
one terminal assembly but exhibit behavior that does not
naturally seem to uniquely produce that assembly. We
define unique assembly later, but note that the final
requirement addresses a feature of Tile Automata and other
models with detachment where there exist assemblies that
are not terminal but are never part of the final assembly.
Cycles in the production graph are not possible in many
self-assembly models, so we add this restriction. However,
many of our results work with or without this restriction, so
we explore both cases.

In this work, we explore Tile Automata systems that
uniquely assemble n-length lines and the complexity of
determining whether a system uniquely assembles a given
assembly. We first present a 1-dimensional Turing machine
simulation capable of covert and fuel-efficient computa-
tion. We use this construction to show a connection
between the largest finite assembly problem and Busy
Beaver Machines (Turing machines that print the largest
number of symbols before halting for a given number of
states). In the more restricted case of freezing systems, we
design a Turing machine simulation that utilizes only
height-2 assemblies. We also present freezing systems that
can construct n-length lines using O(n) states. Results are
shown in Table 1.



Verification and computation in restricted Tile Automata

Table 1 Given a Turing machine M = (Q, 2, I, 5,44, 4r,qs), simulating Tile Automata systems are given in Theorems 1 and 9, respectively

Turing machine Tile Automata system States Transition rules
Deterministic Non-Freezing 1D oqolrDh O(ld))
Deterministic Freezing height-2 oqolr) O(ld))

Table 2 Results for the Unique Assembly Verification in Tile
Automata. Transition Rules describes the types of transition rules
allowed in the system. In Affinity Strengthening Systems all transition
rules increase affinity so no detachment may occur. Freezing

indicates whether the system is freezing where tiles cannot repeat
states. Result 1D is the complexity of UAV in one dimension and
Result 2D is the complexity of UAV in two dimensions. Theorem is
where these results can be found

Transition rules Freezing 1D Result

2D Result Theorem

Affinity Strengthening Freezing Pﬁ“’—Complete

Affinity Strengthening Non-freezing

General Freezing Open

General Non-freezing Undecidable

PSPACE-Complete

coNPNP-Complete Theorems 11 and 10

PSPACE-Complete Theorem 8
Undecidable Theorem 7
Undecidable Theorem 6

We then explore the Unique Assembly Verification
problem. An overview of the results are shown in Table 2.
We show that UAV is uncomputable via Turing machine
simulation. We also extend this to 2-dimensional freezing
systems (even with a max height of 2 for all assemblies).
By removing the ability for assemblies to break apart we
achieve a model closer to traditionally studied models. We
restrict this by studying what we call Affinity Strengthening
systems where a state can never lose affinity by a transi-
tion. In this case, we show the UAV problem is PSPACE-
complete utilizing a bounded-space Turing machine sim-
ulation. When restricting the model to both affinity
strengthening and freezing, we show membership in
coNPNP. We then provide a reduction to show coNPNP-
completeness even for height-2 Tile Automata systems.
When restricted to one dimension, we show the UAV
problem is in the class Pll‘\IP
Max True 3SAT Equality (Spakowski 2006) to show Pll‘\jp-

\II\IP

and provide a reduction from

completeness. P;"" is the class of problems solvable by a

polynomial time Turing machine with parallel access to an
NP oracle, that is it may make a single oracle call to a
polynomial number of NP oracles that run in parallel.

2 Model and definitions

A Tile Automata system is a marriage between cellular
automata and 2-handed self-assembly. Systems consist of a
set of monomer tile states, along with local affinities
between states denoting the strength of attraction between
adjacent monomer tiles in those states. A set of local state-

change rules are included for pairs of adjacent states.
Assemblies (collections of edge-connected tiles) in the
model are created from an initial set of starting assemblies
by combining previously built assemblies given sufficient
binding strength from the affinity function. Further, exist-
ing assemblies may change states of internal monomer tiles
according to any applicable state change rules. An example
system is shown in Fig. 1.

2.1 States, tiles, and assemblies

Tiles and States. Consider an alphabet of state types' X. A
tile ¢ is an axis-aligned unit square centered at a point
L(r) € 7*. Further, tiles are assigned a state type from X,
where S(7) denotes the state type for a given tile z. We say
two tiles #; and #, are of the same tile type if S(t1) = S(12).

Affinity Function. An affinity function takes as input an
element in X? x D, where D = {1,F}, and outputs an
element in N. This output is referred to as the affinity
strength between two states, given direction d € D.
Directions L and - indicate above-below and side-by-side
orientations of states, respectively.

Transition Rules. Transition rules allow states to
change based on their neighbors. A transition rule is a 5-
tuple (Sla,Sza,SlmSzz;,d) with each Si,, Sy, S1p, 8% € 2
andd € D = {L,+}. (S1, and Sy, being the left state or the
top state.) Essentially, a transition rule says that if states Sy,
and S, are adjacent to each other, with a given orientation
d, they can transition to states S, and S,, respectively.

' We note that X does not include an “empty” state. In tile self-
assembly, unlike cellular automata, positions in Z> may have no tile
(and thus no state).
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Transition Rules

5o —=(s]e
Initial Assemblies =2 I=2
@ Stability Threshold =2

(a) Tile Automata System I

Affinity Functions

B[p)-1 B

Fig. 1 An example of a tile automata system I". Recursively applying
the transition rules and affinity functions to the initial assemblies of a
system yields a set of producible assemblies. Any producibles that

Assemblies. A positioned shape is any subset of Z2. A
positioned assembly is a set of tiles at unique coordinates in
72, and the positioned shape of a positioned assembly A is
the set of coordinates of those tiles, denoted as SHAPE 4.
For a positioned assembly A, let A(x,y) denote the state
type of the tile with location (x,y) € Z* in A.

For a given positioned assembly A and affinity function
I1, define the bond graph G 4 to be the weighted grid graph
in which:

— each tile of A is a vertex,

— no edge exists between non-adjacent tiles,

— the weight of an edge between adjacent tiles 7} and T,
with locations (x1,y;) and (x2,y,), respectively, is

- H(S(T]),S 1), J_) if yi > y2,
- 1
- I
- I
A positioned assembly A is said to be t-stable for positive
integer 7 provided the bond graph G 4 has min-cut at least
T.

For a positioned assembly .4 and integer vector
v = (v1,12), let A, denote the positioned assembly
obtained by translating each tile in A by vector v. An
assembly is a set of all translations A, of a positioned
assembly A. A shape is the set of all integer translations for
some subset of Z°, and the shape of an assembly A is
defined to be the set of the positioned shapes of all posi-
tioned assemblies in A. The size of either an assembly or
shape X, denoted as IXI, refers to the number of elements of
any positioned assembly or positioned shape of X.

Breakable Assemblies. An assembly is t-breakable if it
can be split into two assemblies along a cut whose total
affinity strength sums to less than t. Formally, an assembly
C is breakable into assemblies A and B if the bond graph
G for some positioned assembly C € C has a cut (A, B) for
positioned assemblies A € A and B € B of affinity strength
less than 7. We call assemblies A and B pieces of the
breakable assembly C.
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[A] [B] [c] [D] A
(A] [c] [A]c] [A]c] [A] BIE
8] [D] |B]D| [B]E] |B|E]

(b) The producibles and terminals of I

cannot combine with, break into, or transition to another assembly are
considered to be terminal

Combinable Assemblies. Two assemblies are t-com-
binable provided they may attach along a border whose
strength sums to at least . Formally, two assemblies A and
B are t-combinable into an assembly C provided G for any
C € C has a cut (A,B) of strength at least T for some
positioned assemblies A € A and B € B. C is a combina-
tion of A and B.

Transitionable Assemblies. Consider some set of
transition rules 4. An assembly A is transitionable, with
respect to 4, into assembly B if and only if there exist
A € A and B € B such that for some pair of adjacent tiles
1,1 € A:

3 a pair of adjacent tiles #,,# € B with L(t;) = L(t;,)

and L(t;) = L(t)

- 3 a transition rule

(S(ti)v S(tj)7 S(th)ﬂ S(tk)> L) or
0= (S(ti)v S(tj)v S(th)a S(tk)v F)

A—A{ti,t;} =B— {tn, tx}

ded s.t. 0=

2.2 Tile Automata model (TA)

A tile automata system is a 5-tuple (X, I, A, A, ) where X
is an alphabet of state types, I1 is an affinity function, A is a
set of initial assemblies with each tile assigned a state from
2, A is a set of transition rules for states in 2, and T € N is
the stability threshold. When the affinity function and state
types are implied, let (A, 4, 1) denote a tile automata sys-
tem. An example tile automata system can be seen in
Fig. 1.

Definition 1 (Tile Automata Producibility) For a given
tile automata system I' = (X, 4,11, 4, 1), the set of pro-
ducible assemblies of I', denoted PRODp, is defined
recursively:

— (Base) A4 C PRODy
— (Recursion) Any of the following:

— (Combinations) For any A, B € PROD such that A
and B are t-combinable into C, then C € PRODy.
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— (Breaks) For any C € PROD; such that C is t-
breakable into A and B, then A, B € PRODy.

— (Transitions) For any A € PROD; such that A is
transitionable into B (with respect to A4), then
B € PRODy.

For a system I' = (X, A, I, 4,1), we say A —! B for
assemblies A and B if A is t-combinable with some pro-
ducible assembly to form B, if A is transitionable into B
(with respect to A), if A is t-breakable into assembly B and
some other assembly, or if A = B. Intuitively this means
that A may grow into assembly B through one or fewer
combinations, transitions, and breaks. We define the rela-
tion —! to be the transitive closure of —1, ie., A =T B
means that A may grow into B through a sequence of
combinations, transitions, and/or breaks.

Definition 2 (Production Graph) The production graph
of a Tile Automata system I is a directed graph where each
vertex corresponds to an assembly in PROD; and there
exists a directed edge between assemblies A and B if
A —T B.

Definition 3 (Terminal Assemblies) A producible
assembly A of a tile automata system I' = (X, A, I, 4, 1) is
terminal provided A is not t-combinable with any pro-
ducible assembly of I', A is not t-breakable, and A is not
transitionable to any producible assembly of I'. Let
TERM; C PRODy denote the set of producible assemblies of
I' that are terminal.

Definition 4 (Transition Stable Assembly) An assembly
A is Transition Stable if it is not transitionable to any
producible assembly of I’

Definition 5 (Freezing) Consider a tile automata system
I'=(2,A,1I,4,7) and a directed graph G constructed as
follows:

— each state type ¢ € 2 is a vertex

— for any two state types o, € X, an edge from « to f3
exists if and only if there exists a transition rule in 4 s.z.
o transitions to 8

I' is said to be freezing if G is acyclic and non-freezing
otherwise. Intuitively, a tile automata system is freezing if
any one tile in the system can never return to a state that it
held previously. This implies that any given tile in the
system can only undergo a finite number of state
transitions.

Definition 6 (Affinity Strengthening) An Affinity
Strengthening system is a Tile Automata system where all
transition rules must maintain or increase a state’s affinity
with all other states so no detachments ever occur. For-
mally a tile automata system I' = (X, A,II,4,7) is an

Affinity Strengthening system if for each s,s’ € X where s
transitions to s, T1(s,1) < (s, 1)Vt € X.

Definition 7 (Bounded) A tile automata system I is
bounded if and only if there exists a k € Z -  such that for
all A € PROD, |A| <k.

Definition 8 (Height-k Systems) A tile automata system
is said to have Height-k if all producible assemblies have a
height of less than or equal to k.

Definition 9 (Unique Assembly) A Tile Automata system
I' uniquely produces an assembly A if

— A is the only assembly in TERMp

— for all B € PROD, B —! A.

— I’ is bounded.

— there does not exist a pair of assemblies B, C € PRODr,
such that B — ¢ —! B

3 One-dimensional turing machine

Since Tile Automata is a generalization of 2HAM and
borrows from Cellular Automata it is expected that it is as
powerful as both of these models. Here we present a con-
struction that is capable of both covert and fuel-efficient
computation. We present informal definitions of each of
these. For rigorous definitions, we refer the reader to
Padilla et al. (2013); Schweller and Sherman (2013) for
fuel-efficiency, and Cantu etal. (2020) for covert
computation.

Definition 10 (Simulation) A Tile Automata system T is
said to simulate a Turing machine M if every producible
assembly a of T can be mapped to a configuration m of M
and for any other producible assembly b such that a —! b,
b either also maps to m or maps to another configuration m’
such that m’ is the next step of m. Finally, each terminal
assembly of T maps to an output of M.

Definition 11 (Covert Computation) Given a Tile
Automata system 7T that simulates a Turing machine M,
T covertly simulates M if there exists two assemblies A and
R, such that for any input x that M accepts, A is the unique
terminal assembly when M is simulated on x, and for any
input y that M rejects R is the unique terminal assembly.

Definition 12 (Fuel Efficient Computation) A fuel effi-
cient Turing machine simulation in Tile Automata

2 When we refer to Unique Assembly allowing cycles, this require-
ment is omitted.
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Fig. 2 a Tile automata states (below) created from the states of
Turing machine (above) over a binary alphabet. b State change rules
(below) created from the Turing machine transition rules (above). ¢ A
Turing machine (above) configuration and the representative TA

represents the tape of a Turing machine as one assembly,
and requires that each computational step of the Turing
machine occurs by way of the attachment of at most a
constant number of assemblies of at most constant size.
Thus, the simulation of n steps of a computation “uses up”
at most O(n) tiles worth of fuel.

Theorem 1 For any Turing machine
M=(0,2,T,0,94,4,qs), there exists a covert, fuel-effi-
cient, 1-dimensional Tile Automata system T = (Xra,
I, A, A) that can simulate M such that |Z14| = O(|Q||T'])
and |A| = O(|5]).°

Proof Given a Turing machine M = (Q,2,T,9,4q4,q,
gs), we construct the Tile Automata system 7T =
(Z7a, 11,4, A4) as follows.

States. Conceptually, we partition the set of states (X74)
into three subsets for clarity: head states H, symbol states
S, and utility states W. Let H = {h(,q|qg € Q,s € 2} and
let S = {o,|s € 2} (Fig. 2a). All states in H and S have
affinity with all states in 274. There are eight states in W:
signal accept states, final accept states, signal reject states,
final reject states, and four buffer states By, B}, Bg, and Bf.
The signal accept state has affinity with all states in X7y,
and the final accept state has affinity with all states other
than itself and the four buffer states. The two reject states
have corresponding affinity rules as those of the accept
states. The buffer states ensure that no two assemblies
attach during the computation. Each of the four buffer
states have affinity with each state in H and S. By and By
have affinity with B} or By respectively.

Transitions. We create a transition rule such that for
each Tile Automata state h(,, € H and o; € S, the rule
represents a step in M (Fig. 2b). WLOG, assume an
assembly A representing a configuration of a Turing
machine M has the state h(, with states, or,0r € S to

* One-dimensional Tile Automata systems always have t = 1, so we
omit that parameter from 7.
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(c) (d) (e)

assembly (below). d The same Turing machine (above) after making
one step and the assembly (below) after the same step. e The process
that takes place to extend the tape

the left and right of &, respectively. If the head of M
moves right then the transition rule will take place between
h(,s) and og. If the TM head moves left then the transition
rule will be between o and h ). h(y,s) Will transition into
the state representing the symbol that is to be written on the
tape in M after a state g reads symbol s. Either o7 or og
would then transition into the state h q) OF Ay g0
respectively where ¢’ is the new state of the head of M after
reading s from state g. There also exists an additional
transition rule if o7 or ogr is a buffer state. This will
transition By, or By to state B; or By respectively. B} /B
transitions into the symbol state representing the blank
symbol when it is to attached to state B;/Bg.

Accept/Reject. For transitions where M enters the
accept state, we create transition rules where both tiles
enter the signal accept state. This state has transition rules
with each other state transitioning that state into the signal
accept state as well. If it transitions with a buffer state or
the final accept state, both tiles enter the final accept state.
The final accept state also transitions with every other state
and both tiles become the final accept state. The reject
states follow the same rules.

Input. We construct a Tile Automata system that runs
M on a string x. We construct the system as described and
create an initial assembly A that represents x. A will have a
length of |x| + 2. The left most state of A will be Bj.
(WLOG assume the head of M starts on the left most cell).
The next state of A will be s, ) where ¢ is the initial state
of M and s is the first symbol in x. The next states of A each
represent the symbols in the string x in order. The
rightmost state of A is By (Fig. 2c, d).

The buffer states B; and Br are always an initial
assembly and are used to extend the tape if the head
attempts to move past the right edge. The process can be
seen in Fig. 2e. First, the head state causes By to transition
to By. With By on the edge of the assembly a new By tile
will attach. Once this attachment occurs B} transitions to
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the symbol state representing the blank symbol on the tape.
Then the head state may transition with the blank symbol if
needed. The same process occurs with B; when the head
attempts to move off the left end of the tape.

Terminal Assemblies. If M accepts the input x, then by
the rules of our system the accept states will appear in our
assembly. The signal accept state will be the first to appear
and will propagate to the edges of the assembly. Once the
signal accept state reaches the buffer states on the edge of
the assembly they will transition into the final accept states.
Any final accept state that is attached to any other state will
change the state of that tile into a final accept state. Any
two final accept states that are next to each other do not
have affinity and will detach. After the accept state appears
in an assembly the only terminal assemblies that will exist
are single final accept states. The same will occur if the
machine rejects.

Since there are only two possible terminal assemblies,
the final accept state and the final reject state, this
construction performs covert computation. This computa-
tion is also fuel efficient since the only time a new
assembly is attached is when the Turing machine writes on
a blank symbol at the edge of the tape, which can only
occur once per computation step. O

4 Thin freezing turing machines

In this section we explore the abilities of bounded height
freezing Tile Automata systems. We present a freezing Tile
Automata system that can simulate general Turing
machines that have producible assemblies of height-2.

4.1 Overview

This construction functions in a similar way to the previous
Turing machine simulation for non-freezing systems.

,_
=
o

Transition Assembly Attaches B |ofhot]|o |Bu | to an inactive state

State change reads head state Inactive state deattaches

B | O 1 o|BR| from assembly

L §wolh,
Center tile represents new value to write
If head moves the right tile has a new state | BL | O 1|10 |BR |

L [Wollh,
Transition other side (Left) to gain affinity B | 0

-

\

Fig. 3 Transition process for one computation step of the height-2
freezing Turing machine. The transition assembly starts by attaching
to the tape assembly through the head state to start the process. Once

Center tile on tape changes states

A empty state tile may attach

The blank state transitions to a
0 |BR | symbol state to write to the tape

However, in this case transitions do not take place between
tiles on the tape but through the help of a transition
assembly. This transition assembly attaches in the row y =
1 while the Turing machine tape exists in row y = 0. This
system also uses T = 1. This system can be broken into
three parts: the Tape Assembly, which functions similar to
the previous construction, the Transition Assembly, which
is used to control the steps of the computation and replace
tiles, and the Inactive States, which are the removed tiles
that can no longer transition. The Transition Assembly
attaches to the Tape Assembly to perform a single step of
the computation. In doing so tiles are removed from the
tape assembly resulting in an inactive state being produced.
Since our system is freezing the transition assembly will
eventually reach an inactive state as well. At the end of our
computation our output states will clean up these inactive
states to ensure our system uniquely produces a single
assembly.

4.2 Tape assembly

As with the previous construction, we have head states and
symbol states that represent the current state of the Turing
machine and the contents of the tape. However, here these
tiles do not have transition rules with each other and only
change states via the transition assembly. The input
assembly is constructed in the same way as the previous
simulation by encoding the initial tape contents with
symbol states and a single head state representing the
starting location and state of the Turing machine head. We
call this row of tiles the tape assembly. Our system further
includes empty state tiles. These tiles are different from
blank states and are used by the transition assembly to
write a new value to the tape during computation.

4.3 Transition assembly

The transition assembly is made of three unique tiles and
exists as an initial assembly in our system. The center tile

Wol h, The head is moving right L {wohh
n 1 The right tile transitions B.lojof@1i]o |BR|
L §Wol hy The new head state is written L iwo
to the tape
B o] [1]o]e] P B[00z 0]ee]
il The transition assembly
L fwoh, begins to lose affinity L
B o f1]o]e] B[ 0o 0]ee]
L jWofh, The transition assembly
B.lofgobi|o |BR| will now deattach |BI. ofoth]o |BR|

Y Y

the process is complete, the transition goes to inactive states that fall
off the assembly, which exposes a new head state so another transition
assembly may attach
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has affinity with the head states of our tape. The process of
transitioning the assembly can be seen in Fig. 3. This can
be seen as three parts, Attachment, Writing, and
Movement.

In the first Aftachment step, the transition assembly
attaches to the tape assembly via affinity with the center
tile. Once attached, the center tile transitions to a state
representing the transition rule of the Turing machine and
changes the head state. The center tile then transitions in
the direction of the head movement. W.L.O.G. assume the
head moves right. The right and center tiles will transition
and the right tile will now represent the next state of the
head and gains affinity with the tape assembly. The
opposite direction (in this case left) tile then transitions to
gain affinity with the tape assembly. This transition is the
last of the attachment step and the center tile transitions to
start the next step.

In the Writing step, the previous head state transitions to
an inactive head state. This state does not have affinity with
symbol states or the states of the transition assembly so it
detaches from the assembly. This allows for an empty state
tile to attach. This tile changes states with the center state
of the transition assembly to write the new value to the
tape. The center tile also transitions to another state sig-
naling the start of the next step.

The final Movement step starts with the center tile
transitioning with the right tile (still assuming the head
moves right). The right tile may now transition with the
tape assembly to change the tile directly underneath into a
head state. This transition also changes the right tile of the
transition assembly to an inactive state. This transition
propagates through the assembly, which then falls off after
losing affinity. The inactive states of the transition
assembly have affinity with each other but not with the tape
assembly. This exposes the next head state so a new tran-
sition assembly can attach, allowing the computation to
continue.

If the next head state would result in the Turing machine
accepting, an accept state will appear on the tape and the
same process occurs as in the non freezing construction to
deconstruct the assembly into single accept state tiles.

4.4 Inactive states and clean up

Since this is a freezing system we use detachment to
replace tiles that have reached what we call an inactive
state. These inactive states do not have affinity with the
states of the tape assembly. Each tile of the transition
assembly has an inactive state that it transitions to at the
end of the computation step. Further, the previous head
states of the Turing machine go to an inactive state when
replaced. These tiles only attach to accept/reject states that
have already fallen off the tape assembly after the
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computation is complete. The accept/reject states “clean
up” the inactive states so there is only one terminal
assembly.

Theorem 2 For any Turing machine
M=(0,2,T,0,94,4,4s), there exists a covert, fuel-effi-
cient, height-2 freezing Tile Automata system T = (Z7a,
I1, A, A) that can simulate M such that. |Z74| = O(|Q||T])
and |4] = O(J9)).

Proof The initial assemblies in this system are the initial
tape assembly, which encodes the input to M, the transition
assembly, and empty state tiles. Each tape assembly maps
to a configuration of M. For each transition step of M, a
transition assembly will attach to the tape assembly to
remove the old head state, attach a new tile in that position,
write the new symbol, and finally write the next head state.
The transition assembly then detaches from the tape
assembly and the new head state on the tape allows for
another transition assembly to attach.

If the head of M were to move off the edge of the tape,
the process to extend the assembly is similar to the
previous construction as well. The system still includes the
buffer states By,Bg,B; and Bj. When the Transition
assembly would write the new head state to the tape if it is
above a buffer state By or Bg, the buffer state will transition
to B; or By respectively. This will allow another buffer
state to attach then transition the previous state to the state
representing the blank symbol. The transition assembly
then writes the head state to the tape and begins
detachment.

The only possible terminal assemblies for this system
are either the accept state with inactive tiles attached to it if
M accepts, or the same assembly with a reject state if M
rejects. Each possible output of M has a unique assembly so
this simulation is covert. This system is fuel efficient as
well since at each computation step the only attachments
that occur are the transition assembly (of size 3), and the
empty tile that attaches to write a new symbol to the
tape. O

5 Shapebuilding and the largest assembly
problem

Given a Tile Automata system with limited states, we
examine how large of an assembly may be constructed. We
first consider the case of 1-dimensional assemblies and
leverage Theorems 1 and 3 to show that the longest
buildable line’s length is related to the Busy Beaver
function in general, and exponential in the case of freezing
systems. We then consider the Largest Assembly problem,
and apply Theorem 3 to show that this problem is
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uncomputable for general Tile Automata even in one
dimension.

5.1 General

The Busy Beaver function BB(n), for any positive integer
n, is the maximum number of symbols printable by a
halting Turing machine using n states.*

Definition 13 (String Representation) An assembly A is
said to represent a string x if there exists a mapping of the
states in A to the symbols in x such that the n” state of A
maps to the n™ symbol of x for all 0<n < |x].

Lemma 1 For any n-state 2-symbol (not including the
blank symbol) Turing machine M that produces an output
x, there exists a O(n)-state Tile Automata System T that
uniquely assembles an assembly A, such that A represents
X.

Proof We modify the construction from Theorem 1, so
that once M halts the head state transitions into a symbol
state. The resulting assembly will be terminal since symbol
states do not transition with each other. This final assembly
will consist of symbol states that each represent the sym-
bols in x. The number of states used by T is 2n head states,
2 symbol states, and 4 buffer states, and is bounded by
O(n). Note there is no need for accept or reject states since
the head state turns into a symbol state when the TM
halts. O

Theorem 3 For any positive integer n, there exists a 1-
dimensional Tile Automata system that uniquely assembles
a BB(n)-length line using O(n) states.

Proof Using Lemma 1, we can take any Busy Beaver
Machine and create a Tile Automata system that uniquely
produces an assembly the same size as the number of
symbols printed on the tape. O

5.2 Freezing

For freezing Tile Automata systems, we can create systems
that uniquely produce n-length lines and only require states
that are logarithmic in the length of the line. This con-
struction draws some inspiration from the result in
Demaine et al. (2008). For clarity, we begin with a helping
lemma.

Lemma 2 For all n =2* for x € N, there exists a 1-di-
mensional freezing Tile Automata system that uniquely
assembles an n length line using O(logn) states.

* For this definition we consider Turing machines using a binary
alphabet.

Proof The cases for x =0, 1,2 are trivial. A system that
uniquely builds a length 23 line is shown in Fig. 4. The only
initial states are 14 and 1p. The affinities are between
adjacent states. Pairs of tile that have transition rules
between them are highlighted, with the resulting assembly
shown as well. Our unique terminal assembly is a length 23
line. By adding a constant number of states, transitions, and
affinities to this system, the length of the uniquely
assembled line will double, and this process can be repe-
ated to uniquely assemble any length 2* line.

For n >3 and x =logn, let T, be the system that
uniquely assembles a length 2* line derived by recursively
applying the following process to T3 (x—3) times.
Assuming that T, uniquely assembles a length 2* line of
the form (IA,HD, ...,np,Nna, Ng, Np, ..., Nf, 13), Tn+l is
constructed as follows. First, we add the non-initial states
n+1a,...,n+ lp, and a transition from (n4,ng) to both
(n+ 1g,ng) and (na,n + 1¢). We add six new transitions
involving n + 1¢ or n + 1 that allow the state to propagate
left and right, respectively, and then transition to n + 1p
and n + 1f, respectively, when the end of the line assembly
is reached. There will be 6 additional transition rules added
to allow states n+ 1p and n+ 1p to propagate in the
opposite direction and eventually transition 14 and 1p to
n+ 1z and n + 1,4, respectively. Adding the affinity rule
(n+ 14,n+ 1p) will allow the two length 2* lines to bond
and uniquely assemble a length 2**! line. This new system
uniquely produces a length 2**! line of the same form as
previously described, and the process can be repeated to
double the length of the unique assembly again. O

Theorem 4 For all positive integers n, there exists a 1-
dimensional freezing Tile Automata system that uniquely
assembles an n length line using O(logn) states.

Proof We modify the construction from Lemma 2 to build
arbitrary length-n lines. To build any length-n line using
O(logn) states, let T = Tjjog, 1. Let b; indicate the i least
significant bit of n’s binary expansion (the left most bit is
bp). For all i > 1 such that b; is equal to 1, we add a tran-
sition rule from (is,ip) to (ir,ir) in 7. When these two
states are adjacent, they exist in an assembled line of length
2. This transition “locks” this producible, and stops it
from growing. Four more transition rules are added to
allow this state to propagate to the ends of the line. Finally,
we add transitions between all i; states and the states 1p
and 1,4, which are the endpoints of the lines. These end-
points transition to states that have affinity with the next
largest locked assembly to its left, and the next smallest
locked assembly on its right. The locked assembly that is
the most significant bit (leftmost), does not attach to any-
thing on its left side. The same for the least significant on
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Fig. 4 A system that uniquely
builds a length 23 line. The only

initial states are 1,4 and 1. The IE EI | 1AI3DI3CI 1B| |1AI3EI3FI 1B|
affinities are between adjacent N 7 ' N

states. The states that have | 1A| 1B| | 1AI2AI3CI 1B| | 1A|3E|25| 1B| | 1AI3D 3D| 13| | 1AI3F 3F| lB|
transition rules between them PN

are highlighted in red, with the (1.2, [2:]1s] | [1a]3<[3] 1] [L]3e]3[ 1] | [1a]36]35]3s 3s]3¢ 3¢ ] 1]
next assembly showing the N N P
CREM |EEEL  EEEE|  EEEEEEEE

its right. For the case of the bit by, if it is equal to one we
will add an additional state, Oy, which starts in our initial
assemblies and acts as a length-1 locked assembly. O

5.3 Largest finite assembly problem

Given a positive integer n, the Largest Finite Assembly
Problem asks what is the largest assembly that can be
uniquely assembled in a Tile Automata system using
n states.

Theorem 5 The Largest Finite Assembly problem in Tile
Automata is uncomputable.

Proof Let g, be the size of the largest assembly that can
be constructed using n states. From Theorem 3, there exists
a system that can construct a line of length BB(n) using
O(n) states so 0o, > BB(n). This means o, grows
asymptotically as fast as the Busy Beaver function, which
grows faster than any computable function. Thus, ¢, is
uncomputable. O

6 Unique assembly verification

A well-studied problem in self-assembly is the Unique
Assembly Verification problem. This asks whether a given
system uniquely produces a given assembly. We show that
the general problem in TA, even in one dimension, is
undecidable. Again, we consider two definitions of unique
assembly: one where systems with cycles are allowed in
the production graph, and the other where they are not.

6.1 Undecidability

Theorem 6 Tile Automata Unique Assembly Verification
is undecidable in one dimension.

Proof Using Theorem 1, we reduce from the halting
problem. Given a Turing machine M, we can construct a
Tile Automata system I" that simulates M. If M halts, then
there exists a single terminal assembly that is the final
accept state tile that is our target assembly. If M does not
halt, then there exists no terminal assemblies. This is true
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under both definitions of uniquely assembly since the only
time a cycle exists in the production graph of I' is if M ever
revisits a configuration. If M revisits a configuration, then
M will not halt, and thus our system will not uniquely
assemble the final accept state tile. O

Theorem 7 Freezing 2-dimensional Tile Automata Unique
Assembly Verification is undecidable even when all
assemblies are of max height-2.

Proof Using Theorem 9, we can perform a similar
reduction as above. Given a Turing machine M, we con-
struct a freezing Tile Automata system I that simulates M.
If M halts, I' uniquely produces an assembly with the
inactive states attached to the accept state. This assembly is
our target assembly. If M does not halt, I' does not have
any terminal assemblies and does not uniquely produce the
target assembly. U]

7 Affinity strengthening UAV

Many self-assembly models where UAV is well-studied do
not have detachment (and are thus decidable). Here, we
investigate versions of TA without this power and show
hardness of the UAV problem. We explore Affinity
Strengthening Tile Automata (ASTA). We start by con-
sidering the non-freezing case, then consider the added
restriction of freezing in the following section.

Lemma 3 The Unique Assembly Verification problem in
Affinity Strengthening Tile Automata is in PSPACE.

Proof The UAV problem can be solved by the following
co-nondeterministic algorithm. Given an Assembly A and
an ASTA system 7, nondeterministically build an assembly
B of less than size 2IAl where |Al is the size of the given
assembly. We now have a branch for every producible
assembly and we check the following about B in order. If
any branch rejects, the algorithm rejects.

— If B=A, accept.
— If |B| > |A|, reject.
— 1If B # A and B is terminal, reject.
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— Continue nondeterministically performing construction
steps (attachments and transitions) on B. If B is reached
again, reject. If A is reached, accept.

Only assemblies up to size 2lAl need to be checked since
any assembly larger than 2IAl would have been built using
at least one assembly of size greater than IAl, which would
have already been rejected. We can check if B is terminal
by nondeterministically building a second assembly and
checking if it can attach to B. Checking if an assembly is
breakable, or if it is transitionable, can be done in poly-
nomial time and space. The final step of the algorithm
checks for cycles in the production graph. By the definition
of unique assembly, B —' A. By continuing to perform
construction steps on B, we will eventually reach A. If we
ever reach B again, there exists a cycle in the production
graph (cycle checking in a directed graph is in P).

This algorithm shows the UAV problem for Affinity
Strengthening Tile Automata is in coNPSPACE, which
equals PSPACE. For the case of unique assembly where
cycles in the production graph are allowed, the last step of
the algorithm is skipped. O

Lemma 4 The Unique Assembly Verification problem in
Affinity Strengthening Tile Automata is PSPACE-hard.

Proof We show UAV in Affinity Strengthening TA is
PSPACE-hard by describing how to reduce from any
problem L € PSPACE. Consider a Turing machine M that
decides L in polynomial space. The construction from
Theorem 1 can be modified to be an affinity strengthening
system that results in a system capable of performing
bounded space computation (a Linear Bounded Automata,
which is equivalent to parsing a context-sensitive grammar
and is PSPACE-complete Kuroda (1964)). The only tran-
sition where a state loses affinity is from the signal accept
and reject state to the final accept and reject state. We
remove the final states from the system. This results in two

Input Assembly

HIDDDENENNE

[~ O [ e [ o]

y Target Assembly

| X |acc|acc|acc|acc|acclacclacclacclaccl X ‘

Fig. 5 An overview of the construction in Lemma 4. The reduction
starts with a fixed-length tape. Once the machine accepts/halts, the
accept state appears on the assembly. This causes a transition that
“hides” the tape by transitioning to the target assembly shown

possible terminal assemblies: one consisting of a buffer
state, then accept states, then another buffer state, and the
other being the same with reject states. The assembly with
the accept states will be our target assembly. We remove
the buffer state from the set of initial assemblies. We
change the length of the assembly representing the input to
be the amount of space used by M. Figure 5 shows our
input assembly, the assembly where the accept state first
appears, and the target assembly.

Given a bounded space deterministic Turing machine
and its input, construct a Tile Automata system that
uniquely produces the assembly with accept states if and
only if the Turing machine accepts. If the Turing machine
rejects, then the reject assembly will be the only terminal
assembly. If the TM ever enters an infinite loop, then there
exists a cycle in our system and there will not exist any
terminal assemblies, so the TA system will not uniquely
produce any assembly regardless of whether there exists a
restriction on cycles. O

Theorem 8 The Unique Assembly Verification problem in
Affinity Strengthening Tile Automata is PSPACE-complete.

Proof Follows from Lemmas 3 and 4. |

8 Freezing ASTA UAV

In this section, we explore the Unique Assembly Verifi-
cation problem for freezing affinity strengthening systems.
We begin by presenting a bounded time Turing machine
simulation and use that to design a SAT evaluator, a
freezing ASTA system that provides the information for
which assignments satisfy a given formula. This SAT
evaluator system is used as a basis for the two reductions in
this section. We first show coNPN’-completeness for the
UAYV problem in systems with a max assembly height of 3,
utilizing the SAT evaluator to show hardness. We then
explore this problem in one dimension. We show mem-

bership in the class Pll‘\IP , which is the class of problems

solvable by a deterministic Turing machine in polynomial
time using a polynomial number of NP oracles that can
only be accessed a single time in parallel. We then provide

a reduction from a known P‘l‘\IP-complete problem.

8.1 Freezing ASTA UAV membership

We first show that the freezing ASTA UAV problem is in
the class coNPNP,
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Lemma 5 The Unique Assembly Verification problem in

freezing Affinity Strengthening Tile Automata is in coNP
NP

Proof We use the algorithm from Lemma 3 to prove that
the running time is polynomial for freezing systems. When
building an assembly B, since the system is freezing, the
time to build B is |X||B| where |X] is the number of states in
the system. Since we reject if one branch rejects, this is a
coNP algorithm.

We utilize a subroutine in coNP to check if B is
terminal. This is done in polynomial time by nondeter-
ministically building a second assembly and checking if
they can attach. If there is an assembly that can attach to B,
then the assembly is not terminal. Using the coNP
algorithm and the subroutines as oracles, this problem is
in coNPP, O

8.2 Freezing ASTA SAT evaluator

The next two hardness results will utilize a method for
creating a 1D freezing affinity-strengthening system I that
evaluates the assignments that satisfy a formula ¢. This
system will produce a terminal assembly for each assign-
ment to ¢ that contains a flag for whether that assignment
evaluates to true or false. We call these assignment
assemblies. We first show how 1D freezing ASTA can
simulate bounded-time Turing machines.

Theorem 9 For any bounded-time Turing machine
M=(0,2,T,0,94,4r,9s), there exists a 1-dimensional
freezing Tile Automata system T = (Z14,I1, A, A) that can
simulate M such that. |Z7x| = O(|Q||T'|TIME(M)) and

|4] = O(||TIME(M)?).

Proof We modify the construction from Theorem 1. We
have 274 partitioned into three sets H, S, and W. In a
freezing system, states can not be repeated, so for each
state in H and S, we create a number of states equal to the
number of steps the Turing machine M can take. Assume
we are given an oblivious Turing machine M, which means
the movement of the head is a function of the current step
of the Turing machine. Thus, we know when certain cells
will be written to and can expand the state space of the Tile
Automata system so that a tile will never need to repeat
states. Since we know the run time of M is bounded, we
only need a finite number of states for each cell. The states
on the tape will keep track of the current symbol on the
tape, if the current head state is at that tile, and how many
times the cell has been modified. If the head of M moves to
cell ¢ a total of x times, then the tile representing ¢ will
have x|X| symbol states and x|I'||X| head states.
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This increase in state-space ensures no tile will ever
become the same state twice since each cell will only need
to change states a finite number of times. O

8.2.1 SAT evaluator construction

Consider an oblivious Turing machine M that solves the
Circuit Value problem for a circuit with n variables that
computes ¢, and then prints 7 or F to the tape representing
this evaluation.

We want to simulate M on the 2" different inputs that are
length-n bit strings (assignments to ¢). By Theorem 9,
there is a 1D freezing Tile Automata System that can
simulate this Turing machine with the starting input
assembly representing a single input to ¢. Now consider a
modification to the system with 2" input assemblies in I’
representing every possible input to ¢. This will now result
in a system that computes all 2" assignments, but contains
an exponential number of starting assemblies. This can be
fixed, however, using the nondeterminism inherent to Tile
Automata.

This process is shown in Fig. 6. We start with 2n
dominoes, an initial 0 and 1 domino for each variable.
Starting with the two dominoes representing the first
variable x;, one of them will be selected for attachment.
Then either of the two tiles representing x, may attach to
the first domino. This process repeats to construct a length-
n line. Since at each position one of the two tiles will be
selected, this results in a total of 2" possible assemblies.
Using this method, we can create all 2" possible input
assemblies, which can then be used as input assemblies to a
simulation of M. This method is only used to construct the
section of the input assembly containing the input to
M. The other tiles, such as the buffer states and the work
tape of M, attach to this section to form the full input
assembly (Fig. 6).

At the end of the computation simulation, we have either
a True (T tile) or False (F tile) state on each assembly.
Then the T and F state propagate left and right through
transition rules, erasing computation history, but preserving
the section of the assembly that contains the original
assignment. The assembly is flagged true or false depend-
ing on the presence of the T or F, respectively.

Using this method, we black box this functionality for
evaluating a SAT formula with 2" assemblies (representing
each possible assignment), which are flagged true or false
depending on whether that assignment evaluates to true or
false. We say the system I'(¢) is the system created from
formula ¢.
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Formula ¢
6= (x1 A x2) v (=X3 A 1X4)

Bl=To] To] [o] [0F (B [of [1] [1] [o[T[T}-[T[TPBx

X1 X3

X1 X X3  Xg

[ETo[ [o] o] [1Ed
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X:1 X X3 Xg

Build Bit String Nondeterministically

2" Turing Machine Simulations

2" Terminal Assemblies

Fig. 6 An overview of the steps taken by the SAT Evaluator. First an assembly for each possible input is built, then the Turing machine is
simulated on all inputs. If any of the assemblies result in a terminal accept assembly, then the instance of SAT is true

8.3 Height-3 freezing ASTA UAV is coNPNP-
complete

In this section we prove that a special case of freezing
ASTA UAV, where the system is guaranteed to only pro-
duce assemblies of height <3, is coNP“P-complete.
Lemma 5 shows coNPN? membership, We now present a
reduction from V3SAT to show hardness.

Definition 14 (Vd3SAT) Given a 3SAT formula
D(X1, -+ oy Xky Xk 15 - - - Xn), 18 it true that for every assign-
ment to variables xp, ..., x;, there exists an assignment to
Xjt1, - - - Xy such that ¢(xy, ..., x,) is satisfied?
8.3.1 Overview

We utilize the SAT evaluator construction to derive a
system that has a terminal assembly for every assignment
flagged as true or false. We modify the system so that those
assemblies grow geometry that encodes their assignment in
geometric bumps and dents. A second set of assemblies,
called test assemblies, is also constructed. A test assembly
encodes an assignment to xi,...,X¢. It can attach to an
assembly representing an assignment if it is flagged true,
and has the same assignment to xi, .. ., xx.

-
D
5

T[T} T[T

o[T[T}- [T

=]
=

S1%=0 X3 X

HH‘B o] [1[ AT ToPA[T} - [T[TIBd

Xx=1X%=1 X3 X

8.3.2 Creation of height-3 freezing ASTA system

Given an instance of VISAT = Vxy, ..., x;3x11, - - -, Xn (),
create the system I'(¢) as defined in Sect. 8.2. Recall the
current terminal assemblies of the system are the 2" as-
signment assemblies— each flagging their corresponding
assignment as True/False, and then they can grow the
geometry on each assignment assembly that reflects the
assignment (Fig. 7a). We add transition rules with the
output states (7/F), which propagate left and transition the
states that represent assignments to the variables in
X1, ..., X, and allowing single tiles to attach from above.
This is done from left to right, with a transition happening
after each attachment that is required for the process to
continue. This acts as a confirmation that each single tile is
attaching. The tiles encode the assignment geometrically
like so: The tile will attach directly above the variable if its
value is one, and will attach above the tile on its left if the
value is zero. The pattern of tile positions encodes a binary
string. Once all tiles have attached, transitions will propa-
gate to the leftmost output tile (7/F), changing state T to
state A, and state F to state B.

Test Assemblies. We add additional initial tiles to the
system that grow into test assemblies (Fig. 7b). These test
assemblies have a section for each variable (a horizontal
domino). The sections representing a variable in xi, ..., x;
have an additional tile attached that represents an

1] [o AT} [T[T[Bx

0 1
I Different Assignment to x;,X;

f ! 0
Additional Tiles attaching to 0
Assignment Assembly

(@

Fig. 7 Example of V4SAT over 4 variables with k = 2. (a) Transition
rules pass a signal to the left that transitions the tile next to the state
representing x;, allowing a tile to attach. This allows more transitions
that allow a tile to attach over the state representing x, (since it is

Test Assembly Creation

B 1] [of TzT TofAlT}-{T[TB<

Matching Assignment to x;,X,
(©

= 1). Finally, the leftmost 7 is transitioned to state A. (b) Four test
assemblies are built, each representing an assignment to xj, x,. A test
assembly can attach to an assignment assembly with the A state if they
encode the same assignment to xj, x,
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assignment. The positioning is complementary to that of
the assignment assemblies (1 = tile on the left, 0 = tile on
the right). They grow two tiles on each side, and the lower
tiles on the left/right have affinity 1 with the B;/A state,
respectively.

The system will also build one “blank” test assembly
that has no tiles encoding the assignment for any of its
variables. It can connect using affinity with either the
A state or the B state, so it attaches to every assignment
assembly. This means the assignment assemblies that
represent a false output are not terminal.

Test Assembly/Assignment Assembly Interaction The
assignment assemblies, or test assemblies, can attach to
each other utilizing affinity involving the B state and the A
state, which appears only after all additional tiles have
attached. Figure 7c shows how attachment is not possible if
the partial assignment to xi,...,x; is not the same— the
tiles representing unequal variable assignments would
overlap, and therefore the two assemblies are not able to
attach. If the partial assignment matches, the two assem-
blies fit together.

Transition to Target Assembly The target assembly is
the size of an assignment assembly flagged true with a test
assembly attached. Each tile is enumerated; if B; is the
point of origin, then each tile at position x, y is the state
Xy in the target assembly (Fig. 8). An assignment
assembly flagged True attaches to a test assembly, and a
transition with the state By occurs, transitioning the two
states to Xoo and Xy ;. These states propagate throughout
the entire assembly. For each state X.,, it has transition
rules with any state it is possible for its neighbors to be in,
and transitions them to X, or X, ,+1, based on its relative
position. The “blank” test assemblies attach to any
assignment assembly, but the resulting assembly will be
missing tiles relative to the target assembly, so there is a
single “filler” tile in the set of initial assemblies. State X,
has affinity with the filler tile on any side where that
location is nonempty in the target assembly. Therefore, the

Fig. 8 An overview of how all
assignment assemblies

transition to the target assembly.
Assignment assemblies marked

True Assignment

filler tile occupies the empty spots and allows the assembly
to transition to the target.

Theorem 10 Unique Assembly Verification in height-3
freezing Affinity Strengthening Tile Automata is coNP NP-
complete.

Proof This reduction takes as input an instance of VASAT
P =Vx,...,X 3xgi1,...,%.(¢p), and outputs an instance
of height-3 freezing Affinity Strengthening Tile Automata
UAV P’ = (I',A), such that the instance of P is true <=
the instance of P’ is true.

Note that all assemblies representing an assignment to ¢
will grow to the target, as the “blank” test assembly can
attach to every one of them and allow it to grow to the
target. The test assemblies that represent an assignment to
X1,...,X; only grow to the target assembly if they can
attach to some assignment assembly that evaluated to true.

If instance P is true, then for all assignments xi, . . ., X,
there exists some assignment to X1, ..., X, that evaluated
to true. Therefore, for all test assemblies, there exists some
assignment assembly it can attach to, and all test assem-
blies grow to the target assembly. The target assembly is
uniquely assembled, so P’ is true.

If instance P is false, there exists an assignment

X1,...,X Wwith no satisfying assignment to variables
Xk+1,- -+, Xn. The test assembly that represents assignment
X1,...,X; is not able to attach to any assignment assembly

including any assignment assembly with a different
assignment to x,...,x; due to geometric blocking. Since
all assignments that start with xp,...,x; evaluate to false,
there is no assignment with the A state that the test
assembly can attach to. The test assembly representing the
assignment Xxj,...,x; is terminal, and is not the target
assembly, so the instance P’ is false.

This shows that Unique Assembly Verification in
height-3 freezing Affinity Strengthening Tile Automata is
coNPNP_hard, while Lemma 5 shows membership for

False Assignment

true can grow to the target 0

[1] [o

T[T)-{TB

assembly by attaching to a test
assembly. Those flagged false
can attach to “blank” test

assemblies, and the filler tile
fills in the spots missing relative

to the target assembly
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coNPNP. Therefore the problem is coNPNP-complete.
O

8.4 One-dimensional freezing ASTA UAV

In this section we will show 1-dimensional freezing ASTA

UAYV is complete for P‘I‘\IP. We provide a P‘l‘\IP algorithm,

as well as reduce from a known P‘l‘\IP—complete problem
Max True 3SAT Equality.

Definition 15 (P |I|\IP) Class of problems solvable by a

deterministic Turing machine in polynomial time that is
allowed a single query to a polynomial number of parallel
NP oracles.

8.4.1 Hardness

Definition 16 (Max True 3SAT Equality) For a 3-CNF
formula F, let max-1(F) denote the maximum number of
variables set to true in a satisfying assignment to F. Given
two 3-CNF formulas F; and F,, is it true that
max-1(Fy) = max-1(F,)?

Max True 3SAT Equality is complete for the class
P‘I‘\IPSpakowski (2006). Given an instance of this problem,

the reduction provides an instance of 1D freezing ASTA
UAV.

8.4.2 Overview

At a high level, given an instance of Max True 3SAT
Equality (Fi,F,), we utilize the SAT evaluator construc-
tion in Sect. 8.2 to represent each assignment/formula pair
with an assembly, and flag these assemblies as True or
False. We modify the system to allow it to count the
number of ones that are contained in the true assemblies,
and add a “count” state to the left/right edge of these
assemblies that reflects this number. To reach the target
assembly, an assembly representing an F; assignment has
to find a counterpart assembly representing an F, assign-
ment to attach to. This attachment is done through the
count state that represents the number of ones in the
assignment. The affinities between separate count states are
designed such that all assemblies can find a necessary
counterpart if and only if max-1(F;) = max-1(F2).

8.4.3 Creation of 1D Freezing ASTA System

From F, and F, over n variables, we create two SAT
evaluator systems I'y = I's(F;) and I, = I's(F,), as
defined in Sect. 8.2. We merge these two systems into I in
a way that allows them both to operate independently
within the same system. This is done by distinguishing the
states of I'; and I',, and letting I" be the union of I'; and
I'y’s states, transition rules, affinity rules, and initial
assemblies. Due to this, states that we reference with the
same label, e.g. the T/F states, are different states in I'; and
I',. For simplicity, however, we will reference them by this
common label.

Fig. 9 (a) An assembly that
represents a true assignment to
F, counts the number of 1’s on
the tape and sets the rightmost
state accordingly. (b) An
assembly that represents a true
assignment to F, counts the
number of 1’s on the tape and
sets the leftmost state
accordingly. (c) An assembly
that represents a false
assignment to F; ignores the
number of 1’s and sets the
rightmost state to —1,. (d) An
assembly that represents a false
assignment to F, ignores the
number of 1’s and sets the
leftmost state to —1,,

Assignment 0,1,1,0 evaluated on F,
B [of [1] [1] [o[T[T[TITT[R:

B oG TITITITIT B
[Bu~46t—HCICICITITT[T[TBx
BlCledetedetedeqed FHHFHFE:
|BL|CﬂCZICZICZICZIC2|C2|CJCZIC2|C2|C2|C2|BR|>

B.[c]c]c]c]c]c]c]cic]c]c]C]c]2,
B |CJc]c]c]c]cIc]CICICICIC]C] 2,
(@
Assignment 0,1,1,1 evaluated on F,
B Tof [1] [1] [1]FTFTETETER:
B-FetT T C.IETFIETETERB]
[Bu=Fe{CAICIC[C.[C,[C.[ETETEIETER:]
[ o S S S S o i i i i
[BUCAICICAICCICIICIICIICCAICCAIC,BR]
[BUCAICAIC4[CAICICAICAIC,[CA[CAICHICA[Ca 1]
(©)

Assignment 0,1,1,0 evaluated on F,
B [of [1] [1] [o[T[TIT]T]TPs

[Bu A3 —3HCJT[T[T[T[T]B4

(B3 CICICJTT[T[T]T A

[BUCICACICICCCJCITITTIT[T[BA

[2:[GACICICICCICIC]TTITIT]T B

[2:€ICICICICICICICITITITIT[T s
(b)

N\

Assignment 0,1,1,1 evaluated on F,

B [of [1] [1] [1[FTFTFIETFRB

B[~ fetf—F1C.[FIE[ETEIE

BT ICIC CIC IR EETETEE:|

[BICICAICIC[CaCH [CoIC. [ETFTETETFIB:

FLIGIC A ICIC G, [CoIC, [ETETE TR
(d)
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At this point, the system will produces 2 x 2" unique
terminal assemblies. Let A, be the assembly that repre-
sents the assignment x € {0,1}" to F,. For all xe€
{0,1}", (Fy(x) <= A, state T  and
—F)(x) <= A, contains state F). We refer to an assembly
T/F as a true/false assembly,

contains
that contains state
respectively.

True assemblies are now flagged with the number of
ones they contain. We modify I for this purpose. Transi-
tion rules are added involving the states that are contained
in terminal assemblies (this means they are not terminal
with the included changes). For the assemblies A ,, if the
“T” state exists, transition rules are added that allow a
signal to be passed down the assembly. This signal counts
the number of 1s the assignment x contains (let N be that
number), and then propagates right. When it reaches the
right end of the assembly, it nondeterministically transi-
tions the right buffer state Bg to one of two “count” states,
“N,” or “N,” (Fig. 9a). If instead, the “F” state exists, the
assembly passes a signal to the right and changes the right
buffer state By to the count state “—1,” (Fig. 9c¢).

Assemblies A, , act in a similar, but complementary,
way. The difference is that the transition to count states
(“N,”, “Np”, and “—1,") happen with the left buffer state
By rather than the right buffer state Bg (Fig. 9b, d).

To the affinity function II € I', for all values
N,M € {—1,0,1,...,n}, and their corresponding count
states N,, M,, Ny, M;,, we add the following affinity rules
conditionally (Note that state —1, does not exist, so the
affinity rules that would include that state are not added):

- I(NyM, )<= N>M
- I(NyMp,b) <= N>M
— HO(Np,M,,;) <= N<M
- H(Nb,Mb,l_)<:>N§M

Additional transition rules are added to I" such that when
two count states are adjacent, they transition to state X.
State X transitions with nearly every other state, transi-
tioning said state to X. This is done to wipe any compu-
tation history from the assembly. The only states it does not

Assignment 0,1,1,0 evaluated on F,; Assignment 0,1,1,0 evaluated on F,

BIeIcIClcIclccICIcICICICICH2. 2. JGlCICICICICICICI T[T [T [T [T B
B, cgczjcg]cjcﬂcﬂcﬂcgcdcgjcjcﬂqza 23|C2]CJC2C2CJ Cy Cg|Cg|T T|(T|T|T[Br
BleleleleleleleleleleieleieiXIXIeleieleielelede I —++Eq

[Eelclc oI ESESESESE
AT LN LN L L ML

Fig. 10 Two assemblies connecting to reach the target assembly. The
top right assembly is produced because F; (0, 1,1,0) = True, and the
count state 2, represents the number of ones in the assignment. This
can attach to the assembly on the right, which is produced because
F>(0,1,1,0) = True. Since that assignment also has two 1’s, the
corresponding count state is on its left edge. The affinity rules
described allow for these two to attach

@ Springer

transition with are the buffer states B; and Bg. This allows
the attached A;, and A, assembly to build towards the
target assembly for the created instance of UAV, a 1-di-
mensional assembly of the form B, X,X,...,X,X,Bgr
(Fig. 10).

Theorem 11 Unique Assembly Verification in 1-dimen-
sional freezing Affinity Strengthening Tile Automata is

Plll\IP -hard.

Proof The construction shown takes as input an instance
of Max True 3SAT Equality Py4x and provides an instance
of 1D freezing  Affinity  Strengthening UAV
Pyay = (I',Ar), where I' is the Tile Automata system
described, and Ay is the target assembly. Let N =
max-1(Fy) (—1 if Fy is unsatisfiable) and M = max-1(F;)
(or —1 similarly). For a boolean assignment x € {0,1}",
and for a boolean string x € {0, 1}", we denote the number
of 1s in x as |x|,.

Let A, , be the assembly that evaluated Fy(x). Let Ry be
a transition stable assembly with count state 6 on its right
edge, and Ly be a transition stable assembly with count
state 0 on its left edge. Note that all A;, and A,
assemblies grow to some Ry and Ly, respectively. A Ry
assembly can attach to a Ly, if 6 and 0 meet the conditions
for the affinity rule I1(0,0', 1) to be added. When they
attach, their count states are adjacent, allowing both states
to transition to state X, which further allows the assembly
to grow to the target assembly Ar. Therefore, for every
producible Ry and L, ensuring they can each attach to
some counterpart, ensures that the target assembly is
uniquely assembled.

If the instance Ppjux is true, then N = M. Therefore,
there exists some producible Ry, Ry,, Ly, , and Ly, .

— For all producible Ry, assemblies, Ry, attaches to some
Ly, Either N' =M = —1 (both F| and F, are unsat-
isfiable), or N’ < M (since M is the max). Therefore, for
all producible Ry, assemblies, Ry, is not terminal.

— For all producible Ry: assemblies: if N’ =M then Ry
attaches to some Ly,. If N'<M, there exists some
producible Ly, such that N' > M’ (Either 3x(=F>(x))
or 3x(|x|; <N’ A F»(x)) must be true).

— For all producible LM;; assemblies, LMg attaches to some
Ry,, Either M’ = N = —1 (both F; and F, are unsat-
isfiable), or M’ <N (since M is the max).

— For all producible Ly assemblies: if M’ = N then Ly,
attaches to some Ry,. If M’ <N, there exists some
producible Ry such that M' > N’ (Either 3x(—F (x)) or
x(|x|, <M’ A Fy(x)) must be true).
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Thus, every producible Ry and Ly, it can find its necessary
counterpart and grow to the target assembly, showing the
instance of Pyyyis true.

If the instance Pyy is false, N # M. Assume w.l.o.g.
that N > M. Consider the assembly Ry,. It is terminal if
there does not exist a producible Ly, ,N<M or a
producible Ly,,N <M. Since N > M, Ax(|x|, >N AF;
(x)), so none of the necessary assemblies will ever be
produced, so Ry, is terminal, and is not Ar. Therefore, the
instance of P,y is false. (|

8.5 Membership

We show membership in Plll\IP by giving a deterministic

polynomial time algorithm using oracles for problems in
NP. We first show a generalized version of the pro-
ducibility problem is in NP for freezing affinity-strength-
ening systems. We then show how the solutions to these
problems can be used to find terminal assemblies that are
not our target assembly.

Definition 17 (Edge-Producibility Problem (eprod))
Given a Bounded Tile Automata System I' = (X, 1, 4, 4,
7), two states o7,0r € X, and an assembly A, does there
exist a producible assembly B where the following holds?

1. |B|<|Al

2. B#A.

3. A(0)=o;.

4. A(JA] —1) = or.

Definition 18 (Edge-Transition Terminal Problem
(ett)) Given a Bounded Tile Automata System

I'=(2,1I,A,A4,r1), states or,0r € X, and an assembly A,
does there exist a producible assembly B where the fol-
lowing holds?

1. |B| <A

2. B#A.

3. B(O) =0or.

4, B(|A‘—1>=O’R.

5. B is not a transitionable assembly.

Lemma 6 The edge-producibility and edge-transition
terminal problem is in NP for freezing Affinity Strength-
ening systems.

Proof In a freezing Affinity Strengthening system
I'= (2,1, A, A4,1), the max build sequence length for any
producible assembly B is O(|B||2|) and we only need to
consider assemblies of less than size lAl. These problems
can be verified in polynomial time using an assembly B and
its build sequence, which allows us to verify that B is

producible. Checking the other conditions can be done in
O(JA] + |B|) time by looking at each tile in A and B. [

Theorem 12 Unique Assembly Verification in 1-dimen-

sional freezing Affinity Strengthening Tile Automata is in
NP
P

Proof Given I = (X, II, A, A, 7) and a target assembly A,

our algorithm uses 2|X|* +2 oracles. Two oracle calls
check that A is producible, and that I" is bounded by IAl
Now, we only need to verify that A is terminal, and that A
is the only terminal assembly. We create two tables P and T
indexed by > x X, and then use the remaining 2|X|* oracle
calls to fill out these tables. The value in each cell is cal-
culated using the oracle to solve the edge-producibility and
edge-transition ~ terminal  problems,  P(oy,0Rr) =
eprod(I',;or,0r,A) and T(or,0r) = ett(I',a.,0r,A) for
the two states that index that cell.

Note that in 1-dimensional systems, two assemblies can
only attach using a single tile. This means that two
assemblies with the same left and rightmost state attach to
the same set of assemblies. We use this to help find
terminal assemblies. First, we verify that A is a terminal
assembly. We may check that A is not transitionable by
checking each pair of neighboring states. For each state ¢’
that has affinity on the left side of A(0), we check table P to
see if there exists any producible assembly with ¢ as its
rightmost state. Such an assembly would be able to attach
to the left side of A, and thus it is not terminal. We perform
the same process for state A(JA| — 1), the rightmost state of
A, to find if anything can attach on its right side.

Using the table 7, we can find assemblies that are not
transitionable. If the value at T(op,og) is 1, the same
method as above is used to check if an assembly with those
states can attach to another assembly. If it cannot, then this
means I does not uniquely assemble A.

This algorithm makes a constant number of checks to

each cell of the table O(|Z]?), and verifying that A is
terminal takes O(|A|) time. The final resulting runtime is

O(Z]* + |A)]). O

9 Conclusion

In this paper we looked at a powerful new model of self-
assembly that combines properties of both cellular auto-
mata and hierarchical self-assembly models. We showed
that even extremely limited and simple constructions in
Tile Automata are powerful and capable of arbitrary
computation. We also showed how difficult it is to deter-
mine the output of these limited systems. This opens sev-
eral directions for future work.
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One direction is further exploring the assembly of
length-r lines in freezing systems. Does there exist a bound
on buildable length? Is the finite assembly problem in
freezing or other restricted systems decidable? Also
attempting to construct lines in systems with additional
restrictions such as limits on the number of transition rules
per state.

For the UAV problem, we show that the general case is
undecidable. However, the complexity of the problem in
freezing 1-dimensional systems is open. If the problem of
asking whether a system is bounded is decidable, then
UAV is decidable by first identifying whether a system is
bounded and then constructing the production graph and
finding the terminal assemblies. The problem for freezing
2-dimensional systems with no cycles is also open.

Since Tile Automata can be seen as a generalization of
2HAM, our results can be compared to the open problem of
UAYV in that model, which is known to be in coNP. The
most restricted version of Tile Automata we explore is
affinity-strengthening and freezing, which is only one level
of the polynomial hierarchy above other generalizations of
2HAM such as allowing tiles to go into three dimensions or
allowing a variable temperature. Further limiting Tile
Automata may provide more insight into the hardness of
these problems.
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