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Data-Driven Identification of Dissipative Linear Models
for Nonlinear Systems

S. Sivaranjani , Etika Agarwal , and Vijay Gupta , Fellow, IEEE

Abstract—We consider the problem of identifying a dissipative
linear model of an unknown nonlinear system that is known to
be dissipative, from time-domain input–output data. We first learn
an approximate linear model of the nonlinear system using stan-
dard system identification techniques and then perturb the system
matrices of the linear model to enforce dissipativity, while closely
approximating the dynamical behavior of the nonlinear system.
Further, we provide an analytical relationship between the size of
the perturbation and the radius in which the dissipativity of the
linear model guarantees local dissipativity of the unknown nonlin-
ear system. We demonstrate the application of this identification
technique through two examples.

Index Terms—Dissipativity, identification, learning, nonlinear
systems, passivity.

I. INTRODUCTION

The fields of system identification and control design initially de-
veloped in isolation [1]. However, two systems that are “close” to
each other in terms of the input–output response in the open loop
may yield very different performance when put in feedback with the
same controller. This realization led to the development of the area
of identification for control, where the goal is to identify models
such that controllers designed based on these models provide specific
performance guarantees on the true system (see [1] for a comprehensive
survey of this area). Many such methods were developed over the last
few decades, the most popular of which are iterative development of
the system model and the controller [2]–[7], and the development of
data-based uncertainty sets for robust control [8]–[11]. With the recent
emergence of learning-based controller design, this field has seen a
resurgence of interest as well. An important challenge that still remains
open in this area is that of ensuring analytical guarantees on the stability
and performance of the closed-loop system, with controllers that are
designed based on models that are learned from data.
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In this article, we consider the following problem. Assume that
we have access to some information about the true system satisfying
a structural property that makes it easy to design a controller and
obtain a desired performance or stability guarantee on the closed-loop
system. Can we identify a system model that satisfies this property?
In particular, here, we consider the property to be that of dissipativity.
Dissipativity is an important input–output property, which encompasses
many important special cases such as L2 stability, passivity, and
conicity. Dissipativity finds application in various domains ranging
from robotics [12], electromechanical systems [13], and aerospace
systems [14], to process control [15], [16], networked control and
cyberphysical systems [17]–[19], and energy networks [20]–[23]. Dis-
sipative systems possess several desirable properties like stability and
compositionality [17]. Hence, if the original system is known to be
dissipative, and we could exploit this fact to learn dissipative models,
these models can then be used to design controllers that provide desired
stability and performance guarantees on the original system. Note that
existing identification methods may not yield a dissipative model even
if the system is known to be dissipative. Furthermore, even if the model
is dissipative, the dissipativity properties of the model do not, in general,
yield any guarantees on the dissipativity properties of the true system,
which are crucial to guarantee stability with closed-loop control.

We solve this problem of identifying a dissipative linear model
of an unknown dissipative nonlinear dynamical system from given
time-domain input-output data. Inspired by passive macromodeling ap-
proaches from RF circuit theory [24], we propose a two-stage approach.
First, we learn an approximate linear model of the system, referred
to as a baseline model, either using standard system identification
techniques or using physics-based knowledge of the system. Next, we
perturb the system matrices of this baseline linear model to enforce
quadratic (QSR) dissipativity. We show that this perturbation can be
chosen to ensure that the input–output behavior of the dissipative
linear approximation closely approximates that of the original nonlinear
system. Further, we provide an analytical condition relating the size
of the perturbation to the radius in which local quadratic dissipativity
properties of the nonlinear system can be guaranteed by the dissipative
linear model. This relationship formalizes the intuition that larger
perturbations lead to poorer approximations; in other words, the radius
of local dissipativity of the nonlinear system decreases as the size of
the perturbation is increased. Finally, we demonstrate the application
of this approach to the problem of learning a dissipative model toward
control of a switching circuit and a microgrid with high penetration of
renewable energy sources.

We remark that if the main objective is simply to learn a linearization
of the nonlinear system from data, then a technique like subspace
identification can be employed [25]. Alternatively, if the goal is to learn
the passivity index of the system, which can be considered a specific
dissipativity property, recently developed allied approaches can be
utilized to directly learn the index from input-output data [26]–[28]. In
contrast to these works, our approach can be used to learn a broader class
of dissipative models, encompassing properties like passivity, sector
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boundedness and L2 stability. In addition, our approach yields a model
with guarantees on the dissipativity and the input–output response of the
original system. Learning such a dissipative model provides two advan-
tages. First, a dissipative linear model, as opposed to just a linearization
learned from data, allows for a wide variety of control designs that
specifically exploit dissipativity for applications like distributed control
synthesis [15], [18], [23], [29]. Second, a dissipative model allows for
control designs satisfying design specifications such as rise time and
overshoot that may not be achievable purely using dissipativity indices
learned from data. We illustrate one such application in Section IV.
Further, there is work that relates the passivity of a system to its linear
approximation [30], [31]; however, in that stream, a (dissipative) model
of the system is assumed to be present, and is also assumed to be the
first-order Taylor approximation of the nonlinear system, which may
not be the case for models identified from data. Another closely related
stream of work deals with estimating the range of inputs for which the
dissipativity of a linearized model can be guaranteed, assuming that
the dynamics of the nonlinear system are known [32]; however, this
work does not provide an approach to enforce dissipativity on models
of unknown nonlinear systems learned from data, or more importantly,
provide any guarantees on the dissipativity of the original unknown
system based on the linearized model.

We also note that constrained subspace identification techniques
have been developed for the identification of specific subclasses of dis-
sipative systems like positive systems [33], [34]. First, such constrained
subspace identification approaches are typically only applicable to
linear systems. Further, these approaches typically add constraints
like positivity directly to specific system identification optimization
problems, generally resulting in nonconvex formulations that may be
difficult to solve. In contrast, our proposed approach is independent
of the system identification technique used, and therefore does not
add to the complexity of the identification problem with additional
constraints that may impact its feasibility. Further, our approach also
allows the designer to use any system identification technique of choice,
not restricted to subspace identification. It also affords the designer the
flexibility of choosing from a wide variety of highly efficient off-the-
shelf or commercial toolboxes like the MATLAB System Identification
toolbox, without requiring the development of a new tool simply for
the identification of dissipative models.

Finally, we note that our approach is inspired by similar perturbation
approaches used to obtain passive macromodels in RF electronics
literature (see [24] and the references therein for a comprehensive
survey of this area). Specifically, these perturbation approaches enforce
passivity on linearized circuit models by enforcing the bounded real
lemma on state-space models [35], [36], perturbing the eigenvalues of
the Hamiltonian matrix of the macromodel [37]–[39], or by correcting
passivity violations at specific frequency ranges using pole perturbation
and/or linear and quadratic programming approaches [40]–[43]. While
these approaches enforce passivity or positive realness on the identified
model, there is limited literature on the problem of enforcing general
quadratic dissipativity, encompassing several desirable properties such
asL2 stability, conicity, and sector-boundedness in this setting. Further,
existing perturbation approaches do not provide any guarantees on or
estimates of the passivity properties of the original nonlinear system
based on the passivity of the linearized model. In contrast, the for-
mulation in our approach allows us to provide analytical guarantees
on the dissipativity of the original nonlinear system based on the
identified linear model. To the best of our knowledge, such guarantees
on dissipativity of nonlinear systems based on linear models identified
from data have not been provided thus far in literature. Furthermore,
as previously mentioned, we also analytically quantify the tradeoff

between the size of the perturbation and the region where dissipativity of
the original nonlinear system can be guaranteed, allowing the designer
to choose an appropriate perturbation based on application-specific
requirements. These dissipativity guarantees on the original system are
critical in ensuring stability and performance when these models are
used for closed-loop control.

Notation: We denote the sets of real numbers, positive real numbers
including zero, and n-dimensional real vectors by R, R+ and Rn,
respectively. Given a matrix A ∈ Rm×n, A′ ∈ Rn×m represents its
transpose. A symmetric positive definite matrix P ∈ Rn×n is repre-
sented as P > 0 (and as P ≥ 0, if it is positive semidefinite). The
standard identity matrix is denoted by I , and a matrix with all elements
equal to 1 is denoted by 1, with dimensions clear from the context.
Given a function f , dom f represents its domain.

II. PROBLEM FORMULATION

We consider an unknown nonlinear dynamical system

Snl : ẋ(t) = f(x(t), u(t)), y(t) = g(x(t), u(t)) (1)

where f and g are differentiable functions defined on bounded domains
domf and domg, respectively, and x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈
Rp represent the state, input, and output of the system at time t ∈ R+

respectively.
Assumption 1: The functions f and g are Lipschitz continuous, that

is,

||f(a1)− f(a2)|| ≤ Lf ||a1 − a2|| ∀a1, a2 ∈ domf ⊂ Rn ×Rm

||g(a1)− g(a2)|| ≤ Lg||a1 − a2|| ∀a1, a2 ∈ domg ⊂ Rn ×Rm

(2)

where Lf and Lg are the Lipschitz constants of the functions f and g,
respectively.

Assumption 2: There exists an equilibrium point (x∗, u∗) = (0, 0)
for system (1) so that f(x∗, u∗) = 0. Further, we assume g(x∗, u∗) = 0
at the equilibrium point.

The following definition of dissipativity is standard for such systems;
however, we also define the notion of strict dissipativity as follows.

Definition 1 (Dissipativity and Strict Dissipativity): LetX × U be a
neighborhood of the equilibrium (origin) (x∗, u∗) = 0. The nonlinear
system Snl is said to be (locally) dissipative with dissipativity matrices
Q = Q′, S and R = R′, if ∀x ∈ X and control inputs u ∈ U

y′(t)Qy(t) + u′(t)Ru(t) + 2y′(t)Su(t) ≥ 0 (3)

holds pointwise at every time t ∈ R+. ∀t ∈ R+. Further, the system
Snl is said to be (locally) strictly dissipative (SD) with dissipativity
matrices Q = Q′, S and R = R′, if there exist constants ρ > 0 and
ν > 0, referred to as dissipativity indices, such that ∀x ∈ X and control
inputs u ∈ U ,

y′(t)Qy(t) + u′(t)Ru(t) + 2y′(t)Su(t)

≥ ρx′(t)x(t) + νu′(t)u(t) (4)

holds pointwise at every time t ∈ R+.
We ignore the qualifier “locally” in front of dissipativity properties

for pedagogical ease. Similarly, we also drop the dependence of all
vectors on time for the simplicity of notation. Dissipativity is an input–
output property that generalizes the notion of passive circuit elements
used in electrical and electronic circuit theory to a more generalized
notion of energy (not necessarily a physical quantity) that is applicable
to nonlinear dynamical systems. Definition 1 represents the property
of quadratic dissipativity, commonly referred to as QSR-dissipativity.
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Fig. 1. Two-stage approach for identification of dissipative linear
models.

In particular, (3) [and its strict form (4)] corresponds to a differential
(pointwise) version of “weak”’ dissipativity, and has been shown to
be equivalent to several standard integral definitions of dissipativity
under mild assumptions [44, Ch. 4.4]. We specifically consider QSR-
dissipativity, since it can be used to capture several useful system
properties through appropriate choice of the dissipativity matrices Q,
S, and R in (3) such as

i) passivity, with Q = 0, S = 1
2
I and R = 0;

ii) strict passivity, with Q = −aI , S = 1
2
I , and R = −bI , where

a, b ∈ R+\{0};
iii) L2 stability, with Q = − 1

γ
I , S = 0, and R = γI where γ ∈ R+

is an L2 gain of the system;
iv) conicity, withQ = −I ,S = cI , andR = (r2 − c2)I , where c ∈ R

and r ∈ R+\{0}, and;
v) sector-boundedness, with Q = −I , S = (a+ b)I , and R =
−abI , where a, b ∈ R.

Note that any SD system is also dissipative and satisfies (3). We now
formally state the problem addressed in this article.

Problem P: Given a set of N time-domain input–output measure-
ments {(ŷ, û)} = {(ŷ1, û1), (ŷ2, û2), . . . , (ŷN , ûN )}, u ∈ U from a
dissipative nonlinear system Snl satisfying (3), the aim of this article
is to obtain a linear model

Sl : ˙̃x = Ax̃+Bu, ỹ = Cx̃+Du (5)

such that (i)Sl approximatesSnl with an error bound δ̃y in the neighbor-
hoodX × U of the origin in which the system is locally dissipative, that
is, ||ỹ − y||2 < δ̃y, for all inputs u ∈ U and initial conditions x0 ∈ X ,
and (ii) Sl is SD.

We will address this problem in two stages, as shown in Fig. 1.
We will begin by assuming that an approximate linear model of Snl

can be estimated either through standard regression-based or subspace
system identification, and/or from the physics of the system. If this
linear approximation is not SD, we will then introduce a bounded
perturbation into the system matrices such that the resulting perturbed
model is SD, while closely approximating the behavior of the nonlinear
system Snl. We require the linear model Sl to be strictly dissipative
rather than just dissipative, since this allows us to provide guarantees
on the local dissipativity of Snl. We conclude this section by stating a
matrix inequality that can be used to verify if the linear model Sl is SD.

Theorem 1 ([44]): The linear system (5) is strictly dissipative if
there exists a symmetric matrixP = P ′, and constants ν > 0 andρ > 0
satisfying [

A′P + PA− C ′QC + ρI PB − Ŝ

B′P − Ŝ ′ −R̂+ νI

]
< 0 (6)

where Ŝ = C ′S + C ′QD and R̂ = R+D′S + S ′D +D′QD. Fur-
ther, if this condition is satisfied, the linear system is globally dissipa-
tive.

III. IDENTIFICATION OF DISSIPATIVE MODELS

In this section, we describe a two-stage approach to identify a
dissipative linear model Sl that closely approximates the nonlinear
system Snl.

A. Baseline linear model

Given a set of N time domain input–output measurements
{(ŷ, û)}={(ŷ1, û1), (ŷ2, û2), . . . , (ŷN , ûN )}, û ⊂ U from systemSnl

in the vicinity of the equilibrium, we begin by assuming that a standard
system identification technique, such as subspace or regression-based
identification [25] can be used to identify an approximate baseline
linear model

Sb : ˙̄x = Āx̄+ B̄u, ȳ = C̄x̄+ D̄u (7)

such that ‖ȳ − y‖2 < δ̄y, for all inputs u ∈ U and initial conditions
x0 ∈ X . For the identification of dissipative models, it is recommended
that the baseline model is obtained by directly identifying a continuous-
time linear system, since the conversion of discrete-time models to
continuous-time may result in system zeros that affect the dissipativity
of the model. We note that it is fairly straightforward to identify
continuous-time models from data using standard software like the
MATLAB System Identification Toolbox [25]. We can also estimate
the Lipschitz constant Lg from the input–output data {(ŷ, û)} as

Lg ≈ max
ûi,ûj∈û,ûi �=ûj

||ŷi − ŷj ||/||ûi − ûj ||, i, j ∈ {1, 2, . . ., N}.
(8)

Alternatively, (8) can be applied to the approximate linear system Sb

to easily obtain an estimate of the Lipschitz constant Lg . Note that it
has been observed that (8) provides a good estimate of the Lipschitz
constant if the dataset {(ŷ, û)]} is sufficiently rich [26].

B. Perturbed linear model

If the linear model Sb is not SD, that is, it does not satisfy (4) with y
replaced by ȳ, then, we would like to introduce a bounded perturbation
ΔC into the output matrix of Sb to obtain a SD perturbed linear model

Sl : ˙̃x = Ax̃+Bu, ỹ = Cx̃+Du (9)

where A = Ā, B = B̄, C = C̄ +ΔC, and D = D̄. We have chosen
to perturb the output matrix C̄ to obtain the perturbed linear model Sl.
However, the dissipativity of the system depends on all the system ma-
trices as seen in (6). In this context, we make the following comments:
1) The input matrix B̄ or the feedforward matrix D̄ can be perturbed

instead of the output matrix C̄, depending on system specific
requirements.

2) Any perturbation on the system matrix Ā is not preferable, since we
would like the perturbed linear model to preserve any information
about the dominant modes of the nonlinear system that is embedded
in the baseline linear model, thereby allowing the perturbed model
to closely approximate the original nonlinear system.

3) If the baseline model Sb has D̄ = 0 and it is required to ensure
D > 0 in the linear model Sl to meet strict dissipativity or other
desired system properties, then the feedforward matrix D̄ can be
perturbed to enforce the positive definiteness of D.

We would like to minimize the size of the perturbation ||ΔC||22,
in order to ensure that the linear model Sl closely approximates the
original nonlinear system Snl. Further, we would like to relate the strict
dissipativity of Sl to local dissipativity of the nonlinear system Snl. We
have the following result on the choice of the perturbation ΔC, and its
relationship to the strict dissipativity of Sl and Snl.

Authorized licensed use limited to: Purdue University. Downloaded on October 29,2022 at 21:11:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 9, SEPTEMBER 2022 4981

Theorem 2: Given the linear model (9), if the problem

P1 : min
ν>0,ρ>0,P>0,ΔC

α = ||ΔC||22 (10a)

s.t.

[
A′P + PA− C ′QC + ρI PB − Ŝ

B′P − Ŝ ′ −R̂+ νI

]
< 0,

Ŝ = C ′S + C ′QD, R̂ = R+D′S + S ′D +D′QD

P = P ′ > 0 (10b)

is feasible, then
1) Sl is SD with dissipativity matrices Q, S, and R,
2) Snl is locally dissipative with dissipativity matrices Q, S and R in

a neighborhood X × U around the origin, and
3) Sl approximates Snl with an error bound δy , that is, ‖ỹ − y‖2 <

δ̃y, for all inputs u ∈ U and initial conditions x0 ∈ X , where δ̃y is
a linear function of the perturbation α and the error of the baseline
model δ̄y .

Proof: We separately prove each part of Theorem 2.
1) This follows from Theorem 1, (10b) and (4).
2) Define the error in the input–output response between the linear

model Sl and the nonlinear system Snl as

εg = Cx̃+Du− g(x, u). (11)

Then, we have y = ỹ − εg. Now, if P1 is feasible, Sl is SD and
satisfies (4) pointwise at each time t ∈ R+. Therefore, since (4)
holds for any x̃, it must also hold for x̃ = x. Therefore, we have

ỹ′Qỹ + u′Ru+ 2ỹ′Su ≥ ρ||x||2 + ν||u||2. (12)

Also, from (11), (2), and Assumption 2, using the triangle inequal-
ity, we can write

||εg|| ≤ Lg||x||+ Lg||u||+ ||C||||x||+ ||D||||u||
= (Lg + ||C||) ||x||+ (Lg + ||D||) ||u||. (13)

Using Jensen’s inequality in (13) gives

||εg||2 ≤ 2(Lg + ||C||)2||x||2 + 2(Lg + ||D||)2||u||2. (14)

Now consider

I = y′Qy + 2y′Su+ u′Ru = φ− 2ε′gQỹ − 2ε′gSu (15)

where φ = ỹ′Qỹ + u′Ru+ 2ỹ′Su− ε′gQεg. Then, from (12) and
(14), we have

φ ≥ (ρ− 2||Q||2(Lg + ||C||)2
) ||x||2

+
(
ν − 2||Q||2(Lg + ||D||)2

) ||u||2. (16)

We also have

2ε′gQỹ + 2ε′gSu = 2ε′gQCx+ 2ε′g(S +QD)u (17)

2ε′gQCx ≤ ||εg||2 + ||Q||2||C||2||x||2

2ε′g(S +QD)u ≤ ||εg||2 + ||(S +QD)||2||u||2. (18)

If P1 is feasible, then (10c) and (10d) hold. Then, using (10c),
(10d,) and (16)–(18) in (15), we have

I ≥ ρ̂||x||2 + ρ̂||u||2 ≥ 0, ν̂ > 0, ρ̂ > 0

ρ̂ = ρ− ||Q||2||C̄ +ΔC||2

− 2
(||Q||2 + 1

)
(Lg + ||C̄ +ΔC)||)2

ν̂ = ν − 2
(||Q||2 + 1

)
(Lg + ||D||)2 − ||S +QD||2. (19)

Note that all of the above inequalities hold pointwise for every time
t ∈ R+. Using (19) in Definition 1, Snl is locally dissipative in a

neighborhood X × U of the origin if P1 is feasible, where X × U
is an ε-ball around the origin, with

ε = min

(
εg√

2(Lg + ||C̄ +ΔC||) ,
εg√

2(Lg + ||D̄||)

)
. (20)

3) If P1 is feasible, then, for the baseline model Sb with ū = u ∈ U ,
we have ||ȳ − y||22 < δ̄y. Then,

||ỹ − y||22 = ||ỹ − y + ȳ − ȳ||22
≤ ||ỹ − ȳ||22 + ||ȳ − ŷ||22
≤ ||ỹ − ȳ||22 + δ̄y≤ α||x||2 + δ̄y = δ̃y. (21)

Theorem 2 provides conditions that can be used to choose the per-
turbation such that the linear model obtained closely approximates the
original nonlinear system. Further, if P1 is feasible, then the nonlinear
system Snl is strictly dissipative in a neighborhood around the origin.
Algorithm 1 provides the procedure to identify a linear model Sl that
solves P . We make the following observations regarding Theorem 2.

1) As the size of the perturbation ||ΔC||22 increases, the constraint
(10c) becomes harder to satisfy, that is, the model will require
higher dissipativity indices.

2) Equation (20) provides a condition relating the size of the pertur-
bation to the radius in which local strict dissipativity of Snl can
be guaranteed by strict dissipativity of Sl. The ε-neighborhood in
which the local dissipativity of the nonlinear system is guaranteed
shrinks with the size of the perturbation. Therefore, while large
perturbation may be used to obtain a dissipative linear model of
a nonlinear system, the radius of validity of this model would
be extremely small. From (21), we also observe that the error
bound δ̃y of Sl grows linearly with the size of the perturbation
α. Similarly, from (20), a poor estimation (overestimation) of the
Lipschitz constant would result in a small radius of validity of the
learned model.

3) While the constraint (10c) is nonconvex, in practice, it is easy
to solve P1 in two steps. First, we find some ν > 0 and ρ > 0
such that P1 is feasible with constraints (10b) and (10d). Then,
we check if (10c) is feasible. If not, we increase the value of ρ and
re-solve P1. It is also possible to further simplify the solution of
the problem P1 by choosing a fixed perturbation ΔC = γ1.

4) For a given input–output dataset, it is possible to identify a set of
models that closely approximate the system. However, selection
of a model depends not only on the model output error but also
other application specific requirements. The same is true for the
identification of a perturbed dissipative model satisfying P1.

vi) The dissipativity matrices, or their parameters mentioned in the
definition, can be optimization variables in P1.

IV. CASE STUDIES

In this section, we provide two numerical examples to illustrate the
identification approach proposed in Section III.

Example 1 - Tunnel Diode Switching Circuit: As a simple numerical
example, we consider a tunnel diode switching circuit as shown in
Fig. 2(d)-Inset. Such circuits have been widely used as high-speed
switches for several decades [45] and have recently found utility
in microwave photonics applications [46]. The switching circuit in
Fig. 2(d)-Inset is modeled by the nonlinear system

ẋ1 = (−x2
1 + x2)/C, ẋ2 = (−x1 −Rx2 + (0.5x1 + 1)u)/L

y = x1 + x2 + (0.5x1 + 1)u (22)

where x1 = vC , x2 = iL, y = vR, and R = L = C = 1 p.u.

Authorized licensed use limited to: Purdue University. Downloaded on October 29,2022 at 21:11:27 UTC from IEEE Xplore.  Restrictions apply. 



4982 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 9, SEPTEMBER 2022

Fig. 2. (a) Baseline model and training data for system. (b) Input–
output performance of the strictly passive linear models M1,M2,M3,
and M4, the baseline model, and the nonlinear system. (c) Visualization
of dissipativity inequality (4) for the learned passive linear model M1

with the same input as Fig. 2(b). (d) Performance of controller satisfying
rise-time and overshoot specifications, applied to the linear model M1

and the original nonlinear system. Inset: Tunnel diode switching circuit.

Algorithm 1: Identification of Dissipative Model.

Input Measurement vectors {(ŷ, û)}.
Output A, B, C, D and α.

1: Estimate baseline model: Use standard subspace or
regression-based identification techniques [25] to estimate Ā,
B̄, C̄, D̄ of Sb such that ||ȳ − y||22 is minimized.

2: Check if P2 is feasible, where

P2 : Find: ν > 0, ρ > 0, P > 0

s.t.

[
Ā′P + PĀ− C̄ ′QC̄ + ρI PB̄ − Ŝ

B̄′P − Ŝ ′ + −R̂+ νI

]
≤ 0

Ŝ = C̄ ′S + C̄ ′QD̄, R̂ = R+ D̄′S + S ′D̄ + D̄′QD̄.

3: if P2 is feasible, then
4: Set A = Ā, B = B̄, C = C̄, D = D̄.
5: else
6: Perturbation model: Set Ci ← C̄ +ΔC, ΔC = γ1.
7: Find ν > 0, ρ > 0, P > 0 and γ > 0 solving P1 with

constraints (10b) and (10d).
8: if ρ from Step 7 satisfies constraint (10c) then
9: Set A = Ā, B = B̄, C = C̄ +ΔC, D = D̄.

10: Compute α.
11: else
12: Increase ρ �→ ρ+ d, where d > 0. Go to Step 7.
13: end if
14: end if

It can be verified that (22) is dissipative, and more specifically, strictly
passive. While the dynamics of Fig. 2(d)-Inset are simple to write, it
is not so straightforward to compute the same for more complicated
circuits with interacting switching components. Therefore, we would
like to learn a dissipative linear model of such a system from data.
In this application, the aim is to design a feedback controller such
that the output y tracks a reference step (switching) signal s(t) with
a specified fast rise time (<0.5 p.u.), and small overshoot (<15%).
Furthermore, the closed-loop system is required to be passive to allow
for easy physical implementation. Since the nonlinear system is strictly
passive, simply ensuring strict passivity of the feedback controller to
be designed is sufficient to preserve the passivity of the closed-loop
system. While learning the passivity indices of the system is sufficient
to design such a controller, it is not possible to design a controller
to meet rise time and overshoot specifications on the step response
simply using the passivity indices. Therefore, we proceed to learn a
linear dissipative model of the system toward synthesizing a tracking
controller. Following the procedure in Algorithm 1, we first learn a
baseline linear model of this system with

Ā =

[
0 1

−46.24 −22.31
]
, B̄ = [0 1],′

C̄ = [95.61 − 4.78], D̄ = 0.1 (23)

using the MATLAB System Identification Toolbox. The response of
the baseline model and the training data used to obtain the model are
shown in Fig. 2(a). We then verify that P2 in Step 2 of Algorithm
1 is not feasible with the baseline model (23). Therefore, we employ
the proposed approach to learn passive linear models of the system as
follows.
1) Perturbed linear model M1: We first follow the procedure out-

lined in Algorithm 1 to obtain the perturbed linear model with
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ΔC = γ1 = 9.53× [1 1]. As seen in Fig. 2(c), this perturbed
linear model is strictly passive, and satisfies inequality (6) with
the appropriate dissipativity matrices. We also observe that the
perturbed linear model closely approximates the nonlinear system
by validating its input–output response for a test dataset [see
Fig. 2(b)].

2) Perturbed linear model M2: We chose a fixed perturbation ΔC =
γ1 in order to simplify the solution of problemP1. We now examine
the conservativeness of this relaxation as follows. We follow the
procedure in Algorithm 1, albeit without placing any restrictions
on the structure of the perturbation ΔC in Step 6, to obtain another
perturbed model M2, with ΔC = [8.75 − 7.84]. We observe
that model M2 is passive with only a slightly smaller perturbation
than model M1. Further, as seen in Fig. 2(b), the model M1 is
very close to model M2 in its input–output response, indicating
that the choice of the fixed perturbation may simplify the prob-
lem P1 without introducing too much conservatism. Nevertheless,
choosing the same perturbation γ to be applied to all elements of
the C matrix is by far not optimal, and it is expected that—with the
proper implementation of the baseline optimization scheme—using
other system norms will provide much better results.

3) Perturbed linear model M3: While we have chosen to minimize
the norm ||ΔC||22 in problem P1 to enforce closeness between
the input-output behavior of the baseline model and the perturbed
model, it is possible to consider other system norms for this
purpose. As an example, we choose a commonly used metric in
the model reduction and macromodeling literature [24], namely,
α = trace(ΔCWcΔCT ), whereWc is the controllability Gramian
of the baseline model, as the objective function in problemP1. With
this setup, we follow the procedure in Algorithm 1 with a fixed per-
turbation ΔC = γ1 in Step 6, to obtain the perturbed linear model
M3 with γ = 9.51, which turns out to be extremely close to the
perturbation in model M1. As seen in Fig. 2(b), the input–output
response of model M3 is also virtually indistinguishable from that
of model M1. These results indicate that the choice of the norm
||ΔC||22 in obtaining model M1 is not too conservative in this
regard.

4) Perturbed linear model M4: Finally, we consider the objective
function α = trace(ΔCWcΔCT ) in the problem P1, and solve
Algorithm 1 without placing any restrictions on the structure of the
perturbationΔC in Step 6. We thus obtain the perturbed modelM4

with ΔC = [8.33 − 17.26]. Interestingly, this approach results
in a much larger perturbation and a more conservative model as
compared to models M1, M2, and M3. Further, we observe
a larger deviation between the input–output responses of model
M4 and the original nonlinear system in Fig. 2(b). One possible
explanation for this is as follows. Due to the nonconvexity of
the optimization problem, the solution obtained here may be a
locally optimal one whose performance may be inferior to other
solutions like those obtained in models M1, M2, and M3. This
study indicates that, contrary to intuition, a lack of restriction on the
structure of the perturbation may not always yield less conservative
models as compared to the fixed perturbation ΔC = γ1.

We note that the proposed approach can be extended to consider
norms other than the ones described above based on application-specific
requirements. For example, bandlimited norms which measure the
system perturbation only over a particular frequency band of interest
may be considered if the bands are known a priori.

We now use the perturbed linear model M1 to design a controller

ẋc = −0.07xc + y, yc = 4.59xc + 0.02y, u = s− y (24)

that satisfies the given rise time and overshoot specifications. The
tracking performance of this controller with the nonlinear system (22) is

Fig. 3. 14-bus microgrid: (a) schematic, and (b) comparison of linear
dissipative (conic) model and nonlinear system.

shown in Fig. 2(d) and can be verified to meet the design specifications.
The controller (24) is strictly passive and satisfies (6) with ρ = 0.61
andν = 0.01. Since the feedback interconnection of two strictly passive
systems is also passive, the closed-loop interconnection of (22) and (24)
is guaranteed to be passive.

Example II—Microgrid: We now consider the application of the
proposed approach to obtain a dissipative model of the 14-bus microgrid
system shown in Fig. 3(a), in the vicinity of a specific power flow
operating point (equilibrium). The system shown in Fig. 3(a) is obtained
as a modification the standard IEEE 14-bus test system by replacing
the largest generators in the system at buses 1, 2, and 3 with equivalent
DFIG wind, photovoltaic, and solid oxide fuel cell plants of 600 kVA,
60 kVA, and 60 kVA, respectively. The synchronous generators at buses
6 and 8 are rated 25 kVA each (see [47] detailed state space models
of the system). Therefore, 93.5% of the generation in this system is
attributed to renewable generators, making this system challenging to
control. However, the system is known to be conic, and this property
can be exploited to design controllers that enhance the performance
and stability of this system, even with the variability introduced by the
renewable energy generators [20], [21]. Therefore, we would like to
obtain a linear conic model of this system.

We note that a baseline model for this system can be readily
obtained since the structure of the nonlinear differential equations,
as well as estimates of the system parameters are well known from
the system physics [47]. We obtain a baseline model with A ∈
R35×35,B ∈ R35×5,C ∈ R5×35, andD ∈ R5×5 around the power flow
operating point (equilibrium) where the DFIG real and reactive power
outputs are 350 MW and −28 MVAr, respectively. The 35 system
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states comprise of the speed, pitch angle, and d-q axes currents of the
DFIG, the partial pressures of the reactants (hydrogen, oxygen, and
water), molar flow of hydrogen, current, and voltage of the SOFC, d-q
axes inverter currents and voltage output of the solar cell, the angle,
speed, and d-q axes voltages of the synchronous generators, four states
corresponding to internal voltages of the automatic voltage regulator
(AVR) of the synchronous generators, and three states corresponding to
the turbine governor of the synchronous generators. The inputs of the
system comprise of the reference pitch angle and speed of the DFIG,
the reference signals of the AVRs, and the modulation index of the solar
cell.

Using the procedure described in Algorithm 1, we obtain a linear
perturbed model from the baseline model. This linear perturbed model
is conic with ρ = 0.07, ν = 0.21, conic sector radius r = 2.575 and
cone center c = 5; c.f. the definition of conic systems mentioned earlier.
Fig. 3(b) shows the comparison between the measured voltage outputs
and those generated by the conic model at bus 1 (wind generator) for a
load change (disturbance) where all loads in the network are decreased
by 2%. These results indicate that models with suitable dissipativity
properties can be constructed to closely approximate the dynamics of
complex nonlinear networked systems around specific operating points.

V. CONCLUSION

We considered the problem of identifying a dissipative linear model
of an unknown nonlinear system from time-domain input–output data,
when a baseline linear model of the system can be easily obtained
using the physics of the system and/or standard system identification
techniques. We propose a technique to perturb the system matrices
of the baseline model to obtain a strictly dissipative linear model that
closely approximates the original nonlinear system. While the proposed
approach is offline, it is promising to extend the perturbation approach
to quickly identify dissipative models in an online setting, where a
baseline model is typically already available. In scenarios where the
baseline model also needs to be identified online, further investigation
into the computational complexity introduced by this additional step
will be necessary, which is an interesting direction for future research.
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