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Abstract—Adversarial examples can easily degrade the
classification performance in neural networks. Empirical
methods for promoting robustness to such examples have
been proposed, but often lack both analytical insights and
formal guarantees. Recently, some robustness certificates
have appeared in the literature based on system theoretic
notions. This letter proposes an incremental dissipativity-
based robustness certificate for neural networks in the form
of a linear matrix inequality for each layer. We also pro-
pose a sufficient spectral norm bound for this certificate
which is scalable to neural networks with multiple layers.
We demonstrate the improved performance against adver-
sarial attacks on a feed-forward neural network trained on
MNIST and an Alexnet trained using CIFAR-10.

Index Terms—Adversarial Attacks, Deep Neural
Networks, Robust Design, Passivity Theory, Spectral
Regularization.

I. INTRODUCTION

NEURAL networks are powerful structures that can rep-
resent any non-linear function through appropriate train-

ing for classification and regression tasks. However, neural
networks still lack formal performance guarantees, limiting
their application in safety-critical systems [1]. Furthermore,
many studies have shown the susceptibility of neural networks
to small perturbations through carefully crafted adversarial
attacks, which, in the case of imaging systems, may be
imperceptible to the human eye [1], [2], [3], [4].
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Different types of defenses have emerged trying to address
this shortcoming, with perhaps the most successful of them
being adversarial training [5], [6], [7], [8] and defensive dis-
tillation [9], [10]. However, even though neural networks with
these defenses empirically show superior performance against
adversarial attacks than those without such approaches, these
methods do not broadly provide either design insights or
formal guarantees on robustness.

In the search for guarantees, other studies have proposed
systems-theoretic robustness certificates during training. For
instance, Lyapunov stability certificates with incremental
quadratic constraints were proposed in [11] and imitation
learning in [12]. Lipschitz constant-based certificates have
been a particularly fruitful approach, of which we high-
light [13], which uses a convex optimization approach, [14]
with sparse polynomial optimization, [15], which uses aver-
aged activation operators, and [16], which proposes global
Lipschitz training using the Alternate Direction Method of
Multipliers (ADMM) method.

In this letter, we take an incremental dissipativity-based
approach and derive a robustness certificate for neural network
architectures in the form of a Linear Matrix Inequality (LMI).
This LMI utilizes Incremental Quadratic Constraints (iQCs)
to describe non-linearities in each neuron as proposed in [17].
Recently, [18] used iQCs to define a new class of Recurrent
(Equilibrium) Neural Networks for applications such as system
identification and robust feedback control. We derive a suf-
ficient condition from this LMI as a bound on the spectral
norm of the weight matrix in each layer that is easily imple-
mentable. There are three advantages of this approach. One,
this approach generalizes the Lipschitz condition that has been
imposed on neural networks in previous works to a condi-
tion guaranteeing that the input output response of the neural
network is sector bounded. The Lipschitz condition defines
a particular sector that can be expressed as a special case
in our framework. Providing more degrees of freedom to the
designer in choosing the sector can lead to a better point in the
performance-robustness tradeoff. Two, this approach can scale
with the number of layers of the neural network. Consideration
of deep neural structures and convolutional layers is a known
issue with the existing optimization based paradigms [19]
and has been explicitly pointed out as a limitation in works
such as [16]. Three, our condition provides an insight on the
high empirical effectiveness of the usage of spectral norm
regularization for improved generalizability in deep network
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structures [20] and training stability of Generative Adversarial
Networks (GANs) [21].

Passivity analysis for neural networks has been considered
for systems with time delay [22], [23], but no training method-
ology was offered, and the resulting LMIs can quickly become
computationally burdensome. Reference [24] provided a pas-
sivity approach for robust neural networks, but no certificate
was presented. Further, our theoretical development is for the
more general notion of incremental sector bounded neural
network layers, which allows for negative passivity indices.

II. BACKGROUND

In this letter, we propose an incremental dissipativity-based
approach to quantify and engineer the robustness of neural
networks against adversarial attacks. We focus on image classi-
fication networks, since the design of adversarial perturbations
is perhaps the most developed in such systems [25], [26].
Further, the presence of convolutional layers in most of such
architectures poses challenges to existing approaches for guar-
anteeing robustness. In such applications, our main goal is to
reduce the classification error rate on adversarial image test
sets. One should notice that the proposed approach can be
applied to other applications as well.

Robustness Against Adversarial Attacks: Adversarial attacks
on neural networks seek to produce a significant change in the
output when the input is perturbed slightly. Thus, designing a
network that limits the change in the output as a function of
the change in the input can mitigate the effects of adversarial
attacks. We claim that enforcing neural network systems to
be incrementally dissipative (specifically, sector bounded) can
limit the variation on the output, given some perturbation in
the input.

Consider a neural network fNN : Rn → Rm. In the image
classification example, the input may be the vectorized version
of the image and the output may be a vector of probabilities
corresponding to the various classes. We are interested in the
deviation between fNN(x) and fNN(x + δx) where x and x + δx
are the actual and adversarial inputs, respectively. Recently,
a number of works have pointed out that by enforcing the
condition

‖fNN(x + δx) − fNN(x)‖2 ≤ γ ‖δx‖2 (1)

for some γ > 0, we can guarantee that a norm-bounded adver-
sarial perturbation can shift the output of the neural network
only by a bounded amount. Intuitively, this leads to a cer-
tain robustness in the classification performance of the neural
network. While the Lipschitz constant based approach enforces
a symmetric sector in the sense of equation 1) above, the incre-
mental sector boundedness constraint that we consider in this
letter generalizes it by allowing the sector slopes to be inde-
pendent of each other and have arbitrary signs. Further, we
can consider convolutional layers as well as compose metrics
for each layer to obtain a robustness certificate for the entire
network. Finally, we can obtain a computationally efficient
training approach to ensure that this certificate is met using
a spectral norm based condition. In this sense, our work also
sheds light on the empirically observed effectiveness of spec-
tral norm based regularization to promote robustness in neural
networks. However, this approach cannot guarantee robustness

for all attacks and data sets. As stated in [27], depending on
the specific data set, the margin between decision boundaries
can be very narrow, and even a tiny perturbation on out-
put can change the classification label. Therefore, our method
implicitly assumes there is some margin between classes.

Sector Boundedness: Dissipativity has been widely used in
control systems theory due to its close relation to stability
analysis and compositional properties [28], [29], [30].

Definition 1 [31]: A discrete-time system with input x(k)
and corresponding output y(k) at time k is (Q, S, R) dissipative
if ∀k, the condition 0 ≤ s(x(k), y(k)) holds for all admissible
initial conditions of the system and all admissible sequences
of the inputs {x(j)}k

j=0, where s(x(k), y(k)), is the supply rate
given by

s(x, y) = yTQy + xTSy + yTSTx + xTRx, (2)

for matrices Q, S, and R of appropriate dimensions.
Depending on the matrices Q, S, and R, the system will

exhibit different dynamical properties. We are particularly
interested in the following three cases:

Definition 2 [29], [32]: A (Q, S, R) dissipative discrete-
time system is:

1) passive, if Q = 0, S = 1
2 I, R = 0.

2) strictly passive, if Q = −δI, S = 1
2 I, R = −νI, for

some δ > 0 and ν > 0.
3) sector bounded with slopes 1−√

1−4δν
2δ

and 1+√
1−4δν
2δ

, if
Q = −δI, S = 1

2 I,R = −νI, for some δ and ν.
For sector bounded systems, the constants δ and ν are called

passivity indexes. We will call a sector bounded system out-
put strictly passive (OSP) when δ > 0 and input strictly
passive (ISP) when ν > 0. Finally, all the above definitions
can be extended to the case of incrementally QSR-dissipative
systems, incrementally passive systems, incrementally strictly
passive systems, and incrementally sector bounded systems by
defining the supply rate as

s(�x,�y) = �T
y Q�y

+ �T
x S�y + �T

y ST�x + �T
x R�x, (3)

where �x = x1 − x2 and �y = y1 − y2 for two inputs x1 and
x2, and the corresponding outputs y1 and y2.

III. ENFORCING INCREMENTAL SECTOR BOUNDEDNESS

A. Incremental QSR-Dissipativity for a Single Layer

Consider a neural network layer that receives the vector x
as an input and yields the output y. For a non-convolutional
layer, y = φ(Wx+b), where φ(·) is an element-wise nonlinear
activation function. In this letter, we assume that the function
is incrementally sector bounded by [α, β] for some α and β.
This assumption is satisfied by most commonly used func-
tions including tanh, ReLU, and leaky ReLU functions, and
is commonly made in works such as [11]. We also assume
that the same activation function φ(.) is used in every ele-
ment of the layer, which is the case for most neural network
layer architectures. We can then state the following result.

Theorem 1: Consider a non-convolutional neural network
layer defined by y = φ(Wx + b) where φ(.) is incrementally
sector bounded by [α, β]. Define m = α+β

2 and p = αβ. The
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layer is incrementally QSR dissipative if the LMI

M =
[

Q S
S� R

]
+
[

� −m�W
−mW�� pW��W

]
� 0 (4)

is feasible for some � defined as

� =
∑

1≤i≤n

λiieie�
i ≥ 0, (5)

where ei is the i-th standard basis vector.
Proof: The proof follows by using an S-procedure following

the arguments in [17]. First, for notational ease, for any input
xi of the neural network layer, denote the output by yi and
define vi = Wxi + b. With this notation, we can write:[

0 W
I 0

][
y1 − y2
x1 − x2

]
=
[

v1 − v2
y1 − y2

]
, (6)

for any inputs x1 and x2.
The first quadratic form for the S-procedure can be obtained

using the iQC approach outlined in [17]. Since the nonlinear
function φ(·) is an element wise function that is incrementally
sector bounded by [α, β], we have

α ≤ yj
1 − yj

2

vj
1 − vj

2

≤ β, (7)

for all j = 1, . . . , n, where n is the number of neurons at the
layer under consideration, vj

1 denotes the input to the nonlin-
ear activation function for the j-th neuron, and yj

1 denotes its
output. The collection of these equations can be written as[

v1 − v2
y1 − y2

]T[
p� −m�

−m� �

][
v1 − v2
y1 − y2

]
≤ 0, (8)

for a matrix � of Lagrange multipliers with the structure
defined in (5) and where m = α+β

2 and p = αβ [13].
Finally, (6) yields:[

y1 − y2
x1 − x2

]T[
� −m�W

−mWT� pWT�W

][
y1 − y2
x1 − x2

]
≤ 0. (9)

The second quadratic form is obtained from the definition
of incremental (QSR) dissipativity as

[
y1 − y2
x1 − x2

]T[−Q −S
−ST −R

][
y1 − y2
x1 − x2

]
≤ 0. (10)

Thus, using an S-Procedure on (9) to enforce (10) we obtain:

λ

[
� −m�W

−mWT� pWT�W

]
−
[−Q −S
−ST −R

]
� 0, (11)

where λ ≥ 0. The result now follows by defining � = λ�.

For a convolutional layer, we can derive a similar result by
using the result from [33] that the convolution operation with
a filter is equivalent to a matrix multiplication of a block cir-
culant matrix composed by the filter coefficients. Specifically,
if the input image X is convolved with a filter with impulse
response F ∈ Rn×n, then define the doubly block circulant
matrix C as the matrix⎡
⎢⎢⎢⎣

circ(F(0, :)) circ(F(1, :)) . . . circ(F(n − 1, :)
circ(F(n − 1, :) circ(F(0, :)) . . . circ(F(n − 2, :))

...
...

. . .
...

circ(F(1, :)) circ(F(2, :)) . . . circ(F(0, :))

⎤
⎥⎥⎥⎦,

(12)

where F(p, :) denotes the p-th row of the matrix F and circ(v)

with a vector v ∈ Rn×1 produces an n × n circulant matrix
with the first row as the vector v. Then, [24], [33] showed that
the output O of the convolution can be expressed as

vec(O) = Cvec(X), (13)

where vec(.) is the standard vectorization operation. Thus, we
can extend Theorem 1 to a convolutional layer as follows.

Corollary 1: Consider the setting of Theorem 1 but with a
convolutional neural network layer in which the input is con-
volved with the filter F, vectorized, and transmitted through an
element-wise non-linear activation function φ(.) that is sector
bounded by [α, β]. Define m = α+β

2 and p = αβ. The layer
is incrementally QSR dissipative if the LMI

M =
[

Q S
S� R

]
+
[

� −m�C
−mC�� pC��C

]
� 0 (14)

is feasible for some � defined as

� =
∑

1≤i≤n

λiieiei ≥ 0, (15)

where ei is the i-th standard basis vector and C is defined as
in (12).

We note that by construction, the matrix � with the structure
in (5) is positive definite.

B. Extension for a Multi Layered Neural Network

The argument given above can be extended to consider the
entire neural network instead of one layer. However, as was
noted in [16] even for the LMIs resulting from the simpler
Lipschitz constraint, this approach quickly becomes computa-
tionally cumbersome. Instead, we can utilize the compositional
property of (QSR)-dissipativity to ensure that a multi-layered
neural network is sector bounded by imposing constraints on
each layer separately. We have the following result.

Theorem 2: Consider a neural network with n layers, where
each layer i is incrementally QSR dissipative with Q = −δiI,
S = 0.5I, and R = −νiI. Then, the neural network is incre-
mentally sector bounded with parameters Q = −δI, S = 0.5I,
and R = −νI if the matrix A � 0, where

A �

⎡
⎢⎢⎢⎢⎢⎣

−ν1 + ν 1
2 0 · · · − 1

2
1
2 −ν2 + δ1

1
2 · · · 0

...
. . .

. . .
. . .

...

0 · · · 1
2 −νn + δn−1

1
2− 1

2 0 · · · 1
2 −δn + δ

⎤
⎥⎥⎥⎥⎥⎦

.

Proof: Proof follows directly be viewing the neural network
as a cascade of layers and applying [34, Th. 5].

Theorem 2 thus provides one way of ensuring that the neu-
ral network is sector bounded, and hence, robust. Specifically,
we can impose the constraint (4) during the training of the
network. However, this requires solving an SDP problem on
each gradient descent step or, at best, after a certain number
of epochs, as described in [16]. While ensuring Mi � 0, with
i = 1, . . . , l for each layer separately is computationally more
tractable than optimizing the entire neural network through
a large SDP, it nonetheless makes the training much slower.
This makes it desirable to further reduce the computational
complexity as discussed next.
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IV. TRAINING ROBUST NEURAL NETWORKS

In this section we derive a sufficient condition on the
spectral norm of the weight matrix that provides a feasible
solution for the LMI (4) for sector bounded systems. We
focus once again on a single neural network layer in the set-
ting of Theorem 1 for ease of notation. Denote the spectral
norm of matrix A by ‖A‖2. Further, define the infimum semi-
norm ‖A‖i as the square root of the minimum eigenvalue
of A�A. While the spectral norm is sub-multiplicative, the
infimum seminorm is super-multiplicative. Further, the two
norms are related for invertible matrices through the relation
‖A−1‖2 = ‖A‖−1

i [35, eq. (2.5)]. Finally, for a normal matrix
�, we have [36, Th. 2.5] ‖� − I‖i = ‖�‖i − 1.

Note that for a sector bound on a neural network to lead to
bounded perturbation of the output given a perturbation in the
input, it is natural to assume that the slope of the upper bound
on the sector given by δ is positive. The slope of the lower
bound ν can have arbitrary sign, but should be bounded. We
make these assumptions in presenting the following result.

Theorem 3: Consider the setting of Theorem 1 with Q =
−δI, S = 0.5I, and R = −νI with δ > 0. If the following
inequalities hold

‖W‖2 ≤ 1

|m|

(
1 − (δ + 0.5)(1 − |p|‖W‖2

i )

δ − ν

)
(16)

|p|‖W‖2
i ≤ 1, (17)

then (4) is feasible with a matrix � of the form (5) with

‖�‖2 = ‖�‖i ≥ δ − ν

1 − |p|‖W‖2
i

. (18)

Proof: A sufficient condition for the feasibility of the
LMI (4) is that the matrix M be block diagonally dom-
inant with diagonal blocks positive semi-definite [35]. In
other words, if there exists a matrix � of the form (5) that
ensures that the following four conditions are satisfied, then
the LMI (4) is feasible for that �:

	 + Q � 0 (19)

W�p�W + R � 0 (20)∥∥∥(Q + �)−1(S − m�W)

∥∥∥
2

≤ 1 (21)∥∥∥(W�p�W + R)−1(S� − mW��)

∥∥∥
2

≤ 1. (22)

We now consider these conditions one by one.
1) Claim 1: Any � that satisfies equation

‖�‖i ≥ δ, (23)

will ensure that (19) is satisfied. This claim follows by
noting that Q = −δI, δ > 0, and � � 0.

2) Claim 2: Any � that satisfies the condition

|p|‖W‖2
i ‖�‖i > ν (24)

will ensure that (20) is satisfied. This is because

(20) ⇐⇒ |p|‖W��W‖i > ν

(a)⇐= |p|‖W�‖i‖�‖i‖W‖i > ν

⇐⇒ |p|‖W‖2
i ‖�‖i > ν,

where (a) follows from the supermultiplicativity of the
infimum norm.

3) Claim 3: Any � that satisfies the condition

δ + 0.5 + |m|‖�‖2‖W‖2 ≤ ‖�‖i (25)

will ensure that equation (21) is satisfied. This claim
follows by noting that

(21)
(a)⇐=

∥∥∥(Q + �)−1
∥∥∥

2
‖S − m�W‖2 ≤ 1

(b)⇐⇒ ‖S − m�W‖2 ≤ ‖Q + 	‖i

⇐⇒ ‖0.5I − m�W‖2 ≤ ‖� − δI‖i
(c)⇐= 0.5 + |m|‖�‖2‖W‖2 ≤ ‖� − δI‖i

⇐⇒ 0.5 + |m|‖�‖2‖W‖2 ≤ ‖�‖i − δ

⇐⇒ δ + 0.5 + |m|‖�‖2‖W‖2 ≤ ‖�‖i,

where (a) and (c) follow from submultiplicativity and
subadditivity, respectively, of the spectral norm, while
(b) follows from the relation ‖A−1‖2 = ‖A‖−1

i .
4) Claim 4: Any � that satisfies the condition

0.5 + |m|‖�‖2‖W‖2 ≤ |p|‖W‖2
i ‖�‖i − ν (26)

will ensure that (22) is satisfied. This claim follows by
noting that

(22) ⇐=
∥∥∥∥
(

pW��W + R
)−1

∥∥∥∥
2
‖S − m�W‖2 ≤ 1

⇐⇒ (‖S‖2 + |m|‖�‖2‖W‖2) ≤
∥∥∥pW��W + R

∥∥∥
i

⇐⇒ 0.5 + |m|‖�‖2‖W‖2 ≤
∥∥∥pW��W − νI

∥∥∥
i

⇐⇒ 0.5 + |m|‖�‖2‖W‖2 ≤
∥∥∥pW��W

∥∥∥
i
− ν

⇐= 0.5 + |m|‖�‖2‖W‖2 ≤ |p|‖W‖2
i ‖�‖i − ν.

Since (25) is a sufficient condition for (23) and (26) is a suf-
ficient condition for (24), we have shown that if there exists
a matrix � of the form (5) that ensures that the two condi-
tions (25) and (26) are satisfied, then the LMI (4) is feasible
for that �. The proof now follows by noting that if (16), (17),
and (18) hold, then (25) and (26) are satisfied.

This result provides a computationally easy to impose con-
dition that guarantees sector boundedness of the mapping
defined by each neural network layer in terms of the spec-
tral norm of the weight matrix. The conditions for each layer
can be combined to guarantee the sector boundedness of the
entire neural network following Theorem 2. While this theo-
rem provides only a sufficient condition, a few observations
can be made from how easy it is to satisfy the condition (16).

• If p = 0 (as is the case with ReLU for instance), then the
bound on the right hand side of this condition is smaller.
This implies that considering leaky ReLU (for which
p �= 0) may lead to superior robustness performance
as compared to ReLU activation functions, as has been
observed empirically in the literature [37].

• Similarly, if ν > 0, then the condition becomes harder
to satisfy. Thus, imposing strict passivity on the neural
network (ν > 0) may be overly conservative and lead to
low performance as compared to simply sector bounding
it and allowing ν < 0.

Authorized licensed use limited to: Purdue University. Downloaded on October 29,2022 at 21:16:53 UTC from IEEE Xplore.  Restrictions apply. 



AQUINO et al.: ROBUSTNESS AGAINST ADVERSARIAL ATTACKS 2345

• We emphasize that although the result aligns with the
empirical observation in the literature that regularizing
the loss function with the spectral norm of the weight
matrix leads to superior robustness against adversarial
attacks, our result provides an analytical justification of
such a procedure and further identifies the region in
which the spectral norm should be bounded to get such
robustness. Furthermore, by not using an SDP approach,
we can expand our technique to deep Neural Network
structures, which is a shortcoming of SDP methods, as
discussed in [38]. However, the trade-off is an increased
conservatism in the spectral norm bound.

• Finally, although our motivation in this letter was
to ensure robustness against adversarial perturbations,
imposing passivity and sector boundedness on neural
networks is of independent interest. For instance, this
result can be used to guarantee stability of a system where
the controller is implemented as a neural network through
standard results in passivity based control.

V. EXPERIMENTAL RESULTS

We now present the experimental setup and performance
improvement when the results above are utilized while training
a neural network. Implementation is provided in Python using
Tensorflow 1.15.4 on https://github.com/beaquino/Robust-
Design-of-Neural-Networks-using-Dissipativity. A MATLAB
script to obtain sector bounds for each layer to satisfy
Theorem 2 is also available.

We use two commonly known data sets for image classifi-
cation, MNIST [39] and CIFAR-10 [40]. For the MNIST data
set, we use a 3 layer feed-forward network with leaky ReLU
activation function (with a = 0.1, and therefore α = 0.1 and
β = 1) on the first two layers. For the CIFAR-10 dataset,
we use an Alexnet [41], which is composed of 2 convolution
layers, each followed by a max pooling layer and 3 fully con-
nected layers. Leaky ReLU activation function (with a = 0.1,
and therefore α = 0.1 and β = 1) are used on the first four
layers. In some implementations, a final Softmax layer may
be utilized for conversion into probabilities. Since Softmax
is only an exponential average, we do not consider such a
layer without loss of generality. The adversarial attacks cho-
sen for testing are the Fast Gradient Sign Method (FGSM)
attack [25], and the Projected Gradient Descent Method attack
(PGDM) [26] using a range of strength ε in the interval
(0.1, 0.5). Strength 0 represents no attack.

We split training and test sets as 86%-14% of the dataset
for MNIST and 80%-20% for CIFAR-10, and we train the
model for 200 epochs using Adam optimization. Parameters
ν and δ should be chosen before the training procedure. We
select the pair (ν, δ) = (−2, 0.4) as the indices for the entire
network, which restricts the neural network to a sector approx-
imately between (−0.215, 0.465). These values were chosen
as the basis of comparison, because they presented the best
result among other different choices. We tuned them as hyper-
parameters and optimized them on the MNIST model. Given
these values, we select the individual indexes (νi, δi) for each
layer, using Theorem 2, which are then used to calculate the
spectral norm bound for each layer.

Fig. 1. Accuracy for both Fast Gradient Sign Method attack and
Projected Gradient Descent Method attack, compared for a Vanilla
model and spectral norm regularized with passivity indexes (−2, 0.4).
Network was trained on MNIST dataset.

Fig. 2. Accuracy for both Projected Gradient Descent Method attack
and Projected Gradient Descent Method attack, compared for a Vanilla
model and spectral norm regularized with passivity indexes (−2, 0.4).
Network was trained on CIFAR-10 dataset.

Figure 1 presents the results (Sp Norm) for MNIST data,
with the accuracy for a test set generated using FGM attack in
the left panel and the accuracy for a test set generated using
PGDM attack in the right. Figure 2 presents the results (Sp
Norm) for CIFAR-10 data, with the left panel presenting the
accuracy for a test set generated using FGM attack and the
right panel presenting the accuracy for a test set generated
using PGDM attack. Also plotted are the accuracy with the
commonly used method of L2-regularization as a compari-
son point (L2 Norm) and a regularly trained Neural Network
(Vanilla). Both figures show an improvement on classifica-
tion for both cases especially as the attack strength increases,
demonstrating the effectiveness of the proposed approach.

A remark can be made about the computational tractabil-
ity of the proposed approach. Considering the entire neural
network at once to impose sector boundedness (or even
the simpler condition of Lipschitz constant) is computation-
ally tractable only for shallow networks. Our approach of
considering each layer separately, and crucially imposing a
spectral norm constraint, is more scalable. Note that while
using the spectral norm forces us to calculate the maximum
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eigenvalue of a matrix at every gradient descent step, this can
be performed efficiently using the power iteration method.

VI. CONCLUSION

We proposed a robustness certificate for neural networks
based on QSR-dissipativity. This method guarantees that a
change in the input produces a bounded change in the output,
that is, the neural network function is incrementally sec-
tor bounded. We first expressed the certificate in the form
of a linear matrix inequality. By using the compositional
properties of dissipativity, we then decomposed the certifi-
cate into one for individual layers of the neural network.
We also proposed a sufficient condition based on a spec-
tral norm bound to offer a more computationally tractable
problem for deep neural network structures. We presented the
results for experiments using a 3 layer feed-forward network
and an Alexnet structurure, trained with MNIST and CIFAR-
10 respectively. Results showed superior performance when
compared to vanilla training and L2 regularization.
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