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Abstract. In this paper we study complexities for the multiple-handed
tile self-assembly model, a generalization of the two-handed tile assem-
bly model in which assembly proceeds by repeatedly combining up to h
assemblies together into larger assemblies. We first show that there exist
shapes that are self-assembled with provably lower tile type complexities
given more hands: we construct a class of shapes Sk that requires Ω( k

h
)

tile types to self-assemble with h or fewer hands, and yet is self-assembled
in O(1) tile types with k hands. We further examine the complexity of
self-assembling the classic benchmark n×n square shape, and show how
this is self-assembled in O(1) tile types with O(n) hands. We next explore
the complexity of established verification problems. We show the prob-
lem of determining if a given assembly is produced by an h-handed system
is polynomial time solvable, whereas the problem of unique assembly ver-
ification is coNP-complete if the hand parameter h is encoded in unary,
and coNEXP-complete if h is encoded in binary.

1 Introduction

In this paper we investigate the complexity of fundamental problems related to
multiple handed self-assembly. The model is a tile self-assembly model where
system components are 4-sided Wang tiles, and self-assembly proceeds by tiles
combining non-deterministically, based on matching glue types, to build larger
assemblies. The most studied tile assembly models are the aTAM [26] where tiles
attach one-by-one to a growing seed assembly, and the 2HAM [6] where assem-
blies are produced by taking any two assemblies (one in each hand) and combin-
ing them to create a new producible assembly. Our focus here is a generalization
of the 2HAM, called the k-HAM, which allows groups of up to k assemblies (one
in each of up to k hands) to combine to create new stable assemblies. See [20] for
a general survey of tile self-assembly, and [27] for a survey of intrinsic simulation
in tile self-assembly, and [11,28] for an overview of algorithmic self-assembly and
recent experimental implementations in DNA.
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Why Multiple Hands? The most fundamental version of self-assembly may be the
basic 2-handed model as the statistical likelihood of multiple pieces combining
within a short enough time to stabilize is small in many experimental models.
However, such productions happen in practice- often referred to as undesirable
spurious nucleation reactions [19]. At certain scales, it is useful to consider the
landscape of stable configurations, especially local minimum energy configura-
tions, even when reaching such configurations would require moving more than
two things into place simultaneously. Multiple handed self-assembly provides a
simple framework for exploring self-assembly phenomena that may have impacts
in these scenarios. Notably, multiple handed self-assembly may prove to be a use-
ful tool for designing robustness in self-assembly systems, e.g., designing a system
guaranteed to work even if the number of hands is increased up to some value k.
Applications of such robustness theory would be directly aided by understanding
fundamental complexities of self-assembly with multiple hands.

There are also classes of shapes that may not be built efficiently without mul-
tiple hands such as certain fractals that rely on multiple shapes coming together
simultaneously [8], and there are shapes that cannot be built as efficiently at
lower temperatures. Thus, given different experimental constraints, a reliance
on these interactions with fewer tiles at a lower temperature may be preferable.

Our Results. We provide many results that explore multiple handed assembly
from two angles: the complexity of fundamental problems, and complexity sep-
aration between the 2HAM and the h-HAM related to certain classes of shapes.
Results are shown compared to previous work in Tables 1 and 2 respectively.

The first set of results within this model involve exploring the complexity
of the computational problems of producibility, asking whether a given system
of tiles produces a given assembly, and the unique assembly verification (UAV)
problem asking whether a given tile system uniquely produces a given assembly
(i.e. all producible assemblies can continue to grow into the single provided target
assembly). We show that the producibility problem is solvable in polynomial
time, and that the UAV problem is coNP-complete if the parameter k (number
of hands) is encoded in unary, and coNEXP-complete if k is encoded in binary.
In particular, these hardness results hold for the standard 2D scenario with a
O(1)-bounded temperature parameter. In comparison, while the UAV problem
is known to be coNP-complete for both the 3D 2HAM [6] and the 2D 2HAM for
a non-constant bounded temperature [22], the complexity of UAV in the 2HAM
for 2D O(1)-bounded temperature is still open.

Our next set of results show that there exist shapes that can be built more
efficiently with more hands. We first provide a class of shapes, Sk, such that Sk

requires at least Ω( k
h ) unique tile types to be assembled for any system with at

most h hands, and yet is buildable in O(1) tile types with a k-handed system.
Next we consider the classic benchmark of an n×n square, and show this shape
can be built with O(1) tile types and O(n)-hands, which is provably fewer tile
types than needed with a O(1)-handed system for almost all integers n [21].

Related Work. The h-handed self-assembly model was introduced in [8] as a
generalization of the 2HAM, and was used to build a version of the Sierpinski
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Table 1. Tile complexity for n × n squares.

Model Tile complexity Thm.

aTAM/2HAM Θ( logn
log logn

) [21]

2HAM (high temperature) O(2log∗ n) [23]

kHAM Θ(1) Theorem 2

Table 2. Related and new results for verification problems. ∗Two results show coNP-
hardness of UAV in the 2HAM, one uses a step into the third dimension and the other
uses the temperature as part of the input.

Problem Hands Results Thm.

Producibility aTAM P [1]

Producibility 2 P [12]

Producibility k P Theorem 3

UAV aTAM P [1]

UAV 2 coNP-Complete∗ [6,22]

UAV k (Unary) coNP-Complete Corollary 2

UAV k (Binary) NEXPTIME-Complete Theorem 4

Triangle fractal. Earlier work compared 2-hands (2HAM) over a single hand
(aTAM) and showed a provable gap in tile complexity for building certain
shapes [6], coNP-completeness for the UAV problem in the 3D 2HAM with a
constant temperature [6] and coNP-completeness in 2D for non-constant tem-
perature [22], versus a polynomial time solution to UAV in the aTAM [1]. For
the case of the producibility problem, both the 2HAM and aTAM have poly-
nomial time solutions [1,12]. Later work considered Unique Shape Verification,
showing coNPNP-completeness for the 2HAM [24] and coNP-completeness for the
aTAM [2].

In [5], the authors show a separation in the number of tile types needed
to construct some shape between the deterministic aTAM (only one terminal
assembly) and the non-deterministic version of the model (allows for multiple
terminal assemblies all with the same shape).

Building infinite classes of shapes with a fixed size-O(1) set of tile types has
been explored in several self-assembly models. For example, [15,25] show how
a fixed tile set can be programmed to build general shapes by adjusting the
temperature of the system over a sequence of stages. Similarly, [9] builds general
shapes with a fixed set of tiles by mixing combinations of the tile set into different
bins over a sequence of stages. In [7], arbitrarily large squares are self-assembled
with a fixed tile set size by encoding the desired square width into the system
temperature. In [14], large shapes are self-assembled with a fixed tile set by
considering bonding functions between assemblies that require greater strength
to hold together larger assemblies. In [4,10,16,18], fixed tile sets are used to
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build general squares and shapes with high probability by encoding the desired
target shape into the relative concentrations of the tiles within the system.

2 Definitions

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue
from a set Σ. Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength
str(g1, g2).

Configurations, Bond Graphs, and Stability. A configuration is a partial
function A : Z

2 → T for some set of tiles T , i.e. an arrangement of tiles on a
square grid. For a given configuration A, define the bond graph GA to be the
weighted grid graph in which each element of dom(A) is a vertex, and the weight
of the edge between a pair of tiles is equal to the strength of the coincident glue
pair. A configuration is said to be τ -stable for positive integer τ if every edge
cut of GA has strength at least τ , and is τ -unstable otherwise.

Assemblies. For a configuration A and vector �u = 〈ux, uy〉 with ux, uy ∈ Z
2,

A + �u denotes the configuration A ◦ f , where f(x, y) = (x + ux, y + uy). For
two configurations A and B, B is a translation of A, written B � A, provided
that B = A + �u for some vector �u. For a configuration A, the assembly of A
is the set Ã = {B : B � A}. An assembly Ã is a subassembly of an assembly
B̃, denoted Ã � B̃, provided that there exists an A ∈ Ã and B ∈ B̃ such that
A ⊆ B. An assembly is τ -stable provided the configurations it contains are τ -
stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there
exist A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪ B = C, A ∩ B = ∅, and C̃
is τ -stable. Let the shape of an assembly A be the shape taken from the set of
points in dom(A).

Two-Handed Assembly. A Two-handed assembly system Γ = (T, τ) is an
ordered tuple where T is the tile set and τ is a positive integer parameter called
the temperature. For a system Γ , the set of producible assemblies P ′

Γ is defined
recursively as: 1) S ⊆ P ′

Γ . 2) If A,B ∈ P ′
Γ are τ -combinable into C, then C ∈ P ′

Γ .

k-Handed Assembly. The k-handed assembly model is a generalization of
two-handed assembly model. A k-handed assembly system Γ ′ = (T, k, τ) is an
ordered tuple where T is the tile set, k is the number of hands that can be
used to produce an assembly, and τ is a positive integer parameter called the
temperature. For a system Γ ′, the set of producible assemblies P ′

Γ ′ is defined
recursively as follows:

1. S ⊆ P ′
Γ ′ .

2. For 2 ≤ k′ ≤ k, if {A1, A2, . . . , Ak′} ⊂ P ′
Γ ′ are τ -combinable into C, then

C ∈ P ′
Γ ′ .

A producible assembly is terminal provided it is not τ -combinable with any
other producible assembly, and the set of all terminal assemblies of a system
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Γ is denoted PΓ . Intuitively, P ′
Γ represents the set of all possible assemblies

that can self-assemble from the initial set T , whereas PΓ represents only the set
of assemblies that cannot grow any further. The assemblies in PΓ are uniquely
produced iff for each x ∈ P ′

Γ there exists a corresponding y ∈ PΓ such that
x � y. Thus unique production implies that every producible assembly can be
repeatedly combined with others to form an assembly in PΓ .

Unique Production of Shapes and Assemblies. A system Γ uniquely
assembles an assembly A if the system uniquely produces set PΓ that contains
only the assembly A and no other assemblies. In other words all producible
assemblies can be combined to eventually form A. We say a system uniquely
assembles a shape S if the system uniquely produces set PΓ and for all B ∈ PΓ ,
B has the shape S.

k - 6
2

Fig. 1. Shape Sk is constructed by connecting width-3 loops of decreasing height start-
ing at k−6

2
. The base shape is highlighted by a red dotted box. Loops are shown in

light gray. The darker column of 3 tiles on the left row is the cap column. The rest of
the tiles are used to connect the loops. (Color figure online)

3 Shape Building

In this section we show a separation between systems with a differing number
of hands. We start by defining a shape Sk and then proving the lower bound on
the number of tiles needed to construct the shape in relation to the number of
hands used, which is used to prove the separation.

3.1 Separation

We define the shape Sk for all even numbers k ≥ 14 and for the smallest shape
with k = 11. The shape for a given k, Sk, is described in Fig. 1, and is built
recursively in a τ = 3 system. The smallest shape, S11, is highlighted in the
figure and is a 3 × 3 loop with an additional 3 tiles on its left side which we
will call the cap column. Sk is constructed by adding an additional height k−6

2
height loop on the left side of Sk−1 and connecting it with 3 tiles (darker tiles in
figure). Let minh(Sk) be the minimum number of tile types needed to uniquely
construct an assembly of shape Sk in an h-handed system.

Lemma 1. For any h-handed system Γ = (T, h, 3) that uniquely assembles the
shape Sk, |T | ≥ Ω( k

h )
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Proof. Since Γ uniquely assembles the shape Sk, each assembly in the set of
terminals P ′

Γ are of that shape. Consider the rightmost column of any assembly
A ∈ P ′

Γ , which we will call c, and let g be the number of strength < τ glues
between tiles in this column. c can be divided into g + 1 segments that are
connected using strength τ glues. Each segment is a producible assembly.

Since each of the segments have a strength τ (or greater) glue in between
each other they cannot attach to the other segments unless a loop is formed.
Let B be any producible assembly such that B is the subassembly of the shape
Sk, but does not contain c. Since our system has h hands we are able to attach
up to h − 1 segments to B in a single production step. Since the total length
of the column is k−6

2 , there must be a segment of length ≥ k−6
2(h−1) . In order to

build this segment, there must not be any repeated glues within that segment,
otherwise the system could produce an infinitely growing assembly. Therefore,
the number of tiles needed to construct this assembly is Ω( k

h ). ��

3.2 Upper Bound for Building Sk

The tile set TS is shown in Fig. 2a. Let the assembly Ak be an assembly of shape
Sk shown in Fig. 2b.

C1

C2

C3

N1 N2 N3

N4 N5

S1 S2 S3 S4

L1 R1

R2L2

(a)

Cap k - 6
2

(b)

Fig. 2. (a) Constant sized tile set to construct an assembly with shape Sk with k
hands. Larger rectangles represent glues of strength 2, while smaller rectangle represent
strength 1. (b) Assembly of shape Sk made from the tile set.

(a) (b) (c)

Fig. 3. (a) If one of these tiles are the bottom corner there will be a cut of strength
2 making the assembly not stable. (b) If the cap is on the assembly there does not
exist a cut and the assembly is stable. (c) These are the possible conflicting tiles when
attempting to construct a rogue assembly. The red line in each of these assemblies
separates the column c from the rest of the assembly. (Color figure online)
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Lemma 2. Any τ -stable assembly in the h-handed system Γ = (TS , h, 3) is a
subassembly of Ax for some x > h and must contain the Cap column.

Proof. Due to space constraints, we omit the proof and give the notes: 1) τ = 3
and every glue is strength 1 or 2, so any stable assembly must contain a loop
since any tile connected at only one point is not stable. 2) Only three tiles can be
the bottom left corner of the loop (Fig. 2a). 3) There is a cut for all tiles unless
the cap tile is present (Figs. 3a, 3b, and 3c). ��
Lemma 3. For all even k ≥ 12 there exists a k-handed self-assembly system
Γ = (T, k, 3) uniquely assembling an assembly of shape Sk using O(1) tile types.

Proof. Due to space constraints, this proof is not given, but we provide the tile
set T in Fig. 2a as part of the system Γ = (T, k, 3) that uniquely constructs the
assembly seen in Fig. 2b using k hands. ��
Theorem 1. For all even k ≥ 12 and h < k, there exists a shape Sk such
that minh(Sk) = Ω( k

h ) and mink(Sk) = O(1). For the special case of h = 2,
min2(Sk) = Ω(k).

Proof. From Lemma 1, in the 2HAM the lower bound for constructing an assem-
bly of shape Sk is Ω(k). From Lemma 3, the upper bound for uniquely construct-
ing the shape is O(1) (Fig. 4). ��

(a)

k - 6
2

k - 6
2

(b)

Fig. 4. (a) Using 11 hands, the base case of the assembly is built from single tiles.
Using this as a single assembly, the next loop can be built. (b) For all future loops,
they must be built by taking the previous sized assembly, the 5 tiles used to connect
the two columns, and enough column tiles to connect them. This means that 6 hands
are used to attach non-column tiles/assemblies and the remaining hands are used to
build the two columns resulting in a max height of k−6

2
.

3.3 Building Squares

In this section, we show that there exists a constant-sized tile set that can
uniquely assemble the shape of an n × n square, where n is based on the given
parameter specifying the number of hands of the system.

Theorem 2. There exists a tile set T , consisting of 72 tile types, such that for all
even integers n ≥ 10, the h-handed tile assembly system Γ = (T, h = n+1, τ = 3)
uniquely assembles an assembly A that has the shape of an n × n square.
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Proof. We prove by construction giving the tile set T (Fig. 5a). Solid lines rep-
resent unique strength-3 glues between the tiles. The tile set and final assembly
consist of three sections. The base assembly is a 6 × 6 square that connects the
other two sections. Both the horizontal and vertical sections build a staircase
shaped structure, similar to Sect. 3.1, where each “step” of the staircase consists
of a loop of tiles, and the largest buildable step is determined by the number of
hands. This construction does not have space in the loops though, which creates
rectangles increasing in size. We scale the size of the step by 2 and the vertical
section 2 tiles taller in order for the three sections to fit together.

The tiles in the horizontal section build a staircase shaped assembly with
increasing height. Attaching to the right, the tiles in the vertical section build a
rotated staircase shaped assembly of increasing width as it builds upwards. This
process continues until the addition of the next step requires more hands than
allowed (Fig. 6). The two staircase assemblies and base assembly fit together to
form a square shaped terminal assembly. An example is shown in Fig. 5b.

It is easily verifiable that in an h-handed system, an (h − 1) × (h − 1) square
is producible. The two staircase assemblies are built up from the base assembly
as shown in Fig. 6. The largest step of the horizontal assembly (blue) will be
h − 3, while the largest step of the vertical assembly (red) will be width h − 1.

The argument that this tile system uniquely produces A is similar to that of
Theorem 3. We focus on the horizontal section (blue) since the vertical section
functions identically. In this case, the placement of tiles is even more restricted
as the placement of the two repeating dominoes require each other to be stable
due to the strength-1 glue between them.

Vertical Section

H
orizontal S

ection

Base

(a) (b)

Fig. 5. (a) The tile set T that uniquely assembles an (h − 1) × (h − 1) square in an
h-handed system. Solid lines between tiles represent a unique strength-2 glue between
them. Small colored labels represent strength-1 glues, and large colored labels repre-
sent strength-2 glues. The glues in the vertical section are represented with the same
colors as the horizontal section, but are hatched to signify they are distinct from their
unhatched counterpart. The tiles boxed in red represent the section of each loop which
can be repeated to make a loop of an arbitrary size. (b) This assembly is uniquely built
in an 11-handed system. (Color figure online)
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(a)

1
2

3

4

5

6 7
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9
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11

1213

...

...

...

1
2

3

4

5

6

7

8

9

1011

...

...

...

(b)

Fig. 6. (a) Cuts showing the assembly is unstable if column 1 or 3 are not the leftmost
column in the horizontal section. The same cuts could larger in the assembly if there
were no tiles to their left. (b) Construction of the largest horizontal staircase step in a
13-handed system. Note the largest step in the vertical section would be 12 tiles wide.
(Color figure online)

A stable assembly must include the smallest step of the staircase. Figure 6a
shows an assembly built from the tiles in the horizontal section. If column 2
or 5 were the leftmost column of this assembly, the red and cyan cuts show the
resulting assembly is not stable, respectively. It is inherent that a stable assembly
built from these tiles is either attached to the base assembly, or to column 3.

In a similar argument to the previous construction, only a few conflicting tiles
exist that any rogue assembly may contain with the repeating dominoes, since
without them it is clearly a subassembly of A. By starting from a pair of adjacent
repeating dominoes, we work upwards and downwards, noting the possible tiles
that could be placed, and see that they must exist in the “loop” composed of all
the tiles of the horizontal section in order to be in a stable assembly. ��

4 h-Hand Producibility

Here we show that verifying producibility of an assembly is solvable in the h-
handed model in polynomial time. The proof is a modification of the proof of
2-handed producibility in [12] generalized to h-handed assembly. A partition of
a configuration C is a set of unique configurations C = {C1, C2, . . . , Cn} such
that

⋃h
i=1 Ci = A and for all i �= j, Ci

⋂
Cj = ∅. With regards to a partition of

an assembly A, we mean the partition of an arbitrary configuration C ∈ A.

Definition 1 (h-handed Assembly Tree). An h-Handed Assembly Tree for
a configuration C is a tree Υ where the root represents C, every other node
represents a configuration c ⊆ C, every parent node has at most h children, and
every parent node p has the characteristic that it’s children are τ -combinable in
an h-handed assembly step into p.

Lemma 4. For any h-handed system Γ = (T, h, τ) and partition C of assembly
A ∈ P ′

Γ , if ∀a ∈ C, a ∈ P ′
Γ then there exists a subset s of C such that 2 ≤ |s| ≤ h

and the elements of s are τ -combinable into an assembly B � A.
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Proof. Since A ∈ P ′
Γ , there must exist an h-handed assembly tree Υ . We utilize

a method from [12] to mark nodes in Υ to find a valid candidate assembly B.
The previous proof used a more generalized version of an assembly tree.

Label each leaf {x} in Υ with the unique element Ci ∈ C where x ∈ Ci. Then
iteratively, if all siblings have the same label, label the parent Ci as well. This
preserves the partition labels for each parent as long as it is a proper subset of
the partition.

Doing a breadth first search from the root looking at only unlabeled vertices,
we reach one of the 3 following cases,

1. The children have 2 ≤ b ≤ h distinct labels and there are b children.
2. The children have 2 ≤ b ≤ h − 1 distinct labels and there are 3 ≤ c ≤ h

children and c > b.
3. There are labeled and unlabeled children or all unlabeled children. We ignore

these nodes since there must exist nodes from either Case 1 or 2 if we follow
the unlabeled children since all leaves are labeled.

Case 1. This case shows that there must exist b partitions that neighbor each
other in the tree and can be brought together with b hands. There is a subtle
subcase that for the parent assembly node p, some number of the children could
be combined with fewer hands. However, a modification to the build path in this
way does not change p since it could be built from the single b-handed operation
or through multiple joins of less than b hands since each operation is joining
subsets of different partitions and p can still be formed as a stable assembly.

Case 2. Even though 3 ≤ c ≤ k hands are needed, some of the nodes have
the same label. Thus, the number of distinct partition subsets is 2 ≤ b ≤ h − 1.
Similar to Case 1, some of the children could be combined without assembling all
b children at once. Any stable combination of children represents another valid
h-handed assembly sub-tree for the parent node.

Let s′ be the set of configurations represented by the children of the found
node. For each element in s′ replace it with the element of C it was labeled
by (only once for each label) to form the set s. This replacement preserves the
ability for all the assemblies in s to be combinable. Since we know each element

Result: Given an h-handed assembly system Γ = (T, h, τ), and an assembly A,
is A producible by Γ?

/* Subassemblies of A as positions. Initially individual tiles. */

C ← {{v}|v ∈ dom(A)};
while |C| > 1 do

if ∃ 2 ≤ b ≤ h subassemblies in C (denoted Ci ∈ C with 1 ≤ i ≤ b) s. t.
∪1≤i≤bCi is stable then

C ← C \ {C1, . . . , Cb} ∪ {∪1≤i≤bCi}
else reject

accept;
Algorithm 1: The näıve method of verifying whether an assembly is pro-
ducible in an h-handed system.
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of s are producible, the assembly B is producible where the elements of s are
τ -combinable into B. ��
Theorem 3. The producibility problem for a system Γ = (T, h, τ) and assembly
A is solvable in O(|A|2h log |A|) time.

Proof. Algorithm 1 gives the näıve method for building the shape by combining
tiles from the shape whenever possible. We know from Lemma 4 that if the target
assembly A is producible, there must exist up to h subassemblies that may be
combined at each step.

The runtime is affected by the time required to find cycles in planar graphs.
In order for assemblies to be combined they must be adjacent. Any assembly
step that requires more than 2 hands must form a loop. Thus, the bottleneck is
checking for a cycle of size h in a planar graph, which varies based on h. We must
also check for cycles up to size h, so we might require h calls to this subroutine.
Let T be the time to find a cycle, then the runtime of Algorithm1 is O(Th|A|).

Arbitrary fixed length cycles in planar graphs with n nodes can be found
in O(n log n) time (with expected O(n) time), and for any h ≤ 6, the com-
plexity is O(n) [3,17]. Thus, for an unknown h, the runtime of Algorithm1 is
O(|A|2h log |A|) as the size of the graph is the size of the assembly.

We note that there is a O(n) algorithm to find any fixed subgraph H in
a planar graph, but it requires an extremely large constant that is generally
considered impractical even for small n [13]. Also in the special case of 2-handed
assembly the runtime of the algorithm shown in [12] runs in time O(n log2 n). ��

5 h-Hand Unique Assembly Verification

In this section we investigate the complexity of the problem of verifying an
assembly is uniquely assembled by a given h-HAM system. We consider two
different methods of encoding the number of hands in the system. We show that
the problem is coNEXP-complete and coNP-complete when the number of hands
is encoded in binary and unary, respectively. The problems are listed below. We
first show membership, then prove hardness with a reduction from k-ANTM .

Problem 1 (h-Ham-UAV). Input: An h-HAM system Γ = (T, h, τ) where the
integer h is encoded in binary, and an assembly A. Output: Does Γ unique
produce the assembly A?

Problem 2 (u-h-Ham-UAV). Input: An h-HAM system Γ = (T, h, τ), where
the integer h is encoded in unary, and an assembly A. Output: Does Γ unique
produce the assembly A?

5.1 Membership

The UAV problem is in the class coNEXP if the number of hands is specified
in binary, and in coNP if is specified in unary. For an instance of UAV (Γ =
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(T, h, τ), A), the instance is true if and only if the following 3 conditions are
true: 1) The target assembly A is producible, 2) there does not exist a terminal
assembly C � A, and 3) there does not exist a producible assembly B �� A.

Lemma 5. h-HAM-UAV ∈ coNEXP.

Proof. We provide a coNEXP algorithm for h-HAM-UAV that checks the above
three conditions. By Theorem 3, condition 1 can be decided in polynomial time.
Utilizing Lemma 4, we show that if condition 1 is true then condition 2 is true.
For some assembly C � A, consider any partition of the assembly A where C
is an element, and by repeatedly applying Lemma4, continue joining elements
of this partition until A is built. To do this, C must, at some point, attach to
another assembly. Therefore, C is not terminal.

The remaining task to decide the instance of UAV is to verify that there
does not exist a producible assembly B �� A. A coNEXP machine can do this
by nondeterministically attempting to build an assembly up to size h|A|. If any
branch builds some assembly B �� A, then the branch (and machine) will reject.
It suffices to check only up to this size, as an assembly of size > h|A| must
have been built from at least one assembly of size > |A|. That assembly itself
is not a subassembly of A, and therefore if it exists, then a different branch of
the computation will build it and reject. Since h is encoded in binary it takes
exponential time to build an assembly of size h|A|. ��
Corollary 1. u-h-HAM-UAV ∈ coNP.

Proof. The proof of this is the same algorithm provided in Lemma5. Since the
integer h is encoded in unary, nondeterministically building an assembly of up to
size h|A| takes polynomial time. ��

5.2 Hardness: Reduction from k-ANT M

To show coNEXP-hardness we reduce from the canonical complete problem for
NEXP, k-ANTM , which is the problem of deciding if there exists a computation
path of length ≤ k where a given nondeterministic Turing machine M accepts
when run on the empty tape. We first overview the construction, and then prove
correctness. The formal problem definitions follow.

Problem 3 (k-ANTM ). Input: A nondeterministic Turing machine M , and an
integer k encoded in binary. Output: Does there exist a computation path of
M accepting within k steps when run on an empty tape?

Problem 4 (u-k-ANTM ). Input: A nondeterministic Turing machine M , and
an integer k encoded in unary. Output: Does there exist a computation path of
M that accepts within k steps when run on an empty tape?

Given an instance of k-ANTM , we create an instance of h-Ham-UAV such
that the system is temperature-4, and the number of hands h is set to (2�log2(k)�+
3)·(k+�log2(k)�+4). The system always builds a specific target assembly. If and
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only if the answer to k-ANTM is yes, the system also produces a computation
assembly, an assembly that represents an accepting computation path of M
that is less than k steps. The computation assembly is not the target assembly,
making the answer to the UAV instance ‘no.’ We will walk through an example,
reducing from an instance (M,k = 4) and creating a temperature-4 system where
the number of hands is set to (4 + 3) · (4 + 2 + 4) = 70.

We first explain the case when the instance of k-ANTM is true, and therefore
the created instance of h-Ham-UAV is false. In this case, a computation assem-
bly is built. A computation assembly is composed of a binary counter section
and a Turing machine simulation section (Fig. 7c). Since there exists an accepting
computation path of less than or equal to 4 steps, then in one production step,
utilizing the large number of hands in the system, ≤70 tiles will come together
forming a tableau that represents a simulation of the computation path, as well
as a binary counter enforcing the simulation to maintain a certain tape width.

Binary Counter. We utilize known techniques, such as in [21], for implementing
a self-assembling binary counter where the construction has a size-O(log2 k) tile
set and bounds the counter such that it stops once it reaches 2�log2(k)�. For our
example instance (M,k = 4), the assembled binary counter is shown in Fig. 7a.
This assembly is one of two parts of the computation assembly, and is not stable
by itself at temperature 4. The binary counter counts from left to right, starting
at 0 and ending at 2�log2(k)�. The bottom row of light gray tiles represents the
least significant bit, while the top row represents the most significant bit. Each
row uses a distinct set of tiles, preventing unbounded growth. The majority
of the tiles (light gray) have a strength-1 glue on each side. Thus, these tiles
are adjacent to a tile on every side in order to be stable in the assembly. The
remaining border tiles (dark gray) are the only tiles that can be on the border of
a stable assembly due to their strength-2 glues. Every tile in the top row is not
connected to the rest with the required strength of 4. As depicted, the assembly
can only be stable in combination with an additional assembly above it.

Fig. 7. (a) Example binary counter that counts up to 4. Each type consists of its own
O(1)-sized set of tiles. Single ticks between tiles represent a strength-1 glue, double
ticks represent strength-2 glues. (b) Example Turing machine simulation. (c) The form
of a computation assembly. (Color figure online)
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Fig. 8. (a) One step in the simulation of a Turing machine. The bottom row represents
an initial valid Turing machine configuration. The tiles that can attach above this row
represent a valid transition to another valid configuration of the Turing machine. (b)
Simulation of nondeterministic transition rules. The glues on the south side of both
of the transition tiles (purple) are the same, allowing either to be placed above the
head tile (green). (c) Example target assembly. Solid lines represent unique strength-4
glues. Every tile type used in the TM simulation section and binary counter section
can attach in only one spot. (Color figure online)

Turing Machine Simulation. We also use known techniques for simulating Turing
machines in a self-assembly system [26]. An example of simulating one step is
shown in Fig. 8a. We use this method to simulate the computation paths of M .
Due to the nondeterministic nature of the model, we simulate nondeterministic
transition rules by simply having a different tile type for each possible transition
(Fig. 8b). For the instance (M,k = 4), an example assembly (not stable) that
represents an accepting computation path of M is shown in Fig. 7b. The system
created by the reduction also includes the tile set necessary to simulate M in
this manner. The set of tiles is disjoint from those used for the binary counter.
In the same way, this tile set has the inner tiles (light gray) that perform the
computation. These have a strength-1 glue on each side, and border tiles (dark
gray). The north border uses a constant number of distinct tile types to ensure
that the accept state of the Turing machine must be present in the row below it
in order for a stable assembly to be formed.

Production of Computation Assembly. The key question of this system is whether
the 70 hands can be utilized to bring together ≤70 of the described tiles to pro-
duce a computation assembly. In the case where the original instance k-ANTM

is true, the answer is ‘yes’. For the example provided, 28 hands can be used to
arrange the tiles of the binary counter section to form an assembly represent-
ing the counting from 0 to 4 (Fig. 7b). Above this, the remaining 42 hands can
arrange up to 42 tiles in the Turing machine simulation section in an arrange-
ment that represents an accepting computation path of at most 4 steps (Fig. 7b).
The arrangement of binary counter tiles and Turing machine simulation tiles can
form a stable assembly if attached to each other (Fig. 7c). Therefore the com-
putation assembly is a producible assembly in a 70-handed system. Note that a
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computation assembly of size less than 70 can also be produced if there exists
an existing computation path strictly less than length 4.

Target Assembly. The target assembly for the h-HAM-UAV instance is an
assembly that acts as a “frame” that holds all the tiles previously described
(Fig. 8c). Each tile has a designated spot within this assembly that is specified by
the frame having the corresponding glues that uniquely identify the tile adjacent
to its designated position. Some consideration must be taken in the arrangement
of the tiles within this frame to ensure that some extraneous assembly is not built
within the frame. Since the tiles that compose the frame have strength-4 glues
between them, it is clear that this frame is always built. For every tile in the
binary counter section and Turing machine simulation section, there is one spot
in the frame that exactly complements its glues, so it is true that each of these
tiles can attach to the frame. Thus, the target assembly will always be produced.

5.3 Complexity

Given the membership and reduction overview in Sects. 5.1 and 5.2, respectively,
we show the following.

Theorem 4. h-HAM-UAV is complete for coNEXP.

Proof. Lemma 5 shows that h-HAM-UAV is in the class coNEXP. The reduction
shown is a polynomial time reduction from k-ANTM to h-HAM-UAV taking
an instance P = (M,k) to an instance P ′ = (Γ = (T, h, 4), A) where h =
(2�log2(k)� + 3) · (k + �log2(k)� + 4), and ¬P ⇐⇒ P ′. It was shown how a
true instance of P implies P ′ is false, through the production of a computation
assembly that will never grow into the target assembly.

We now show that the instance P being false implies that the created instance
of P ′ is true. It is clear the target assembly will be produced, but it must be
shown that no assembly that is not a subassembly of the target assembly is
produced. We first note that the border tiles can not come together alone to
form a hollow square. This is because at the points where the border tiles from
the binary counter section would meet those from the Turing machine simulation
section, there are strength-1 glues (red arrows in Figs. 7a and 7b), meaning the
hollow square is not a stable assembly.

From the provided tile types shown, in order to be stable the computation
assembly must be enclosed by border tiles (dark gray). Every other tile has only
strength-1 glues on every edge, and therefore if the tile were on the border, the
assembly would not be stable. Due to a unique glue (shown in green in Fig. 7a),
the right border of the binary counter can only be built if there is a 1 to the left
of it in the row representing the most significant bit. Therefore, in order to be
stable, the binary counter assembly must have counted up to 2�log2(k)�. Thus,
(2�log2(k)� + 3) · (�log2(k)� + 2) of the allotted hands must be used to “hold” the
binary counter in place (28 in our example).

This leaves the system with (2�log2(k)� + 3) · (k + 2) hands left, which can be
used to arrange the Turing machine simulation tiles in a way that can attach to
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the binary counter. Since only the border tiles of the binary counter assembly
attach to the border tiles of the simulation assembly, the simulation assembly
must be of the same width (2�log2(k)� + 3). Thus, it can be at most height k + 2.
Since one row has to be used for the top border, the simulation can only utilize
k − 1 rows, i.e., k steps. Due to another unique glue on the top border of the
simulation assembly (cyan in Fig. 7b), the tile BA can only be stable on an
assembly if the row below it contains a tile that represents the accept state.
Every tile in the Turing machine simulation section must have a matching glue
with all of its neighbors. Since every two adjacent rows in the Turing machine
simulation share matching glues, the glue encoding enforces that it is a valid
transition from one configuration of the Turing machine to another. Therefore,
starting from the initial configuration of M , if there does not exist a computation
path that accepts in ≤k steps, then there is no way to arrange the k +1 rows in
a way that is both stable and has the accept state present. Thus, if the instance
P is false, then the only terminal assembly of the created system is the target
assembly, so P ′ is true. ��
Corollary 2. u-h-HAM-UAV is complete for coNP.

Proof. Corollary 1 shows that u-h-HAM-UAV is in the class coNP. The problem
u-k-ANTM where the parameter k denoting the maximum allotted runtime is
encoded in unary is coNP-hard. An equivalent reduction which outputs the same
instance P ′ = (Γ = (T, h, 4), A) with the difference that h is encoded in unary
is a polynomial time reduction from u-k-ANTM to u-h-HAM-UAV. ��

6 Conclusion

In this paper, we analyzed for the first time two of the most fundamental self-
assembly questions in relation to the h-handed model: producibility and unique
assembly verification. We proved that producibility is polynomial and UAV is
coNP-complete when the number of hands is encoded in unary and coNEXP-
complete if it is encoded in binary. Further, we gave a class of shapes that show
the power of additional hands by having a provable separation in necessary tile
types between shapes. We also showed that with a constant number of tile types,
different sized squares are producible depending on the number of hands.
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