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Reinforcement Learning Based Distributed
Control of Dissipative Networked Systems
Krishna Chaitanya Kosaraju , S. Sivaranjani , Wesley Suttle , Vijay Gupta , and Ji Liu

Abstract—We consider the problem of designing dis-
tributed controllers to stabilize a class of networked sys-
tems, where each subsystem is dissipative and designs a
reinforcement learning based local controller to maximize
an individual cumulative reward function. We develop an
approach that enforces dissipativity conditions on these
local controllers at each subsystem to guarantee stability
of the entire networked system. The proposed approach is
illustrated on a dc microgrid example, where the objective
is to maintain voltage stability of the network using locally
distributed controllers at each generation unit.

Index Terms—Reinforcement learning, dissipativity the-
ory, control barrier functions, distributed control.

I. INTRODUCTION

D
ISTRIBUTED control of large-scale networked systems

is a classical research topic, with practical applications

in a variety of fields such as transportation, chemical reaction,

and hydraulic networks, multibody mechanical systems, and

microgrids [1]–[5]. The problem provides many challenges such

as nonclassical information patterns, computational complexity

due to the large state-space, scalability of control design meth-

ods, complex system dynamics that may be imperfectly known,

and so on. Despite many important advances, the field continues

to be a focus of intense research.

An interesting direction in recent times has been the utilization

of reinforcement learning (RL) for distributed and multiagent

control. RL is especially powerful for the control of systems

where the dynamics and/or the environment are unknown [6].
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In a typical RL-based design, the aim is to learn a controller

that maximizes its cumulative reward while exploring the un-

known environment. A wide variety of model-based and model-

free algorithms is now available (see, e.g., [7] for a survey).

While initially developed for single agent settings, the scope

of RL-based techniques has also been expanded to multiagent

networked systems (see [8]–[10] for surveys). Further, while the

typical focus of RL-based techniques for controller design has

been through simulations and demonstrations, a growing line

of research now considers obtaining guarantees about concerns

traditional to control theory, e.g., stability, safety, and robustness,

through controllers obtained using RL [11], etc.

In this article, we consider the problem of guaranteeing sta-

bility when RL is used for distributed control of networked

dynamical systems. Specifically, consider a large-scale system

consisting of many subsystems that are coupled through their

inputs and outputs, such as a network of microgrids. Each

subsystem designs a local controller based on information about

the subsystem state, inputs, and outputs. In particular, we assume

that the controller is implemented using an RL algorithm since

the dynamics of the subsystems may be unknown. Of note,

however, different controllers may potentially use different RL

algorithms. How do we design the controllers that guarantee

that the entire system is still stable? There are at least two

challenges here. First, we would like the control strategy to be

distributed. While there exists wide literature on RL techniques

for multiagent systems, distributed control strategies using RL

that provide guarantees like stability, safety, and robustness [12]

are still scant. Works that consider the problem of guaranteeing

stability and robustness with RL controllers have largely been

limited to contexts such as model-based RL and LQR designs

for single-agent systems [13]–[16]. Second, most available liter-

ature on multiagent RL considers the case when all subsystems

implement the same RL algorithm and further share informa-

tion such as a global state or rewards with other subsystems.

Development of RL-based controllers at the subsystems that

ensure stability and robustness for the entire networked system,

especially when different agents may not use the same RL

algorithm, largely remains an open problem.

As a first step toward addressing this problem, we focus on

a class of networked systems where each subsystem is dissipa-

tive [17] in open loop. Dissipativity is an input–output concept

that can be used to guarantee a broad range of useful properties

such as L2 stability, robustness with respect to disturbances,

and stability under time-delays [18]–[20] and has been widely

used in traditional control theory for distributed controller
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synthesis [21]–[29]. In the context of RL, dissipativity has

been used to enhance the convergence/performance of various

learning schemes [30] and has been enforced as a system prop-

erty for specific systems like Port-Hamiltonian systems [31],

[32]. However, there has been limited literature on enforcing it

using model-free RL techniques or on exploring its potential to

permit distributed controller design that guarantees properties

such as stability at the system level (a notable exception for

L2-stability of cascade interconnections of dynamically coupled

linear systems is in [33]). The challenge in our formulation is

that an RL controller aiming to optimize the local performance

metric at a subsystem can easily disrupt the dissipativity of the

subsystem with respect to the variables that it exchanges with

the other subsystems.

In this article, we develop an RL-based distributed control

design approach that exploits the dissipativity property of indi-

vidual subsystems to guarantee stability of the entire networked

system. Our proposed approach can be summarized as follows.

We first use a control barrier function (CBF) to characterize the

set of controllers that enforce a dissipativity condition at each

subsystem (Propositions 2 and 3). We impose a minimal energy

perturbation on the control input learned by the RL algorithm

to project it to an input in this set (Theorem 3). Together, these

results guarantee the stability of the entire networked system

even when the subsystems utilize potentially heterogeneous RL

algorithms to design their local controllers (Theorem 4).

Our approach of utilizing a CBF to impose the constraint that

the controller designed for each subsystem using RL preserves

the dissipativity of the subsystem in the closed loop parallels

the use of CBFs to enforce safety in RL algorithms [11]. CBFs

guarantee the existence of control inputs under which a super-

level set of a function (typically representing specifications like

safety) is forward invariant under a given dynamics [34]–[36].

However, their use to impose input–output properties, such as

dissipativity, is less studied. Here, we utilize CBFs to character-

ize the set of dissipativity ensuring controllers, and then learn

a dissipativity ensuring controller for each subsystem from this

set.

The main contribution of this work is a distributed approach to

ensure stability of a networked system with dissipative subsys-

tems when the individual subsystems utilize RL to design their

own controllers. Beyond the specific stabilization problem that

we focus on, integrating dissipativity (and other input–output)

specifications into RL-based control is useful since it allows

a wide landscape of tools from classical dissipativity theory

to be integrated into RL-based control design. The proposed

algorithm guarantees stability irrespective of the choice of the

RL algorithm used at each subsystem. In particular, the results

also hold for heterogeneous RL algorithms being used at each

subsystem. We also note that as opposed to most existing lit-

erature on multiagent RL, the proposed approach requires only

the output from neighboring subsystems to learn the control

policy at each subsystem. In other words, to guarantee stability,

no information about the states, rewards, or policies of other

subsystems is required.

The rest of the article is organized as follows. In Section II, we

present the model of the networked system, state the necessary

assumptions, and provide the problem formulation. In Sec-

tion III-A, we utilize CBFs to characterize the set of controllers

that guarantees dissipativity of each subsystem. In Section III-B,

we present an RL algorithm to compute a control input that

preserves the dissipativity of each subsystem, and show that it

stabilizes the networked system. In Section IV, we numerically

illustrate our approach on a dc microgrid application. Finally, in

Section V, we provide some directions for future work. Proofs

of all the results in the article, and the definitions of dissipativity,

are provided in the Appendix.

Notation: R
m denotes the space of m-dimensional real vec-

tors, R denotes the space of real numbers, and R+ denotes the set

of all positive real numbers. ⊗ denotes the Kronecker product.

z� denotes the transpose of a vector or a matrix z and ‖z‖2
(or simply ‖z‖) denotes its 2-norm. For a symmetric matrix

M and a vector z of compatible dimensions, ‖z‖2M is defined

to be equal to z�Mz. Given square matrices M1, M2, . . .,
Mn, define the matrix diag(Mi) as the block diagonal matrix

whose main-diagonal blocks are matrices M1, M2, . . ., Mn,

and all OFF-diagonal blocks are zero matrices. For a symmetric

matrix M , λmin(M) denotes its smallest eigenvalue. I denotes

the identity matrix with dimensions clear from the context. A

directed graph G = (V, E) is defined by a finite set of nodes (or

vertices) V and a set of directed edges (or arcs) E , together with

a mapping from E to the set of pairs of V . By convention, we

disregard self-loops. Thus, to any arc e ∈ E , there corresponds

an ordered pair (u, v) ∈ V × V, with u �= v, representing the

head vertex u and the tail vertex v. Given this, a shorthand

notation is to simply say (u, v) ∈ E . A graph is undirected if

whenever (u, v) ∈ E then (v, u) ∈ E . The in-neighbor set Ni

of node i is the set of all vertices j such that (j, i) ∈ E . Let

D ⊂ R
n. A function f : D → R

n is Lipschitz if there exists

a constant L satisfying ‖f(b)− f(a)‖2 ≤ L‖b− a‖2 for all

a, b ∈ D, and class C1 if it is continuously differentiable. We

denote a value obtained by sampling the probability distribution

function fX(x) for a random variable X as y ∼ fX(x). When

the random variable is clear from the context, we denote the

distribution function simply by f(x).

II. PROBLEM FORMULATION

We adapt the general framework described in [23] and is

shown in Fig. 1.

Node dynamics: Consider a networked system described by a

strongly connected directed graph G = (V, E), where each node

i ∈ V is a subsystem Σi
n, given by

Σi
n :

⎧

⎨

⎩

xi
t+1

yiu,t
yiν,t

=
=
=

f i(xi
t, u

i
t, ν

i
t)

gi(xi
t, u

i
t)

hi(xi
t, ν

i
t)

(1)

where at time t,xi
t ∈ R

ni denotes the state of the i-th subsystem,

ui
t ∈ R

mi denotes the control input applied by the subsystem

controller that needs to be designed, and νit ∈ R
pi is the input

to the i-th subsystem that depends on the output of the other

subsystems in the in-neighbor set of node i. The subsystem has

two outputs: yiu,t ∈ R
oi which is the output that is used to design

the control input ui
t, and yiν,t ∈ R

ôi which is the output that is
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Fig. 1. Schematic of the system configuration.

used to compute the inputs νjt for other subsystems j for whom

i is an in-neighbor. We will define the exact relation between νit
and yjt , j ∈ Ni, later. Given that each subsystem corresponds to a

unique node in the graph, we use the terms subsystem dynamics

and node dynamics interchangeably. We assume that the state

transition function f i and the output functions gi, hi are of Class

C1. Without loss of generality, we assume that (xi = 0, ui =
0, νi = 0) is an equilibrium point of the subsystem Σi

n.

For future reference, define x� � [x1�, . . . , xN�] ∈ R
n,

u� � [u1�, . . . , uN�] ∈ R
m, y�u � [y1�u , . . . , yN�

u ] ∈ R
o,

y�ν � [y1�ν , . . . , yN�
ν ] ∈ R

ô, yi � [yi�u , yi�ν ] ∈ R
o, y� �

[y1�, . . . , yN�] ∈ R
o, and ν� � [ν1�, . . . , νN�] ∈ R

p.

As stated earlier, definitions of dissipativity are provided

in Appendix A for the sake of completeness. We make the

following assumption throughout the article.

Assumption 1 (Dissipative node dynamics): Each subsys-

tem Σi
n with dynamics defined in (1) is dissipative, in the set

Si
n, with respect to the supply-function

wi
n(u

i, νi, yiu, y
i
ν) = ui�Si�

u yiu − ‖ui‖2Ri
u
− ‖yiu‖

2
Qi

u
︸ ︷︷ ︸

�wi
u(u

i,yi
u)

+ νi�Si�
ν yiν − ‖νi‖2Ri

ν
− ‖yiν‖

2
Qi

ν
︸ ︷︷ ︸

�wi
ν(ν

i,yi
ν)

, (2)

where Si
u, R

i
u = (Ri

u)
�, Qi

u = (Qi
u)

�, Si
ν , R

i
ν = (Ri

ν)
�, and

Qi
ν = (Qi

ν)
� are matrices of appropriate dimensions.

For future reference, define Su � diag(Si
u), Ru � diag(Ri

u),
Qu � diag(Qi

u), Sν � diag(Si
ν), Rν � diag(Ri

ν), and Qν �

diag(Qi
ν). Further, denote εν = λmin(Qν), δν = λmin(Rν),

εu = λmin(Qu), δu = λmin(Ru).
Remark 1: Even though Assumption 1 states that the subsys-

tem (1) is dissipative, it is an assumption in the “open loop.”

Note that the design of the controller that determines the input

ui has not yet been specified. The dissipativity property required

for the system stability concerns the inputs µi and the outputs

yiµ and this may easily be disrupted by the additional dynamics

introduced through the design of the controller ui = ζi(xi). For

a simple illustration of this fact, if Assumption 1 holds, then we

have that the relation

t−1∑

t=t0

N∑

i=1

(
wi

u(u
i
t, y

i
ut
) + wi

ν(ν
i, yiν)

)
≥ 0 (3)

holds for all 0 ≤ t0 ≤ t. Consider the subsystem (1) in closed-

loop with a Lipschitz controller ui = ζi(xi) ∈ R
mi . Then, we

notice that

t−1∑

t=t0

N∑

i=1

wi
ν(ν

i
t , y

i
ν,t) ≥ −

t−1∑

t=t0

N∑

i=1

wi
u(ζ

i(xi
t), y

i
u,t) (4)

which implies that unless the controller has been designed to

ensure that wi
u(ζ

i(xi), yiu) ≤ 0, dissipativity of the subsystem

in the closed loop with the controller may not be preserved.

Edge dynamics: While the simplest form of coupling among

the subsystems would be to equate the inputs νit for the subsys-

tem i with the output yjt of subsystem j if (j, i) ∈ E , inspired

by [23], we consider a more general model that allows the

edges in the graph G to be described a dynamic system as well.

Specifically for edge k ∈ E , the dynamics are given by

Σk
e :

{
zkt+1

ωk
t

=
=
gk(zkt , µ

k
t )

jk(zkt , µ
k
t )

(5)

where zkt ∈ R
qi denotes the edge subsystem state at time t,µk

t ∈
R

ri denotes the input at time t, and ωk
t ∈ R

si denotes the output

at time t. We assume that the state transition function gk and the

output function jk are of Class C1. Once again, without loss of

generality we assume that (zk = 0, µk = 0) is an equilibrium

point of the subsystem Σk
e . For future reference, define z� �

[z1�, . . . , zM�] ∈ R
q , ω� � [ω1�, . . . , ωM�] ∈ R

s, and µ� �

[µ1�, . . . , µM�] ∈ R
r, where M denotes the cardinality of the

set E .

Assumption 2 (Dissipative edge dynamics): Each subsys-

tem Σk
e with its dynamics defined in (5) is dissipative in the set

Sk
e with supply-function

wk
e (µ

k, ωk) = µk�Sk�
e ωk − ‖µk‖2Rk

e
− ‖ωk‖2Qk

e
(6)

where Sk
e , R

k
e = (Rk

e )
�, Qk

e = (Qk
e)

� are matrices of appro-

priate dimensions.

For future reference, define Se � diag(Sk
e ), Re � diag(Rk

e ),

and Qe � diag(Qk
e). Further, define εe = λmin(Qe) and δe =

λmin(Re).
Interconnection among subsystems: The entire networked

system is defined through the interconnection of the subsystems
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Fig. 2. Electrical scheme of DGU i and transmission line k as consid-
ered in Example 1.

defined by the nodes and edges by relating the inputs ν and out-

puts yν of the node subsystems with the inputs µ and outputs ω
of the edge subsystems as specified below. Define s� � [x�, z�]
as the state variable of the overall network. Further, define

wu(u, yu) �
(
u�S�

u yu − ‖u‖2Ru
− ‖yu‖

2
Qu

)
,

wν(ν, yν) �
(
ν�S�

ν yν − ‖ν‖2Rν
− ‖yν‖

2
Qν

)
,

we(µ, ω) �
(
µ�S�

e ω − ‖µ‖2Re
− ‖ω‖2Qe

)
. (7)

Following [23], we model the interconnection among the sub-

systems through the equation

Σi :

[

ν

µ

]

=

[

0 B

−B� 0

][

yν

ω

]

(8)

for a suitably defined matrix B. Further, we make the following

assumption.

Assumption 3: Matrices Sν and Se in (7) satisfy

B�S�
ν − SeB

� = 0. (9)

An interpretation of (8) and Assumption 3 is that the edges

of the system do not generate any energy. Although (8) appears

intricate, most interconnected physical systems can be written

in this form (see [23] for examples from various domains;

an example of interconnected distributed generation units is

discussed in detail below). Similarly, several relevant subclasses

of dissipative systems including, but not limited to, L2 gain

systems and passive systems satisfy Assumption 3; see [22] for

other examples. For future reference, denote

Bδ(x) � εeI + xB�B (10)

Bε(y) � yI + δeBB
� (11)

where, as defined earlier, εe = λmin(Qe) and δe = λmin(Re).
Example 1: Consider the electrical schematic of a microgrid,

containing four distributed generating units (DGUs) and inter-

connected through four transmission lines, as shown in Figs. 2

and 3. The DGUs correspond to the nodes and the transmis-

sion lines correspond to the edges of the graph describing this

networked system. Let the DGUs and the transmission lines

be numbered as shown in Fig. 3. Each DGU contains a dc–dc

buck converter that is operating on a constant impedance load.

The controller to be designed sets ui
t ∈ (0, 1) for the i-th DGU.

Denote by Ikt the current through the k-th transmission line at

Fig. 3. Topology of network considered in Example 1.

time t and byV i
t the voltage across the i-th DGU at time t. Define

the state of the subsystem at the i-th node (corresponding to the

i-th DGU) by xi
t � [ Iit V

i
t ]

�. The dynamics of the DGU at

node i ∈ V := {1 . . . 4}, which forms the i-th subsystem, can

be written as

Iit+1 = Iit − (Ts/L
i)(RiIit + V i

t − ui
tVs)

V i
t+1 = V i

t + (Ts/C
i)(Iit −GiV i

t + νit) (12)

where Ts, L
i, Ci, Ri, Gi, V i

s ∈ R>0 are constants; ui
t ∈

(0, 1) is the local control input to be designed; and νit ∈ R is

the input to the i-th subsystem that depends on the output of the

other subsystems in its in-neighbor set through the relations

⎡

⎢
⎢
⎣

ν1t
ν2t
ν3t
ν4t

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

I4l,t − I1l,t
I1l,t − I2l,t
I2l,t − I3l,t
I3l,t − I4l,t

⎤

⎥
⎥
⎦

(13)

where Ikl,t denotes the current through the edge k. We denote the

outputs yiν,t � V i
t .

The edges correspond to the transmission lines connected to

each DGU. The dynamics of the transmission line at edge k ∈
E := {1 . . . 4} are given by

Ikl,t+1 = Ikl,t − (Ts/L
k
l )(R

k
l I

k
l,t + µk

t )

ωk
t = Ikl,t (14)

where Lk
l andRk

l ∈ R>0 are constants, Ikl,t ∈ R denotes the

state variable, and µk
t ∈ R denotes the input from the nodes

connected to the edge k defined as

⎡

⎢
⎢
⎣

µ1
t

µ2
t

µ3
t

µ4
t

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

V 2
t − V 1

t

V 3
t − V 2

t

V 4
t − V 3

t

V 1
t − V 4

t

⎤

⎥
⎥
⎦
. (15)

Define the incidence matrix B ∈ R
4×4 to model the network

topology. Specifically, if the ends of each edge k are arbitrarily

labeled with a + and a −, then the entries of B are given by

Bik =

⎧

⎪⎨

⎪⎩

+1, if i is the positive end of k

−1, if i is the negative end of k

0, otherwise.
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The interconnection between the nodes and edges can then be

expressed as

[

νt

µt

]

=

[

0 B

−B� 0

][

yν,t

ωt

]

=

[

BIl,t

B�Vt

]

. (16)

Controller design: We assume that each subsystem i wishes

to design its controller to maximize the expected discounted

cumulative reward

J i = E

[
∞∑

t=0

γtrit(x
i
t, u

i
t)

]

(17)

where γ ∈ (0, 1) is the discount factor, rit(x
i
t, u

i
t) is the per step

reward function evaluated at time t, and the expectation is over

any stochasticity that may arise due to the control policy itself.

We assume that each agent utilizes an RL algorithm to design

its controller. For a given control policy πi, we define the value

function V i
π , and the state-action value function Qi

π below

V i
π(x

i) = Eπi

[
∞∑

t=0

γtrit(x
i
t, u

i
t) | x

i
0 = xi

]

, (18)

Qi
π(x

i, ui) = Eπi

[
∞∑

t=0

γtrit(x
i
t, u

i
t) | x

i
0 = xi, ui

0 = ui

]

,

(19)

Ai
π(x

i, ui) = Qi
π(x

i, ui)− V i
π(x

i). (20)

Note that we do not assume that each subsystem utilizes the

same RL algorithm. However, we assume that the RL algorithms

converge.

Problem statement: Equations (1), (5), and (8) jointly de-

fine the networked system Σ under consideration, with state

defined as s�t � [x�
t , z

�
t ]. From Assumption 1, we know that

the each subsystem i is dissipative with the supply-function

wi
u(u

i, yiu) + wi
ν(ν

i, yiν). However, since the subsystems use

RL to design their local controllers, the closed loop subsystems

may not remain dissipative (see Remark 1). Further, the control

actions of all the subsystems may end up destabilizing the entire

networked system. We are interested in the problem of how

to design the RL algorithm at each subsystem to guarantee

the stability of the networked system. Specifically, consider a

networked system on a directed graph G = (V, E), described

by (1), (5), and (8), and satisfying Assumptions 1, 2, and 3.

Assume that the controller at each subsystem i is designed using

an RL algorithm to maximize the discounted cumulative reward

J i in (17). How should the updates in the RL algorithms be done

so that the control policies at convergence guarantee Lyapunov

stability of the overall networked system?

III. DISSIPATIVITY ENSURING RL

In this section, we present the main results of the article

through a new distributed RL algorithm that guarantees the

stability of the entire networked system. The proposed approach

is as follows.

1) CBFs for dissipativity: As stated in Remark 1, even

though each subsystem i is dissipative with supply-

function wi
u(u

i, yiu) + wi
ν(ν

i, yiν), with the controller for

the input ui, the subsystem may no longer remain dissipa-

tive with the input-output pair wi
ν(ν

i, yiν). Our first step

is to utilize CBFs to characterize the set of all controllers

that ensure that the closed loop subsystem i is dissipative

with respect to the input νi and output yi (c.f. Fig. 1) with

the supply-function

wi
d(ν

i, yi) = νi�Si�
ν yiν − δid‖ν

i‖22 − εid‖y
i‖22 (21)

where δid ∈ R and εid ∈ R are tuning parameters set by

the designer.

2) Projection-based RL algorithm for dissipativity: In the

second step, at each subsystem i, we consider the control

input generated by an RL algorithm that seeks to maxi-

mize the discounted cumulative reward given by (17) and

use a quadratic program (QP) to project this control input

onto the set of control inputs that ensure that the closed

loop subsystem remains dissipative with supply-function

wi
d(ν

i, yiν). Note that the RL algorithms used at different

nodes can be different.

3) Networked system stability: We finally show that if each

subsystem designs the controller to ensure that it is dissi-

pative, the entire networked system is also stable.

We now develop these steps one by one. We will make the

following assumption in the sequel.

Assumption 4: Denote δmin = min(δ1d, . . . , δ
N
d ), and

εmin = min(ε1d, . . . , ε
N
d ). The conditions

Bδ(δmin) ≥ 0,

Bε(εmin) ≥ 0,
(22)

hold, where Bδ, and Bε have been defined in (10), and the

inequality is in the positive semi-definite sense..

A. CBFs for Dissipativity

CBFs are now a popular tool for enforcing safety constraints

in nonlinear control systems. The following definition follows

the development in [37]–[39].

Definition 1 (Time-varying Zeroing CBFs): Consider a func-

tion b : R+ × R
n+q → R that is continuously differentiable in

both arguments. Define a closed set C as the super-level set of

this function as follows:

C �
{
s ∈ R

n+q | b(t, s) ≥ 0
}
. (23)

The function b(t, st) is a time-varying zeroing CBF, for the

networked system Σ described by (1), (5), and (8) and with state

st, if there exists an η ∈ [0, 1] such that for all st ∈ C, t ∈ R+

sup
ut∈Rm

[b(t+ 1, st+1) + (η − 1)b(t, st)] ≥ 0. (24)

CBFs can be used to derive sufficient conditions under which a

super-level set of a function of the state of the networked system

Σ is forward invariant. These conditions also characterize the

set of control inputs achieving such forward invariance through
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the relation

B(t, st) � {ut ∈ R
m|b(t+ 1, st+1) + (η − 1)b(t, st) ≥ 0} .

(25)

The following result, given for completeness for a discrete time

setting such as ours, shows that the set C defined in (23) is

forward invariant for every ut ∈ B(t, st).
Proposition 1 (Discrete-time time-varying CBFs): Con-

sider a time-varying zeroing CBF b(t, st) and its super level set

C defined in (23). Then any input ut ∈ B(t, st), where B(t, st)
is given in (25), will render the set C forward invariant.

Although dissipativity is a property defined by the input,

and the output, we can utilize CBFs to characterize the set of

controllers that ensures dissipativity in the closed loop of the

subsystems, which in turn guarantee the stability of the overall

networked system [40]. Following Proposition 1, we define a

CBF for each subsystem i as follows. Denote

w̃i(ui, νi, yiu, y
i
ν) � wi

n(u
i, νi, yiu, y

i
ν)− wi

d(ν
i, yi). (26)

Then, define the CBF

bi(t, xi
t) � −

t−1∑

τ=t0

w̃i(ui
τ , ν

i
τ , y

i
u,τ

, yiν,τ ), (27)

whose super-level set is given by

Ci =
{
xi
t ∈ R

ni | bi(t, xi
t) ≥ 0

}
. (28)

To use the CBF bi(t, xi
t) to enforce dissipativity of the closed

loop subsystem, we proceed as follows. Denote

Di(xi
t, ν

i
t) � {ui ∈ R

mi | − w̃i(ui
t, ν

i
t , y

i
u,t, y

i
ν,t)

+ ηibi(t, xi
t) ≥ 0}, (29)

where ηi ∈ [0, 1] is a designer specified parameter. We can then

state the following result.

Proposition 2 (CBF for dissipativity): Consider the problem

formulation in Section II. If ui ∈ Di(xi, νi) at all time steps,

then the subsystem (1) is dissipative with respect to input νi and

output yi with supply-function wi
d(ν

i, yiν).
From Proposition 2, if the set Di(xi

t, ν
i
t) is non-empty, then

any control input ui
t ∈ Di(xi

t, ν
i
t) renders (1) dissipative with

respective to the supply-function wi
d(ν

i
t , y

i
νt
). We can choose

a particular control input in this set from other considerations,

such as minimizing the control cost. We can also use this set to

ensure that the control input from an RL algorithm ensures that

the subsystem is dissipative as shown next.

B. Dissipativity Ensuring RL Policies

We now consider the case when an RL algorithm is used for

designing the control inputs ui and show how the input can be

chosen to one that preserves the dissipativity of the closed-loop

subsystemΣi
n with respective to the supply-functionwi

d(ν
i, yiν).

The key idea is similar to shielded RL techniques [11], [41],

[42] and uses the CBF-based characterization of the set of

dissipativity ensuring controllers obtained above to both project

the control policy and to guide the future exploration of the RL

algorithm.

We assume that the RL algorithm proceeds in an episodic

fashion. Let πRLi

k denote the policy at the k-th policy iteration

of the RL algorithm. This policy will in general be stochastic

and may be parameterized by some parameters θik that may

correspond to, e.g., the neural network being used to learn the

policy. The paramterization is not relevant to our arguments and

to minimize notational complexity, we suppress it in the sequel.

Let uRLi

k (xi
t) ∼ πRLi

k (·|xi
t). Our algorithm proceeds by project-

ing this input on the set of dissipativity ensuring controllers.

Specifically, we propose that the overall dissipativity ensuring

control input (denoted by uDEC) in the k-th episode takes the

following structure:

uDECi

k (xi
t) = uFFi

k (xi
t) + uCBFi

k (xi
t, u

FFi

k ) (30)

whereuFFi

k (xi) represents the feedforward compensation, given

by

uFFi

k (xi
t) = uRLi

k (xi
t) +

k−1∑

j=0

uCBFi

j (xi
t, u

FFi

j (xi
t)) (31)

and uCBFi

k is computed using the optimization problem:

uCBFi

k (xi
t, u

FFi

k ) = arg min
ai
t∈Rmi

‖ait‖

s.t. − w̃(ui
t, ν

i
t , y

i
ut
, yiν) + ηibi(t, xi

t) ≥ 0,

ait + uFFi

k (xi
t) = ui

t. (32)

As in the usual CBF-based works, the formulation in the re-

lation (30) seeks to minimize the energy of the perturbation

needed to project the control input in the set of dissipativity

ensuring controllers [11], [37]. The feedforward compensation

in (31) is split into two parts: uRLi

k (xi) represents the control

input obtained from the RL policy. However, this might not

ensure dissipativity of the closed loop subsystem. The second

term in (31) represents our best guess to rectify the input to

ensure dissipativity. Furthermore, the termuCBFi in (30) may be

interpreted as the feedback part of the controller. The complete

algorithm description is given in Algorithm III-B.

We assume that the parameter Max_Episodes has been

chosen to be large enough that the algorithm converges. Upon

convergence, denote uDECi(xi
t) to be the final deployed con-

troller ui
k(x

i
t) for k = Max_Episodes. The following result

shows that Algorithm III-B renders the closed loop subsystem

dissipative. For brevity, we skip the proof as it is a direct

consequence of Proposition 2 and Definition 2.

Proposition 3: Consider the problem formulation in Sec-

tion II. Let the controlleruDECi(xi
t) designed with Algorithm III-

B be used as the input ui
t for subsystem (1). If there exists a

solution to the optimization problem (32) for all (xi, νi), then the

closed-loop subsystem (30) is dissipative with supply-function

wi
d(ν

i, yiν).

Remark 2: Computing uFFi

k (x) requires the solution of k
optimization problem. Specifically, from the second term on the

right side of (31), to compute uFFi

k (xi
t), we need to solve k − 1

optimization problems of the form defined in (32). Further, to

compute uFFi

k (xi
t) using (31), we need to solve it one more time.

Thus, in total, we need to solvek optimization problems. Further,
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the knowledge of all uRLi

0 , . . . , uRLi

k−1 is required. Consequently,

for large k, the proposed algorithm can become memory in-

tensive and computationally expensive. However, we need not

compute uFFi

k (x) very accurately because of the presence of

the feedback term uCBFi

k . This raises the possibility of approxi-

mating uFFi

k (x) by using a feed-forward neural network ubar
φk

to

learn the term
∑k−1

j=0 u
CBFi

j . In this case, (31) should be replaced

by

uFFi

k (x) = uRLi

k (x) + ubar
φi
k
(x) (33)

Fig. 4. (Top) Time evolution of voltage with trained RL controller
without proposed CBF component. (Middle) If the CBF component is
included, time evolution of CBF, (Bottom) and voltage across the load of
each DGU, considering a load variation of 5% at time t = 0.05 s.

where φk parameterizes the neural network, which is updated

using the data from previously collected samples.

The following is the main result of the article, which shows

that the controller calculated using Algorithm III-B stabilizes

the networked system.

Theorem 4 (Stability of networked system in closed-

loop): Consider the problem formulation in Section II with

Assumption 4. If ui
t is chosen to be equal to uDECi(xi

t) at all

time steps and for all subsystems i, then the networked system

defined by (1), (5), and (8) is Lyapunov stable with respect to the

origin. Further, suppose that Bδ(δmin) > 0, Bε(εmin) > 0, and

Ru � diag(Ri
u) > 0. If the systems (1) and (5) are zero state

detectable, then the networked system defined by (1), (5), and

(8) is also asymptotically stable with respect to the origin.

The definition of zero-state detectability is provided in Defi-

nition 3 of Appendix A.

Remark 3 (Decentralized and Distributed): In (32), each

agent needs to evaluate w̃ which requires the information of νt.
From (8), computing νt requires information from its neighbors.

Then, the proposed RL algorithm is distributed. However, in the

event when the desired supply-function wd is equal to wν , then

w̃ = wu. Consequently, the RL algorithm takes a decentralized

form.
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Fig. 5. Comparison of accumulated rewards from nodes of dc microgrid for each episode during training using DDPG and the proposed dissipative
CBF approach.

IV. CASE STUDY: DC MICROGRID

We now evaluate the proposed CBF-based RL Algorithm III-

B in simulation. We consider the dc microgrid in Example 1 with

4 DGUs, interconnected through resistive and inductive lines as

shown in Fig. 3. The control objective is to regulate the voltage

V i across the load of each DGU to its desired value V
i
∈ R.

Thus, we define the set of all feasible forced equilibria of the

node subsystems (12) and the edge subsystems (14) as

Cn
i =

{

(I
i
, V

i
, ui, νi) ∈ R

4| RiI
i
+ V

i
− uiV i

s = 0,

I
i
−GV

i
+ νi = 0

}

(34)

and

Ce
k =

{

(I
i

l, µ
i) ∈ R

2|Ri
lI

i

l + µi = 0
}

(35)

respectively. In the development above, we have assumed that

(s = 0) is the desired equilibrium. However, the results are

agnostic to the choice of the equilibrium. Since the objective in

this case study is to stabilize the system at a nontrivial operating

point (I
i
, V

i
, ui, νi, I

i

l, µ
i) ∈ Cn

i × Ce
k, we shift the equilibrium

of the networked system to the trivial equilibrium via a simple

change of variables. In what follows, for a given variable ν,

denote the error between ν̃ = ν − ν.

In [43], the authors show that the subsystems at the node (12)

and the edge (14) are dissipative with the supply-functions

wi
n(ũ

i, ν̃i, ỹiu, ỹ
i
ν) = ũi�ỹiu −Ri‖ỹiu‖

2
2

︸ ︷︷ ︸

wi
u(ũ

i,ỹi
u)

+ ν̃i�ỹiν −Gi‖ỹiν‖
2
2

︸ ︷︷ ︸

wi
ν(ν̃

i,ỹi
ν)

(36)

and

wk
e (µ̃

k, ω̃k) = µ̃k�ω̃k −Rk
l ‖ω̃

k‖22 (37)

respectively. As a next step, we define the desired supply-

function corresponding to (21) as

wi
d(ν̃

i, ỹi) = wi
ν(ν̃

i, ỹiν)−Ri‖ỹiu‖
2
2

where we chose δid = 0, εid = Ri, which satisfies (22) in As-

sumption 4. Consequently, using (26) we compute the resulting

CBF as

bi(t, xi
t) = −

t−1∑

τ=t0

(
ũi�ỹiu −Gi‖ỹiν‖

2
2

)
, t ≥ t0 ≥ 0 (38)

and its super-level is defined as in (28). Finally, we define the

instantaneous reward function at each node as

ri(V i) := −ki
(

Ṽ i

)2

(39)

where ki ∈ R>0. For numerical simulation, the parameters of

the microgrids are taken from [43, Tables 3 and 4].

Though the general framework described in the preceding

can be used with almost any RL algorithm, we chose to use

deep deterministic policy gradient (DDPG) [44] to showcase the

performance of Algorithm III-B. Fig. 5 compares the accumu-

lated rewards of vanilla DDPG and the proposed dissipativity-

ensuring Algorithm III-B using DDPG during training. As the

plot shows, Algorithm III-B coupled with DDPG converges

faster that the vanilla DDPG algorithm; however, this may not

be a general observation.

Next, we validate the performance of the controllers designed

using the proposed approach. The voltage across the load and

the value of the CBF at each node are plotted in Fig. 4. At

t = 0 s, we start by initializing the microgrid near the desired

operating point. We observe that the voltage signals stabilize

to their desired values. However, in the dc microgrid, the value

of load Gi is unknown and subject to change over time. To

verify the robustness of the controller with respect to this un-

certainty, the load at each DGU was increased by 5% of its

original value at t = 0.05 s. In Fig. 4 we see that, after a minor

perturbation, the voltage signals again stabilized to their desired

values. Furthermore, the CBF is positive, thus validating the

dissipativity-ensuring nature of the proposed approach.

V. CONCLUSION

We considered the problem of designing distributed con-

trollers to stabilize a class of networked systems, where each

subsystem is dissipative. We assumed that each subsystem de-

signs a local controller using reinforcement learning to optimize

its own reward function. We develop an approach that enforces

dissipativity conditions on the local controller design to guar-

antee stability of the entire networked system. The proposed

approach was illustrated on a microgrid example.

APPENDIX A
DISSIPATIVITY

Consider the following discrete time nonlinear system with

state x ∈ R
n and inputs a ∈ R

m
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{
xt+1

yt

=
=

f(xt, at),
h(xt, at)

(40)

where the functions f, h as assumed to be sufficiently smooth.

Consider the mapping w : R
m,Rm → R. Then, dissipativity of

systemΣwithw(at, yt) as supply-function is defined as follows:

Definition 2 (Dissipativity [45]): System (40) is said to be

dissipative with respect to the supply-functionw(at, yt), if there

exists a nonnegative function V : R
n → R+, called as storage

function, satisfying V(0) = 0 such that for all st0 ∈ X , all t >
t0 ≥ 0 and all at ∈ A

V(xt)− V(st0) ≤ −
t−1∑

i=t0

D(xt) +
t−1∑

i=t0

w(at, yt) (41)

where D(xt) ∈ R+ is a nonnegative function, and st is the state

at time t, resulting from state st−1 with input ut−1. Furthermore,

we call the system QSR dissipative if the inequality (41) holds

with

w(at, yt) = −‖yt‖
2
Q + a�t Syt − ‖at‖

2
R (42)

where Q = Q�, S, and R = R� are matrices of appropriate

dimensions.

Definition 3 (Zero-state detectability): Consider (40) with

f(0, 0) = 0, and h(0, 0) = 0. Then system (40) is called zero-

state detectable if at = 0 and yt = 0 ⇒ limt→∞ xt → 0.

APPENDIX B
PROOFS

Proof of Proposition 1: Without loss of generality, we assume

the initial state as s0 ∈ ρ0 at time t = 0 and b(0, s0) ≥ 0. It

suffices to show that b(t, st) ≥ 0, for all at ∈ B(t, st). From

(24) and (25), for all at ∈ B(t, st), we have

b(t+ 1, st+1) ≥ (1− η)b(t, st). (43)

Now, consider the following boundary value problem:

Xt+1 = (1− η)Xt (44)

with initial condition X0 = b(0, s0) ≥ 0. Then, the solution to

(44) is Xt = (1− η)tX0 ≥ 0, ∀k ∈ Z
+, 0 < η ≤ 1. From (43)

and (44)

b(t, st) ≥ Xt. (45)

Thus, C is forward invariant.

Proof of Proposition 2: Consider the barrier function bi(t, xi
t)

defined in (28). From Proposition 1, for all ut ∈ Di(xi
t, νt),

it implies that Ci is forward invariant. Consequently, we have

bi(t, xi
t) = −

∑t−1
τ=t0

w̃ ≥ 0

⇒
t−1∑

τ=t0

w̃ ≤ 0 (46)

⇒
t−1∑

τ=t0

(wn − wd) ≤ 0 ⇒
t−1∑

τ=t0

wd ≥
t−1∑

τ=t0

wn. (47)

From Assumption 1 the subsystem (1) is dissipative, which fur-

ther implies
∑t−1

τ=t0
wd ≥

∑t−1
τ=t0

wn ≥ 0. From Definition 2,

we conclude the proof.

Proof of Theorem 4: As a consequence of Assumption 1,

Proposition 3 implies that node dynamics in closed-loop with

control input (30) are dissipative with supply-function (21)

wi
d(ν

i, yi). Consequently, for all i ∈ V there exists a storage

function Vi
d : R

n → R+, satisfying

Vi
d(x

i
t) ≤ Vi

d(x
i
t0
) +

t−1∑

t=t0

wi
d(ν

i, yi). (48)

From Assumption 2, the edge dynamics are dissipative

with supply-function wk
e (µ

k, ωk). Consequently, for all k ∈
{1, . . . ,M}, there exists a storage function Vi

e : R
m → R+,

satisfying

Vk
e (z

k
t ) ≤ Vi

e(z
k
t0
) +

t−1∑

t=t0

wk
e (µ

k
t , ω

k
t ). (49)

Consider V(st) =
∑N

i=1 V
i
d(x

i
t) +

∑M
k=1 V

k
e (z

k
t ), conse-

quently

V(st)− V(st0) (50a)

≤
N∑

i=1

t−1∑

t=t0

wi
d(ν

i, yi) +

M∑

k=1

t−1∑

t=t0

wk
e (µ

k
t , ω

k
t )

=
t−1∑

t=t0

N∑

i=1

wi
d(ν

i, yi) +
t−1∑

t=t0

M∑

k=1

wk
e (µ

k
t , ω

k
t )

≤
t−1∑

t=t0

(
ν�S�

ν yν − δmin‖ν‖
2
2 − εmin‖y‖

2
2 + µ�S�

e ω − δe‖µ‖
2
2

−εe‖ω‖
2
2

)
(50b)

≤
t−1∑

t=t0

(
ω�B�S�

ν yν − δmin‖Bω‖
2
2 − εmin‖yν‖

2
2 − εmin‖yu‖

2
2

−y�ν B
�S�

e ω − δe‖Byν‖
2
2 − εe‖ω‖

2
2

)
(50c)

= −
t−1∑

t=t0

(

‖ω‖2Bδ(δmin)
+ ‖yν‖

2
Bε(εmin)

+ εmin‖yu‖
2
2

)

.

(50d)

In (50a), we use (48) and (49). In (50b), we use the interconnec-

tion laws from (8). In (50c), we use Assumption 3. This implies

that the overall networked system is stable.

Furthermore, considerBδ(δmin) > 0 andBε(εmin) > 0. Then

from (50d) there exists a forward invariant setΠ and by LaSalle’s

invariance principle, the solutions that start in Π converge to the

largest invariant set contained in Π ∩ {s ∈ R
n+p|ω = 0, y =

0}. Moreover, from (8) this implies µ = 0, ν = 0. From As-

sumption 1 and Ru > 0, this further implies that u = 0. Finally

on this set, we have (y = 0, u = 0, ν = 0) and (ω = 0, µ = 0).
Given that that subsystems (1) and (5) are zero-state detectable,

following [46, Corollary 4.2.2], the trajectories in Π converges

asymptotically to the largest invariant set contained inΠ ∩ {s =
0}.
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