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Reinforcement Learning Based Distributed
Control of Dissipative Networked Systems

Krishna Chaitanya Kosaraju *“, S. Sivaranjani

Abstract—We consider the problem of designing dis-
tributed controllers to stabilize a class of networked sys-
tems, where each subsystem is dissipative and designs a
reinforcement learning based local controller to maximize
an individual cumulative reward function. We develop an
approach that enforces dissipativity conditions on these
local controllers at each subsystem to guarantee stability
of the entire networked system. The proposed approach is
illustrated on a dc microgrid example, where the objective
is to maintain voltage stability of the network using locally
distributed controllers at each generation unit.

Index Terms—Reinforcement learning, dissipativity the-
ory, control barrier functions, distributed control.

[. INTRODUCTION

ISTRIBUTED control of large-scale networked systems
D is a classical research topic, with practical applications
in a variety of fields such as transportation, chemical reaction,
and hydraulic networks, multibody mechanical systems, and
microgrids [ 1]-[5]. The problem provides many challenges such
as nonclassical information patterns, computational complexity
due to the large state-space, scalability of control design meth-
ods, complex system dynamics that may be imperfectly known,
and so on. Despite many important advances, the field continues
to be a focus of intense research.

Aninteresting direction in recent times has been the utilization
of reinforcement learning (RL) for distributed and multiagent
control. RL is especially powerful for the control of systems
where the dynamics and/or the environment are unknown [6].
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In a typical RL-based design, the aim is to learn a controller
that maximizes its cumulative reward while exploring the un-
known environment. A wide variety of model-based and model-
free algorithms is now available (see, e.g., [7] for a survey).
While initially developed for single agent settings, the scope
of RL-based techniques has also been expanded to multiagent
networked systems (see [8]-[10] for surveys). Further, while the
typical focus of RL-based techniques for controller design has
been through simulations and demonstrations, a growing line
of research now considers obtaining guarantees about concerns
traditional to control theory, e.g., stability, safety, and robustness,
through controllers obtained using RL [11], etc.

In this article, we consider the problem of guaranteeing sta-
bility when RL is used for distributed control of networked
dynamical systems. Specifically, consider a large-scale system
consisting of many subsystems that are coupled through their
inputs and outputs, such as a network of microgrids. Each
subsystem designs a local controller based on information about
the subsystem state, inputs, and outputs. In particular, we assume
that the controller is implemented using an RL algorithm since
the dynamics of the subsystems may be unknown. Of note,
however, different controllers may potentially use different RL
algorithms. How do we design the controllers that guarantee
that the entire system is still stable? There are at least two
challenges here. First, we would like the control strategy to be
distributed. While there exists wide literature on RL techniques
for multiagent systems, distributed control strategies using RL
that provide guarantees like stability, safety, and robustness [12]
are still scant. Works that consider the problem of guaranteeing
stability and robustness with RL controllers have largely been
limited to contexts such as model-based RL and LQR designs
for single-agent systems [13]-[16]. Second, most available liter-
ature on multiagent RL considers the case when all subsystems
implement the same RL algorithm and further share informa-
tion such as a global state or rewards with other subsystems.
Development of RL-based controllers at the subsystems that
ensure stability and robustness for the entire networked system,
especially when different agents may not use the same RL
algorithm, largely remains an open problem.

As a first step toward addressing this problem, we focus on
a class of networked systems where each subsystem is dissipa-
tive [17] in open loop. Dissipativity is an input—output concept
that can be used to guarantee a broad range of useful properties
such as Lo stability, robustness with respect to disturbances,
and stability under time-delays [18]-[20] and has been widely
used in traditional control theory for distributed controller
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synthesis [21]-[29]. In the context of RL, dissipativity has
been used to enhance the convergence/performance of various
learning schemes [30] and has been enforced as a system prop-
erty for specific systems like Port-Hamiltonian systems [31],
[32]. However, there has been limited literature on enforcing it
using model-free RL techniques or on exploring its potential to
permit distributed controller design that guarantees properties
such as stability at the system level (a notable exception for
Lo-stability of cascade interconnections of dynamically coupled
linear systems is in [33]). The challenge in our formulation is
that an RL controller aiming to optimize the local performance
metric at a subsystem can easily disrupt the dissipativity of the
subsystem with respect to the variables that it exchanges with
the other subsystems.

In this article, we develop an RL-based distributed control
design approach that exploits the dissipativity property of indi-
vidual subsystems to guarantee stability of the entire networked
system. Our proposed approach can be summarized as follows.
We first use a control barrier function (CBF) to characterize the
set of controllers that enforce a dissipativity condition at each
subsystem (Propositions 2 and 3). We impose a minimal energy
perturbation on the control input learned by the RL algorithm
to project it to an input in this set (Theorem 3). Together, these
results guarantee the stability of the entire networked system
even when the subsystems utilize potentially heterogeneous RL
algorithms to design their local controllers (Theorem 4).

Our approach of utilizing a CBF to impose the constraint that
the controller designed for each subsystem using RL preserves
the dissipativity of the subsystem in the closed loop parallels
the use of CBFs to enforce safety in RL algorithms [11]. CBFs
guarantee the existence of control inputs under which a super-
level set of a function (typically representing specifications like
safety) is forward invariant under a given dynamics [34]-[36].
However, their use to impose input—output properties, such as
dissipativity, is less studied. Here, we utilize CBFs to character-
ize the set of dissipativity ensuring controllers, and then learn
a dissipativity ensuring controller for each subsystem from this
set.

The main contribution of this work is a distributed approach to
ensure stability of a networked system with dissipative subsys-
tems when the individual subsystems utilize RL to design their
own controllers. Beyond the specific stabilization problem that
we focus on, integrating dissipativity (and other input—output)
specifications into RL-based control is useful since it allows
a wide landscape of tools from classical dissipativity theory
to be integrated into RL-based control design. The proposed
algorithm guarantees stability irrespective of the choice of the
RL algorithm used at each subsystem. In particular, the results
also hold for heterogeneous RL algorithms being used at each
subsystem. We also note that as opposed to most existing lit-
erature on multiagent RL, the proposed approach requires only
the output from neighboring subsystems to learn the control
policy at each subsystem. In other words, to guarantee stability,
no information about the states, rewards, or policies of other
subsystems is required.

The rest of the article is organized as follows. In Section II, we
present the model of the networked system, state the necessary

assumptions, and provide the problem formulation. In Sec-
tion I1I-A, we utilize CBFs to characterize the set of controllers
that guarantees dissipativity of each subsystem. In Section I1I-B,
we present an RL algorithm to compute a control input that
preserves the dissipativity of each subsystem, and show that it
stabilizes the networked system. In Section IV, we numerically
illustrate our approach on a dc microgrid application. Finally, in
Section V, we provide some directions for future work. Proofs
of all the results in the article, and the definitions of dissipativity,
are provided in the Appendix.

Notation: R™ denotes the space of m-dimensional real vec-
tors, R denotes the space of real numbers, and R ; denotes the set
of all positive real numbers. @ denotes the Kronecker product.
2! denotes the transpose of a vector or a matrix z and ||z]|2
(or simply ||z||) denotes its 2-norm. For a symmetric matrix
M and a vector z of compatible dimensions, ||z]|3, is defined
to be equal to 2T Mz. Given square matrices M, M, ...,
M,,, define the matrix diag(}M;) as the block diagonal matrix
whose main-diagonal blocks are matrices My, Mo, ..., M,,
and all OFF-diagonal blocks are zero matrices. For a symmetric
matrix M, Anin(M) denotes its smallest eigenvalue. I denotes
the identity matrix with dimensions clear from the context. A
directed graph G = (V, &) is defined by a finite set of nodes (or
vertices) )V and a set of directed edges (or arcs) &, together with
a mapping from & to the set of pairs of V. By convention, we
disregard self-loops. Thus, to any arc e € &£, there corresponds
an ordered pair (u,v) € V x V, with u # v, representing the
head vertex u and the tail vertex v. Given this, a shorthand
notation is to simply say (u,v) € €. A graph is undirected if
whenever (u,v) € € then (v,u) € £. The in-neighbor set N;
of node ¢ is the set of all vertices j such that (j,4) € €. Let
D C R™. A function f:D — R™ is Lipschitz if there exists
a constant L satisfying ||f(b) — f(a)||2 < L||b — al|2 for all
a, b € D, and class C if it is continuously differentiable. We
denote a value obtained by sampling the probability distribution
function fy () for a random variable X as y ~ fx (z). When
the random variable is clear from the context, we denote the
distribution function simply by f(z).

Il. PROBLEM FORMULATION

We adapt the general framework described in [23] and is
shown in Fig. 1.

Node dynamics: Consider a networked system described by a
strongly connected directed graph G = (V, £), where each node
i € V is a subsystem X¢ , given by

Eh S Yue= 9z w) (1
Yor = (i, vi)

where attime ¢, xi € R™ denotes the state of the ¢-th subsystem,
ui € R™i denotes the control input applied by the subsystem
controller that needs to be designed, and v{ € R? is the input
to the i-th subsystem that depends on the output of the other
subsystems in the in-neighbor set of node i. The subsystem has
two outputs: y;t € R which is the output that is used to design
the control input u, and 7, , € R% which is the output that is
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Fig. 1. Schematic of the system configuration.

used to compute the inputs Vf for other subsystems j for whom
i is an in-neighbor. We will define the exact relation between v/}
and yi ,j € N;, later. Given that each subsystem corresponds to a
unique node in the graph, we use the terms subsystem dynamics
and node dynamics interchangeably. We assume that the state
transition function f* and the output functions g*, h' are of Class
C'. Without loss of generality, we assume that (2 = 0,u’ =
0,7% = 0) is an equilibrium point of the subsystem ¥ .

For future reference, define a:T [:Jc1T 2N e R™,
UT% ull o NT]ERm yu 2 [ylT ,...,yiVT]ERZ,
v =yp's. ) ] €RO, y—[yu,yyieR", y' =
W', yNT e RO and v & 1T NT] € Rp.

As stated earlier, definitions of dissipativity are provided
in Appendix A for the sake of completeness. We make the
following assumption throughout the article.

Assumption 1 (Dissipative node dynamics): Each subsys-
tem XY, with dynamics defined in (1) is dissipative, in the set

SZ

* , with respect to the supply-function

wh (' vyl vh) = TSyl — | — vk 6
Ll (ulyl)
+ Sy = R = luild: s @)
2wl (vi,yi)
where S}, R, = (R.,)", Qi = (Qi)", Si, R, = (R})", and

Q! = (Q%)" are matrices of appropriate dimensions.

For future reference, define S,, = diag(S?,), R, = diag(R?,),
Qu £ diag(QL). S, 2 diag(S}). R, = diag(R.), and Q, 2
diag(Q?). Further, denote €, = Amin(Q.), 0y = Amin(Ry),
€y = )\min(Qu)’ 6u = )\min(Ru>-

Remark 1: Even though Assumption 1 states that the subsys-
tem (1) is dissipative, it is an assumption in the “open loop.”
Note that the design of the controller that determines the input
u® has not yet been specified. The dissipativity property required
for the system stability concerns the inputs p* and the outputs
yL and this may easily be disrupted by the additional dynamics
introduced through the design of the controller u? = (*(z*). For
a simple illustration of this fact, if Assumption 1 holds, then we
have that the relation

N

pE

t=tg i=1

o (ugyh,) +wh (VL)) >0 3)

holds for all 0 < ¢y < t. Consider the subsystem (1) in closed-
loop with a Lipschitz controller u* = (?(z*) € R™:. Then, we
notice that

t—1 N . ) . t—-1 N ) ) ) )
SO whwiyh) = =D 0> wi(Ch),vh,) @
t=to i=1 t=tg i=1

which implies that unless the controller has been designed to
ensure that w? (C*(z*),y’) < 0, dissipativity of the subsystem
in the closed loop with the controller may not be preserved.
Edge dynamics: While the simplest form of coupling among
the subsystems would be to equate the inputs v; for the subsys-
tem 7 with the output y} of subsystem j if (j,4) € &, inspired
by [23], we consider a more general model that allows the
edges in the graph G to be described a dynamic system as well.
Specifically for edge k € £, the dynamics are given by

E k(i k  k
Ek . ZtJrl_g (Zt 7/“%) 5
© { w =5*(2F, uy) ®)

where zF € R% denotes the edge subsystem state attime ¢, u¥ €

R denotes the input at time £, and wf’ € R*# denotes the output
at time ¢. We assume that the state transition function g* and the
output function 5% are of Class Ct. Once again, without loss of
generality we assume that (z¥ = 0, u* = 0) is an equilibrium
point of the subsystem Ek For future reference, define 2" =

17, M e R, wT 2w, ., wMT)eR%, and " &
[T, ..., u™MT] € R", where M denotes the cardinality of the
set £.

Assumption 2 (Dissipative edge dynamics): Each subsys-
tem X with its dynamics defined in (5) is dissipative in the set
SF with supply-function

kTSkT k

wi () = By~ [H B ©

where 5%, RE = (RE)T, QF = (Q4)"
priate dimensions.

For future reference, define S, = diag(S¥), R, = diag(Rk ),
and Q. = diag(Q¥). Further, define ¢, = Apmin(Q.) and &,
)\min(Re)-

Interconnection among subsystems: The entire networked
system is defined through the interconnection of the subsystems

are matrices of appro-
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Fig. 2. Electrical scheme of DGU 7 and transmission line k as consid-

ered in Example 1.

defined by the nodes and edges by relating the inputs v and out-
puts y,, of the node subsystems with the inputs ; and outputs w
of the edge subsystems as specified below. Define s £ [z, 2]
as the state variable of the overall network. Further, define

wu(u yu) £ (u' Syyu = Julk, = llvall,)

A

wy(v,ye) £ (VT SSy = ViR, — lwlld,)
we(p,w) & (1" Sew = ullh, = llwl,) - 7

Following [23], we model the interconnection among the sub-
systems through the equation
Yo
[ ] (®)
w

|-

for a suitably defined matrix 3. Further, we make the following
assumption.
Assumption 3: Matrices S, and S, in (7) satisfy

B'S! —S.B" =0. 9)

0 B
-B" 0

An interpretation of (8) and Assumption 3 is that the edges
of the system do not generate any energy. Although (8) appears
intricate, most interconnected physical systems can be written
in this form (see [23] for examples from various domains;
an example of interconnected distributed generation units is
discussed in detail below). Similarly, several relevant subclasses
of dissipative systems including, but not limited to, £, gain
systems and passive systems satisfy Assumption 3; see [22] for
other examples. For future reference, denote

Bs(z) 2 eI +2B'B (10)
B.(y) £yl +0.BB" (11)

where, as defined earlier, €, = Amin(Q.) and 6, = Amin(Re).
Example 1: Consider the electrical schematic of a microgrid,
containing four distributed generating units (DGUs) and inter-
connected through four transmission lines, as shown in Figs. 2
and 3. The DGUs correspond to the nodes and the transmis-
sion lines correspond to the edges of the graph describing this
networked system. Let the DGUs and the transmission lines
be numbered as shown in Fig. 3. Each DGU contains a dc—dc
buck converter that is operating on a constant impedance load.
The controller to be designed sets u¢ € (0, 1) for the i-th DGU.
Denote by I the current through the k-th transmission line at

1 2
iy Iy

4 3
I 17

Fig. 3. Topology of network considered in Example 1.

time t and by V! the voltage across the i-th DGU at time ¢. Define

the state of the subsystem at the i-th node (corresponding to the

i-th DGU) by xi £ [I} V;!]". The dynamics of the DGU at

node ¢ € V := {1...4}, which forms the i-th subsystem, can
be written as

Ly =1 = (T LY (BT + V) = wVy)

=V (/O -GV ) (12)

where Ty, L}, C') R, G*, Vi € Ry are constants; u} €
(0, 1) is the local control input to be designed; and v} € R is
the input to the i-th subsystem that depends on the output of the
other subsystems in its in-neighbor set through the relations

th Il4,t - Ill,t
Vt2 _ Ill,t - IZQ,t (13)
V? B Ilz,t - Iﬁt
vl 113,15 — Il‘%t

where l’ft denotes the current through the edge k. We denote the
outputs y/, , = V/'.

The edges correspond to the transmission lines connected to
each DGU. The dynamics of the transmission line at edge k €
& :={1...4} are given by

Ilk,:t—&-l = Il]ft - (Ts/Lf)(RfIlk:t +py)
wy = If, (14)

where LF and RF € R- are constants, I, € R denotes the

state variable, and ¥ € R denotes the input from the nodes
connected to the edge k defined as

ut; Vti - Vt;
i Vt - Vt

_ 15
3 il A (1)
It V-V

Define the incidence matrix B € R*** to model the network
topology. Specifically, if the ends of each edge k are arbitrarily
labeled with a + and a —, then the entries of 53 are given by

+1,  if%is the positive end of k
Bi, = ¢ —1,  ifiis the negative end of k
0, otherwise.
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The interconnection between the nodes and edges can then be
expressed as

yu,t

Wt

HE

Controller design: We assume that each subsystem ¢ wishes
to design its controller to maximize the expected discounted
cumulative reward

0 B
-B" 0

BI; ¢

16
5TV, (16)

a7

ZV ry(ay, uy ]

where v € (0, 1) is the discount factor, 7 (x%, ul) is the per step
reward function evaluated at time ¢, and the expectation is over
any stochasticity that may arise due to the control policy itself.
We assume that each agent utilizes an RL algorithm to design
its controller. For a given control policy 7, we define the value
function V%, and the state-action value function Q% below

i i
E ’Yrtxtvut IO»T],

Vi(a') = Ep (18)

Q;(J;l,ul) =K,

-
S (el | 7 = o, — ] |
t=0

(19)

A (@' ul) = Qr(ah u') = Va(a'). (20)
Note that we do not assume that each subsystem utilizes the
same RL algorithm. However, we assume that the RL algorithms
converge.

Problem statement: Equations (1), (5), and (8) jointly de-
fine the networked system X under consideration, with state
defined as s £ [z, 2/]. From Assumption 1, we know that
the each subsystem i is dissipative with the supply-function
wl (ut, yl) +wi (v, yl). However, since the subsystems use
RL to design their local controllers, the closed loop subsystems
may not remain dissipative (see Remark 1). Further, the control
actions of all the subsystems may end up destabilizing the entire
networked system. We are interested in the problem of how
to design the RL algorithm at each subsystem to guarantee
the stability of the networked system. Specifically, consider a
networked system on a directed graph G = (V, E), described
by (1), (5), and (8), and satisfying Assumptions 1, 2, and 3.
Assume that the controller at each subsystem ¢ is designed using
an RL algorithm to maximize the discounted cumulative reward
J%in (17). How should the updates in the RL al gorithms be done
so that the control policies at convergence guarantee Lyapunov

stability of the overall networked system?

IIl. DISSIPATIVITY ENSURING RL

In this section, we present the main results of the article
through a new distributed RL algorithm that guarantees the
stability of the entire networked system. The proposed approach
is as follows.

1) CBFs for dissipativity: As stated in Remark 1, even
though each subsystem ¢ is dissipative with supply-
function w? (u’, yi) + wt (v, 4! ), with the controller for
the input u, the subsystem may no longer remain dissipa-
tive with the input-output pair w? (v%,y’). Our first step
is to utilize CBFs to characterize the set of all controllers
that ensure that the closed loop subsystem ¢ is dissipative
with respect to the input v and output y/* (c.f. Fig. 1) with
the supply-function

il SZT (21)

wa(v',y') = v v = 8allv 13 — eally'll3

where 64 € R and ¢/, € R are tuning parameters set by
the designer.

2) Projection-based RL algorithm for dissipativity: In the
second step, at each subsystem ¢, we consider the control
input generated by an RL algorithm that seeks to maxi-
mize the discounted cumulative reward given by (17) and
use a quadratic program (QP) to project this control input
onto the set of control inputs that ensure that the closed
loop subsystem remains dissipative with supply-function
w’ (v, y!). Note that the RL algorithms used at different
nodes can be different.

3) Networked system stability: We finally show that if each
subsystem designs the controller to ensure that it is dissi-
pative, the entire networked system is also stable.

We now develop these steps one by one. We will make the
following assumption in the sequel.

Assumption 4: Denote O, = min(d},...,8Y), and
€min = min(e}, ..., €X). The conditions
Bé (6min) Z 07
(22)

Be (emin) 2 07

hold, where Bs, and . have been defined in (10), and the
inequality is in the positive semi-definite sense..

A. CBFs for Dissipativity

CBFs are now a popular tool for enforcing safety constraints
in nonlinear control systems. The following definition follows
the development in [37]-[39].

Definition 1 (Time-varying Zeroing CBFs): Consider a func-
tion b : R, x R — R that is continuously differentiable in
both arguments. Define a closed set C as the super-level set of
this function as follows:

CE{seR"|b(t,s) >0}. (23)

The function b(¢, s¢) is a time-varying zeroing CBF, for the
networked system X described by (1), (5), and (8) and with state
st, if there exists an ) € [0, 1] such that forall s; € C,t € R

sup [b(t +1,8041) +

uyeR™

(n—1)b(t,51)] 2 0. (24)

CBFs can be used to derive sufficient conditions under which a
super-level set of a function of the state of the networked system
3} is forward invariant. These conditions also characterize the
set of control inputs achieving such forward invariance through
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the relation

B(t, s1) = {ur € R™[b(t + 1, 5011) + (n — 1)b(t, s,) > 0} .
(25)

The following result, given for completeness for a discrete time
setting such as ours, shows that the set C defined in (23) is
forward invariant for every u; € B(t, s¢).

Proposition 1 (Discrete-time time-varying CBFs): Con-
sider a time-varying zeroing CBF b(t, s;) and its super level set
C defined in (23). Then any input u; € B(¢, s¢), where B(t, s;)
is given in (25), will render the set C forward invariant.

Although dissipativity is a property defined by the input,
and the output, we can utilize CBFs to characterize the set of
controllers that ensures dissipativity in the closed loop of the
subsystems, which in turn guarantee the stability of the overall
networked system [40]. Following Proposition 1, we define a
CBF for each subsystem ¢ as follows. Denote

W (U, v Y yy) & wp (0 g ) — wa(v' ). (26)
Then, define the CBF
t—1
Vi(ta) &= @ (W vy yhe) @D
T=tg
whose super-level set is given by
C' = {z} e R™ | V'(t,z}) > 0}. (28)

To use the CBF b’ (¢, z}) to enforce dissipativity of the closed
loop subsystem, we proceed as follows. Denote

D'(z;,1;) £ {u’ €R™

PR R R ) )
—w (utvytvyu,t’yu,t>

+0'b(t, 2t) > 0}, (29)

where ¢ € [0, 1] is a designer specified parameter. We can then
state the following result.

Proposition 2 (CBF for dissipativity): Consider the problem
formulation in Section II. If u € D¥(x%, %) at all time steps,
then the subsystem (1) is dissipative with respect to input * and
output y* with supply-function wf (1%, y).

From Proposition 2, if the set D?(z%, v}) is non-empty, then
any control input ui € D¥(z%,v}) renders (1) dissipative with
respective to the supply-function w} (v}, y., ). We can choose
a particular control input in this set from other considerations,
such as minimizing the control cost. We can also use this set to
ensure that the control input from an RL algorithm ensures that
the subsystem is dissipative as shown next.

B. Dissipativity Ensuring RL Policies

We now consider the case when an RL algorithm is used for
designing the control inputs 1’ and show how the input can be
chosen to one that preserves the dissipativity of the closed-loop
subsystem 3¢, with respective to the supply-function w? (%, y%).
The key idea is similar to shielded RL techniques [11], [41],
[42] and uses the CBF-based characterization of the set of
dissipativity ensuring controllers obtained above to both project
the control policy and to guide the future exploration of the RL
algorithm.

We assume that the RL algorithm proceeds in an episodic
fashion. Let w?Li denote the policy at the k-th policy iteration
of the RL algorithm. This policy will in general be stochastic
and may be parameterized by some parameters 6} that may
correspond to, e.g., the neural network being used to learn the
policy. The paramterization is not relevant to our arguments and
to minimize notational complexity, we suppress it in the sequel.
Let up " (1) ~ ™ (-|}). Our algorithm proceeds by project-
ing this input on the set of dissipativity ensuring controllers.
Specifically, we propose that the overall dissipativity ensuring
control input (denoted by uP=C) in the k-th episode takes the
following structure:

uPBO () = uf () +us P () (30)
where uIZF (x%) represents the feedforward compensation, given
by

k-1
wp () = w () + Y uf P (g (2)) G
j=0
and uSBF * is computed using the optimization problem:
wg ™ (a uy ) = arg min aj]

aleR™:
s.t.—@(uf, vy, yh,, yh) + 0 (t @) >0,

ab 4 up Vi (ah) = ul. (32)

As in the usual CBF-based works, the formulation in the re-
lation (30) seeks to minimize the energy of the perturbation
needed to project the control input in the set of dissipativity
ensuring controllers [11], [37]. The feedforward compensation
in (31) is split into two parts: ul,:,”L" (x%) represents the control
input obtained from the RL policy. However, this might not
ensure dissipativity of the closed loop subsystem. The second
term in (31) represents our best guess to rectify the input to
ensure dissipativity. Furthermore, the term »“B¥: in (30) may be
interpreted as the feedback part of the controller. The complete
algorithm description is given in Algorithm III-B.

We assume that the parameter Max_FEpisodes has been
chosen to be large enough that the algorithm converges. Upon
convergence, denote uPEC (x1) to be the final deployed con-
troller u} (%) for k = Max_Episodes. The following result
shows that Algorithm III-B renders the closed loop subsystem
dissipative. For brevity, we skip the proof as it is a direct
consequence of Proposition 2 and Definition 2.

Proposition 3: Consider the problem formulation in Sec-
tion II. Let the controller uPEC: (%) designed with Algorithm ITI-
B be used as the input u! for subsystem (1). If there exists a
solution to the optimization problem (32) for all (x%, *), then the
closed-loop subsystem (30) is dissipative with supply-function
wa (V' yy,).

Remark 2: Computing u; "' () requires the solution of &
optimization problem. Specifically, from the second term on the
right side of (31), to compute uj " * (), we need to solve k — 1
optimization problems of the form defined in (32). Further, to
compute uEF" (x%) using (31), we need to solve it one more time.
Thus, in total, we need to solve k optimization problems. Further,
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Algorithm 1: RL-DEC Algorithm.

fori=1,...,N do
Initialize RL input W(P){LT, and arrays D and A‘.
end
for t =0,...,7 do
fori=1,...,N do
Sample ug™ () ~ 7~ and compute
u$ B (a, ul T using (32).
Deploy uj(z}) = b )+ u™" (af. uf ™)
Store state-action pairs (2%, us™ (2%, ug ')
in A?
end
fori=1,...,N do

Observe x, uf (), 21, 1,7 and store in D’ for
use in the RL algorithm

end
end
fori=1,...,N do
| Collect Episode Reward Y, ri
end

Set k = 1 (representing the k-th episode or input
iteration step)
while k& < Max_Episodes do

for:=1,...,N do
Do input iteration using RL algorithm based on
previously observed episode to obtain W?Ll
end
Initialize state sy from an initial state distribution
fort=0,.., T do
fori=1,...,N do
Compute the feed- forward term uy " (x}) =
ICAED S EBF (zi,u ;F (1))
Use (32) solve for ud B (ad, ug T
Deploy controller
i () = ul (af) + ufP (o, ul (2f)
Store state-action pairs (z}, u} (z}))
end
fori=1,...,N do
Observe z,ub (2), 2}, 1,7 and store in
D' for use in the RL algorithm
end
end
k=k+1
end

the knowledge of all u(FfLi, e ,u?%l is required. Consequently,

for large k, the proposed algorithm can become memory in-
tensive and computationally expensive. However, we need not
compute uEF (x) very accurately because of the presence of
the feedback term ugB Fi This raises the possibility of approxi-
mating ug Fs (z) by using a feed-forward neural network uZir to
learn the term S %} ¢, ¢BY

. = 0 u; ' In this case, (31) should be replaced
y

up (@) = g (@) + ugt(2) (33)
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Fig. 4. (Top) Time evolution of voltage with trained RL controller
without proposed CBF component. (Middle) If the CBF component is
included, time evolution of CBF, (Bottom) and voltage across the load of
each DGU, considering a load variation of 5% at time ¢t = 0.05 s.

where ¢j, parameterizes the neural network, which is updated
using the data from previously collected samples.

The following is the main result of the article, which shows
that the controller calculated using Algorithm III-B stabilizes
the networked system.

Theorem 4 (Stability of networked system in closed-
loop): Consider the problem formulation in Section II with
Assumption 4. If u! is chosen to be equal to uPEC (z%) at all
time steps and for all subsystems 4, then the networked system
defined by (1), (5), and (8) is Lyapunov stable with respect to the
origin. Further, suppose that B5(0min) > 0, Be(€min) > 0, and
R, & diag(R?)) > 0. If the systems (1) and (5) are zero state
detectable, then the networked system defined by (1), (5), and
(8) is also asymptotically stable with respect to the origin.

The definition of zero-state detectability is provided in Defi-
nition 3 of Appendix A.

Remark 3 (Decentralized and Distributed): In (32), each
agent needs to evaluate w which requires the information of v;.
From (8), computing v, requires information from its neighbors.
Then, the proposed RL algorithm is distributed. However, in the
event when the desired supply-function wy is equal to w,,, then
w = w,. Consequently, the RL algorithm takes a decentralized
form.
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CBF approach.

IV. CASE STubY: DC MICROGRID

We now evaluate the proposed CBF-based RL Algorithm III-
B in simulation. We consider the dc microgrid in Example 1 with
4 DGUs, interconnected through resistive and inductive lines as
shown in Fig. 3. The control objective is to regulate the voltage
Vi across the load of each DGU to its desired value V' € R.
Thus, we define the set of all feasible forced equilibria of the
node subsystems (12) and the edge subsystems (14) as

cr = {(Ti,vﬁaavi) eRY RT +V' —@Vi=0,

T -GV +7 = o} (34)

and

ci = {(T1.7@") e R*|RT, + 7 = 0} (35)
respectively. In the development above, we have assumed that
(s =0) is the desired equilibrium. However, the results are
agnostic to the choice of the equilibrium. Since the objective in
this case study is to stabilize the system at a nontrivial operating
point (T°, V", @', 7", T,, ") € C x Cy, we shift the equilibrium
of the networked system to the trivial equilibrium via a simple
change of variables. In what follows, for a given variable v,
denote the error between v = v — 7.

In [43], the authors show that the subsystems at the node (12)
and the edge (14) are dissipative with the supply-functions

iy, -Gy, 3

wh (@', 7, g, 50) = @' gh — RGNS+ T g

wi, (7%,3})

(36)

wi, (4,35,

and

wh(i*, o%) = pFTor — RY (|03 (37)

respectively. As a next step, we define the desired supply-
function corresponding to (21) as

wy(7',5") = w,, (7, 3,,) — R'||g,[l5
where we chose 0% = 0, ¢, = R’, which satisfies (22) in As-

sumption 4. Consequently, using (26) we compute the resulting
CBF as

t—1

b (t,a}) =— > (@',

T=tg

—GYg3), t>t >0 (38)

) 100
episodes

100
episodes

Comparison of accumulated rewards from nodes of dc microgrid for each episode during training using DDPG and the proposed dissipative

and its super-level is defined as in (28). Finally, we define the
instantaneous reward function at each node as

PV = ki (Vi)2 (39)
where k° € R~ . For numerical simulation, the parameters of
the microgrids are taken from [43, Tables 3 and 4].

Though the general framework described in the preceding
can be used with almost any RL algorithm, we chose to use
deep deterministic policy gradient (DDPG) [44] to showcase the
performance of Algorithm III-B. Fig. 5 compares the accumu-
lated rewards of vanilla DDPG and the proposed dissipativity-
ensuring Algorithm III-B using DDPG during training. As the
plot shows, Algorithm III-B coupled with DDPG converges
faster that the vanilla DDPG algorithm; however, this may not
be a general observation.

Next, we validate the performance of the controllers designed
using the proposed approach. The voltage across the load and
the value of the CBF at each node are plotted in Fig. 4. At
t = 0 s, we start by initializing the microgrid near the desired
operating point. We observe that the voltage signals stabilize
to their desired values. However, in the dc microgrid, the value
of load G* is unknown and subject to change over time. To
verify the robustness of the controller with respect to this un-
certainty, the load at each DGU was increased by 5% of its
original value at ¢ = 0.05 s. In Fig. 4 we see that, after a minor
perturbation, the voltage signals again stabilized to their desired
values. Furthermore, the CBF is positive, thus validating the
dissipativity-ensuring nature of the proposed approach.

V. CONCLUSION

We considered the problem of designing distributed con-
trollers to stabilize a class of networked systems, where each
subsystem is dissipative. We assumed that each subsystem de-
signs a local controller using reinforcement learning to optimize
its own reward function. We develop an approach that enforces
dissipativity conditions on the local controller design to guar-
antee stability of the entire networked system. The proposed
approach was illustrated on a microgrid example.

APPENDIX A
DISSIPATIVITY

Consider the following discrete time nonlinear system with
state x € R™ and inputs a € R™
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{$t+1 = f(z,as),
Yt = h(z,az)
where the functions f, h as assumed to be sufficiently smooth.
Consider the mapping w : R™,R™ — R. Then, dissipativity of
system X with w(a¢, y¢) as supply-function is defined as follows:

Definition 2 (Dissipativity [45]): System (40) is said to be
dissipative with respect to the supply-function w(ay, y: ), if there
exists a nonnegative function VV : R™ — R, called as storage
function, satisfying V(0) = 0 such that for all s;, € X, all t >
to>0andalla; € A

(40)

V(It) Sto

ZDxt +Z

i=tg 1=t1o

w(at, ye) 41)

where D(z;) € R is anonnegative function, and s; is the state
attime ¢, resulting from state s;_; with input u,_; . Furthermore,
we call the system QSR dissipative if the inequality (41) holds
with

w(ar, ye) = —llyell§y + a; Sye — llael% (42)

where Q =Q', S, and R = R are matrices of appropriate
dimensions.

Definition 3 (Zero-state detectability): Consider (40) with
£(0,0) =0, and h(0,0) = 0. Then system (40) is called zero-
state detectable if a; = 0 and y; = 0 = lim;_, x; — 0.

APPENDIX B
PROOFS

Proof of Proposition 1: Without loss of generality, we assume
the initial state as sg € po at time ¢ = 0 and b(0, s9) > 0. It
suffices to show that b(t,s;) > 0, for all a; € B(¢, s). From
(24) and (25), for all a; € B(t, s;), we have

b(t +1 St+1) (]. — n)b(t, St). (43)
Now, consider the following boundary value problem:
Xt+1 = (1 — 7’])Xt (44)

with initial condition Xy = b(0, s9) > 0. Then, the solution to
4)is X, = (1—n)'Xg>0,Vk € ZT,0 < n < 1. From (43)
and (44)

b(t, 5¢) > Xy (45)

Thus, C is forward invariant.

Proof of Proposition 2: Consider the barrier function b° (¢, %)
defined in (28). From Proposition 1, for all u; € D¥(xi, 1),
it implies that C? is forward invariant. Consequently, we have

it i) =— 3, >0
t—1
= Y w<0 (46)
T=to
t—1 t—1 t—1
= > (Wn—wa) S0=> D waz Y we (@D
T=tg T=tg T=tg

From Assumptlon 1 the subsystem (1) is dissipative, which fur-
ther implies ", —t, Wd > St —¢, Wn > 0. From Definition 2,
we conclude the proof.

Proof of Theorem 4: As a consequence of Assumption 1,
Proposition 3 implies that node dynamics in closed-loop with
control input (30) are dissipative with supply-function (21)
wh(v',y"). Consequently, for all i € V there exists a storage
function V; : R™ — R, satisfying

del/ y')

t=tgo

Vi(xy) < Vilay,) (48)

From Assumption 2, the edge dynamics are dissipative
with supply-function w” (1*,w"*). Consequently, for all k €

{1,..., M}, there exists a storage function V! : R™ — R,
satisfying
t—1
VEGE) S VIE) + ) wh(uf, wf). (49)
t=to
Consider  V(s;) = SN Vi(al) + 208, VE(2F),  conse-
quently
V(st) = V(st,) (50a)
N t-1 M t-1
< DD wah oy Y Y wi(ugwf)
i=1 t=to k=1 t=to
t-1 N t—1 M
S i+ 3wk b
t=tp i=1 t=tg k=1
t—1
< D 0TSy = duinlVIE — emnllyls + 178w = Sellull3
t=to
~llol) (50b)
t—1
< Z (WTBTSIZJV - 5min||Bw||§ - €min||y1/H§ - eminHyqu
t=to
~yy B' Sl w = &c||By, I3 — ecllwll3) (50c)
-y (ol 5y + 190 iy + eminllgall3) -
t=to
(50d)

In (50a), we use (48) and (49). In (50b), we use the interconnec-
tion laws from (8). In (50c), we use Assumption 3. This implies
that the overall networked system is stable.

Furthermore, consider Bs (Omin) > 0and Be(€min) > 0. Then
from (50d) there exists a forward invariant set II and by LaSalle’s
invariance principle, the solutions that start in II converge to the
largest invariant set contained in 1IN {s € R"™P|w =0, y =
0}. Moreover, from (8) this implies ¢ = 0, v = 0. From As-
sumption 1 and R,, > 0, this further implies that v = 0. Finally
on this set, we have (y = 0,u = 0,v = 0) and (w = 0, x = 0).
Given that that subsystems (1) and (5) are zero-state detectable,
following [46, Corollary 4.2.2], the trajectories in II converges
asymptotically to the largest invariant set contained in IT N {s =

0}.
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