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CrossMark
Abstract

Particles are injected into a large planar domain through the boundary and per-
form a random or sufficiently chaotic deterministic motion inside the domain.
Our main example is the Sinai billiard, which periodically extended to our large
planar domain, is referred to as the Lorentz process. Assuming that the particles
move independently from one another and the boundary is also absorbing, we
prove the emergence of local equilibrium of the particle density in the diffusive
scaling limit in two scenarios. One scenario is an arbitrary domain with piece-
wise smooth boundary and a carefully chosen injection rule; the other scenario
is a rectangular domain and a much more general injection mechanism. We
study the latter scenario in an abstract framework that includes Lorentz pro-
cesses and random walks and hopefully allows for more applications in the
future.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A major, and widely open problem in mathematical statistical mechanics is to rigorously derive
macroscopic laws of physics from underlying deterministic microscopic principles [3]. One
such law is Fourier’s law of heat conduction. In this context, an important phenomenon in
the emergence of local equilibrium in systems that are forced out of equilibrium. To fix ideas,
assume that the boundary of a piece of metal is subject to a heat bath, i.e. all points on the
boundary are kept at a temperature that is constant in time but not constant in space. Then one
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Figure 1. Particle configuration in a large rectangle. Point particles are enlarged for bet-
ter visibility. A sample trajectory of one of the particles is indicated with light blue. Two
more sample trajectories of absorbed particles are also indicated in red and green.

would like to first see that the temperature is locally well defined in the interior of the metal
too (i.e. the system is at local equilibrium) and then study the temperature profile. A realistic
microscopic model for this phenomenon should consist of a macroscopic domain inside which
the microscopic particles are subject to some translation invariant local dynamics and interact
with a heat bath on the boundary.

Proving that the bulk dynamics obey the heat equation, even without boundary effects, is
notoriously difficult for realistic deterministic systems and consequently very few rigorous
results are known. However, a notable realistic Hamiltonian system for which rigorous results
are available is the Sinai billiard [25]. In Sinai billiards, point particles fly freely on the two-
torus among fixed convex bodies and elastically collide on their boundaries (the planar infinite
periodic extension of Sinai billiards is called the periodic Lorentz process). Thus, the point
particles do not interact with one another and so there is no exchange of energies. By the
results of [4—6] the trajectory of each particle satisfies the central limit theorem. Consequently,
the scaling limit of the bulk dynamics in the infinite plane is given by the heat equation when
‘temperature’ is replaced by ‘particle density’.

The lack of interactions among particles in Sinai billiards is of course a serious limitation
in modeling true heat conduction, let alone local equilibrium (as noted e.g. in [3, 24]) as the
particles’ energies are fixed. Still, if we accept the idea of working with particle density instead
of particle energy, then local equilibrium is feasible [17] (the above list of references to the
physics literature is not exhaustive, they only serve as a sample).

1.1. Informal description of results

In this paper, we prove in a mathematically rigorous way, the local equilibrium property of
particle density profiles in large domains of Sinai billiards by interpreting the ‘heat bath’ as
a ‘varying chemical potential’. Furthermore, we develop this theory for an abstract class of
non-interacting particle systems (which are composed of many copies of a process Z) with the
hope that this class will later include other interesting realistic systems. As of now, we show
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that this class is rich enough to contain two basic examples: (1) when Z is an iid random walk,
and (2) when Z is given by the periodic Lorentz process. Our work is the first result of this
kind for spatially extended deterministic systems.

To formulate our setup, let D C R? be a bounded domain with piece-wise smooth boundary
and let particles be injected into the large domain LD for L > 1 through its boundary. The
particles will then perform some independent motion Z on a lattice inside LD. The boundary
is also absorbing so most particles are killed (i.e. absorbed) shortly after injection. However,
some will survive for a long time and find their way deep into the interior of LD. The problem
now is to show that the limiting density profile of particles is governed by the heat equation
when time is rescaled by L? and by the Laplace equation when time is infinite, where, in both
cases, the boundary conditions are given by the injection rate. We will refer to the first case as
the hydrodynamic limit and the second one as the non-equilibrium steady state. Specifically, we
look at the problem of proving local equilibrium of the particle density profile in systems forced
out of equilibrium when the particle injection rate varies along the boundary of the domain.

Our results in section 2 prove that in case D is a rectangle and the process Z satisfies
some abstract hypotheses (H1)—(H3) (see section 2.1), then the local equilibrium holds in both
the hydrodynamic limit and the non-equilibrium steady state. The main hypothesis is (H2),
which is a conditional local invariance principle conditioned on the survival of the particle. See
figure 1 for the case of the periodic Lorentz gas: particles, indicated by blue dots, are injected
from the left (‘West’) side of a large rectangle while the entire boundary of the rectangle is
absorbing.

Our results in section 4 exemplify that in some special cases, the above results can be
generalized from a rectangular domain D to any domain with piece-wise smooth boundary.
Specifically, if the process Z is such that its time-reversed process Z’ converges to the Brow-
nian motion, then the problem of local equilibrium can be reformulated in terms of the hitting
probabilities of 9D by Z’ thus obtaining a simpler proof. We will refer to Z’ as the dual pro-
cess. The approach by duality thus gives similar results with two major differences: it is more
general in the sense that D can be any domain with piece-wise smooth boundary, but it is more
restrictive in the sense that it requires both the existence of a nice dual process and a very
specific injection mechanism on the boundary. The utility of this special injection mechanism
is limited since no reasonable heat bath is likely to preserve the invariant measure of the bulk
dynamics (see e.g. [2]). Thus we decided to present the results of section 4 as a list of examples
as opposed to providing an axiomatic framework.

To allow for more general injection mechanisms, it is essential to develop other tools which
do not require such a rigid structure. Such tools are exemplified by our main results in sections 2
and 3. Indeed, our injection procedure (2.3) is quite general: besides the dependence on the
macroscopic position we allow the injection rate to depend on the microscopic geometry
through some function A and on time through another function B. In the case of determin-
istic systems, the only source of randomness is the choice of the initial condition according
to an initial probability measure. Once the initial condition is fixed, Z is deterministic. Here,
we allow a lot of initial measures. Namely, we allow any ‘standard pair’ [10] in the case of
Sinai billiards. In our context, a useful way of thinking about standard pairs is that they are
conditional measures corresponding to a given past symbolic trajectory of the particle.

1.2. Related works

Let us compare our work with known results. Note that example (1) is random and Markovian.
The study of Markovian microscopic dynamics is much easier than the deterministic ones and
consequently much more results are known (including ones that go much beyond the derivation
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of the heat equations, such as second-order fluctuations or derivation of other PDEs even for
interacting particle systems). Instead of reviewing any of the results on Markovian microscopic
dynamics here, we refer the reader to the classical surveys [19, 27]. In the context of Markov
processes, duality has been used to prove local equilibrium in systems that are more compli-
cated than just iid particles (an important early reference for local equilibrium is [20], general
classical references for duality in Markov chains are [23, 26]). Correspondingly, proposition
4.1, i.e. the approach by duality to random walks will not surprise experts, but we include it
because on the one hand we could not locate a reference for this exact statement and on the
other hand it simplifies some computations later in the more general framework in section 5.
We believe that our results in case of more general injections prescribed by the functions A
and B as discussed in section 2 are new even for random walks.

In the case of the periodic Lorentz gas, our results in section 2 provide a natural extension
of [13] from one-dimensional domains (i.e. line segments) to two-dimensional rectangles. The
proof by duality was not found in [13] and so our proposition 4.3 (with trivial changes to
include a 1 dimensional macroscopic domain) gives a simple new proof of the main results of
[13]in case of a very special injection mechanism, which is essentially given by the Lebesque
measure.

1.3. Organization

The rest of this paper is organized as follows. In section 2, we provide the basic definitions
and the main result theorem 2.1 in our abstract framework. In section 3, we present our two
basic examples—namely, the random walk and the Lorentz gas. In section 4, we discuss the
approach by duality. In section 5, we prove theorem 2.1. The most technical part of this work is
the verification of the conditional local invariance principle (H2) for the Lorentz gas, which is
presented in section 7. This section is heavily built upon the standard pair technique of Chernov
and Dolgopyat [10] and tools from [13], such as the mixing local limit theorem (MLLT). The
necessary background is summarized in section 6.

2. Abstract setup

2.1. Non-interacting particle systems

Let £ C R? be a lattice (i.e. a discrete subgroup) of dimension 2. We consider the graph G
with vertices £ and edges joining / with / +w; forall /€ L and j=1,...,J for a fixed set
{wi,...,w;} C L.Forz € R?, let (z) be the closest [ € L to z with the property that [; > z; (if
there are more than one such lattice points, then choose the smallest in lexicographic order).

Let (S, P) be a probability space and Z; (r > 0) be an £ valued stochastic process. That is,
Z,:S — Lforeveryt > 0. We assume that Z is continuous from the right and has left limits. In
other words, Z is a cadlag function (i.e. for almost every s € S fixed, Z jumps at random times
t from a lattice point Z;_ to another lattice point Z;). We do not assume that Z is Markovian.

Now let D = [0, A] x [0, 1]for a fixed positive real number A. Fix a non-negative continuous
functions f : [0, 1] — R and write F : 9D — R,

fO) if z=(0,y)
F(z) =
0 otherwise.
We will consider the following Dirichlet problems
Au=0, ulopp =cF, 2.1
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1
51

We are actually interested in the Dirichlet problem where F is permitted to be nonzero for
all boundary points (as in (2.10)), but this case follows from linearity. We restrict to this case
for now in order to simplify notations. By classical theory, there is a unique solution to both the
Laplace equation (2.1) and the heat equation (2.2) and furthermore lim,,, v(t, x,y) = u(x,y).
Of course, this is true for much more general domains D, e.g. when 0D is piecewise-smooth

with no cusps.
ForL > 1,letD; = (LD)N L,

Uy = Uyx + Uyy] 5 U(t, X, y)‘(x,y)et')D - §F, ’U(O, X, Y) =0. (22)

0D, = {l € Dy : lis connected to a point outside of D },
and
OwDy = {l € Dy : lis connected to a point ' with [} < 0}.

Here Ow stands for the West boundary as points in OwDy are close to the “West’ side of the
rectangle D;. Given [ € 0Dy, let

Jh={j=1....J:[+w;¢D.}

We consider the following process for L > 1. First, for some t € Ry U {co}, let ©, be a
Poisson point process (PPP) on (—¢, 0] x OwD; with intensity measure

A(T()B(s)f (I/L)dLeb(s)dcounting(l), (2.3)

where [ € 0Dy and A : 21>+t - R, and B: R — R, are fixed functions. We assume that B
is continuous, periodic with period 1, and folB = 1. One example is A(J) = |J| and B = 1.
However, we want to allow more general functions to accommodate for more general behavior
of the heat bath.

For each point (7, ) € ©, we start an iid copy of Z at time 7 from position [ and we kill
it at

T =inf{t>T:2 ¢ D}, (2.4)

the first exit from D;. In the case Z is not Markovian, the initial condition Z; = [ may not
define the distribution of Z7., for# > 0 uniquely. In this case, we allow multiple choices of this
distribution but we require that Z7,, — [ only depends on [ through 7 (). That is, if [, € oDy,
with 7(I) = J (') and (T, 1), (T', ') € ©, then we require that for all > 0, and for all [ € L,

PZry=1+1Zr=0)=PZp =412y =1).

This procedure is to be interpreted as injecting a particle to the domain Dy, at time 7 through an
edge (I_, 1) of the graph G, where [_ ¢ Dy, [ € D;, and letting particles evolve independently
from one another until coming back to the absorbing boundary. The specific mechanism of
injection through ([_, () only depends on j=1,...,J, where [ — [_ = w;. Let A/([) be the
number of particles at site [ at time 7 = 0. We start with the following abstract result.

Theorem 2.1. Assume that (H1)—(H3) (defined below) are satisfied. Then for any z in the
interior of D,

Jim E(Ax ((zL))) = u(2) 2.5
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and
Lllglo E(A2((zL))) = v(2, 2), (2.6)

where u and v are defined by (2.1) and (2.2) with some <.

The proof of theorem 2.1 will be provided in section 5.
To define our hypotheses (H1)—(H3), we need some definitions.
Let W, be a standard Brownian motion. Let

.1 .
¢, 7. &) = C}}g@P(Wl € [,y +di], nin W, >0, max W, < &[Wo = n).

It is known (see e.g. [16]) that for any 0 < v, n < &, the following formula holds

0 1 —-n-2 2 2 2
S0 = 3 o (exp GW) Cexp CW), 27

n=-—oo

Recall that the Brownian meander is a stochastic process on [0, 1] obtained by condition-
ing a standard Brownian motion to stay positive on [0, 1] (which has zero probability, but the
definition still makes sense by conditioning on staying above —e, letting ¢ — 0 and taking
the weak limit, see e.g. [15]). Let X(#) be a Brownian meander and IU(f) = maxo<,<, X(s) its
maximum. Then it is proven in [12, theorem 5] that the function

1
Y, ) = lim - P(X(1) € [a, o +dr], M) < )

forany 0 < o < g3 satisfies

W)= D (2kB+a)exp 5

k=—00

0 2
(_WW) ) (2.8)

Note that the formulas (2.7) and (2.8) are closely related as the Brownian meander is closely
related to the Brownian motion. Indeed, by the definition of Brownian meander, ¥ («, 3) =

lim,, 0 (0, o, B)/ foﬁ o(n, o, B)da’. We refer to [12] for more details.
Let us write Z; = (X}, );). Denote

X

min{r > 0: &; > x} ifx>0
¥ =
min{z > 0: &; < x} if x <0.
We define Tyy analogously.
Now we make the following assumptions:
(H1) Vertical rational dependence. There is some [ € £, [ £ 0 so that [} = 0.

Let (0,0) = (@, 1M @ be the enumeration of points [ € D; which are connected to
lattice points with negative first coordinate in increasing order of second coordinate (that is,
[(2’) < [(2j+1)). If there are points [V, [V with the same second coordinate, then we order them
in increasing order of the first coordinate. Let K be the smallest positive integer so that

(0 = 0. (2.9)
By condition (H1), K exists. Now we say that the lattice point [ € D, is of type k with
k= 1,...,K if there exists an integer m so that [ = [("K+H_
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(H2) Conditional local invariance principle
There are constants cy, . . ., cx so that for any 0 < o < /3 and for any 0 < 1,y < &
the following holds. If [ € 9Dy is of type k, and [, = 1y/T, then

Tlgglo 73/2P (ZT = (v, 7)\/T>,min{78),7'2}ﬁ, TSY,T;\/T} >T|Zy = [)

= C/ﬂ/f(a, 5)45(77’ s 6)

Furthermore, for any € > 0, the convergence is uniformfore < a < a+e < < 1/e
ande <n<nt+e<i<lfee<y<y+e<&

(H3) Moderate deviation bounds. For any x € (0,1) and y € (—1,1), and for any
[=(O . (&=D

lim lim LP (2, = ((xL,yL)),min{r5',7{'} > #|Zy = 1) dt =0
0=0 L=00 [0 5121U[L2 /8,00)
2.2. Local equilibrium

Consider now the Dirichlet problems

At = 0,itop = F, (2.10)

I T -
U= [00r + Tyy] 0%, 9)|(eypcop = F. 90, x,y) = 0. 2.11)

Here F is defined by F : 9D — R,
swfw() if z=1(0,y)
ssfs(x) if z=(x,0)
efe(y) ifz=(Ay)
Ny if z = (x, 1),

F(z) =

where fg, fw : [0, 1] = R, fn, fs : [0,A] — R are given non-negative continuous functions and
Sw/s/E/N are non-negative real numbers (W, S, E, N stand for West, South, North and East).
We perform the same procedure of injecting particles and absorbing them on the boundary as
before, but now we inject from all 4 sides of the rectangle. Let A, denote the resulting measure
defined as A,.

We say that Z satisfies that local equilibrium (LE) if for any r € Ry U {oo}, for any
k € Z., for any zj, ...,z distinct points in the interior D, and for any distinct lattice points
l1,...,k € L, the joint distribution of

Wiin=Ap(zl) + 1), ij=1,....k

converge weakly as L — oo to independent Poisson random variables 20, ; ; . with expectation
0(t, z;) (or u(z;) in case t = c0), where v is defined by (2.11) (and # is defined by (2.10)) with
some constants Sw/s/g/N. The points (z;L) +1j, j=1,...,k can be thought of as lying in a
microscopic region near (z;L). In particular, each point (z;L) + [; is a finite distance from (z;L)
so that it is in a ‘local’ region of z; as L becomes large. Indeed, the term local equilibrium
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refers to the fact that the limiting distribution does not depend on j. We call the case t € R
local equilibrium in the hydrodynamic limit and the case t = oo local equilibrium in the non-
equilibrium steady state. Since in our case both hold at the same time, we simply refer to these
properties as local equilibrium.

Finally, we say that a lattice £ is rational if there are non-zero lattice points [(K1):1 [(K2):2 jp
£ so that 5" = (f22 — 0. Without loss of generality, we assume that ("' > 0 and I is
the smallest among such vectors with respect to the ordering introduced right after (H1) (and
likewise for [K2}2_ except that in the ordering, the role of the first and second coordinates are
swapped). Clearly, if £ is rational, then (H1) holds with K = K (and likewise, a variant of
(H1), where the two coordinates are swapped, holds with K = K3).

Before proceeding to the examples of the next section, where we can verify conditions
(H1)—(H3) and also prove (LE), let us make some remarks. First, we believe that condition
(H1) is not necessary for the main results ((2.5), (2.6) and (LE)) to hold but our proof does not
apply in the general case when (H1) fails. The difficulty is the lack of periodicity in the local
geometry on the boundary.

Let us now comment on the case of dimension d > 3. We have little doubt that theorem 2.1
could be extended to any dimension d > 3. However, the proof would be substantially longer
and, more importantly, we do not know how to verify assumptions (H2) and (H3) in our main
example, namely the finite horizon Lorentz gas in any configuration of dimension > 3 (even
the classical CLT is only conditionally known, cf [1], and refinements along the lines of (H2)
are widely open). Finally, the one dimensional case is much simpler and is essentially covered
by [13] (although not in the axiomatic framework). This is why we decided to keep the abstract
setup in planar domains.

3. Basic examples

3.1. Random walks

Let L C R? be a 2 dimensional lattice. Let P be a finitely supported probability measure on

L with zero expectation. We assume that there are finitely many lattice points wy, . .., w; S0
that P(w;) > 0 and > P(w;) = 1. To avoid degeneracy, we assume that the group generated
by w;’s is L.

Let Z bea homogeneous Markov process: at exponential distributed times, z jumps with
a jump distribution given by P. That is, the generator G of Z is defined by

J
GO = Pa@f@;+ D — f(D] 3.1)
j=1

for test functions f : £ — R. By the central limit theorem, 2,/ \/t converges weakly to a
Gaussian distribution with mean zero and some covariance matrix Y. Furthermore, the non-
degeneracy assumption ensures that Y is positive definite. Now we define £ = »12z,

wj = X720, P(w)) = P, 2 =%"122.

Proposition 3.1. Assume that in the above model of random walks, L is a rational lattice.
Then (HI)—(H3) hold.

We do not give a proof of proposition 3.1 as it follows from a simplified version of our
proof of theorem 3.2. In fact, the one-dimensional version of (H2) and (H3) is known for
random walks, see [7, 8]. We find it likely that the two-dimensional version is also known, but
we could not find a reference.
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3.2. Lorentz gas

3.2.1. Definitions. We start with the definition of Sinai billiards [25]. Consider a finite collec-
tion of strictly convex disjoint subsets By, . . . , B of the two-torus with C* boundary. The com-
plement of these sets is denoted by Dy = T?\U}_, B; and is called the configuration space. A
point particle flies with constant speed inside Dy and undergoes specular reflection upon reach-
ing Dy (i.e. the angle of incidence equals the angle of reflection). Since the speed is conserved,
we obtain a continuous time dynamical system ®}, t € R on the phase space Qy = Dy x S'.
The Sinai billiard flow @, preserves the Lebesgue measure on €2 (denoted by 14,). We assume
the finite horizon condition, i.e. that the sets B; are chosen in such a way that the free flight
time is bounded. Similarly, we define the periodic Lorentz gas when the phase space is lifted
to the universal cover. That is, the configuration space is D = Rz\u(m,,,)eﬁ Ut (B; + (m,n)),

where we identify Dy with D N [-1/2,1/ 2)2. We choose this identification in such a way that
(-1/2,-1/2) ¢ D. (3.2)

The phase space is 2 = D x S' and the billiard flow is denoted by ®". It preserves the o-finite
measure y, which is 4, times the counting measure on Z>.

Now we construct the stochastic process, which is the projection of the billiard flow, ®’, onto
72. Given (q,v) € Q, let IL»(q,v) = (k,[) € Z* if g € (k,[) + [—1/2, 1/2)2, let Ip, (g, v) =
qo, and let Il (g, v) = (o, v) if g = go + Iz2(gq, v). We also put Z(q, v) = [ (D' (g, v)).
Thus any probability measure on Dy induces a stochastic process Z,. It is important to note
that here the randomness only appears in the initial condition. Once (g, v) is fixed, then Z,is
uniquely defined for every .

We will also need the billiard map Fy, which is defined as the Poincaré section correspond-
ing to the collisions, that is Fy : My — M, where

Mo ={(g,v) € 9Dy x S': (v,n) > 0},

where n is normal to 9Dy at g pointing inside Dy. The phase space of the billiard map, Mo,
thus corresponds to collisions where by convention we use the post-collisional velocity v. F
preserves the probability measure v defined by dvy = c cos ¢drdp, where (r, ¢) are coordi-
nates on Mo: r is arclength parameter and ¢ € [—7/2, 7/2] is the angle between v and n. The
definitions of M, F, v are analogous.

Fix a measure given by an arbitrary proper standard family (the exact definition standard
family will be given in section 6; one example is the invariant measure v). This measure induces
a stochastic process Z ;. Furthermore, Z , satisfies the central limit theorem with a covariance
matrix which is independent of the standard family. That is, there exists a positive definite
2 x 2 matrix ¥ so that Z7 /A/T converges weakly as T — oo to the Gaussian distribution with
mean zero and covariance matrix X (see e.g. [6]). Now let £ = 2_1/222, Z = 2_1/22,. The
invariance principle holds as well. That is,

Z . .
(—IT converges weakly to a standard Brownian motion as
1€[0,1]

VT

T — (3.3)
(see e.g. [9]).
Without loss of generality, we can assume that the length of the longest free flight is bounded

by one. Indeed, pick any infinite periodic billiard table with finite horizon, that is the flight time
being bounded above by some integer K. If K > 1, we just rescale the space by K, i.e. shrink
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the configuration in the square [—K/2,K/ 2)2 to the square [—1/2,1/ 2)2 and call this con-
figuration Dy and its infinite extension D (in other words, we choose the fundamental domain
large enough). After this rescaling, condition (3.2) still holds. Since the billiard flow is con-
tinuous, we see that at each time ¢ so that 2,7,, =+ Z’,, we necessarily have Z’, = Z’t, + e with
some e € {(—1,0),(1,0),(0,—1),(0,1)}. Indeed, by condition (3.2), the flow Z, cannot pass
through the cornersand so e.g., e = (1, 1) is not possible. We made assumption (3.2) in order to
guarantee that the resulting graph is the simplest possible, i.e. four-regular. Specifically, let G
be the nearest neighbor graph on Z2, i.e. I, I € Z? are connected in G if and only if |[ — I'| = 1.
This graph is thus ‘induced’ by the process Z,. Hence the graph G = $!/2G is also a transi-
tive four-regular graph on the lattice £. Even though we always obtain a transitive four-regular
graph £ when starting from a Lorentz gas where the fundamental domain is a torus, we still
allow for graphs of higher degree in our abstract framework, motivated by e.g. the forthcoming
example 3.5 where the fundamental domain is a hexagon.

Theorem 3.2. Assume that in the above model of the Lorentz gas, L is a rational lattice.
Then (H1)—(H3) hold.

Theorem 3.2 does not claim that ¢ > 0. In fact, there are standard families for which ¢ = 0.
This is not surprising since Z, can be deterministic for a bounded time. In particular, we can
choose a standard family so that Z, < 0 almost surely for a fixed ¢ and so all particles will be
absorbed within a bounded amount of time. However, there are standard families for which
¢ > 0 (e.g. the invariant measure v can be represented by such a standard family). In case of
general standard families, we cannot compute ¢ even if it is positive.

Note that we assumed that £ is a rational lattice, which immediately gives (H1) and the
variant of (HI) when the vertical and the horizontal coordinates are swapped. This is a highly
non-trivial assumption and we expect this not to hold for a typical billiard table. However, we
have some examples when it does hold due to some extra symmetry. We discuss these examples
in section 3.2.2. The proof of (H2) and (H3) will be given in section 7.

In case of deterministic systems like the Lorentz gas, a natural extension of (LE) is a finer
counting problem: that is, to only count particles in a given nice subset of €2y (for example,
those that are close to a given scatterer). Let us fix and open set

ACQy with pp(0A) =0 (3.4)

and update the definition of A, so as we only count particles at phase (g,v) that satisfies
I, (g, v) € A. Let the resulting measure be JNX? and let us say that detailed local equilibrium
(DLE) holds if there is some ¢ so that for every A as in (3.4), the definition of (LE) with A
replaced by A4 holds with the constant Sptg(A).

Theorem 3.3. Under the assumptions of theorem 3.2, (LE) and (DLE) hold.

Proof of Theorem 3.3  assuming theorem 3.2.

As observed in [13], the derivation of (LE) from (2.5) and (2.6) is straightforward. Let
M = (—1L?,0) x Dy x Q. Let G: M — Dy x Qy U {oc}, where G(s,,(q,v)) = ®*(q +
»!/ 2y, v) if the particle has not been absorbed by time s and G(s, [, (g, v)) = co otherwise. Since
the initial conditions of particles is given by a PPP on M, the mapping and restriction theorems
for PPP (see e.g. sections 2.2 and 2.3 in [18]) give that {G(s;, ;, x/) }G(s,.1,.x)0c forms a PPP
on Dy, x €. Letting L — oo, the intensity measure of this PPP converges by theorems 2.1 and
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Figure 2. Billiard configuration on a hexagonal tiling.

3.2 (for particles injected on the West or on the East this is immediate. For particles injected
on the North or the South, this follows from the variant of theorem 2.1 when the role of x and y
are swapped. Since L is assumed to be rational, (H1) holds even in this case). Thus in the limit
L — oo, we obtain a PPP with intensity measure as on the right-hand side of (2.5) and (2.6).
This implies (LE). The proof of (DLE) is analogous, except that when we verify (H2), we only
need to take into account particles at phase (g, v) that satisfy Il (g, v) € A. This requires a
very minor change in the proof (see the remark after theorem 6.4). (]

3.2.2. Symmetry conditions.

Example 3.4. Assume that Dy is invariant under a 90 degree rotation or a vertical or
horizontal reflection of the unit square. Then L is rational.

Proof. Letusassume that Dy is invariant under a rotation by 90 degrees. Then the probability
density function (pdf) of the limiting distribution of Z, /+/t also needs to be invariant under the
rotation by 90 degrees. Since this is a normal distribution, the isocontours of the pdf are ellipses.
The only ellipses invariant under the rotation by 90 degrees are circles. This means that there
is a positive real number o so that ¥ = ¢%I,. Similarly, if Dy is invariant under reflection of
the vertical or horizontal axis, then the isocontours of limiting normal distribution are ellipses
with semi-axes parallel to the coordinate axes and so X is diagonal. ]

In the above examples, £ is generated by o, '[1,0]" and o, '[0, 1]". Consequently,
K| = K, = 1. In this sense, these examples are the simplest possible ones (figure 1 shows
a configuration, which is symmetric with respect to the vertical axis, and is repeated over a
5 x 4 rectangle). Our next example is less trivial as K, = 2.

Example 3.5. Consider a scatterer configuration on the regular hexagon that is invariant
under the rotation by 120 degrees and satisfies all other assumptions (that is, the scatterers are
smooth, disjoint, strictly convex and the configuration has finite horizon). One such example
is only one scatterer which is a disc, centered at the center of the hexagon and with a radius
large enough to ensure that D is of finite horizon. By tiling the plane with regular hexagons, we
obtain the Lorentz gas as before. As in the previous example, the isocontours of the limiting
normal distribution are invariant under the rotation by 120 degrees; hence they are circles and
Y = o2I,. In this case, Z, for any t takes values in the set of tiles of the hexagonal tiling. Let
L be the lattice generated by the vectors o '[0, 1]" and o~ '[v/3/2,1/2]" and G be the graph
with vertices £ and edges between points at distance o~ !. That is, G forms the triangular
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grid, dual to the hexagonal tiling (see figure 2, the edges of G are denoted by dotted lines). In
this example, K| = 1 and K, = 2. Indeed, on the horizontal boundary, we see an alternating
sequence of two kinds of hexagons (ignoring the very first and the very last one): one of them
has 5 neighbors in D, and the other one only has 3. A particle injected to a uniform random
location on the first type of hexagon has a higher chance of staying in D;, than in the case of the
second type of hexagon. Thus we expect that ¢; # ¢; in the variant of (H2) when the vertical
and horizontal coordinates are swapped.

4. Duality

4.1. Random walks

The definitions given in section 2.1 easily extend to more general domains D with piece-wise
smooth boundary. One minor difference is that in (2.3) instead of f(I,/L) we need to choose a
slightly different argument of f as [ /L may not be on 9D and f may not be defined (e.g. one
can choose the closest point on 9D to [/L). Since f is continuous, the exact choice is irrelevant
as long as it is a bounded distance from [/L. To keep notations simple, we will write f([/L),
where f is a continuous function defined on 9D (there is no need to introduce F).

Proposition 4.1. Consider a random walk as in section 3.1 and let

AWT) =) Pw)) .1

jeTJ

and B = 1. Then the conclusion of theorem 2.1 and (LE) hold with ¢ = 1 without assuming
the rationality of L and for general bounded domains D with piece-wise smooth boundary
and no cusps.

Proof. We are only going to prove (2.6). A proof of (2.5) can be obtained by replacing ¢ by
oo in the proof below and (LE) can be proved as in theorem 3.3.

The key idea of the proof is duality. Let Z be the discretized version of Z. That is, Z, = 2,
and Z, = Z, where, is the time of the nth jump of Z. The reversed random walk Z’ is defined
by the generator

J
(GO = Plf (—w;+ 1) — f(O]
j=1

and Z’ is the discretized version of Z' (defined analogously to Z).
Note that for any N, Z induces a measure P on £V by

Ps(lo,....lv-1) =P(Z1 = 11,.... Zy1 = Iv-1|Z0 = ).
Let us define P, analogously. Then by definition of Z', for any sequence ly, ..., [y € L,
Ps(lo,....00) =Ps(ly, ..., ). 4.2)

Forfixed L,z € D,t € Ry, 1 € 0D, and M, let A = A, ., m be the set of length M trajectories
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from [ to (zL) staying inside Dy, i.e.
A={(o . )il =L Vi=0,.. .M —1:3j=1,....J: iy —
=wj,l; € Dy ly = (zL)} .
For a subset B C £M+! and a lattice point I, let
B = {( .. l): (os.... 1) € B),
and
B={0l,....00:(or....u) €BY,  Bi={Uo,....0n0:(o.....0y) € B}.
Then by (4.2), we have
Ps(Arzrim) = Pa(AL )
Furthermore, for any [_; ¢ Dy, which is connected to [ in G,
P ALzeim) = Ps(AL L, oyl (4.3)
Let T be the first hitting time of £\D; by Z’. Then (4.3) is equal to
PT=M+1,Z),, =11,2)=12)=(L)).

To turn to continuous time, let 7/* be the first time Z’ leaves D;. Then we have

P(r" <t 2l =10, 2l =125 = (L) = Y Fupi(LP(L 1AL ), (4.4)
M=0

where Fy(.) is the cumulative distribution function of the Gamma distribution with shape
parameter N and scale parameter 1 (that is, it is the sum of N iid exponential random vari-
ables, each with expectation 1). Indeed, (4.4) holds since the time of the jumps of the Markov
process Z' are independent of the location of the jump. On the other hand, we have

> PP Apzpin) = PA—= 10D Farpt (WP 5(ALzpia)

M=0 M=0
112
— Pl - r_1>/ P(Z,
0
=(zL), V 5 € (0,51, Zy € D1|Zy = 1) ds. 4.5)

Since B = 1, we have

(L2
A = 3 ATOF /D) /0 B(Z, = (L), V5 € [0.5],

[€oDy

X EZy S I)L|ZZO = 0 ds. (4-6)
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Thus by (4.1) and (4.5), we have

Ap(e) = ) Yo FWYD)Y ] FupGLPA( 1 AL

[ZGDDL[,]E,C\DLI([,],[)GG M=0

and so by (4.4),

Z .
Mt =& (1 (5= ) 1o cnl 2 = (). @)
Now the right-hand side of (4.7) converges, as L — oo to

E(f Wr)lra|Wo =2), 4.8)

where W, is a standard planar Brownian motion and 7 is the hitting time of R*\D by W.
(This follows from Donsker’s theorem and the continuous mapping theorem. A more detailed
proof of (4.8) for the case t = oo can be found in e.g. [22, proposition 3].) Let WV be a diffusion
process whose first coordinate is deterministic with constant 1 drift and whose second and third
coordinates are independent standard Brownian motions. Applying Dynkin’s formula for VW
with Wy = (—t, 2), the stopping time t as the first hitting time of R3\([—t, 0] x D), and with
the test function v(—s, z), where v is defined by (2.2), we conclude that (4.8) satisfies (2.6) with
¢=1. (]

We record a remark for later reference:

Remark 4.2. Note that the proof of proposition 4.1 does not use theorem 2.1. Thus we
already have an example (random walks), where both the assumptions and the conclusion of
theorem 2.1 are verified (by propositions 3.1 and 4.1, respectively).

4.2. Lorentz gas

Let D be a bounded domain with piece-wise smooth boundary and no cusps. In the setup
of section 3.2, given D, L, and [ € 0Dy, we consider the following initial measure. For any
[_ € £\D;, connected to [ in G, I:=%"21" is a nearest neighbor of [:==%"2[ in 72 (that
is, [— 1€ {w; = (0,—1), wy = (0,1), w3 = (—1,0), wy = (1,0)}) by our assumption in
section 3.2). Let E = E;y C R? be the line segment on the boundary of [+ [— 1/2,1/ 2)2 and
[+ [~1/2,1/2)". Define

N=Ny={(qv)eQ:qgeE (v,[—T) >0}

Let type(l, ') = jif [ — F = w;and ¢ : J\/O’E,l/gwj — R be the first return to A/o,yl/zu,v,- in the
compact Sinai billiard. That is "

¢j = min{s : ®o(q, v) € Nys112,, }-

Let us also write

CTj = //\/ CfdQO,Eflﬂwj'
0.

,271/211,&-
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Next, we define the finite measure ¢ = gy on N by

1 -
do = — cos( — "))dgdv,
2 (v,1-T))dg

where type(l, ') = j. Note that o(N) = |E((u;|/ (;and so it may not be a probability measure.
Now the initial condition G is given by the normalized sum of these measures for all neighbors
I'. That is,

v = 2
g \Euu\ Ott—uy:

Djegw g TEEACAY
By definition, vg is a probability measure. Next, we choose

‘E[,[—wj|

AT = > ?
J

JjET M

(which clearly depends on [ only through [7(I)) and B = 1. This choice guarantees that particles
are being continuously injected through the entire boundary of D; with a measure which is
simply the projection of the invariant measure ;. to the Poincaré section on the boundary of
D; . Because of this very special choice of vg, A, B, we have

Proposition 4.3. With the above choice, the conclusion of theorem 2.1, (LE) and (DLE)
hold with ¢ = 1 without assuming the rationality of L and for general bounded domains D
with piece-wise smooth boundary and no cusps.

Proof. The proof is similar to that of proposition 4.1. We use duality and it is sufficient to
verify (2.6).

We claim that there is some s* > 0 so that for any (g,v) € Ny and any s € [0, 5],
st(q, v) € {~[, [7} Furthermore, if there is some s € [0, s*] with Zg(q, v) =, then Z, (g,v) =
['. Indeed, the first statement follows from (3.2) and the second follows from the fact that vis-
iting [, then I" and then [ again requires at least 2 collisions and so we choose s* shorter than
the minimal free flight.

Next, for any (I, I') as above, by the definition of ¢ and by the fact that s* < min (, we have
for measurable sets B C Uefo.s P (N 1)

/ Bdu = / ( / Bdcbi(g[,[/)> ds. 4.9)
0

By the definition of vg, A and B, we have

AWRT%) R SR S (1) / / {@):¥ s € 10,51, Z¢(q,v) € Dr. Z,(q. )

[:€0Dy, [/Gﬁ\DL ., neG
= (zL)} doyv(g, v)ds

For fixed t,L, let K € Z so that Ks* < tL> < (K + 1)s*. To simplify formulas, let us
assume that Ks* = ¢L? holds (it is easy to check that the contribution of s € [Ks*, tL?] is
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negligible). Now for k = 1, ..., K we apply (4.9) with
By = {(q.v) € Usepos® WNyp) : V 5" € [0, (k — 1)s™], Zy(q,v) € Dy,
X Zi-s (g, v) = (L)}

and the definition of s* to conclude

ks*
(k—1)s* /N

and so

{(g,v):V 5 €10,s], Z9(q,v) € Dy, Z,(q,v)= (zL) } dov(q, v)ds = / By dp

L

K
A= 3 Sy [@odn (4.10)
1

1.€dDy, VeL\Dp:(V,1)eG k=

Now we recall the involution (also known as time reversibility) property of the billiards. For
(g,v) € Q,let Z(g,v) = (¢, —v). Then T preserves p and anticommutes with the flow. That is,

P oL =T0d"

(see e.g. [11, section 2.14]). Thus

/B[’[/’kdu :/ /[’[/J(d/,l,, (411)

B,[,I’,k ={(gq,v) € Q: Zo(q,v) = (zL)
Js € [(k—1)s" ks*]:V 5" € [0,5]: 2y € D, TIp®*(q,v) € Ep}. 4.12)

where

Using the notation (2.4) and combining (4.10)—(4.12), we conclude

Apceth = [

Z.
7 (—) 1._dp 4.13)
(q,v):Z0(q,v)=(zL)

L

By the invariance principle (3.3), the right-hand side of (4.13) converges as L — oo to (4.8).
As in proposition 4.1, (2.6) follows. (]

5. Proof of theorem 2.1

The simplify notations, we assume that a = 1 (the proof extends to any a > 0 with no new
ideas). We will prove (2.5) first. Let z = (x, y) be a point in the interior of D. By definition, we
have

> [
BAGy = [ 3 AgmBof (Z)
0 [eowDy,
x P (2, = ((x,y)L), min{ry, 7, 7", 7'} > 1| 2o = 1) dt
125 sL? 0
:/ df+/ dt+/ di=L+ L+ LI (5.1)
4. 0 L

12 2/(5
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with I; = I(L, x,y,0) for j = 1,2,3. Noting that
6—0 L—o0

by (H3), it remains to prove
lim lim I} = u(z). (5.3)
6—0 L—o0

Let Wy : [0, 1] — [0, 1] be defined by

0 ify<d
1 e o '
gy—l it <y<20
Uy(y) =<1 if20 <y<1-2¢
1 1 . / !
0 ify>1-¢

and write f5() = fO) Ty ().

To prove (5.3), we first write I| = Iy + Iy, with Iy = I14(L, x,,6,0') for k = 1,2, where
I, and I, are obtained from /; by replacing f by fy and f — fy, respectively. To verify (5.3),
it is sufficient to prove

tn il 1= ) 6

and

Jm i i 1 =0 &9

To simplify notations, we will write I} = lim; . /1 and / ff’o = lims o I7Y.
Let us consider the following truncated version of (2.1)

Au=0, ulop =<Fy, (5.6)

where Fy is defined as F except that f is replaced by f.

Proposition 5.1. Forany &' € (0,1/4), Iﬁ”o is the solution of (5.6).

Proof. The proof consists of two steps. First, we prove that /7> exists; then we show that it
satisfies (5.6).

Step 1: 17> exists

Let us define B = [(21(), where K is defined by (2.9). To simplify formulas, let us write
7 =min{7y, 77, 7', 7;'}. Also observe that by transitivity of G, there are constants
Al,...,Ag sothat forany m € Nand forany k = 1,...,K, A(J(I"K+0)) = A;. Now, we
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compute

L%/5

= > AJW) /

[€OwDy.l /LEW 1-6")

B fy ( ) P(Z,={(x,y)L), T > 1|2y = ldt

(1-8)L/B K

L2/§ ((mK+K)
= 2 DA / B()fy | 2 ;| P@E= ((x,y)L), T > 1| Zy = ("K+D gy
2

m=¢ L/B k=1

(1-6)L/B K

2. DM

m=0'L/B k=1

1/6 (nK+h)
X / B(sL)fs | 2 T | P2 = ((x,y)L), 7 > sL*| 2,
4

— [(mK—‘,-k)Lst

Now using (H2) with T =sL?, a=x/\5 B=1/\s 1= N/L/5), v=y/Vs
= 1/+/s, we obtain

(1-8"L/B Kk 1/6 [(mK+k) N 1
Iy ~ A BGLY) fy | 2—— | s 3207y | =, —

[(an+k) 1
X ¢ J
L5 " /s \s
by uniform convergence, where a; ~ b, means that lim;_., ar/b;, = 1. Let us write

1 K
c= Ekz_; Aka.

Then
(1-0"L/B (mK) (mK)
. 1 B [t @y
I~ BL2 3/2 P R 2 _ 2 ) |ds
" / S 1”(\/ f) g /e ( L >¢(L\/E’\/§’\/§> S

Replacing the Riemann sum with the corresponding Riemann integral, we obtain

1/
Iy ~ — / B(sL?)s /%1 (

1-d
X [ ; f&/(0)¢<

)
) 1“
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(We are permitted to do this because of uniform convergence of the bracketed expression in s).
Since the integrand in the last formula is uniformly continuous in s and since B is periodic with

period 1 and folB = 1, we can take the limit L — oo to conclude that /{} exists and is equal to

CK/ “ (5 7) [ 1 yf”("w(\f ) ]

Now we substitute (2.7) and (2.8) to the above to conclude

1-¢ 2
= CK/ /5 (Slz(zk+x)exp (-LH}C) ) !

k=—00 n=—00 2s v 2

)2 2
X fs(0) {GXP (—%) — exp (—W)}) dsdo.

Clearly, the sum is absolutely and uniformly convergent and so we can write the sums in front
of the integrals. Thus

1-¢

oo:CKZ Z/ R(k,n,d,0,s,x,y)do,

k=—00 n=—00
where

j—Zka)

1

/51 { ( (2k+x)2—|—(y—a—2n)2>
X S |exp | —
s S 2s

2 2
- (_(2k+x) + (O + 0+ 2n) )} .

R(k, n, (5, ag,s, X,y)

2s

Making the substitution w = (2s)_% (and so 4wdw = —ds/s?) and letting P; = (2k + x)> +
(y — 0 —2n)? and P, = 2k + x)> + (y + 0 + 2n)?, we get:

R(k,n,d,0,x,y) = 4();Bk)f5/(a)/; w [exp(—lez)

— exp(—onJz)] dw

= N ——fy(o exp Y —P—Zexp ~55

2 2k Pio
(}if— o ){ ew (-2
1 Py6
L (-
=R +R;
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Clearly, we have
hm Z Z R, =0
and as lemma 5.2 shows,

hmz ZRQ SN lim Ry.
n k

So we get

limR(k,n,0,0,x,y) = R(k,n,0,x,y) =
-0

2x + 2k) 1
\/— fo/( )|: P2:|

and hence

o0 o0

cK [ &
0 =< / > S Rknoxy)do. (5.7)
6/

k=—00 n=—00

To complete step 1, it remains to verify

Lemmab.2. Leru(z) = exp(—z)/z. And let Py and P, be as defined above. Then for 6 € R,
x € [0,1], 0 € [0, 1], and k, n not both 0, the following sum converges uniformly in 9, x, and
oas M — oo.

M M
> > @k 4 x)S[u(Pi6) — u(Pd)].

k=—M n=—M
Proof. Let us write

P; = (2k+x)* 4+ (y — 0 + 2n)%, Py = 2k +x)* 4+ (y+ 0o —2n)
We will show

0 M

Jim k:kng; +k;M ;4 S| =0, (5.8)
where

S =8k,n,é,0,x,y) = 2k + x)0[u(P15) — u(P20) + u(P36) — u(Psd)l,
and the convergence is uniform in §, x, o. First, observe that

P, — = —4(o + 2n)y, P3; — Py =4Q2n — o)y

By the mean value theorem, for some P} € (P, P2) and P € (P4, P3). Using the mean value
theorem again, we conclude

u(P18) — w(P20) + w(P30) — wW(P4d) = —4oyd[u'(P}6) + u'(P50)]
— 8nys*(P|, — P (P6)
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for some P| € (P4, P>). In the sequel, C denotes a universal constant (independent of
k,n,x,y,8,0,L or any other parameters), whose value is unimportant and can even change
from line to line. Now using the estimates |u/(z)| < C/z%, |u"(z)] < C/z* for any real number
Z, we have

K] |k|n?
<
Sl<c¢ ((k2 T2 T @ty

Thus we conclude
and likewise

We have verified (5.8). The lemma follows. ([l

Step 2: Icﬁ’o satisfies (5.6)

We give two independent proofs for step 2. The first proof is shorter and easily generalizes
to the case of finite ¢. The second proof shows that the formulas derived above are tractable (at
least in the case t = 00).

Proof 1: step 1 shows that for any stochastic process Z; satisfying (H1)—(H3), the limit (5.7)
is the same. Recalling remark 4.2, we already have examples where (H1)—(H3) as well as the
conclusion of the theorem hold. Thus Iff’o has to satisfy (5.6). To finish the first proof, we
identify the constant .

Let us consider the simplest possible random walk, called the simple symmetric random
walk. That is, w; = (0, —v/2)T, wy = (0, V2)T, w3 = (—v/2,0)", ws = (v/2,0)T and

1
P(wi):Z fori=1,...,4.

In this case, £ = (\/EZ)2 and by the central limit theorem, Z;/ Vi converges to a 2 dimensional
standard normal random variable (we chose the normalization /2 so that the limiting covari-
ance matrix is identity and so Z fits into the framework of proposition 4.1). In this case, we
clearly have K = 1, B = V2,A, = 1/4 (and B = 1). Thus ¢ = ¢; /4. Next we claim that now
¢1 = 4/+/w. To prove the claim, first note that

2
Jlim VTP(r > T Xy = 0) = NG (5.9

(this follows from e.g., [21, proposition 5.1.2]). The proof of (H2) is based on the fact that,
under the assumption that TOX >T, ZL,T | / VT with0 << 1 converges to a stochastic process
whose first coordinate is a Brownian meander and the second coordinate is a Brownian motion.
Furthermore, the local limit theorem also holds under the assumption i > T which gives (H2)
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(see the details in section 7). This local limit theorem combined with (5.9) gives ¢; =
%covol(ﬁ) = 4/./7 which proves the claim.
Thusincase K = 1,B = v/2,¢ = 1/\/m,(5.7) satisfies (5.6) with ¢ = 1. Since (5.7) is linear
in ¢K /B, we conclude that in case of general K, B and ¢, (5.7) satisfies (5.6) with
v2mcK

SETg (5.10)

Proof 2:

Step 2'a: I3;" is harmonic

An elementary computation shows that R(k, n, d, o, x,y), as a function of x,y € (0, 1)?is
harmonic for any k and n. Since the derivatives of R(k, n, o, x, y) with respect to x and y converge
uniformly in a neighborhood of x,y, the Laplacian can be taken inside the sum in (5.7). It
follows that 77> is harmonic.

Step 2'b: I3} satisfies the boundary conditions of (5.6)

Recall (5.7) from step 1. Let us first consider the case when |n| + |k| > 0. In this case, there
is uniform convergence in x, y and o so we can write the limit inside the sum and the integral:

K 1-¢
— > / lim  R(k.n,0,x,y)do.
kneZim k070 OO0

We can directly compute this limit as

1-0 14
/ lim )R(k, n,o,x,y)do = / R(k,n,o,0,y0)do
& 5

(x,y)—(0,y0

1-0
=/ fylo)
o/
" [ 16kyo(o + 2n) ] do.
[(2k)? + (vo — 0 — 2n)?][(2k)* + (yo + 0 + 2n)?]

We see that for each n, these terms are antisymmetric in k, so that summing over k and n,
with |n| + |k| > 0, all of the terms cancel. Now we consider the case n = k = 0. This term
gives:

K 8 1~

. . oxy
lim 1= -"——— lim / do.
(r)=(050) ! B 27 )—=050) )y f5(@) {[x2 + O —0)?x*+ G+ 0)2]] 7

To compute the above integral assume first that 6’ < y, < 1 — &', and decompose it as

1-o yo—Ax
/ ...daz/ ...da—|—/ ...do
& yo—Ax ye[d',1-8"1\[yo—Ax,yg+Ax]

=1+

for some large constant A.

First, we compute /11;. For y, and A fixed, and for x and |y — y,| small, yfy(o)/[x* + (y +
o)?]is close to f5(y,)/(4y,) uniformly in o as in /. Indeed, this follows from the continuity
of fy. Thus we can write this term in front of the integral. Now it remains to compute

yo+Ax
/ xo/[x* + (yo — 0)*1do.
yo—Ax
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Let us apply the substitution p = (¢ — y,))/x. Then the previous integral becomes
A A
/ xp/(1 +p2)dp+/ Yo/(1 + p*)dp.
—A —A

The first integral here is zero as the integrand is an odd function. The second integral is my (1 +
04(1)). We conclude

I = %fa/(Yo)(l +oa(1)). (5.11)

lim
(x,y)—=(0,y0)

Next, we claim

lim T = oa(D). (5.12)

(x.y)=(0,y0)
To prove (5.12), we compute
1-¢

fo(@) 3 ?0’02 2
Yo+Ax [x* + (o — o)*1[x* + (Yo + 0) ]

Yo +Ax(i+1) oXY0

”fHOC Z /)OJrAxt x2 + (yO - 0')2][)62 + (yO + 0)2]

Yo +Ax(i+1)

aXY0

< I f Moo Z /)0+AX’ [x2 + (AxD)?][2y00] do

> yo+Ax(i+1)
CUles | C
2 VoA X2[1 + AZi2)

i=1

Ifllex~ A w2 oo 1
2 ; 14 A%2 12 A

This estimate, combined with a similar computation for the domain [§',y, — Ad'], verifies
(5.12). Next, if y, < 6" ory, > 1 — &', then clearly I;1; = 0 and /112 = 04(1). Now combining
(5.11) and (5.12), we obtain the boundary conditions of (5.6) on the “West side’ (that is when
x = 0) with the constant

_ V2meK
-

which coincides with (5.10).
Checking the boundary conditions on the other three sides is easier. First, recall that

2(x + 2k)

R(n,k,o,x,y) = TS

y+o+2n?— Gy —o—2n)?
[(2k + 0?2+ (y— 0 —2n)?][(2k + x)*> + (y + 0 + 2n)?]

Thus for every k =0,1,2,..., we have R(n,k,0,1,y) = —R(n,—k —1,0,1,y) and so
> kez R(n.k,0,1,y) = 0 for every n. It follows that lim,._, Iff’o = 0. Clearly, R(n, k, 0, x,0) =
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0 for every n and k and so lim, o ;" = 0. Finally, to prove lim, ,; 1770 = 0, let us write

. 000 2(x + 2k) 1
Hm 7y Z ZP1(n) Py(n)’

where Pi(n) = Qk+ x>+ (1 —o —2n)> and Py(n) = 2k + x)> + (1 + o + 2n)>. Now
observe that P(n) = Pi(n+ 1). Thus the sum over n is telescopic and so by absolute
convergence, hm 370 = 0. We have finished the proof of step 2'b. O

Now we ﬁmsh the proof of (2.5). First note that proposition 5.1 implies (5.4). Thus it remains
to verify (5.5). Consider the following Dirichlet problem:

{AU =0 in(0,1) x (—1,2),
(5.13)

U@0,y) = <(f ) = fo ), U(Ly) = Ulx, —=1) = U(x,2) = 0

where f and fjy are identically zero on [—1,0] U [1, 2]. Now the proof of proposition 5.1
applied on the domain (0, 1) x (—1,2) with boundary condition given by f — fy implies that
forany &', x, y fixed,

hm hm I, < U(x,y).

Indeed, on the one hand, if the particles are only killed upon leaving (0, L) X (—L,2L), then
we obtain an upper bound on the number of surviving particles in the case when particles are
killed upon leaving (0, L) x (0, L). On the other hand, the proof of proposition 5.1 is applicable
on the larger domain since the boundary condition is identically zero in a neighborhood of the
corners.

Now since the function f — fy is supported on the union of two intervals with total length
44" and is bounded uniformly in &', we have limy_, U(x, y) = O for all x, y fixed. Thus (5.5)
follows and the proof of (2.5) is complete.

The proof of (2.6) is similar, so we only explain the differences. First, the decomposition
(5.1) now reads

12 512
/ dt+/ oodt=1 + L.
oL2 0

In particular, 75 is missing and I, is negligible as before. We decompose I} = Iy + 1, as
before. Proceeding as in step 1 of the proof of proposition 5.1, we obtain

K 1—¢ o0 00
imlimZy = [ > Y Rekno,xydo,

6—0 L—o0 B 5
k=—00 n=—00

2 2k P 1 P
e 252 oo 5)- oo (5)]

The first proof of step 2 in proposition 5.1 is the same as before. We prefer not to give a second
proof of step 2 as in the time dependent case, the formulas in step 2’a become substantially

where
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longer. Finally, the proof of (5.5) is again analogous to the previous case with U as in (5.13)
replaced by the unique solution V(z,x,y) : Ry x (0,1) x (=1,2) = R of

1
V= E[Vm + Vyy],

V(©,0,y) = <(f) = fy ), V(. 1,y) = V1, x, 1)
= V(1,x,2) = 0,V(0,x,y) = 0.

We have finished the proof of theorem 2.1.

6. Background on Lorentz gas

6.1. Preliminaries

Here, we review some results for the Lorentz gas that are necessary to the proof of theorem 3.2.
We refer the reader to [11] for an in depth discussion. Let us use the notation of section 3.2.

The map Fy is hyperbolic in the sense that there are stable and unstable cone fields C;'/ ' C

T My so that D, Fo(C) C C4, ,, and D JF; ' (C) € C7, v, and for all v € C. [ D Fo(v)]| >
0 X

Aljv]| (and likewise for all v € C2, || D Fy '(v)|| = Aljv|). Furthermore, stable and unstable
manifolds exist through almost every point, but not through every point because of singularities
due to grazing collisions. In fact, the presence of these singularities makes the study of billiards
particularly peculiar.

Let us use the coordinates (7, ) on M, where r is the arc length parameter of 9D, and
€ [—m/2,m/2]is the angle between the postcollisional velocity and the normal vector to D.
A curve W C M is called unstable if for every x € W, T, W is in the unstable cone. Further-
more, an unstable curve W is called weakly homogeneous if it does not intersect any singularity
and there exists k = 0, kg, ko + 1, ... so that for all x = (r, ©)p € [(k+ 1)72, k21 if |k| > ko
or [p| < ky 2. In other words, weakly homogeneous unstable curves are required to be disjoint
from the real singularities of F; as well as secondary singularities ¢ = +k 2 for |k| > ko. A
weakly homogeneous unstable curve is called homogeneous if it satisfies certain extra regular-
ity properties whose exact form are not needed for us (see the distortion and curvature bounds
in [10, section 4.3]).

A pair £ = (W, p) is called a standard pair if W is a homogeneous unstable curve and p is
a probability measure on W so that

—log ()| < Cp X
dLep ™ T8 gLy )| S QT

log (6.1)

where Cy is universal constant and |.| stands for arc length. Here and in the sequel log stands
for logarithm with base e. We will also use the notation log, for the logarithm with base 2.
Given ¢, we denote by v, the probability measure generated by p and length(¢) = length(W).
Due to the singularities, an image of a homogeneous unstable curve will be a collection of
unstable curves. Furthermore, the regularity of p in (6.1) is defined in a way that is preserved
by Fo. The exact exponent 2/3 is related to the way the homogeneity strips are defined. The
fact that the regularity (6.1) is preserved relies on distortion estimates and follows from e.g.
[10, proposition 4.9]. Thus the image of a standard pair under F; is the weighted average of
standard pairs. It is convenient to introduce the notion of a standard family: a weighted average
of standard pairs. Specifically, let us say that G = {{{, = (W, pa) }acai, A} is a standard family
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if ¢, are standard pairs, W,’s are disjoint and ) is a probability measure on the index set 2.
The standard family G induces a measure vg on M, by

l/g(B) = /I/g(B n Wa)d)\(a)
A

for Borel sets B C M. For a given homogeneous unstable curve W, and for x € W, we denote
by r(x) the distance from x to the closest endpoint of W, measured along W. We denote by r,,(x)
the distance from F{/(x) to the closest endpoint of W', where W’ is the maximal homogeneous
curve in the image F"*(W) containing J{(x). We define the Z function of a standard family by

vg(r <e
Zg = sup BV <9
e>0 3

Note that we assumed that the curves in a standard family are disjoint and so the function r is
well defined. Now we are ready to state the last missing technical piece of theorem 3.2: G is any
standard family with a finite Z function. Examples include any standard pair or the invariant
measure V.

A fundamental property of Sinai billiards is that the expansion wins over fragmentation.
That is, most of the weight carried by the image of a standard pair is concentrated on long
curves. The precise statement, called growth lemma is the following (see [10, propositions 4.9
and 4.10]):

Lemma 6.1. For any standard pair { = (W, p) and anyn € 7,

ViAo F§) =Y it (A), 6.2)

where ¢,; >0, Y. coi =1 and ,; = (W,;, pn.;) are standard pairs so that U;W,; = Fj(W)
and p,; is a constant times the push-forward of p by F. Furthermore, there are universal
constants » and C so that for any n > »loglength(¢) and for any € > 0

Z cni < Ce.

i:length(¢,, j)<e

We will refer to (6.2) as Markov decomposition. A simple consequence of the growth lemma
is the following lemma, which is proven in e.g. [11, proposition 7.17].

Lemma 6.2. There are constants cy, ¢; and 0 < 1 depending only on Dy so that for any
standard family G with finite Z function and for any n,

Z]:(f)«(g) < 10"Zg + ;.

Let k : My — R? be the free flight vector and & : M — R? be the discrete free flight vector.
That is, /(g, v) = I (Fo(g, v)) — I52(g, v). Let us also write & = [ |k|dvy € R
Let

n—1

Zi(qv) =Y ’(F(q,v)). (6.3)
=0 6235
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Similarly to the flow, we write Z,, = (23 s 37,,). Put
76? =min{n > 0: X, < 0}

and for x # 0, put

x
TX

=min{n > 0:X, = x}

(and likewise with X replaced by )).
The next result is the extension of the invariance principle (3.3) to standard pairs (see e.g.

[9D.

Theorem 6.3 (Invariance principle).  Fix a standard pair { and consider the stochastic
processes Z,, Z, induced by the initial condition (. Then

(a) 2,;,7 / VT, t €]0,1] converges weakly as T — oo to a planar Brownian motion with zero
mean and covariance matrix Y (introduced in section 3.2) uniformly for { satisfying
llog length(f)| > T'/4,

(b) With the notation ¥ = &Y we have ZL,NJ/\/IV, t € [0, 1] converges weakly as N — oo
to a planar Brownian motion with zero mean and covariance matrix . uniformly for ¢
satisfying |log length(¢)| > N'/4,

Another extension of the central limit theorem is the so-called MLLT, which we discuss
next.

6.2. Mixing local limit theorem

Recall (6.3). Let us also define

n—1

Fulg,0) =Y [r(Fi(g, ).

=0

Given x € R?, y € R and a standard pair £ let us denote by 1J, the push-forward of v, by the
map

(@.v) = (Zu(q.v) — (xv/n),  Fu(q.v) — nk — yv/n, Fi(q,v)) .

That is, ¥, = 9,(£,X,y) is a measure on Z> x R x M. Fix an open set A C € as in (3.4)
and define A C Z? x R x My so that ((k, ), —t, (¢, v)) € A if and only if IT,2(q,v) = (k, I),
(9 (q,v)) = 0, ®'(g,v) € Aand |r(g, v)| > t. Thatis, A contains phase points (¢ + (k, 1), v)
and corresponding flight times 7 so that a flight of length ¢ from (g + (k, [), v) is free and arrives
in the set A. By the finite horizon assumption, A is bounded. Without loss of generality, we
will later choose the fundamental domain large enough so that |#;| < 1 fori = 1,2 and so the
absolute value of both integer coordinates of .4 are bounded by 1.

Let gx, denote the Gaussian density with zero mean and covariance matrix Y. The version
of the MLLT that we consider here is the following

Theorem 6.4. There is a positive definite 3 X 3 matrix Y whose top left 2 x 2 minor is ¥
and constants C, Cy, Cy so that for any standard pair £ with |log length(f)| < n'/* the following
hold
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(a) Forany (x,y) € R? and for any A as in (3.4),

uniformly for x,y in compact subsets of R3.
(b) Forany (x,y) € R? and for any A as in (3.4) and for any positive integer n,

n29,(A) < Crges(x0) + C, /7

A variant of theorem 6.4 was proved in [ 13, lemma 2.8]. Specifically, [13, lemma 2.8] covers
the case when Z is replaced by X and A = € in the definition of ¥, (we included the more
general case of A to accommodate for (DLE) as in theorem 3.3). Since the proof directly applies
here as well (except for one minor adjustment), we only discuss this minor adjustment and do
not repeat the entire proof.

Proof. First, we need some definitions. For a bounded Holder function f : My — R?, we
define S(f) as the smallest closed additive subgroup of R? that supports the values of f — r for
some r € R?. Let us write f ~ g if f and g are cohomologous. That is, f(x) = g(x) + h(x) —
h(Fo(x)) for a measurable 4 and for all x € M. We say that f is minimal if M(f) = S(f),
where

M(f) = Mg~ S(Q)-

The only minor adjustment that is needed in the proof of [13, lemma 2.8] is that we need to
show that

f=(k|k| — R): Mo — R?

is minimal. That is, M(f) = Z* x R. (Heuristically, there is a clear obstruction to the MLLT in
its present form if M(f) is a proper subgroup of Z> x R. It turns out that, similarly to the case
of IID random variables, this is the only possible obstruction.) This generalizes [13, lemma
A.3], which shows that

f =k, |k — F)
is minimal. That is,
M(f)=7 x R. (6.4)

To establish the minimality of f, it is enough to prove the following. If M(f) is a proper sub-
group of 7? x R, then there are real numbers «, r and two measurable functions 4 : M, — R,
g : Moy — Z so that

|k(g, v)| = h(g,v) — h(Fo(g,v)) + r + ag(g, v). (6.5)

Indeed, a contradiction follows from (6.5) as in [13]. To prove (6.5), we first recall that by
[28, theorem 5.1], & is minimal. Thus the projection of M(f) to the first two coordinates needs
to be Z*. In particular, there exist e; = (0,0, )7, e; = (1,0, 5T, and e3 = (0, 1,9)T in M(f).
If M(f) is a proper subgroup of Z> x R, then there exists a minimal o > 0 with the property
that e; € M(f). Now we claim that e, e;, e3 generate M(f). Indeed, by the choice of «, e;
generates M(f) N {(0,0,z),z € R} and so ey, €2, e3 generate

M) N {(x,y,2): (x,y) € {(1,0), 0, D} }.
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Since the projection of M(f) to the first two coordinates is in Z2, the claim follows.
Thus there are constants ry, r,, r3 so that for every (¢, v) € M, there are integers m, n, k
(depending on (g, v)) so that

(%1(g, v), Fa(q, v), [k(g, V)" = (r1,r2,13)"
= mey + ney + ke + (hy, ha, h3) (g, v) — (hy, ho, h3) ' (Fo(g,v))  (6.6)

From the first coordinate of (6.6) we have
n=Fr —rn—h+hok
and likewise from the second coordinate we have
k=Fy—rm—hy+hokF
Substituting these into to the third coordinate of the equation (6.6), we find
|K(q, v)| = F = BR1(g, v) — YRa(g, v) = ma + h(g, v) — h(Fo(q, v)), (6.7)

where ¥ =r; — ri8 — rpy and h= h3 — Bhy — vhy. Fix now (g,v) and write Fy(g,v) =
(q1,v1). Note that by reverting the free flight, we have Fy(q1, —v1) = (g, —v). Applying (6.7)
to (q;, —v1), we obtain

|K(q, v)| — F + BFi(g, v) + Ykalg,v) = m'a + h(q1, —v1) — W(Fo(qi, —v1)). (6.8)

Finally, adding (6.7) to (6.8), we obtain (6.5) with r = 7, h(g, v) = 1[h(g,v) + h(gi — v)] and
g(q,v) = %”’/ This completes the proof of (6.5). (|

7. Proof of theorem 3.2

71. Change of coordinates

Since £ is rational, we have 90t := X/2(&D ¢ 72 and 9 := X/2(%2) ¢ 72, Furthermore, 9
and D1 are primitive lattice vectors (i.e. their coordinates are coprime due to the definition of
(K1), (K>)). Now we introduce an enlarged fundamental domain for the Lorentz gas. Let Z' be
the subset of Z? containing the origin and those points of Z? that are in the interior of the paral-
lelogram with vertices 0,90, 91, M + M. Let T’ = U,ep[z — 1/2,2+ 1/2]*/ ~, where P ~ Q
if P — Q is in the lattice generated by 9%, 0. That is, 7" is a union of unit squares and ~ is a
pairing of all parallel sides on the boundary of 7. In particular, 7" is a flat torus. Now we put
Dy = T'\U,ezUt_(B; + 2). See figure 3 for the special case 90T = (1,3) and M = (2, 1). T’ is
the polygon with bold boundary (modulo the identification).

We are going to study the Sinai billiard in D} and so we define @, €, ug, My, Fj, v
exactly as before using the larger configuration space Dj. Note that @ is a factor of & by
the map ¢ : Q) — Qo, ¢ : (g, v) — (g, v), where g € D}, g € Dy and g = g(mod 7Z2). Also, note
that @' is an extension of both & and ;.

Given (¢,v) € Q, we write 1T, (g, v) = (m,n) if g € (M9, nM) + T’ and H’D(,)(q, V) = qo
if g=qo+ H’Zz (g, v) * (DM, N), where * means multiplication coordinate-wise. Let us write
Z/(q,v) = T, (P'(g,v)).
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Figure 3. Enlarged fundamental domain.

Note that for any (k,[) € Z* we can find a unique (ko, ly) € Z' with (k,[) ~ (ko,ly) and a
unique (m, n) so that (k, [) = (m9, nMN) + (ko, lp). Let us write [(k, )] = (ko, lp) and [[(k, D]] =
(m, n). Note that

[[Z:(q, )] = X 2(Z1(gq,v) — [Z:(g. 0)]) = Z/(q, V). (7.1)

Given (g, v) € Q, we write IIz(q,v) = [[T(g, v)]. Let E(q,v) = (D' (q,v)) = [2,;,(q, v)]
(€ stands for extension). We will also write [[¢']] = [[I1,2(g, v)]] for any (g, v) in the support of
vy (we assume that the standard pairs are supported in one cell) and likewise [[G']] for standard
families. All definitions and results in section 6 extend to ®;. We will use those notations and
results with a prime in the superscript.

72. Proof of (H2)

We claim that (H2) follows from

(H2') For any proper standard family G’ there is some C¢ so that for any 0 < o < 3 and for
any 0 < 7,v < ¢ and forany 7 € Z', if [[G']] = (O, Ln\/ﬂ), then

lim 7°/%u (Z’T = (. YWT), Er = Z’,min{Tgﬂ,Tg\/ﬁ,TX/,Tg(\/ﬁ} > T)

T—00

==Cb/¢(a,5)¢(n,7,§)

Furthermore, for any € > 0, the convergence is uniform fore < a < a+e < f <
lje,e<n<nte<i<l/e,e<y<vy+e<&

To prove the claim, first recall that by (7.1), 2, = Z] + »12€,. To compare the ini-
tial conditions in (H2) and (H2'), note that given any standard family G on M, there are
exactly Z := |Z'| corresponding standard families G, . .., G, on M that project to G along «.
Indeed, for any point (¢, v) € Qo, L 1((g,v)) = {(g + 7,v), 7 € Z'}. Recall that the free flight
is bounded by 1 and so the initial condition in (H2), i.e. Zy = [ and P being induced by a stan-
dard family G, corresponds to an initial condition given by g;, forsomez =1,...,Zin (H2).
Indeed, the type of [ uniquely defines z'. Thus G and the type of [ in (H2’) is replaced by G’ in
(H2). Since &, is bounded, the claim follows.
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Note that for a given standard family G and two lift ups G, , G/, , 2} # 7, € Z', the constants
<1 “2

Cg// , Cg// can be different. As we will see later,
z ./',2

Cg, = lim v, ¥ > 1)/VT. (7.2)

Thus e.g. in figure 3, Cgé1 , > Cgé1 N for all standard families G. This inequality is strict in case

of some standard pairs. To prove this, note that in case of figure 3, 75 /(q, v) > T is equivalent
to (Z,); < 3(Z,) for all 1 < T. Now observe that 75" (qo + (1,2),v) > T implies 73 (g0 +
(1,1),v) > T, but the converse implication does not hold.

We will prove (H2'). The proof is built upon the results of [13, 14]. In particular, [13,
proposition 3.8] gives that under the assumptions of (H2"),

lim T (;{; = [aVT).& = 7 min{r ¥ 7} > T) = Co(e, ) (1.3)

with Cg defined by (7.2). Furthermore, [13, proposition 3.9] gives that under the assumptions
of (H2)),

Jim VT (V) = [T, & = Zomin{r 72} > T) = 60,7, (7.4)

We interpret (7.3) as the one dimensional version of (H2'). If the events on the left hand sides
of (7.3) and (7.4) were independent, then (H2) would follow immediately. By the invariance
principle, X7 and ) are asymptotically independent (since by the change of coordinates, the
covariance matrix is identity) but this yet is not enough to conclude (H2') as the events consid-
ered here have small probabilities. Thus we cannot derive (H2') directly from (7.3) and (7.4);
we instead have to revisit their proofs. Since we only need to make minor changes to their
proofs, we give details only at places where changes are needed and otherwise refer to [13]
(and sometimes give a sketch).

First we need some lemmas. Recall the notations introduced for the billiard ball map in
section 6. To simplify notations, we will write

! . v/ o/
TH‘X | = mll’l{TaX ,ija}.

and likewise for X" replaced by ).

Lemma 7.1. There are constant Cs3, Cy4 depending only on D so that for every standard pair
¢ with [[£']] = (0,0) and for every m > Cs log length({) and for every L,

CyL

v (i < 7)< o051h 4 ey

m

(7.5)

Proof. Letus fix a positive constant 7 so that the probability that a standard planar Brownian
motion W, leaves the box [—1, 1] through the North or South side (and not through the East
or West side) is at most 0.505 whenever the y-coordinate of W, denoted by (Wj),, satisfies
|(Wo)2| < n. We are going to use the invariance principle and the above estimate inductively L
times to derive the lemma. Each time the North or South side is reached, we apply a Markov
decomposition and discard the curves that are too short (hence the second term on the right-
hand side of (7.5)). The key to this argument is the fact that the limiting Brownian motion has a
diagonal covariance matrix, which is guaranteed by the change of coordinates from section 7.1.
Now we give the details of the proof.
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Choosing C; large and using lemma 6.2, we can guarantee that the standard family
G :=FJ"(¢') has a bounded Z function (e.g. Zg < 2c¢,, where ¢ is defined in lemma 6.2.
Such standard families are sometimes called proper). Recall that we assumed that the free
flight is bounded by 1. Thus for any standard pair ¢ = (W”,p") in G, ||[[[£"1]|| < nm. If
length(¢") < m™%, then we estimate v (C) < 1, where C = {TB::‘ < T,‘,,X/‘}. By the growth
lemma, the measure carried by such standard pairs in G is bounded by C4m%. Let us now
assume that length(¢”) > m 3%, Then by the choice of 7 and by invariance principle (assuming
as we can that m is large enough),

vV < 7y < 051,

0|
Now let £ = (W",p"") be a standard pair in the standard family G := ]i?” .

Note that there exists a constant Ty« so that for any x € W” with ]-"g""y | e w"”, T,‘,,y/‘ = Tym.
Indeed, this follows from the definition of homogeneous unstable curves. Now we distinguish
two cases. Let us say that £ is of type 1 if Tyn > m or length(¢"") < m~7°, For type 1 stan-
dard pairs £”, we use the trivial bound vy»(C) < 1. By [13, lemma 5.1], the measure carried
by standard pairs ¢” with Ty» > m?> is bounded by Cm~*"°. Thus by the growth lemma, the
measure carried by standard pairs ¢ with Tyw < m? and length(¢”") < m~7° is bounded by
Cm~ ", Thus the total contribution of type 1 standard pairs is bounded by C4m % Let us say
that £” is of type 2 if it is not of type 1. By the invariance principle and by the definition of 7,
for every type 2 standard pair £, we have

-, .
V[///(TZD’;‘ < Tr‘nXl‘) < 051

Thus we have derived

2C,

ve(my, <7 <0517+ o

Following the above procedure inductively, we obtain the lemma. (]
Lemma 7.2. For every § > 0 and for every &€ > 0 there exists My and L so that for every
standard pair ¢' with [[¢']] = (0,0) and length(¢") > 8, and for every M > My,

YA v/ v/ v/
vy (TZ‘%]‘ <ty Iy < TOX) <&

Proof. [14,lemma 11.1(a)] says that
c=c(l')= lim Myp(rif’ <) (7.6)
M—o0

is finite. We will use the proof of that lemma to prove our lemma. Let us recall the main steps
of the proof.
Lett, = T;E/ and
se = min{n > t; : X, < Oor X7, = 2¢F1},
Let now £ be a standard pair with
[[¢'1y =2 and length(¢") > 2710% (7.7)
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(we will consider £ in the image of ¢ under the map (F')%). The proof of [14, lemma 11.1(a)]
is based on the following identity (see [14, lemma 11.2]):

= 1
U (tk+1 < andry | > 2*10"("“)) =5 +02 ™" (7.8)

with a universal positive constant ¢. Fixing an arbitrary € > 0, one can choose ky large enough
so that an induction on k = ky, . . ., logy M using (7.8) gives that

\Mvp (s = tigy, v, =27 %D for k = ko, ..., log, M) —¢| <&, (7.9)

which implies (7.6) (by the growth lemma, the measure of the points where ry, < 27100¢+D
for some k < logy M can be neglected). We refer the reader to [14] for more details.
Now we turn to the proof of our lemma. Let us put my, = 2, k = (log, M) — k and

1
2k if ko <k < Slog, M
Ly = . 1
K1.5F if Jlogy M <k < log, M
with some K = K (&) to be specified later. Assuming that kg is bigger than a universal constant
(as we can), we have my, > 100C; log(1/my). Thus lemma 7.1 implies that for all standard pairs

satisfying (7.7):

y Ly
Ver (mm{Tllé”Jh L T L) < mm{TO ’szk}) <051 + 100

which combined with (7.8) gives

v/ \)/ )/ 1
. Xy % / —100(k+1) ) _ =
U (tk+1 < min{Tg ’T[[/%”]h—Lkzk’T[[f”]]z-s-Lkzk} andry  >2 ) =3 +Epm,  (7.10)
where
CyL
—C2K 051 — T < B < C2K, (7.11)
m

k

with a universal constant C'. Now we revisit the inductive proof of (7.9). Let us write

P=vp | s =tiar sl = 271060 AT s g for k= ko, log, M~ 1 | L (7.12)

M+ Y Lj2J
J=ko

Using (7.10) inductively, we find

logy M—1

P = vp(r), <min{z’ .7, DIy 11 %(H—Ek),

k=kg

where E} satisfies the same inequalities (7.11) as Ej . As before, choosing ky and M large, we
can guarantee

, logy M—1
P> 0‘5/10 I «+E. (7.13)

k=ko
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where &' = £¢/2. Let us write

logy M—1 logy M—1 logy M—1
[T a+ED=exp| Y logA+I|ED]| <exp| > |E]l]. (7.14)
k=kg k=kg k=kg

Later we will show that
logy M

_ Cyly 3 £
C'27* 1 0.51% < = 7.15
ka: ( + + m0 10e 20 (7.15)
=Ko

Before proving (7.15), let us show how it implies the lemma. Combining (7.13)—(7.15), we
find

c—¢
P> o (7.16)

Next observe that the event in (7.12) implies that

!
‘y‘>TM,

where L =1+ + }(%?(M L;2%. The next computation shows that L is bounded by a constant
L = L() uniformly in M:

llogzM 21°g2 K logy M B
1+—Z Lkzk_1+ > 4k+— > o152t
k=ko k=ko k_%logzM
%10g2M ~ }
-~ knlogy M—k
<S5+ Z 1.5kk
k=0
00 3 k
<5+4+K ) =5+4K=1L.
+ Z<4> +
k=0
Thus we find
4 P c—¢
W'( < Ty Ty <T )<1—ﬁ<1—7 <¢,
M‘M 0 V[/(TA‘;;<T(§Y) C+£l

where the penultimate inequality uses (7.16) and the last one uses the definition of ¢’. This
proves the lemma. It remains to verify (7.15).
To prove (7.15), first choose K = K(§) large, so that

logy M

> 051k <Z 051515 < 130

k=1}logy M k=0
Then we compute

logy M

ZC/ k(<m

k=kg
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%IngM 0 5

0.515 0512 < >
> < <100
k=ko k=ko

and
llog M
2 2 00
Lk —499k 5

2w <2 < g5
k=ko k=ko

(Note that we can ensure the last inequality in all of the three displayed formulas above by
increasing kg = ko(&) if necessary.) Finally, we have

logy M

Ly St M 249 £
> m® <logy M ssiog i = M 7)< 1455°
k=1logy M
which completes the proof of (7.15). (|

Lemma 7.3. For every 1,1, > 0, there exists €y so that for every ¢ < gy and for every
0 > 0, there is some Ny so that for all N > Ny and for all standard pairs €', with [{']] = (0, 0),
length(¢) > §, we have

vy (T:Y\//N < min{TT?f/\/N,Tg“\/N,EN} | T(jfl > N) > 1 —n.
Proof. [13, lemma 5.2] implies that

TO’E’>N)>1—77—22.

vy (Tfﬁ < &N,
and [14, theorem 8] implies that

lim vp(ry > N)/VN = Cy (7.17)
is finite for all standard pairs and non-zero for some. Thus it suffices to prove

T Cw

vp(ABC) < 4N

(7.18)

where
A={rls >min{rY L 4 B={rlg<eN},  C={r">N}.
To prove (7.18), let us write
D= {T;(\/IN <}
and

vp(ABC) = vp(ABCD) < vp(AD)vp(C|ABD) =111
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To estimate II, we use the Markov decomposition at time T:{// - BY the invariance principle,
II is asymptotic (as N — oo) to the probability that the maximum of the standard Brownian
motion before time 1 is less than e which is bounded from above by ce. Let ¢ = ¢(¢') as in

(7.6) and let ¢ = "iccc/ Lemma 7.2 gives L = L(£). Then we choose €y < 7;/L. Now lemma
7.2 implies that

1= L%/(J4‘1))L7/(1)) 5; E;;i;??

and so (7.18) follows. U

Next, we have the following extension of [13, theorem 3.5] to two dimensions.

Proposition 7.4. The process 2!y /(vEN), 0 < t < 1 induced by the measure vg (.| >

N) converges weakly as N — oo to the planar stochastic process with independent coordi-
nates, whose first coordinate is a Brownian meander and the second coordinate is a standard
Brownian motion.

The proof of proposition 7.4 is the same as that of [13, theorem 3.5] except that
[13, lemma 5.2] is replaced by our lemma 7.3. The sketch of the proof is as follows. Under the

assumption TOX > N, with high probability, we haveT \/— < mm{T T Y wEN }+. Then we
use the invariance principle starting at time 77 \/— The invariance prmmple is applicable since

V[//(To > N) is bounded from below for ¢’ with ¢ > &, and [[¢"]]; = eV/N for fixed . Thus
we obtain a planar Brownian motion with identity covariance matrix, whose first coordinate
starts from € and does not reach 0 before time 1 and whose second coordinate starts from a
position with absolute value less than 7,. Choosing 7; small (and consequently € small), the
distribution of this process is close to the one described in the lemma.

(H2') is a local version of proposition 7.4 in continuous time. The proof of (H2') is again
analogous to the one dimensional case given in [13, proposition 3.8]. Although the proof is
quite lengthy, let us a give a short sketch. Let N = T/ and N; = (1 — §,)N, with a small §,,
and partition the rectangle Ry := [0, 5v/T] x [0, £+/T] into boxes By with side length §,v/T
with some fixed &, small. Proposition 7.4 gives the asymptotic probability (for 7 large and the
other parameters fixed) of arriving in a box By after discrete time N;. Then for any given box
By and any given standard pair ¢ in this box as an initial condition (with length(¢') > §, for
some fixed dp), we need to find the probability that in the remaining continuous time before 7,
but after the first N, collisions, the particle arrives in the cell <a\/T , 7\/7 ). To give an upper
bound, we use the MLLT by simply ignoring the requirement that, in the remaining = §,T
time, the particle has to stay inside Ry. Switching from discrete to continuous time is a non-
trivial step. For a ‘typical’ number of collisions, theorem 6.4(a) is used. On the other hand, the
contribution of non-typical number of collisions is negligible by theorem 6.4(b). This gives
the upper bound in (H2'). To prove the lower bound, one needs to verify that the error made
by ignoring the requirement that the particle has to stay inside Ry for the last ~ 0,7 time is
negligible. If a particle leaves Ry and returns to (/T y+/T), then in particular it has to travel
a distance min{a, 1 — o, v, 1 — 7}\/? during the time §,T. This has a small probability which
gives the lower bound in (H2') (in [13] d; is chosen small given « € (0, 1) and now we need to
choose it small given «, v € (0, 1)). No other substantial change is required.

7.3. Proof of (H3)
As in the case of (H2), we use the change of coordinates to reformulate (H3) as
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(H3') Forany x € (0, 1)andy € (—1, 1), and for any proper standard family G’ with [[G']] =
0,0)

lim lim Lvg(Z] = ((xL,yL)), min{ry" ,7¥'} > ndr = 0.
60 L= J10 5121012 /6,00)

The fact that (H3') implies (H3) follows the same way as we proved that (H2") implies (H2).
In fact, this case is easier that the case of (H2). We only need an upper bound here and so we
can ignore the requirement that £ = 7’ at the cost of losing a constant multiplier.

As in the upper bound of (H2'), we can derive that for any given (x,y) € (0, 1)> and any
€ > 0, there exists d so that for large enough L and for any ¢ < 5L,

/ ! €
vy (2] = (L) Imh, < 7 < 5.

Using this estimate, the proof of (H3’) follows as in [13, lemma 7.2].
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