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Abstract
Particles are injected into a large planar domain through the boundary and per-
form a random or sufficiently chaotic deterministic motion inside the domain.
Our main example is the Sinai billiard, which periodically extended to our large
planar domain, is referred to as the Lorentz process. Assuming that the particles
move independently from one another and the boundary is also absorbing, we
prove the emergence of local equilibrium of the particle density in the diffusive
scaling limit in two scenarios. One scenario is an arbitrary domain with piece-
wise smooth boundary and a carefully chosen injection rule; the other scenario
is a rectangular domain and a much more general injection mechanism. We
study the latter scenario in an abstract framework that includes Lorentz pro-
cesses and random walks and hopefully allows for more applications in the
future.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A major, and widely open problem in mathematical statistical mechanics is to rigorously derive
macroscopic laws of physics from underlying deterministic microscopic principles [3]. One
such law is Fourier’s law of heat conduction. In this context, an important phenomenon in
the emergence of local equilibrium in systems that are forced out of equilibrium. To fix ideas,
assume that the boundary of a piece of metal is subject to a heat bath, i.e. all points on the
boundary are kept at a temperature that is constant in time but not constant in space. Then one
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Figure 1. Particle configuration in a large rectangle. Point particles are enlarged for bet-
ter visibility. A sample trajectory of one of the particles is indicated with light blue. Two
more sample trajectories of absorbed particles are also indicated in red and green.

would like to first see that the temperature is locally well defined in the interior of the metal
too (i.e. the system is at local equilibrium) and then study the temperature profile. A realistic
microscopic model for this phenomenon should consist of a macroscopic domain inside which
the microscopic particles are subject to some translation invariant local dynamics and interact
with a heat bath on the boundary.

Proving that the bulk dynamics obey the heat equation, even without boundary effects, is
notoriously difficult for realistic deterministic systems and consequently very few rigorous
results are known. However, a notable realistic Hamiltonian system for which rigorous results
are available is the Sinai billiard [25]. In Sinai billiards, point particles fly freely on the two-
torus among fixed convex bodies and elastically collide on their boundaries (the planar infinite
periodic extension of Sinai billiards is called the periodic Lorentz process). Thus, the point
particles do not interact with one another and so there is no exchange of energies. By the
results of [4–6] the trajectory of each particle satisfies the central limit theorem. Consequently,
the scaling limit of the bulk dynamics in the infinite plane is given by the heat equation when
‘temperature’ is replaced by ‘particle density’.

The lack of interactions among particles in Sinai billiards is of course a serious limitation
in modeling true heat conduction, let alone local equilibrium (as noted e.g. in [3, 24]) as the
particles’ energies are fixed. Still, if we accept the idea of working with particle density instead
of particle energy, then local equilibrium is feasible [17] (the above list of references to the
physics literature is not exhaustive, they only serve as a sample).

1.1. Informal description of results

In this paper, we prove in a mathematically rigorous way, the local equilibrium property of
particle density profiles in large domains of Sinai billiards by interpreting the ‘heat bath’ as
a ‘varying chemical potential’. Furthermore, we develop this theory for an abstract class of
non-interacting particle systems (which are composed of many copies of a process Z) with the
hope that this class will later include other interesting realistic systems. As of now, we show
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that this class is rich enough to contain two basic examples: (1) when Z is an iid random walk,
and (2) when Z is given by the periodic Lorentz process. Our work is the first result of this
kind for spatially extended deterministic systems.

To formulate our setup, let D ⊂ R2 be a bounded domain with piece-wise smooth boundary
and let particles be injected into the large domain LD for L � 1 through its boundary. The
particles will then perform some independent motion Z on a lattice inside LD. The boundary
is also absorbing so most particles are killed (i.e. absorbed) shortly after injection. However,
some will survive for a long time and find their way deep into the interior of LD. The problem
now is to show that the limiting density profile of particles is governed by the heat equation
when time is rescaled by L2 and by the Laplace equation when time is infinite, where, in both
cases, the boundary conditions are given by the injection rate. We will refer to the first case as
the hydrodynamic limit and the second one as the non-equilibrium steady state. Specifically, we
look at the problem of proving local equilibrium of the particle density profile in systems forced
out of equilibrium when the particle injection rate varies along the boundary of the domain.

Our results in section 2 prove that in case D is a rectangle and the process Z satisfies
some abstract hypotheses (H1)–(H3) (see section 2.1), then the local equilibrium holds in both
the hydrodynamic limit and the non-equilibrium steady state. The main hypothesis is (H2),
which is a conditional local invariance principle conditioned on the survival of the particle. See
figure 1 for the case of the periodic Lorentz gas: particles, indicated by blue dots, are injected
from the left (‘West’) side of a large rectangle while the entire boundary of the rectangle is
absorbing.

Our results in section 4 exemplify that in some special cases, the above results can be
generalized from a rectangular domain D to any domain with piece-wise smooth boundary.
Specifically, if the process Z is such that its time-reversed process Z′ converges to the Brow-
nian motion, then the problem of local equilibrium can be reformulated in terms of the hitting
probabilities of ∂D by Z′ thus obtaining a simpler proof. We will refer to Z′ as the dual pro-
cess. The approach by duality thus gives similar results with two major differences: it is more
general in the sense that D can be any domain with piece-wise smooth boundary, but it is more
restrictive in the sense that it requires both the existence of a nice dual process and a very
specific injection mechanism on the boundary. The utility of this special injection mechanism
is limited since no reasonable heat bath is likely to preserve the invariant measure of the bulk
dynamics (see e.g. [2]). Thus we decided to present the results of section 4 as a list of examples
as opposed to providing an axiomatic framework.

To allow for more general injection mechanisms, it is essential to develop other tools which
do not require such a rigid structure. Such tools are exemplified by our main results in sections 2
and 3. Indeed, our injection procedure (2.3) is quite general: besides the dependence on the
macroscopic position we allow the injection rate to depend on the microscopic geometry
through some function A and on time through another function B. In the case of determin-
istic systems, the only source of randomness is the choice of the initial condition according
to an initial probability measure. Once the initial condition is fixed, Z is deterministic. Here,
we allow a lot of initial measures. Namely, we allow any ‘standard pair’ [10] in the case of
Sinai billiards. In our context, a useful way of thinking about standard pairs is that they are
conditional measures corresponding to a given past symbolic trajectory of the particle.

1.2. Related works

Let us compare our work with known results. Note that example (1) is random and Markovian.
The study of Markovian microscopic dynamics is much easier than the deterministic ones and
consequently much more results are known (including ones that go much beyond the derivation
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of the heat equations, such as second-order fluctuations or derivation of other PDEs even for
interacting particle systems). Instead of reviewing any of the results on Markovian microscopic
dynamics here, we refer the reader to the classical surveys [19, 27]. In the context of Markov
processes, duality has been used to prove local equilibrium in systems that are more compli-
cated than just iid particles (an important early reference for local equilibrium is [20], general
classical references for duality in Markov chains are [23, 26]). Correspondingly, proposition
4.1, i.e. the approach by duality to random walks will not surprise experts, but we include it
because on the one hand we could not locate a reference for this exact statement and on the
other hand it simplifies some computations later in the more general framework in section 5.
We believe that our results in case of more general injections prescribed by the functions A
and B as discussed in section 2 are new even for random walks.

In the case of the periodic Lorentz gas, our results in section 2 provide a natural extension
of [13] from one-dimensional domains (i.e. line segments) to two-dimensional rectangles. The
proof by duality was not found in [13] and so our proposition 4.3 (with trivial changes to
include a 1 dimensional macroscopic domain) gives a simple new proof of the main results of
[13] in case of a very special injection mechanism, which is essentially given by the Lebesque
measure.

1.3. Organization

The rest of this paper is organized as follows. In section 2, we provide the basic definitions
and the main result theorem 2.1 in our abstract framework. In section 3, we present our two
basic examples—namely, the random walk and the Lorentz gas. In section 4, we discuss the
approach by duality. In section 5, we prove theorem 2.1. The most technical part of this work is
the verification of the conditional local invariance principle (H2) for the Lorentz gas, which is
presented in section 7. This section is heavily built upon the standard pair technique of Chernov
and Dolgopyat [10] and tools from [13], such as the mixing local limit theorem (MLLT). The
necessary background is summarized in section 6.

2. Abstract setup

2.1. Non-interacting particle systems

Let L ⊂ R2 be a lattice (i.e. a discrete subgroup) of dimension 2. We consider the graph G
with vertices L and edges joining l with l + w j for all l ∈ L and j = 1, . . . , J for a fixed set
{w1, . . . ,wJ} ⊂ L. For z ∈ R2, let 〈z〉 be the closest l ∈ L to z with the property that l1 � z1 (if
there are more than one such lattice points, then choose the smallest in lexicographic order).

Let (S,P) be a probability space and Zt (t � 0) be an L valued stochastic process. That is,
Zt : S →L for every t � 0. We assume thatZ is continuous from the right and has left limits. In
other words, Z is a càdlàg function (i.e. for almost every s ∈ S fixed, Z jumps at random times
t from a lattice point Zt− to another lattice point Zt). We do not assume that Z is Markovian.

Now let D = [0, A] × [0, 1] for a fixed positive real number A. Fix a non-negativecontinuous
functions f : [0, 1] → R and write F : ∂D → R,

F(z) =

{
f (y) if z = (0, y)

0 otherwise.

We will consider the following Dirichlet problems

Δu = 0, u|∂D = ςF, (2.1)
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vt =
1
2

[
vxx + vyy

]
, v(t, x, y)|(x,y)∈∂D = ςF, v(0, x, y) = 0. (2.2)

We are actually interested in the Dirichlet problem where F is permitted to be nonzero for
all boundary points (as in (2.10)), but this case follows from linearity. We restrict to this case
for now in order to simplify notations. By classical theory, there is a unique solution to both the
Laplace equation (2.1) and the heat equation (2.2) and furthermore limt→∞ v(t, x, y) = u(x, y).
Of course, this is true for much more general domains D, e.g. when ∂D is piecewise-smooth
with no cusps.

For L � 1, let DL = (LD) ∩ L,

∂DL = {l ∈ DL : l is connected to a point outside of DL},

and

∂WDL = {l ∈ DL : l is connected to a point l′ with l
′
1 < 0}.

Here ∂W stands for the West boundary as points in ∂WDL are close to the ‘West’ side of the
rectangle DL. Given l ∈ ∂DL, let

J (l) = { j = 1, . . . , J : l+ w j /∈ DL}

We consider the following process for L � 1. First, for some t ∈ R+ ∪ {∞}, let Θt be a
Poisson point process (PPP) on (−t, 0] × ∂WDL with intensity measure

A(J (l))B(s) f (l2/L)dLeb(s)dcounting(l), (2.3)

where l ∈ ∂DL and A : 2{1,...,J} → R+ and B : R→ R+ are fixed functions. We assume that B
is continuous, periodic with period 1, and

∫ 1
0 B = 1. One example is A(J ) = |J | and B = 1.

However, we want to allow more general functions to accommodate for more general behavior
of the heat bath.

For each point (T, l) ∈ Θ, we start an iid copy of Z at time T from position l and we kill
it at

τ ∗ = inf{t > T : Zt /∈ DL}, (2.4)

the first exit from DL. In the case Z is not Markovian, the initial condition ZT = l may not
define the distribution ofZT+t for t > 0 uniquely. In this case, we allow multiple choices of this
distribution but we require that ZT+t − l only depends on l throughJ (l). That is, if l, l′ ∈ ∂DL,
with J (l) = J (l′) and (T, l), (T ′, l′) ∈ Θ, then we require that for all t � 0, and for all l̃ ∈ L,

P(ZT+t = l+ l̃|ZT = l) = P(ZT ′+t = l
′ + l̃|ZT ′ = l

′).

This procedure is to be interpreted as injecting a particle to the domain DL at time T through an
edge (l−, l) of the graph G, where l− /∈ DL, l ∈ DL and letting particles evolve independently
from one another until coming back to the absorbing boundary. The specific mechanism of
injection through (l−, l) only depends on j = 1, . . . , J, where l− l− = w j. Let Λt(l) be the
number of particles at site l at time T = 0. We start with the following abstract result.

Theorem 2.1. Assume that (H1)–(H3) (defined below) are satisfied. Then for any z in the
interior of D,

lim
L→∞

E(Λ∞ (〈zL〉)) = u(z) (2.5)
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and

lim
L→∞

E(ΛtL2 (〈zL〉)) = v(t, z), (2.6)

where u and v are defined by (2.1) and (2.2) with some ς .

The proof of theorem 2.1 will be provided in section 5.
To define our hypotheses (H1)–(H3), we need some definitions.

Let Wt be a standard Brownian motion. Let

φ(η, γ, ξ) = lim
dt→0

1
dt
P(W1 ∈ [γ, γ + dt], min

t∈[0,1]
Wt > 0, max

t∈[0,1]
Wt < ξ|W0 = η).

It is known (see e.g. [16]) that for any 0 < γ, η < ξ, the following formula holds

φ(η, γ, ξ) =
∞∑

n=−∞

1√
2π

(
exp

(
− (γ − η − 2nξ)2

2

)
− exp

(
− (γ + η + 2nξ)2

2

)
). (2.7)

Recall that the Brownian meander is a stochastic process on [0, 1] obtained by condition-
ing a standard Brownian motion to stay positive on [0, 1] (which has zero probability, but the
definition still makes sense by conditioning on staying above −ε, letting ε→ 0 and taking
the weak limit, see e.g. [15]). Let X(t) be a Brownian meander and M(t) = max0�s�t X(s) its
maximum. Then it is proven in [12, theorem 5] that the function

ψ(α, β) = lim
dt→0

1
dt
P(X(1) ∈ [α,α+ dt],M(1) < β)

for any 0 < α < β satisfies

ψ(α, β) =
∞∑

k=−∞
(2kβ + α) exp

(
− (2kβ + α)2

2

)
. (2.8)

Note that the formulas (2.7) and (2.8) are closely related as the Brownian meander is closely
related to the Brownian motion. Indeed, by the definition of Brownian meander, ψ(α, β) =
limη→0 φ(η,α, β)/

∫ β

0 φ(η,α′, β)dα′. We refer to [12] for more details.
Let us write Zt = (Xt,Yt). Denote

τXx =

{
min{t > 0 : Xt > x} if x > 0

min{t > 0 : Xt < x} if x � 0.

We define τYy analogously.
Now we make the following assumptions:

(H1) Vertical rational dependence. There is some l ∈ L, l �= 0 so that l1 = 0.

Let (0, 0) = l(0), l(1), l(2) . . . be the enumeration of points l ∈ ∂DL which are connected to
lattice points with negative first coordinate in increasing order of second coordinate (that is,
l
( j)
2 � l

( j+1)
2 ). If there are points l( j), l( j+1) with the same second coordinate, then we order them

in increasing order of the first coordinate. Let K be the smallest positive integer so that

l
(K)
1 = 0. (2.9)

By condition (H1), K exists. Now we say that the lattice point l ∈ ∂DL is of type k with
k = 1, . . . , K if there exists an integer m so that l = l(mK+k).
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(H2) Conditional local invariance principle
There are constants c1, . . . , cK so that for any 0 < α < β and for any 0 < η, γ < ξ

the following holds. If l ∈ ∂DL is of type k, and l2 = η
√

T, then

lim
T→∞

T3/2
P

(
ZT = 〈(α, γ)

√
T〉, min{τY0 , τY

ξ
√

T
, τX0 , τX

β
√

T} > T|Z0 = l

)
= ckψ(α, β)φ(η, γ, ξ).

Furthermore, for any ε > 0, the convergence is uniform for ε < α < α+ ε < β < 1/ε
and ε < η < η + ε < ξ < 1/ε, ε < γ < γ + ε < ξ.

(H3) Moderate deviation bounds. For any x ∈ (0, 1) and y ∈ (−1, 1), and for any
l = l(0), . . . , l(K−1)

lim
δ→0

lim
L→∞

∫
[0,δL2]∪[L2/δ,∞)

LP
(
Zt = 〈(xL, yL)〉, min{τX0 , τXL } > t|Z0 = l

)
dt = 0

2.2. Local equilibrium

Consider now the Dirichlet problems

Δũ = 0, ũ|∂D = F̃, (2.10)

ṽt =
1
2

[
ṽxx + ṽyy

]
, ṽ(t, x, y)|(x,y)∈∂D = F̃, ṽ(0, x, y) = 0. (2.11)

Here F̃ is defined by F̃ : ∂D → R,

F̃(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ςW fW(y) if z = (0, y)

ςS fS(x) if z = (x, 0)

ςE fE(y) if z = (A, y)

ςN fN(y) if z = (x, 1),

where fE, fW : [0, 1] → R, fN, fS : [0, A] → R are given non-negativecontinuous functions and
ςW/S/E/N are non-negative real numbers (W, S, E, N stand for West, South, North and East).
We perform the same procedure of injecting particles and absorbing them on the boundary as
before, but now we inject from all 4 sides of the rectangle. Let Λ̃t denote the resulting measure
defined as Λt.

We say that Z satisfies that local equilibrium (LE) if for any t ∈ R+ ∪ {∞}, for any
k ∈ Z+, for any z1, . . . , zk distinct points in the interior D, and for any distinct lattice points
l1, . . . , lk ∈ L, the joint distribution of

Wt,i, j,L :=Λ̃tL2 (〈ziL〉+ l j), i, j = 1, . . . , k

converge weakly as L →∞ to independent Poisson random variablesWt,i, j,∞ with expectation
ṽ(t, zi) (or ũ(zi) in case t = ∞), where ṽ is defined by (2.11) (and ũ is defined by (2.10)) with
some constants ςW/S/E/N. The points 〈ziL〉+ l j, j = 1, . . . , k can be thought of as lying in a
microscopic region near 〈ziL〉. In particular, each point 〈ziL〉+ l j is a finite distance from 〈ziL〉
so that it is in a ‘local’ region of zi as L becomes large. Indeed, the term local equilibrium
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refers to the fact that the limiting distribution does not depend on j. We call the case t ∈ R+

local equilibrium in the hydrodynamic limit and the case t = ∞ local equilibrium in the non-
equilibrium steady state. Since in our case both hold at the same time, we simply refer to these
properties as local equilibrium.

Finally, we say that a lattice L is rational if there are non-zero lattice points l(K1),1, l(K2),2 in
L so that l(K1),1

1 = l
(K2),2
2 = 0. Without loss of generality, we assume that l(K1),1

2 > 0 and l
(K1),1
2 is

the smallest among such vectors with respect to the ordering introduced right after (H1) (and
likewise for l(K2),2, except that in the ordering, the role of the first and second coordinates are
swapped). Clearly, if L is rational, then (H1) holds with K = K1 (and likewise, a variant of
(H1), where the two coordinates are swapped, holds with K = K2).

Before proceeding to the examples of the next section, where we can verify conditions
(H1)–(H3) and also prove (LE), let us make some remarks. First, we believe that condition
(H1) is not necessary for the main results ((2.5), (2.6) and (LE)) to hold but our proof does not
apply in the general case when (H1) fails. The difficulty is the lack of periodicity in the local
geometry on the boundary.

Let us now comment on the case of dimension d � 3. We have little doubt that theorem 2.1
could be extended to any dimension d � 3. However, the proof would be substantially longer
and, more importantly, we do not know how to verify assumptions (H2) and (H3) in our main
example, namely the finite horizon Lorentz gas in any configuration of dimension � 3 (even
the classical CLT is only conditionally known, cf [1], and refinements along the lines of (H2)
are widely open). Finally, the one dimensional case is much simpler and is essentially covered
by [13] (although not in the axiomatic framework). This is why we decided to keep the abstract
setup in planar domains.

3. Basic examples

3.1. Random walks

Let L̃ ⊂ R2 be a 2 dimensional lattice. Let P̃ be a finitely supported probability measure on
L̃ with zero expectation. We assume that there are finitely many lattice points w̃1, . . . , w̃J so
that P̃(w̃ j) > 0 and

∑
P̃(w̃ j) = 1. To avoid degeneracy, we assume that the group generated

by w̃ j’s is L̃.
Let Z̃ be a homogeneous Markov process: at exponential distributed times, Z̃ jumps with

a jump distribution given by P̃ . That is, the generator G̃ of Z̃ is defined by

(G̃ f )(l) =
J∑

j=1

P̃(w̃ j)[ f (w̃ j + l) − f (l)] (3.1)

for test functions f : L̃ →R. By the central limit theorem, Z̃ t/
√

t converges weakly to a
Gaussian distribution with mean zero and some covariance matrix Σ. Furthermore, the non-
degeneracy assumption ensures that Σ is positive definite. Now we define L = Σ−1/2L̃,
w j = Σ−1/2w̃ j, P(w j) = P̃(w̃ j), Z = Σ−1/2Z̃ .

Proposition 3.1. Assume that in the above model of random walks, L is a rational lattice.
Then (H1)–(H3) hold.

We do not give a proof of proposition 3.1 as it follows from a simplified version of our
proof of theorem 3.2. In fact, the one-dimensional version of (H2) and (H3) is known for
random walks, see [7, 8]. We find it likely that the two-dimensional version is also known, but
we could not find a reference.
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3.2. Lorentz gas

3.2.1. Definitions. We start with the definition of Sinai billiards [25]. Consider a finite collec-
tion of strictly convex disjoint subsets B1, . . . , Bk of the two-torus with C3 boundary. The com-
plement of these sets is denoted by D0 = T

2\∪k
i=1Bi and is called the configuration space. A

point particle flies with constant speed inside D0 and undergoes specular reflection upon reach-
ing ∂D0 (i.e. the angle of incidence equals the angle of reflection). Since the speed is conserved,
we obtain a continuous time dynamical system Φt

0, t ∈ R on the phase space Ω0 = D0 × S1.
The Sinai billiard flow Φ0 preserves the Lebesgue measure on Ω0 (denoted by μ0). We assume
the finite horizon condition, i.e. that the sets Bi are chosen in such a way that the free flight
time is bounded. Similarly, we define the periodic Lorentz gas when the phase space is lifted
to the universal cover. That is, the configuration space is D = R2\∪(m,n)∈Z2∪k

i=1(Bi + (m, n)),

where we identify D0 with D ∩
[
−1/2, 1/2

)2
. We choose this identification in such a way that

(−1/2,−1/2) /∈ D. (3.2)

The phase space is Ω = D × S1 and the billiard flow is denoted by Φt. It preserves the σ-finite
measure μ, which is μ0 times the counting measure on Z2.

Now we construct the stochastic process, which is the projection of the billiard flow,Φt, onto
Z2. Given (q, v) ∈ Ω, let ΠZ2 (q, v) = (k, l) ∈ Z2 if q ∈ (k, l) +

[
−1/2, 1/2

)2
, let ΠD0 (q, v) =

q0, and let ΠΩ0 (q, v) = (q0, v) if q = q0 +ΠZ2 (q, v). We also put Z̃ t(q, v) = ΠZ2 (Φt(q, v)).
Thus any probability measure on D0 induces a stochastic process Z̃ t. It is important to note
that here the randomness only appears in the initial condition. Once (q, v) is fixed, then Z̃ t is
uniquely defined for every t.

We will also need the billiard map F0, which is defined as the Poincaré section correspond-
ing to the collisions, that is F0 : M0 →M0, where

M0 = {(q, v) ∈ ∂D0 × S1 : 〈v, n〉 � 0},

where n is normal to ∂D0 at q pointing inside D0. The phase space of the billiard map, M0,
thus corresponds to collisions where by convention we use the post-collisional velocity v. F0

preserves the probability measure ν0 defined by dν0 = c cosφdrdφ, where (r,φ) are coordi-
nates on M0: r is arclength parameter and φ ∈ [−π/2, π/2] is the angle between v and n. The
definitions of M,F , ν are analogous.

Fix a measure given by an arbitrary proper standard family (the exact definition standard
family will be given in section 6; one example is the invariant measure ν). This measure induces
a stochastic process Z̃ t. Furthermore, Z̃ t satisfies the central limit theorem with a covariance
matrix which is independent of the standard family. That is, there exists a positive definite
2 × 2 matrix Σ so that Z̃T/

√
T converges weakly as T →∞ to the Gaussian distribution with

mean zero and covariance matrix Σ (see e.g. [6]). Now let L = Σ−1/2
Z2, Zt = Σ−1/2Z̃ t. The

invariance principle holds as well. That is,(
ZtT√

T

)
t∈[0,1]

converges weakly to a standard Brownian motion as

T →∞ (3.3)

(see e.g. [9]).
Without loss of generality, we can assume that the length of the longest free flight is bounded

by one. Indeed, pick any infinite periodic billiard table with finite horizon, that is the flight time
being bounded above by some integer K. If K > 1, we just rescale the space by K, i.e. shrink
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the configuration in the square
[
−K/2, K/2

)2
to the square

[
−1/2, 1/2

)2
and call this con-

figuration D0 and its infinite extension D (in other words, we choose the fundamental domain
large enough). After this rescaling, condition (3.2) still holds. Since the billiard flow is con-
tinuous, we see that at each time t so that Z̃ t− �= Z̃ t, we necessarily have Z̃ t = Z̃ t− + e with
some e ∈ {(−1, 0), (1, 0), (0,−1), (0, 1)}. Indeed, by condition (3.2), the flow Z̃ t cannot pass
through the corners and so e.g., e = (1, 1) is not possible. We made assumption (3.2) in order to
guarantee that the resulting graph is the simplest possible, i.e. four-regular. Specifically, let G̃
be the nearest neighbor graph on Z2, i.e. l, l′ ∈ Z2 are connected in G̃ if and only if |l− l′| = 1.
This graph is thus ‘induced’ by the process Z̃ t. Hence the graph G = Σ1/2G̃ is also a transi-
tive four-regular graph on the lattice L. Even though we always obtain a transitive four-regular
graph L when starting from a Lorentz gas where the fundamental domain is a torus, we still
allow for graphs of higher degree in our abstract framework, motivated by e.g. the forthcoming
example 3.5 where the fundamental domain is a hexagon.

Theorem 3.2. Assume that in the above model of the Lorentz gas, L is a rational lattice.
Then (H1)–(H3) hold.

Theorem 3.2 does not claim that ς > 0. In fact, there are standard families for which ς = 0.
This is not surprising since Zt can be deterministic for a bounded time. In particular, we can
choose a standard family so that Zt < 0 almost surely for a fixed t and so all particles will be
absorbed within a bounded amount of time. However, there are standard families for which
ς > 0 (e.g. the invariant measure ν can be represented by such a standard family). In case of
general standard families, we cannot compute ς even if it is positive.

Note that we assumed that L is a rational lattice, which immediately gives (H1) and the
variant of (H1) when the vertical and the horizontal coordinates are swapped. This is a highly
non-trivial assumption and we expect this not to hold for a typical billiard table. However, we
have some examples when it does hold due to some extra symmetry. We discuss these examples
in section 3.2.2. The proof of (H2) and (H3) will be given in section 7.

In case of deterministic systems like the Lorentz gas, a natural extension of (LE) is a finer
counting problem: that is, to only count particles in a given nice subset of Ω0 (for example,
those that are close to a given scatterer). Let us fix and open set

A ⊂ Ω0 with μ0(∂A) = 0 (3.4)

and update the definition of Λ̃t so as we only count particles at phase (q, v) that satisfies
ΠΩ0 (q, v) ∈ A. Let the resulting measure be Λ̃A

t and let us say that detailed local equilibrium
(DLE) holds if there is some ς so that for every A as in (3.4), the definition of (LE) with Λ̃
replaced by Λ̃A holds with the constant ςμ0(A).

Theorem 3.3. Under the assumptions of theorem 3.2, (LE) and (DLE) hold.

Proof of Theorem 3.3 assuming theorem 3.2.
As observed in [13], the derivation of (LE) from (2.5) and (2.6) is straightforward. Let

M = (−tL2, 0) × ∂DL × Ω0. Let G : M→ DL × Ω0 ∪ {∞}, where G(s, l, (q, v)) = Φs(q +
Σ1/2

l, v) if the particle has not been absorbed by time s andG(s, l, (q, v)) = ∞ otherwise. Since
the initial conditions of particles is given by a PPP on M, the mapping and restriction theorems
for PPP (see e.g. sections 2.2 and 2.3 in [18]) give that {G(si, li, xi)}G(si,li,xi)�=∞ forms a PPP
on DL × Ω0. Letting L →∞, the intensity measure of this PPP converges by theorems 2.1 and
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Figure 2. Billiard configuration on a hexagonal tiling.

3.2 (for particles injected on the West or on the East this is immediate. For particles injected
on the North or the South, this follows from the variant of theorem 2.1 when the role of x and y
are swapped. Since L is assumed to be rational, (H1) holds even in this case). Thus in the limit
L →∞, we obtain a PPP with intensity measure as on the right-hand side of (2.5) and (2.6).
This implies (LE). The proof of (DLE) is analogous, except that when we verify (H2), we only
need to take into account particles at phase (q, v) that satisfy ΠΩ0 (q, v) ∈ A. This requires a
very minor change in the proof (see the remark after theorem 6.4). �
3.2.2. Symmetry conditions.

Example 3.4. Assume that D0 is invariant under a 90 degree rotation or a vertical or
horizontal reflection of the unit square. Then L is rational.

Proof. Let us assume thatD0 is invariant under a rotation by 90 degrees. Then the probability
density function (pdf) of the limiting distribution of Z̃ t/

√
t also needs to be invariant under the

rotation by 90 degrees. Since this is a normal distribution, the isocontours of the pdf are ellipses.
The only ellipses invariant under the rotation by 90 degrees are circles. This means that there
is a positive real number σ so that Σ = σ2I2. Similarly, if D0 is invariant under reflection of
the vertical or horizontal axis, then the isocontours of limiting normal distribution are ellipses
with semi-axes parallel to the coordinate axes and so Σ is diagonal. �

In the above examples, L is generated by σ−1
1 [1, 0]T and σ−1

2 [0, 1]T. Consequently,
K1 = K2 = 1. In this sense, these examples are the simplest possible ones (figure 1 shows
a configuration, which is symmetric with respect to the vertical axis, and is repeated over a
5 × 4 rectangle). Our next example is less trivial as K2 = 2.

Example 3.5. Consider a scatterer configuration on the regular hexagon that is invariant
under the rotation by 120 degrees and satisfies all other assumptions (that is, the scatterers are
smooth, disjoint, strictly convex and the configuration has finite horizon). One such example
is only one scatterer which is a disc, centered at the center of the hexagon and with a radius
large enough to ensure that D is of finite horizon. By tiling the plane with regular hexagons, we
obtain the Lorentz gas as before. As in the previous example, the isocontours of the limiting
normal distribution are invariant under the rotation by 120 degrees; hence they are circles and
Σ = σ2I2. In this case, Z̃ t for any t takes values in the set of tiles of the hexagonal tiling. Let
L be the lattice generated by the vectors σ−1[0, 1]T and σ−1[

√
3/2, 1/2]T and G be the graph

with vertices L and edges between points at distance σ−1. That is, G forms the triangular
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grid, dual to the hexagonal tiling (see figure 2, the edges of G are denoted by dotted lines). In
this example, K1 = 1 and K2 = 2. Indeed, on the horizontal boundary, we see an alternating
sequence of two kinds of hexagons (ignoring the very first and the very last one): one of them
has 5 neighbors in DL and the other one only has 3. A particle injected to a uniform random
location on the first type of hexagon has a higher chance of staying in DL than in the case of the
second type of hexagon. Thus we expect that c1 �= c2 in the variant of (H2) when the vertical
and horizontal coordinates are swapped.

4. Duality

4.1. Random walks

The definitions given in section 2.1 easily extend to more general domains D with piece-wise
smooth boundary. One minor difference is that in (2.3) instead of f (l2/L) we need to choose a
slightly different argument of f as l2/L may not be on ∂D and f may not be defined (e.g. one
can choose the closest point on ∂D to l/L). Since f is continuous, the exact choice is irrelevant
as long as it is a bounded distance from l/L. To keep notations simple, we will write f (l/L),
where f is a continuous function defined on ∂D (there is no need to introduce F).

Proposition 4.1. Consider a random walk as in section 3.1 and let

A(J ) =
∑
j∈J

P(w j) (4.1)

and B = 1. Then the conclusion of theorem 2.1 and (LE) hold with ς = 1 without assuming
the rationality of L and for general bounded domains D with piece-wise smooth boundary
and no cusps.

Proof. We are only going to prove (2.6). A proof of (2.5) can be obtained by replacing t by
∞ in the proof below and (LE) can be proved as in theorem 3.3.

The key idea of the proof is duality. Let Ž be the discretized version of Z . That is, Ž0 = Z0

and Žn = Ztn where tn is the time of the nth jump ofZ . The reversed random walkZ′ is defined
by the generator

(G′ f )(l) =
J∑

j=1

P(w j)[ f (−w j + l) − f (l)]

and Ž′ is the discretized version of Z′ (defined analogously to Ž).
Note that for any N, Ž induces a measure PŽ on LN by

PŽ (l0, . . . , lN−1) = P(Ž1 = l1, . . . , ŽN−1 = lN−1|Ž0 = l0).

Let us define PŽ′ analogously. Then by definition of Ž ′, for any sequence l0, . . . , lM ∈ L,

PŽ (l0, . . . , lM) = PŽ′(lM , . . . , l0). (4.2)

For fixed L, z ∈ D, t ∈ R+, l ∈ ∂DL and M, let A = AL,z,t,l,M be the set of length M trajectories
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from l to 〈zL〉 staying inside DL, i.e.

A = {(l0, . . . , lM) : l0 = l, ∀ i = 0, . . . , M − 1 : ∃ j = 1, . . . , J : li+1 − li

= w j, li ∈ DL, lM = 〈zL〉} .

For a subset B ⊂ LM+1 and a lattice point l̂, let

B′ = {(lM, . . . , l0) : (l0, . . . , lM) ∈ B},

and

l̂B = {(̂l, l0, . . . , lM) : (l0, . . . , lM) ∈ B}, B l̂ = {(l0, . . . , lM , l̂) : (l0, . . . , lM) ∈ B}.

Then by (4.2), we have

PŽ (AL,z,t,l,M) = PŽ′ (A′
L,z,t,l,M).

Furthermore, for any l−1 /∈ DL, which is connected to l in G,

PŽ (l−1AL,z,t,l,M) = PŽ′(A′
L,z,t,l,M l−1). (4.3)

Let T be the first hitting time of L\DL by Ž ′. Then (4.3) is equal to

P(T = M + 1, Ž′
M+1 = l−1, Ž ′

M = l|Ž ′
0 = 〈zL〉).

To turn to continuous time, let τ ′∗ be the first time Z′ leaves DL. Then we have

P(τ ′∗ < tL2,Z′
τ ′∗ = l−1,Z′

τ ′∗− = l|Z′
0 = 〈zL〉) =

∞∑
M=0

FM+1(tL2)PŽ (l−1AL,z,t,l,M), (4.4)

where FN(.) is the cumulative distribution function of the Gamma distribution with shape
parameter N and scale parameter 1 (that is, it is the sum of N iid exponential random vari-
ables, each with expectation 1). Indeed, (4.4) holds since the time of the jumps of the Markov
process Z′ are independent of the location of the jump. On the other hand, we have

∞∑
M=0

FM+1(tL2)PŽ (l−1AL,z,t,l,M) = P(l− l−1)
∞∑

M=0

FM+1(tL2)PŽ(AL,z,t,l,M)

= P(l− l−1)
∫ tL2

0
P (Zs

= 〈zL〉, ∀ s′ ∈ [0, s],Zs′ ∈ DL|Z0 = l
)

ds. (4.5)

Since B = 1, we have

ΛtL2 (〈zL〉) =
∑
l∈∂DL

A(J (l)) f (l/L)
∫ tL2

0
P
(
Zs = 〈zL〉, ∀ s′ ∈ [0, s],

×Zs′ ∈ DL|Z0 = l
)

ds. (4.6)
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Thus by (4.1) and (4.5), we have

ΛtL2 (〈zL〉) =
∑

l:∈∂DL

∑
l−1∈L\DL:(l−1,l)∈G

f (l/L)
∞∑

M=0

FM+1(tL2)PŽ (l−1AL,z,t,l,M)

and so by (4.4),

ΛtL2 (〈zL〉) = E

(
f

(Z′
τ ′∗−
L

)
1τ ′∗<tL2 |Z′

0 = 〈zL〉
)
. (4.7)

Now the right-hand side of (4.7) converges, as L →∞ to

E
(

f (WT ∗) 1T ∗<t|W0 = z
)

, (4.8)

where Wt is a standard planar Brownian motion and T ∗ is the hitting time of R2\D by W.
(This follows from Donsker’s theorem and the continuous mapping theorem. A more detailed
proof of (4.8) for the case t = ∞ can be found in e.g. [22, proposition 3].) Let W be a diffusion
process whose first coordinate is deterministic with constant 1 drift and whose second and third
coordinates are independent standard Brownian motions. Applying Dynkin’s formula for W
with W0 = (−t, z), the stopping time t as the first hitting time of R3\([−t, 0] × D), and with
the test function v(−s, z̃), where v is defined by (2.2), we conclude that (4.8) satisfies (2.6) with
ς = 1. �

We record a remark for later reference:

Remark 4.2. Note that the proof of proposition 4.1 does not use theorem 2.1. Thus we
already have an example (random walks), where both the assumptions and the conclusion of
theorem 2.1 are verified (by propositions 3.1 and 4.1, respectively).

4.2. Lorentz gas

Let D be a bounded domain with piece-wise smooth boundary and no cusps. In the setup
of section 3.2, given D, L, and l ∈ ∂DL, we consider the following initial measure. For any
l− ∈ L\DL connected to l in G, l̃′ :=Σ1/2

l′ is a nearest neighbor of l̃ :=Σ1/2
l in Z2 (that

is, l̃− l̃′ ∈ {w1 = (0,−1), w2 = (0, 1), w3 = (−1, 0), w4 = (1, 0)} ) by our assumption in

section 3.2). Let E = El,l′ ⊂ R2 be the line segment on the boundary of l̃+
[
−1/2, 1/2

)2
and

l̃′ +
[
−1/2, 1/2

)2
. Define

N = Nl,l′ = {(q, v) ∈ Ω : q ∈ E, 〈v, l̃− l̃′〉 > 0}.

Let type(l, l′) = j if l̃− l̃′ = w j and ζ j : N0,Σ−1/2w j
→ R+ be the first return to N0,Σ−1/2w j

in the
compact Sinai billiard. That is

ζ j = min{s : Φs
0(q, v) ∈ N0,Σ−1/2w j

}.

Let us also write

ζ̄ j =

∫
N

0,Σ−1/2w j

ζ jd�0,Σ−1/2w j
.

6223



Nonlinearity 34 (2021) 6210 P Nándori and T Teolis

Next, we define the finite measure � = �l,l′ on N by

d� =
1

2ζ̄ j
cos(〈v, l̃− l̃′〉)dqdv,

where type(l, l′) = j. Note that �(N ) = |El,l−w j|/ζ̄ j and so it may not be a probability measure.
Now the initial condition G is given by the normalized sum of these measures for all neighbors
l′. That is,

νG =
1∑

j∈J (l)

|El,l−w j
|

ζ j

∑
j∈J (l)

�l,l−w j.

By definition, νG is a probability measure. Next, we choose

A(J (l)) =
∑

j∈J (l)

|El,l−w j|
ζ j

(which clearly depends on l only throughJ (l)) and B = 1. This choice guarantees that particles
are being continuously injected through the entire boundary of DL with a measure which is
simply the projection of the invariant measure μ to the Poincaré section on the boundary of
DL. Because of this very special choice of νG , A, B, we have

Proposition 4.3. With the above choice, the conclusion of theorem 2.1, (LE) and (DLE)
hold with ς = 1 without assuming the rationality of L and for general bounded domains D
with piece-wise smooth boundary and no cusps.

Proof. The proof is similar to that of proposition 4.1. We use duality and it is sufficient to
verify (2.6).

We claim that there is some s∗ > 0 so that for any (q, v) ∈ Nl,l′ and any s ∈ [0, s∗],
Z̃ s(q, v) ∈ {̃l, l̃′}. Furthermore, if there is some s ∈ [0, s∗] with Z̃s(q, v) = l′, then Z̃ s∗(q, v) =
l′. Indeed, the first statement follows from (3.2) and the second follows from the fact that vis-
iting l, then l′ and then l again requires at least 2 collisions and so we choose s∗ shorter than
the minimal free flight.

Next, for any (l, l′) as above, by the definition of � and by the fact that s∗ < min ζ, we have
for measurable sets B ⊂ ∪s∈[0,s∗]Φ

s(Nl,l′)∫
Bdμ =

∫ s∗

0

(∫
BdΦs

∗(�l,l′)

)
ds. (4.9)

By the definition of νG , A and B, we have

ΛtL2 (〈zL〉) =
∑

l:∈∂DL

∑
l′∈L\DL:(l′,l)∈G

f (l/L)
∫ tL2

0

∫
N
l,l′

{(q, v) : ∀ s′ ∈ [0, s],Zs′(q, v) ∈ DL,Zs(q, v)

= 〈zL〉} d�l,l′(q, v)ds

For fixed t, L, let K ∈ Z+ so that Ks∗ � tL2 < (K + 1)s∗. To simplify formulas, let us
assume that Ks∗ = tL2 holds (it is easy to check that the contribution of s ∈ [Ks∗, tL2] is
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negligible). Now for k = 1, . . . , K we apply (4.9) with

Bl,l′,k = {(q, v) ∈ ∪s∈[0,s∗]Φ
s(Nl,l′) : ∀ s′ ∈ [0, (k − 1)s∗],Zs′(q, v) ∈ DL,

×Z(k−1)s∗ (q, v) = 〈zL〉}

and the definition of s∗ to conclude∫ ks∗

(k−1)s∗

∫
N
l,l′

{(q, v) : ∀ s′ ∈ [0, s],Zs′(q, v) ∈ DL,Zs(q, v)= 〈zL〉} d�l,l′(q, v)ds =
∫

Bl,l′,kdμ

and so

ΛtL2 (〈zL〉) =
∑

l:∈∂DL

∑
l′∈L\DL:(l′,l)∈G

f (l/L)
K∑

k=1

∫
(Bk)dμ. (4.10)

Now we recall the involution (also known as time reversibility) property of the billiards. For
(q, v) ∈ Ω, let I(q, v) = (q,−v). Then I preserves μ and anticommutes with the flow. That is,

Φ−s ◦ I = I ◦ Φs.

(see e.g. [11, section 2.14]). Thus∫
Bl,l′,kdμ =

∫
B′
l,l′,kdμ, (4.11)

where

B′
l,l′,k = {(q, v) ∈ Ω : Z0(q, v) = 〈zL〉

∃s ∈ [(k − 1)s∗, ks∗] : ∀ s′ ∈ [0, s] : Zs′ ∈ DL,ΠDΦ
s(q, v) ∈ El,l′} . (4.12)

Using the notation (2.4) and combining (4.10)–(4.12), we conclude

ΛtL2 (〈zL〉) =
∫

(q,v):Z0(q,v)=〈zL〉
f

(
Zτ∗−

L

)
1τ∗<tL2dμ (4.13)

By the invariance principle (3.3), the right-hand side of (4.13) converges as L →∞ to (4.8).
As in proposition 4.1, (2.6) follows. �

5. Proof of theorem 2.1

The simplify notations, we assume that a = 1 (the proof extends to any a > 0 with no new
ideas). We will prove (2.5) first. Let z = (x, y) be a point in the interior of D. By definition, we
have

E(Λ(〈zL〉)) =
∫ ∞

0

∑
l∈∂WDL

A(J (l))B(t) f

(
l2

L

)
× P

(
Zt = 〈(x, y)L〉, min{τY0 , τYL , τX0 , τXL } > t|Z0 = l

)
dt

=

∫ L2/δ

δL2
. . . dt +

∫ δL2

0
. . . dt +

∫ ∞

L2/δ

. . . dt=: I1 + I2 + I3 (5.1)
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with I j = I j(L, x, y, δ) for j = 1, 2, 3. Noting that

lim
δ→0

lim
L→∞

I2 + I3 = 0. (5.2)

by (H3), it remains to prove

lim
δ→0

lim
L→∞

I1 = u(z). (5.3)

Let Ψδ′ : [0, 1] → [0, 1] be defined by

Ψδ′ (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y < δ′

1
δ′

y − 1 if δ′ � y < 2δ′

1 if 2δ′ � y < 1 − 2δ′

− 1
δ′

y − 1 +
1
δ′

if 1 − 2δ′ � y < 1 − δ′

0 if y > 1 − δ′

and write fδ′ (y) = f (y)Ψδ′(y).
To prove (5.3), we first write I1 = I11 + I12 with I1,k = I1,k(L, x, y, δ, δ′) for k = 1, 2, where

I11 and I12 are obtained from I1 by replacing f by fδ′ and f − fδ′ , respectively. To verify (5.3),
it is sufficient to prove

lim
δ′→0

lim
δ→0

lim
L→∞

I11 = u(z) (5.4)

and

lim
δ′→0

lim
δ→0

lim
L→∞

I12 = 0 (5.5)

To simplify notations, we will write I∞11 = limL→∞ I11 and I∞,0
11 := limδ→0 I∞11 .

Let us consider the following truncated version of (2.1)

Δû = 0, û|∂D = ςFδ′ , (5.6)

where Fδ′ is defined as F except that f is replaced by fδ′ .

Proposition 5.1. For any δ′ ∈ (0, 1/4), I∞,0
11 is the solution of (5.6).

Proof. The proof consists of two steps. First, we prove that I∞,0
11 exists; then we show that it

satisfies (5.6).
Step 1: I∞,0

11 exists
Let us define B = l

(K)
2 , where K is defined by (2.9). To simplify formulas, let us write

τ̄ = min{τY0 , τYL , τX0 , τXL }. Also observe that by transitivity of G, there are constants
A1, . . . , AK so that for any m ∈ N and for any k = 1, . . . , K, A(J (l(mK+k))) = Ak. Now, we
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compute

I11 =
∑

l∈∂WDL ,l2/L∈(δ’ ,1−δ’)

A(J (l))
∫ L2/δ

δL2
B(t) f δ’

(
l2

L

)
P (Zt= 〈(x, y)L〉, τ̄ > t|Z0 = ldt

=

(1−δ’)L/B∑
m=δ’L/B

K∑
k=1

Ak

∫ L2/δ

δL2
B(t) f δ’

(
l
(mK+k)
2

L

)
P (Zt= 〈(x, y)L〉, τ̄ > t|Z0 = l(mK+k)dt

=

(1−δ’)L/B∑
m=δ’L/B

K∑
k=1

Ak

×
∫ 1/δ

δ

B(sL2) f δ’

(
l
(mK+k)
2

L

)
PZsL2 = 〈(x, y)L〉, τ̄ > sL2|Z0

= l(mK+k)L2ds

Now using (H2) with T = sL2, α = x/
√

s, β = 1/
√

s, η = l
(mK+k)
2 /(L

√
s), γ = y/

√
s,

ξ = 1/
√

s, we obtain

I11 ∼
(1−δ′)L/B∑
m=δ′L/B

K∑
k=1

Akck

∫ 1/δ

δ

B(sL2) f δ′

(
l
(mK+k)
2

L

)
s−3/2L−1ψ

(
x√
s

,
1√
s

)

× φ

(
l
(mK+k)
2

L
√

s
,

y√
s

,
1√
s

)
ds

by uniform convergence, where aL ∼ bL means that limL→∞ aL/bL = 1. Let us write

c̄ =
1
K

K∑
k=1

Akck.

Then

I11 ∼
c̄K
B

∫ 1/δ

δ

B(sL2)s−3/2ψ

(
x√
s

,
1√
s

)⎡⎣(1−δ′)L/B∑
m=δ′L/B

B
L

f δ′

(
l
(mK)
2

L

)
φ

(
l
(mK)
2

L
√

s
,

y√
s

,
1√
s

)⎤⎦ ds.

Replacing the Riemann sum with the corresponding Riemann integral, we obtain

I11 ∼
c̄K
B

∫ 1/δ

δ

B(sL2)s−3/2ψ

(
x√
s

,
1√
s

)

×
[∫ 1−δ′

δ′
f δ′ (σ)φ

(
σ√

s
,

y√
s

,
1√
s

)
dσ

]
ds
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(We are permitted to do this because of uniform convergence of the bracketed expression in s).
Since the integrand in the last formula is uniformly continuous in s and since B is periodic with
period 1 and

∫ 1
0 B = 1, we can take the limit L →∞ to conclude that I∞11 exists and is equal to

c̄K
B

∫ 1/δ

δ

s−3/2ψ

(
x√
s

,
1√
s

)[∫ 1−δ′

δ′
f δ′(σ)φ

(
σ√

s
,

y√
s

,
1√
s

)
dσ

]
ds.

Now we substitute (2.7) and (2.8) to the above to conclude

I∞11 =
c̄K
B

∫ 1−δ′

δ′

∫ 1
δ

δ

∞∑
k=−∞

∞∑
n=−∞

(
1
s2

(2k + x) exp

(
− (2k + x)2

2s

)
1√
2π

× f δ′ (σ)

[
exp

(
− (y − σ − 2n)2

2s

)
− exp

(
− (y + σ + 2n)2

2s

)])
ds dσ.

Clearly, the sum is absolutely and uniformly convergent and so we can write the sums in front
of the integrals. Thus

I∞11 =
c̄K
B

∞∑
k=−∞

∞∑
n=−∞

∫ 1−δ′

δ′
R(k, n, δ, σ, s, x, y)dσ,

where

R(k, n, δ, σ, s, x, y) =
x + 2k√

2π
f δ′(σ)

×
∫ 1

δ

δ

1
s2

[
exp

(
− (2k + x)2 + (y − σ − 2n)2

2s

)
− exp

(
− (2k + x)2 + (y + σ + 2n)2

2s

)]
ds.

Making the substitution ω = (2s)−
1
2 (and so 4ωdω = −ds/s2) and letting P1 = (2k + x)2 +

(y − σ − 2n)2 and P2 = (2k + x)2 + (y + σ + 2n)2, we get:

R(k, n, δ, σ, x, y) =
4(x + 2k)√

2π
f δ′(σ)

∫ 1√
2δ

√
δ/2

ω
[
exp(−P1ω

2)

− exp(−P2ω
2)
]

dω

= −2(x + 2k)√
2π

f δ′ (σ)

[
1

P1
exp

(
−P1

2δ

)
− 1

P2
exp

(
−P2

2δ

)]
+

2(x + 2k)√
2π

f δ′ (σ)

[
1

P1
exp

(
−P1δ

2

)
− 1

P2
exp

(
−P2δ

2

)]
=: R1 + R2.
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Clearly, we have

lim
δ→0

∑
n

∑
k

R1 = 0

and as lemma 5.2 shows,

lim
δ→0

∑
n

∑
k

R2 =
∑

n

∑
k

lim
δ→0

R2.

So we get

lim
δ→0

R(k, n, δ, σ, x, y) = R(k, n, σ, x, y) =
2(x + 2k)√

2π
f δ′ (σ)

[
1

P1
− 1

P2

]
.

and hence

I∞,0
11 =

c̄K
B

∫ 1−δ′

δ′

∞∑
k=−∞

∞∑
n=−∞

R(k, n, σ, x, y)dσ. (5.7)

To complete step 1, it remains to verify

Lemma 5.2. Let u(z) = exp(−z)/z. And let P1 and P2 be as defined above. Then for δ ∈ R,
x ∈ [0, 1], σ ∈ [0, 1], and k, n not both 0, the following sum converges uniformly in δ, x, and
σ as M →∞.

M∑
k=−M

M∑
n=−M

(2k + x)δ[u(P1δ) − u(P2δ)].

Proof. Let us write

P3 = (2k + x)2 + (y − σ + 2n)2, P4 = (2k + x)2 + (y + σ − 2n)2.

We will show

lim
M→∞

⎧⎨⎩ ∑
k:|k|>M

∞∑
n=1

+

M∑
k=−M

∞∑
n=M

⎫⎬⎭ |S| = 0, (5.8)

where

S = S(k, n, δ, σ, x, y) = (2k + x)δ[u(P1δ) − u(P2δ) + u(P3δ) − u(P4δ)],

and the convergence is uniform in δ, x, σ. First, observe that

P1 − P2 = −4(σ + 2n)y, P3 − P4 = 4(2n − σ)y

By the mean value theorem, for some P′
1 ∈ (P1, P2) and P′

3 ∈ (P4, P3). Using the mean value
theorem again, we conclude

u(P1δ) − u(P2δ) + u(P3δ) − u(P4δ) = −4σyδ[u′(P′
1δ) + u′(P′

3δ)]

− 8nyδ2(P′
1 − P′

3)u′′(P′′
1δ)
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for some P′′
1 ∈ (P4, P2). In the sequel, C denotes a universal constant (independent of

k, n, x, y, δ, σ, L or any other parameters), whose value is unimportant and can even change
from line to line. Now using the estimates |u′(z)| < C/z2, |u′′(z)| < C/z3 for any real number
z, we have

|S| � C

(
|k|

(k2 + n2)2
+

|k|n2

(k2 + n2)3

)
Thus we conclude

∞∑
k=M

k∑
n=1

|S| � C
∞∑

k=M

k∑
n=1

1
k3

� C/M

and likewise

∞∑
n=M

n−1∑
k=0

|S| � C
∞∑

n=M

n−1∑
k=0

1
n3

� C/M

We have verified (5.8). The lemma follows. �

Step 2: I∞,0
11 satisfies (5.6)

We give two independent proofs for step 2. The first proof is shorter and easily generalizes
to the case of finite t. The second proof shows that the formulas derived above are tractable (at
least in the case t = ∞).

Proof 1: step 1 shows that for any stochastic processZt satisfying (H1)–(H3), the limit (5.7)
is the same. Recalling remark 4.2, we already have examples where (H1)–(H3) as well as the
conclusion of the theorem hold. Thus I∞,0

11 has to satisfy (5.6). To finish the first proof, we
identify the constant ς.

Let us consider the simplest possible random walk, called the simple symmetric random
walk. That is, w1 = (0,−

√
2)T, w2 = (0,

√
2)T, w3 = (−

√
2, 0)T, w4 = (

√
2, 0)T and

P(wi) =
1
4

for i = 1, . . . , 4.

In this case, L = (
√

2Z)2 and by the central limit theorem,Zt/
√

t converges to a 2 dimensional
standard normal random variable (we chose the normalization

√
2 so that the limiting covari-

ance matrix is identity and so Z fits into the framework of proposition 4.1). In this case, we
clearly have K = 1, B =

√
2, A1 = 1/4 (and B = 1). Thus c̄ = c1/4. Next we claim that now

c1 = 4/
√
π. To prove the claim, first note that

lim
T→∞

√
TP(τX0 > T|X0 = 0) =

2√
π

(5.9)

(this follows from e.g., [21, proposition 5.1.2]). The proof of (H2) is based on the fact that,
under the assumption that τX0 > T, Z�tT�/

√
T with 0 � t � 1 converges to a stochastic process

whose first coordinate is a Brownian meander and the second coordinate is a Brownian motion.
Furthermore, the local limit theorem also holds under the assumption τX0 > T which gives (H2)
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(see the details in section 7). This local limit theorem combined with (5.9) gives c1 =
2√
π

covol(L) = 4/
√
π which proves the claim.

Thus in case K = 1, B =
√

2, c̄ = 1/
√
π, (5.7) satisfies (5.6) with ς = 1. Since (5.7) is linear

in c̄K/B, we conclude that in case of general K, B and c̄, (5.7) satisfies (5.6) with

ς =

√
2πc̄K
B

. (5.10)

Proof 2:
Step 2′a: I∞,0

11 is harmonic
An elementary computation shows that R(k, n, δ, σ, x, y), as a function of x, y ∈ (0, 1)2 is

harmonic for any k and n. Since the derivatives of R(k, n, σ, x, y) with respect to x and y converge
uniformly in a neighborhood of x, y, the Laplacian can be taken inside the sum in (5.7). It
follows that I∞,0

11 is harmonic.
Step 2′b: I∞,0

11 satisfies the boundary conditions of (5.6)
Recall (5.7) from step 1. Let us first consider the case when |n|+ |k| > 0. In this case, there

is uniform convergence in x, y and σ so we can write the limit inside the sum and the integral:

c̄K
B

∑
k,n∈Z;|n|+|k|>0

∫ 1−δ′

δ′
lim

(x,y)→(0,y0)
R(k, n, σ, x, y)dσ.

We can directly compute this limit as∫ 1−δ′

δ′
lim

(x,y)→(0,y0)
R(k, n, σ, x, y)dσ =

∫ 1−δ′

δ′
R(k, n, σ, 0, y0)dσ

=

∫ 1−δ′

δ′
f δ′(σ)

×
[

16ky0(σ + 2n)
[(2k)2 + (y0 − σ − 2n)2][(2k)2 + (y0 + σ + 2n)2]

]
dσ.

We see that for each n, these terms are antisymmetric in k, so that summing over k and n,
with |n|+ |k| > 0, all of the terms cancel. Now we consider the case n = k = 0. This term
gives:

lim
(x,y)→(0,y0)

I∞,0
11 =

c̄K
B

8√
2π

lim
(x,y)→(0,y0)

∫ 1−δ′

δ′
f δ′ (σ)

[
σxy

[x2 + (y − σ)2][x2 + (y + σ)2]

]
dσ.

To compute the above integral assume first that δ′ < y0 < 1 − δ′, and decompose it as∫ 1−δ′

δ′
. . . dσ =

∫ y0−Ax

y0−Ax
. . . dσ +

∫
y∈[δ′ ,1−δ′]\[y0−Ax,y0+Ax]

. . . dσ

=: I111 + I112

for some large constant A.
First, we compute I111. For y0 and A fixed, and for x and |y − y0| small, y f δ′(σ)/[x2 + (y +

σ)2] is close to fδ′(y0)/(4y0) uniformly in σ as in I111. Indeed, this follows from the continuity
of fδ′ . Thus we can write this term in front of the integral. Now it remains to compute∫ y0+Ax

y0−Ax
xσ/[x2 + (y0 − σ)2]dσ.
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Let us apply the substitution ρ = (σ − y0)/x. Then the previous integral becomes∫ A

−A
xρ/(1 + ρ2)dρ+

∫ A

−A
y0/(1 + ρ2)dρ.

The first integral here is zero as the integrand is an odd function. The second integral is πy0(1 +
oA(1)). We conclude

lim
(x,y)→(0,y0)

I111 =
π

4
f δ′(y0)(1 + oA(1)). (5.11)

Next, we claim

lim
(x,y)→(0,y0)

I112 = oA(1). (5.12)

To prove (5.12), we compute∫ 1−δ′

y0+Ax
f δ′ (σ)

σxy0

[x2 + (y0 − σ)2][x2 + (y0 + σ)2]
dσ

� ‖ f ‖∞
∞∑

i=1

∫ y0+Ax(i+1)

y0+Axi

σxy0

[x2 + (y0 − σ)2][x2 + (y0 + σ)2]
dσ

� ‖ f ‖∞
∞∑

i=1

∫ y0+Ax(i+1)

y0+Axi

σxy0

[x2 + (Axi)2][2y0σ]
dσ

� ‖ f ‖∞
2

∞∑
i=1

∫ y0+Ax(i+1)

y0+Axi

x
x2[1 + A2i2]

dσ

=
‖ f ‖∞

2

∞∑
i=1

A
1 + A2i2

� π2‖ f ‖∞
12

1
A
.

This estimate, combined with a similar computation for the domain [δ′, y0 − Aδ′], verifies
(5.12). Next, if y0 < δ′ or y0 > 1 − δ′, then clearly I111 = 0 and I112 = oA(1). Now combining
(5.11) and (5.12), we obtain the boundary conditions of (5.6) on the ‘West side’ (that is when
x = 0) with the constant

ς =

√
2πc̄K
B

.

which coincides with (5.10).
Checking the boundary conditions on the other three sides is easier. First, recall that

R(n, k, σ, x, y) =
2(x + 2k)√

2π

× (y + σ + 2n)2 − (y − σ − 2n)2

[(2k + x)2 + (y − σ − 2n)2][(2k + x)2 + (y + σ + 2n)2]
.

Thus for every k = 0, 1, 2, . . . , we have R(n, k, σ, 1, y) = −R(n,−k − 1, σ, 1, y) and so∑
k∈Z R(n, k, σ, 1, y) = 0 for every n. It follows that limx→1 I∞,0

11 = 0. Clearly, R(n, k, σ, x, 0) =
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0 for every n and k and so limy→0 I∞,0
11 = 0. Finally, to prove limy→1 I∞,0

11 = 0, let us write

lim
y→1

I∞,0
11 =

∑
k

2(x + 2k)√
2π

∑
n

1
P1(n)

− 1
P2(n)

,

where P1(n) = (2k + x)2 + (1 − σ − 2n)2 and P2(n) = (2k + x)2 + (1 + σ + 2n)2. Now
observe that P2(n) = P1(n + 1). Thus the sum over n is telescopic and so by absolute
convergence, lim

y→1
I∞,0
11 = 0. We have finished the proof of step 2′b. �

Now we finish the proof of (2.5). First note that proposition 5.1 implies (5.4). Thus it remains
to verify (5.5). Consider the following Dirichlet problem:{

ΔU = 0 in (0, 1) × (−1, 2),

U(0, y) = ς( f (y) − f δ′ (y)), U(1, y) = U(x,−1) = U(x, 2) = 0,
(5.13)

where f and fδ′ are identically zero on [−1, 0] ∪ [1, 2]. Now the proof of proposition 5.1
applied on the domain (0, 1) × (−1, 2) with boundary condition given by f − fδ′ implies that
for any δ′, x, y fixed,

lim
δ→0

lim
L→∞

I12 � U(x, y).

Indeed, on the one hand, if the particles are only killed upon leaving (0, L) × (−L, 2L), then
we obtain an upper bound on the number of surviving particles in the case when particles are
killed upon leaving (0, L) × (0, L). On the other hand, the proof of proposition 5.1 is applicable
on the larger domain since the boundary condition is identically zero in a neighborhood of the
corners.

Now since the function f − fδ′ is supported on the union of two intervals with total length
4δ′ and is bounded uniformly in δ′, we have limδ′→0 U(x, y) = 0 for all x, y fixed. Thus (5.5)
follows and the proof of (2.5) is complete.

The proof of (2.6) is similar, so we only explain the differences. First, the decomposition
(5.1) now reads

∫ tL2

δL2
. . . dt +

∫ δL2

0
. . . dt =: I1 + I2.

In particular, I3 is missing and I2 is negligible as before. We decompose I1 = I11 + I12 as
before. Proceeding as in step 1 of the proof of proposition 5.1, we obtain

lim
δ→0

lim
L→∞

I11 =
c̄K
B

∫ 1−δ′

δ′

∞∑
k=−∞

∞∑
n=−∞

R(t, k, n, σ, x, y)dσ,

where

R(t, k, n, σ, x, y) =
2(x + 2k)√

2π
f δ′ (σ)

[
1

P1
exp

(
−P1

2t

)
− 1

P2
exp

(
−P2

2t

)]
.

The first proof of step 2 in proposition 5.1 is the same as before. We prefer not to give a second
proof of step 2 as in the time dependent case, the formulas in step 2′a become substantially
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longer. Finally, the proof of (5.5) is again analogous to the previous case with U as in (5.13)
replaced by the unique solution V(t, x, y) : R�0 × (0, 1) × (−1, 2) → R of⎧⎪⎪⎪⎨⎪⎪⎪⎩

Vt =
1
2

[Vxx + Vyy],

V(t, 0, y) = ς( f (y) − f δ′ (y)), V(t, 1, y) = V(t, x,−1)

= V(t, x, 2) = 0, V(0, x, y) = 0.

We have finished the proof of theorem 2.1.

6. Background on Lorentz gas

6.1. Preliminaries

Here, we review some results for the Lorentz gas that are necessary to the proof of theorem 3.2.
We refer the reader to [11] for an in depth discussion. Let us use the notation of section 3.2.

The map F0 is hyperbolic in the sense that there are stable and unstable cone fields Cu/s
x ⊂

TxM0 so that DxF0(Cu
x ) ⊂ Cu

F0(x) and DxF−1
0 (Cu

s ) ⊂ C2
F−1

0 (x)
and for all v ∈ Cu

x , ‖DxF0(v)‖ �
Λ‖v‖ (and likewise for all v ∈ Cs

x, ‖DxF−1
0 (v)‖ � Λ‖v‖). Furthermore, stable and unstable

manifolds exist through almost every point, but not through every point because of singularities
due to grazing collisions. In fact, the presence of these singularities makes the study of billiards
particularly peculiar.

Let us use the coordinates (r,ϕ) on M0 where r is the arc length parameter of ∂D0 and
ϕ ∈ [−π/2, π/2] is the angle between the postcollisional velocity and the normal vector to D.
A curve W ⊂ M0 is called unstable if for every x ∈ W, TxW is in the unstable cone. Further-
more, an unstable curve W is called weakly homogeneous if it does not intersect any singularity
and there exists k = 0, k0, k0 + 1, . . . so that for all x = (r,ϕ)ϕ ∈ [(k + 1)−2, k−2] if |k| > k0

or |ϕ| < k−2
0 . In other words, weakly homogeneous unstable curves are required to be disjoint

from the real singularities of F0 as well as secondary singularities ϕ = ±k−2 for |k| � k0. A
weakly homogeneous unstable curve is called homogeneous if it satisfies certain extra regular-
ity properties whose exact form are not needed for us (see the distortion and curvature bounds
in [10, section 4.3]).

A pair � = (W, ρ) is called a standard pair if W is a homogeneous unstable curve and ρ is
a probability measure on W so that∣∣∣∣log

dρ
dLeb

(x) − log
dρ

dLeb
(y)

∣∣∣∣ � C0
|W(x, y)|
|W|2/3

, (6.1)

where C0 is universal constant and |.| stands for arc length. Here and in the sequel log stands
for logarithm with base e. We will also use the notation log2 for the logarithm with base 2.
Given �, we denote by ν� the probability measure generated by ρ and length(�) = length(W).
Due to the singularities, an image of a homogeneous unstable curve will be a collection of
unstable curves. Furthermore, the regularity of ρ in (6.1) is defined in a way that is preserved
by F0. The exact exponent 2/3 is related to the way the homogeneity strips are defined. The
fact that the regularity (6.1) is preserved relies on distortion estimates and follows from e.g.
[10, proposition 4.9]. Thus the image of a standard pair under F0 is the weighted average of
standard pairs. It is convenient to introduce the notion of a standard family: a weighted average
of standard pairs. Specifically, let us say that G = {{�a = (Wa, ρa)}a∈A,λ} is a standard family
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if �a are standard pairs, Wa’s are disjoint and λ is a probability measure on the index set A.
The standard family G induces a measure νG on M0 by

νG(B) =
∫
A

ν�(B ∩ Wa)dλ(a)

for Borel sets B ⊂ M0. For a given homogeneous unstable curve W , and for x ∈ W , we denote
by r(x) the distance from x to the closest endpoint of W, measured along W. We denote by rn(x)
the distance from Fn

0 (x) to the closest endpoint of W ′, where W ′ is the maximal homogeneous
curve in the image Fn(W) containing Fn

0 (x). We define the Z function of a standard family by

ZG = sup
ε>0

νG(r < ε)
ε

.

Note that we assumed that the curves in a standard family are disjoint and so the function r is
well defined. Now we are ready to state the last missing technical piece of theorem 3.2: G is any
standard family with a finite Z function. Examples include any standard pair or the invariant
measure ν0.

A fundamental property of Sinai billiards is that the expansion wins over fragmentation.
That is, most of the weight carried by the image of a standard pair is concentrated on long
curves. The precise statement, called growth lemma is the following (see [10, propositions 4.9
and 4.10]):

Lemma 6.1. For any standard pair � = (W, ρ) and any n ∈ Z+,

ν�(A ◦ Fn
0 ) =

∑
i

cn,iν�n,i(A), (6.2)

where cn,i > 0,
∑

i cn,i = 1 and �n,i = (Wn,i, ρn,i) are standard pairs so that ∪iWn,i = Fn
0 (W)

and ρn,i is a constant times the push-forward of ρ by Fn
0 . Furthermore, there are universal

constants κ and C so that for any n > κ log length(�) and for any ε > 0∑
i:length(�n,i)<ε

cn,i < Cε.

We will refer to (6.2) as Markov decomposition. A simple consequence of the growth lemma
is the following lemma, which is proven in e.g. [11, proposition 7.17].

Lemma 6.2. There are constants c1, c2 and θ < 1 depending only on D0 so that for any
standard family G with finite Z function and for any n,

ZFn
0 (G) � c1θ

nZG + c2.

Letκ : M0 → R2 be the free flight vector and κ̌ : M0 → R2 be the discrete free flight vector.
That is, κ̌(q, v) = ΠZ2 (F0(q, v)) −ΠZ2 (q, v). Let us also write κ̄ =

∫
|κ|dν0 ∈ R+.

Let

Žn(q, v) =
n−1∑
j=0

κ̌(F j
0(q, v)). (6.3)
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Similarly to the flow, we write Žn = (X̌ n, Y̌n). Put

τ X̌0 = min{n > 0 : X̌ n < 0}

and for x �= 0, put

τ X̌x = min{n > 0 : X̌ n = x}

(and likewise with X̌ replaced by Y̌).
The next result is the extension of the invariance principle (3.3) to standard pairs (see e.g.

[9]).

Theorem 6.3 (Invariance principle). Fix a standard pair � and consider the stochastic
processes Z̃ t , Žn induced by the initial condition �. Then

(a) Z̃ tT/
√

T, t ∈ [0, 1] converges weakly as T →∞ to a planar Brownian motion with zero
mean and covariance matrix Σ (introduced in section 3.2) uniformly for � satisfying
|log length(�)| > T1/4.

(b) With the notation Σ̌ = κ̄Σ we have Ž�tN�/
√

N, t ∈ [0, 1] converges weakly as N →∞
to a planar Brownian motion with zero mean and covariance matrix Σ̌ uniformly for �
satisfying |log length(�)| > N1/4.

Another extension of the central limit theorem is the so-called MLLT, which we discuss
next.

6.2. Mixing local limit theorem

Recall (6.3). Let us also define

Fn(q, v) =
n−1∑
j=0

|κ(F j
0(q, v))|.

Given x ∈ R2, y ∈ R and a standard pair � let us denote by ϑn the push-forward of ν� by the
map

(q, v) �→
(
Žn(q, v) − 〈x

√
n〉, Fn(q, v) − nκ̄− y

√
n,Fn

0 (q, v)
)
.

That is, ϑn = ϑn(�, x, y) is a measure on Z2 × R×M0. Fix an open set A ⊂ Ω0 as in (3.4)
and define A ⊂ Z2 × R×M0 so that ((k, l),−t, (q, v)) ∈ A if and only if ΠZ2 (q, v) = (k, l),
ΠZ2 (Φt(q, v)) = 0,Φt(q, v) ∈ A and |κ(q, v)| > t. That is,A contains phase points (q + (k, l), v)
and corresponding flight times t so that a flight of length t from (q + (k, l), v) is free and arrives
in the set A. By the finite horizon assumption, A is bounded. Without loss of generality, we
will later choose the fundamental domain large enough so that |κ̌i| � 1 for i = 1, 2 and so the
absolute value of both integer coordinates of A are bounded by 1.

Let gΣ denote the Gaussian density with zero mean and covariance matrix Σ. The version
of the MLLT that we consider here is the following

Theorem 6.4. There is a positive definite 3 × 3 matrix Σ̃ whose top left 2 × 2 minor is Σ̌
and constants C, C1, C2 so that for any standard pair �with |log length(�)| < n1/4 the following
hold
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(a) For any (x, y) ∈ R3 and for any A as in (3.4),

lim
n→∞

n3/2ϑn(A) = μ0(A)κ̄gΣ̃(x, y)

uniformly for x, y in compact subsets of R3.
(b) For any (x, y) ∈ R3 and for any A as in (3.4) and for any positive integer n,

n3/2ϑn(A) < C1gCΣ̃(x, y) + C−1/2
2 .

A variant of theorem 6.4 was proved in [13, lemma 2.8]. Specifically, [13, lemma 2.8] covers
the case when Ž is replaced by X̌ and A = Ω0 in the definition of ϑn (we included the more
general case of A to accommodate for (DLE) as in theorem 3.3). Since the proof directly applies
here as well (except for one minor adjustment), we only discuss this minor adjustment and do
not repeat the entire proof.

Proof. First, we need some definitions. For a bounded Hölder function f : M0 → Rd , we
define S( f ) as the smallest closed additive subgroup of Rd that supports the values of f − r for
some r ∈ Rd . Let us write f ∼ g if f and g are cohomologous. That is, f (x) = g(x) + h(x) −
h(F0(x)) for a measurable h and for all x ∈ M0. We say that f is minimal if M( f ) = S( f ),
where

M( f ) = ∩g∼ f S(g).

The only minor adjustment that is needed in the proof of [13, lemma 2.8] is that we need to
show that

f := (κ̌, |κ| − κ̄) : M0 → R
3

is minimal. That is, M( f ) = Z2 × R. (Heuristically, there is a clear obstruction to the MLLT in
its present form if M( f ) is a proper subgroup of Z2 × R. It turns out that, similarly to the case
of IID random variables, this is the only possible obstruction.) This generalizes [13, lemma
A.3], which shows that

f̃ := (κ̌1, |κ| − κ̄)

is minimal. That is,

M( f̃ ) = Z× R. (6.4)

To establish the minimality of f , it is enough to prove the following. If M( f ) is a proper sub-
group of Z2 × R, then there are real numbers α, r and two measurable functions h : M0 → R,
g : M0 → Z so that

|κ(q, v)| = h(q, v) − h(F0(q, v)) + r + αg(q, v). (6.5)

Indeed, a contradiction follows from (6.5) as in [13]. To prove (6.5), we first recall that by
[28, theorem 5.1], κ̌ is minimal. Thus the projection of M( f ) to the first two coordinates needs
to be Z

2. In particular, there exist e1 = (0, 0,α)T, e2 = (1, 0, β)T, and e3 = (0, 1, γ)T in M( f ).
If M( f ) is a proper subgroup of Z2 × R, then there exists a minimal α > 0 with the property
that e1 ∈ M( f ). Now we claim that e1, e2, e3 generate M( f ). Indeed, by the choice of α, e1

generates M( f ) ∩ {(0, 0, z), z ∈ R} and so e1, e2, e3 generate

M( f ) ∩ {(x, y, z) : (x, y) ∈ {(1, 0), (0, 1)}}.
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Since the projection of M( f ) to the first two coordinates is in Z2, the claim follows.
Thus there are constants r1, r2, r3 so that for every (q, v) ∈ M0 there are integers m, n, k

(depending on (q, v)) so that

(κ̌1(q, v), κ̌2(q, v), |κ(q, v)|)T − (r1, r2, r3)T

= me1 + ne2 + ke3 + (h1, h2, h3)T(q, v) − (h1, h2, h3)T(F0(q, v)) (6.6)

From the first coordinate of (6.6) we have

n = κ̌1 − r1 − h1 + h1 ◦ F0

and likewise from the second coordinate we have

k = κ̌2 − r2 − h2 + h2 ◦ F0

Substituting these into to the third coordinate of the equation (6.6), we find

|κ(q, v)| − r̃ − βκ̌1(q, v) − γκ̌2(q, v) = mα+ h̃(q, v) − h̃(F0(q, v)), (6.7)

where r̃ = r3 − r1β − r2γ and h̃ = h3 − βh1 − γh2. Fix now (q, v) and write F0(q, v) =
(q1, v1). Note that by reverting the free flight, we have F0(q1,−v1) = (q,−v). Applying (6.7)
to (q1,−v1), we obtain

|κ(q, v)| − r̃ + βκ̌1(q, v) + γκ̌2(q, v) = m′α+ h̃(q1,−v1) − h̃(F0(q1,−v1)). (6.8)

Finally, adding (6.7) to (6.8), we obtain (6.5) with r = r̃, h(q, v) = 1
2 [h̃(q, v) + h̃(q1 − v1)] and

g(q, v) = m+m′
2 . This completes the proof of (6.5). �

7. Proof of theorem 3.2

7.1. Change of coordinates

Since L is rational, we have M :=Σ1/2
l(K1) ∈ Z2 and N :=Σ1/2

l(K2) ∈ Z2. Furthermore, M
and N are primitive lattice vectors (i.e. their coordinates are coprime due to the definition of
(K1), (K2)). Now we introduce an enlarged fundamental domain for the Lorentz gas. Let Z′ be
the subset of Z2 containing the origin and those points of Z2 that are in the interior of the paral-
lelogram with vertices 0,M,N,N+M. Let T ′ = ∪z∈Z′[z − 1/2, z + 1/2]2/ ∼, where P ∼ Q
if P − Q is in the lattice generated by M,N. That is, T ′ is a union of unit squares and ∼ is a
pairing of all parallel sides on the boundary of T ′. In particular, T ′ is a flat torus. Now we put
D′

0 = T ′\∪z∈Z′∪k
i=1(Bi + z). See figure 3 for the special case M = (1, 3) and N = (2, 1). T ′ is

the polygon with bold boundary (modulo the identification).
We are going to study the Sinai billiard in D′

0 and so we define Φ′t
0 , Ω′

0, μ′
0, M′

0, F′
0, ν ′

0
exactly as before using the larger configuration space D′

0. Note that Φt
0 is a factor of Φ′t

0 by
the map ι : Ω′

0 → Ω0, ι : (q, v) �→ (q̄, v), where q ∈ D′
0, q̄ ∈ D0 and q̄ = q(mod Z

2). Also, note
that Φt is an extension of both Φt

0 and Φ′t
0 .

Given (q, v) ∈ Ω, we write Π′
Z2 (q, v) = (m, n) if q ∈ (mM, nN) + T ′ and Π′

D′
0
(q, v) = q0

if q = q0 +Π′
Z2 (q, v)∗ (M,N), where ∗ means multiplication coordinate-wise. Let us write

Z′
t (q, v) = Π′

Z2 (Φt(q, v)).
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Figure 3. Enlarged fundamental domain.

Note that for any (k, l) ∈ Z2 we can find a unique (k0, l0) ∈ Z′ with (k, l) ∼ (k0, l0) and a
unique (m, n) so that (k, l) = (mM, nN) + (k0, l0). Let us write [(k, l)] = (k0, l0) and [[(k, l)]] =
(m, n). Note that

[[Z̃ t(q, v)]] = Σ−1/2(Z̃ t(q, v) − [Z̃ t(q, v)]) = Z′
t (q, v). (7.1)

Given (q, v) ∈ Ω, we write ΠZ′(q, v) = [ΠZ2 (q, v)]. Let Et(q, v) = ΠT ′ (Φt(q, v)) = [Z̃ t(q, v)]
(E stands for extension). We will also write [[�′]] = [[ΠZ2 (q, v)]] for any (q, v) in the support of
ν�′ (we assume that the standard pairs are supported in one cell) and likewise [[G′]] for standard
families. All definitions and results in section 6 extend to Φ′

0. We will use those notations and
results with a prime in the superscript.

7.2. Proof of (H2)

We claim that (H2) follows from

(H2′) For any proper standard family G′ there is some CG′ so that for any 0 < α < β and for
any 0 < η, γ < ξ and for any z′ ∈ Z′, if [[G′]] = (0, �η

√
T�), then

lim
T→∞

T3/2νG′

(
Z′

T = 〈(α, γ)
√

T〉, ET = z′, min{τY′
0 , τY

′

ξ
√

T
, τX

′
0 , τX

′
β
√

T} > T
)

= CG′ψ(α, β)φ(η, γ, ξ)

Furthermore, for any ε > 0, the convergence is uniform for ε < α < α+ ε < β <
1/ε, ε < η < η + ε < ξ < 1/ε, ε < γ < γ + ε < ξ.

To prove the claim, first recall that by (7.1), Zt = Z′
t +Σ−1/2Et. To compare the ini-

tial conditions in (H2) and (H2′), note that given any standard family G on M0, there are
exactly Z := |Z′| corresponding standard families G′

1, . . . ,G′
Z on M′

0 that project to G along ι.
Indeed, for any point (q, v) ∈ Ω0, ι−1((q, v)) = {(q + z′,v), z′ ∈ Z ′}. Recall that the free flight
is bounded by 1 and so the initial condition in (H2), i.e. Z0 = l and P being induced by a stan-
dard family G, corresponds to an initial condition given by G′

z′ for some z′ = 1, . . . , Z in (H2′).
Indeed, the type of l uniquely defines z′. Thus G and the type of l in (H2′) is replaced by G′ in
(H2). Since Et is bounded, the claim follows.
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Note that for a given standard family G and two lift ups G′
z′1

, G′
z′2

, z′1 �= z′2 ∈ Z′, the constants

CG′
z′1

, CG′
z′2

can be different. As we will see later,

CG′
z′
= lim

T→∞
νG′

z′
(τX

′
0 > T)/

√
T. (7.2)

Thus e.g. in figure 3, CG′
(1,1)

� CG′
(1,2)

for all standard families G. This inequality is strict in case

of some standard pairs. To prove this, note that in case of figure 3, τX
′

0 (q, v) > T is equivalent
to (Z̃ t)2 � 3(Z̃ t)1 for all t � T . Now observe that τX

′
0 (q0 + (1, 2), v) > T implies τX

′
0 (q0 +

(1, 1), v) > T, but the converse implication does not hold.
We will prove (H2′). The proof is built upon the results of [13, 14]. In particular, [13,

proposition 3.8] gives that under the assumptions of (H2′),

lim
T→∞

TνG′

(
X ′

T = �α
√

T�, ET = z′, min{τX ′
0 , τX

′

β
√

T
} > T

)
= CG′ψ(α, β) (7.3)

with CG′ defined by (7.2). Furthermore, [13, proposition 3.9] gives that under the assumptions
of (H2′),

lim
T→∞

√
TνG′

(
Y′

T = �γ
√

T�, ET = z′, min{τY′
0 , τY

′

ξ
√

T
} > T

)
= φ(η, γ, ξ). (7.4)

We interpret (7.3) as the one dimensional version of (H2′). If the events on the left hand sides
of (7.3) and (7.4) were independent, then (H2′) would follow immediately. By the invariance
principle, X ′

T and Y′
T are asymptotically independent (since by the change of coordinates, the

covariance matrix is identity) but this yet is not enough to conclude (H2′) as the events consid-
ered here have small probabilities. Thus we cannot derive (H2′) directly from (7.3) and (7.4);
we instead have to revisit their proofs. Since we only need to make minor changes to their
proofs, we give details only at places where changes are needed and otherwise refer to [13]
(and sometimes give a sketch).

First we need some lemmas. Recall the notations introduced for the billiard ball map in
section 6. To simplify notations, we will write

τ |X̌
′|

a = min{τ X̌ ′
a , τ X̌

′
−a}.

and likewise for X̌ ′ replaced by Y̌ ′.

Lemma 7.1. There are constant C3, C4 depending only on D so that for every standard pair
�′ with [[�′]] = (0, 0) and for every m > C3 log length(�) and for every L,

ν�′
(
τ
|Y̌ ′ |
Lm < τ |X̌

′ |
m

)
< 0.51L +

C4L
m500

. (7.5)

Proof. Let us fix a positive constant η so that the probability that a standard planar Brownian
motion Wt leaves the box [−1, 1]2 through the North or South side (and not through the East
or West side) is at most 0.505 whenever the y-coordinate of W0, denoted by (W0)2, satisfies
|(W0)2| < η. We are going to use the invariance principle and the above estimate inductively L
times to derive the lemma. Each time the North or South side is reached, we apply a Markov
decomposition and discard the curves that are too short (hence the second term on the right-
hand side of (7.5)). The key to this argument is the fact that the limiting Brownian motion has a
diagonal covariance matrix, which is guaranteed by the change of coordinates from section 7.1.
Now we give the details of the proof.
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Choosing C3 large and using lemma 6.2, we can guarantee that the standard family
G :=Fηm

0 (�′) has a bounded Z function (e.g. ZG < 2c2, where c2 is defined in lemma 6.2.
Such standard families are sometimes called proper). Recall that we assumed that the free
flight is bounded by 1. Thus for any standard pair �′′ = (W ′′, ρ′′) in G, ‖[[�′′]]‖ � ηm. If

length(�′′) < m−500, then we estimate ν�′′ (C) � 1, where C = {τ |Y̌ ′ |
Lm < τ

|X̌ ′ |
m }. By the growth

lemma, the measure carried by such standard pairs in G is bounded by C4m−500. Let us now
assume that length(�′′) > m−500. Then by the choice of η and by invariance principle (assuming
as we can that m is large enough),

ν�′′(τ
|Y̌ ′ |
m < τ |X̌

′ |
m ) � 0.51.

Now let �′′′ = (W ′′′,ρ′′′) be a standard pair in the standard family G1 :=F τ
|Y̌′ |
m

0 (�′′).

Note that there exists a constant T�′′′ so that for any x ∈ W ′′ with F τ
|Y̌′ |
m

0 ∈ W ′′′, τ |Y̌
′ |

m = T�′′′ .
Indeed, this follows from the definition of homogeneous unstable curves. Now we distinguish
two cases. Let us say that �′′′ is of type 1 if T�′′′ > m or length(�′′′) < m−750. For type 1 stan-
dard pairs �′′′, we use the trivial bound ν�′′′ (C) � 1. By [13, lemma 5.1], the measure carried
by standard pairs �′′′ with T�′′′ > m3 is bounded by Cm−999. Thus by the growth lemma, the
measure carried by standard pairs �′′′ with T�′′′ � m3 and length(�′′′) < m−750 is bounded by
Cm−747. Thus the total contribution of type 1 standard pairs is bounded by C4m−500. Let us say
that �′′′ is of type 2 if it is not of type 1. By the invariance principle and by the definition of η,
for every type 2 standard pair �′′′, we have

ν�′′′ (τ
|Y̌ ′|
2m < τ |X̌

′ |
m ) � 0.51.

Thus we have derived

ν�′(τ
|Y̌ ′ |
2m < τ |X̌

′ |
m ) � 0.512 +

2C4

m500
.

Following the above procedure inductively, we obtain the lemma. �

Lemma 7.2. For every δ > 0 and for every ξ > 0 there exists M0 and L̄ so that for every
standard pair �′ with [[�′]] = (0, 0) and length(�′) > δ, and for every M > M0,

ν�′
(
τ
|Y̌ ′ |
L̄M < τ X̌

′
M |τ X̌ ′

M < τ X̌
′

0

)
< ξ

Proof. [14, lemma 11.1(a)] says that

c̄ = c̄(�′) = lim
M→∞

Mν�′ (τ
X̌ ′
M < τ X̌

′
0 ) (7.6)

is finite. We will use the proof of that lemma to prove our lemma. Let us recall the main steps
of the proof.

Let tk = τ X̌
′

2k and

sk = min{n > tk : X̌ ′
n < 0 or X̌ ′

n = 2k+1}.

Let now �′′ be a standard pair with

[[�′′]]1 = 2k and length(�′′) > 2−100k (7.7)
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(we will consider �′′ in the image of �′ under the map (F′)tk ). The proof of [14, lemma 11.1(a)]
is based on the following identity (see [14, lemma 11.2]):

ν�′′
(

tk+1 < τ X̌
′

0 and r′tk+1
� 2−100(k+1)

)
=

1
2
+ O(2−kζ) (7.8)

with a universal positive constant ζ. Fixing an arbitrary ε > 0, one can choose k0 large enough
so that an induction on k = k0, . . . , log2 M using (7.8) gives that

|Mν�′ (sk = tk+1, r′sk
� 2−100(k+1) for k = k0, . . . , log2 M) − c̄| < ε, (7.9)

which implies (7.6) (by the growth lemma, the measure of the points where rsk < 2−100(k+1)

for some k < log2 M can be neglected). We refer the reader to [14] for more details.
Now we turn to the proof of our lemma. Let us put mk = 2k, k̃ = (log2 M) − k and

Lk =

⎧⎪⎨⎪⎩
2k if k0 � k <

1
2

log2 M

K1.5k̃ if
1
2

log2 M � k < log2 M

with some K = K(ξ) to be specified later. Assuming that k0 is bigger than a universal constant
(as we can), we have mk > 100C1 log(1/mk). Thus lemma 7.1 implies that for all standard pairs
satisfying (7.7):

ν�′′
(

min{τ Y̌′
[[�′′]]2−Lkmk

, τ Y̌
′

[[�′′]]2+Lkmk
} < min{τ X̌ ′

0 , τ X̌
′

2mk
}
)
< 0.51Lk +

C4Lk

m100
k

,

which combined with (7.8) gives

ν�′′
(

tk+1 < min{τ X̌ ′
0 , τ Y̌

′
[[�′′]]2−Lk2k , τ Y̌

′
[[�′′]]2+Lk2k} and r′tk+1

� 2−100(k+1)
)
=

1
2
+ Ek,�′′ , (7.10)

where

−C′2−kζ − 0.51Lk − C4Lk

m1000
k

< Ek,�′′ � C′2−kζ , (7.11)

with a universal constant C′. Now we revisit the inductive proof of (7.9). Let us write

P = ν�′

⎛⎜⎝sk = tk+1, r′sk
� 2−100(k+1), τ |Y̌

′|

M+
k∑

j=k0

L j2 j
> sk for k = k0, . . . , log2 M − 1

⎞⎟⎠ . (7.12)

Using (7.10) inductively, we find

P = ν�′ (τ
X̌ ′

2k0
< min{τ X̌ ′

0 , τ |Y̌
′ |

M })
log2 M−1∏

k=k0

1
2

(1 + Ek),

where Ek satisfies the same inequalities (7.11) as Ek,�′′ . As before, choosing k0 and M large, we
can guarantee

P >
c̄ − ξ′/10

M

log2 M−1∏
k=k0

(1 + Ek), (7.13)
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where ξ′ = ξc̄/2. Let us write

log2 M−1∏
k=k0

(1 + |Ek|) = exp

⎛⎝log2 M−1∑
k=k0

log(1 + |Ek|)

⎞⎠ � exp

⎛⎝log2 M−1∑
k=k0

|Ek|

⎞⎠ . (7.14)

Later we will show that

log2 M∑
k=k0

(
C′2−kζ + 0.51Lk +

C4Lk

m500
k

)
<

ξ′

10c̄
=

ξ

20
. (7.15)

Before proving (7.15), let us show how it implies the lemma. Combining (7.13)–(7.15), we
find

P >
c̄ − ξ′

M
. (7.16)

Next observe that the event in (7.12) implies that

τ
|Y̌ ′ |
L̃M

> τ X̌
′

M ,

where L̃ = 1 + 1
M

∑log2 M
k=k0

Lk2k. The next computation shows that L̃ is bounded by a constant
L̄ = L̄(ξ) uniformly in M:

1 +
1
M

log2 M∑
k=k0

Lk2k = 1 +
1
M

1
2 log2 M∑

k=k0

4k +
K
M

log2 M∑
k= 1

2 log2 M

1.5k̃2k

� 5 +
K
M

1
2 log2 M∑

k̃=0

1.5k̃2log2 M−k̃

� 5 + K
∞∑

k̃=0

(
3
4

)k̃

= 5 + 4K =: L̄.

Thus we find

ν�′
(
τ
|Y̌ ′ |
L̄M < τ X̌

′
M |τ X̌ ′

M < τ X̌
′

0

)
< 1 − P

ν�′ (τ X̌
′

M < τ X̌
′

0 )
� 1 − c̄ − ξ′

c̄ + ξ′
� ξ,

where the penultimate inequality uses (7.16) and the last one uses the definition of ξ′. This
proves the lemma. It remains to verify (7.15).

To prove (7.15), first choose K = K(ξ) large, so that

log2 M∑
k= 1

2 log2 M

0.51Lk <

∞∑
k̃=0

0.51K1.5k̃
<

ξ

100
.

Then we compute

log2 M∑
k=k0

C′2−kζ <
ξ

100
,
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1
2 log2 M∑

k=k0

0.51Lk <

∞∑
k=k0

0.512k
<

ξ

100

and

1
2 log2 M∑

k=k0

Lk

m500
k

<
∞∑

k=k0

2−499k <
ξ

100
.

(Note that we can ensure the last inequality in all of the three displayed formulas above by
increasing k0 = k0(ξ) if necessary.) Finally, we have

log2 M∑
k= 1

2 log2 M

Lk

m500
k

< log2 M
1.5log2 M

2250 log2 M
= o(M−249) <

ξ

100
,

which completes the proof of (7.15). �

Lemma 7.3. For every η1, η2 > 0, there exists ε0 so that for every ε < ε0 and for every
δ > 0, there is some N0 so that for all N > N0 and for all standard pairs �′, with [[�′]] = (0, 0),
length(�) > δ, we have

ν�′
(
τ X̌

′
ε
√

N < min{τ Y̌′

η1
√

N
, τ Y̌

′

−η1
√

N
, εN} | τ X̌ ′

0 > N
)
> 1 − η2.

Proof. [13, lemma 5.2] implies that

ν�′
(
τ X̌

′
ε
√

N < εN,
∣∣∣τ X̌ ′

0 > N
)
> 1 − η2

2
.

and [14, theorem 8] implies that

lim
T→∞

ν�′(τ
X̌ ′
0 > N)/

√
N =: Č�′ (7.17)

is finite for all standard pairs and non-zero for some. Thus it suffices to prove

ν�′(ABC) <
η2Č�′

4
√

N
, (7.18)

where

A = {τ X̌ ′
ε
√

N > min{τ Y̌′

η1
√

N
, τ Y̌

′

−η1
√

N
}}, B = {τ X̌ ′

ε
√

N < εN}, C = {τ X̌ ′
0 > N}.

To prove (7.18), let us write

D = {τ X̌ ′
ε
√

N < τ X̌
′

0 }

and

ν�′(ABC) = ν�′ (ABCD) � ν�′(AD)ν�′(C|ABD)=: I ∗ II.
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To estimate II, we use the Markov decomposition at time τ X̌
′

ε
√

N
. By the invariance principle,

II is asymptotic (as N →∞) to the probability that the maximum of the standard Brownian
motion before time 1 is less than ε which is bounded from above by ĉε. Let c̄ = c̄(�′) as in

(7.6) and let ξ =
η2Č�′
4c̄̂c . Lemma 7.2 gives L̄ = L̄(ξ). Then we choose ε0 < η1/L̄. Now lemma

7.2 implies that

I = ν�′(A|D)ν�′(D) � ξ
c̄

ε
√

N

and so (7.18) follows. �
Next, we have the following extension of [13, theorem 3.5] to two dimensions.

Proposition 7.4. The process Ž ′
tN/(

√
κ̄N), 0 < t < 1 induced by the measure νG′ (.|τX ′

0 >
N) converges weakly as N →∞ to the planar stochastic process with independent coordi-
nates, whose first coordinate is a Brownian meander and the second coordinate is a standard
Brownian motion.

The proof of proposition 7.4 is the same as that of [13, theorem 3.5] except that
[13, lemma 5.2] is replaced by our lemma 7.3. The sketch of the proof is as follows. Under the
assumption τ X̌

′
0 > N, with high probability, we have τ X̌

′
ε
√

N
< min{τ Y̌′

η1
√

N
, τ Y̌

′

−η1
√

N
, εN}. Then we

use the invariance principle starting at time τ X̌
′

ε
√

N
. The invariance principle is applicable since

ν�′′(τ X̌
′

0 > N) is bounded from below for �′′ with �′′ > δ0 and [[�′′]]1 = ε
√

N for fixed ε. Thus
we obtain a planar Brownian motion with identity covariance matrix, whose first coordinate
starts from ε and does not reach 0 before time 1 and whose second coordinate starts from a
position with absolute value less than η1. Choosing η1 small (and consequently ε small), the
distribution of this process is close to the one described in the lemma.

(H2′) is a local version of proposition 7.4 in continuous time. The proof of (H2′) is again
analogous to the one dimensional case given in [13, proposition 3.8]. Although the proof is
quite lengthy, let us a give a short sketch. Let N = T/κ̄ and N1 = (1 − δt)N, with a small δt,
and partition the rectangle RT := [0, β

√
T] × [0, ξ

√
T] into boxes Bk with side length δs

√
T

with some fixed δs small. Proposition 7.4 gives the asymptotic probability (for T large and the
other parameters fixed) of arriving in a box Bk after discrete time N1. Then for any given box
Bk and any given standard pair �′ in this box as an initial condition (with length(�′) > δ0 for
some fixed δ0), we need to find the probability that in the remaining continuous time before T,
but after the first N1 collisions, the particle arrives in the cell 〈α

√
T , γ

√
T〉. To give an upper

bound, we use the MLLT by simply ignoring the requirement that, in the remaining ≈ δtT
time, the particle has to stay inside RT. Switching from discrete to continuous time is a non-
trivial step. For a ‘typical’ number of collisions, theorem 6.4(a) is used. On the other hand, the
contribution of non-typical number of collisions is negligible by theorem 6.4(b). This gives
the upper bound in (H2′). To prove the lower bound, one needs to verify that the error made
by ignoring the requirement that the particle has to stay inside RT for the last ≈ δtT time is
negligible. If a particle leaves RT and returns to 〈α

√
T , γ

√
T〉, then in particular it has to travel

a distance min{α, 1 − α, γ, 1 − γ}
√

T during the time δtT. This has a small probability which
gives the lower bound in (H2′) (in [13] dt is chosen small given α ∈ (0, 1) and now we need to
choose it small given α, γ ∈ (0, 1)). No other substantial change is required.

7.3. Proof of (H3)

As in the case of (H2), we use the change of coordinates to reformulate (H3) as
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(H3′) For any x ∈ (0, 1) and y ∈ (−1, 1), and for any proper standard family G′ with [[G′]] =
(0, 0)

lim
δ→0

lim
L→∞

∫
[0,δL2]∪[L2/δ,∞)

LνG′ (Z′
t = 〈(xL, yL)〉, min{τX ′

0 , τX
′

L } > t)dt = 0.

The fact that (H3′) implies (H3) follows the same way as we proved that (H2′) implies (H2).
In fact, this case is easier that the case of (H2). We only need an upper bound here and so we
can ignore the requirement that Et = z′ at the cost of losing a constant multiplier.

As in the upper bound of (H2′), we can derive that for any given (x, y) ∈ (0, 1)2 and any
ε > 0, there exists δ so that for large enough L and for any t < δL2,

νG′ (Z′
t = 〈(xL, yL)〉, |τX ′

xL/2 < τX
′

0 ) <
ε

L2
.

Using this estimate, the proof of (H3′) follows as in [13, lemma 7.2].
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