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ABSTRACT

We study mixing properties of generalized T,T~! transformations. We
discuss two mixing mechanisms. In the case the fiber dynamics is mixing,
it is sufficient that the driving cocycle is small with small probability. In
the case the fiber dynamics is only assumed to be ergodic, one needs to use
the shearing properties of the cocycle. Applications include the central
limit theorem for sufficiently fast mixing systems and the estimates on
deviations of ergodic averages.
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1. Introduction

An important discovery made in the last century is that deterministic systems
can exhibit chaotic behavior. Currently there are many examples of systems
exhibiting a full array of chaotic properties including the Bernoulli property,
exponential decay of correlations and the central limit theorem (see, e.g., [8,
9, 12, 61]). Systems which satisfy only some of the above properties are less
understood. In fact, it is desirable to have more examples of such systems in
order to understand the full range of possible behaviors of partially chaotic
systems.

Generalized T, T~! transformations are a rich source of examples in probabil-
ity and ergodic theory. In fact, they were used to exhibit examples of systems
with unusual limit laws [46, 14], a central limit theorem with non-standard nor-
malization [7], K but non-Bernoulli systems in abstract [42] and smooth setting
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in various dimensions [44, 57, 43], very weak Bernoulli but not weak Bernoulli
partitions [16], slowly mixing systems [17, 48], systems with multiple Gibbs
measures [29, 50].

A comprehensive survey of a probabilistic version of T, 7! transformations,
which is a random walk in random scenery, is contained in [18]. On the other
hand, there are no works addressing how statistical properties of T, 7~ trans-
formations depend on the properties of the base and the fiber dynamics. Our
paper provides a first step in this direction by investigating mixing properties
of T, T~ transformations.

Let us explain what we mean by smooth 7', 7! transformations. Let X,Y be
compact manifolds, f : X — X be a smooth map preserving a measure p and
G :Y — Y be a d parameter flow on Y preserving a measure v. Let 7 : X — R?
be a smooth map. We study the following map F': (X xY) — (X x Y):

Note that F' preserves the measure ( = p X v and that

N-1
FN(z,y) = (fo,GTN(m)y) where 7y (z) = Z T(f"x).
n=0

Clearly both mixing of f and ergodicity of G are necessary for F' to be mixing.
Under these assumptions there are two mechanisms for F' to be mixing:

(1) If G itself is mixing, then it is enough to ensure that 7n does not take
small values with large probability (cf. [17, 48]).

(2) On the other hand, if we only assume that G is ergodic, then we need to
rely on shearing properties of 7 to ensure that 7 is uniformly distributed in
boxes of size 1. This can be done by assuming various extensions of the central
limit theorem (cf. [10, 25]).

Abstract results detailing sufficient conditions for each of the two mechanisms
described above are presented in Section 2. Estimates on the rates of mixing
of F' under the assumption that G is mixing are given in Section 4. In Section 5,
we prove the central limit theorem in case F' mixes sufficiently quickly. Section 6
contains mixing estimates in case G is only assumed to be ergodic (however, we
need much stronger assumptions on the base map f). The results presented in
Sections 4-6 rely on preliminary facts contained in Section 3. In Section 7, we
discuss several examples which require a combination of ideas from Sections 4
and 6. Section 8 presents application of our mixing results to deviations of
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ergodic averages and also contains a survey of examples of systems satisfying
various assumptions required in our results. We will have some strong assump-
tions that are sometimes non-trivial to check. In the appendix, we check one of
our assumptions for an important example, namely the anticoncentration large
deviation bounds for subshifts of finite type. This result may be interesting
outside of the scope of the present work.

We also mention that in a followup paper [23] we provide a description of
further statistical properties of the generalized T,T~! transformation, using
the mixing bounds obtained in the present paper.

ACKNOWLEDGEMENTS. D. D. was partially supported by the NSF grant
DMS-1956049, A. K. was partially supported by the NSF grant DMS-1956310,
P. N. was partially supported by the NSF grants DMS-1800811 and DMS-
1952876.

2. The local limit theorem and mixing
For a function A € L' (X, u) we denote pu(A(-)) == [ A(z) dp.

Definition 2.1: We say that 7 satisfies the mixing LLT if there exist sequences
(Lp)nen C R, (Dp)neny € R? and a bounded probability density p on R?
such that for any sequence (0,,)nen C R, with lim, o0 0, = 0, (2 )neny C R?
such that |[» — z| < 4§, for any cube C C R? and any continuous functions
Ap, A1 : X - R,

Jim L3 (Ao () A1 (f")1e(mn — Dy = 2n)) = p(2)(Ao) (A1) Vol(C),

and the convergence is uniform once (6, )nen is fixed and Ag, A1, z range over
compact subsets of C(X),C(X) and R? respectively.

Definition 2.2: We say that 7 satisfies the mixing multiple LLT if for each

m € N, any sequence (0, )nen C R with lim,—, 0, = 0, and any family of se-

m . 20 B
quences (z,(zl), LA ))neN with | %" —20)| < §,,, any cubes {C;};<m C R? and

continuous functions Ay, ..., 4, : X — R, for any sequences ng), e ,n,gm) eN
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such that n,(cj) - n,(cjfl) > 6,1 (with n](co) =0),
. . i JE R ,
Jgg)(IElinggm>H<I¥AjUTk')I{ﬂq(ﬁ&nDng>2%}))
j= j= j=

= [T 1) [T pz? =207 [T Vol(c))
7=0 j=1

j=1

where 2(9) = 0. Moreover, the convergence is uniform once (d,)nen is fixed,
Ay, ..., Ay, range over compact subsets of C'(X) and z() range over a compact
subset of R? for every j < m.

Remark 2.3: We note that 7 is bounded and consequently 7,, /n is bounded, too.
Thus if the mixing LLT holds, then L,, < Cn. We assume that D,, = nu(7). In
case u(7) = 0, we say that 7 has zero drift.

Remark 2.4: By the Portmanteau theorem on vague convergence, the mixing
LLT is equivalent to saying that for all continuous functions Ay, A; : X — R for
any compactly supported almost everywhere continuous function ¢ : R — R
for any sequence zy such that | [N — 2| < d,, we have

(1) lim LEn(Ao()As (£ )67 — Du = 20)) = Bl Ao)(cdr) | ot

and the convergence is uniform if Ay, A; range over compact subsets of C'(X)
and z ranges over a compact subset of R?. A similar remark applies to the
multiple mixing LLT.

THEOREM 2.5: Suppose that (G;) is ergodic.

(a) If T satisfies the mixing LLT then F' is mixing.
(b) If 7 satisfies the mixing multiple LLT then F' is multiple mixing.

Proof. (a) For i = 1,2, let ®;(z,y) = A;(x)B;(y) be a continuous function
on X xY. Since linear combinations of products as above are dense in L?(ux v),
it suffices to show that for every e > 0 there exists Ny € N such that for
every N > Ny, we have

(2.2) \ /X | @a(e )22 () ) — p(A)(A)u(BU)v(Ba)| < e
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Let p(t) := [, B1(y)B2(Gy)dv(y). Note that
(2:3) / 1 () (B () d(x) = | 42(2) Aa( £ (@)l () i)

XxY b's

Let § = d(e) > 0 be small with respect to ¢, and I C R? be a cube of
volume 69, centered at 0. Consider a (disjoint) cover of R? by a union of small
cubes {I;}, where I; is a translation of Iy, and let ¢; denote the center of I;.
Now let B, € R be a ball centered at 0 with radius ¢, and denote

Se:={j: I NnB, # 0}.
By the mixing LLT (with Ag = A; = 1) it follows that there exists K = K (e)
and N} € N such that for every N > N{,
p{x € X :|tv — Dn| > KLn/2}) < €/2.

Let S := Skry. Therefore (see (2.2) and (2.3)) it is enough to show that

‘Z [ @25V @) - (@) L1 (7 () i)
(24) 9%

= (A p(A2)v(Br)v(Bz)| < e€/2.

If § is small enough (using continuity of (G¢)), the above sum is, up to an
error less than €/16, equal to

(2.5) > (D + ) (A (VA (N (D1, (7w () = D).

JES:
By the definition of the mixing LLT (with A, A3, C = I and z = ¢;), and since
the number of j’s such that j € Sy is bounded above by C(8,€)L%, there exists

Ny = Ni(e,6) € N such that for every N > N, the above expression is, up to
an error less than €/16, equal to

1 t;
(2.6) > 14 Vol(lo)p( ;) u(Au(A2)o(Dn +1,).
JEST
Enlarging K and N, if necessary, we can guarantee that

1 t; €
> L Vol(Ij)p(LjV) —1‘ < 5

JESL

(2.7)
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Now, fix R > 0 and for ¢ € Bp, let
1 t
a@%zEjL%vm%»(MJMDN+w+@
JEST

We claim that there exists Ny = Na(R) such that for N > N», we have

la(e) — a(0)] < €/16.
Indeed, let k be such that ¢ € I, then |tx| < R+1 and |tx —c¢| < §, by choosing
0 < e small enough, and Ny large so that ?Il < 6§, we have

2

|a(e) — a(0)] <lalc) — altr)] + |a(tr) — «(0)]

Vol(I t;
< Lg ) Zp(LJ )|p(DN+tj+c)fp(DN+tj+tk)|
N jES1 N

S B (o

JEST
VOI(Io) tj
o 2 p(LN
JESI:|tj—tk|>KLN
(x) <Ci(p, p)ltx — ¢l + Ca(p, p, K)R/Ly + K*C(p)R/ Ly
<e/64+€/64 + €/64 < €/16,

VoD + 5 + )

where for the inequality (%), the first term is due to the fact that p is continuous
on t and (2.7), the second term is due to continuity of p and the choice of Ny
(that is, }E“Vl < ¢), and the last term contains a sum of K dRLﬁl\fl many terms
and hence < KC(p)R/Ly.
Therefore
1
(2.8) ‘a(()) ~ Vol(Br) /CGBR a(c)de
Now by the ergodicity of G and the mean ergodic theorem for the G-action,
there exist a subset Yy C Y with v(Yy) > 1 — 32EC§ and Rg > 0, such that for
any y € Yy and R > Ry,
1
’VOI(BR)

< €/16.

€

< 300"

/ BQ(th)dt — V(Bg)
teBr

Here the constant
yeYy
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Hence for any ¢, if R > Ry,

1
Vol(Br) /CEBR p(t + ¢)dec — v(B1)v(B2)
1

JA (vorte | L BalGrrcie - 3)) du<y>\

1
+/ B ‘ / By (Gitey)de — v(Bs)|dy
Y\G,t(Y0)| 1l voB ) e, 2(Getey) (B2)|dv(y)

. €
_ < .
320, + max{|B1[} max{|Ba|}2(1 — v(Y¥p)) < 16

<

(2.9)

< max{|B1}

Note that (2.6) is equal to p(A;)p(A2)a(0). By (2.8) and (2.9), up to an
error less than €/8, u(A;1)u(As)a(0) is equal to

,u(Al),u(Ag)V(Bl)l/(Bg)[ Z Llﬁlv Vol([j)p( tj )}

- Ly
JESL

Combining the estimates (2.7), (2.5) and (2.6) we obtain (2.4) (and conse-
quently (2.2)), completing the proof.

(b) The proof is essentially the same as that for (a), therefore we leave it to
the reader.

3. Background

Definition 3.1: We say that G is mixing with rate 1 (¢) on a space B if

B | [ BB BB < CoOB b Bl

We call G exponentially mixing if (3.1) holds with B = C" for some r > 0
and 1 (t) = e~ °Itll for some & > 0.

We call G polynomially mixing if (3.1) holds with B = C" for some r > 0
and ¥ (t) = ||t]|~° for some § > 0.

We call G rapidly mixing if for each m there exists r such that (3.1) holds
with B = C" and 9(t) = [|t||~™.

These definitions extend to maps (such as to f and F') in the natural way.
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Definition 3.2: We say that 7 satisfies exponential large deviation bounds,
if for each € > 0 there exist C' and § > 0 such that for any N € N,

(3.2) M(HRZV - M(T)H > 5) < Ce N,

We say that 7 satisfies polynomial large deviation bounds, if for each e > 0
there exist C' and ¢ > 0 such that for any N € N,

(7w 2e) <

We say that 7 satisfies superpolynomial large deviation bounds, if for each
w > 0, € > 0 there exist C = C(e,w) such that for any N € N|

(7 w2 ) <
We will often use the following standard fact.

LEMMA 3.3: For each r, there is w = w(r) such that functions ® € C*(X x Y)
admit a decomposition ®(z,y) = Y ;o Ax(x)Bk(y), where Ay € C"(X),
B, € C"(Y) and

(3.3) > I Akller(x)lIBrller vy < Clrw) | @llowxxy)-
k
COROLLARY 3.4: Suppose that there are positive constants K and r, such that

0y L[JHOB @A B oteyivly) B A ()
<K||Alcrx)llB leron A"l ol B” lor vy (n).-
Then F' is mixing with rate 1.

Proof. Let
P (@', @) := ((®'(®" 0 F)) — ¢()((@").

Decomposing @', ®” € C* as in (3.3), we get

15 (@', ") =| > pu( A} B, ALBY) | < Koo(n) Y (1451 Bj 1Al AR 1B )
ok ok
<EP(n) Y (1A AB ) DAL B )

j k
<K p(n)C?(r, w)[| D' || ]| | -
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4. Mixing rates for mixing fibers
4.1. DOUBLE MIXING.

THEOREM 4.1: Suppose that u(7) # 0.

(a) If T satisfies exponential large deviation bounds and f and G are expo-
nentially mixing, then F' is exponentially mixing.

(b) If T satisfies polynomial large deviation bounds and f and G are poly-
nomially mixing, then F' is polynomially mixing.

(c) If T satisfies superpolynomial large deviation bounds and f and G are
rapidly mixing, then F is rapidly mixing.

Proof. (a) Fori=1,2,let ®;(z,y) = Ai(z)B;(y) be a C" function on X xY. Let

)= | Bily)BalGrav(y).
Y
Since G is exponentially mixing, there exist constants C; >0 and x>0 such that
(4.1) |p(t) = v(B1)v(B2)| < Ci||Bi|cr || Ballcre .

Taking ¢ = ||u(7)]|/2 in the definition of exponential large deviation bounds,
we find that there exist Cy > 0 and 6 > 0 such that u(Ty) < Coe N, where

Iy :={z € X :|rn(x) = Nu(7)|| = N|[u(r)|/2}.
Now note that

(4.2) /X Y<1>1<x,y><1>2<FN<sc,y))d(uxw:/X Ay(2) As (Y (2)) (ol (2)) ) dp(a).

We rewrite the last integral as the sum of two integrals Z; 4+ Zo, where

L= Ay (2) Az (fN (@) p(7 () dps()

and

7, — / As (2) As(FY (2))p(rv () ().
X\Tw

By exponential large deviation bounds, |Z;| < Cou(Tn) < Cze V. For I,
since f is exponentially mixing, it is enough to show that

A=

o — v(B)u(Bs) /X A @)
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is exponentially small. Indeed, by (4.1)

A< ’/X\T | A1 (2)|| Ao (FN ()| |p(Tn () — v(B1)v(Bs)|du(z)
< C4HA1||OHA2”0HBlHTHBQHT . e*;{lN
< Cyl|Ar x By||»|| A2 x Bal|y - e~ N

with k1 = k/2. This finishes the proof. The proofs of parts (b) and (c) are
analogous to part (a). We will omit them.

Remark 4.2: In part (b) above, if 7 satisfies polynomial large deviation bounds
with rate N=% and f, G are polynomially mixing with rate N %2 and N %
respectively, then F is polynomially mixing with rate N~ min{01,02.03}

Remark 4.3: Observe that the LLT was not needed in Theorem 4.1 and so the
theorem remains valid if R? is replaced by an arbitrary Lie group, in which
case 7y means the product

v (@) = 7(f " a) T (fa)r(x).

D

Definition 4.4: Assume that a cocycle 7 is such that ™~ converges as n — oo

to a non-atomic distribution. We say that 7 satisfies the anticoncentration
inequality if for every unit cube C C RY,

p({z € X :7n(z) €C}) < CLYY,
for some global constant C' > 0.
Remark 4.5: Note that by assumption there is a constant R such that
(|l < RLy) > 0.5,
so the power of Ly in the anticoncentration inequality is optimal.

THEOREM 4.6: Assume that for somer € N, f is mixing with rate s(N)=L",
for some av > 0 on C", T satisfies the anticoncentration inequality and G is mix-
ing with rate ¥¢(-) on C", where

(4.3) b (t)dt < +oo.
Rd

Then F is mixing with rate ¢p(N) ::L;,min{d’a} on C% for some w = w(r) € N.
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THEOREM 4.7: Assume that for somer € N, f is mixing with rate¢s(N) =L,
for some a > 0 on C", G is mixing with rate ¥ (-) on C", T satisfies the mixing
LLT with zero drift.

(a) Suppose T satisfies the anticoncentration inequality. If vq(-) satisi-
fies (4.3) and

(4.4) / &1 (a,y)du(y) = 0,
then
/ 1 (2)Do(FN 2)dC(2)
=Ly [[[[ @1(0.0)22(w. Guau@)av y)d(a)a + o(L3?).

(b) Ifpa(t) = ||t| =7, for B < d, then F is mixing with rate

(4.5)

wF (N) — L;[min{ﬁ,oz}

on C" for some w = w(r) € N.
(¢) If min{a,d} > 8 and for zero mean functions we have

[ B0 Ba(Gunpiy = a(Br B2 + o],

where q is a bounded bilinear form on C"(Y') and ¥ is a homogeneous
function of degree —f, then

@) [ BEB(PYA) = I Q@10 [ pO¥EE + oL
where
Q(P1, P2) =/Q(‘I’(fﬂla')a%(ﬂcza'))du(wl)du(mz)-

Remark 4.8: In the case d = 1, (4.5) is proven in [48] under a slightly more
restrictive condition.

Remark 4.9: We note that the integral in (4.6) converges. In fact, convergence
near 0 follows because p is bounded and d > 3, while convergence near infinity
follows since ¥ is bounded outside of the unit sphere. We also observe that

for ®,(x,y) = Aj(x)B;(y)

(4.7) Q(®1, P2) = pu(A1)u(Az2)q(B1, B).



Vol. 247, 2022 MIXING PROPERTIES 33

Proof of Theorem 4.6. For i = 1,2, let
®;(z,y) = Ai(x)Bi(y), where A; € C"(X) and B; € C"(Y).
Let B; = B, — v(B;). Let p(t) := [, Bi1(y)Ba(Gy)dv(y). Note that
| 1) ®aFY )l x v)=f (@) Aa(7¥ @)plrw o) dilz)
(4.8)7 X% X
+(Buv(Be) [ Ar(@)Aa(7Y (0)du(o).
p's
Since f is mixing with rate L® on C”, the second summand is equal
to p(A1)p(Asz) up to an error less than C||Aq ||, ||Az]|-Ly". It remains to esti-

mate the first summand.
Let {C;}32, be a countable disjoint family of unit cubes in R¢ such that

R = JC.

Below we assume without loss of generality that the function ¢ from (4.3)
satisfies

(4.9) sup (1) < K inf(t).

i

Indeed, given t,t € C; we have
V(B - By o Gy) = v(By - By 0 Gy),
where By = By o G_;. The last integral is smaller in absolute value than
YO Billerl|Beller < K@) Billor || Bellor

Thus decreasing ¢ if necessary we may assume that (4.9) holds.
Note first that since 7 is bounded, we have

‘/1Alﬁwfb(fN(xn'ﬁKTN(wnduCﬂ
(4.10) A
- Z /X A1 (2) Az (N () - plrw (2) e, (Ta () dpu().

Using that G is mixing with rate ¢¥¢ on C”, (4.10) shows that

] [ 4407 @) -l @) ante)

oo

< CIIAllloHAzIIoHBlHTHBQHTZ[Sucp Ya@)]p({z € X :7n(z) € Ci}).

3 teC
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Together with the anticoncentration inequality, we have

/X Ay(2) A (FN (@) - plr (2))dulz)

(4.11) ”
< CD - || Axllol|Azllo|| Ball+| B2l Ly Ztsucp Y ().
i=1 €0
Now by (4.9)
(4.12) Zsup Ya(t) < C'// Yo (t)dt < C”.
i—1 teC; R4

Summarizing, we get

/XAl(fC)Az(fN(w)) - p(rv (@) du(x) < C"|| Aullol| Azlloll B llo[| Bzl Ly

showing that F' is mixing with rate L;,min{d’a}.

Proof of Theorem 4.7. By the same argument in the proof of Theorem 4.6 we
just need to estimate

/X Ay () As (N (2)) - plrw (@) du(e).

To prove part (a) note that due to (2.1) for each fixed 4,

lim L, /X Ax(2) Ao (FN (2))-plr () Te, (v () ) dpu()

N—o00
=5(0) [ plO)dtn(An)n(A2)
C;
This together with the Dominated Convergence Theorem (note that in part (a)
we assume the conditions of Theorem 4.6 whence (4.11) and (4.12) apply) shows
that

lim LY /X Ar(2)As(FY () - plrw () dp(x) = p(O)u(Ar)(As) / p(t)dt

N—oo R4
proving (4.5).
To prove part (b), split

/X A3(@) As (Y (&) - plrw(@))dulz) = S1 + a,
where

Sy = / Av(@) Az (£ (@) - p(ra (@) age (T () dpa()
X
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and
S2i= [ M@A (V@) e @) -y s (v @)d(o)
To estimate So, notice that for x as in Ss,
p(rn (@) < C||Bulv|| B2|lrp (1 () < Col|Bullr|| Bzl (L)
< Coll Bl || Ball L.

Therefore
Sa < CollAllol| A2llol| Bl | B2l Ly -

It remains to estimate S7. We trivially have

11 =| [ A1@) 427 @) - e (21 -y, pygs (@)l

(4.13)
§||A1H0||A2H0/X|P(TN($))|]1[—LN,LN]d(TN(ﬂc))dM(x)-

Cover [—Ly,Ly]¢ with (at most) ([Ly] + 1)¢ disjoint cubes {I;} of size 1
centered at ¢;, so that I;’s are translates of the cube Iy. By the mixing LLT
for z, = t; (notice that ||t;|| < dLny and so t;/Ln belongs to a compact set),
and Ag = A1 = 1, we get (for sufficiently large N),

Léu({x € X : 7y () € I;}) < 2p*Vol(I) = 2p*

where p* = sup, p. Therefore,

/|pm D)Ly g (v () dpa(z Z/|pm V1L, (r () ds(z)

< 2p* Lj‘vdZ;‘fnglp )|
j J

< CL;d/ p(t)dt
[~Ln,Ln]¢
<CLYLY? =cLy/,

completing the proof of (b).
To prove part (¢), fix a small § and split

/X Ay(2) A (Y (2)) - plr(@))dp(z) = S + S + S,

where the integrand in Sy is multiplied by 1_s. s5z,]2(7n(2)), the integrand
in Sy is multiplied by 1;_p,, /s,y /6]4\[=5L~ 6L x]¢ (T (2)) and the integrand in S3
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is multiplied by Lpa\(— 1y /5,1y /64 (Tn (7). Arguing as in the proof of part (b)

s:=0((;,)")

Since the integrand is bounded, we have

1= O((Liv)d) - O((L(iv)ﬁ)‘

To handle S; we divide the domain of integration into unit cubes I;. Let ¢; be

we obtain that

the center of ;. Using the homogenuity of ¥ we conclude from the mixing LLT
that

[ A1) A 0ol )1, (o))

— [ (d+P) tj tj —(d+8)
= LN Ann(A2)a(Br B (7 ) () + oLy ).
Summing over j and using (4.7) we obtain
8= LyQ(21,22) | p(®)¥(t)dt + o(Ly),
Ts
where the domain of integration is 75 = [—}, ;]? \ [-6,6]. Combining our
estimates for S7,.52 and S3 we obtain

(t)q/(t)dHO(L];ﬁHo(( o )B)

/<I>1(z)<1>2(F”z)dC(z) = LEﬁQ(Q)l,(I)Q) Ln

b
Ts
Letting 6 — 0 we obtain (4.6) for product observables, which by Lemma 3.3 is
sufficient to conclude the general case.

Remark 4.10: Note that the fact that B = C" was only used to decompose any
becC¥X xY)as

(4.14) ®(z,y) = Y An(@)Buly), where > [[Anflcr||Baller < oo.
Therefore the conclusions of Theorems 4.6 and 4.7 remain valid if (3.1) holds
on an arbitrary space B provided that ®;,®2 admit decomposition (4.14).

Remark 4.11: The results of this section apply (with obvious modifications) to
continuous time T, T~ ! systems of the form

(415) Ft(xvy) = (¢t(x)7Grt(z)y)a
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where ¢ is a flow on X and

t
(4.16) Ti(x) = / 7(¢°(x))ds.
0
Note that due to the fact that
((Hy(Hyo F™)) = ((H1((Ha0 F°) 0 F™))

it is sufficient to control the correlation at integer times. Next F' is a 7,7 !-
transformation corresponding to f = ¢!, 7 = 7. We note, however, that in
several cases for time one maps of the flow the LLT is unknown (or false) unless
the observable is the time integral given by (4.16). We refer the reader to [27]
for the discussion of mixing LLT for continuous time systems.

Example 4.12: (a) Let g; be an exponentially mixing Anosov flow on some
manifold M. Consider a continuous 7,7~! system F} with X =Y = M
and ¢' = Gy = g'. Then Theorem 4.7(a) shows that for smooth zero mean
observables

Jim VIt((Hy(Hy 0 F*)) = Q1(Hy, Ha),

where @1 is given by (4.5). Indeed, the condition (4.4) can be relaxed and
the conclusion of Theorem 4.7(a) holds for all zero mean smooth observables
assuming that o > d (in this example, « is arbitrarily large and d = 1).

(b) For any positive integer k, define inductively a continuous T,T~! sys-
tem F{ with X = M, Y = MF, ¢' = g' and G; = F}_|, where F} is the
flow from the part (a). Then Theorem 4.7(c) shows that for smooth zero mean
observables

lim 27" C(Hy (Hy o F')) = Qu(Hy, Ha),
where @y, is given in terms of Qi1 by (4.6).
4.2. MULTIPLE MIXING.

Definition 4.13: G is mixing of order s with rate v on a space B if

V<f[1Bj(thy)) - lle(Bj)

< Co(s(tr, ) [T I1Bslls
j=1

where
6(t1,...,ts) = min|t; — ]
i#£]

This definition extends to maps (such as to f and F') in the natural way.
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THEOREM 4.14: If 7 satisfies mixing LLT with zero drift and f and G are
mixing of order s with rate t— with o > d, then F' is mixing of order s with
rate Pp(N) = L%

Proof. For i = 1,...,s, let ®,(z,y) = A;(x)B;(y), where A; € C"(X) and
B; € C"(Y). Let p(t1,ta,... ,ts) := [, [T;—) Bi(Gy,y)dv(y) (with t; = 0). We

have

S

/XXY Hq)i(FNi(x,y))d(,u X V)

:/X HAl(lex) ’ p(TNl (:C), <++» TN, (:C))d/L(JC)
(4.17) =l

<[ l_i[Ai(fNiw)' (ot @)oo () = T80 ) o)

+HV(BZ-)/XHAi(fNix)dM(x),

Note that since f is mixing of order s with rate N~%, the last term above is
equal to [];_, u(A;)v(B;) up to an error of size at most

0<H Al min | N; — Nw).
=1 13&‘7

It is therefore enough to bound the first term. Notice, moreover, that since T
is bounded and satisfies mixing LLT with zero drift, we have Ly < C'N (see
Definition 2.1).

Denote N := min;; |[N; — Nj|.

Let Z C X be defined by setting: x € Z iff min;»; ||7n, (z) — 7w, (2)|| > Ly.
Using that G is mixing of order s with rate ||t||~%, we get

[ A (pm (@), ()~ ] u(Bn)du(:c)
(4.18) =t =t

< T IAd T Bill Ly
=1 =1

So it remains to estimate the above integral on Z¢. By definition, for every
x € Z°¢, there exists i, # j, such that

(19) v, (2) = 7, (@) = min [, (&) = 7, (@)] < Ly
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Let Z;; :={x € Z°: (ig,jz) = (4,7)} (if there are several pairs satisfying (4.19)
we take the smallest with respect to the lexicographic order). Let {Cj}L, be
a finite family of unit cubes centered at {cx}#L, in R? such that

Ly, Lyl* = JCr-
k

Then
‘ /Z ll_i[lAl(fNL:r) . <p(ml (@), 7n. (@) f[ly(gi)>du(z)
(4.20) _ i/ ﬁAl(sz:c). <p(ml(z),...,m5(z)) f[v(Bi))
k=1 Z.

i =1 =1

X Loy (v, () — 7, (2))dpa(z)

Using that G is mixing of order s with rate [|t||~%, and

min{sup ||t|| =%, 1} < Cinf ||¢||~¢,
Ch Ch

we get that the LHS of (4.20) is bounded above by

s bt
amy O TIOANIBI ([ minti - vy

=1
x p({r € X : 7, (2) — 7N, (x) € Ci}).

Note that 7, (x) — 7, (2) = 7n,—n~,(f"/z). Hence, by the mixing LLT with
Ay =A; =1, D, =0, we get (by preservation of measure)

p({z € X : 7, (x) — v, (z) € Cj}) < QLX,‘Z?_ij(cZ-/LN) < C'L_Nd.

Therefore, (4.21) (and hence also (4.20)) is bounded above by (recall that o > d)

S

c" TTA Aol Bill) 5"
=1
Summing over all ¢, j and using (4.18), we get that the LHS of (4.17) is bounded
by
¢ TTA Aol Billr) L5
=1
This finishes the proof.
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THEOREM 4.15: If T has non-zero drift and satisfies exponential large deviation
bounds, and f and G are exponentially mixing of order s, then F is exponentially
mixing of order s.

Proof. Fori=1,2,... s, let ®;(x,y) = A;(x)B;(y) be a C" function on X x Y.
Let

plty, ... ts) ::/Y_HBZ-(Gtiy)dV(y)

(with t; = 0). Since G is exponentially mixing, there exist a constant C; > 0
and x > 0 such that

)| < C1||Bi||er || Ba||are 0t te)

(4.22) ‘ (t1, ... ts HV

Fix 0 = Ny < Ny < --- < N,. We again use the decomposition (4.17). By
exponential mixing of order s of f, the second term in (4.17) is exponentially
close to [;_, v(B;) [1;_; #(A;), and hence we only need to estimate the first
term.

Let
Tij o= A{zw € Xt |l (2) = 7w, (&) = (Ni = Nj) ()| = (Ni = N[ (7)1 /2}-
Let T =, 2; Tij- By exponential large deviation bounds (and preservation of

measure),

w(T) < s*max p(Ty;) < Ce™®
ij

Therefore it is enough to bound the integral of the first term in the RHS on
X \ T. By exponential mixing of G,

/X\THA (fNiw < TNl(z)""’TNs(x))EV(Bi))dH(UU)

=1 =1

By the definition of T,

(Tl
2

S(mny (2), ., 7N, (2) > HQD|N¢—NJ‘|,
17]

completing the proof.
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Let ny < ng <--- < ng be an s tuple. A partition
P=PLUPU---UPg

of a set {n1,na,...,ns} (where an item may be listed more than once) is called
social if for each j € {1,...,k}, Card(P;) > 1. An element n; is called forward
free (backward free) for partition B if it is the smallest (respectively, the
largest) in its atom. We call n; forward (or backward) fixed if it is not forward
(backward) free. We let F'* be the set of all forward (or backward) fixed
elements. Let
) = [ Lnjnss-
njeF+

For B = (P1,..., Py), let (n;,)5_, be the collection of forward free elements,
i.e., n;, is the smallest element of P;. Analogously we define (n;,)5_, to be the
collection of backward free elements. Notice that we have the following formula

for kT (P):

az e (T ([Tenn)

with ng = 0, and analogously

k

(4.24) K (R) = (f[anj_njl) : (Z_]_[anW_W)_I,

with ngy1 == nq + ns.

We have the following

Definition 4.16: We say that 7 satisfies the anticoncentration large devia-
tion bound of order s if there exist a constant K and a decreasing function ©
such that ffO@(r)rd < o0, and for any unit cubes Ci,Cs,...,Cs centered
at c1,c9,...,¢Cq

i Lnjn;

plx: 1, €Cjforj=1,...,s) < K(HL;jd_njl)G(max les _Cj_lH).
j=1

Remark 4.17: For s = 2 anticoncentration large deviation bounds were consid-
ered in [26].
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THEOREM 4.18: If T satisfies anticoncentration large deviation bounds of
order s and f and G are exponentially mixing of order s, then

(4.25) ]/(HH (722) ) gl H< )| < O TT e )

where
K(P) = max{x"(P), x~(P)}

and the minimum in (4.25) is taken over all social partitions of {n1,...ns}.
We first recall the following result, which simplifies our analysis.
LEMMA 4.19 ([6]): If G is exponentially mixing of order s, then for some 1 > 0

V<H th) Hu

Jj=1

(4.26) < Censtnts TT B, s,

Jj=1

where
A(ty,...,ts) = maxmin||t; — ¢
Jj oA

With the above lemma, we prove Theorem 4.18.

Proof of Theorem 4.18. By Lemma 3.3 it is enough to show the statement for
Hj = Aj X Bj € OT(M) Let

plts,... ts) = V(f[lBj(thy)) - f[ly(B])

Then
(127) -/( _f[lAj(f"j:c)) s (@), -, () s (z)
¥ (liV(Bj)>u<f[1Aj(f"jx))-

Since f is exponentially mixing of order s,

(128) }u(_lf[lef" 9) - Hu

where A = A(nq,...,n).

< CHHA e,
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Let P be the following partition of ny < ... < ns. Let iy € {2,...,8— 1} be
the smallest index ¢ such that |n; — n;—1| > A. Then the first atom of P
is {no,...,ni,—1}. Notice that |n;; — n;,+1] < A by the definition of A.
Now recursively, let ix41 € {ix + 1,...,s} be the smallest index i such that
|ni —ni—1] > A. Then the (k + 1)-th atom of P is {n;,,...,ns,,—1}. We con-
tinue until we partition all of ny < --- < n,s. Then by the definition of A, every
atom of P has at least two elements, and so P is social. Moreover, all elements
in one atom are at distance at most sA (since the number of elements is < s).
Using that 7 is bounded (and so |L,| < Cn) together with (4.23) and (4.24),
we conclude that

s —d
min{x*(P)~% kF(P)"?} > (H Lnj_njl) > [sA]7 > CAT > Ce A,
j=1

Combining this estimate with (4.28) we find that the second term in (4.27)
equals [[j_, ((H;) up to an error which is bounded by the RHS of (4.25). It
remains to show that

‘ / ( f[lAj(f""w)> p(To, (2), ..., T (2))dp()

< T I4; BjHCr(H}gM(‘B))_d,

j=1

which will follow by showing that

/IP(Tnl(w), ooy (@)ldp(e) < CT] 185 ¢+ (min K(P)) .

j=1
Let
Co:= [T 1Bl
j=1
and
Dpy = {2 |p(Tay (2), .., T, (1)) € [Co27™, Co27 ™)}
Then

(4.20) / p(us (@), T () ldp() < 2C0 3 ) (Do)

m>0
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We will estimate the measure of D,,. Note that by Lemma 4.19, for
some Cp € N,

Dy, C Ay i={2: A(7n, (), ..., T, (2)) < Cym}.

We will therefore give an upper bound on the measure of A,,. By the defi-
nition of A it follows that there exists a social partition B = (P,..., P) of
ny < ng < --- < ng such that for any atom of B and any two n;,n; in the same

atom we have
(4.30) |Tn; () — T, ()] < Cpsm.

Let A, 9z CA,, be the set of z for which B is a social partition of ny<no <---<n,
satisfying (4.30). Then
A= |J Amx,

P social
and so we will estimate the measure of A, g.
Let {C;} be a disjoint cover of R? by cubes of side length C,s - m centered
and ¢;. Note that by the anticoncentration large deviation bounds of order s
(decomposing C; into unit cubes),

(7, (v) € Cjfor j=1,...,5)

S KI(Sm)Sd<f[Lnjdnjl)®(m_aX Héj - éj—l” )

J m: Lnjfnj,l

(4.31)

It follows by the definition of B and (4.30) that all the {7,,(x)}n,cp, belong to
one cube C,,. Below, we use the notation 7p,(z) € C,, which means that for
every n; € Py, 7y, (x) € C,,. Therefore, we have

pAng) < Y w{z e, (2) € Cpp £ < KY).
Ly TR
Let n;, (and nj,) be the smallest (the largest) element of Py, ¢ < k. Below we
will argue with (n;,) (analogous reasoning can be done for (n;,)). Let u(€) be
such that n;,_1 € P,y. By (4.31), monotonicity of © and the above discussion
(using that n;, and n;,_; are in different atoms), we obtain

. < < K'msd —d ( Héw_éTu(z)H).
ittt € Coue <k < o (T, Jo (s, 7 70
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Therefore
p(Am ) < K'm* ﬁL‘d " O((max . )
mp) < L1 *nj—ni— <k m-Lyp, —n, 7
J=1 T1,---Tk “ "
Note that
Z @ Hére _éTu(E)H )
T1y-Th Z<k me Lnllfn"?*l

< Z O)-{(r1,- - ri) 2 16, = Cry | Slm- L, for every £ < k}|
d
<> et -m?- (H Ln_n) .
¢ o<k
Therefore, by the decay assumptions on © and (4.23),
d
p(Amp) < K'm “”d(H Lo, ) - (H L) = K'm* 4t (o).
<k

Analogously we have that
M(A ’m) < K/ sd+dﬁ+(m)fd.

Therefore,
M(Amfl}) < K/m5d+dl€(m)_d.

Using that Ay, = Uy Am,g, We get

p(Am) < K'Com (min ()™,

for some constant Cs > 0. Summarizing, by (4.29) (since D,, C A,,), we get

/|p(7—n1(x)v"-aTns(z))|d/L( ) <2K'C, HHB Hcr(mmﬁ “Yy 27wt

Jj=1 m>0

<C.a]] Bjllor (min K(P)) 7

j=1

This finishes the proof.
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5. The central limit theorem

Let H(x,y) be a C" function not cohomologous to a constant function. Let

N—-1
Sn(H) =Y H(F"(z,y)).
n=0

Assume that ((H) =0. Let Z =X x Y.

THEOREM 5.1: Suppose that F satisfies (4.25) and Y ... L@ converges.
Then ZA\’/S\};I) converges as N — oo to the normal distribution with zero mean

and variance o given by formula (5.1) below.

COROLLARY 5.2: If F satisfies either the assumptions of Theorem 4.15 or the
assumptions of Theorem 4.18 with Ly > eV N and d > 3, then F satisfies
the CLT.

Proof. In the case of Theorem 4.15, this follows from the CLT for exponentially
mixing systems ([11, 6]). In the case of Theorem 4.18, the result follows from
Theorem 5.1.

Proof of Theorem 5.1. By (4.25) with ny = 0,n2 = n,

(5.1) o?:= Y ((H(HoFm))

n=—oo

exists and is finite. Hence

(RN = S o p o )

N —
1<i,j<N
~ Nk k - .
= ¥ N SH(HoF®) — > ((H(HoF™).
k=—N+1 n=-—00

To finish our proof, we need to estimate the asymptotics of moments
((X%(H)), for any m > 3. Denote

Qky, ... k) = /Z <ﬁH(Fkiz)) d¢(z)

so that

(5.2) CERHE) = D ks k).
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For the vector (ki,...,kmn) we associate another vector (nq,...,n,,) which
is the permutation of the elements of (ki,...,k;,) in increasing order, that is
n; < ng < --- < ny, Noting that 2 is symmetric, we have

Q(kl,. ,km) = Q(?’Ll,.. .,nm).

We rewrite the above sum into two terms as I; + I, where I is the sum of terms,
whose social partition minimizing the RHS of (4.25) is not pairing (i.e., at least
one atom contains more than two elements), and I is the sum of terms, whose
corresponding social partition is pairing. (If there are more than one partition
minimizing k, at least one of which is not pairing then we put the corresponding
term into I7.)

We need two auxiliary estimates. Let Q@ = {Q1,...,Q,} be a fixed social
partition of the set {1,2,...,m}. We say that Q(ni,...,n,) = @ if the par-
tition 9B minimizing the RHS of (4.25) for the given numbers n1, ..., n,, is of
the form P = {Py,...,P.} with {i: n; € P,} = Qy forall k = 1,...,r. Next

we write
Ip = Z Qna,...,Nm).
kiyeoikm:Q(N1,e.csnm )=Q
LEMMA 5.3: (a) Ig = O(N™).
(b) If Q = Q, U---UQ, is not pairing, then the sum I = O(N(m=1/2),

Proof. Since 1/kg(ni,...,Mm) < 1//@25(711, ...y Nm), by (4.25) it suffices to es-
timate

1
(5.3) > (55 (1, 1))

MN1yeeeyMm
Let nj < ny < --- < nl be the forward free elements among {ni,...,nn}
and nf,...,n,,_, be the forward fixed elements. For each fixed element n,
let 7i; be the previous element in {ni,...,n.,}. Rewrite (5.3) as
1 d
(5.4) S 1Y (pey, )
ny,..,nl tnf,onl Hj:1 n;'/fﬁj

Since L ¢ is summable, the inner sum is uniformly bounded, so that (5.4) is
bounded by N”. This proves (a).
(b) follows from (a) because if @ is not pairing, then r < |m/2].
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Since there are finitely many partitions of {1,...,m}, Lemma 5.3 implies
that |I,] is bounded above by O(N(~1/2) In particular, for odd m,

C(SR(H)) = O(Nm=D/2),

Now let m be even and @ be a pairing, that is Q@ = {Q1,...,Qy, 2} with
all atoms @}, containing exactly two numbers. By a forward (backward) step
we mean n; — nj_1 where n; is forward (backward) fixed in the partition
Q(ni,...,Nm). Let T'g(ni,...,nm) be a largest among all forward and back-
ward steps in the partition @ and let I'(n1,...,7m) = Lo(ny,...onpm) (P15 -5 0m )

LEMMA 5.4: For any € > 0, there exists M > 0 such that

Z Qna, ..., Nm) < N™/2¢,

k1yeskm T (n1,0emm ) > M

Proof. Tt is enough to prove the lemma for I" replaced by I't and also for T’
replaced by I'", where I'" is a largest among all forward steps and '~ is a
largest among all forward steps. We only consider I't as I'™ is similar. The
proof for I'" proceeds in the same way as the proof of Lemma 5.3 except we
estimate the inner sum in (5.4) by

(5.5) C<§:1 Lnd> T <§:\4 Lnd) :

Indeed there are m —r factors in the inner sum in (5.4), and by our assumptions
one of them should be greater than M. As the second factor can be made as
small as we wish by taking M large and since r = m/2, the result follows.

LEMMA 5.5: Let @ be a pairing which is different from

(5.6) Q:=1[(12),(34),....((m — L)m)].

Then the number of m-tuples (ky, ..., ky) with Tg(n1,ng,...,nm) < L is
O(N /271,

where the implicit constant depends on L.

Proof. We claim that if Q # @, then the sets of forward fixed and back-
ward fixed edges are different. If follows that if both Fg(nl, cey ) < M
and I‘é(nl, ..y ) < M, then there are at least m /241 edges which are shorter
that M. The number of such tuples is O(N(™/2)~1) and the result follows.
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It remains to prove the claim. That is, we show that if the sets of forward fixed
and backward fixed edges are the same, then Q = Q. We proceed by induction.
If m = 0 or 2 then there are no pairings different from Q. Suppose m > 2.
Then (4,1, ny,) is forward fixed, so it should be backward fixed, but this is only
possible if (m —1) is paired to m. Likewise (n1,n2) is backward fixed, hence it is
forward fixed. But this is only possible if 1 is paired to 2. Removing 1,2, (m—1)
and m from @ we obtain a partition of m — 4 elements for which the set of
forward fixed and backward fixed edges coincide. By induction 3 is paired
to 4, 5t0 6,...,(m —3) to (m — 2). The proof is complete.

By the above lemmas, it suffices to consider indices k1, ..., k;, so that

Vi = 1,,m/2 Mz = No; — N2i—1 SM
(5.7) and

Vi = 1,...,m/271: Noj+1 — N2 > L
for some large M and L = L(M). Indeed, by choosing M = M (e) and N > Ny,
No = No(L), the above lemmas give that the contribution of other terms
is < eN™/2. Now we choose L so that for any fixed M, ... , M, /o (finitely
many choices), the RHS of (4.25) with s = m/2 and H; = H(H o TM7) is less
than €. We conclude that

m/2

'c@m - 2 I1 < [ oTMi>>d<<z>>‘ < 2Nz

ki,...,km satisfying (5.7) i=1
Let us write

A= [ (T o T dc).

Now we claim that
m/2 M m/2
> 11 4w = (m1)!!Nm/2(1+0(1))[Z(Ag(1+]lg>0))} .
ki,...,km satisfying (5.7) i=1 =0
To prove the claim, first note that
M

M m/2
Z Ay v Am,,,, = <2Ae> :
=0

My,...,Mp/2=0

Now it remains to count the number of tuples (ki, ..., k) corresponding to the
values My, ..., M,,/>. Assume, for example, that M; > 0 for all 4. To count the
number of possibilities, we first fix a pairing of indices 1, ..., m which can be
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done in (m —1)!! different ways. Then we have ~ N™/2 choices to prescribe ex-
actly one element of each pair. Let us say these values are s; < 5o < -+ < 8y, /2.
Except for an o(Nm/Q) of these choices, we have s; —s;_1 > 2M + L and so for
each remaining index k; we have two choices: if it is paired to s;, then either
kj = s; — M, or k; = s; + M;. Thus the total number of choices is

(m — 1)I2"2N™/2(1 4 o(1)),

which verifies the claim for the case M; > 0 for all 7. If M; = 0 for some 4, then
we only have one choice for the corresponding k; and so we lose a factor of 2.
The claim follows.

To finish the proof, notice that

M M
S A+ 1s0) = Y ((H(HoFY)) =0 as M — oc.
=0 =—M

Thus we have verified

m o(N™/?), m is odd,
((EN(H)) = ) > .
(m — DUN™/26™ 4 o(N™/?), m is even,

completing the proof of the theorem.

Remark 5.6: The asymptotic variance given by (5.1) is typically non-zero. In
particular, if either the drift is non-zero, or d > 5, then a direct calculation
shows that

o0

Jim (%) - No® = — _Z n¢(H(H o F™))

(the convergence of the right hand side follows from the assumptions imposed
above). Thus if 02 = 0 then ((¥3%) is bounded, so by the L2-Gotshalk-Hedlund
Theorem H is an Ly coboundary. It is an open question if the same conclusion
holds if u(7) = 0 and d is 3 or 4. However, by assumption, f is exponentially
mixing, so if H does not depend on y then o2 > 0 unless H is an L? coboundary.

Thus in many (possibly all) cases o2

is a positive semidefinite quadratic form
which is not identically equal to zero, and so its null set is a a linear subspace

of positive (or infinite) codimension.
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6. Mixing rates for ergodic fibers
6.1. RESULTS.

Definition 6.1: We say that (f,7) satisfies a mixing averaged Edgeworth
expansion of order r if there are constants ki, k2 and a sequence dy — 0 so
that for any function ¢ = ¢ € C*2(R? R) supported on the box J = Jy, the

expression

Ta, 45.0(N) = p(Ar(x) Ao (fN2)p(7n (2)))

satisfies
Ta, a.6(N) = N7U/2 ) ()€ A2(s/V/N)ds
seR
< Al o [| Azl e (| @]l ors VOL(T )y N~ (772,
where

", PAvAz(s)
En(s) = MM (s) =a(9) D Ty

with g(+) is a centered Gaussian density with positive-definite covariance matrix
and P,(s) are polynomials in s whose coefficients are bilinear forms in (A4;, As),
bounded in absolute value by C|| Ay ||, || Azl crr » and Pi42(s) = u( Ay p(As).

Definition 6.2: We say that (f, ) satisfies a mixing averaged double Edge-
worth expansion of order r if there are constants ki, ke and a sequence
Sy — 0 so that for any functions ¢; = ¢;(N;) € C*2(R) supported on the
interval J; = J;(N;) (i = 1,2), the expression

TAy, Az, Az, 61,0 (va NQ)::M(Al (:C)AQ (le (z))A3(fN2 (x))¢1 (TNI (x))¢2 (TNz (:L‘)))

satisfies
S1 §2—S1 —d/2 Ar—d/2
IAl,Az,As,mm(Nl,Nz)//051(51)9(\/]\,1)¢2(82)9(\/N2Nl)]\ﬁ Ny
" PACALAs (g1 /\/NY, (2 —81)/v/ No—N1)

X E P1,pP2

p1 o
p1,p2=0 le (NQ*Nl) 2

g(ﬁwmmj(ﬂ|mmwwm)

i=1,2

d81d82

X Smin{ 1. No— 1} (max{ N1, No — N1 })~¥2(min{ Ny, Ny — N, })~(@+7)/2
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where Pﬁ}i,‘;‘?”“?’ (s1, s2) are polynomials in s1, so whose coefficients are bounded
trilinear forms in (Aj, Ag, As), bounded in absolute value by

3
oy J ARy
j=1

and
Byl (s) = u(Ar) (Ao u(As).
We will use the following hypotheses:

(A1) (f, ) satisfies a mixing averaged Edgeworth expansion of order r;;

(A1) (f,T) satisfies a mixing averaged double Edgeworth expansion of order
13

(A2) for each & > 0, we have u(|7n| > NV/2H9) = O5(N~"2);

(A3) there are constants 3 < 1 and k3 € RT such that if B € C*(Y) has
zero mean, then for any 7' € Ry,

SB(y) = / B(Gy)ds
s€[0,T]4

satisfies

ClBlicrs
ma; SE| > 1) < ;
V(teR,\t|X<T| ol ) Trs

(A3") there exist constants 8 < 1, k3 € RT so that if B € C*3(Y) has zero
mean, then for any positive integer M there is some constant C' = Cjy
so that for any 7' € Ry,

vy :|SE| > T%) < o7,
(Ad) p(Ar(2)A2(fN ) — p(A1)p(Az) = O(||Arllgra [| Azl e N77).
Given H,Hy,Hs : X x Y = R let
(6.1) piy s (N) = C(Hy (Hz 0 FY)) — ((H1 )¢ (Ha).
THEOREM 6.3: Fori=1,2,3,4, assume (Ai) with
(6.2) r; >d(1—p8)

(noting that 7y is an integer). Then there exists K such that if H; € CK(XxY),
then for any § > 0 there is some Cs so that

B—1
|11y, (N)| < Csl| Hi [l o | Hal| o N2
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THEOREM 6.4: Assume (Al’) with
(6.3) r €N, 71 >2d(1 - )

and (A2), (A3’), (A4) with ro,ry satisfying (6.2). Then there exists K such
that if Hj € CX(X x Y), then for any § > 0 there is some Cs so that

(6.4) o, 12 (V)] < Cs|| Hul| oxe | Ho | ox NP ~DF2,

The proofs of the above results use integrations by parts combined with var-
ious versions of (A1) and (A3). The exponents and the ideas of the proofs are
similar to those appearing in [25], section 4.

Proof of Theorem 6.3. Case of d = 1. Let ¥ be a C*° function such that
0 <9(s) <1,%(0) =0 and ¥(1) = 1. Given L > 0, let

s+ L+1) ifse|[-L—1,—L],

1 if se (—L, L),
Yr(s) = ,

1—y(s—L) iftsell,L+1],

0 otherwise.

By Corollary 3.4 and (A4), it suffices to consider the case
(6.5) H;(z,y) = Aj(x)B;(y) where v(B;) =0,

with A, B; € C*s. Without loss of generality we can assume k3 > ko, where ko
is given by (Al).
Let L = NY/?%9_ Then

P (N):/ /A1<z>A2<fo>31 (4) Ba(Gr o)) d ()
(6.6) :/ /A1 (2) A () B () Ba(Gry (oy0) o1 (v () () ()
+/ /Al(w)Az(stc)Bl (1) Ba(Cr (oy9) (1~ (7 (2)) () o).

The integrand in the last line is zero unless |7n(x)| > L, so by (A2) the last
line is
O([[Hillco | HallcoN~"2)

and so we need only bound (6.6). First, observe that we can restrict the integral
to Y, the set of points where

1SP2(y)| < L% = LP fort € |-, L].
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Indeed, by (A3), the integral over Y \ Y is in
(6.7) Ol [l o[l H2llco L)

and so is negligible. Next observe that (6.6), restricted to Y, is of the form

/YIAl,A2,¢y (N)dv(y) with ¢y(s) = Bi(y)B2(Gsy)pr(s).

Now by (6.2), 1 > 1 and so by (A1), the above expression can be replaced by

N*W/Y (/LL ¢y(3)51(s/\/N)ds)dl/(?J)

with error
— B—1
(6.8) o(| Axllcr || Billoro [| Azl o | Ballora LN 1) = o(N 72 ),

where L = L + 1. Integrating by parts, we obtain

/ ( / by(5)E1(5/VN) jjv)du@)

L
-, ( / 51<8NN>5‘y<s>fj)du<y>+0<||H1|co||H2||coLg<L/¢N)),
—L

Y
where Sy(y) = B1(y) [y ¥1(u)B2(Guy)du. Since
Selisj<z = B1(y)SE (y)1jg<1
it follows from the definition of Y that the last integral is

L1+8

O(llAtllcr 1 Billcoll Azllom | Ballcxs — y )-

This completes the proof of the theorem.

Proof of Theorem 6.3. Case of d > 2. We follow the approach of the one-dimen-
sional case. Let us assume (6.5) (the general case follows from Corollary 3.4).
Now 7 € R? and so we define

Let Y be defined as

Y ={y:|SP2(y)| < LY forte[-L,L]}.
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Next we claim that
) N [ g9 (Vs )ty
Y s€[—L,L]¢
where any ~ by means
B—1
(= byl = ol H llgs | Hall s N2 +9).

Indeed, repeating the argument for d = 1, the error term (6.7) remains
valid and the error term corresponding to (6.8) is O(LYN~(@+71)/2) which is
in o( NUB=1/243) by the assumption (6.2).

Performing d integrations by parts, one in each coordinate direction, we con-
clude that

- o4
o) =N ([ s, £ (5/VN)ds ).
v \Jse[-L,L]2 51+ 0sq
Now by the definition of Y,

piy 1, (N) = O(|[ Hillors || Hal| org N~ILACHR)),
and the theorem follows.

Proof of Theorem 6.4. Case of d =1. Assume (6.5) (the general case follows
from Corollary 3.4).
For fixed vy, let us write

o =ox(v) = [ Hy(FY ) Ha P o, )du(o)
so that
prn s (N) = G (H2 0 7)) = [ a()iv(y),
We will prove that for any 6 > 0 and for any y € Y,
(6.9) on = o( NP~1+9)
where Y (to be defined later) satisfies
(6.10) v(Y)>1- N1

(and so the contribution of its complement is negligible). As in the case of
Theorem 6.3, the constant in the convergence in (6.9) can be bounded above by

Csl|Allcrr | Azl ora [ Ball s | Ball wa -

To simplify formulas, we do not indicate this dependence in the sequel.
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Denote
Yo, ={yeY :3teR:|t|c[L" L]:|SP| >t

Next we claim that for any n > 0 and for any M there is some C so
that v(Yz,) < CL~M . To prove this claim, observe that for y € Y7, there is
some t, = t.(y) with |t,| € [L", L] and |SE (y)| > 9. Then

1
SE )] > L85

and so
[L]
Y, C U Y 0.k
k=|Ln]
where

L 1
Yok = {y €Y :|SP(y)| > Qkﬂﬂ or |SB,(y)| > 2k6+n}'
Now we apply (A3’) with M replaced by (M + 1)/n to conclude that
U(Yign) < 2Ck~(MFD/1 < op-M-1

for all kK > |L"|. The claim follows.
Next, define

Y = Y\ U G;l(YN1/2+£16/4)
1=0,1,...,|N|

with a small € = ¢(§). By the previous claim, Y satisfies (6.10).
Denote Ly = N'/2t¢ Ly = 2N1/2+¢ and L; = L; + 1. We start by computing

on=ert /A1 Ao (F(2)) B (G (1)) Ba(Gryny (1)1, (78 V01, (72 )da()
=e1t+ Il,A17A27¢y,1,¢y,2 (Nv 2N)

where
by,i(s) = Bi(Gs(y)¥r, (s),
and the error term e; satisfies
(6.11) le1] = O(N™"2) = o(NP~1)
by (A2).
Now using (A1’), we derive
1

oN =¢€1+ et E : prtpate I
p1,p2=0 N2
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where
Zq -Z/2

= o 52751\ 51,4, 4, ( S1 52751
j_ El(by,l(sl)g(\/N) _L2¢y,2(82)g( \/N )Ppl,pQ (\/N’ \/N )dSQdSl’

and where by the error term in (A1’) and by (6.3), e satisfies

(6.12)  leo| = O(LyLyN~ /2N -UHM/2) = O(N?771/2) = o(NP~1H9),

Next, we write the integral w.r.t. s in J as

SI+N1/2+£
j1+j2:/ (---)d82+/ o (...)dsa.
s1—N1/2+e s2€[—La,La]\[s1— N1/2+e gy 4 N1/2+¢]

The integrand in 75 is bounded by a polynomial term times g(N¢) and so J»
is negligible. Now let us write

0(Pg) (z,y) = fy (P(x. 9)a(v).

Then using integration by parts in J; we conclude that
1 L

1 t S1

h Z NP1+§2+3 i ¢y71(51)g(\/N)K:p17;D2 (Sl)dsla

p1,p2=0 -

(6.13) ON

Q

where
K(s1) = Kpi,ps (s1)

siHN/ETE s1 S s
= S5 (Goy) [Py e (0L ") ]d
/sl_Nl/Hs satsn (Gort) [ 02(Pp15 7 0) VN VN %2

N1/2+e

— /_NI/HE SB2 (G, y) [32(P§£22’A29)(j]1v’ j;\;)}du

and = means that the difference between the two sides is in o( N#~1%9).
Using the fact that y €Y and assuming that e =¢(d) is small enough, we have

(6.14) Ko pa(s1) = O(N 37 +5/2)

for any p1,p2. If p1 + pa > 1, then by (6.14) the term corresponding to p1,pa
in (6.13) is
O(N72N1/2+5N1§5+5/2) _ O(N671+5).

Next, we claim that

(6.15) K o(s1) = O(N2+9/2).
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Note that by (A1), PolybAl’Az (z,y) = u(A1)p(A2) and so
N1/2+5
0 u
A =p(A1)p(A 22(Goy) |0 d
Koolsn) =utanp(an) [ [0 stGan]a( ), )i
N1/2+5 u
— !
—M(Al)M(Az)/_Nl/HE By (G, +uy)g (\/N)du

N1/2+e

aresy)

_N1/2+e

Ba(Go)d ()

The integral in the penultimate line is O(N 348/ 2) since we can perform one more
integration by parts with respect to u. The integral in the last line is equal to

VN Bs(Gs,y)[a(N°) — a(=N°)),

which decays rapidly (i.e., faster than any polynomial) in N and so is negligible.
Thus we have verified (6.15).

Now we use (6.15) and an integration by parts with respect to s; to conclude
that the term corresponding to p1 = p2 = 0 in (6.13) is

L
1 0 S1
~ N—3/2/ S5 )Koo(s1))dst.
_L, S1 (y) 851 (g(\/N 0,0(81) S1
Now the definition of Y together with (6.14) and (6.15) imply that the last
expression is O(NA~19) which completes the proof of (6.9).

We remark that the bound (6.15) can be derived in case p; + pa > 1 as well.
This was not needed in case d = 1 but will be needed in case d > 2, which we

discuss next.

Proof of Theorem 6.4. Case of d > 2. Assume (6.5) (the general case follows
from Corollary 3.4).
We proceed as in the case of d = 1. That is, we need to show that

(6.16) on = o(NUA=D+9)
for y € Y, where Y satisfies
(6.17) v(Y)>1— N—100d,

First, we obtain |e;| = O(N~"2) = o(N4#~1) as in (6.11). Similarly, (6.12)
reads as

|62| _ O(EzliEgN—d/2N—(d+r1)/2) _ O(Nda—r1/2) _ O(Nd(B—l)-i-é)
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by (6.3) and by assuming that ¢ = (6, d) is small. Next, we write

_ 9
02(Pg)(z,y) = P(z, .
(P =, o (Paa)
Then as in (6.13), we derive
(6.18) ON = — Z N_p1+pz2+3d ‘-7101,1)2’

p1,p2=0

where ~ means that the difference between the two sides is in o( N4#=1+9) and

S1
Tos :/ s Koy, po(51)ds1,
P1,p2 eloLuLa by ( 1)9(\/]\7) p1.p2(51)ds1
where

Koy o (5 :/ SB2(Goy) |Da(PLAA2g) (O Y qu,
prpa (1) [N/ N1/ ( y){ 2( P1,D2 g)(\/N \/N)}

and for u € RY,
S’f(g) = / B(le sgn(ui),..., Vg sgn(ud)(g))dvl U d’Ud
0<v; <|u;|

where sgn is the sign function (sgn(w) = —1 if w < 0 and sgn(w) = 1 if w > 0).
For I = {i1,...,i71} C{1,2,...,d}, let us write
0

= )
Os1,i, -+ Os1,4

8[

We use d integrations by parts with respect to the variables s11, ..., s14 to write

S1

019 T [ 52wfa( 5 )Kalen)]ds
S1€[—L1,L1]d \/N
We will show that for any I C {1,...,d} and for any p1, pa,

(6.20) 107 Ky o] S N2BTD=E

~

enough). Assume first that (6.20) holds. Then observe that
= S1 dg
‘a[g(\/N)lcpl,Pz(sl)} ‘ 5 Nz,

Substituting this estimate in (6.19), we obtain

where ay < by means that ay < byN®/2 (assuming that ¢ = £(J) is small

dp s
|‘-7;D1,p2| 5 Nd/2N >N =2 ’

which implies (6.16). Thus it remains to prove (6.20).
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Assume that g is the standard Gaussian density (if this is not the case, we
can compute all integrals on a parallelepiped of side length ¢N'/2%¢_ then apply
a linear change of variables to reduce to the case of standard Gaussian). To
prove (6.20) we write

h = 82 (Pl VA1, AQg)

Pp1,p2
Recall that I = {iy,..., 17}, the set of indices i such that we are differentiating
with respect to sy 4, is given. We need to differentiate the integrand in K, which
is a product. Let I' = {if,... vifm} C I denote the set of indices i’ so that
we differentiate the term S52(Gy, (y)) with respect to s1 . Fori € I\ I', we
differentiate h with respect to s; ;. We also write

J=A{1,...,d}\I and J ={1,...,d}\T.

Performing the differentiation, we find that

a[ Pl D2 Z /

— N1/2+¢ N1/2+¢]d /wj,e[o,mj,n for j/€J’

1:1'cl
(621) Z (_1)‘1 ‘_EéilB2(G(i/:sM/+5i/ui/;j/:slj/erj/ sgn(uj/))(y))
6,,€{0,1} for /€I’
X |:(9I\I/ ( 51 )}dwjrdu,
VN’ VN

where in the subscript of G the notation (¢’ : a;/;j’ : bj) means that for coordi-
nates i’ € I' we use a;y and for j' € J' we use bj;. Note that

s ) )

P oI o

where

Now assume there is some 4’ so that §;; = 0. Then Bs(...) does not depend
on u;, and so performing the integral with respect to u; first we obtain

/ M5 )d
) Uq
[ N1/2+5 N1/2+s] \/N \/N

D SRV (W (VS N EO S )}

a=1,2

(6.23)

where
Q=1 gd—1

h
(@) = Oyy -+ - Oy Oyr--- 0Yi-10yit1 - - Oya

(P(z,y)a(y))-
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Recalling that

g(y)=( d/QeXP< Zy2/2>

we see that ﬁl(x,y) decays rapidly as y; — oo (i.e., faster than any polyno-
mial). Since we have |y;| = N¢, (6.23) decays rapidly as N — oco. Thus this
term, even when integrated with respect to all other variables, decays rapidly
and consequently we can neglect all terms in (6.21) where there is some i’ so
that 51” =0.

It remains to study the case when 0, = 1 for all i/ € I’. Then we perform the
integrals in (6.21) with respect to wj/,j’ € J' and we integrate by parts with
respect to u;, i’ € I' to obtain that

10" Ko,0 — Z|

decays rapidly as N — co, where
S1 u
T= / / SE2 (y) [afh( , )}dui,du ’
uj/,j/EJ/ w8 €1’ b \/N \/N !

b= (’LI . N1/2+E,j/ . uj/).

and

As in (6.22), we have

(6.24) afh(\j]lva j;v) =N h(\jzlv ﬁv)
where

ol o9

h(z,y) = Oz, -0, ayl,,,ayd(P(fc,y)g(y))-

Note that we can assume |S;?| < N%/2. Indeed, we can subdivide the rect-
angular box with opposite corners 0 and b into small cubes of side length N¢
and we can assume that the integral of G(y) over all of the boxes is smaller
than N98 for y € Y by (A3’) (Y satisfies (6.17) similarly to the case d = 1).
Combining this observation with (6.24), we conclude that

R lload < ON 571472
uw€[—N1/2+s N1/2+<)

if £(6) is small enough. This completes the proof of (6.20) and so the theorem
follows.
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7. Toral translations and related systems

7.1. RAPID MIXING. Let f be an Axiom A diffeomorphism and i be a Gibbs
measure with Holder potential. Let Y = T™ and G; be a d-parameter flow:

Gity,onta)y) = y+ZO‘J

for some a1,...,aq € R™. Note that G; has discrete spectrum, so it is far
from being mixing. However, according to [21] the mixing properties of the
corresponding skew products are typically much better than the results obtained
in Section 4 for the case of the mixing fibers. Namely, let II be the linear
subspace generated by aq, ..., aq. We say that II is Diophantine if there exist
numbers K, s such that for any unit vector v € II for any k € Z™ we have

(v, k)| = K[k|™".

ProPOSITION 7.1 ([21]): IfII is Diophantine, then F' is rapidly mixing except
for the set 7 : X — II lying in an infinite codimension submanifold.

Next, we describe an application of this result.

7.2. CONSTANT SUSPENSIONS IN THE FIBER. Again we take f as in §7.1, but
now we consider constant suspensions acting in the fiber. That is, let G™ be
a Z% exponentially mixing action on a manifold ) preserving a measure 7,
let Y =Y x R?/ ~ where ~ is the identification

(9,2 +mn) ~ (9", 2).

Let G be the action (7, 2) — (§,2 +t). It preserves measure dv = didz.
Given a T,7~! map as above, consider an associated action F on X x T¢
given by
F(z,0) = (fz,0 + 7(x)).

PROPOSITION 7.2: Suppose that F is rapidly mixing. Then (4.5) holds.

Proof. Split H = H + H where H(z,z) = [ H(z,7,2)di(j). Note that Gy,
and hence F, preserves this splitting and that H is Z? invariant, because G*
preserves v and

/ny,z—i— )do(g /ngy, 2)dv(g) = H(z, 2).
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It follows that

pHyHy () = Py, (R) + P, g,(n).
The first term decays faster than any polynomial, because F is rapidly mixing
and the second term is O(n~%?) due to Remark 4.10. However, to apply the

remark, we need to check that G is exponentially mixing on the space B of C'*
functions such that

/H(x, (g,2))dv(y) =0 for all (z,2).

To check mixing, we write t = n + £, where n € Z% and # belongs to the unit
cube. Then

/ H (21, (5, 2)) oz, G (i, 2))dr = / / H(z, (5, 2—0) Ha (22, (G5, 2))dir(5)dz.

Integrating first with respect to ¢, we see that the RHS decays exponentially as
needed.

8. Deviations of ergodic averages

8.1. MIXING AND DEVIATIONS. Here we recall some results about the relations
of mixing and deviations of ergodic averages.

LEMMA 8.1: Let X1, Xs, ... be a stationary sequence of random variables on a
probability space (2, P) and Sy = Zszl X). Assume that there are constants
C and p such that for every n

(8.1) E(S2) < Cn®”.

Then S,,/ pmax{p.}+e converges to zero almost surely for all € > 0.

Proof. Let us assume p > 1/2 (the case p < 1/2 is a simple consequence).
For a positive integer m, let D,,, denote the collection of intervals of the form

L j = [j2" + 1, (j 4+ 1)27] for all non-negative integers i, j so that (j +1)2* < 2™,
By the stationarity assumption,

2 m m
E( > (ZXn) ) <N 2mUip(S3) < O amige < Co2me,
IeD,, “kel i=0 =0

Now for a given positive integer n, let m be so that 2™~! < n < 2™. Then the
interval [1,n] can be written as a disjoint union of at most 2m intervals from
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the family D,,. Let us denote this collection of intervals by D(n). Then by the
Cauchy—-Schwartz inequality,

2 2
( T Zxk> <om Y (Zxk) <om Y (Zxk).
IeD(n) kel IeD(n) “kel IeD,, “keIl

Thus we have
PEn=2m"141,...,2™: 82 > nn?te)

2
< P(2m Z (ZXk) > nQ(m—l)(2p+8))

I1€D,, “kel

2
ez nvmos( 3 (Tx))

IeD,, ~kel
< C'n_lmQ_mE.
Using the Borel-Cantelli lemma and the fact that n > 0 is arbitrary, Lemma 8.1
follows.

LEMMA 8.2: Under the assumptions of Lemma 8.1 suppose that
|E(X:X;)| < Cli — 4|77

Then (8.1) is satisfied with

! ifp>1,

27

p:
1-5 ifg<1.

Proof. (8.1) follows since E(S%) = NE(X2) + 23> "' (N —n) E(XoX,,).

8.2. EXAMPLES AND OPEN QUESTIONS. Here we describe several classes of sys-
tems satisfying our assumptions on the base and the fiber dynamics made in
previous sections. We also present several open questions pertaining to estab-
lishing those properties in several new cases.

Mixing of the base system is required in all our results. In addition, the
results of Section 4 require mixing in the fiber, so we begin with reviewing
known results for mixing.

Exponential mixing is known in the following cases: uniformly hyperbolic
diffeomorphisms with Gibbs measures ([9, 54]); nonuniformly hyperbolic sys-
tems admitting Young towers with exponential tails ([61]); partially hyperbolic
translations on homogeneous spaces ([47, 5]); contact Anosov flows [49] as well
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as Anosov flows with suitable assumptions on the Lyapunov spectrum [1, 60];
some singular hyperbolic flows [2]; ergodic automorphisms of tori [45] and of
nilmanifolds ([38]). In all the examples of R or Z actions listed above, we
also have multiple exponential mixing (see, e.g., [22]) while in higher rank the
multiple exponential mixing is only known for partially hyperbolic translations
on homogeneous spaces ([5]) (partial results for some Z? actions are obtained
in [39]).

Rapid mixing is known for generic Axiom A flows with Gibbs measures ([19,
20, 32]), hyperbolic flows having Young towers with exponential tails (see [52]
and references therein), some singular hyperbolic flows [3], and generic compact
group extensions of uniformly hyperbolic systems ([21]).

Polynomial mixing is known for nonuniformly hyperbolic diffeomorphisms
and flows having Young towers with polynomial tails ([58, 40, 4]), unipotent
actions ([47, 5], time changes of nilflows ([37]), and some flows on surfaces with
degenerate singularities ([30]).

Additional assumptions imposed on base dynamics in various results include
large deviations, anticoncentration, LLT and Edgeworth expansions.

The easiest way to get large deviation is to have unique ergodicity, since in
that case the set in LHS of (3.2) is empty. A relative version of unique ergodicity
is the so-called Uunique ergodicity (see [22] for a definition), which holds for
partially hyperbolic systems with unique measure absolutely continuous with
respect to the unstable foliation. In this case (3.2) holds due to [22]. Exponen-
tial large deviations also hold for non-uniformly hyperbolic systems admitting
Young towers with exponential tails for return times [53, 56], while in case the
tail is polynomial, polynomial large deviations hold [51, 41] (see also [26] where
the large deviations are discussed under a quasiindependence assumption).

Anticoncentration inequality is established for systems admitting Young tow-
ers provided that the return time tail has second moment [55].

The LLT is known for Axiom A diffeomorphisms with Gibbs measures ([54]),
the systems admitting Young towers under the assumptions that the tails ad-
mit the second moment ([59]) as well as flows which can be represented as
suspensions of flows admitting nice symbolic dynamics [27] including Axiom A
flows and certain Lorenz type attractors. The results of [27] can be applied to
continuous time 7', T~ systems given by (4.15).
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Mixing averaged Edgeworth expansions are obtained in [31] for systems ad-
mitting Young towers with exponential tails. It seems that the methods of [31]
as well as [28] could be used to obtain the multiple expansions as well, but this
remains an open problem.

For fiber dynamics we require control on ergodic averages. For mixing systems
such control can be obtain using moment estimates (cf. Lemma 8.1).

Systems satisfying assumption (A3) (or (A3’)) for d = 1 include exponentially
mixing systems described above, as well as toral translations (see ,e.g., [24]),
products of the last two examples [13], horocycle flows [33], translation flows
(those flows are not smooth, however, the results of Section 6 apply provided
that we consider the observables which vanish near the singularities), typical
area preserving flows on surfaces (with non-degenerate singularities) [35] and
nilflows ([34], [36]). Higher dimensional examples include Cartan and unipotent
actions on homogeneous spaces of semisimple Lie groups ([5]) and multidimen-
sional niltranslations [15].

The results of this paper motivate the study of the statistical properties dis-
cussed above for a wider class of dynamical systems. In particular, it is of
interest to

(a) construct an example of systems satisfying mixing multiple Edgeworth
expansion;

(b) prove mixing LLTs for partially hyperbolic systems;

(c) investigate mixing LLTs and anticoncentration bounds for parabolic

systems.

8.3. DEVIATIONS OF ERGODIC AVERAGES FOR GENERALIZED T,7~! TRANS-
FORMATIONS. Here we illustrate the information that the results obtained in
this paper provide about the growth of ergodic sums in several special cases. In
the examples below we assume that the base dynamics f is given by an Anosov
diffeomorphism equipped with a Gibbs measure and for each fiber flow (1-10)
we give an exponent « such that with probability one the ergodic sums of the
corresponding generalized T,7~! transformation grow slower than N®*¢ for
every ¢ > 0. This is going to be a simple consequence of Lemmas 8.1 and 8.2.
For each example we list the result that implies the assumption of Lemma 8.2
with a suitable 3. In case we use the results of Section 6, we also assume that
(f, ) satisfies the mixing double averaged Edgeworth expansion of any order.
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Currently no examples of such systems are known but we expect this property

to hold for a large class of map (cf., e.g., the computations in [28]).

(1)

(2)
(3)
(4)

Anosov diffeomorphisms. In this case we have exponential mixing ([9,

54]);

(a) zero drift: o = 3/4 (Theorem 4.7);

(b) positive drift: & = } (Theorem 4.1).

Diophantine toral translations—here (A3’) holds for any 8 > 0 and so

a = 1/2 by Theorem 6.4 (cf. also Proposition 7.1).

Product of Anosov diffeomorphisms and toral translation: a = 3/4

(Theorem 6.4).

Horocycle flows (see [33]): Theorem 6.4 gives

(a) no small eigenvalues of A, zero drift—(A3) holds for any 5 > 1/2,
so a = p(8) = 3/4;

(b) smallest eigenvalue of A is A € (0,})—(A3) holds for any
B> H\/Ql*“, SO

am iy =Y,

Translations flows—(A3’) holds for any 5 > A2 ([35]) where Ay is the
second exponent of the Kontsevich—Zorich cocycle. So

a=m(m)=","

(Theorem 6.4).
Partially hyperbolic translations on homogenous spaces. In this case we
have exponential mixing ([47, 5]);

(a) zero drift: o = 3/4 (Theorem 4.7);

(b) positive drift: & = } (Theorem 4.1).
Multidimensional Cartan actions on homogenous spaces: % (Theorems
4.7 and 4.1).

Constant suspensions of Cartan actions on tori: ; (Proposition 7.2).
Continuous time T',T~! system given by (4.15) with both base flow ¢
and fiber flow G} given by geodesic flow on a unit tangent bundle over
a negatively curve manifold: o = ; by Example 4.12(b) with k& = 2.
In fact, Example 4.12(b) shows that for all positive integers k, we can
obtain a system with o =1 — 27+~

Generic higher rank actions on Heisenberg nilmanifolds: } ([15] and
Theorem 6.4).
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Appendix A. Anticoncentration large deviation bounds for subshifts
of finite type

We follow the argument in [26].

Let (X, 0) be a subshift of finite type, 4 be a Gibbs measure and 7 : ¥ — R¢
be a Holder function of zero mean. We assume that for each a € R?\{0} the
function (a, ) is not a coboundary.

LEMMA A.1 ([54]): There are constants c1,0y such that for |£| < do,
(A.1) (&™) < e NE,
(A.2) 1PN (E)] < e N where Dy (€) = p(e ™).

COROLLARY A.2: There are constants Cs, co such that

(A.3) p(jry| > L) < Che—c2L*/N
and for each unit cube Q

Cs
(A4) win € Q)< i

Proof. To prove the first inequality we may assume without loss of generality
that d = 1 and that VN < L < 2¢100N (we obtain the general result by
increasing Co and decreasing cz). We estimate p(ry > L), the bound for
u(Tn < —L) being similar. We have that for each & € (0, dp)

(it > L) = p(ef™ > eSL) < e 8Ep(ef7V) < o—EL+eiNe?

Taking £ = N we obtain the result.
It is enough to prove (A.4) for cubes of any fixed size p since the unit cube
can be covered by a finite number of cubes of size p. Let

d .
1 — cos(0x(;))
glx) =] ( N :
1=1 525”%1)

where 6 = dp/d and §y is the constant from Lemma A.1. Then

dH (( |§|) ‘EM)

Hence for each a

Blo(ry —a) = [ 60w en(@a < [ ats)on(olds

‘S|<50
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since § is real, positive, and supported inside the ball of radius dyg. Thus (A.2)
implies that there is a constant D such that

E(g(rv = @) < vy

On the other hand, g(0) = .., so there is a constant p such that g(z) >, on

the cube of size p centered at 0. Hence if Q is a cube of size p centered at a,

then

E(giry —a)) > Y D)

Combining the last two displays we obtain the result.

We now prove the anticoncentration large deviation estimate with

2

O(r) =e "
LEMMA A.3: If Q is a unit cube centered at z, then

03 6—0322/N

/L(TN € Q) Nd/2

Proof. There is a constant R such that

2|

V4
wry € Q) < M(TN € Q |7yl > —R) +M(7'N € Q,|ltn — 7wyl > |2| —R).

We will estimate the first term; the estimate of the second is obtained by re-
placing o by o~1. We have

z
M(TN € Q,|Tny2l > |2| *R) < Z u(c'e”),
C/7C//
where the sum is over all pairs of cylinders (C’,C") such that
(i) length(C’) = length(C”) = N/2,
(ii) there exists w’ € C" such that |7x/o(w’)| > ‘;‘ - R,
(iii) there exists w” € C” such that [T /2(w’) + Ta/2(w”) — 2| < 2R.
By the Gibbs property
5w <& Y weme
C/7C// C/ C//

By (A.4), for each C’ the sum of p(C”) over the cylinders C” satisfying (iii)
is smaller than (2R)?Cy/N%/2. Summing over C’ satisfying (ii) and using (A.3),
we obtain the result.
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LEMMA A.4: Let Qq,...,Q9, be unit cubes centered at zi,...,zs. Then with
the notation zo = 0 € R%, ng = 0,

‘zj*zjfl‘z

. - C4 —cCa
W, €Q forj=1,...,s) < [( ) mgnioa
(T, € Qj for j s)_jl:ll (ny — ny 1) e i

Proof. The LHS can be bounded by Y (u(C1Cs---Cs)), where the sum is over
all tuples of cylinders such that

(i) length(Cj) =mn; —n;j_1, and
(ii) on Cj, Tn;—n,_, is contained in a cube of size R centered at z; — zj_1.

Using the Gibbs property the last can be bounded by

Kl_T Y e

1 L¢;: (i) and (ii) hold

Now the result follows by Lemma A.3.
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