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ABSTRACT

We study mixing properties of generalized T, T−1 transformations. We

discuss two mixing mechanisms. In the case the fiber dynamics is mixing,

it is sufficient that the driving cocycle is small with small probability. In

the case the fiber dynamics is only assumed to be ergodic, one needs to use

the shearing properties of the cocycle. Applications include the central

limit theorem for sufficiently fast mixing systems and the estimates on

deviations of ergodic averages.
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1. Introduction

An important discovery made in the last century is that deterministic systems

can exhibit chaotic behavior. Currently there are many examples of systems

exhibiting a full array of chaotic properties including the Bernoulli property,

exponential decay of correlations and the central limit theorem (see, e.g., [8,

9, 12, 61]). Systems which satisfy only some of the above properties are less

understood. In fact, it is desirable to have more examples of such systems in

order to understand the full range of possible behaviors of partially chaotic

systems.

Generalized T, T−1 transformations are a rich source of examples in probabil-

ity and ergodic theory. In fact, they were used to exhibit examples of systems

with unusual limit laws [46, 14], a central limit theorem with non-standard nor-

malization [7], K but non-Bernoulli systems in abstract [42] and smooth setting
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in various dimensions [44, 57, 43], very weak Bernoulli but not weak Bernoulli

partitions [16], slowly mixing systems [17, 48], systems with multiple Gibbs

measures [29, 50].

A comprehensive survey of a probabilistic version of T, T−1 transformations,

which is a random walk in random scenery, is contained in [18]. On the other

hand, there are no works addressing how statistical properties of T, T−1 trans-

formations depend on the properties of the base and the fiber dynamics. Our

paper provides a first step in this direction by investigating mixing properties

of T, T−1 transformations.

Let us explain what we mean by smooth T, T−1 transformations. Let X,Y be

compact manifolds, f : X → X be a smooth map preserving a measure μ and

Gt : Y → Y be a d parameter flow on Y preserving a measure ν. Let τ : X → R
d

be a smooth map. We study the following map F : (X × Y ) → (X × Y ):

F (x, y) = (f(x), Gτ(x)y).

Note that F preserves the measure ζ = μ× ν and that

FN(x, y) = (fNx,GτN (x)y) where τN (x) =

N−1∑
n=0

τ(fnx).

Clearly both mixing of f and ergodicity of G are necessary for F to be mixing.

Under these assumptions there are two mechanisms for F to be mixing:

(1) If G itself is mixing, then it is enough to ensure that τN does not take

small values with large probability (cf. [17, 48]).

(2) On the other hand, if we only assume that G is ergodic, then we need to

rely on shearing properties of τ to ensure that τN is uniformly distributed in

boxes of size 1. This can be done by assuming various extensions of the central

limit theorem (cf. [10, 25]).

Abstract results detailing sufficient conditions for each of the two mechanisms

described above are presented in Section 2. Estimates on the rates of mixing

of F under the assumption that G is mixing are given in Section 4. In Section 5,

we prove the central limit theorem in case F mixes sufficiently quickly. Section 6

contains mixing estimates in case G is only assumed to be ergodic (however, we

need much stronger assumptions on the base map f). The results presented in

Sections 4–6 rely on preliminary facts contained in Section 3. In Section 7, we

discuss several examples which require a combination of ideas from Sections 4

and 6. Section 8 presents application of our mixing results to deviations of
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ergodic averages and also contains a survey of examples of systems satisfying

various assumptions required in our results. We will have some strong assump-

tions that are sometimes non-trivial to check. In the appendix, we check one of

our assumptions for an important example, namely the anticoncentration large

deviation bounds for subshifts of finite type. This result may be interesting

outside of the scope of the present work.

We also mention that in a followup paper [23] we provide a description of

further statistical properties of the generalized T, T−1 transformation, using

the mixing bounds obtained in the present paper.

Acknowledgements. D. D. was partially supported by the NSF grant

DMS-1956049, A. K. was partially supported by the NSF grant DMS-1956310,

P. N. was partially supported by the NSF grants DMS-1800811 and DMS-

1952876.

2. The local limit theorem and mixing

For a function A ∈ L1(X,μ) we denote μ(A(·)) :=
∫
X A(x) dμ.

Definition 2.1: We say that τ satisfies the mixing LLT if there exist sequences

(Ln)n∈N ⊂ R, (Dn)n∈N ⊂ R
d and a bounded probability density p on R

d

such that for any sequence (δn)n∈N ⊂ R, with limn→∞ δn = 0, (zn)n∈N ⊂ R
d

such that | znLn
− z| < δn for any cube C ⊂ R

d and any continuous functions

A0, A1 : X → R,

lim
n→∞

Ld
nμ(A0(·)A1(f

n·)�C(τn −Dn − zn)) = p(z)μ(A0)μ(A1)Vol(C),

and the convergence is uniform once (δn)n∈N is fixed and A0, A1, z range over

compact subsets of C(X), C(X) and R
d respectively.

Definition 2.2: We say that τ satisfies the mixing multiple LLT if for each

m ∈ N, any sequence (δn)n∈N ⊂ R with limn→∞ δn = 0, and any family of se-

quences (z
(1)
n , . . . , z

(m)
n )n∈N with | z

(j)
n

Ln
−z(j)| < δn, any cubes {Cj}j≤m ⊂ R

d and

continuous functions A0, . . . , Am : X → R, for any sequences n
(1)
k , . . . , n

(m)
k ∈ N
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such that n
(j)
k − n

(j−1)
k ≥ δ−1

k (with n
(0)
k = 0),

lim
k→∞

( m∏
j=1

Ld

n
(j)
k −n

(j−1)
k

)
μ

( m∏
j=0

Aj(f
n
(j)
k ·)

m∏
j=1

�Cj (τn(j)
k

−D
n
(j)
k

− z
(j)

n
(j)
k

)

)

=

m∏
j=0

μ(Aj)

m∏
j=1

p(z(j) − z(j−1))

m∏
j=1

Vol(Cj)

where z(0) = 0. Moreover, the convergence is uniform once (δn)n∈N is fixed,

A0, . . . , Am range over compact subsets of C(X) and z(j) range over a compact

subset of Rd for every j ≤ m.

Remark 2.3: We note that τ is bounded and consequently τn/n is bounded, too.

Thus if the mixing LLT holds, then Ln < Cn. We assume that Dn = nμ(τ). In

case μ(τ) = 0, we say that τ has zero drift.

Remark 2.4: By the Portmanteau theorem on vague convergence, the mixing

LLT is equivalent to saying that for all continuous functions A0, A1 : X → R for

any compactly supported almost everywhere continuous function φ : Rd → R

for any sequence zN such that | zNLN
− z| < δn, we have

(2.1) lim
n→∞

Ld
nμ(A0(·)A1(f

n·)φ(τn −Dn − zn)) = p(z)μ(A0)μ(A1)

∫
Rd

φ(t)dt

and the convergence is uniform if A0, A1 range over compact subsets of C(X)

and z ranges over a compact subset of R
d. A similar remark applies to the

multiple mixing LLT.

Theorem 2.5: Suppose that (Gt) is ergodic.

(a) If τ satisfies the mixing LLT then F is mixing.

(b) If τ satisfies the mixing multiple LLT then F is multiple mixing.

Proof. (a) For i = 1, 2, let Φi(x, y) = Ai(x)Bi(y) be a continuous function

on X×Y . Since linear combinations of products as above are dense in L2(μ×ν),
it suffices to show that for every ε > 0 there exists N0 ∈ N such that for

every N ≥ N0, we have

(2.2)

∣∣∣∣
∫
X×Y

Φ1(x, y)Φ2(F
N (x, y))d(μ × ν)− μ(A1)μ(A2)ν(B1)ν(B2)

∣∣∣∣ < ε.
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Let ρ(t) :=
∫
Y
B1(y)B2(Gty)dν(y). Note that

(2.3)

∫
X×Y

Φ1(x, y)Φ2(F
N (x, y))d(μ×ν)=

∫
X

A1(x)A2(f
N (x))·ρ(τN (x))dμ(x).

Let δ = δ(ε) > 0 be small with respect to ε, and I0 ⊂ R
d be a cube of

volume δd, centered at 0. Consider a (disjoint) cover of Rd by a union of small

cubes {Ij}, where Ij is a translation of I0, and let tj denote the center of Ij .

Now let B� ⊂ R
d be a ball centered at 0 with radius 	, and denote

S� := {j : Ij ∩B� �= ∅}.

By the mixing LLT (with A0 = A1 = 1) it follows that there exists K = K(ε)

and N ′
0 ∈ N such that for every N ≥ N ′

0,

μ({x ∈ X : |τN −DN | > KLN/2}) < ε/2.

Let Ŝ1 := SKLN . Therefore (see (2.2) and (2.3)) it is enough to show that

(2.4)

∣∣∣∣
∑
j∈Ŝ1

∫
A1(x)A2(f

N (x)) · ρ(τN (x))�Ij+DN (τN (x))dμ(x)

− μ(A1)μ(A2)ν(B1)ν(B2)

∣∣∣∣ < ε/2.

If δ is small enough (using continuity of (Gt)), the above sum is, up to an

error less than ε/16, equal to

(2.5)
∑
j∈Ŝ1

ρ(DN + tj)μ(A1(·)A2(f
N (·))�Ij (τN (·)−DN )).

By the definition of the mixing LLT (with A1, A2, C = I0 and z = tj), and since

the number of j’s such that j ∈ Ŝ1 is bounded above by C(δ, ε)Ld
N , there exists

N1 = N1(ε, δ) ∈ N such that for every N ≥ N1, the above expression is, up to

an error less than ε/16, equal to

(2.6)
∑
j∈Ŝ1

1

Ld
N

Vol(I0)p
( tj
LN

)
μ(A1)μ(A2)ρ(DN + tj).

Enlarging K and N , if necessary, we can guarantee that

(2.7)

∣∣∣∣
∑
j∈Ŝ1

1

Ld
N

Vol(Ij)p
( tj
LN

)
− 1

∣∣∣∣ < ε

16
.
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Now, fix R > 0 and for c ∈ BR, let

α(c) :=
∑
j∈Ŝ1

1

Ld
N

Vol(I0)p
( tj
LN

)
ρ(DN + tj + c).

We claim that there exists N2 = N2(R) such that for N ≥ N2, we have

|α(c)− α(0)| < ε/16.

Indeed, let k be such that c ∈ Ik, then |tk| ≤ R+1 and |tk − c| ≤ δ, by choosing

δ 
 ε small enough, and N2 large so that R+1
LN2

≤ δ, we have

|α(c)− α(0)| ≤|α(c) − α(tk)|+ |α(tk)− α(0)|

≤Vol(I0)

Ld
N

∑
j∈Ŝ1

p
( tj
LN

)
|ρ(DN + tj + c)− ρ(DN + tj + tk)|

+
Vol(I0)

Ld
N

∑
j∈Ŝ1

∣∣∣p( tj
LN

)
− p

( tj − tk
LN

)∣∣∣|ρ(DN + tj)|

+
Vol(I0)

Ld
N

∑
j∈Ŝ1:|tj−tk|≥KLN

p
( tj
LN

)
|ρ(DN + tj + tk)|

(�) ≤C1(p, ρ)|tk − c|+ C2(p, ρ,K)R/LN +KdC(ρ)R/LN

≤ε/64 + ε/64 + ε/64 < ε/16,

where for the inequality (�), the first term is due to the fact that ρ is continuous

on t and (2.7), the second term is due to continuity of p and the choice of N2

(that is, R+1
LN

≤ δ), and the last term contains a sum of KdRLd−1
N many terms

and hence ≤ KdC(ρ)R/LN .

Therefore

(2.8)

∣∣∣∣α(0)− 1

Vol(BR)

∫
c∈BR

α(c)dc

∣∣∣∣ < ε/16.

Now by the ergodicity of G and the mean ergodic theorem for the G-action,

there exist a subset Y0 ⊂ Y with ν(Y0) ≥ 1 − ε
32C2

3
and R0 > 0, such that for

any y ∈ Y0 and R ≥ R0,∣∣∣∣ 1

Vol(BR)

∫
t∈BR

B2(Gty)dt− ν(B2)

∣∣∣∣ < ε

32C3
.

Here the constant

C3 := 10max
y∈Y

{|B1(y)|, |B2(y)|}.
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Hence for any t, if R ≥ R0,

(2.9)

∣∣∣∣ 1

Vol(BR)

∫
c∈BR

ρ(t+ c)dc− ν(B1)ν(B2)

∣∣∣∣
≤

∣∣∣∣
∫
G−t(Y0)

B1(y)

(
1

Vol(BR)

∫
c∈BR

B2(Gt+cy)dc− ν(B2)

)
dν(y)

∣∣∣∣
+

∫
Y \G−t(Y0)

|B1(y)|
∣∣∣∣ 1

Vol(BR)

∫
c∈BR

B2(Gt+cy)dc− ν(B2)

∣∣∣∣dν(y)
≤ max{|B1|}

ε

32C3
+max{|B1|}max{|B2|}2(1− ν(Y0)) ≤

ε

16
.

Note that (2.6) is equal to μ(A1)μ(A2)α(0). By (2.8) and (2.9), up to an

error less than ε/8, μ(A1)μ(A2)α(0) is equal to

μ(A1)μ(A2)ν(B1)ν(B2)

[ ∑
j∈Ŝ1

1

Ld
N

Vol(Ij)p
( tj
LN

)]
.

Combining the estimates (2.7), (2.5) and (2.6) we obtain (2.4) (and conse-

quently (2.2)), completing the proof.

(b) The proof is essentially the same as that for (a), therefore we leave it to

the reader.

3. Background

Definition 3.1: We say that G is mixing with rate ψ(t) on a space B if

(3.1)

∣∣∣∣
∫
B1(y)B2(Gty)dν(y)− ν(B1)ν(B2)

∣∣∣∣ ≤ Cψ(t)‖B1‖B‖B2‖B.

We call G exponentially mixing if (3.1) holds with B = Cr for some r > 0

and ψ(t) = e−δ‖t‖ for some δ > 0.

We call G polynomially mixing if (3.1) holds with B = Cr for some r > 0

and ψ(t) = ‖t‖−δ for some δ > 0.

We call G rapidly mixing if for each m there exists r such that (3.1) holds

with B = Cr and ψ(t) = ‖t‖−m.

These definitions extend to maps (such as to f and F ) in the natural way.
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Definition 3.2: We say that τ satisfies exponential large deviation bounds,

if for each ε > 0 there exist C and δ > 0 such that for any N ∈ N,

(3.2) μ
(∥∥∥τN

N
− μ(τ)

∥∥∥ ≥ ε
)
≤ Ce−δN .

We say that τ satisfies polynomial large deviation bounds, if for each ε > 0

there exist C and δ > 0 such that for any N ∈ N,

μ
(∥∥∥ τN

N
− μ(τ)

∥∥∥ ≥ ε
)
≤ CN−δ.

We say that τ satisfies superpolynomial large deviation bounds, if for each

w > 0, ε > 0 there exist C = C(ε, w) such that for any N ∈ N,

μ
(∥∥∥τN

N
− μ(τ)

∥∥∥ ≥ ε
)
≤ CN−w.

We will often use the following standard fact.

Lemma 3.3: For each r, there is w = w(r) such that functions Φ ∈ Cw(X × Y )

admit a decomposition Φ(x, y) =
∑∞

k=1Ak(x)Bk(y), where Ak ∈ Cr(X),

Bk ∈ Cr(Y ) and

(3.3)
∑
k

‖Ak‖Cr(X)‖Bk‖Cr(Y ) ≤ C(r, w)‖Φ‖Cw(X×Y ).

Corollary 3.4: Suppose that there are positive constants K and r, such that

(3.4)

∣∣∣∣
∫∫

A′(x)B′(y)A′′(fnx)B′′(Gτn(x)y)dμ(x)dν(y)−μ(A′)ν(B′)μ(A′′)ν(B′′)

∣∣∣∣
≤K‖A′‖Cr(X)‖B′‖Cr(Y )‖A′′‖Cr(X)‖B′′‖Cr(Y )ψ(n).

Then F is mixing with rate ψ.

Proof. Let

ρ̄n(Φ
′,Φ′′) := ζ(Φ′(Φ′′ ◦ Fn))− ζ(Φ′)ζ(Φ′′).

Decomposing Φ′,Φ′′ ∈ Cw as in (3.3), we get

|ρ̄n(Φ′,Φ′′)| =
∣∣∣∣
∑
j,k

ρ̄n(A
′
jB

′
j , A

′′
kB

′′
k )

∣∣∣∣ ≤ Kψ(n)
∑
j,k

(‖A′
j‖r‖B′

j‖r‖A′′
k‖r‖B′′

k‖r)

≤Kψ(n)
∑
j

(‖A′
j‖r‖B′

j‖r)
∑
k

(‖A′′
k‖r‖B′′

k‖r)

≤Kψ(n)C2(r, w)‖Φ′‖w‖Φ′′‖w.
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4. Mixing rates for mixing fibers

4.1. Double mixing.

Theorem 4.1: Suppose that μ(τ) �= 0.

(a) If τ satisfies exponential large deviation bounds and f and G are expo-

nentially mixing, then F is exponentially mixing.

(b) If τ satisfies polynomial large deviation bounds and f and G are poly-

nomially mixing, then F is polynomially mixing.

(c) If τ satisfies superpolynomial large deviation bounds and f and G are

rapidly mixing, then F is rapidly mixing.

Proof. (a) For i = 1, 2, let Φi(x, y) = Ai(x)Bi(y) be a C
r function onX×Y . Let

ρ(t) :=

∫
Y

B1(y)B2(Gty)dν(y).

Since G is exponentially mixing, there exist constants C1>0 and κ>0 such that

(4.1) |ρ(t)− ν(B1)ν(B2)| ≤ C1‖B1‖Cr‖B2‖Cre−κ‖t‖.

Taking ε = ‖μ(τ)‖/2 in the definition of exponential large deviation bounds,

we find that there exist C0 > 0 and δ > 0 such that μ(TN ) ≤ C0e
−δN , where

TN := {x ∈ X : ‖τN (x)−Nμ(τ)‖ ≥ N‖μ(τ)‖/2}.

Now note that

(4.2)

∫
X×Y

Φ1(x, y)Φ2(F
N (x, y))d(μ×ν)=

∫
X

A1(x)A2(f
N (x))(ρ(τN (x)))dμ(x).

We rewrite the last integral as the sum of two integrals I1 + I2, where

I1 =

∫
TN

A1(x)A2(f
N (x))ρ(τN (x))dμ(x)

and

I2 =

∫
X\TN

A1(x)A2(f
N (x))ρ(τN (x))dμ(x).

By exponential large deviation bounds, |I1| ≤ C2μ(TN ) ≤ C3e
−δN . For I2,

since f is exponentially mixing, it is enough to show that

Δ :=

∣∣∣∣I2 − ν(B1)ν(B2)

∫
X\TN

A1(x)A2(f
N (x))dμ(x)

∣∣∣∣
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is exponentially small. Indeed, by (4.1)

Δ ≤
∣∣∣∣
∫
X\TN

|A1(x)||A2(f
N (x))||ρ(τN (x)) − ν(B1)ν(B2)|dμ(x)

∣∣∣∣
≤ C4‖A1‖0‖A2‖0‖B1‖r‖B2‖r · e−κ1N

≤ C4‖A1 ×B1‖r‖A2 ×B2‖r · e−κ1N

with κ1 = κ/2. This finishes the proof. The proofs of parts (b) and (c) are

analogous to part (a). We will omit them.

Remark 4.2: In part (b) above, if τ satisfies polynomial large deviation bounds

with rate N−δ1 , and f , G are polynomially mixing with rate N−δ2 and N−δ3

respectively, then F is polynomially mixing with rate N−min{δ1,δ2,δ3}.

Remark 4.3: Observe that the LLT was not needed in Theorem 4.1 and so the

theorem remains valid if Rd is replaced by an arbitrary Lie group, in which

case τN means the product

τN (x) = τ(fN−1x) · · · τ(fx)τ(x).

Definition 4.4: Assume that a cocycle τ is such that τn−Dn

Ln
converges as n→ ∞

to a non-atomic distribution. We say that τ satisfies the anticoncentration

inequality if for every unit cube C ⊂ R
d,

μ({x ∈ X : τN (x) ∈ C}) ≤ CL−d
N ,

for some global constant C > 0.

Remark 4.5: Note that by assumption there is a constant R such that

μ(‖τn‖ ≤ RLn) ≥ 0.5,

so the power of LN in the anticoncentration inequality is optimal.

Theorem 4.6: Assume that for some r ∈ N, f is mixing with rate ψf (N)=L−α
N ,

for some α > 0 on Cr, τ satisfies the anticoncentration inequality and G is mix-

ing with rate ψG(·) on Cr, where

(4.3)

∫
Rd

ψG(t)dt < +∞.

Then F is mixing with rate ψF (N) :=L
−min{d,α}
N on Cw for some w = w(r) ∈ N.
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Theorem 4.7: Assume that for some r ∈ N, f is mixing with rate ψf (N)=L−α
N ,

for some α > 0 on Cr, G is mixing with rate ψG(·) on Cr , τ satisfies the mixing

LLT with zero drift.

(a) Suppose τ satisfies the anticoncentration inequality. If ψG(·) satisi-

fies (4.3) and

(4.4)

∫
Φ1(x, y)dν(y) ≡ 0,

then

(4.5)

∫
Φ1(z)Φ2(F

Nz)dζ(z)

= p(0)L−d
N

∫∫∫∫
Φ1(x, y)Φ2(x̄, Gty)dμ(x)dν(y)dμ(x̄)dt+ o(L−d

N ).

(b) If ψG(t) = ‖t‖−β, for β < d, then F is mixing with rate

ψF (N) := L
−min{β,α}
N

on Cw for some w = w(r) ∈ N.

(c) If min{α, d} > β and for zero mean functions we have∫
B1(y)B2(Gty)dν = q(B1, B2)Ψ(t) + o(‖t‖−β),

where q is a bounded bilinear form on Cr(Y ) and Ψ is a homogeneous

function of degree −β, then

(4.6)

∫
Φ1(z)Φ2(F

Nz)dζ(z) = L−β
N Q(Φ1,Φ2)

∫
Rd

p(t)Ψ(t)dt+ o(L−β
N )

where

Q(Φ1,Φ2) =

∫
q(Φ(x1, ·),Φ2(x2, ·))dμ(x1)dμ(x2).

Remark 4.8: In the case d = 1, (4.5) is proven in [48] under a slightly more

restrictive condition.

Remark 4.9: We note that the integral in (4.6) converges. In fact, convergence

near 0 follows because p is bounded and d > β, while convergence near infinity

follows since Ψ is bounded outside of the unit sphere. We also observe that

for Φj(x, y) = Aj(x)Bj(y)

(4.7) Q(Φ1,Φ2) = μ(A1)μ(A2)q(B1, B2).
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Proof of Theorem 4.6. For i = 1, 2, let

Φi(x, y) = Ai(x)B̃i(y), where Ai ∈ Cr(X) and B̃i ∈ Cr(Y ).

Let Bi = B̃i − ν(B̃i). Let ρ(t) :=
∫
Y B1(y)B2(Gty)dν(y). Note that

(4.8)

∫
X×Y

Φ1(x, y)Φ2(F
N (x, y))d(μ × ν)=

∫
X

A1(x)A2(f
N (x))·ρ(τN (x))dμ(x)

+ν(B̃1)ν(B̃2)

∫
X

A1(x)A2(f
N(x))dμ(x).

Since f is mixing with rate L−α
N on Cr, the second summand is equal

to μ(A1)μ(A2) up to an error less than C‖A1‖r‖A2‖rL−α
N . It remains to esti-

mate the first summand.

Let {Ci}∞i=1 be a countable disjoint family of unit cubes in R
d such that

R
d =

⋃
i

Ci.

Below we assume without loss of generality that the function ψ from (4.3)

satisfies

(4.9) sup
Ci

ψ(t) ≤ K inf
Ci

ψ(t).

Indeed, given t, t̄ ∈ Ci we have

ν(B1 ·B2 ◦Gt) = ν(B1 · B̂2 ◦Gt̄),

where B̂2 = B2 ◦Gt−t̄. The last integral is smaller in absolute value than

ψ(t̄)‖B1‖Cr‖B̂2‖Cr ≤ Kψ(t̄)‖B1‖Cr‖B2‖Cr .

Thus decreasing ψ if necessary we may assume that (4.9) holds.

Note first that since τ is bounded, we have

(4.10)

∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))dμ(x)

=

∞∑
i=1

∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))�Ci(τN (x))dμ(x).

Using that G is mixing with rate ψG on Cr, (4.10) shows that∣∣∣∣
∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))dμ(x)

∣∣∣∣
≤ C‖A1‖0‖A2‖0‖B1‖r‖B2‖r

∞∑
i=1

[sup
t∈Ci

ψG(t)]μ({x ∈ X : τN (x) ∈ Ci}).
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Together with the anticoncentration inequality, we have

(4.11)

∣∣∣∣
∫
X

A1(x)A2(f
N(x)) · ρ(τN (x))dμ(x)

∣∣∣∣
≤ CD · ‖A1‖0‖A2‖0‖B1‖r‖B2‖rL−d

N

∞∑
i=1

sup
t∈Ci

ψG(t).

Now by (4.9)

(4.12)

∞∑
i=1

sup
t∈Ci

ψG(t) ≤ C ′
∫
Rd

ψG(t)dt < C ′′.

Summarizing, we get∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))dμ(x) ≤ C ′′′‖A1‖0‖A2‖0‖B1‖r‖B2‖rL−d

N

showing that F is mixing with rate L
−min{d,α}
N .

Proof of Theorem 4.7. By the same argument in the proof of Theorem 4.6 we

just need to estimate∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))dμ(x).

To prove part (a) note that due to (2.1) for each fixed i,

lim
N→∞

Ld
N

∫
X

A1(x)A2(f
N (x))·ρ(τN (x))�Ci (τN (x))dμ(x)

= p(0)

∫
Ci

ρ(t)dtμ(A1)μ(A2).

This together with the Dominated Convergence Theorem (note that in part (a)

we assume the conditions of Theorem 4.6 whence (4.11) and (4.12) apply) shows

that

lim
N→∞

Ld
N

∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))dμ(x) = p(0)μ(A1)μ(A2)

∫
Rd

ρ(t)dt

proving (4.5).

To prove part (b), split∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))dμ(x) = S1 + S2,

where

S1 :=

∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))�[−LN ,LN ]d(τN (x))dμ(x)
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and

S2 :=

∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))�Rd\[−LN ,LN ]d(τN (x))dμ(x).

To estimate S2, notice that for x as in S2,

ρ(τN (x)) ≤ C‖B1‖r‖B2‖rψ(τN (x)) ≤ C0‖B1‖r‖B2‖rψ(LN )

≤ C0‖B1‖r‖B2‖rL−β
N .

Therefore

S2 ≤ C0‖A1‖0‖A2‖0‖B1‖r‖B2‖rL−β
N .

It remains to estimate S1. We trivially have

(4.13)

|S1| =
∣∣∣∣
∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))�[−LN ,LN ]d(τN (x))dμ(x)

∣∣∣∣
≤‖A1‖0‖A2‖0

∫
X

|ρ(τN (x))|�[−LN ,LN ]d(τN (x))dμ(x).

Cover [−LN , LN ]d with (at most) ([LN ] + 1)d disjoint cubes {Ij} of size 1

centered at tj , so that Ij ’s are translates of the cube I0. By the mixing LLT

for zn = tj (notice that ‖tj‖ ≤ dLN and so tj/LN belongs to a compact set),

and A0 = A1 = 1, we get (for sufficiently large N),

Ld
Nμ({x ∈ X : τN (x) ∈ Ij}) < 2p∗Vol(I0) = 2p∗

where p∗ = supt p. Therefore,∫
X

|ρ(τN (x))|�[−LN ,LN ]d(τN (x))dμ(x) =
∑
j

∫
X

|ρ(τN (x))|�Ij (τN (x))dμ(x)

≤ 2p∗L−d
N

∑
j

sup
t∈Ij

|ρ(t)|

≤ CL−d
N

∫
[−LN ,LN ]d

ρ(t)dt

≤ CL−d
N Ld−β

N = CL−β
N ,

completing the proof of (b).

To prove part (c), fix a small δ and split∫
X

A1(x)A2(f
N (x)) · ρ(τN (x))dμ(x) = S1 + S2 + S3,

where the integrand in S1 is multiplied by �[−δLN ,δLN ]d(τN (x)), the integrand

in S2 is multiplied by �[−LN/δ,LN/δ]d\[−δLN ,δLN ]d(τN (x)) and the integrand in S3
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is multiplied by �Rd\[−LN/δ,LN/δ]d(τN (x)). Arguing as in the proof of part (b)

we obtain that

S3 = O
(( δ

LN

)β)
.

Since the integrand is bounded, we have

S1 = O
(( δ

LN

)d)
= O

(( δ

LN

)β)
.

To handle S2 we divide the domain of integration into unit cubes Ij . Let tj be

the center of Ij . Using the homogenuity of Ψ we conclude from the mixing LLT

that∫
A1(x)A2(f

Nx)ρ(τN (x))�Ij (τN (x))dμ(x)

= L
−(d+β)
N μ(A1)μ(A2)q(B1, B2)p

( tj
LN

)
Ψ
( tj
LN

)
+ o(L

−(d+β)
N ).

Summing over j and using (4.7) we obtain

S2 = L−β
N Q(Φ1,Φ2)

∫
Tδ

p(t)Ψ(t)dt+ o(L−β
N ),

where the domain of integration is Tδ = [− 1
δ ,

1
δ ]

d \ [−δ, δ]d. Combining our

estimates for S1, S2 and S3 we obtain∫
Φ1(z)Φ2(F

nz)dζ(z) = L−β
N Q(Φ1,Φ2)

∫
Tδ

p(t)Ψ(t)dt+ o(L−β
N )+O

(( δ

LN

)β)
.

Letting δ → 0 we obtain (4.6) for product observables, which by Lemma 3.3 is

sufficient to conclude the general case.

Remark 4.10: Note that the fact that B = Cr was only used to decompose any

Φ ∈ Cw(X × Y ) as

(4.14) Φ(x, y) =
∑
n

An(x)Bn(y), where
∑
n

‖An‖Cr‖Bn‖Cr <∞.

Therefore the conclusions of Theorems 4.6 and 4.7 remain valid if (3.1) holds

on an arbitrary space B provided that Φ1,Φ2 admit decomposition (4.14).

Remark 4.11: The results of this section apply (with obvious modifications) to

continuous time T, T−1 systems of the form

(4.15) F t(x, y) = (φt(x), Gτt(x)y),
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where φ is a flow on X and

(4.16) τt(x) =

∫ t

0

τ(φs(x))ds.

Note that due to the fact that

ζ(H1(H2 ◦ Fn+δ)) = ζ(H1((H2 ◦ F δ) ◦ Fn))

it is sufficient to control the correlation at integer times. Next F 1 is a T, T−1-

transformation corresponding to f = φ1, τ = τ1. We note, however, that in

several cases for time one maps of the flow the LLT is unknown (or false) unless

the observable is the time integral given by (4.16). We refer the reader to [27]

for the discussion of mixing LLT for continuous time systems.

Example 4.12: (a) Let gt be an exponentially mixing Anosov flow on some

manifold M. Consider a continuous T, T−1 system F t
1 with X = Y = M

and φt = Gt = gt. Then Theorem 4.7(a) shows that for smooth zero mean

observables

lim
t→∞

√
tζ(H1(H2 ◦ F t)) = Q1(H1, H2),

where Q1 is given by (4.5). Indeed, the condition (4.4) can be relaxed and

the conclusion of Theorem 4.7(a) holds for all zero mean smooth observables

assuming that α > d (in this example, α is arbitrarily large and d = 1).

(b) For any positive integer k, define inductively a continuous T, T−1 sys-

tem F t
k with X = M, Y = Mk, φt = gt and Gt = F t

k−1, where F t
1 is the

flow from the part (a). Then Theorem 4.7(c) shows that for smooth zero mean

observables

lim
t→∞

t2
−k

ζ(H1(H2 ◦ F t)) = Qk(H1, H2),

where Qk is given in terms of Qk−1 by (4.6).

4.2. Multiple mixing.

Definition 4.13: Gt is mixing of order s with rate ψ on a space B if∣∣∣∣ν
( s∏

j=1

Bj(Gtjy)

)
−

s∏
j=1

ν(Bj)

∣∣∣∣ ≤ Cψ(δ(t1, . . . ts))

s∏
j=1

‖Bj‖B

where

δ(t1, . . . , ts) = min
i
=j

‖ti − tj‖.

This definition extends to maps (such as to f and F ) in the natural way.
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Theorem 4.14: If τ satisfies mixing LLT with zero drift and f and G are

mixing of order s with rate t−α with α > d, then F is mixing of order s with

rate ψF (N) = L−d
N .

Proof. For i = 1, . . . , s, let Φi(x, y) = Ai(x)Bi(y), where Ai ∈ Cr(X) and

Bi ∈ Cr(Y ). Let ρ(t1, t2, . . . , ts) :=
∫
Y

∏s
i=1Bi(Gtiy)dν(y) (with t1 = 0). We

have

(4.17)

∫
X×Y

s∏
i=1

Φi(F
Ni(x, y))d(μ × ν)

=

∫
X

s∏
i=1

Ai(f
Nix) · ρ(τN1(x), . . . , τNs(x))dμ(x)

×
∫
X

s∏
i=1

Ai(f
Nix) ·

(
ρ(τN1(x), . . . , τNs(x))−

s∏
i=1

ν(Bi)

)
dμ(x)

+

s∏
i=1

ν(Bi)

∫
X

s∏
i=1

Ai(f
Nix)dμ(x).

Note that since f is mixing of order s with rate N−α, the last term above is

equal to
∏s

i=1 μ(Ai)ν(Bi) up to an error of size at most

O

( s∏
i=1

‖Ai‖r min
i
=j

|Ni −Nj |−α

)
.

It is therefore enough to bound the first term. Notice, moreover, that since τ

is bounded and satisfies mixing LLT with zero drift, we have LN ≤ C ′N (see

Definition 2.1).

Denote N̄ := mini
=j |Ni −Nj |.
Let Z ⊂ X be defined by setting: x ∈ Z iff mini
=j ‖τNi(x) − τNj (x)‖ ≥ LN̄ .

Using that G is mixing of order s with rate ‖t‖−α, we get

(4.18)

∫
Z

s∏
i=1

Ai(f
Nix) ·

(
ρ(τN1(x), . . . ,τNs(x)) −

s∏
i=1

ν(Bi)

)
dμ(x)

≤ C
s∏

i=1

‖Ai‖0
s∏

i=1

‖Bi‖rL−α
N̄
.

So it remains to estimate the above integral on Zc. By definition, for every

x ∈ Zc, there exists ix �= jx such that

(4.19) ‖τNix
(x) − τNjx

(x)‖ = min
i
=j

‖τNi(x)− τNj (x)‖ ≤ LN̄ .
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Let Zij := {x ∈ Zc : (ix, jx) = (i, j)} (if there are several pairs satisfying (4.19)

we take the smallest with respect to the lexicographic order). Let {Ck}M̄k=1 be

a finite family of unit cubes centered at {ck}M̄k=1 in R
d such that

[−LN̄ , LN̄ ]d =
⋃
k

Ck.

Then

(4.20)

∣∣∣∣
∫
Zij

s∏
l=1

Al(f
Nlx) ·

(
ρ(τN1(x), . . . , τNs(x)) −

s∏
i=1

ν(Bi)

)
dμ(x)

∣∣∣∣

=

∣∣∣∣
M̄∑
k=1

∫
Zij

s∏
l=1

Al(f
Nlx) ·

(
ρ(τN1(x), . . . , τNs(x))−

s∏
i=1

ν(Bi)

)

× �Ck
(τNi(x)− τNj (x))dμ(x)

∣∣∣∣.
Using that G is mixing of order s with rate ‖t‖−α, and

min{sup
Ck

‖t‖−α, 1} ≤ C inf
Ck

‖t‖−α,

we get that the LHS of (4.20) is bounded above by

(4.21)
C ′

s∏
l=1

(‖Al‖0‖Bl‖r)
M̄∑
k=1

(∫
Ck

min{‖t‖−α, 1}dt
)

× μ({x ∈ X : τNi(x) − τNj (x) ∈ Ck}).

Note that τNi(x) − τNj (x) = τNi−Nj(f
Njx). Hence, by the mixing LLT with

A0 = A1 = 1, Dn ≡ 0, we get (by preservation of measure)

μ({x ∈ X : τNi(x)− τNj (x) ∈ Cj}) ≤ 2L−d
Ni−Nj

p(ci/LN̄) < CL−d
N̄
.

Therefore, (4.21) (and hence also (4.20)) is bounded above by (recall that α > d)

C′′
s∏

l=1

(‖Al‖0‖Bl‖r)L−d
N̄
.

Summing over all i, j and using (4.18), we get that the LHS of (4.17) is bounded

by

C′′′
s∏

l=1

(‖Al‖0‖Bl‖r)L−d
N̄
.

This finishes the proof.
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Theorem 4.15: If τ has non-zero drift and satisfies exponential large deviation

bounds, and f andG are exponentially mixing of order s, then F is exponentially

mixing of order s.

Proof. For i = 1, 2, . . . , s, let Φi(x, y) = Ai(x)Bi(y) be a C
r function on X×Y .

Let

ρ(t1, . . . , ts) :=

∫
Y

s∏
i=1

Bi(Gtiy)dν(y)

(with t1 = 0). Since G is exponentially mixing, there exist a constant C1 > 0

and κ > 0 such that

(4.22)

∣∣∣∣ρ(t1, . . . , ts)−
s∏

i=1

ν(Bi)

∣∣∣∣ ≤ C1‖B1‖Cr‖B2‖Cre−κδ(t1,...,ts).

Fix 0 = N1 ≤ N2 ≤ · · · ≤ Ns. We again use the decomposition (4.17). By

exponential mixing of order s of f , the second term in (4.17) is exponentially

close to
∏s

i=1 ν(Bi)
∏s

i=1 μ(Ai), and hence we only need to estimate the first

term.

Let

Tij := {x ∈ X : ‖τNi(x) − τNj (x)− (Ni −Nj)μ(τ)‖ ≥ (Ni −Nj)‖μ(τ)‖/2}.

Let T̄ =
⋃

i
=j Tij . By exponential large deviation bounds (and preservation of

measure),

μ(T̄ ) ≤ s2 max
ij

μ(Tij) ≤ Ce−δN .

Therefore it is enough to bound the integral of the first term in the RHS on

X \ T̄ . By exponential mixing of G,

∫
X\T̄

s∏
i=1

Ai(f
Nix)·

(
ρ(τN1(x), . . . , τNs(x)) −

s∏
i=1

ν(Bi)

)
dμ(x)

≤ C
s∏

i=1

‖A‖0
s∏

i=1

‖Bi‖r min
x/∈T̄

e−κδ(τN1(x),...,τNs(x)).

By the definition of T̄ ,

δ(τN1(x), . . . , τNs(x)) ≥
‖μ(τ)‖

2
min
i
=j

|Ni −Nj|,

completing the proof.



Vol. 247, 2022 MIXING PROPERTIES 41

Let n1 ≤ n2 ≤ · · · ≤ ns be an s tuple. A partition

P = P1 ∪ P2 ∪ · · · ∪ Pk

of a set {n1, n2, . . . , ns} (where an item may be listed more than once) is called

social if for each j ∈ {1, . . . , k}, Card(Pj) > 1. An element nj is called forward

free (backward free) for partition P if it is the smallest (respectively, the

largest) in its atom. We call nj forward (or backward) fixed if it is not forward

(backward) free. We let F± be the set of all forward (or backward) fixed

elements. Let

κ±(P) =
∏

nj∈F±
Lnj−nj−1 .

For P = (P1, . . . , Pk), let (ni�)
k
�=1 be the collection of forward free elements,

i.e., ni� is the smallest element of P�. Analogously we define (nj�)
k
�=1 to be the

collection of backward free elements. Notice that we have the following formula

for κ±(P):

(4.23) κ+(P) =

( s∏
j=1

Lnj−nj−1

)
·
( k∏

�=1

Lni�
−ni�−1

)−1

,

with n0 = 0, and analogously

(4.24) κ−(P) =

( s∏
j=1

Lnj−nj−1

)
·
( k∏

�=1

Lnj�+1−nj�

)−1

,

with ns+1 := n1 + ns.

We have the following

Definition 4.16: We say that τ satisfies the anticoncentration large devia-

tion bound of order s if there exist a constant K and a decreasing function Θ

such that
∫∞
1

Θ(r)rd < ∞, and for any unit cubes C1, C2, . . . , Cs centered

at c1, c2, . . . , cs

μ(x : τnj ∈ Cj for j = 1, . . . , s) ≤ K

( s∏
j=1

L−d
nj−nj−1

)
Θ
(
max

j

‖cj − cj−1‖
Lnj−nj−1

)
.

Remark 4.17: For s = 2 anticoncentration large deviation bounds were consid-

ered in [26].
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Theorem 4.18: If τ satisfies anticoncentration large deviation bounds of

order s and f and G are exponentially mixing of order s, then

(4.25)

∣∣∣∣
∫ ( s∏

j=1

Hj(F
njz)

)
dζ(z)−

s∏
j=1

ζ(Hj)

∣∣∣∣ ≤ C

s∏
j=1

‖Hj‖Cr(min
P

κ(P))−d

where

κ(P) = max{κ+(P), κ−(P)}
and the minimum in (4.25) is taken over all social partitions of {n1, . . . ns}.

We first recall the following result, which simplifies our analysis.

Lemma 4.19 ([6]): If G is exponentially mixing of order s, then for some η > 0

(4.26)

∣∣∣∣ν
( s∏

j=1

Bj(Gtjy)

)
−

s∏
j=1

ν(Bj)

∣∣∣∣ ≤ Ce−ηΔ(t1,...,ts)
s∏

j=1

‖Bj‖B,

where

Δ(t1, . . . , ts) = max
j

min
i
=j

‖ti − tj‖.

With the above lemma, we prove Theorem 4.18.

Proof of Theorem 4.18. By Lemma 3.3 it is enough to show the statement for

Hj = Aj ×Bj ∈ Cr(M). Let

ρ(t1, . . . , ts) := ν

( s∏
j=1

Bj(Gtjy)

)
−

s∏
j=1

ν(Bj).

Then

(4.27)

∫ ( s∏
j=1

Hj(F
njz)

)
dζ(z)

=

∫ ( s∏
j=1

Aj(f
njx)

)
ρ(τn1(x), . . . , τns(x))dμ(x)

+

( s∏
j=1

ν(Bj)

)
μ

( s∏
j=1

Aj(f
njx)

)
.

Since f is exponentially mixing of order s,

(4.28)

∣∣∣∣μ
( s∏

j=1

Aj(f
njx)

)
−

s∏
j=1

μ(Aj)

∣∣∣∣ ≤ C

s∏
j=1

‖Aj‖re−ηΔ,

where Δ = Δ(n1, . . . , ns).
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Let P be the following partition of n1 < . . . < ns. Let i1 ∈ {2, . . . , s− 1} be

the smallest index i such that |ni − ni−1| > Δ. Then the first atom of P
is {n0, . . . , ni1−1}. Notice that |ni1 − ni1+1| ≤ Δ by the definition of Δ.

Now recursively, let ik+1 ∈ {ik + 1, . . . , s} be the smallest index i such that

|ni − ni−1| > Δ. Then the (k + 1)-th atom of P is {nik , . . . , nik+1−1}. We con-

tinue until we partition all of n1 < · · · < ns. Then by the definition of Δ, every

atom of P has at least two elements, and so P is social. Moreover, all elements

in one atom are at distance at most sΔ (since the number of elements is ≤ s).

Using that τ is bounded (and so |Ln| < Cn) together with (4.23) and (4.24),

we conclude that

min{κ+(P)−d, κ+(P)−d} ≥
( s∏

j=1

Lnj−nj−1

)−d

� [sΔ]−sd ≥ CΔ−sd ≥ Ce−ηΔ.

Combining this estimate with (4.28) we find that the second term in (4.27)

equals
∏s

j=1 ζ(Hj) up to an error which is bounded by the RHS of (4.25). It

remains to show that
∣∣∣∣
∫ ( s∏

j=1

Aj(f
njx)

)
ρ(τn1(x), . . . , τns(x))dμ(x)

∣∣∣∣

≤ C

s∏
j=1

‖Aj ×Bj‖Cr(min
P

κ(P))−d,

which will follow by showing that

∫
|ρ(τn1(x), . . . , τns(x))|dμ(x) ≤ C

s∏
j=1

‖Bj‖Cr(min
P

κ(P))−d.

Let

C0 :=

s∏
j=1

‖Bj‖Cr

and

Dm := {x : |ρ(τn1(x), . . . , τns(x))| ∈ [C02
−m, C02

−m+1)}.

Then

(4.29)

∫
|ρ(τn1(x), . . . , τns(x))|dμ(x) ≤ 2C0

∑
m≥0

1

2m
μ(Dm).
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We will estimate the measure of Dm. Note that by Lemma 4.19, for

some Cη ∈ N,

Dm ⊂ Am := {x : Δ(τn1 (x), . . . , τns(x)) ≤ Cηm}.

We will therefore give an upper bound on the measure of Am. By the defi-

nition of Δ it follows that there exists a social partition P = (P1, . . . , Pk) of

n1 < n2 < · · · < ns such that for any atom of P and any two ni, nj in the same

atom we have

(4.30) |τni(x)− τnj (x)| < Cηsm.

Let Am,P⊂Am be the set of x for whichP is a social partition of n1<n2< · · ·<ns

satisfying (4.30). Then

Am =
⋃

P social

Am,P,

and so we will estimate the measure of Am,P.

Let {C̃j} be a disjoint cover of Rd by cubes of side length Cηs ·m centered

and c̃j . Note that by the anticoncentration large deviation bounds of order s

(decomposing C̃j into unit cubes),

(4.31)

μ(x : τnj (x) ∈ C̃j for j = 1, . . . , s)

≤ K ′(sm)sd
( s∏

j=1

L−d
nj−nj−1

)
Θ
(
max

j

‖c̃j − c̃j−1‖
m · Lnj−nj−1

)
.

It follows by the definition of P and (4.30) that all the {τnj (x)}nj∈P�
belong to

one cube C̃r� . Below, we use the notation τP�
(x) ∈ Cr� which means that for

every nj ∈ P�, τnj (x) ∈ C̃r� . Therefore, we have

μ(Am,P) ≤
∑

r1,...,rk

μ({x : τP�
(x) ∈ C̃r� , 	 ≤ k}).

Let ni� (and nj�) be the smallest (the largest) element of P�, 	 ≤ k. Below we

will argue with (ni�) (analogous reasoning can be done for (nj�)). Let u(	) be

such that ni�−1 ∈ Pu(�). By (4.31), monotonicity of Θ and the above discussion

(using that ni� and ni�−1 are in different atoms), we obtain

μ({x : τP�
(x) ∈ Cr� , 	 ≤ k}) ≤ K ′msd

( s∏
j=1

L−d
nj−nj−1

)
Θ
(
max
�≤k

‖c̃r� − c̃ru(�)
‖

m · Lni�
−ni�−1

)
.
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Therefore

μ(Am,P) ≤ K ′msd

( s∏
j=1

L−d
nj−nj−1

) ∑
r1,...rk

Θ
(
max
�≤k

‖c̃r� − c̃ru(�)
‖

m · Lni�
−ni�−1

)
.

Note that

∑
r1,...rk

Θ(max
�≤k

‖c̃r� − c̃ru(�)
‖

m · Lni�
−ni�−1

)

≤
∑
�

Θ(	)·|{(r1, . . . , rk) : ‖c̃r� − c̃ru(�)
‖≤	·m·Lni�

−ni�−1 for every 	 ≤ k}|

≤
∑
�

Θ(	)	d ·md ·
(∏

�≤k

Lni�
−ni�−1

)d

.

Therefore, by the decay assumptions on Θ and (4.23),

μ(Am,P) ≤ K ′msd+d

( s∏
j=1

L−d
nj−nj−1

)
·
(∏

�≤k

Lni�
−ni�−1

)d

= K ′msd+dκ+(P)−d.

Analogously we have that

μ(Am,P) ≤ K ′msd+dκ+(P)−d.

Therefore,

μ(Am,P) ≤ K ′msd+dκ(P)−d.

Using that Am =
⋃

PAm,P, we get

μ(Am) ≤ K ′Csm
sd+d(min

P
κ(P))−d,

for some constant Cs > 0. Summarizing, by (4.29) (since Dm ⊂ Am), we get

∫
|ρ(τn1(x), . . . , τns(x))|dμ(x)≤2K ′Cs

s∏
j=1

‖Bj‖Cr(min
P

κ(P))−d
∑
m≥0

2−mmsd+d

≤Cs,d

s∏
j=1

‖Bj‖Cr(min
P

κ(P))−d.

This finishes the proof.
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5. The central limit theorem

Let H(x, y) be a Cr function not cohomologous to a constant function. Let

ΣN (H) :=

N−1∑
n=0

H(Fn(x, y)).

Assume that ζ(H) = 0. Let Z = X × Y .

Theorem 5.1: Suppose that F satisfies (4.25) and
∑∞

n=1 L
−d
n converges.

Then ΣN (H)√
N

converges as N → ∞ to the normal distribution with zero mean

and variance σ2 given by formula (5.1) below.

Corollary 5.2: If F satisfies either the assumptions of Theorem 4.15 or the

assumptions of Theorem 4.18 with LN ≥ c
√
N and d ≥ 3, then F satisfies

the CLT.

Proof. In the case of Theorem 4.15, this follows from the CLT for exponentially

mixing systems ([11, 6]). In the case of Theorem 4.18, the result follows from

Theorem 5.1.

Proof of Theorem 5.1. By (4.25) with n1 = 0, n2 = n,

(5.1) σ2 :=

∞∑
n=−∞

ζ(H(H ◦ Fn))

exists and is finite. Hence

ζ
(Σ2

N (H)

N

)
=

1

N

∑
1≤i,j≤N

ζ((H ◦ F i)(H ◦ F j))

=

N−1∑
k=−N+1

N − |k|
N

ζ(H(H ◦ F k)) →
∞∑

n=−∞
ζ(H(H ◦ Fn)).

To finish our proof, we need to estimate the asymptotics of moments

ζ(Σm
N (H)), for any m ≥ 3. Denote

Ω(k1, . . . , km) =

∫
Z

( m∏
i=1

H(F kiz)

)
dζ(z)

so that

(5.2) ζ(Σm
N (H)) =

N∑
k1,...,km=1

Ω(k1, . . . , km).
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For the vector (k1, . . . , km) we associate another vector (n1, . . . , nm) which

is the permutation of the elements of (k1, . . . , km) in increasing order, that is

n1 ≤ n2 ≤ · · · ≤ nm Noting that Ω is symmetric, we have

Ω(k1, . . . , km) = Ω(n1, . . . , nm).

We rewrite the above sum into two terms as I1+I2, where I1 is the sum of terms,

whose social partition minimizing the RHS of (4.25) is not pairing (i.e., at least

one atom contains more than two elements), and I2 is the sum of terms, whose

corresponding social partition is pairing. (If there are more than one partition

minimizing κ, at least one of which is not pairing then we put the corresponding

term into I1.)

We need two auxiliary estimates. Let Q = {Q1, . . . , Qr} be a fixed social

partition of the set {1, 2, . . . ,m}. We say that Q(n1, . . . , nm) = Q if the par-

tition P minimizing the RHS of (4.25) for the given numbers n1, . . . , nm is of

the form P = {P1, . . . , Pr} with {i : ni ∈ Pk} = Qk for all k = 1, . . . , r. Next

we write

IQ =
∑

k1,...,km:Q(n1,...,nm)=Q

Ω(n1, . . . , nm).

Lemma 5.3: (a) IQ = O(N r).

(b) If Q = Q1 ∪ · · · ∪Qr is not pairing, then the sum IQ = O(N (m−1)/2).

Proof. Since 1/κQ(n1, . . . , nm) ≤ 1/κ+Q(n1, . . . , nm), by (4.25) it suffices to es-

timate

(5.3)
∑

n1,...,nm

1

(κ+Q(n1, . . . , nm))d
.

Let n′
1 < n′

2 < · · · < n′
r be the forward free elements among {n1, . . . , nm}

and n′′
1 , . . . , n

′′
m−r be the forward fixed elements. For each fixed element n′′

j ,

let n̄j be the previous element in {n1, . . . , nm}. Rewrite (5.3) as

(5.4)
∑

n′
1,...,n

′
r

[ ∑
n′′
1 ,...,n

′′
m−r

(
1∏m−r

j=1 Ln′′
j −n̄j

)d]
.

Since L−d
n is summable, the inner sum is uniformly bounded, so that (5.4) is

bounded by N r. This proves (a).

(b) follows from (a) because if Q is not pairing, then r < �m/2�.
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Since there are finitely many partitions of {1, . . . ,m}, Lemma 5.3 implies

that |I1| is bounded above by O(N (m−1)/2). In particular, for odd m,

ζ(Σm
N (H)) = O(N (m−1)/2).

Now let m be even and Q be a pairing, that is Q = {Q1, . . . , Qm/2} with

all atoms Qk containing exactly two numbers. By a forward (backward) step

we mean nj − nj−1 where nj is forward (backward) fixed in the partition

Q(n1, . . . , nm). Let ΓQ(n1, . . . , nm) be a largest among all forward and back-

ward steps in the partition Q and let Γ(n1, . . . , nm) = ΓQ(n1,...,nm)(n1, . . . , nm).

Lemma 5.4: For any ε > 0, there exists M > 0 such that∣∣∣∣
∑

k1,...,km:Γ(n1,...,nm)>M

Ω(n1, . . . , nm)

∣∣∣∣ ≤ Nm/2ε.

Proof. It is enough to prove the lemma for Γ replaced by Γ+ and also for Γ

replaced by Γ−, where Γ+ is a largest among all forward steps and Γ− is a

largest among all forward steps. We only consider Γ+ as Γ− is similar. The

proof for Γ+ proceeds in the same way as the proof of Lemma 5.3 except we

estimate the inner sum in (5.4) by

(5.5) C

( ∞∑
n=1

L−d
n

)m−r−1( ∞∑
n=M

L−d
n

)
.

Indeed there arem−r factors in the inner sum in (5.4), and by our assumptions

one of them should be greater than M . As the second factor can be made as

small as we wish by taking M large and since r = m/2, the result follows.

Lemma 5.5: Let Q be a pairing which is different from

(5.6) Q̄ := [(12), (34), . . . , ((m− 1)m)].

Then the number of m-tuples (k1, . . . , km) with ΓQ̄(n1, n2, . . . , nm) < L is

O(N (m/2)−1),

where the implicit constant depends on L.

Proof. We claim that if Q �= Q̄, then the sets of forward fixed and back-

ward fixed edges are different. If follows that if both Γ+
Q̄
(n1, . . . , nm) < M

and Γ−
Q̄
(n1, . . . , nm)<M , then there are at leastm/2+1 edges which are shorter

that M. The number of such tuples is O(N (m/2)−1) and the result follows.
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It remains to prove the claim. That is, we show that if the sets of forward fixed

and backward fixed edges are the same, then Q = Q̄. We proceed by induction.

If m = 0 or 2 then there are no pairings different from Q̄. Suppose m > 2.

Then (nm−1, nm) is forward fixed, so it should be backward fixed, but this is only

possible if (m−1) is paired to m. Likewise (n1, n2) is backward fixed, hence it is

forward fixed. But this is only possible if 1 is paired to 2. Removing 1, 2, (m−1)

and m from Q we obtain a partition of m − 4 elements for which the set of

forward fixed and backward fixed edges coincide. By induction 3 is paired

to 4, 5 to 6, . . . , (m− 3) to (m− 2). The proof is complete.

By the above lemmas, it suffices to consider indices k1, . . . , km so that

(5.7)

∀i = 1, . . . ,m/2 : Mi := n2i − n2i−1 ≤M

and

∀i = 1, . . . ,m/2− 1 : n2i+1 − n2i > L

for some largeM and L = L(M). Indeed, by choosingM =M(ε) and N > N0,

N0 = N0(L), the above lemmas give that the contribution of other terms

is < εNm/2. Now we choose L so that for any fixed M1, . . . ,Mm/2 (finitely

many choices), the RHS of (4.25) with s = m/2 and Hj = H(H ◦ TMj ) is less

than ε. We conclude that∣∣∣∣ζ(Σm
N )−

∑
k1,...,km satisfying (5.7)

m/2∏
i=1

(∫
Z

(H(H ◦ TMi))dζ(z)

)∣∣∣∣ ≤ 2εNm/2.

Let us write

A� =

∫
Z

(H(H ◦ T �))dζ(z).

Now we claim that

∑
k1,...,km satisfying (5.7)

m/2∏
i=1

AMi = (m−1)!!Nm/2(1+o(1))

[ M∑
�=0

(A�(1+��>0))

]m/2

.

To prove the claim, first note that

M∑
M1,...,Mm/2=0

AM1 · · ·AMm/2
=

( M∑
�=0

A�

)m/2

.

Now it remains to count the number of tuples (k1, . . . , km) corresponding to the

values M1, . . . ,Mm/2. Assume, for example, that Mi > 0 for all i. To count the

number of possibilities, we first fix a pairing of indices 1, . . . ,m which can be
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done in (m−1)!! different ways. Then we have ≈ Nm/2 choices to prescribe ex-

actly one element of each pair. Let us say these values are s1 < s2 < · · · < sm/2.

Except for an o(Nm/2) of these choices, we have si − si−1 > 2M +L and so for

each remaining index kj we have two choices: if it is paired to si, then either

kj = si −Mi or kj = si +Mi. Thus the total number of choices is

(m− 1)!!2m/2Nm/2(1 + o(1)),

which verifies the claim for the case Mi > 0 for all i. If Mi = 0 for some i, then

we only have one choice for the corresponding kj and so we lose a factor of 2.

The claim follows.

To finish the proof, notice that

M∑
�=0

A�(1 + ��>0) =

M∑
�=−M

ζ(H(H ◦ F �)) → σ2 as M → ∞.

Thus we have verified

ζ(Σm
N (H)) =

⎧⎨
⎩
o(Nm/2), m is odd,

(m− 1)!!Nm/2σm + o(Nm/2), m is even,

completing the proof of the theorem.

Remark 5.6: The asymptotic variance given by (5.1) is typically non-zero. In

particular, if either the drift is non-zero, or d ≥ 5, then a direct calculation

shows that

lim
N→∞

ζ(Σ2
N )−Nσ2 = −

∞∑
n=−∞

nζ(H(H ◦ Fn))

(the convergence of the right hand side follows from the assumptions imposed

above). Thus if σ2 = 0 then ζ(Σ2
N ) is bounded, so by the L2-Gotshalk–Hedlund

Theorem H is an L2 coboundary. It is an open question if the same conclusion

holds if μ(τ) = 0 and d is 3 or 4. However, by assumption, f is exponentially

mixing, so if H does not depend on y then σ2 > 0 unless H is an L2 coboundary.

Thus in many (possibly all) cases σ2 is a positive semidefinite quadratic form

which is not identically equal to zero, and so its null set is a a linear subspace

of positive (or infinite) codimension.
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6. Mixing rates for ergodic fibers

6.1. Results.

Definition 6.1: We say that (f, τ) satisfies a mixing averaged Edgeworth

expansion of order r if there are constants k1, k2 and a sequence δN → 0 so

that for any function φ = φN ∈ Ck2(Rd,R) supported on the box J = JN , the

expression

IA1,A2,φ(N) := μ(A1(x)A2(f
Nx)φ(τN (x)))

satisfies∣∣∣∣IA1,A2,φ(N)−N−d/2

∫
s∈Rd

φ(s)EA1,A2
r (s/

√
N)ds

∣∣∣∣
≤ ‖A1‖Ck1‖A2‖Ck1 ‖φ‖Ck2Vol(J)δNN

−(d+r)/2,

where

Er(s) = EA1,A2
r (s) = g(s)

r∑
p=0

PA1,A2
p (s)

Np/2
,

with g(·) is a centered Gaussian density with positive-definite covariance matrix

and Pp(s) are polynomials in s whose coefficients are bilinear forms in (A1, A2),

bounded in absolute value by C‖A1‖Ck1‖A2‖Ck1 , and P
A1,A2

0 (s) = μ(A1)μ(A2).

Definition 6.2: We say that (f, τ) satisfies a mixing averaged double Edge-

worth expansion of order r if there are constants k1, k2 and a sequence

δN → 0 so that for any functions φi = φi(Ni) ∈ Ck2(R) supported on the

interval Ji = Ji(Ni) (i = 1, 2), the expression

IA1,A2,A3,φ1,φ2(N1, N2):=μ(A1(x)A2(f
N1(x))A3(f

N2(x))φ1(τN1(x))φ2(τN2(x)))

satisfies∣∣∣∣IA1,A2,A3,φ1,φ2(N1, N2)−
∫∫

φ1(s1)g
( s1√

N1

)
φ2(s2)g

( s2−s1√
N2 −N1

)
N

−d/2
1 N

−d/2
2

×
r∑

p1,p2=0

PA1,A2,A3
p1,p2

(s1/
√
N1, (s2−s1)/

√
N2−N1)

N
p1
2

1 (N2−N1)
p2
2

ds1ds2

∣∣∣∣

≤
( 3∏

j=1

‖Aj‖Ck1

)( ∏
i=1,2

‖φi‖Ck2Vol(Ji)

)

× δmin{N1,N2−N1}(max{N1, N2 −N1})−d/2(min{N1, N2 −N1})−(d+r)/2
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where PA1,A2,A3
p1,p2

(s1, s2) are polynomials in s1, s2 whose coefficients are bounded

trilinear forms in (A1, A2, A3), bounded in absolute value by

C

3∏
j=1

‖Aj‖Ck1 ,

and

PA1,A2,A3

0,0 (s) = μ(A1)μ(A2)μ(A3).

We will use the following hypotheses:

(A1) (f, τ) satisfies a mixing averaged Edgeworth expansion of order r1;

(A1’) (f, τ) satisfies a mixing averaged double Edgeworth expansion of order

r1;

(A2) for each δ > 0, we have μ(|τN | > N1/2+δ) = Oδ(N
−r2);

(A3) there are constants β < 1 and k3 ∈ R
+ such that if B ∈ Ck3(Y ) has

zero mean, then for any T ∈ R+,

SB
T (y) :=

∫
s∈[0,T ]d

B(Gsy)ds

satisfies

ν( max
t∈R,|t|<T

|SB
t | > T dβ) <

C‖B‖Ck3

T r3
;

(A3’) there exist constants β < 1, k3 ∈ R
+ so that if B ∈ Ck3(Y ) has zero

mean, then for any positive integer M there is some constant C = CM

so that for any T ∈ R+,

ν(y : |SB
T | > T dβ) ≤ CT−M ;

(A4) μ(A1(x)A2(f
Nx)) − μ(A1)μ(A2) = O(‖A1‖Ck1‖A2‖Ck1N

−r4).

Given H,H1, H2 : X × Y → R let

(6.1) ρH1,H2(N) = ζ(H1(H2 ◦ FN ))− ζ(H1)ζ(H2).

Theorem 6.3: For i = 1, 2, 3, 4, assume (A i) with

(6.2) ri > d(1 − β)

(noting that r1 is an integer). Then there existsK such that ifHj ∈ CK(X×Y ),

then for any δ > 0 there is some Cδ so that

|ρH1,H2(N)| ≤ Cδ‖H1‖CK‖H2‖CKNdβ−1
2 +δ.
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Theorem 6.4: Assume (A1’) with

(6.3) r1 ∈ N, r1 > 2d(1− β)

and (A2), (A3’), (A4) with r2, r4 satisfying (6.2). Then there exists K such

that if Hj ∈ CK(X × Y ), then for any δ > 0 there is some Cδ so that

(6.4) |ρH1,H2(N)| ≤ Cδ‖H1‖CK‖H2‖CKNd(β−1)+δ.

The proofs of the above results use integrations by parts combined with var-

ious versions of (A1) and (A3). The exponents and the ideas of the proofs are

similar to those appearing in [25], section 4.

Proof of Theorem 6.3. Case of d = 1. Let ψ be a C∞ function such that

0 ≤ ψ(s) ≤ 1, ψ(0) = 0 and ψ(1) = 1. Given L > 0, let

ψL(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ(s+ L+ 1) if s ∈ [−L− 1,−L],
1 if s ∈ (−L,L),
1− ψ(s− L) if s ∈ [L,L+ 1],

0 otherwise.

By Corollary 3.4 and (A4), it suffices to consider the case

(6.5) Hj(x, y) = Aj(x)Bj(y) where ν(Bj) = 0,

with Aj , Bj ∈ Ck3 . Without loss of generality we can assume k3 ≥ k2, where k2

is given by (A1).

Let L = N1/2+δ. Then

(6.6)

ρH1,H2(N)=

∫∫
A1(x)A2(f

Nx)B1(y)B2(GτN (x)y)dμ(x)dν(y)

=

∫∫
A1(x)A2(f

Nx)B1(y)B2(GτN (x)y)ψL(τN (x))dμ(x)dν(y)

+

∫∫
A1(x)A2(f

Nx)B1(y)B2(GτN (x)y)(1−ψL(τN (x)))dμ(x)dν(y).

The integrand in the last line is zero unless |τN (x)| ≥ L, so by (A2) the last

line is

O(‖H1‖C0‖H2‖C0N−r2)

and so we need only bound (6.6). First, observe that we can restrict the integral

to Ȳ , the set of points where

|SB2
t (y)| < Ldβ = Lβ for t ∈ [−L,L].
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Indeed, by (A3), the integral over Y \ Ȳ is in

(6.7) O(‖H1‖C0‖H2‖C0L−r3)

and so is negligible. Next observe that (6.6), restricted to Ȳ , is of the form∫
Ȳ

IA1,A2,φy (N)dν(y) with φy(s) = B1(y)B2(Gsy)ψL(s).

Now by (6.2), r1 ≥ 1 and so by (A1), the above expression can be replaced by

N−1/2

∫
Ȳ

(∫ L̄

−L̄

φy(s)E1(s/
√
N)ds

)
dν(y)

with error

(6.8) o(‖A1‖Ck1 ‖B1‖Ck0 ‖A2‖Ck1‖B2‖Ck2 L̄N
−1) = o(N

β−1
2 +δ),

where L̄ = L+ 1. Integrating by parts, we obtain

∫
Ȳ

(∫ L̄

−L̄

φy(s)E1(s/
√
N)

ds√
N

)
dν(y)

= −
∫
Ȳ

(∫ L̄

−L̄

E ′
1(s/

√
N)S̃y(s)

ds

N

)
dν(y) + O(‖H1‖C0‖H2‖C0Lg(L/

√
N)),

where S̃s(y) = B1(y)
∫ s

0
ψL(u)B2(Guy)du. Since

S̃s1|s|≤L = B1(y)S
B2
s (y)1|s|≤L

it follows from the definition of Ȳ that the last integral is

O(‖A1‖Ck1‖B1‖C0‖A2‖Ck1‖B2‖Ck3

L1+β

N
).

This completes the proof of the theorem.

Proof of Theorem 6.3. Case of d ≥ 2. We follow the approach of the one-dimen-

sional case. Let us assume (6.5) (the general case follows from Corollary 3.4).

Now τ ∈ R
d and so we define

ψL(s) =
d∏

j=1

ψL(sj) for s = (s1, . . . , sd).

Let Ȳ be defined as

Ȳ = {y : |SB2
t (y)| < Ldβ for t ∈ [−L,L]}.
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Next we claim that

ρH1,H2(N) ≈ N−d/2

∫
Ȳ

(∫
s∈[−L̄,L̄]d

φy(s)Er1(s/
√
N)ds

)
dν(y),

where aN ≈ bN means

|an − bN | = o(‖H1‖Ck1‖H2‖Ck3N
dβ−1

2 +ε).

Indeed, repeating the argument for d = 1, the error term (6.7) remains

valid and the error term corresponding to (6.8) is O(L̄dN−(d+r1)/2) which is

in o(Nd(β−1)/2+δ) by the assumption (6.2).

Performing d integrations by parts, one in each coordinate direction, we con-

clude that

ρH1,H2(N) ≈ −N−d

∫
Ȳ

(∫
s∈[−L̄,L̄]d

S̃s(y)
∂d

∂s1 · · ·∂sd
Er1(s/

√
N)ds

)
dν(y).

Now by the definition of Ȳ ,

ρH1,H2(N) = O(‖H1‖Ck1 ‖H2‖Ck3N
−dLd(1+β)),

and the theorem follows.

Proof of Theorem 6.4. Case of d = 1. Assume (6.5) (the general case follows

from Corollary 3.4).

For fixed y, let us write

σN = σN (y) =

∫
H1(F

N (x, y))H2(F
2N (x, y))dμ(x)

so that

ρH1,H2(N) = ζ(H1(H2 ◦ FN )) =

∫
σN (y)dν(y).

We will prove that for any δ > 0 and for any y ∈ Ȳ ,

(6.9) σN = o(Nβ−1+δ)

where Ȳ (to be defined later) satisfies

(6.10) ν(Ȳ ) > 1−N−100

(and so the contribution of its complement is negligible). As in the case of

Theorem 6.3, the constant in the convergence in (6.9) can be bounded above by

Cδ‖A1‖Ck1 ‖A2‖Ck1‖B1‖Ck3‖B2‖Ck3 .

To simplify formulas, we do not indicate this dependence in the sequel.
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Denote

YL,η = {y ∈ Y : ∃t ∈ R : |t| ∈ [Lη, L] : |SB
t | > tβ+η}.

Next we claim that for any η > 0 and for any M there is some C so

that ν(YL,η) < CL−M . To prove this claim, observe that for y ∈ YL,η there is

some t∗ = t∗(y) with |t∗| ∈ [Lη, L] and |SB
t∗(y)| > tβ+η

∗ . Then

|SB
�t∗
(y)| >

1

2
�t∗�β+η

and so

YL,η ⊂
�L�⋃

k=�Lη

YL,η,k,

where

YL,η,k =
{
y ∈ Y : |SB

k (y)| > 1

2
kβ+η or |SB

−k(y)| >
1

2
kβ+η

}
.

Now we apply (A3’) with M replaced by (M + 1)/η to conclude that

ν(YL,η,k) < 2Ck−(M+1)/η < CL−M−1

for all k ≥ �Lη�. The claim follows.

Next, define

Ȳ = Y \
⋃

l=0,1,...,�N

G−1

l (YN1/2+ε,δ/4)

with a small ε = ε(δ). By the previous claim, Ȳ satisfies (6.10).

Denote L1 = N1/2+ε, L2 = 2N1/2+ε and L̄i = Li+1.We start by computing

σN=e1+

∫
A1(f

N(x))A2(f
2N(x))B1(GτN (y))B2(Gτ2N (y))ψL1(τN )ψL2(τ2N )dμ(x)

=e1+ I1,A1,A2,φy,1,φy,2(N, 2N)

where

φy,i(s) = Bi(Gs(y))ψLi(s),

and the error term e1 satisfies

(6.11) |e1| = O(N−r2) = o(Nβ−1)

by (A2).

Now using (A1’), we derive

σN = e1 + e2 +

r1∑
p1,p2=0

1

N
p1+p2+2

2

J ,
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where

J=

∫ L̄1

−L̄1

φy,1(s1)g
( s1√

N

) ∫ L̄2

−L̄2

φy,2(s2)g
(s2−s1√

N

)
P 1,A1,A2
p1,p2

( s1√
N
,
s2−s1√

N

)
ds2ds1,

and where by the error term in (A1’) and by (6.3), e2 satisfies

(6.12) |e2| = O(L̄1L̄2N
−1/2N−(1+r1)/2) = O(N2ε−r1/2) = o(Nβ−1+δ).

Next, we write the integral w.r.t. s2 in J as

J1 + J2 =

∫ s1+N1/2+ε

s1−N1/2+ε

(. . .)ds2 +

∫
s2∈[−L̄2,L̄2]\[s1−N1/2+ε,s1+N1/2+ε]

(. . .)ds2.

The integrand in J2 is bounded by a polynomial term times g(Nε) and so J2

is negligible. Now let us write

∂2(Pg)(x, y) =
∂

∂y
(P (x, y)g(y)).

Then using integration by parts in J1 we conclude that

(6.13) σN ≈ −
r1∑

p1,p2=0

1

N
p1+p2+3

2

∫ L̄1

−L̄1

φy,1(s1)g
( s1√

N

)
Kp1,p2(s1)ds1,

where

K(s1) = Kp1,p2(s1)

:=

∫ s1+N1/2+ε

s1−N1/2+ε

SB2
s2−s1(Gs1y)

[
∂2(P

1,A1,A2
p1,p2

g)
( s1√

N
,
s2 − s1√

N

)]
ds2

=

∫ N1/2+ε

−N1/2+ε

SB2
u (Gs1y)

[
∂2(P

1,A1,A2
p1,p2

g)
( s1√

N
,
u√
N

)]
du

and ≈ means that the difference between the two sides is in o(Nβ−1+δ).

Using the fact that y∈ Ȳ and assuming that ε=ε(δ) is small enough, we have

(6.14) Kp1,p2(s1) = O(N
1+β
2 +δ/2)

for any p1, p2. If p1 + p2 ≥ 1, then by (6.14) the term corresponding to p1, p2

in (6.13) is

O(N−2N1/2+εN
1+β
2 +δ/2) = o(Nβ−1+δ).

Next, we claim that

(6.15) K′
0,0(s1) = O(N

β
2 +δ/2).
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Note that by (A1’), P 1,A1,A2

0,0 (x, y) = μ(A1)μ(A2) and so

K′
0,0(s1) =μ(A1)μ(A2)

∫ N1/2+ε

−N1/2+ε

[ ∂

∂s1
SB2
u (Gs1y)

]
g′
( u√

N

)
du

=μ(A1)μ(A2)

∫ N1/2+ε

−N1/2+ε

B2(Gs1+uy)g
′
( u√

N

)
du

− μ(A1)μ(A2)

∫ N1/2+ε

−N1/2+ε

B2(Gs1y)g
′
( u√

N

)
du.

The integral in the penultimate line is O(N
β
2 +δ/2) since we can perform one more

integration by parts with respect to u. The integral in the last line is equal to
√
NB2(Gs1y)[g(N

ε)− g(−Nε)],

which decays rapidly (i.e., faster than any polynomial) in N and so is negligible.

Thus we have verified (6.15).

Now we use (6.15) and an integration by parts with respect to s1 to conclude

that the term corresponding to p1 = p2 = 0 in (6.13) is

≈ N−3/2

∫ L̄1

−L̄1

SB1
s1 (y)

∂

∂s1

(
g
( s1√

N

)
K0,0(s1)

)
ds1.

Now the definition of Ȳ together with (6.14) and (6.15) imply that the last

expression is O(Nβ−1+δ), which completes the proof of (6.9).

We remark that the bound (6.15) can be derived in case p1 + p2 ≥ 1 as well.

This was not needed in case d = 1 but will be needed in case d ≥ 2, which we

discuss next.

Proof of Theorem 6.4. Case of d ≥ 2. Assume (6.5) (the general case follows

from Corollary 3.4).

We proceed as in the case of d = 1. That is, we need to show that

(6.16) σN = o(Nd(β−1)+δ)

for y ∈ Ȳ , where Ȳ satisfies

(6.17) ν(Ȳ ) > 1−N−100d.

First, we obtain |e1| = O(N−r2) = o(Nd(β−1)) as in (6.11). Similarly, (6.12)

reads as

|e2| = O(L̄d
1L̄

d
2N

−d/2N−(d+r1)/2) = O(Ndε−r1/2) = o(Nd(β−1)+δ)
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by (6.3) and by assuming that ε = ε(δ, d) is small. Next, we write

∂̄2(Pg)(x, y) =
∂d

∂y1 · · · ∂yd
(P (x, y)g(y)).

Then as in (6.13), we derive

(6.18) σN ≈ −
r1∑

p1,p2=0

N− p1+p2+3d
2 Jp1,p2 ,

where ≈ means that the difference between the two sides is in o(Nd(β−1)+δ) and

Jp1,p2 =

∫
s1∈[−L̄1,L̄1]d

φy(s1)g
( s1√

N

)
Kp1,p2(s1)ds1,

where

Kp1,p2(s1) =

∫
u∈[−N1/2+ε,N1/2+ε]d

SB2
u (Gs1y)

[
∂̄2(P

1,A1,A2
p1,p2

g)
( s1√

N
,
u√
N

)]
du,

and for u ∈ R
d,

SB
u (ỹ) =

∫
0≤vi≤|ui|

B(Gv1 sgn(u1),...,vd sgn(ud)(ỹ))dv1 · · · dvd

where sgn is the sign function (sgn(w) = −1 if w < 0 and sgn(w) = 1 if w > 0).

For I = {i1, . . . , i|I|} ⊂ {1, 2, . . . , d}, let us write

∂I =
∂

∂s1,i1 · · · ∂s1,i|I|
, ∂̄ = ∂{1,...,d}.

We use d integrations by parts with respect to the variables s11, . . . , s1d to write

(6.19) Jp1,p2 =

∫
s1∈[−L̄1,L̄1]d

SB1
s1 (y)∂̄

[
g
( s1√

N

)
Kp1,p2(s1)

]
ds1.

We will show that for any I ⊂ {1, . . . , d} and for any p1, p2,

(6.20) |∂IKp1,p2 | � N
d
2 (β+1)− |I|

2

where aN � bN means that aN < bNN
δ/2 (assuming that ε = ε(δ) is small

enough). Assume first that (6.20) holds. Then observe that∣∣∣∂̄[g( s1√
N

)
Kp1,p2(s1)

]∣∣∣ � N
dβ
2 .

Substituting this estimate in (6.19), we obtain

|Jp1,p2 | � Nd/2N
dβ
2 N

dβ
2 ,

which implies (6.16). Thus it remains to prove (6.20).
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Assume that g is the standard Gaussian density (if this is not the case, we

can compute all integrals on a parallelepiped of side length cN1/2+ε, then apply

a linear change of variables to reduce to the case of standard Gaussian). To

prove (6.20) we write

h = ∂̄2(P
1,A1,A2
p1,p2

g).

Recall that I = {i1, . . . , 1|I|}, the set of indices i such that we are differentiating

with respect to s1,i, is given. We need to differentiate the integrand in K, which

is a product. Let I ′ = {i′1, . . . , i′|I′|} ⊂ I denote the set of indices i′ so that

we differentiate the term SB2
u (Gs1(y)) with respect to s1,i′ . For i ∈ I \ I ′, we

differentiate h with respect to s1,i. We also write

J = {1, . . . , d} \ I and J ′ = {1, . . . , d} \ I ′.

Performing the differentiation, we find that

(6.21)

∂IKp1,p2=
∑

I′:I′⊂I

∫
u∈[−N1/2+ε,N1/2+ε]d

∫
wj′∈[0,|uj′ |] for j′∈J′∑

δi′∈{0,1} for i′∈I′
(−1)|I

′|−
∑

δi′B2(G(i′ :s1i′+δi′ui′ ;j′:s1j′+wj′ sgn(uj′ ))(y))

×
[
∂I\I

′
h
( s1√

N
,
u√
N

)]
dwj′du,

where in the subscript of G the notation (i′ : ai′ ; j
′ : bj′) means that for coordi-

nates i′ ∈ I ′ we use ai′ and for j′ ∈ J ′ we use bj′ . Note that

(6.22) ∂I\I
′
h
( s1√

N
,
u√
N

)
= N− |I|−|I′|

2 h̃
( s1√

N
,
u√
N

)
,

where

h̃(x, y) =
∂|I|−|I′|

∂xi′1 · · ·∂xi′|I′ |

∂d

∂y1 · · · ∂yd
(P (x, y)g(y)).

Now assume there is some i′ so that δi′ = 0. Then B2(. . .) does not depend

on ui′ , and so performing the integral with respect to ui′ first we obtain

(6.23)

∫
ui∈[−N1/2+ε,N1/2+ε]

h̃
( s1√

N
,
u√
N

)
dui

=
√
N

∑
a=1,2

(−1)ah̃i
( s1√

N
,
( u1√

N
, . . . ,

ui−1√
N
, (−1)aNε,

ui+1√
N
, . . . ,

ud√
N

))
,

where

h̃i(x, y) =
∂|I|−|I′|

∂xi′1 · · ·∂xi′|I′ |

∂d−1

∂y1 · · · ∂yi−1∂yi+1 · · · ∂yd
(P (x, y)g(y)).
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Recalling that

g(y) =
1

(2π)d/2
exp

(
−

d∑
i=1

y2i /2

)
,

we see that h̃i(x, y) decays rapidly as yi → ∞ (i.e., faster than any polyno-

mial). Since we have |yi| = Nε, (6.23) decays rapidly as N → ∞. Thus this

term, even when integrated with respect to all other variables, decays rapidly

and consequently we can neglect all terms in (6.21) where there is some i′ so

that δi′ = 0.

It remains to study the case when δi′ = 1 for all i′ ∈ I ′. Then we perform the

integrals in (6.21) with respect to wj′ , j
′ ∈ J ′ and we integrate by parts with

respect to ui′ , i
′ ∈ I ′ to obtain that

|∂IK0,0 − I|

decays rapidly as N → ∞, where

I =

∫
uj′ ,j′∈J′

∫
ui′ ,i′∈I′

SB2

b (y)
[
∂Ih

( s1√
N
,
u√
N

)]
dui′duj′

and

b = (i′ : N1/2+ε, j′ : uj′).

As in (6.22), we have

(6.24) ∂Ih
( s1√

N
,
u√
N

)
= N− |I|

2 ĥ
( s1√

N
,
u√
N

)

where

ĥ(x, y) =
∂|I|

∂xi1 · · ·∂xi|I|
∂d

∂y1 · · · ∂yd
(P (x, y)g(y)).

Note that we can assume |SB2

b | � Ndβ/2. Indeed, we can subdivide the rect-

angular box with opposite corners 0 and b into small cubes of side length Nε

and we can assume that the integral of Gs(y) over all of the boxes is smaller

than Ndεβ for y ∈ Ȳ by (A3’) (Ȳ satisfies (6.17) similarly to the case d = 1).

Combining this observation with (6.24), we conclude that

|I| ≤ N
dβ−|I|

2

∫
u∈[−N1/2+ε,N1/2+ε]

‖ĥ‖∞du ≤ CN
d(β+1)−|I|

2 +δ/2

if ε(δ) is small enough. This completes the proof of (6.20) and so the theorem

follows.
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7. Toral translations and related systems

7.1. Rapid mixing. Let f be an Axiom A diffeomorphism and μ be a Gibbs

measure with Hölder potential. Let Y = T
m and Gt be a d-parameter flow:

G(t1,...,td)(y) = y +

d∑
j=1

αjtj

for some α1, . . . , αd ∈ R
m. Note that Gt has discrete spectrum, so it is far

from being mixing. However, according to [21] the mixing properties of the

corresponding skew products are typically much better than the results obtained

in Section 4 for the case of the mixing fibers. Namely, let Π be the linear

subspace generated by α1, . . . , αd. We say that Π is Diophantine if there exist

numbers K, s such that for any unit vector v ∈ Π for any k ∈ Z
m we have

|〈v, k〉| ≥ K|k|−s.

Proposition 7.1 ([21]): If Π is Diophantine, then F is rapidly mixing except

for the set τ : X → Π lying in an infinite codimension submanifold.

Next, we describe an application of this result.

7.2. Constant suspensions in the fiber. Again we take f as in §7.1, but
now we consider constant suspensions acting in the fiber. That is, let Gn be

a Z
d exponentially mixing action on a manifold Y preserving a measure ν̃,

let Y = Y × R
d/ ∼ where ∼ is the identification

(ỹ, z + n) ∼ (Gnỹ, z).

Let Gt be the action (ỹ, z) → (ỹ, z + t). It preserves measure dν = dν̃dz.

Given a T, T−1 map as above, consider an associated action F on X × T
d

given by

F(x, θ) = (fx, θ + τ(x)).

Proposition 7.2: Suppose that F is rapidly mixing. Then (4.5) holds.

Proof. Split H = H̄ + H̃ where H̄(x, z) =
∫
H(x, ỹ, z)dν̃(ỹ). Note that Gt,

and hence F , preserves this splitting and that H̄ is Z
d invariant, because Gn

preserves ν̃ and∫
H(x, ỹ, z + n)dν̃(ỹ) =

∫
H(x,Gnỹ, z)dν̃(ỹ) = H̄(x, z).
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It follows that

ρH1,H2(n) = ρH̄1,H̄2
(n) + ρH̃1,H̃2

(n).

The first term decays faster than any polynomial, because F is rapidly mixing

and the second term is O(n−d/2) due to Remark 4.10. However, to apply the

remark, we need to check that Gt is exponentially mixing on the space B of CL

functions such that ∫
H(x, (ỹ, z))dν̃(y) = 0 for all (x, z).

To check mixing, we write t = n + t̂, where n ∈ Z
d and t̂ belongs to the unit

cube. Then∫
H1(x1, (ỹ, z))H2(x2, Gt(ỹ, z))dν=

∫∫
H(x1, (ỹ, z−t̂))H2(x2, (Gnỹ, z))dν̃(ỹ)dz.

Integrating first with respect to ỹ, we see that the RHS decays exponentially as

needed.

8. Deviations of ergodic averages

8.1. Mixing and deviations. Here we recall some results about the relations

of mixing and deviations of ergodic averages.

Lemma 8.1: Let X1, X2, . . . be a stationary sequence of random variables on a

probability space (Ω, P ) and SN =
∑N

k=1Xk. Assume that there are constants

C and ρ such that for every n

(8.1) E(S2
n) < Cn2ρ.

Then Sn/n
max{ρ, 12}+ε converges to zero almost surely for all ε > 0.

Proof. Let us assume ρ > 1/2 (the case ρ ≤ 1/2 is a simple consequence).

For a positive integer m, let Dm denote the collection of intervals of the form

Ii,j = [j2i+1, (j+1)2i] for all non-negative integers i, j so that (j+1)2i ≤ 2m.

By the stationarity assumption,

E

( ∑
I∈Dm

(∑
k∈I

Xn

)2)
≤

m∑
i=0

2m−iE(S2
2i) ≤ C

m∑
i=0

2m−i22iρ ≤ C̃22mρ.

Now for a given positive integer n, let m be so that 2m−1 < n ≤ 2m. Then the

interval [1, n] can be written as a disjoint union of at most 2m intervals from
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the family Dm. Let us denote this collection of intervals by D(n). Then by the

Cauchy–Schwartz inequality,

S2
n =

( ∑
I∈D(n)

∑
k∈I

Xk

)2

≤ 2m
∑

I∈D(n)

(∑
k∈I

Xk

)2

≤ 2m
∑

I∈Dm

(∑
k∈I

Xk

)2

.

Thus we have

P (∃n = 2m−1 + 1, . . . , 2m : S2
n > ηn2ρ+ε)

≤ P

(
2m

∑
I∈Dm

(∑
k∈I

Xk

)2

> η2(m−1)(2ρ+ε)

)

≤ 2mη−12−(m−1)(2ρ+ε)E

( ∑
I∈Dm

(∑
k∈I

Xk

)2)

≤ C̃η−1m2−mε.

Using the Borel–Cantelli lemma and the fact that η > 0 is arbitrary, Lemma 8.1

follows.

Lemma 8.2: Under the assumptions of Lemma 8.1 suppose that

|E(XiXj)| ≤ C|i− j|−β .

Then (8.1) is satisfied with

ρ =

⎧⎨
⎩

1
2 , if β > 1,

1− β
2 if β < 1.

Proof. (8.1) follows since E(S2
N ) = NE(X2

0 ) + 2
∑N−1

n=0 (N − n)E(X0Xn).

8.2. Examples and open questions. Here we describe several classes of sys-

tems satisfying our assumptions on the base and the fiber dynamics made in

previous sections. We also present several open questions pertaining to estab-

lishing those properties in several new cases.

Mixing of the base system is required in all our results. In addition, the

results of Section 4 require mixing in the fiber, so we begin with reviewing

known results for mixing.

Exponential mixing is known in the following cases: uniformly hyperbolic

diffeomorphisms with Gibbs measures ([9, 54]); nonuniformly hyperbolic sys-

tems admitting Young towers with exponential tails ([61]); partially hyperbolic

translations on homogeneous spaces ([47, 5]); contact Anosov flows [49] as well
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as Anosov flows with suitable assumptions on the Lyapunov spectrum [1, 60];

some singular hyperbolic flows [2]; ergodic automorphisms of tori [45] and of

nilmanifolds ([38]). In all the examples of R or Z actions listed above, we

also have multiple exponential mixing (see, e.g., [22]) while in higher rank the

multiple exponential mixing is only known for partially hyperbolic translations

on homogeneous spaces ([5]) (partial results for some Z
d actions are obtained

in [39]).

Rapid mixing is known for generic Axiom A flows with Gibbs measures ([19,

20, 32]), hyperbolic flows having Young towers with exponential tails (see [52]

and references therein), some singular hyperbolic flows [3], and generic compact

group extensions of uniformly hyperbolic systems ([21]).

Polynomial mixing is known for nonuniformly hyperbolic diffeomorphisms

and flows having Young towers with polynomial tails ([58, 40, 4]), unipotent

actions ([47, 5], time changes of nilflows ([37]), and some flows on surfaces with

degenerate singularities ([30]).

Additional assumptions imposed on base dynamics in various results include

large deviations, anticoncentration, LLT and Edgeworth expansions.

The easiest way to get large deviation is to have unique ergodicity, since in

that case the set in LHS of (3.2) is empty. A relative version of unique ergodicity

is the so-called Uunique ergodicity (see [22] for a definition), which holds for

partially hyperbolic systems with unique measure absolutely continuous with

respect to the unstable foliation. In this case (3.2) holds due to [22]. Exponen-

tial large deviations also hold for non-uniformly hyperbolic systems admitting

Young towers with exponential tails for return times [53, 56], while in case the

tail is polynomial, polynomial large deviations hold [51, 41] (see also [26] where

the large deviations are discussed under a quasiindependence assumption).

Anticoncentration inequality is established for systems admitting Young tow-

ers provided that the return time tail has second moment [55].

The LLT is known for Axiom A diffeomorphisms with Gibbs measures ([54]),

the systems admitting Young towers under the assumptions that the tails ad-

mit the second moment ([59]) as well as flows which can be represented as

suspensions of flows admitting nice symbolic dynamics [27] including Axiom A

flows and certain Lorenz type attractors. The results of [27] can be applied to

continuous time T, T−1 systems given by (4.15).
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Mixing averaged Edgeworth expansions are obtained in [31] for systems ad-

mitting Young towers with exponential tails. It seems that the methods of [31]

as well as [28] could be used to obtain the multiple expansions as well, but this

remains an open problem.

For fiber dynamics we require control on ergodic averages. For mixing systems

such control can be obtain using moment estimates (cf. Lemma 8.1).

Systems satisfying assumption (A3) (or (A3’)) for d = 1 include exponentially

mixing systems described above, as well as toral translations (see ,e.g., [24]),

products of the last two examples [13], horocycle flows [33], translation flows

(those flows are not smooth, however, the results of Section 6 apply provided

that we consider the observables which vanish near the singularities), typical

area preserving flows on surfaces (with non-degenerate singularities) [35] and

nilflows ([34], [36]). Higher dimensional examples include Cartan and unipotent

actions on homogeneous spaces of semisimple Lie groups ([5]) and multidimen-

sional niltranslations [15].

The results of this paper motivate the study of the statistical properties dis-

cussed above for a wider class of dynamical systems. In particular, it is of

interest to

(a) construct an example of systems satisfying mixing multiple Edgeworth

expansion;

(b) prove mixing LLTs for partially hyperbolic systems;

(c) investigate mixing LLTs and anticoncentration bounds for parabolic

systems.

8.3. Deviations of ergodic averages for generalized T, T−1
trans-

formations. Here we illustrate the information that the results obtained in

this paper provide about the growth of ergodic sums in several special cases. In

the examples below we assume that the base dynamics f is given by an Anosov

diffeomorphism equipped with a Gibbs measure and for each fiber flow (1–10)

we give an exponent α such that with probability one the ergodic sums of the

corresponding generalized T, T−1 transformation grow slower than Nα+ε for

every ε > 0. This is going to be a simple consequence of Lemmas 8.1 and 8.2.

For each example we list the result that implies the assumption of Lemma 8.2

with a suitable β. In case we use the results of Section 6, we also assume that

(f, τ) satisfies the mixing double averaged Edgeworth expansion of any order.
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Currently no examples of such systems are known but we expect this property

to hold for a large class of map (cf., e.g., the computations in [28]).

(1) Anosov diffeomorphisms. In this case we have exponential mixing ([9,

54]);

(a) zero drift: α = 3/4 (Theorem 4.7);

(b) positive drift: α = 1
2 (Theorem 4.1).

(2) Diophantine toral translations—here (A3’) holds for any β > 0 and so

α = 1/2 by Theorem 6.4 (cf. also Proposition 7.1).

(3) Product of Anosov diffeomorphisms and toral translation: α = 3/4

(Theorem 6.4).

(4) Horocycle flows (see [33]): Theorem 6.4 gives

(a) no small eigenvalues of Δ, zero drift—(A3) holds for any β > 1/2,

so α = ρ1(β) = 3/4;

(b) smallest eigenvalue of Δ is λ ∈ (0, 14 )—(A3) holds for any

β > 1+
√
1−4λ
2 , so

α = ρ1(β) =
1 +

√
1− 4λ

2
.

(5) Translations flows—(A3’) holds for any β > λ2 ([35]) where λ2 is the

second exponent of the Kontsevich–Zorich cocycle. So

α = ρ1(β) =
λ2 + 1

2
(Theorem 6.4).

(6) Partially hyperbolic translations on homogenous spaces. In this case we

have exponential mixing ([47, 5]);

(a) zero drift: α = 3/4 (Theorem 4.7);

(b) positive drift: α = 1
2 (Theorem 4.1).

(7) Multidimensional Cartan actions on homogenous spaces: 1
2 (Theorems

4.7 and 4.1).

(8) Constant suspensions of Cartan actions on tori: 1
2 (Proposition 7.2).

(9) Continuous time T, T−1 system given by (4.15) with both base flow φt

and fiber flow Gt given by geodesic flow on a unit tangent bundle over

a negatively curve manifold: α = 7
8 by Example 4.12(b) with k = 2.

In fact, Example 4.12(b) shows that for all positive integers k, we can

obtain a system with α = 1− 2−k−1.

(10) Generic higher rank actions on Heisenberg nilmanifolds: 1
2 ([15] and

Theorem 6.4).
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Appendix A. Anticoncentration large deviation bounds for subshifts

of finite type

We follow the argument in [26].

Let (Σ, σ) be a subshift of finite type, μ be a Gibbs measure and τ : Σ → R
d

be a Hölder function of zero mean. We assume that for each a ∈ R
d\{0} the

function 〈a, τ〉 is not a coboundary.

Lemma A.1 ([54]): There are constants c1, δ0 such that for |ξ| < δ0,

μ(e〈ξ,τN 〉) ≤ ec1Nξ2 ;(A.1)

|ΦN (ξ)| ≤ e−c1Nξ2 , where ΦN (ξ) = μ(ei〈ξ,τN 〉).(A.2)

Corollary A.2: There are constants C2, c2 such that

(A.3) μ(|τN | > L) ≤ C2e
−c2L

2/N ,

and for each unit cube Q

(A.4) μ(τN ∈ Q) ≤ C2

Nd/2
.

Proof. To prove the first inequality we may assume without loss of generality

that d = 1 and that
√
N ≤ L ≤ 2c1δ0N (we obtain the general result by

increasing C2 and decreasing c2). We estimate μ(τN > L), the bound for

μ(τN < −L) being similar. We have that for each ξ ∈ (0, δ0)

μ(τN > L) = μ(eξτN > eξL) ≤ e−ξLμ(eξτN ) ≤ e−ξL+c1Nξ2 .

Taking ξ = L
2c1N

we obtain the result.

It is enough to prove (A.4) for cubes of any fixed size ρ since the unit cube

can be covered by a finite number of cubes of size ρ. Let

g(x) =

d∏
l=1

(
1− cos(δ̂x(l))

δ̂2x2(l)

)
,

where δ̂ = δ0/d and δ0 is the constant from Lemma A.1. Then

ĝ(ξ) = (πδ̂)d
d∏

l=1

((
1− |ξ|

δ̂

)
1|ξ|≤δ̂

)
.

Hence for each a

E(g(τN − a)) =

∫
Rd

ĝ(−ξ)eiξaΦN (ξ)dξ ≤
∫
|s|<δ0

ĝ(s)|ΦN (s)|ds
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since ĝ is real, positive, and supported inside the ball of radius δ0. Thus (A.2)

implies that there is a constant D̂ such that

E(g(τN − a)) ≤ D̂

Nd/2
.

On the other hand, g(0) = 1
2d

so there is a constant ρ such that g(x) > 1
4d

on

the cube of size ρ centered at 0. Hence if Q is a cube of size ρ centered at a,

then

E(g(τN − a)) ≥ P(SN ∈ Q)

4d
.

Combining the last two displays we obtain the result.

We now prove the anticoncentration large deviation estimate with

Θ(r) = e−c4r
2

.

Lemma A.3: If Q is a unit cube centered at z, then

μ(τN ∈ Q) ≤ C3

Nd/2
e−c3z

2/N .

Proof. There is a constant R such that

μ(τN ∈ Q) ≤ μ
(
τN ∈ Q, |τN/2| >

|z|
2

−R
)
+μ

(
τN ∈ Q, |τN − τN/2| >

|z|
2

−R
)
.

We will estimate the first term; the estimate of the second is obtained by re-

placing σ by σ−1. We have

μ
(
τN ∈ Q, |τN/2| >

|z|
2

−R
)
≤

∑
C′,C′′

μ(C′C′′),

where the sum is over all pairs of cylinders (C′, C′′) such that

(i) length(C′) = length(C′′) = N/2,

(ii) there exists ω′ ∈ C′ such that |τN/2(ω
′)| > |z|

2 −R,

(iii) there exists ω′′ ∈ C′′ such that |τN/2(ω
′) + τN/2(ω

′′)− z| < 2R.

By the Gibbs property∑
C′,C′′

μ(C′C′′) ≤ K
∑
C′,C′′

μ(C′)μ(C′′).

By (A.4), for each C′ the sum of μ(C′′) over the cylinders C′′ satisfying (iii)

is smaller than (2R)dC2/N
d/2. Summing over C′ satisfying (ii) and using (A.3),

we obtain the result.
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Lemma A.4: Let Q1, . . . ,Qs be unit cubes centered at z1, . . . , zs. Then with

the notation z0 = 0 ∈ R
d, n0 = 0,

μ(τnj ∈ Qj for j = 1, . . . , s) ≤
s∏

j=1

[( C4

(nj − nj−1)d/2

)
e
−c4

|zj−zj−1|2
nj−nj−1

]
.

Proof. The LHS can be bounded by
∑

(μ(C1C2 · · · Cs)), where the sum is over

all tuples of cylinders such that

(i) length(Cj) = nj − nj−1, and

(ii) on Cj , τnj−nj−1 is contained in a cube of size R centered at zj − zj−1.

Using the Gibbs property the last can be bounded by

K

s∏
j=1

[ ∑
Cj : (i) and (ii) hold

μ(Cj)
]
.

Now the result follows by Lemma A.3.
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Journal d’Analyse Mathématique 72 (1997), 165–202.

[18] F. den Hollander and J. E. Steif, Random walk in random scenery: a survey of some

recent results, in Dynamics & stochastics, Institute of Mathematical Statistics Lecture

Notes—Monograph Series, Vol. 48, Institute of Mathematical Statistics, Beachwood, OH,

2006, pp. 53–65.

[19] D. Dolgopyat, On decay of correlations in Anosov flows, Annals of Mathematics 147

(1998), 357–390.

[20] D. Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory and Dy-

namical Systems 18 (1998), 1097–1114.

[21] D. Dolgopyat, On mixing properties of compact group extensions of hyperbolic systems,

Israel Journal of Mathematics 130 (2002), 157–205.

[22] D. Dolgopyat, Limit theorems for partially hyperbolic systems, Transactions of the Amer-

ican Mathematical Society 356 (2004), 1637–1689.

[23] D. Dolgopyat, C. Dong, A. Kanigowski and P. Nándori, Flexibility of statistical properties

for smooth systems satisfying the central limit theorem,

https://arxiv.org/abs/2006.02191.

[24] D. Dolgopyat and B. Fayad, Limit theorems for toral translations, in Hyperbolic Dynam-

ics, Fluctuations and Large Deviations, Proceedings of Symposia in Pure Mathematics,

Vol. 89, American Mathematical Society, Providence, RI, 2015, pp. 227–277.

[25] D. Dolgopyat, M. Lenci and P. Nándori, Global observables for random walks: law

of large numbers, Annales de l’Institut Henri Poincaré Probabilités et Statistiques 57
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