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Abstract We exhibit new classes of smooth systems which satisfy the Central

Limit Theorem (CLT) and have (at least) one of the following properties:

• Zero entropy;

• Weak but not strong mixing;

• (Polynomial) mixing but not K ;

• K but not Bernoulli and mixing at arbitrary fast polynomial rate.

We also give an example of a system satisfying the CLT where the normalizing

sequence is regularly varying with index 1. All these examples are C∞ except

for a zero entropy diffeomorphism satisfying the CLT which can be made Cr

for an arbitrary finite r .
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Flexibility of statistical properties 33

Part I. Main results

1 Introduction

An important discovery made in the last century is that deterministic systems

can exhibit chaotic behavior. The Central Limit Theorem (CLT) is a hallmark

of chaotic behavior. There is a vast literature on the topic. In particular there

are numerous methods of establishing CLT including the method of moments

(cumulants) [10,25], spectral method [54], the martingale method [51,58,75]

(the list of references here is by no means exhaustive, we just provide a sample

of papers which could be used for introducing non-experts to the corresponding

techniques and their applications to dynamical systems). However, the above

methods require strong mixing properties of the system. As a result, they apply

only to systems which have strong statistical properties including Bernoulli

property and summable decay of correlations. The only example going beyond

strongly chaotic framework as manifested by the Bernoullicity and summable

correlations is the product of an Anosov1 diffeomorphism (called diffeo in the

sequel) and a Diophantine rotation, which is shown in [27] to satisfy the CLT

(see also [71,93] or Theorem 3.1 below).

Thus the knowledge on possible ergodic behaviors of smooth systems sat-

isfying CLT is very restricted. The main goal of this paper is to provide new

classes of systems satisfying CLT with intermediate ergodic properties. In

Appendix C we will describe how our results fit into a general program of

flexibility of statistical properties in smooth dynamics.

In order to formulate our results we need a few definitions. Let (M, ζ )

be a smooth orientable manifold with a smooth measure ζ . For an integrable

function A on M, we denote ζ(A) =
∫

M
A(x)dζ(x). For r ∈ (0,∞]we denote

by Cr (M, ζ ) the space of Cr diffeomorphisms of M preserving the measure

ζ .

Definition 1.1 Let r ∈ (0,∞]. We say that F satisfies the Central Limit

Theorem (CLT) on Cr if F ∈ Cr (M, ζ ) and there is a sequence an such that

for each A ∈ Cr (M),

∑
0≤ j<n

A ◦ F j (·)− n · ζ(A)

an

converges in law as n → ∞ to normal random variable with zero mean and

variance σ 2(A) (such normal random variable will be denoted N (0, σ 2(A))

in the sequel) and, moreover, σ 2(·) is not identically equal to zero on Cr (M).

1 The methods of [27] apply to more general systems in the first factor, however, they seem

insufficient to produce the examples described in Theorems 1.3–1.5.
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34 D. Dolgopyat et al.

We say that F satisfies the CLT if it satisfies the CLT on Cr for some r > 0.

We say that F satisfies the classical CLT if one can take an =
√

n.

One can analogously define the CLT for a flow (FT ) ∈ Cr (M, ζ ) replacing

1

an

⎡
⎣ ∑

0≤ j<n

A ◦ F j (·)− n · ζ(A)

⎤
⎦ by

1

aS

[∫ S

0

A ◦ Fs(·)ds − S · ζ(A)

]
,

where aS is now a real valued function.

Definition 1.2 Let ψ : N → R be a function. We say that F is mixing on Cr

at the rate ψ if F ∈ Cr (M, ζ ) and for any A1, A2 ∈ Cr (M) the correlation

function ρn(A1, A2) = ζ(A1 · (A2 ◦ Fn))− ζ(A1)ζ(A2) satisfies

|ρn(A1, A2)| ≤ ‖A1‖Cr ‖A2‖Crψ(n). (1.1)

We say that F is mixing at the rate ψ if it is mixing with the rate ψ on Cr

for some r > 0. In case ψ(n) = Cn−δ for some C, δ > 0, we say that F is

polynomially mixing. If ψ(n) = Ce−δn for some C, δ > 0, we say that F is

exponentially mixing.2

The above definitions can be extended to flows in a straightforward way by

replacing the discrete parameter n ∈ N with a continuous parameter t ∈ R. We

are ready to state the main results only using basic notions of ergodic theory

and the above two definitions. A more detailed exposition of the main results

as well as prerequisite earlier work will be presented shortly in Sect. 2. Our

first main result deals with the CLT for zero entropy systems:

Theorem 1.3 (a) There exists an analytic flow of zero entropy which satisfies

the CLT with normalization aT = T/ ln1/4 T .

(b) For each r ∈ N there is a smooth manifold (Mr , ζr ) and a zero entropy

diffeomorphism Fr ∈ Cr (Mr , ζr ) which satisfies the classical CLT.

We note that in all previous results on the CLT the normalization was regularly

varying3 with index 1
2
.4 Theorem 1.3(a) is the first result for a CLT with a

2 We note that a simple interpolation argument shows that if F is mixing with exponential

(respectively polynomial rate) on Cr for some r > 0 then it is mixing with exponential (respec-

tively polynomial) rate on Cr for all r > 0, however the exponent δ depends on r .
3 Recall that a real valued function a(·) defined on [m,∞) for some m ∈ R is regularly varying

in the sense of Karamata with index α if for each s > 0, lim
t→∞

a(st)

a(t)
= sα . A sequence an is

regularly varying with index α if the function a(t) = a[t] is regularly varying with index α.
4 CLT with normalization

√
n ln n appears for expanding and hyperbolic maps with neutral

fixed points [19,53], as well as in several hyperbolic billiards [5,6,101]. In a followup paper

we will show it also appears for generalized T, T−1 transformations with hyperbolic base and

two parameter exponentially mixing flows in the fiber.
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Flexibility of statistical properties 35

different regularly varying index, namely 1.5 We say that a system F is K if

it has no non-trivial zero entropy factor, [98]. In the theorem below, we give

examples of weakly mixing but not mixing as well as polynomially mixing

but not K systems satisfying the CLT.

Theorem 1.4 (a) There exists a weakly mixing but not mixing C∞-flow, which

satisfies the classical CLT.

(b) There exists a polynomially mixing C∞-flow, which is not K and satisfies

the classical CLT.

Recall that a system is Bernoulli if it is isomorphic to a Bernoulli shift.

Our next result shows existence of K non Bernoulli systems which satisfy the

classical CLT and are mixing at arbitrary fast polynomial rate.

Theorem 1.5 For each m ∈ N there exists a manifold (Mm, ζm) and Fm ∈
C∞(Mm, ζm) which is mixing at rate n−m but is not Bernoulli. Moreover, Fm

is K and satisfies the classical CLT.

To the best of our knowledge, the first part of the theorem provides the first

example of a system which has summable correlations but is not Bernoulli.

The second (“moreover”) part answers a question that we heard from multiple

sources, initially from J-P. Thouvenot.

All the systems in Theorems 1.3–1.5 belong to the class of generalized

(T, T−1) transformations which we now describe. The class of generalized

(T, T−1) transformations is a classical subject (see [59,85,106] and reference

therein for some early work on this topic) with a rich range of applications in

probability and ergodic theory. In fact, generalized (T, T−1) transformations

were used to exhibit examples of systems with unusual limit laws [28,68], cen-

tral limit theorem with non standard normalization [12], K but non Bernoulli

systems in abstract [60] and smooth setting in various dimensions [62,63,99],

very weak Bernoulli but not weak Bernoulli partitions [31], slowly mixing

systems [32,35,80], systems with multiple Gibbs measures [45,83]. To define

(Cr - smooth) (T, T−1) transformations, let X, Y be compact orientable man-

ifolds, f : X → X be an ergodic Cr map preserving a smooth measure μ

and G t : Y → Y be a Cr -smooth Rd action on the manifold Y preserving a

smooth measure ν.

Definition 1.6 Let X, Y, f, G t be as above. Let τ : X → Rd be a Cr - smooth

function that will be called a cocycle. The map F : X × Y → X × Y defined

5 We note that the requirement that the limiting distribution is Gaussian is important. If we

allow other limit distributions, then there are several examples in both non-uniformly hyperbolic

and parabolic settings where normalization is different, see [1,20,48] and references therein. If

we allow our system to preserve an infinite measure then, there is an additional freedom related

to the rate of return times, see e.g. [30,96].
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36 D. Dolgopyat et al.

by

F(x, y) = ( f (x), Gτ(x)y) (1.2)

is called a (Cr -smooth) (T, T−1) transformation.

Note that F is Cr (since so are f, G t and τ ) and it preserves the measure

ζ = μ× ν. Moreover,

F N (x, y) = ( f N x, GτN (x)y), (1.3)

where

τN (x) =
N−1∑

n=0

τ( f nx). (1.4)

We also analogously define (T, T−1) flows. Namely let ht be a Cr -flow on

X preserving μ. Set

FT (x, y) = (hT (x), GτT (x)y) where τT (x) =
∫ T

0

τ(ht x)dt. (1.5)

Note that if FT is a (T, T−1) flow, then for each t0, the time t0 map of F is

a generalized (T, T−1) tranformation.

In this paper we study (T, T−1) systems whose fiber dynamics are very

chaotic:

Definition 1.7 G t is exponentially mixing of all orders if there is r > 0 such

that for every m ∈ N there exist Cm, δm > 0 such that for every A j ∈ Cr (Y ),

j = 1, . . . ,m, we have

∣∣∣∣∣∣

∫

Y

⎛
⎝

m∏

j=1

A j (G t j
x)

⎞
⎠ dν(x)−

m∏

j=1

ν(A j )

∣∣∣∣∣∣

≤ Cm

m∏

j=1

‖A j‖Cr e−δm mini 	= j ‖ti−t j‖. (1.6)

We note that if G t is exponentially mixing of all orders then so is its any

subaction, that is, the action of any proper subgroup V ⊂ Rd .

Throughout the paper we assume that the action G t is exponentially

mixing of all orders.

The main example that the reader should keep in mind is the following:

Example 1.8 Let d ≥ 1 and let � be a co-compact lattice in SL(d+1,R). Let

D+ be the group of diagonal matrices in SL(d + 1,R) with positive elements
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Flexibility of statistical properties 37

on the diagonal. It is easy to see that D+ is isomorphic to Rd . The group D+
acts on SL(d + 1,R)/� by left translation. When d = 1, this one parameter

flow is called the geodesic flow. When d ≥ 2, we obtain a Rd action (G t ),

which is called the Weyl Chamber flow. Then (G t ) is exponentially mixing of

all orders (see [9]).

Notice that by Definition 1.1, for all the systems appearing in Theorems 1.3–

1.5, the variance is not identically zero. One could ask for a stronger property

(motivated by classical results in hyperbolic dynamics): the variance of an

observable is zero if and only if the observable is a coboundary for the system.

This stronger property does not hold in the setting of Theorems 1.3 and 1.4.

Indeed one of the key steps in the skew product constructions of Theorems 1.3

and 1.4 is to choose base transformations (or flows) with some zero mean

cocycle over them whose ergodic sums (or integrals) are not tight, while the

growth of all cocycles with the same regularity is of order o(aN ) (o(aS)). This

inevitably produces a class of observables, namely, those depending only on

the base coordinate, that have zero asymptotic variance while not all of them are

coboundaries. The situation is different in the setting of Theorem 1.5 where the

base map f is hyperbolic (and hence in particular satisfies the above stronger

property). This in fact allows to show that systems constructed in Theorem 1.5

satisfy this stronger version of CLT (see also Remark 5.6. in [35]). It is an open

question if one can produce systems as in Theorems 1.3 and 1.4 satisfying this

stronger version of CLT.

In order to construct our examples we need to extend significantly the exist-

ing methods for proving both the CLT and the non Bernoulli property of these

maps. In fact, the main difficulty in Theorems 1.3 and 1.4 is to establish the

CLT while other properties are rather straightforward. On the other hand, the

main difficulty in Theorem 1.5 is to show non Bernoullicity. We note that even

though the question about the CLT and the non Bernoulli properties seem quite

different, the key tools needed to answer both questions are the same. Namely,

the proofs of all theorems in the paper rely on the exponential mixing in the

fiber and the fine recurrence properties of deterministic cocycles. More details

on the general framework for proving the CLT for generalized (T, T−1) trans-

formations is presented in Sect. 3, while the precise results pertaining to the

non Bernoullicity are described in Part V.

Outline of the paper: The rest of the paper is organized as follows. In

Sect. 2 we showcase the examples realizing Theorems 1.3–1.5. Specifically,

in §2.1 we discuss Theorem 1.3(a), in §2.2 we discuss Theorem 1.3(b), in

§2.3 we discuss Theorem 1.4, and in §2.4 we discuss Theorem 1.5. There are

no technical proofs in Sect. 2, we just formulate more specific results, namely

Theorems 2.2–2.7 that imply the main Theorems 1.3–1.5. Parts II–IV complete

the proof of the theorems from Sect. 2.
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38 D. Dolgopyat et al.

In Part II, we discuss the CLT for generalized (T, T−1) transformations.

In Sect. 3, we state two results (Theorems 3.1 and 3.2) that are the main

tools in proving CLT for all our examples (in the discrete and continuous case

respectively). The proofs of these results occupy the rest of Part II. Part III is

devoted to the proof of Theorems 2.2 and 2.3. Part IV is devoted to the proof of

Theorems 2.4 and 2.5. In Part V, we prove Theorem 2.7. Finally in Part VI we

prove some technical results needed in the proof (Appendix A and Appendix

B) as well as discuss the general context of flexibility of statistical properties

(Appendix C) and state some open problems (Appendix D).

2 Specifying systems appearing in Theorems 1.3–1.5

We will now make precise what type of generalized (T, T−1) transformations

will be used in the proofs of our main results. We present the examples in four

subsections below.

2.1 Zero entropy flow

We start with the following lemma which shows that the entropy of a general-

ized (T, T−1) transformation is zero provided that the base map has entropy

zero and the cocycle has zero mean. Recall Definition 1.6.

Lemma 2.1 Let F ∈ Cr (X × Y, ζ ) with r > 1 be a generalized (T, T−1)

transformation such that f is ergodic, entμ( f ) = 0 and μ(τ) = 0. Then

entζ (F) = 0. The same result holds for (T, T−1) flows.

Here entμ(·) denotes the metric entropy. The proof is given in Appendix A.

Let Q be a hyperbolic surface of constant negative curvature of arbitrary

genus p ≥ 1. Let ht be the (stable) horocycle flow on the unit tangent bundle

X = SQ, that is, ht is moving x ∈ X at unit speed along its stable horocycle

H(x) =
{

x̃ ∈ X : lim
t→∞

d(Gt (x),Gt (x̃)) = 0
}

(2.1)

where Gt is the geodesic flow on X . Let γ1, . . . , γ2p be the basis in homology

of Q. Choose i ∈ {1, . . . 2p} and let λ be a closed form on Q such that

∫

γ j

λ = δi j , (2.2)

where δ is the Kronecker symbol. Set

τ(q, v) = λ(q)(v∗), (2.3)
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Flexibility of statistical properties 39

where v∗ is a unit vector obtained from v by the 90 degree rotation. Let

(G t , Y, ν) be an R action which is exponentially mixing of all orders. Consider

the system (see (1.5))

FT (x, y) = (hT (x), GτT (x)y). (2.4)

We have

τT (x) =
∫

h(x,T )

λ, (2.5)

where h(x, T ) is the projection of the horocyle starting from x and of length

T , to Q.

Theorem 1.3(a) follows immediately from the following theorem:

Theorem 2.2 Let (FT )T∈R be the flow defined in (2.4). Then

h1. entζ (FT ) = 0;
h2. For every smooth observable H ∈ C∞(X × Y ) with ζ(H) = 0, there

exists σ 2(H) ≥ 0 such that

(ln T )1/4

T

∫ T

0

H(Ft (·))dt

converges as T → ∞ to the normal distribution with zero mean and

variance σ 2(H);
h3. There exists H ∈ C∞(X × Y ) with ζ(H) = 0 such that σ 2(H) > 0.

The proof of Theorem 2.2 is provided in Sect. 6. To demystify the normal-

ization T/(ln T )1/4 let us write

∫ T

0

H(Ft (·))dt =
∑

n

Zn,T , (2.6)

where Zn,T contains the contribution of the times t when τt (x) ∈ [n, n + 1).

According to the analysis in [43] of

mes(t ∈ [0, T ] : τt (x) ∈ [n, n + 1)), (2.7)

(2.7) is significant if n is of order
√

ln T and we will show that in this case

(2.7) is of order T/
√

ln T .

Thus (2.6) is the sum of O(
√

ln T ) summands, each with variance

(T/
√

ln T )2. As we will see, these summands are only weakly correlated and

so (2.6) will be approximately normal with variance T 2/
√

ln T . This explains

h2. In the proof, we will in fact need a more precise estimate related to (2.7)

which, besides [43, Theorem 5.1] also uses some methods introduced in [40].
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40 D. Dolgopyat et al.

Another important step of the proof is to quantify the weak dependence among

the summands to the extent that the CLT holds. To this end, we use a CLT by

Björklund and Gorodnik [10] (see Sect. 4 for a precise statement). We will

need some extensions of the main theorem of [10] not just here but also for the

forthcoming Theorems 2.3–2.5. We refer the reader to Sect. 6 for a complete

proof of Theorem 2.2.

2.2 Zero entropy map

We will now define the generalized (T, T−1) transformations used in Theo-

rem 1.3 (b). Let m ∈ N and let ‖ · ‖ denote the distance to the nearest integer

in Rm. For κ > 0, let

D(κ) =
{
α ∈ Tm : ∃D(α) > 0 such that

∥∥∥〈k, α〉
∥∥∥ ≥ D(α)

|k|κ ,

for every k ∈ Zm \ {0}
}
.

Recall that from Khintchine’s theorem ( [70]) it follows that D(κ) is non-

empty if κ ≥ m and it has full measure if κ > m.Theorem 1.3 (b) immediately

follows from

Theorem 2.3 Let m ∈ N and κ ∈ [m, 2m). Let μ be the Lebesgue measure

on Tm. For every α ∈ D(κ) and every r ∈ (κ/2,m) there exists d ∈ N and

a function τ ∈ Cr (Tm,Rd) such that if (G t , Y, ν) is a C∞ smooth Rd action

which is exponentially mixing of all orders then the system

F : (Tm × Y, μ× ν)→ (Tm × Y, μ× ν), F(x, y) = (x + α, Gτ(x)y)

satisfies:

r1. entμ×ν(F) = 0;

r2. For every H ∈ Cr (Tm × Y ) with (μ× ν)(H) = 0, there is σ 2(H) ≥ 0

such that

1√
N

HN =
1√
N

∑

n≤N

H(Fn(·))

converges as N → ∞ to the normal distribution with zero mean and

variance σ 2(H);
r3. There exists H ∈ Cr (Tm×Y )with (μ×ν)(H) = 0 such thatσ 2(H) > 0.

Since the rotation byα and the action (G t , Y, ν) are both C∞ and the cocycle

τ is of class Cr (Tm,Rd) it follows that the map F is of class Cr and so indeed

the above theorem implies Theorem 1.3 (b). We prove Theorem 2.3 in Sect. 7.
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Flexibility of statistical properties 41

2.3 Flows with intermediate mixing properties

We will now describe the class of generalized (T, T−1) transformations used

to prove Theorem 1.4. The base flows in our construction are a subclass of

the class of smooth flows on surfaces. For more details on smooth flows on

surfaces we refer the reader to [4,73,74,103,104]. In particular it follows by

Pesin entropy formula ( [7]) that the entropy of any smooth flow on a surface is

equal to 0. Let M be a surface and let (ϕt ) be a C∞ flow on M that preserves the

area μ. Ergodic properties of smooth flows on surfaces have been successfully

studied via their special representation. More precisely, one considers a one

dimensional closed transversal T on M and represents the flow as the special

flow over the first return map to T ∼ T and under the roof function f which

is the first return time. Since the flow is smooth, the return function is also

smooth except for fixed points of the flow, at which f blows up. In particular,

every point in x ∈ M which is not a fixed point can be written as x = ϕsθ ,

where θ ∈ T and 0 ≤ s < f (θ).

In what follows we will always assume that the set of fixed points of (ϕt ) is

non-empty and finite. In the case of smooth flows on surfaces the first return

map to T is an interval exchange transformation or in some cases (which will

be our main focus) an irrational rotation. For a more detailed discussion on

special representation of (ϕt ) we refer the reader to [49,73,74]. We will now

describe what examples of smooth flows (ϕt ) will be considered in this paper.

Let α ∈ T be an irrational number. Let f : T → R+ be a function which is

C3 on T \ {0}, satisfies
∫

f d Leb = 1 and

lim
θ→0+

f ′′(θ)

h′′(θ)
= A and lim

θ→1−

f ′′(θ)

h′′(1− θ)
= B, (2.8)

where A2+ B2 	= 0 and the function h belongs to one of the classes specified

below.

(1) h(θ) = log θ and A = B, then for everyα ∈ T\Q there exists f satisfying

(2.8) such that Rαθ = θ +α is the first return map and f is the first return

time of some C∞ ergodic flow (ϕt ) on a surface (M, μ) with genus ≥ 2

(see e.g. [73] or [49, Proposition 2]). Such flows are not mixing, [73], but

are weakly mixing for every α, [49]. Let us denote K(α, logsym) the set

of C∞ area preserving flows (ϕt ) for which Rα is the first return map and

the corresponding first return time f satisfies (2.8) (with h(θ) = log(θ)).

(2) h(x) = x−γ , γ ∈ Bsing where Bsing is a non-empty set such that for every

α ∈ T \Q there exists f satisfying (2.8) with h such that Rαθ = θ + α is

the first return map and f is the first return time of some C∞ ergodic flow

(ϕt ) on the torus (T2, μ), [74]. In [74] it is shown that γ = 1/3 ∈ Bsing .

Moreover by [74] (ϕt ) is mixing for every α and by [47] if γ ≤ 2/5,
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then the flow is polynomially mixing for a.e. α. In what follows we will

always assume that γ ≤ 2/5. For γ ∈ Bsing, let us denote K(α, γ ) the

set of smooth area preserving flows (ϕt ) on T2 for which Rα is the first

return map and the corresponding first return time f satisfies (2.8) with

h(x) = x−γ .

We will consider the continuous flow FT given by (see (1.5)) FT (x, y) =
(ϕT (x), GτT

(y)), where (ϕt ) is as in (1) or (2) above and τ and G t are defined

in the theorems below.

Theorem 2.4 Let (G t , Y, ν) be a C∞ flow which is exponentially mixing of

all orders and let τ : M → R be any C∞ positive function. There exists

F ⊂ T with Leb(F) = 1 such that if α ∈ F , (ϕt ) ∈ K(α, logsym), and

FT (x, y) := (ϕT (x), GτT (x)(y)), then

w1. (FT )T∈R is weakly mixing but not mixing;

w2. For every H ∈ C∞(M×Y )with (μ×ν)(H) = 0, there existsσ 2(H) ≥ 0

such that

1√
T

HT =
1√
T

∫ T

0

H(Ft (·))dt

converges as T → ∞ to the normal distribution with zero mean and

variance σ 2(H);
w3. There exists H ∈ C∞(M×Y ) with (μ×ν)(H) = 0 such that σ 2(H) >

0.

The above theorem immediately implies Theorem 1.4 (a).

Theorem 2.5 Let (G t , Y, ν) be a C∞ flow which is exponentially mixing of all

orders and let τ : T2 → R be any C∞ positive function. There exists F ′ ⊂ T
with Leb(F ′) = 1 such that if α ∈ F ′, (ϕt ) ∈ K(α, γ ) for γ ∈ Bsing and

FT (x, y) := (ϕT (x), GτT (x)(y)), then

n1. (FT )T∈R is polynomially mixing and not K;

n2. For every H ∈ C∞(T2×Y ) with (μ×ν)(H) = 0, there exists σ 2(H) ≥
0 such that

1√
T

HT =
1√
T

∫ T

0

H(Ft (·))dt

converges as T → ∞ to the normal distribution with zero mean and

variance σ 2(H);
n3. There exists H ∈ C∞(T2×Y ) with (μ×ν)(H) = 0 such that σ 2(H) >

0.
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Notice that the above theorem immediately implies Theorem 1.4 (b).

Remark 2.6 In the above two theorems we only need that the C∞ cocycle τ

is positive. The simplest case of our theorem is to take τ ≡ 1. In this case the

resulting (T, T−1) transformation is just the direct product flow (ϕt × G t ).

2.4 K not Bernoulli example

We will now specify the (T, T−1) transformations that we will use in the proof

of Theorem 1.5. Let f : (Tm, μ)→ (Tm, μ) be a volume preserving Anosov

diffeomorphism.

Let τ : Tm → Rd be a mean zero cocycle. We shall say that τ is irreducible

if it is not cohomologous to a cocycle taking value in a proper linear subspace

of Rd .

Recall Example 1.8. Theorem 1.5 is a consequence of the following result.

Theorem 2.7 Fix an integer d ≥ 1. Let f : (Tm, μ) → (Tm, μ) be a

volume preserving Anosov diffeomorphism. Let (G t ) be a geodesic flow on

SL(2,R)/� (if d = 1), or a Weyl chamber flow on SL(d + 1,R)/� (when

d ≥ 2). Let τ : Tm → Rd be a mean zero irreducible Hölder cocycle. Then

the map on Tm × SL(d + 1,R)/� defined by

Fd(x, y) = ( f x, Gτ(x)y)

with the invariant measure μ× Haar is non-Bernoulli.

The irreducibility assumption is not too restrictive.

First, it holds for most cocycles. To see this we shall use the following well

known fact. Let τ(1)(x), . . . τ(d)(x) denote the components of the vector τ(x).

Recall that by the CLT for Anosov diffeos (see e.g. [92, Chapter 4]) τN/
√

N

converges in law as N →∞ to a normal random variable with zero mean and

covariance matrix with components

D2
i, j (τ ) =

∞∑

n=0

μ(τ(i)(τ( j) ◦ f n)). (2.9)

Proposition 2.8 Let f : (Tm, μ)→ (Tm, μ) be a volume preserving Anosov

diffeomorphism and τ : Tm → Rd be a zero mean Hölder cocycle. Then the

following are equivalent.

(i) There is a measurable function h : Tm → Rd such that τ − h + h ◦ f

takes values in a proper linear subspace;

(ii) There is a Hölder function h : Tm → Rd such that τ − h + h ◦ f takes

values in a proper linear subspace;
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(iii) The diffusion matrix D2(τ ) is degenerate, i.e. there is a unit vector u

such that D2(τ )u = 0;
(iv) There is a unit vector u such that if x is a periodic point of period p then

τp(x) ⊥ u.

Thus if τ is reducible, then for any collection of d periodic points x1, . . . , xd

of periods p1, . . . , pd the determinant of the matrix with components Qi j =
(τ(i))p j

(x j ) is zero. Since there are infinitely many periodic orbits, τ must

satisfy infinitely many algebraic equations. Thus the set of reducible cocycles

is contained in an algebraic submanifold of infinite codimension.

Second, if τ is reducible we still can apply Theorem 2.7 to a lower rank

subaction. Namely suppose τ̃ = τ − h + h ◦ f takes values in a proper

subspace V . Then the transformations defined by τ and by τ̃ are conjugated

via the change of variables (x, y) �→ (x, Gh(y)). Thus to understand the

(T, T−1) map defined by τ one can study the (T, T−1) map defined by τ̃

which is associated to the lower rank subaction of V ⊂ Rd .

Proof of Proposition 2.8 If τ − h + h ◦ f ∈ V where V is a proper linear

subspace of Rd , then taking a unit vector u orthogonal to V we get 〈τ(x),u〉 =
ĥ(x)− ĥ ◦ f (x) where ĥ(x) = 〈h(x),u〉. Conversely, if for some unit vector

u we have that 〈τ,u〉 = ĥ − ĥ ◦ f then τ −
[
ĥ − ĥ ◦ f

]
u belongs to the

orthogonal complement of u. Also denoting τ̂u = 〈τ,u〉 we have that

〈D2(τ )u,u〉 =
∞∑

n=−∞
μ(τ̂u(τ̂u ◦ f n)) =: σ 2(τ̂u).

The foregoing discussion shows that for y ∈ {i, i i, i i i, iv} we have that (y)

holds iff there exists a unit vector u ∈ Rd such that (̂y)u holds where

(̂i)u The equation τ̂u = ĥ − ĥ ◦ f has a measurable solution;

(̂i i)u The equation τ̂u = ĥ − ĥ ◦ f has a Hölder solution;

(̂i i i)u σ 2(τ̂u) = 0;

(̂iv)u For each periodic point x of period p, τ̂p(x) = 0.

However, for each fixed u the properties (̂i)u, (̂i i)u (̂i i i)u, and (̂iv)u are

equivalent. Indeed the equivalence of (̂i)u, (̂i i)u, and (̂iv)u follows from

Livsic Theorem [82], while the equivalence of (̂i)u and (̂i i i)u follows from

the L2–Gottschalk-Hedlund Theorem ( [23]). This completes the proof of the

proposition. ��

Proof of Theorem 1.5 The K property for Fd with any d ≥ 1 follows from

Corollary 2 in [57], the classical CLT for any d ≥ 3 follows from [35, Theorem

5.1] (since the proof of Theorem 5.1 in [35] is relatively long we provide a

different proof of the CLT in §B.1 using the tools developed in Part II ) and
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mixing of Fd with rate n−d/2 follows from [35, Theorem 4.6]. Finally non-

Bernoullicity follows from Theorem 2.7. ��
The proof of Theorem 2.7 is carried out in Part V.

Part II. Central Limit Theorem for (T, T−1) transformations

3 The main result

Here we present sufficient conditions for generalized (T, T−1) transformations

defined by (1.2) (and (1.5)) to satisfy the CLT. Namely, Theorems 3.1 and

3.2 below give such conditions for discrete and continuous time (T, T−1)-

transformations, respectively.

Recall (1.4).

Theorem 3.1 Let r ∈ R+ and f ∈ Cr (M) satisfy the following: for each

A ∈ Cr (M) with μ(A) = 0, there is a number σ 2(A) ≥ 0 such that

1√
N

∑

0≤n<N

A( f n·)⇒ N (0, σ 2(A)) (3.1)

as6 N → ∞, where the left hand side is understood as a random variable

with respect to the measure μ. Let τ : M → Rd be a Cr cocycle satisfying

the following: there are ε > 0 and C > 0 so that for every N ≥ 2,

μ
(
x ∈ M : |τN (x)| < log1+ε N

)
<

C

N 5
. (3.2)

Let (G t , Y, ν) be a C∞ Rd action which is exponentially mixing of all orders

and let F(x, y) = ( f x, Gτ(x)y). Then for every H ∈ Cr (M × Y ) with (μ×
ν)(H) = 0, there is �2(H) ≥ 0 such that

1√
N

∑

0≤n<N

H(Fn(·, ·))⇒ N (0, �2(H))

as N →∞. Moreover, if σ 2(A) = 0 for all A ∈ Cr (M), then

�2(H) =
∞∑

k=−∞

∫

M

∫

Y

H̃(x, y)H̃( f k x, Gτk(x)y)dν(y)dμ(x), (3.3)

where H̃(x, y) = H(x, y)−
∫

Y
H(x, y)dν(y).

6 Here, and in the sequel, ⇒ denotes weak convergence of random variables. Note that in

contrast with Definition 1.1, we do not require σ 2(A) > 0.
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Next, we extend Theorem 3.1 to continuous time. Below, τT (x) :=∫ T

0 τ( ft x)dt .

Theorem 3.2 Let r ∈ R+ and f ∈ Cr (M) satisfy the following: for each

A ∈ Cr (M) with μ(A) = 0, there is a number σ 2(A) ≥ 0 such that

1√
T

∫ T

0

A( ft ·)dt ⇒ N (0, σ 2(A)) (3.4)

as T →∞. Let τ : M → Rd be a Cr cocycle satisfying: there are ε > 0 and

C > 0 so that for every T ≥ 2,

μ
(
x ∈ M : |τT (x)| < log1+ε T

)
<

C

T 5
. (3.5)

Let (G t , Y, ν) be a C∞, Rd action which is exponentially mixing of all orders

and let Ft (x, y) = ( ft x, Gτt (x)y). Then for every H ∈ Cr (M × Y ) with

(μ× ν)(H) = 0 there is �2(H) ≥ 0 such that

1√
T

∫ T

0

H(Ft (·, ·))dt ⇒ N (0, �2(H))

as T →∞. Moreover, if σ 2(A) = 0 for all A ∈ Cr (M), then

�2(H) =
∫ ∞

−∞

∫

M

∫

Y

H̃(x, y)H̃( ft x, Gτt (x)y)dν(y)dμ(x)dt (3.6)

where H̃(x, y) = H(x, y)−
∫

Y
H(x, y)dν(y).

Remark 3.3 We remark that in Theorems 3.1 and 3.2, the conditions (3.2) and

(3.5) hold trivially in case τ is bounded below by a positive constant c (indeed,

in this case minx {|τN (x)|} ≥ cN ≥ log2 N for N sufficiently large).

4 A criterion of CLT for Rd actions

In the proof of Theorem 3.1, we will use the strategy of [12] except that we

replace the Feller Lindenberg CLT for iid random variables used in [12] by a

CLT for Rd actions which are exponentially mixing of all orders. This CLT

for such Rd actions was proven by Björklund and Gorodnik in [10]. Since it

is a key tool in our argument, we devote this section to recalling it.

Proposition 4.1 (Theorem 1.5 in [10]) Let (G t , Y, ν) be an Rd action which

is exponentially mixing of all orders. Let (mL)L∈R be a sequence of non-

negative measures on Rd . For t ∈ Rd , let At ∈ C1(Y ) be a family of functions
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satisfying: ν(At ) = 0 for every t ∈ Rd and supt∈Rd ‖At‖C1(Y ) < +∞. For

any L ∈ R, let SL(y) :=
∫

Rd At (G t y)dmL(t). Suppose that

(a) lim
L→∞

mL(R
d) = ∞.

(b) For each r ∈ N, r ≥ 3, and each K > 0,

lim
L→∞

∫
mr−1

L

(
B(t, K ln mL(R

d))
)

dmL(t) = 0,

where B(t, v) denotes a ball in Rd of radius v > 0 centered at t .

(c) There exists σ 2 = σ 2(At ) ≥ 0 so that limL→∞ VL = σ 2, where

VL :=
∫

S2
L(y)dν(y) =

∫∫∫
At1(G t1 y)At2(G t2 y)dmL(t1)dmL(t2)dν(y).

Then SL(·) converges as L → ∞ to normal distribution with zero mean

and variance σ 2.

Proposition 4.1 is proven in [10, Theorem 1.5] in case At does not depend

on t . Since the proof directly extends to the case of t-dependent observables At

(with uniform C1 norm), we do not repeat it here. (The proof uses the method

of moments (cumulants). This method requires showing that

∫
S

p
L (y)dν(y) =

{
oL→∞(1) if p is odd

(2m − 1)!!σ 2m(1+ oL→∞(1)) if p = 2m is even.

(4.1)

The proof of (4.1) proceeds by expanding

∫
S

p
L
(y)dν(y)=

∫
. . .

∫

t1,...,tp

⎛
⎝
∫

Y

⎡
⎣∏

j

At j (Gt j y)

⎤
⎦ dμ(y)

⎞
⎠ dmL (t1) . . . dmL (tp)

(4.2)

and showing that the main contribution to (4.2) comes from the region where

(t1, . . . t2m) can be partitioned into m pairs so that the points in each pair

are close to one another but all pairs are far apart. The contribution of points

(t1, . . . t2m) that do not satisfy this property is estimated by exponential mix-

ing and that estimate only uses the fact that the functions At have uniformly

bounded norms. Thus the proof extends to the case when At depends on t .)

In the case of discrete (T, T−1) transformations, we will only need Propo-

sition with L ∈ N. In this case, we will replace L by N and write mN ,SN ,

etc.
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5 The CLT for skew products

5.1 A quenched CLT

In this section, we use Proposition 4.1 to derive a quenched CLT (Lemma 5.2).

In the next section, we will use this quenched CLT to prove Theorems 3.1 and

3.2.

It is convenient to make the following definition. Let F ∈ Cr (X × Y, ζ )

be a skew product of the form F(x, y) = ( f x, g(x, y)). Thus we assume that

f preserves a probability measure μ on X and for each x , g(x, ·) preserves a

probability measure ν on Y , so that F preserves the measure ζ = μ× ν.

Definition 5.1 F satisfies a quenched CLT on Cr if for each function H ∈
Cr (X×Y ) satisfying (5.1) there exist a constant σ(H) and sets X N ⊂ X such

that limN→∞ μ(X N ) = 1 and for each xN ∈ X N the sequence of random

variables
HN (xN ,y)√

N
, where y is distributed according to ν, converges in law as

N →∞ to the normal random variable with zero mean and variance σ 2(H).

In this definition, we regard the fiber Y as the phase space of a random

dynamical system and X as a source of external noise. From this point of view

the quenched limit theorem means the theorem which holds for a typical but

fixed realization of the noise, while annealed limit theorem is the limit theorem

when both x and y are assumed random.

Our first step is to obtain a quenched CLT (Lemma 5.2) under the assump-

tions of Theorem 3.1. Thus we suppose that f ∈ Cr (M), τ : M → Rd and

(G t , Y, ν) satisfy the assumptions of Theorem 3.1. Let H ∈ Cr (M × Y ) be

such that ∫
H(x, y)dν(y) = 0 (5.1)

for each x ∈ M. Given x ∈ M , we define the measure mN (x) and the observ-

able At,x for all t ∈ Rd as

mN (x) = 1√
N

N−1∑

n=0

δτn(x), At,x (y) = 1

#{n ≤ N : τn(x) = t}
∑

n≤N :τn(x)=t

H( f n x, y).

(5.2)

Then

SN = SN ,x (y) = 1√
N

N−1∑

n=0

H( f nx, Gτn(x)y) =
1√
N

HN (x, y),

where HN is the ergodic sum of H.

One may think about mN as the rescaled local time of the deterministic

random walk τN . It is enough to verify the conditions of Proposition 4.1:
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Lemma 5.2 Assume that (5.1) holds and that the assumptions of Theorems 3.1

are satisfied. Then the number

σ 2(H) :=
∞∑

k=−∞

∫

M

∫

Y

H(x, y)H( f k x, Gτk(x)y)dν(y)dμ(x)

is non-negative and finite. Furthermore, there are subsets X̂ N ⊂ M such that

lim
N→∞

μ(X̂ N ) = 1

and for any sequence xN ∈ X̂ N the measures {mN (xN )} and the functions

(At,xN
)t∈Rd defined by (5.2) satisfy the conditions of Proposition 4.1, with

σ 2 = σ 2(H) in part (c).

The rest of Sect. 5.1 contains the proof of Lemma 5.2. In Sect. 5.2 we will

show how Lemma 5.2 implies Theorems 3.1 and 3.2.

To prove Lemma 5.2, we need to check properties (a)–(c) of Proposition 4.1.

Property (a) is clear since for every x ∈ M , mN (x)(Rd) =
√

N . Other

properties are less obvious and will be checked in separate subsections below.

5.1.1 Proof of Property (b)

Let

X N =
{

x ∈ M : Card{n : |n| < N and ‖τn(x)‖ ≤ ln1+ε/2 N } ≥ N 0.23
}
,

(5.3)

where ε is from (3.2).

Lemma 5.3 If τ satisfies (3.2), then limN→∞ Nμ(X N ) = 0.

Proof First observe that for large N

X N ⊂ X∗N := {x : L(x, N ) ≥ N 0.22},

where

L(x, N ) = Card{n : N 0.21 < |n| < N , ‖τn(x)‖ ≤ ln1+ε/2 N }.

Next, note that if τ satisfies (3.2), then for every n ≥ N 0.21, we have

μ(‖τn‖ < ln1+ε/2 N ) ≤ μ
(
‖τn‖ < ln1+ε n

)
< C |n|−5
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for N sufficiently large, where C is the constant from (3.2). We conclude by

the Markov inequality that

μ(X N ) ≤ μ(X∗N ) ≤ N−0.22μ(L(x, N ))

= N−0.22
∑

n:N 0.21<|n|<N

μ(‖τn‖ < ln1+ε/2 N ) < C N−1.06

for N sufficiently large, where C is the constant from (3.2). ��

Lemma 5.4 There are sets X̃ N ⊂ M such that μ(X̃ N ) → 1 and for all

xN ∈ X̃ N the measures mN (xN ) satisfy property (b).

Proof Let X̃ N = {x : f nx /∈ X N for all n = 1, ..., N }. By Lemma 5.3

μ(X̃ N ) ≥ 1− Nμ(X N )→ 1

as N → ∞. Thus for each K we have that for N large enough and for each

x ∈ X̃ N

∫
mr−1

N (x)(B(t, K ln N ))dmN (x)(t)

= 1

N r/2

N−1∑

n=0

Cardr−1{ j < N : ‖τ j (x)− τn(x)‖ ≤ K ln N }

≤ 1

N r/2

N−1∑

n=0

Cardr−1{ j < N : ‖τ j−n( f nx)‖ ≤ ln1+ε/2 N }

≤ N 0.23(r−1)− r
2+1 = N 0.77−0.27r → 0.

Here, in the last line we used that x ∈ X̃ N and that r ≥ 3. Property (b) follows.

��

5.1.2 Property (c)

Note that by definition of SN ,

VN (x) = 1

N

∫
S2

N (x, y)dν(y) = 1

N

N−1∑

n1,n2=0

σn1,n2(x), (5.4)

where

σn1,n2(x) =
∫

H( f n1 x, Gτn1
(x)y)H( f n2 x, Gτn2

(x)y)dν(y). (5.5)
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Notice that since ν is G t invariant,

σn1,n2(x) = σ0,n2−n1( f n1 x). (5.6)

To prove property (c) we need to show that σ 2(H) is indeed finite and that

there exist subsets X̂ N ⊂ X of measure close to 1 such that for any sequence

xN ∈ X̂ N we have limN→∞ VN (xN ) = σ 2(H). We first study σ 2(H). We

have

∫

M

VN (x)dμ(x) = 1

N

N−1∑

n1,n2=0

∫

M

σn1,n2(x)dμ(x)

=
N−1∑

k=−N+1

N − |k|
N

∫
H(x, y)H( f k x, Gτk(x)y)dμ(x)dν(y)

=
N−1∑

k=−N+1

N − |k|
N

∫

M

σ0,k(x)dμ(x)

=
N−1∑

k=−N+1

∫

M

σ0,k(x)dμ(x)− 1

N

N−1∑

k=−N+1

|k|
∫

M

σ0,k(x)dμ(x).

Due to (5.1) and exponential mixing of G t , there are constants c,C so that for

all x ∣∣σ0,k(x)
∣∣ ≤ C‖H‖2

Cr e−c‖τk(x)‖. (5.7)

If τ satisfies (3.2), then by (5.7) there are constants β > 1 and C̄ > 0 such

that ∫

M

∣∣σ0,k(x)
∣∣ dμ(x) ≤ C̄k−β (5.8)

(in fact, (5.8) holds for each β < 5).

In particular, (5.8) implies that the following limit exists

σ 2(H) := lim
N→∞

∫

M

VN (x)dμ(x) =
∞∑

k=−∞

∫
σ0,k(x)dμ(x). (5.9)

This shows that σ 2(H) is finite.

The next result shows that property (c) holds with probability close to 1.

Lemma 5.5 Let F be an ergodic (T, T−1) transformation and H be a function

satisfying (5.1) and (5.8) with β > 1. Let VN be given by (5.4) and σ 2(H) be

given by (5.9). Then VN converges to σ 2(H) in probability as N →∞.
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Lemma 5.5 completes the proof of Lemma 5.2. Indeed given N let εN be

the smallest number ε such that μ(X∗N ,ε) ≥ 1 − ε where X∗N ,ε = {x ∈ X :
|VN (x) − σ 2(H)| ≤ ε}. By Lemma 5.5, limN→∞ εN = 0. Therefore the set

X̂ N = X̃ N ∩ X∗N ,εN
, where X̃ N is from Lemma 5.4, satisfies the conclusions

of Lemma 5.2.

Thus it remains to prove Lemma 5.5.

Proof Recall (5.8). Given ε > 0 let kε be the smallest number such that

∑

|k|>kε

μ(|σ0,k |) ≤ ε2.

By ergodicity for large N we have for |k| ≤ kε

μ

⎛
⎝x :

∣∣∣∣∣∣
1

N

N−1−kε∑

n=kε

σ0,k( f nx)− μ(σ0,k)

∣∣∣∣∣∣
≥ ε

2kε

⎞
⎠ ≤ ε

2kε
. (5.10)

Next, we write

VN (x) = 1

N

N−1∑

k=−N+1

min{N−1,N−1−k}∑

n=max{−k,0}
σ0,k( f nx)

= 1

N

∑

|k|≤kε

N−1−kε∑

n=kε

σ0,k( f nx)+ 1

N

∑

|k|>kε

min{N−1,N−1−k}∑

n=max{−k,0}
σ0,k( f nx)

+ 1

N

∑

|k|≤kε

⎛
⎝

kε−1∑

n=max{−k,0}
+

min{N−1,N−1−k}∑

n=N−kε

⎞
⎠ σ0,k( f nx)

=: V ′N + V ′′N + V ′′′N .

Definition of kε and the Markov inequality imply that μ(x : |V ′′N | ≥ ε) ≤ ε.

Next, |V ′′′N | ≤ 2kε‖H‖2
∞/N and so V ′′′N is negligible. Also by (5.10)

μ

⎛
⎝x :

∣∣∣∣∣∣
V ′N −

∑

|k|≤kε

μ(σ0,k)

∣∣∣∣∣∣
> ε

⎞
⎠ ≤ ε

for N sufficiently large. Using the definition of kε again we see that

∣∣∣∣∣∣

⎛
⎝ ∑

|k|≤kε

μ(σ0,k)

⎞
⎠− σ 2(H)

∣∣∣∣∣∣
≤ ε2.
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Combing the above estimates we obtain

μ(x : |VN (x)− σ 2(H)| ≥ 3ε) ≤ 2ε + ε2

for N sufficiently large. Since ε is arbitrary, the lemma follows. ��

5.2 From quenched to annealed CLT: proofs of Theorems 3.1 and 3.2

In this section we give the proof of Theorem 3.1 using the quenched CLT

(Lemma 5.2). We do not give a separate proof of Theorem 3.2 because the

proof of Theorem 3.1 with trivial modifications applies in continuous time.

Recall Definition 5.1. Lemma 5.2 and Proposition 4.1 tell us that F satisfies a

quenched CLT on Cr .Thus Theorem 3.1 follows immediately from Lemma 5.6

below.

Lemma 5.6 Let F ∈ Cr (X × Y, ζ ) be a skew product such that f satisfies

the CLT on Cr and F satisfies the quenched CLT on Cr . Then F satisfies the

CLT on Cr .

Proof of Lemma 5.6 Split

H(x, y) = H̃(x, y)+ H̄(x) where H̄(x) =
∫

H(x, y)dν(y). (5.11)

We will show that for each ξ ∈ R

lim
N→∞

∫
eiξ HN (x,y)/

√
N dζ = e−σ 2(H)ξ2/2

where σ 2(H) = σ 2(H̄)+ σ 2(H̃), σ 2(H̄) is the limiting variance in the CLT

for H̄N and σ 2(H̃) is the limiting variance in the quenched CLT for H̃ . Let

X N be the sets from Definition 5.1 for H̃ . Split

∫

X×Y

eiξ HN (x,y)/
√

N dζ

=
∫

X N×Y

eiξ HN (x,y)/
√

N dζ

+
∫

Xc
N×Y

eiξ HN (x,y)/
√

N dζ.

The second integral converges to 0 since lim
N→∞

μ(X c
N ) = 0. On the other hand

for x ∈ X N lim
N→∞

∫
eiξ H̃N (x,y)/

√
N dν(y) = e−ξ2σ 2(H̃)/2 uniformly on X N
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(otherwise we could take a subsequence xN j
⊂ X N j

such that the distribution

of
H̃N (xN j

,·)
√

N
does not converges to the normal distribution with zero mean and

variance σ 2(H̃) which is a contradiction with the assumption that F satisfies

a quenched CLT on Cr ). Hence

lim
N→∞

∫

X N×Y

e
iξ

HN (x,y)√
N dμ(x)dν(y)

= lim
N→∞

∫

X N

e
iξ

H̄N (x)√
N

[∫

Y

e
iξ

H̃N (x,y)√
N dν(y)

]
dμ(x)

= lim
N→∞

e−ξ2σ 2(H̃)/2

∫

X N

e
iξ

H̄N (x)√
N dμ(x)

= lim
N→∞

e−ξ2σ 2(H̃)/2

∫

X

e
iξ

H̄N (x)√
N dμ(x) = e−ξ2σ 2(H)/2,

where the last equation follows from the assumption that f satisfies the CLT

on Cr . This completes the proof of the lemma. ��
Proof of Theorem 3.1 The CLT for F follows from Lemma 5.6. So it remains

to establish the formula for the variance. If σ 2(H̄) = 0, then σ 2(H) = σ 2(H̃),

where

σ 2(H̃) =
∞∑

k=−∞

∫

M

∫

Y

H̃(x, y)H̃( f k x, Gτk(x)y)dν(y)dμ(x)

by Lemma 5.2. This gives (3.3) and hence completes the proof of the theorem.

��
Remark 5.7 We note that the proof of Theorem 3.1 proceeds in two steps.

The first step is to establish a quenched CLT for
SN√

VN (x)
by verifying the

conditions of Proposition 4.1. The second step is to prove a weak law of large

numbers for VN (x). In a forthcoming paper we consider (T, T−1) transfor-

mations with 1 dimensional action in the fiber, in which case VN (x) has a

nontrivial limit law. This leads to the limit distributions of the form SZ where

S and Z are independent, Z has a standard normal distribution and S is the

limiting distribution of the quenched standard deviation (cf. [80]). We note

that similar distributions appear in limit theorems for Z and Z2 extensions of

hyperbolic systems ( [96]) in which case S stands for the limiting distribution

of the local time. However, the approach of [96] is quite different from ours

and relies on the symmetry of the infinite measure system with respect to fiber

translations.
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Part III. CLT for systems of zero entropy, Theorem 1.3 By the discussion

in Part I, it is enough to prove Theorem 2.2 (which implies Theorem 1.3 (a))

and Theorem 2.3 (which implies Theorem 1.3 (b)). We provide the proofs of

these two theorems in the next two sections.

6 Theorem 2.2

Here we prove Theorem 2.2. We need to show h1–h3. h1 is an immediate

consequence of Lemma 2.1 since the entropy of the horocycle flow (ht ) is

zero and τ given by (2.3) has mean zero. (μ(τ) = 0 since μ is invariant under

the involution given by I (q, v) = (q,−v), while τ ◦ I = −τ.) We will prove

h2 in Sect. 6.1 and h3 in Sect. 6.2. Finally, Sect. 6.3 contains the proof of

the key technical result: mixing temporal local limit theorem for horocycle

windings.

6.1 Reduction of h2 to a mixing local limit theorem

Proof of h2. As in Sect. 5, it suffices to give a proof under the assumption

(5.1). Indeed we can split arbitrary H as H(x, y) = H̄(x) + H̃(x, y) where

H̃ satisfies (5.1) and use the fact that due to [20], the ergodic integrals of H̄

satisfy H̄T (x) = O(T α) for some7 α < 1.

Since |HT1(x, y)− HT2(x, y)| ≤ ‖H‖C0 |T1− T2| it suffices to consider the

case when T is an integer. Analogously to (5.2), we define

mT (x) =
(ln T )1/4

T

T−1∑

n=0

δτn(x),

At,x (y) = 1

#{n ≤ N : τn(x) = t}
∑

n≤T :τn(x)=t

∫ 1

0

H(hn+s x, Gs y)ds.

As before we check properties (a)–(c) of Proposition 4.1. Property (a) is imme-

diate as ‖mT ‖ = (ln T )1/4.

To prove (b) and (c) we need some preliminary information. Let

m̃T (x) =
(ln T )1/4

T

∫ T

0

δτt (x)dt.

7 Let λ0 be the smallest eigenvalue of the Laplacian on Q. According to [20, Theorem 1.2 and

Corollary 1.3] (which relies on [48]) one can take α = 1+
√

1− 4λ0

2
if λ0 <

1

4
. If λ0 ≥ 1

4

one can take α = 1

2
+ ε for any ε > 0. The precise value of α is not important for our purposes.
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Note that for each set I ⊂ R, we have

mT (x)(I ) ≤ m̃T (x)( Ĩ ), m̃T (x)(I ) ≤ m̃T (x)( Ĩ ),

where Ĩ is the unit neighborhood of I. Therefore it suffices to check (b) with

m̃T in place of mT . Thus for part (b), we need to control

m̃T (B(s, K ln ln T ))

= (ln1/4 T )× mes({t ∈ [0, T ] : |τt (x)− s| ≤ K ln ln T })
T

.

The second factor here is the probability that τt (x) is within distance K ln ln T

from s when x is fixed and t is uniformly distributed on [0, T ]. Such results

are referred to in [42] as temporal limit theorems (in contrast to more classical

spatial limit theorems where t is fixed and x is random). The study of temporal

limit theorems goes back to [46]. By now there are several systems where

the temporal limit theorem is proven (see [18,42] and the references therein).

However, there is only one such system which involves a smooth observable,

namely, horocycle windings, and this is the main reason for the choice of

the base map in Theorem 2.2. The availability of the temporal limit theorem

is crucial in our construction. In fact, we need to extend the temporal limit

theorem for horocycle windings ( [42, Theorem 5.1]) in two ways. First, the

results of [42] concern the probability that τt (x) belong to an interval of length√
ln T whereas we need to consider intervals of unit size (to verify part (b) it

is sufficient to handle intervals of size O(ln ln T ) but for part (c) we need to

consider shorter intervals). It is natural to call this extension a local temporal

limit theorem. Secondly we need a mixing limit theorem which claims, roughly

speaking, that the values of τt (x) and Gt (x) are asymptotically independent.

To state our temporal limit theorem we need some notation. Write x =
(q, v) ∈ X and say that q is the configurational component of x .

Let q0 ∈ Q be an arbitrary reference point and for each q ∈ Q let �q be a

shortest geodesic from q0 to q. Define β(q) =
∫
�q

λ and let

ξT (x) = τT (x)− β(hT x)+ β(x).

Equation (2.5) shows that ξT (x) is an integral of λ over a curve starting and

ending at q0, so by (2.2) it is an integer.

Let gT (x) be the configurational component of the geodesic of length ln T

starting at q with speed−v.Denote sT (x) =
(∫

gT (x)

λ

)
+β(x)−β(x̄), where

x̄ = G− ln T x and Gt denotes the geodesic flow. ��
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Proposition 6.1 There is a constant C > 0 and a zero mean Gaussian density

p, so that the following statements are true for all x ∈ X.

(a) For each z ∈ R,

1

T
mes

(
t ≤ T : ξt − sT (x)√

ln T
≤ z

)
=
∫ z

−∞
p(s)ds + oT→∞(1).

(b) For any set A ⊂ X whose boundary is a finite union of proper compact

submanifolds (with boundary), we have

√
ln T

T

∫ T

0

1ξt (x)=k1ht (x)∈Adt = μ(A)p

(
k − sT (x)√

ln T

)
+ oT→∞(1), (6.1)

where the convergence is uniform when
k−sT (x)√

ln T
varies over a compact set.

(c) For any k ∈ Z, we have 8

mes({t ≤ T : ξt (x) = k}) ≤ CT√
ln T

. (6.2)

Part (a) of Proposition 6.1 is proven in [42]. Parts (b) and (c) are new but

they could be established by the methods of [42]. To focus on the new ideas

first, we complete the proof of h2 in Sect. 6.1 and h3 in Sect. 6.2 assuming

Proposition 6.1. Finally, in the separate Sect. 6.3, we prove Proposition 6.1.

Thus we proceed with the proof of property h2. Recall, that it remains to

verify properties (b) and (c) of Proposition 4.1. Property (b) of Proposition 4.1

reduces to showing that for each K and each r ≥ 3,

∫
m̃r−1

T (B(t, K ln ln T ))dmT (t)→ 0.

Observe that by Proposition 6.1 (c), for each unit segment I ⊂ R, m̃T (I ) ≤
C/ ln1/4 T and hence m̃T (B(t, K ln ln T )) ≤ C(K ) ln ln T

ln1/4 T
. Thus

∫
m̃r−1

T (B(t, K ln ln T ))dm̃(t) ≤ Cr−1(K )(ln ln T )r−1

ln(r−1)/4 T
‖mT ‖∞

≤ Cr−1(K )(ln ln T )r−1

ln
r−2

4 T
→ 0

since r > 2. This implies property (b) of Proposition 4.1.

8 Estimates such as (6.2) are often called anticoncentration inequalities since (6.2) shows that

the probability that τ(·) belongs to a unit interval is small no matter where this interval is located.
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To establish property (c) of Proposition 4.1 it suffices to show that there is

a number v such that

sup
x∈X

∣∣∣∣∣ lim
T→∞

√
ln T VT (x)

T 2
− v

∣∣∣∣∣ = 0, (6.3)

where

VT (x) =
∫ (∫ T

0

H(FT (x, y))dt

)2

dν(y).

We have

VT (x) =
∑

k1,k2∈Z

Ik1,k2(x), (6.4)

where

Ik1,k2(x)

=
∫ T

0

∫ T

0

1ξt1
=k11ξt2

=k2 ρ(ht1 x, ht2 x, k2 − k1 + β(qt2)− β(qt1))dt1dt2,

(6.5)

qt is the configurational component of ht (x) and

ρ(x ′, x ′′, s) =
∫

H(x ′, y)H(x ′′, Gs y)dν(y). (6.6)

Fix a large R and partition the sum in (6.4) into three parts. Let I be sum

of the terms where

|k2 − k1| ≤ R, |k1 − sT (x)| ≤ R
√

ln T ; (6.7)

II be sum of the terms where |k2−k1| > R; and III be sum of the terms where

|k2 − k1| ≤ R but |k1 − sT (x)| > R
√

ln T .

We split our analysis in two parts. Lemma 6.2 says that for large R the

main contribution to the variance comes from I , while Lemma 6.3 obtains the

asymptotics of the main contribution.

Lemma 6.2 For each δ > 0 there is R0 > 0 such that for R ≥ R0 there exists

T0 = T0(R) such that for T ≥ T0

|II | ≤ δT 2

3
√

ln T
and |III | ≤ δT 2

3
√

ln T
.
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Lemma 6.3 For each δ > 0 there is R0 > 0 such that for R ≥ R0 there exists

T0 = T0(R) such that for T ≥ T0

∣∣∣∣
I

T 2/
√

ln T
− p(0)√

2
�(H)

∣∣∣∣ <
δ

3
,

where9

�(H) =
∑

k∈Z

∫∫
ρ(x ′, x ′′, β(q ′′)− β(q ′)+ k)dμ(x ′)dμ(x ′′).

Since δ is arbitrary, combining Lemmas 6.2 and 6.3, we obtain that

lim
T→∞

√
ln T VT

T 2
= p(0)√

2
�(H)

completing the proof (6.3) (with v = p(0)√
2
�(H)) and thus verifying h2. It

remains to prove Lemmas 6.2 and 6.3.

Proof of Lemma 6.2 Since G t is exponentially mixing and H satisfies (5.1),

there are constants C1, c1 such that |ρ(x ′, x ′′, t)| ≤ C1e−c1t uniformly in

x ′, x ′′. Hence using Proposition 6.1(c), we obtain

|II | ≤
∑

k1∈Z

∑

k2:|k2−k1|≥R

mes(t1 ∈ [0, T ] : ξt1(x) = k1)mes(t2 ∈ [0, T ] : ξt2(x) = k2)× C1e−c1|k1−k2|

≤ C ′T√
ln T

∑

k1

mes
(
t1 ≤ T : ξt1(x) = k1

)
e−cR ≤ C ′′T 2

√
ln T

e−c1 R,

where the second inequality is obtained by summing over k2 for fixed k1.

Taking R0 so large that C ′′e−c1 R0 ≤ δ
3

we obtain the required estimate on II .

Similarly, after summing over k2 we obtain

|III | ≤ C ′RT√
ln T

∑

k1: |k1−sT (x)|>R
√

ln T

mes
(
t1 ≤ T : ξt1(x) = k1

)

= C ′RT√
ln T

mes
(

t1 ≤ T : |ξt1(x)− sT (x)| > R
√

ln T
)
. (6.8)

9 Note that � depends on H since ρ depends on H , see (6.6).
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By Proposition 6.1(a)

lim
T→∞

mes
(

t1 ≤ T : |ξt1(x)− sT (x)| > R
√

ln T
)

T
= P(|N | > R),

where N is the normal random variable with density p. Therefore for large T ,

(6.8) is smaller than

(
T 2

√
ln T

)
×
(
2C ′R · P(|N | ≥ R)

)
. Since limR→∞ R ·

P(|N | ≥ R) = 0 we can make (6.8) smaller than
δT 2

3
√

ln T
by taking R

sufficiently large. This completes the proof of the lemma. ��

Proof of Lemma 6.3 The plan of the proof is the following. We need to estimate∑
k1,k2

Ik1,k2 where Ik1,k2 is defined in (6.5) and k1, k2 are as in (6.7). First,

we choose R0 = R0(δ) so that for all R > R0, an integral JR over the interval

[−R, R] is δ/100 close to the limiting integral over R (see (6.14)). Then, we

replace ht1 x = (qt1, vt1) and ht2 x = (qt2, vt2) in (6.5) by elements of a fixed

ε-net on X . This allows us to decouple the integrals over t1 and t2 in (6.5) at the

expense of introducing a small relative error of size η = η(δ, R) assuming that

the diameter of our net ε = ε(δ, R, η) is small enough. Once the two integrals

in the definition of Ik1,k2 are decoupled, we can use the mixing local limit

theorem for both integrals. Specifically, we will use Proposition 6.1(b) with A

being any element of a fixed partition {Cl} of X , where each partition element

Cl contains exactly one element of the ε-net. To quantify Proposition 6.1(b),

we choose another small parameter η̄ = η̄(δ, R, η, ε) and then a large T0 =
T0(δ, R, η, ε, η̄) so that the term oT→∞(1) in Proposition 6.1(b) is smaller

then η̄. We will obtain a Riemann sum over k1 which we will replace by a

Riemann integral to complete the proof.

Now we give the details of the proof. For an ε = ε(δ, R, η), divide X into

cubes {Cl} with diameter smaller than ε. Let xl = (ql, vl) be the center of Cl .

Next decompose Ik1,k2 =
∑

l1,l2
Ik1,k2,l1,l2 , where

Ik1,k2,l1,l2 =
∫ T

0

∫ T

0

1ξt1
(x)=k1

1Cl1
(ht1 x)1ξt2

(x)=k2
1Cl2

(ht2 x)

× ρ(ht1 x, ht2 x, k2 − k1 + β(qt2)− β(qt1))dt1dt2.

Using uniform continuity of ρ(x ′, x ′′, t) on the set |t | ≤ 2R, we see that for

any η > 0 we can take ε so small that for all (x ′, x ′′) ∈ Cl1 × Cl2 and for all

k1, k2 satisfying |k1 − k2| ≤ R, we have

∣∣ρ(x ′, x ′′, k2 − k1 + β(qt2)− β(qt1))− ρk1,k2,l1,l2

∣∣ ≤ η,
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where

ρk1,k2,l1,l2 = ρ(xl1, xl2, k2 − k1 + β(ql2)− β(ql1)).

Therefore, we have

∣∣∣∣Ik1,k2,l1,l2 −
∫ T

0

∫ T

0

1ξt1
(x)=k1 1Cl1

(ht1 x)1ξt2
(x)=k2 1Cl2

(ht2 x)ρk1,k2,l1,l2 dt1dt2

∣∣∣∣

=
∣∣Ik1,k2,l1,l2 − Jk1,l1 Jk2,l2ρk1,k2,l1,l2

∣∣ ≤ ηJk1,l1 Jk2,l2 =: κk1,l1,k2,l2 (6.9)

where

Jk,l = mes(t ∈ [0, T ] : ξt (x) = k1, ht x ∈ Cl).

Next, Proposition 6.1(b) implies that for any fixed η̄, R, and partition {Cl}, we

can take T so large so that for all k with

∣∣∣∣
k − sT (x)√

ln T

∣∣∣∣ ≤ R,

∣∣Jk,l − Jk,l,1

∣∣ < Jk,l,2, (6.10)

where

Jk,l,1 =
T√
ln T

μ(Cl)p

(
k − sT (x)√

ln T

)
, Jk,l,2 =

T√
ln T

η̄. (6.11)

That is, Jk,l,1 is the leading term and Jk,l,2 is an error term. Then by (6.10)

and by the triangle inequality, we have

∣∣Jk1,l1 Jk2,l2 − Jk1,l1,1 Jk2,l2,1

∣∣ ≤ Jk1,l1,2 Jk2,l2 + Jk1,l1,1 Jk2,l2,2 ≤ C
T 2η̄

ln T
.

Multiplying by ρk1,k2,l1,l2 and then summing for (k1, k2) as in (6.7) and for

l1, l2, we obtain

∣∣∣∣∣∣
∑

k1,l1,k2,l2

Jk1,l1 Jk2,l2ρk1,k2,l1,l2 −
∑

k1,l1,k2,l2

Jk1,l1,1 Jk2,l2,1ρk1,k2,l1,l2

∣∣∣∣∣∣
≤ (6.12)

‖ρ‖∞Card({(k1, k2)})Card2({Cl})C
T 2η̄

ln T
≤ C̄ R2Card2({Cl})

T 2

√
ln T

η̄.

(6.13)

We choose η̄ small so that the right hand side of (6.13) is smaller than
δT 2

10
√

ln T
.
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To study the leading term, i.e. the second sum in (6.12), let us note that by

(6.11),

R := ln T

T 2

∑

k1,l1,k2,l2

Jk1,l1,1 Jk2,l2,1ρk1,k2,l1,l2

is expressed by

R =
∑

k1,l1,k2,l2

μ(Cl1)μ(Cl2)p

(
k1 − sT (x)√

ln T

)
p

(
k2 − sT (x)√

ln T

)
ρk1,k2,l1,l2 .

Next, decreasing ε if necessary10 and then taking T sufficiently large, we

can approximate the Riemann sum R by the corresponding integral. Thus we

can achieve that
∣∣∣∣

R√
ln T

− IR

∣∣∣∣ ≤
δ

10

where

IR =
(∫ R

−R

p2(z)dz

) ∑

|k|<R

∫∫
ρ(x ′, x ′′, k + β(q(x ′′))

−β(q(x ′))dμ(x ′)dμ(x ′′).

Here, as before,
√

ln T appears in the denominator to account for the summa-

tion with respect to k1, the sum with respect to k2 is rewritten as a sum over

k = k2 − k1, and we have used the fact that due the first constraint in (6.7),

p

(
k2 − sT (x)√

ln T

)
= p

(
k1 − sT (x)√

ln T

)
+ O

(
R√
ln T

)
.

Next, we verify that the error terms κk1,l1,k2,l2 defined in (6.9) are negligible.

To this end, we claim that

∑

k1,l1,k2,l2

|κk1,l1,k2,l2 | ≤
C R2T 2

√
ln T

η

uniformly in ε. Indeed, each term in the sum satisfies

∣∣κk1,l1,k2,l2

∣∣ ≤ CT 2η

ln T
μ(Cl1)μ(Cl2) ≤

C̄ε6T 2η

ln T

10 Recall that ε is the diameter of {Cl }.
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and the number of terms is of order

O
(

R2
√

ln T Card2({Cl})
)
= O

(
R2
√

lnT

ε6

)
.

Therefore choosing η sufficiently small, we get

∣∣κk1,l1,k2,l2

∣∣ ≤ T 2δ

10
√

ln T
.

Finally, using the fact that for Gaussian densities

∫ ∞

−∞
p2(z)dz = p(0)√

2
,

we obtain limR→∞ IR =
p(0)√

2
�(H). Thus choosing R0 so large that for all

R > R0, ∣∣∣∣IR −
p(0)√

2
�(H)

∣∣∣∣ ≤
δ

100
(6.14)

completes the proof of the lemma. ��
We have finished the proofs of Lemmas 6.2 and 6.3. The proof of h2 is

complete. ��

6.2 Variance

Proof of h3. Recalling the definition of ρ we can rewrite

�(H) =
∑

k

∫∫∫
H(x ′, y)H(x ′′, Gk+β(q(x ′′))−β(q(x ′))y)dμ(x ′)dμ(x ′′)dν(y)

=
∑

k

∫∫∫
H(x ′, Gβ(q(x ′)y)H(x ′′, Gk+β(q(x ′′))y)dμ(x ′)dμ(x ′′)dν(y)

= ρ(H)

where

H(y) =
∫

X

H(x, Gβ(q(x))y)dμ(x) (6.15)

and

ρ(H) =
∑

k

∫
H(y)H(Gk y)dν(y). (6.16)
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Observe that for each H ∈ Cr (Y ) there is H ∈ Cr (X × Y ) such that

H(y) =
∫

X

H(x, Gβ(q(x))y)dμ(x).

Indeed we can just take H(x, y) = ψ(q(x))H(G−β(q(x))y) where ψ is a

probability density supported on a small ball centered at q0. (Note that β(q(x))

is smooth if d(q(x), q0) is smaller than the injectivity radius of our surface

Q.)

Therefore h3 follows from the result below. ��
Theorem 6.4 Let G be a diffeomorphism of a compact manifold Y which

preserves a smooth measure ν. Assume that (G, ν) is exponentially mixing (of

order 2) on Cs(Y ). Then ∃H ∈ Cs such that ρ(H) 	= 0 where11

ρ(H) =
∞∑

k=−∞

[
ν(H(H ◦ Gk))− (ν(H))2

]
. (6.17)

Proof Call a point y0 ∈ Y slowly recurrent if for each A, K there exists

r0 = r0(A, K ) such that for each r ≤ r0 we have

ν(B(y0, r) ∩ G−k B(y0, r)) ≤ ν(B(y0, r))

| ln r |A

for 1 ≤ k ≤ K | ln r |. By [36, Lemma 4.13] for exponentially mixing systems

almost every y0 is slowly recurrent. Take such a point y0 and let r ≤ r0(2,K )
2

where K is large enough (see (6.18) below). With these parameters fixed,

choose a function ψ such that

(i) supp(ψ) ∈ B(y0, r);

(ii) ν(ψ) = 0;

(iii) ‖ψ‖C0 ≤ 1;

(iv) ν(ψ2) ≥ c1ν(B(y0, r));

(v) ‖ψ‖Cs ≤ c2r−s .

By (ii), ρ(ψ) = ν(ψ2) + 2
∑∞

k=1
ν(ψ(ψ ◦ Gk)). By (iv) the first term is at

least c1ν(B(x0, r)). We will show that the remaining sum is of the lower order

if r is small enough. Indeed by exponential mixing and (v), |ν(ψ(ψ ◦Gk))| ≤
c3r−2sθk . Hence

∞∑

k=K | ln r |
|ν(ψ(ψ ◦ Gk))| ≤

c1

10
ν(B(y0, r)) (6.18)

11 Note that if H is given by (6.15) where H satisfies (5.1) then ν(H) = 0 so (6.17) reduces to

(6.16).
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if K is large enough. Note that |ψ(y)ψ(Gk y)| ≤ 1 and moreover, this product

is zero unless y ∈ B(y0, r) ∩ G−k B(y0, r). Since y0 is slowly recurrent it

follows that for 1 ≤ k ≤ K | ln r |

|ν(ψ(ψ ◦ Gk))| ≤ ν(B(y0, r) ∩ G−k B(y0, r)) ≤ ν(B(y0, r))

| ln r |2 .

Hence by further decreasing r if necessary we get that

K | ln r |∑

k=1

|ν(ψ(ψ ◦ Gk))| ≤
c1

10
ν(B(y0, r)). (6.19)

Combining (ii), (6.18) and (6.19) we obtain the result. ��
Remark 6.5 While Theorem 6.4 appears to be new for general exponentially

mixing systems, it seems to be well known for all currently known examples

of exponentially mixing systems.

We also note that Theorem 6.4 is much stronger than what is needed to

prove Theorem 1.3(a). Namely, to prove Theorem 1.3(a) it suffices to produce

one flow G which is exponentially mixing of all orders and one function H

such that ρ(H) 	= 0. In particular, one can take (Y, ν) = (X, μ) (recall that

X is the unit tangent bundle of a compact hyperbolic surface with constant

negative curvature) and G = G–the geodesic flow. Next, take

H(y) =
∫ 1

0

J (Gs y)dy where J (y) = ω(q(y))(v(y))

and ω is a harmonic one form. Then

ρ(H) =
∫

Y

∫ ∞

−∞
J (y)J (Gs y) ds dν(y) = 4

∫

Y

J 2(y)dν(y)

where the first identity is obtained by direct computation and the second one

is proven in [81, Theorem 2]. In fact, in the case G = G, a much stronger

result than Theorem 6.4 is known, namely, the set of H such that ρ(H) = 0 is

a linear subspace of infinite codimension.

Indeed, if ρ(H) = 0 then L2 Gottschalk–Hedlund Theorem ([23]), implies

that H is an L2 coboundary, that is there is an L2 function A such that H =
A− A ◦G1. Then the Livsic theorem for partially hyperbolic systems ([108,

Theorem A]) implies that A has a continuous (in fact smooth) version. It then

follows that the ergodic sums of H are uniformly bounded, which implies that

H has zero mean with respect to any G invariant ergodic measure. Since there

are uncountably many such measures ([14]), the condition ρ(H) = 0 holds on

a subspace of infinite codimension.
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6.3 Mixing local limit theorem for geodesic flow

Proof (Proof of Proposition 6.1) Part (a) is [42, Theorem 5.1] but we review

the proof as it will be needed for parts (b) and (c). The key idea is to rewrite

the temporal limit theorem for the horocycle flow as a central limit theorem

for the geodesic flow. To be more precise, let h(x, t) and g(x, t) denote the

configurational component of the horocycle H(x, t) and the geodesic of length

t starting from x . Consider the quadrilateral �(x, t, T ) formed by

h(x, t), −g(ht (x), T ), −h(G− ln T x, t/T ), g(x, T ),

where − indicates that the curve is run in the opposite direction. This curve

�(x, t, T ) is contractible as can be seen by shrinking t and T to zero. Therefore

the Stokes Theorem gives

ξt (x) =
(∫ ln T

0

τ ∗(Gr hu x̄)dr

)
+ β(hu x̄)− β(x̄), (6.20)

where x̄ = G− ln T x, u = t/T and τ ∗(q, v) = λ(v). Note that if t is uniformly

distributed on [0, T ] then u = t/T is uniformly distributed on [0, 1]. Since the

curvature is constant, it follows that hu x̄ is uniformly distributed on H(x̄, 1).

Now part (a) follows from the central limit theorem for the geodesic flow G.

To prove part (b), write

τ̂s(y) =
∫ s

0

τ ∗(Gr y)dr + β(y)− β(Gs y). (6.21)

Then by (6.20), we have

√
ln T

T

∫ T

0

1ξt (x)=k1ht (x)∈Adt =
√

ln T

∫ 1

0

1τ̂ln T (hu(x̄))=k1Gln T (hu(x̄))∈Adu.

Denote t = ln T . Then the claim of part (b) is reduced to showing that

√
t

∫ 1

0

1τ̂t(hu x̄)=k1Gt(hu x̄)∈Adu = p(k/
√

t)μ(A)+ ot→∞(1). (6.22)

Next, we claim that if n is a smooth measure on X , then

√
t

∫

X

1τ̂t(x̃)=k1Gt(x̃)∈Adn = p(k/
√

t)μ(A)+ ot→∞(1). (6.23)

Note that (6.23) is a special case of the mixing local limit theorem proven in

[40]. Specifically, with the notation of [40, Definition 3.1] (Mixing local limit
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theorem for flows), we choose uV to be the counting measure on V = Z and

define the functions X : X → R, Y : X → R, F = Ft : X → R, Z : R → R
by

X(x̃) = dn

dμ
(x̃), Y(x̃) = 1x̃∈A, F(x̃) = τ̂t(x̃)−W (t), Z(z) = 1z=0,

where W = k/
√

t and W (t) = k. Noting that by (6.21) and by choosing

ϕ = τ ∗, F is indeed of the required form, we conclude that [40, Definition 3.1]

gives (6.23). (Minor remark: Y is required to be continuous in [40, Definition

3.1]. Our Y is not continuous, but it is almost everywhere continuous due to

our assumption on A which is sufficient for the mixing local limit theorem to

hold, cf. Remarks 2.1 and 3.3 in [40].)

Mixing Local Limit Theorem for Anosov flows is proven in [40]. However,

we need to verify that we have V = Z in [40, Definition 3.1]. To this end, we

need to verify the technical assumption of [40, Proposition 6.1], namely that

the observable is “minimal and its linearized group falls into case (B)”.

To explain the exact meaning of this condition, we need some definitions.

Let us represent the geodesic flow G as a suspension flow over a Poincaré

section M such that the first return map T : M → M is Markov ( [13]). Let

r : M → R+ be the first return time, that is G is a suspension over the base

(M, T ) with roof function r . Denote τ̄ (x) = τ̂r(x)(x) for x ∈ M . Define

rn(x) =
n−1∑

j=0

r(T j x), τ̄n(x) =
n−1∑

j=0

τ̄ (T j x). (6.24)

For a function f : M → Rd , denote by S(f) the smallest closed subgroup of

Rd , a translate of which contains the range of f and let M(f) =
⋂

h∼f
S(h),

where ∼ stand for the coboundary relation. Now let f : M → R2 be defined

by f(x) := (τ̄ (x), r(x)). It is clear that S(f) = Z×R. The condition quoted at

the end of the previous paragraph states that M(f) = Z×R. This is proven for

a different system in [38, Lemma A.3]. However the same proof works for any

system assuming that the following two conditions hold: first, for any positive

constant b, the suspension over (M, T ) with roof function b + r is weakly

mixing and second, τ̄ is minimal. The first condition follows from the contact

property of the geodesic flow (see the proof of Lemma A.2 in [38] which only

relies on the contact structure). To verify the second condition assume the

contrary, that is, τ̄ is not minimal. In this case where would exist h ∼ τ̄ and

� > 1 such that S(h) = �Z. As a result the integral of λ from (2.2) over all
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periodic orbits would be a multiple of �. This however would contradict the

main result of [67]. The contradiction shows that τ̄ is in fact, minimal.12

Note that the LHS of (6.22) also has the form of (6.23), however, in the

case of (6.22) the initial measure is not smooth, in fact, it is a uniform measure

on an unstable curve of the geodesic flow. However, one can deduce (6.22)

from (6.23) by the standard argument going back to Margulis’ thesis [84]

approximating the measures supported on unstable curve by smooth measures.

We sketch the argument here for completeness. To simplify the notation we

assume that β is continuous (and hence smooth) on h(x̄, 1). If it is not the

case, we break13 h(x̄, 1) into several pieces and apply the argument below to

each piece. Note that it suffices to show that for each compactly supported

Lipschitz probability density ψ on R and each Lipschitz function φ on X we

have

It :=
√

t

∫

R
ψ(u)1τ̂t(hu x̄)=kφ(Gthu x̄)du = p(k/

√
t)μ(φ)+ ot→∞(1)

(6.25)

since (6.22) follows from (6.25) by approximating 1[0,1] and 1A from above

and below by Lipschitz functions. To prove (6.25), take a small ε and consider

It,ε = ε−2
√

t

∫∫∫

R3
ψ(u)ψ(s/ε)ψ(t/ε)1τ̂t(x(u,s,t))=kφ(Gtx(u, s, t))dudsdt,

where x(u, s, t) = Gt h̃shu x̄ and h̃ is the unstable horocycle flow. On one

hand, for each fixed ε the distribution of x(u, s, t) is smooth, whence (6.23)

implies

It,ε = p(k/
√

t)μ(φ)+ ot→∞(1). (6.26)

On the other hand since x(u, s, t) belongs to the weak stable manifold of hu x̄ ,

we conclude that Gthu x̄ and Gtx(u, s, t) are O(ε) close. Hence there exists a

constant C = C(ψ, φ) such that

|1τ̂t(x(u,s,t))=k φ(Gtx(u, s, t))− 1τ̂t(hu x̄)=k φ(Gthu x̄)| ≤ Cε

12 The minimality of τ̄ is not essential for our argument. If τ̄ was not minimal the argument of

Sect. 6.1 would still go through but the summations over k ∈ Z would need to be replaced by

the summations over k ∈ �Z for some � > 1. What is important is that the results of [40] allow

us to describe the local distribution of τt in all the cases.
13 Note that the discontinuity set of β on Q is a finite number of geodesic arcs. Namely

let Q = H2/�. If q is a discontinuity point of β, then there is γ̄ ∈ � \ {I d} such that

d(q, q0) = d(q, γ̄ q0) = minγ∈� d(q, γ q0). Since the diameter of Q is finite, the discontinuity

set of the map x �→ β(q(x)) on X is contained in a finite number of analytic surfaces transverse

to the orbits of hu .
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unless Gtx(u, s, t) ∈ Dε where Dε denotes the Cε neighborhood of the dis-

continuity set of β. Accordingly, denoting by nε the initial distribution of

x(u, s, t) defined by

nε(A) =
∫∫∫

R3
ψ(u)ψ(s/ε)ψ(t/ε)A(Gt h̃shu x̄)dudsdt,

we obtain

∣∣It,ε − It
∣∣

≤ C̄
[√

t nε(x : |τ̂t(x)− k| ≤ 1)ε +
√

tnε(x : |τ̂t(x)− k| ≤ 1, Gt x ∈ Dε)
]
.

(6.27)

Since nε is smooth, (6.23) gives

√
t nε(x : |τ̂t(x)− k| ≤ 1) = O(1). (6.28)

Next, approximating 1Dε from above by a Lipschitz function and arguing as

before we get that

√
t nε(x : |τ̂t(x)− k| ≤ 1, Gt x ∈ Dε) = O(ε). (6.29)

Combining (6.27), (6.28) and (6.29) we see that It,ε = It + O(ε) where

the implied constant depends on the Lipschitz norms of ψ and φ. Since ε is

arbitrary, (6.25) follows from (6.26). Part (b) of Proposition 6.1 follows.

To prove part (c), we again use the approach of [40] to lift the anticoncentra-

tion inequality from discrete to continuous time. Let us represent the geodesic

flow G as a suspension flow over a Poincaré section M such that the first return

map T : M → M is Markov ( [13]). The approximation arguments of the

proof of part (b) also show that it suffices to prove that for any smooth measure

n on M ,

n(x : τ̂t(x) = k) ≤ C/
√

t (6.30)

holds uniformly in k. Recall the notation rn , τ̄n from (6.24). Let R =
max(‖r‖∞, ‖τ̄‖∞). Focusing on the last time before time t then the orbit

crosses M we see that it suffices to show that there exists C̄ so that for all t
and m,

n({x ∈ M : ∃n : t− R < rn(x) ≤ t, τ̄n(x) = m}) ≤ C̄/
√

t (6.31)

(indeed, (6.30) follows from (6.31) by summing over m such that |m−k| ≤ R).

To prove (6.31), we use a discrete anticoncentration estimate. Namely, we

use the following fact: there exists a constant Ĉ and a two dimensional Gaussian
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density g such that for each m, n

Pn ≤
Ĉ

n

[
g

(
t− rn√

n
,

m√
n

)
+ 1√

n

]
, (6.32)

where

Pn = n(x ∈ M : t− R < rn(x) ≤ t, τ̄n(x) = m)

and r is the mean free path (the average time between the crossings of M).

The estimate (6.32) was proven by Pène ([94]). Specifically, the last dis-

played formula on page 834 of [94] in the special case k = 0, A = B = M̄

(with the notation of [94]) reduces to (6.32). Now to prove (6.31), it is suffi-

cient to show that
∑c2t

n=c1t
Pn ≤ C̄/

√
t, where c1 = 1/R and c2 = 1/min r .

Indeed, the number of returns to M before time t is always between c1t and

c2t. Since
∑c2t

n=c1t

1

n3/2
≤ C/

√
t, it is enough to prove that

c2t∑

n=c1t

P ′n ≤ C̄/
√

t,

where P ′n =
1

n
g

(
t− rn√

n
,

m√
n

)
. Now let Ik = [t/r − 2k

√
t, t/r − 2k−1

√
t],

where k ranges over positive integers such that t/r − 2k−1
√

t > c1t. Then

∑

n∈Ik

P ′n ≤ |Ik |
1

c1t

[
exp

(
−r222k−2t

c2t

)]
≤ C

1√
t
2k exp(−c322k).

Summing over k, we obtain
∑t/r

n=c1t
P ′n ≤ C/

√
t. A similar argument gives

∑n=c2t

t/r
P ′n ≤ C/

√
t. This completes the proof of (6.31). ��

7 Theorem 2.3

In this section we prove Theorem 2.3. Recall that μ denotes the Lebesgue

measure on Tm and Rα : Tm → Tm is defined by Rα(x) = x + α.

The main result used in the proof is the following proposition which gives

bounds on ergodic averages of the base rotation by α:

Proposition 7.1 For every κ/2 < r < m, there exists d ∈ N such that for

every α ∈ D(κ), we have:

123



Flexibility of statistical properties 71

D1. for every φ ∈ Cr (Tm,R) with μ(φ) = 0,

1√
n

∥∥∥
∑

0≤k<n

φ(· + kα)

∥∥∥
2
→ 0,

as n →∞.

D2. there is a function τ := τ (α) ∈ Cr (Tm,Rd) such that μ(τ) = 0 and

n2κmμ
(
{x ∈ Tm :

∣∣∣
∑

0≤k<n

τ(x + kα)

∣∣∣ < log2 n}
)
→ 0,

as n →∞.

Let us show how to prove Theorem 2.3 using the above proposition:

Proof of Theorem 2.3 For r ∈ (κ/2,m) let d ∈ N be from Proposition 7.1 and

fixα ∈ D(κ). Let τ = τ (α) be from D2 and consider F(x, y) = (x+α, Gτ(x)y)

where (G t , Y, ν) is smooth Rd action action that is exponentially mixing of

all orders. F has zero entropy by Lemma 2.1 and so r1 holds.

Property r2 follows from Theorem 3.1. Namely, by D1 it follows that (3.1)

holds for f = Rα and for all A ∈ Cr (Tm,R) with σ 2(·) identically equal to

0. Moreover property (3.2) follows from D2 by taking m so that 2κm ≥ 5.

Next, we show r3, i.e., that the variance is non identically zero. Let τk(x)=∑
i<k

τ(x + iα). Recall that the last part of Theorem 3.1, namely (3.3) states

that for functions H satisfying (5.1), the asymptotic variance is given by

σ 2(H) =
∞∑

k=−∞

∫

T m

∫

Y

H(x, y)H(x + kα, Gτk(x)y)dν(y)dμ(x). (7.1)

We shall use that the map f (x) = x + α satisfies the following: for every

δ > 0, and every x0 ∈ Tm, if p =
(

D(α)
2δ

)1/κ
, then

f j B(x0, δ) ∩ B(x0, δ) = ∅ for every | j | ≤ p. (7.2)

Indeed, if the intersection is non-empty, then by α ∈ D(κ)

2δ > ||x0 − (x0 + jα)|| = || jα|| ≥ D(α)

| j |κ .

Let φ ∈ C∞(R) be a non-negative function supported on the unit interval.

Set H(x, y) = φ

( |x − x0|
δ

)
D(y), where D ∈ C∞(Y ), ν(D) = 0. Note that
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H satisfies (5.1) and so its asymptotic variance is given by (7.1). Next, the

term in (7.1) corresponding to k = 0 equals

∫

Tm

∫

Y

[
φ

( |x − x0|
δ

)
D(y)

]2
dν(y)dμ(x)

=
∫

Tm
φ2

( |x − x0|
δ

)
dμ(x) ·

∫

Y

D(y)2dν(y).

By a change of variables, the above term is equal to to

‖D‖2
2 · δm

∫

Rm
φ2(|x|)dx.

Notice that by (7.2), the terms in (7.1) with 0 < |k| ≤ p are equal to zero

since for such k, the function φ

( |x − x0|
δ

)
φ

( | f k x − x0|
δ

)
is identically

equal to 0.

For |k| > p, notice that for every x ∈ Tm by exponential mixing of G

∫

Y

H(x, y)H(x + kα, Gτk(x)y)dν(y) ≤ C‖D‖2
r · e−η|τk(x)|. (7.3)

If |τk(x)| ≥ log2 k, then the above integral is upper bounded by

C ′‖D‖2
r · k−2.

By D2, μ(|τk(x)| < log2 k) ≤ C ′′k−2κm. It follows that

∫

T m

∫

Y

H(x, y)H(x + kα, Gτk(x)y)dν(y)dμ(x)

≤ C ′‖D‖2
r · k−2δm + C ′′k−2κm‖D‖2

0, (7.4)

where the first term reflects the contribution of points x where |τk(x)| ≥
log2 k (and the factor δm appears since the LHS of (7.3) vanishes unless x ∈
supp(φ) ⊂ B(0, δ)) and the second term reflects the contribution of points x

where |τk(x)| < log2 k. Therefore (7.1) is equal to

‖D‖2
2 · δm

∫

Rm
φ2(|x|)dx + Err,

where the error term comes from the terms with k 	= 0 and so it satisfies

|Err | ≤ C ′δm‖D‖2
r

∑

|k|≥p

k−2 + C ′′‖D‖2
0

∑

|k|≥p

k−2κm
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≤ C ′′′
[
‖D‖2

r δ
m p−1 + ‖D‖2

0 p−2κm+1
]

(recall that the correlations vanish for 0 < |k| < p.)

Since p =
(

D(α)
2δ

)1/κ
, by taking δ small enough, we can guarantee that

C ′′′‖D‖2
r δ

m p−1 <
1

3
· ‖D‖2

2 · δm

∫

Rm
φ2(|x|)dx,

and

C ′′′‖D‖0 p−2κm+1 <
1

3
· ‖D‖2

2 · δm

∫

Rm
φ2(|x|)dx.

Therefore the LHS of (7.1) is positive. This finishes the proof. ��

It remains to prove Proposition 7.1:

Proof of Proposition 7.1 We start with property D1, which is much simpler.

Note that if φ(x) =
∑

k 	=0
ake2π i〈k,x〉 then

φN (x) =
∑

k 	=0

ake2π i〈k,x〉 1− e2π i N 〈k,α〉

1− e2π i〈k,α〉 .

Therefore

‖φN‖2
2 =

∑

k 	=0

|ak |2|Ak(N )|2 (7.5)

where Ak(N ) = 1−e2π i N 〈k,α〉

1−e2π i〈k,α〉 . A simple calculation gives

|Ak(N )| =
∣∣∣∣
1− e2π i N 〈k,α〉

1− e2π i〈k,α〉

∣∣∣∣ =
| sin(πN 〈k, α〉)|
| sin(π〈k, α〉)| . (7.6)

Since r > κ/2, Property D1 is a direct consequence of the following:

Lemma 7.2 For every α ∈ D(κ) there exists C > 0 such that for every r < κ

and φ ∈ Cr (Tm), we have

‖φN‖2 ≤ C N 1−(r/κ).

Proof Note that

|Ak(N ) ≤ N · | sin(πN 〈k, α〉)|||π〈k, α〉||
| sin(π〈k, α〉)|||πN 〈k, α〉|| ≤ C0 · N .
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Also if |〈k, α〉| ≤ 1, then |Ak(N )| ≤ 1
| sin(π〈k,α〉)| ≤ C0(π |〈k, α〉|)−1. There-

fore

|Ak(N )|2 ≤ C min
{
〈k, α〉−2, N 2

}
.

Since α ∈ D(κ), using the above estimate on |Ak(N )|2, we get

‖φN‖2
2 ≤ C D(α)

∑

|k|≤N 1/κ

|k|2κ |ak |2 + C
∑

|k|≥N 1/κ

N 2|ak |2 = C ′[I + II ]

where

I ≤
∑

|k|≤N 1/κ

(|k|2r |ak |2)k2(κ−r) ≤
∑

|k|≤N 1/κ

(|k|2r |ak |2)N 2(1− r
κ
)

≤ C‖φ‖2
Cr (N 1−(r/κ))2,

and II ≤
∑

|k|≥N 1/κ

(|k|2r |ak |2)(N 1−(r/κ))2 ≤ C‖φ‖2
Cr (N 1−(r/κ))2. ��

So it remains to establish property D2. We start with the following lemma:

Lemma 7.3 Let α ∈ D(κ). There exists Rm > 0 such that for every N ∈ N
there exists kN ∈ Zm satisfying:

|〈kN , α〉| < 1

4N
, |kN | ≤ Rm N 1/m.

Proof Let α = (α1, . . . , αm). For N ∈ N, consider the lattice

L(α, N ) =

⎛
⎜⎜⎝

N−1/m . . . 0 0

. . . . . . . . . . . .

0 . . . N−1/m 0

0 . . . 0 N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 . . . 0 0

. . . . . . . . . . . .

0 . . . 1 0

α1 . . . αm 1

⎞
⎟⎟⎠Zm+1 ⊂ Rm+1

The points in this lattice are of the form

e = (x, z) ∈ Rm × R

where x = k

N 1/m
, z = N · (〈k, α〉 + m) and (k,m) ∈ Zm × Z.

Let Rm be such that a ball B of radius Rm in Rm has volume 2m+3. Then

vol(B × [−1/4, 1/4]) ≥ 2m+2.
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So by Minkowski’s Theorem, L(α, N ) contains a non-zero vector (x, z) in

B × [−1/4, 1/4]. Let x = kN

N 1/m and z = N (〈kN , α〉 + m). Then |z| ≤ 1/4

and x ∈ B. This finishes the proof. ��

The following lemma gives an lower bound on the Ak(N ) for k of the form

k2� , � ∈ N.

Lemma 7.4 For everyα ∈ D(κ) let (kN )N∈N be the sequence from Lemma 7.3.

There exists c > 0 such that for every l ∈ N and every N ∈ [2l, 2l+1], we

have

|Ak
2l
(N )|

|k2l |r
≥ c · N 1−r/m.

Proof By the bound on k2l from Lemma 7.3 it suffices to show that

|Ak
2l
(N )| ≥ c′ · N .

By Lemma 7.3, |N 〈k2l , α〉| < 1/2. Now using the estimate C−1 <
sin z

z
< C

for z = N 〈k2l , α〉 and z = 〈k2l , α〉 in (7.6), we obtain the result. ��

For α ∈ D(κ), let (k2l )l∈N be the sequence from Lemma 7.4. For a real

sequence {al}l∈N ⊂ [−1, 1], let τα((al)) = τ(al) : Tm → C be given by

(τ (al))(x) =
∑

l>0

ale
2π i〈k

2l ,x〉

|k2l |r l2
. (7.7)

For d ∈ N let τ(a
(1)
l , ..., a

(d)
l ) : Tm → Cd be defined by (τ (x)) j =

(τ (a
( j)
l ))(x). Let {a( j)

l } j≤d,l∈N be random variables uniformly distributed on

the unit interval in Rd and the corresponding probability measure is denoted

by Pā , i.e.

Pā(a
( j)
l ∈ Ai,�, for j ≤ d, � ∈ N)

=
∏

j≤d,�∈N

Leb
(
{x ∈ [−1, 1] : a

( j)
l (x) ∈ A j,�}

)

Lemma 7.5 For every ε > 0 there exists C > 0 such that for every x ∈ Tm

and every N ∈ N,

Pā

(
‖(τ (ā))N (x)‖ ≤ N ε

)
<

(
C

N 1−r/m−2ε

)d

.
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Proof Since for a fixed x different components of τ are independent, it suffices

to consider the case d = 1. In this case, τ is given by (7.7). Let l be such that

N ∈ [2l, 2l+1]. We now fix all the a j for j 	= l. Then, since N , x and all

frequencies 2 j except 2l are fixed, we can write (with some c ∈ C depending

on a j , j 	= l and N ),

τN (x) = c+
al Ak

2l
(N )e2π i〈k

2l ,x〉

|k2l |r l2
. (7.8)

Let M=(M1, M2):= 1
|k

2l |r l2

(
�
(

Ak
2l
(N )e2π i〈k

2l ,x〉
)
,�
(

Ak
2l
(N )e2π i〈k

2l ,x〉
))

.

By Lemma 7.4,

|M | =
|Ak

2l
(N )|

|k2l |r l2
≥ c · N 1−r/m−ε .

Let us WLOG assume that |M1| ≥ c/2 · N 1−r/m−ε (if |M2| ≥ c/2 · N 1−r/m−ε

the proof is analogous). It then follows that the measure of z ∈ [−1, 1] for

which |M1 · z − �(c)| < N ε, is bounded above by
2

cN 1−r/m−2ε
. Since al is

uniformly distributed on [−1, 1], (7.8) finishes the proof. ��

Now we are ready to define the map τ and hence also finish the proof of D2.

Take d ∈ N such that d(1− r/m−2ε) > 10κm. Summing the estimates of

Lemma 7.5 over N , we obtain that for some C ′ > 0 and every fixed x ∈ Tm,

Pā

(
{ there exists N ≥ n : ‖(τ (ā))N (x)‖ ≤ N ε}

)
<

C ′

n10κm−1
.

It follows by Fubini’s theorem that

(Pā × μ)
(
{(ā, x) : for all N ≥ n, ‖(τ (ā))N (x)‖ ≥ N ε}

)
≥ 1− C ′

n10κm−1
.

Using Fubini’s theorem again, we get that there exists An with P(An) ≥
1− C ′

n4κm , such that for every ā ∈ An ,

μ({x : for all N ≥ n, ‖(τ (ā))N (x)‖ ≥ N ε}) ≥ 1− C ′

n4κm
.

It is then enough to take ā ∈
⋂

n≥N0

An for any fixed N0 (notice that
⋂

n≥N0

An is non-empty if N0 is large enough). Then the corresponding
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τ(ā) : Tm → Cd = R2d satisfies D2 (with 2d instead of d). This finishes the

proof of the proposition. ��
Part IV. Flows with intermediate mixing properties satisfying CLT.

8 Surface flows in the base

8.1 Proofs of Theorems 2.4 and 2.5

In this section we prove Theorems 2.4 and 2.5. The proofs rely on two auxiliary

results, Proposition 8.1 and Lemma 8.2, which will proven later.

Proposition 8.1 There exists a set P ⊂ T with Leb(P) = 1 such that for

every α ∈ P if (ϕt ) ∈ K(α, logsym) ∪ K(α, γ ), with γ ∈ Bsing, then there

exists ε, δ > 0 such that for every A ∈ C3(M),

T δ
∣∣∣μ
({

x ∈ M :
∣∣∣
∫ T

0

A(ϕt x)dt − Tμ(A)

∣∣∣ = O(T 1/2−ε)
})
− 1

∣∣∣→ 0,

as T →∞.

Lemma 8.2 Let FT be a C∞ (T, T−1) flow on M × Y :

FT (x, y) = (ϕT (x), GτT
(y)).

Suppose that G-action on (Y, ν) is exponentially mixing of all orders and that

the base flow on M preserves a measure μ and satisfies the following: there

exists C,m > 0 such that for every δ > 0, we have

ϕs B(x0, δ) ∩ B(x0, δ) = ∅ (8.1)

for |s| ∈ (Cδ, p), with p =
(

1
Cδ

) 1
m

. Then there exists H ∈ C∞(M × Y )

satisfying (5.1) such that �2(H) > 0 where

�2(H) =
∫ ∞

−∞

∫

M

∫

Y

H(x, y)H( ft x, Gτt (x)y)dν(y)dμ(x)dt. (8.2)

The proof of Lemma 8.2 is relatively short and will be given in Sect. 8.2.

The proof of Proposition 8.1 is longer and will be given in Sect. 8.3.

Proof of Theorem 2.4. By [49] there exists a full measure set P ′ such that for

every α ∈ P ′, every (ϕt ) ∈ K(α, logsym) is weakly mixing and not mixing.

123



78 D. Dolgopyat et al.

Let us take (ϕt ) ∈ K(α, logsym), with α ∈ P ′ ∩ P ∩ D, where P is from

Proposition 8.1, and

D :=
{
α ∈ T : ∃C,m > 0 such that ‖kα‖ ≥ C

km
, for k ∈ Z \ {0}

}

is the set of Diophantine numbers (the set D will be used in proving that the

variance is not identically zero).

Then (ϕt ) is weakly mixing but not mixing and so (FT ) is also not mixing

(since the base is not mixing). To see that FT is weakly mixing we note that if

H ∈ C∞(M × Y ), then analogously to (5.11)

H(x, y) = H̃(x, y)+ H̄(x),

where H̄(x) =
∫

Y
H(x, y)dν, and for every x ∈ M ,

∫
Y

H̃(x, y)dν = 0. We

can WLOG assume that
∫

M
H̄(x)dμ =

∫
M×Y

H(x, y)dμdν = 0.

Then

∫

M

∫

Y

H(x, y)H(FT (x, y))dνdμ

=
∫

M

∫

Y

H̃(x, y)H̃(FT (x, y))dνdμ+
∫

M

∫

Y

H̃(x, y)H̄(ϕT x)dνdμ

+
∫

M

∫

Y

H̄(x)H̃(FT (x, y))dνdμ+
∫

M

∫

Y

H̄(x)H̄(ϕT (x))dνdμ.

The mixed terms (involving H̄ and H̃ ) are 0, since for every x ∈ M ,∫

Y

H̃(x, y)dν = 0 and H̄ only depends on x . Moreover, the term involv-

ing only H̃ goes to 0 as T goes to ∞ by exponential mixing of (G t ) and

positivity of τ . Finally, by weak mixing of (ϕt )

1

R

∫ R

0

∣∣∣
∫

M

∫

Y

H̄(x)H̄(ϕT (x))dνdμ

∣∣∣dT → 0

as R →∞.

Putting this together, we get

1

R

∫ R

0

∣∣∣
∫

M

∫

Y

H(x, y)H(FT (x, y))dνdμ

∣∣∣dT → 0

as R →∞.

So (FT ) is weakly mixing. This gives w1. Next w2 follows from Theorem 3.2,

since Proposition 8.1 implies that (3.4) is satisfied with σ 2(·) identically equal

123



Flexibility of statistical properties 79

to 0, and by Remark 3.3 we know that (3.5) holds. Moreover since σ 2(A) = 0

for all functions which depend only on the base variables, the limiting variance

for functions satisfying (5.1) is given by (8.2). Hence the fact that the limiting

variance is non-zero follows from Lemma 8.2 once we check that the base

flow satisfies (8.1). To check (8.1) we consider the representation of ϕ as a

special flow over a rotation. Thus

ϕs(θ, u) = (θ + nα, u + s − fn(θ))

for some |n| ≤ C̄ |s| where fn is the ergodic sum of f. If n = 0 then (8.1)

holds since the second coordinates differ by at least Cδ. If n 	= 0 then the first

coordinates differ by at least δ since α is Diophantine. This shows that (8.1)

holds and completes the proof of Theorem 2.4. ��
Proof of Theorem 2.5 By [47] there exists a full measure set P ′ such that for

every α ∈ P ′′, every (ϕt ) ∈ K(α, γ ) is polynomially mixing. Let use take

(ϕt ) ∈ K(α, γ ), with α ∈ P ′′ ∩ P ∩ D. Then (ϕt ) is polynomially mixing.

Moreover by Proposition 8.1 for τ , it follows that τ satisfies polynomial large

deviation bounds:

μ
(
{x ∈ M : |τT (x)− Tμ(τ)| < ε}

)
≤ C · T−δ.

Therefore by Theorem 4.1(b) in [35]14, (FT ) is also polynomially mixing.

Moreover, the entropy of (ϕt ) is zero and so (FT ) is not K . This gives n1.

Next, n2 follows from Theorem 3.2 since by Proposition 8.1, (3.4) holds with

σ 2(·) identically equal to 0 and (3.5) holds by Remark 3.3. Now n3 follows

by Lemma 8.2 similarly to the proof of Theorem 2.4. ��

8.2 Variance

Proof of Lemma 8.2 Let φ be a non negative function supported on the unit

interval, withφ(t) ≡ 1 for t ∈ [1/4, 3/4]. Set H(x, y) = φ

(
d(x, x0)

δ

)
D(y),

where D is a C∞ observable on Y with ν(D) = 0. Note that ν(D) = 0 implies

that H satisfies (5.1).

We split the integral over (−∞,∞) into three summands �2(H) = I1 +
I2 + I3, where

I1 =
∫ Cδ

−Cδ

∫

M

∫

Y

H(x, y)H(ϕs x, Gτs(x)y)dν(y)dμ(x)ds,

14 Although Theorem 4.1(b) in [35] only covers the discrete case, the proof is the same for

continuous time, see Remark 4.11 in [35].
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I2 =
∫

(−p,−Cδ)∪(Cδ,p)

∫

M

∫

Y

H(x, y)H(ϕs x, Gτs(x)y)dν(y)dμ(x)ds

and

I3 =
∫

(−∞,−p)∪(p,∞)

∫

M

∫

Y

H(x, y)H(ϕs x, Gτs(x)y)dν(y)dμ(x)ds.

Notice that I2 equals zero as for every |s| ∈ (Cδ, p),

φ

(
d(x, x0)

δ

)
· φ
(

d(ϕs x, x0)

δ

)
,

is identically equal to zero by (8.1). Moreover, since τ is positive, and (G t ) is

exponentially mixing, it follows that for any u ≥ p, τu(x) ≥ cτ · u, and so for

some global C ′ > 0,

|I3| ≤ C ′ ·
∣∣∣
∫

|u|>p

∫

Y

D(y)D(Gτu(x)(y))dνdu

∣∣∣

≤ C ′′‖D‖2
r ·
∫

|u|>p

e−ηcτ udu

≤ C ′′′‖D‖2
r · e−ηcτ p.

Finally,

I1 =
∫ Cδ

−Cδ

∫

M

∫

Y

H(x, y)H(ϕs x, Gτs(x)y)dν(y)dμ(x)ds

=
∫ Cδ

−Cδ

∫

M

∫

Y

H(x, y)H(ϕs x, y)dν(y)dμ(x)ds + O(δ4)

= ‖D‖2
2 ·
∫ Cδ

−Cδ

∫

M

φ

(
d(x, x0)

δ

)
· φ
(

d(ϕs x, x0)

δ

)
dμds + O(δ4).

Next, there exists c′φ > 0

∫ Cδ

−Cδ

∫

M

φ

(
d(x, x0)

δ

)
· φ
(

d(ϕs x, x0)

δ

)
dμds ≥ c′φ · C2δ · δ2 = c′φC2δ3.

If we take δ sufficiently small we can then guarantee that |I1| > 2|I3| and |I1| >

0 (the first inequality since we have p =
(

1
Cδ

) 1
m

). Summarizing �2(H) > 0.

��
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8.3 Proof of Proposition 8.1

We start with some results on deviation of ergodic averages for functions with

logarithmic singularities and with power singularities.

For N ∈ N, let θmin,N := min j<N ‖θ + jα‖, where θ ∈ T and ‖z‖ =
min{z, 1− z}. In the lemmas below we want to cover the cases of logarithmic

and power singularities simultaneously. For roof functions with logarithmic

singularities one can get much better bounds (with deviations being a power

of log) but we do not pursue the optimal bounds here since the bounds of the

present section are sufficient for our purposes. Let J ∈ C2(T \ {0}) be any

function satisfying

lim
θ→0+

J (θ)

θ−γ
= P and lim

θ→1−

J (θ)

(1− θ)−γ
= Q, (8.3)

for some constants P, Q. Notice that by l’Hopital’s rule it follows that any f

as in (2.8) satisfies (8.3) (with P = Q = 0 if f has logarithmic singularities).

Recall that γ ≤ 2/5.

In what follows, let (an) denote the continued fraction expansion and (qn)

denote the sequence of denominators of α, i.e. q0 = q1 = 1 and

qn+1 = an+1qn + qn−1. (8.4)

Set

Jm(x) :=
∑

0≤ j<m

J (x + jα).

Lemma 8.3 For every x ∈ T and every n ∈ N,

∣∣∣∣Jqn (θ)− qn

∫

T
J (ϑ)dϑ

∣∣∣∣ = O
(
θ
−γ

min,qn

)
.

Proof Let J̄ (θ) = (1−χ[− 1
10qn

, 1
10qn

](θ))· J (θ). Then J̄ is of bounded variation.

Notice that for i 	= j , 0 ≤ i, j < qn ,

‖(θ + iα)− (θ + jα)‖ = ‖(i − j)α‖ ≥ sup
0<s<qn

‖sα‖ ≥ 1

2qn

.

Therefore the cardinality of the set {θ + jα} j<qn

⋂[
− 1

10qn
, 1

10qn

]
, is either

zero or one. It follows that

∣∣ J̄qn (θ)− Jqn (θ)
∣∣ = O

(
θ
−γ

min,qn

)
,
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by the definition of θmin,qn . By the Denjoy–Koksma inequality,

∣∣∣∣ J̄qn (θ)− qn

∫

T
J̄ (ϑ)dϑ

∣∣∣∣ ≤ Var( J̄ ) = O(q
γ
n ).

Moreover, since

∣∣∣∣{θ + jα} j<qn ∩
[
−10

qn

,
10

qn

]∣∣∣∣ ≥ 1 it follows that θmin,qn ≤
10

qn

, and so q
γ
n = O

(
θ
−γ

min,qn

)
. It remains to notice that

∣∣∣∣
∫

T
J̄ dϑ −

∫

T
Jdϑ

∣∣∣∣ =
∫ 1

10qn

0

Jdϑ +
∫ 1

1− 1
10qn

Jdϑ = O
(
q
γ
n /qn

)
,

by the definition of J̄ . Since γ < 1
2
, the result follows. ��

Lemma 8.4 Fix ζ,C > 0 and assume that α is such that sup
n∈N

qn+1

q
1+ζ
n

≤ C for

some ζ,C > 0. Then for every N ∈ N

∣∣∣∣JN (θ)− N

∫

T
J (ϑ)dϑ

∣∣∣∣ = O
(

N ζ log N · θ−γ

min,N

)
.

Proof Let N =
∑

k≤M
bkqk , with bk ≤ ak , bM 	= 0, M = O(log N ) be the

Ostrovski expansion of N . For every point θ̄ = θ+ jα, j < N with j+qk < N ,

we have that θ̄min,qk
≥ θmin,N . Hence for each such point Lemma 8.3 gives

|Jqk
(θ̄)− qk

∫

T
J (ϑ)dϑ | = O

(
θ
−γ

min,N

)
. (8.5)

For k ≤ M and 0 ≤ j < bk let θ j,k := θ+ (
∑

s≤k−1 bsqs+ jqk)α. Since N =∑
k≤M bkqk it follows that for every k ≤ M we have (θ j,k)min,qk

≥ θmin,N .

Using cocycle identity we can split JN (θ) =
∑

k≤M

∑
j<bk

Jqk
(θ j,k). Then

using (8.5) for each θ j,k (and remembering that (θ j,k)min,qk
≥ θmin,N ), we get

∣∣∣∣JN (θ)− N

∫

T
J (ϑ)dϑ

∣∣∣∣ = O

(
M · sup

k

bk · θ−γ

min,N

)

= O
(

log N · N ζ θ
−γ

min,N

)
,

where we use that M = O(log N ) and (using (8.4))

sup
k

bk ≤ sup
k

ak = O(q
ζ
k ) = O(N ζ ).
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This finishes the proof. ��
We now define the full measure set P from Proposition 8.1. Let 0 < ζ <

1/1000 and

P := {α ∈ T : ∃C > 0 such that qn+1 < Cq1+ζ
n for every n ∈ N}. (8.6)

The set P has full measure by Khintchine’s theorem, [70]. Assume now that we

fix (ϕt ) ∈ K(α, logsym) ∪ K(α, γ ), with γ ∈ Bsing (in particular γ ≤ 2/5).

By definition Rα : T → T is the first return map and f is the first return

time. In particular for every x ∈ M (except the singularity), x = ϕs(θ), where

θ ∈ T and s < f (θ). We will denote this by x = (θ, s).

Let c = infT f > 0. For T > 0, we say that θ ∈ T is T -good if the orbit

{θ+ jα}
j≤ T

c
does not visit the interval

[
− 1

T 1+1/100
,

1

T 1+1/100

]
. We have the

following

Lemma 8.5 Let (ϕt ) ∈ K(α, logsym) ∪K(α, γ ) be a flow on M. Let

W (T ) := {x = (θ, s) ∈ M : θ is T -good}.

Then there exists η > 0 such that T ημ(W (T )c)→ 0 as T →∞.

Proof For an interval I ⊂ T, let I f := {(θ, s) : s < f (θ), θ ∈ I }. Note that

(W (T ))c =
⋃

j≤ T
c

I
f
j ,

where I j =
[
− jα − 1

T 1+1/100
,− jα + 1

T 1+1/100

]
. Moreover, by the dio-

phantine assumptions on α, all the intervals I j are pairwise disjoint. Therefore,

for j 	= 0,

sup
θ∈I j

f (θ) ≤ C · T (1+1/100)γ .

Hence

μ

⎛
⎜⎝

⋃

0 	= j≤ T
c

I
f
j

⎞
⎟⎠ ≤ CT (1+1/100)(γ−1). (8.7)

Moreover, since f satisfies (2.8), for some η > 0,

μ(I
f

0 ) =
∫
[
− 1

T 1+1/100 ,
1

T 1+1/100

] f d Leb ≤ T−2η. (8.8)
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for T sufficiently large. Combining (8.7) and (8.8) gives the result. ��

Using the two lemmas above we can prove Proposition 8.1.

Proof of Proposition 8.1 Let P be as in (8.6) and let (ϕt ) ∈ K(α, logsym) ∪
K(α, γ ), with γ ∈ Bsing (in particular γ ≤ 2/5). Let A ∈ C3(M) and denote

AT (x) :=
∫ T

0 A(ϕt x)dt . We will show that there exists C > 0 such that for

every T , and every x ∈ W (T ), we have

|AT (x)− Tμ(A)| ≤ CT 1/2−1/1000.

This by Lemma 8.5 will finish the proof of the proposition, as μ(W (T ))→ 1

as T → ∞. Let x = (θ, s) ∈ W (T ), i.e. θ is T -good. Then we have in

particular that

s < f (θ) ≤ CT (1+1/100)γ ≤ CT 1/2−1/1000

and

|AT (θ, s)− AT (θ, 0)| < C ′s ≤ C̄ ′T 1/2−1/1000.

Therefore, it is enough to show that if (θ, 0) ∈ W (T ), then

|AT (θ, 0)− Tμ(A)| ≤ C ′′T 1/2−1/1000. (8.9)

for some constant C ′′ > 0. For r > 0 let N (θ, 0, r) be such that

ϕr (θ, 0) = (θ + N (θ, 0, r)α, r̄),

i.e. N (θ, 0, r) is equal to the number of returns to the transversal T up to time

r .

Note that since c = minT f > 0, we have that the minimal return time is c

and so

cN (θ, 0, T ) ≤ T . (8.10)

Therefore ‖θ + N (θ, 0, T )α‖ ≥ min
j≤ T

c

‖θ + jα‖ ≥ T−1−1/100, since θ is T -

good. In particular by (2.8)

f (θ + N (θ, 0, T )α) ≤ C ′′′T (1+1/100)γ . (8.11)

So
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∫ T

0

A(ϕt (θ, 0))dt − Tμ(A)

= O
(

T (1+1/100)γ
)
+
(∫ N (θ,0,T )

0

A(ϕt (θ, 0))dt − N (θ, 0, T )μ(A)

)

+(T − N (θ, 0, T ))μ(A).

Since γ ≤ 2/5, it is enough to bound the second and last term above. It is

therefore enough to prove the following: for every θ which is T -good,

|T − N (θ, 0, T )| = O
(
T 1/2−1/1000

)
, (8.12)

and

∣∣∣
∫ N (θ,0,T )

0

A(ϕt (θ, 0))dt − N (θ, 0, T )μ(A)

∣∣∣ = O
(
T 1/2−1/1000

)
. (8.13)

Since N (θ, 0, T ) is the number of returns up to time T , we have

fN (θ,0,T )(θ) ≤ T ≤ fN (θ,0,T+1)(θ) ≤ fN (θ,0,T )(θ)+ C ′′′T (1+1/100)γ ,

the last inequality by (8.11). Hence up to an additional negligible error of size

T (1+1/100)γ , it is enough to control

| fN (θ,0,T )(θ)− N (θ, 0, T )|.

By (8.10) it follows that θmin,N (θ,0,T ) ≥ T−1−1/100. Hence Lemma 8.4, the

estimate N (θ, 0, T ) ≤ T/c and the fact that
∫

T f d Leb = 1 imply that

| fN (θ,0,T )(θ)− N (θ, 0, T )| ≤ O
(

T ζ+(1+1/100)γ log T
)
.

Since ζ + (1+1/100)γ ≤ 1/1000+ (1+1/100)2/5 ≤ 1/2−1/1000, (8.12)

follows.

To prove (8.13) we can WLOG assume that μ(A) = 0. Note that

∫ N (θ,0,T )

0

A(ϕt (θ, 0))dt =
N (θ,0,T )−1∑

i=0

∫ f (θ+iα)

0

A(ϕs(θ + iα, 0))ds

=
N (θ,0,T )−1∑

i=0

F(θ + iα)

where F(θ) =
∫ f (θ)

0

A(ϕs(θ, 0))ds. Moreover, Leb(F) = μ(A) = 0 and F

is smooth except at 0.
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Let p be the fixed point. We claim that for every ε > 0 there exists δ > 0

such that

(A(p)−ε) f (θ)−2‖A‖0δ
−1 ≤ F(θ) ≤ (A(p)+ε) f (θ)+2‖A‖0δ

−1. (8.14)

Indeed, we write

F(θ) =
∫ δ−1

0

A(ϕs(θ, 0))ds +
∫ f (θ)

δ−1
A(ϕs(θ, 0)).

The first integral is estimated trivially by ‖A‖0δ
−1. If the second integral is non

trivial, i.e. f (θ) > δ−1, this means that for sufficiently small δ > 0, ϕs(θ, 0) is

in ε2 neighborhood of the fixed point p for every s ∈ [δ−1, f (θ)). Therefore,

|A(ϕs(θ, 0))− A(p)| < ε. In particular,

(A(p)− ε)[ f (θ)− δ−1] ≤
∫ f (θ)

δ−1
A(ϕs(θ, 0)) ≤ (A(p)− ε)[ f (θ)− δ−1].

Putting the above together, we get (8.14). Since f satisfies (8.3) and A ∈ C3,

it follows by (8.14) that

lim
θ→0+

F(θ)

θ−γ
= P ′ and lim

θ→1−

F(θ)

(1− θ)−γ
= Q′

where P ′ = P A(p), Q′ = Q A(p).Ṫhus F(·) also satisfies the assumptions

(8.3). So by Lemma 8.4, the fact that θ is T -good and the bound N (θ, 0, T ) ≤
T
c

,

∣∣∣∣∣∣

N (θ,0,T )−1∑

i=0

F(θ + iα)

∣∣∣∣∣∣
= O

(
T ζ+(1+1/100)γ log T

)
= O

(
T 1/2−1/1000

)
.

This finishes the proof of (8.13) and completes the proof of the proposition. ��

Part V. Non Bernoullicity of T, T−1 transformations.

This part is devoted to the proof of Theorem 2.7. Our approach is motivated

by [60,99]. In particular, the statement of the key Proposition 15.2 is similar

to the corresponding statements of [60,99]. However, its proof in our case is

different, since the other authors rely on fine properties of the ergodic sums

of the cocycle τ while our approach uses exponential mixing in the fiber.

We note that in dimension d ≥ 3 if the dynamics of the fiber is the full

Zd shift then the corresponding skew product is Bernoulli ( [32]). Therefore

using properties of the fiber dynamics is essential. We exploit them mainly
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by establishing that the relative atoms (on the fiber) of the past partition are

points (see Proposition 11.1). The proof uses the geometry of Weyl chambers,

see Sect. 11. We emphasize that Proposition 11.1 does not hold if the fiber

dynamics is the full Zd shift with d ≥ 3. Another place where the fiber mixing

plays a key role is Sect. 13.

Another important ingredient in our approach is the use of Bowen-Hamming

distance (see Proposition 12.1) which allows us to handle continuous higher

rank actions in the fiber, and so it plays a crucial role in constructing the

example of Theorem 1.5. We also emphasize that the systems considered in

[60,99] were shown by the authors not to be loosely Bernoulli. We believe that

our methods would work also to show non loose Bernoullicity at a cost of rather

technical combinatorial considerations as one needs to consider the f̄ metric

instead of the Hamming metric. To keep the presentation relatively simple and

since our goal was to establish smooth K but non Bernoulli examples satisfying

CLT, we restrict our attention to only dealing with non Bernoullicity.

We note that the assumption that τ has zero mean in Theorem 2.7 is essential.

Indeed, if τ has non-zero mean, then by [35, Theorem 4.1(a)], F is exponen-

tially mixing, and then one can show using the argument of [61] that F is

Bernoulli. The details are given in a separate paper [37].

9 Background on symbolic dynamics

Symbolic dynamics provides a powerful tool for studying hyperbolic systems.

In this section we briefly recall the facts from symbolic dynamics needed in

our proof.

Let � = {1, . . . p} be a finite set with p elements and A = (Ai j ) be an

p × p matrix whose entries are zeroes and ones. The subshift of finite type is

the set

�A =
{
{ω j }∞j=−∞ ∈ �Z : Aω jω j+1

= 1 for all j ∈ Z
}
.

The shift on �A is defined by σ(ω) j = ω j+1. We endow �A with the distance

d(ω′, ω′′) = 2−k where k = max(k̄ ≥ 0 : ω′j = ω′′j ∀ j : | j | < k̄).

�A is topologically mixing iff there is q > 0 such that all entries of Aq are

positive. We shall assume henceforth that A is such that �A is topologically

mixing. Given a Hölder function, φ : �A → R we define its pressure by

P(φ) = inf[entμ+μ(φ)], where the minimum is taken over all shift invariant

measures and entμ is the entropy of μ. An invariant measure μ is called the

equilibrium measure for φ if P(φ) = entμ + μ(φ).
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A word is a finite sequence ω̄0, . . . , ω̄n−1 such that Aω̄ j ω̄ j+1
= 1 for all

0 ≤ j ≤ n − 1. The set

D(ω̄0, . . . ω̄n−1) = {ω ∈ �A : ω j = ω̄ j ∀ j ∈ [0, n − 1]}

is called a cylinder of length n. An invariant measure μ is called Gibbs with

potential φ if there is a constant K > 0 such that for each n ∈ Z for each

cylinder D of length n for each ω ∈ D

1

K
≤ μ(D)

eφn(ω)−n P(φ)
≤ K . (9.1)

It is known (see e.g. [92, Chapter 3]) that φ is a Hölder function on �A then it

has unique equilibrium state μφ which is also a Gibbs measure with potential

φ.

The Gibbs property (9.1) implies the following important quasi indepen-

dence estimate. If μ is a Gibbs measure with a Hölder potential, then there

is a constant K̄ such that if D1 and D2 are cylinders of lengths n1 and n2

respectively and if n ≥ n1 is such that D1 ∩ σ−nD2 	= ∅ then

1

K̄
≤ μ(D1 ∩ σ−nD2)

μ(D1)μ(D2)
≤ K̄ . (9.2)

We note the following consequence of (9.2). Let Fa,b denote the σ -algebra

generated by {ω j }a≤ j≤b. Then there is a constant K̂ such that for each set

B ⊂ Fk,∞
1

K̂
≤ μ(B|F−∞,k)

μ(B|Fk,k)
≤ K̂ . (9.3)

Indeed since μ is shift invariant it suffices to analyze the the case k = 0.

Consider two cylinders D = D(ω̄0, . . . , ω̄n) and D̃ = D(ω̃0, . . . , ω̃m) with

ω̄n = ω̃0. Then

μ(ω ∈ D̃|σ 1−nω ∈ D) = μ(D(ω̄0, . . . , ω̄n, ω̃1, . . . , ω̃m))

μ(D(ω̄0, . . . , ω̄n))

≥ μ(D(ω̃1, . . . , ω̃m))

K̄
≥ μ(D̃)

K̄ 2μ(D(ω̃0))
= 1

K̄ 2
μ(ω ∈ D̃|F0,0)(ω̃0)

proving the lower bound in (9.3). The upper bound is similar.

Let f : Tm → Tm be an Anosov diffeomorphism preserving a smooth

measure μ̄. Using Markov partitions one constructs a measure preserving

(Hölder) isomorphism j between (�A, σ, μφ) and (Tm, f, μ̄) where �A is a

topologically transitive subshift of finite type (SFT), μφ is the Gibbs measure
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with Holder potential

φ(ω) = ln | det(d f |Eu)(j(ω))| (9.4)

and Eu is the unstable distribution of f ([14]). (Note that the fact that μ̄ is

the equilibrium measure for the potential φ̄(x) = ln | det(d f |Eu)(x)| follows

from Pesin entropy formula). Therefore, Theorem 2.7 follows from:

Theorem 9.1 Let d ≥ 1, �A be a topologically mixing subshift of finite type

and μ be a Gibbs measure with a Hölder potential. Let (G t ) be a geodesic

flow on SL(2,R)/� (if d = 1), or a Weyl chamber flow on SL(d + 1,R)/�

(when d ≥ 2). Let τ : �A → Rd be a mean zero Hölder cocycle which is not

cohomologous to a cocycle taking value in a proper linear subspace of Rd .

Then the homeomorphism on �A × SL(d + 1,R)/� defined by

F(x, y) = (σω, Gτ(ω)y)

with the invariant measure ζ = μ× Haar is non-Bernoulli.

10 Weyl chamber flow

Let d ≥ 1. Let H := SL(d + 1,R), � be a co-compact lattice in H and

Y := H/�. Let D+ ⊂ H be the subgroup of diagonal matrices in H with

positive elements. It is easy to see that D+ is isomorphic to Rd . The group D+
acts on Y by left translation. When d = 1, this one parameter flow is called

geodesic flow. When d ≥ 2, it is a Rd action, which is called Weyl Chamber

flow. Let h = sl(d+1,R) be the Lie algebra of H and let dH denote the right-

invariant metric on H and dY the induced metric on Y . For 1 ≤ i, j ≤ d + 1,

let vi, j be the elementary (d + 1) × (d + 1) matrix with only one nonzero

entry equal to one in the row i and the column j . If i 	= j let hi, j ⊂ h be the

subalgebra generated by vi, j . Let o ⊂ h be the subalgebra of diagonal matrices

with zero trace. Then

h = o⊕
(⊕

i 	= j

hi, j

)
. (10.1)

For each pair (i, j) define χi, j : Rd → R by χi j (t) = χi j (t1, . . . , td) =
ti − t j . Then for v ∈ hi j

Gt · exp(v) = exp(eχi, j (t)v) · Gt.

The χi, j are exactly the Lyapunov functionals of G in classical Lyapunov

theory. For every i 	= j , the equation ti = t j defines a hyperplane Hi, j in
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Rd , where the functional χi, j vanishes (notice that for i = j , χi,i ≡ 0). The

connected components of

Rd\
⋃

i 	= j

Hi, j

are called Weyl chambers of the action G. By continuity each Lyapunov func-

tional has constant sign in a Weyl chamber. For any Weyl chamber C we denote

h+
C
:=

⊕

χi, j>0 on C

hi, j

with an analogous notation for h−
C

. The above distributions define foliations

on G: for y ∈ H let W+
C
(y) = exp(h+

C
) and W−

C
(y) = exp(h−

C
)y respectively.

To simplify notations, we enumerate the Lyapunov functionals as {χi }1≤i≤m

and the corresponding splitting (10.1) as

h =
⊕

i≤m

hi .

Using the above splitting and the exponential map we can introduce the system

of local coordinates on Y : there exists a constant ζ0 such that if dH (y, y′) ≤ ζ0,

then

y = exp(Z)y′, where Z =
∑

i

Zi , and Zi ∈ hi . (10.2)

By [66], any Weyl chamber flow is exponentially mixing.15

Moreover, we say that G is exponentially mixing on balls if there exist

C, η′, η > 0 such that for every v ∈ Rd , every B(y, r), B(y′, r ′) ⊂ Y with

y, y′ ∈ Y and r, r ′ ∈ (e−η′‖v‖, 1) the following holds:

|ν(B(y, r) ∩ Gv B(y′, r))− ν(B(y, r))ν(B(y′, r ′))| ≤ Ce−η‖v‖. (10.3)

A standard approximation argument (see eg. [50]) shows that exponential

mixing for sufficiently smooth functions implies that G is exponentially mixing

on balls. So we have:

Lemma 10.1 Any Weyl chamber flow is exponentially mixing on balls.

15 In fact, by [9] G is exponentially mixing of all orders. The multiple exponential mixing

plays important role in verifying that F satisfies the CLT if d ≥ 3 (see §B.1), but it is not needed

in the proof of Theorem 9.1.
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11 Relative atoms of the past partition

Recall that F : (�A × Y, ζ ) → (�A × Y, ζ ) is given by F(ω, y) =
(σω, Gτ(ω)y). Let Pε be a partition of �A given by cylinders on coordinates

[−ε
− 1

β , 0], where β is the Hölder exponent of τ . Let Qε be a partition of Y

into sets with piecewise smooth boundaries and of diameter ≤ ε.

Recall that � denotes the alphabet of the shift space. For ω− =
(..., ω−1, ω0) ∈ �Z≤0 , let

�+A (ω
−) = {ω+ = (ω1, ω2, ...) ∈ �Z+ : (..., ω−1, ω0, ω1, ...) ∈ �A}.

Note that �+A (ω
−) only depends on ω0. We will also use the notation ω =

(ω−, ω+) and �+A (ω) = �+A (ω
−). For ω = (ω−, ω+) and S+ ⊂ �+A (ω), we

write

μ+ω (S
+) = μ({(ω−, ω̄+) : ω̄+ ∈ S+}).

With a slight abuse of notation, we also denote by μ+ω a measure on �A defined

by μ+ω (S) = μ+ω ({ω̄+ : (ω−, ω̄+) ∈ S}). Notice that, for any measurable

subset S ⊂ �A,

μ(S) =
∫

�A

μ+ω (S)dμ(ω).

We can assume that τ only depends on the past. Indeed, if this is not the case,

then ( [92, Proposition 1.2]) τ is cohomologous to another Hölder function

τ̄ depending only on the past: τ(ω) = τ̄ (ω−) + h(ω) − h(σω). If F̄ is the

(T, T−1) transformation constructed using τ̄ and L(ω, y) = (ω, Gh(ω)y),

then L ◦ F = F̄ ◦ L . Since F and F̄ are conjugate, we can indeed assume that

τ only depends on the past.

The main result of this section is:

Proposition 11.1 There exists ε0 > 0 and a full measure set V ⊂ �A × Y

such that for every (ω, y) ∈ V , the atoms of

∞∨

i=0

F i (Pε0 ×Qε0)

are of the form {ω−×�+A (ω
−)}× {y}, i.e. the past of ω and the Y -coordinate

are fixed.
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Before we prove the above proposition, we need some lemmas. For a non-

zero χi , let Ci ⊂ Rd be a cone

Ci = {a ∈ Rd : χi (a) ≥ c′‖a‖}, where c′ = min
i :χi 	=0

‖χi‖/2.

We start with the following lemma:

Lemma 11.2 Let (G, Y, ν) be a Weyl chamber flow. Choose cones Ĉi properly

contained in Ci . Then for each a ∈ R+ there exists κ = κ(G, a) > 0 such that

the following holds. Let {a j } j∈N ⊂ Rd , be a sequence such that a1 = 0 and

A. sup j ‖a j+1 − a j‖ < a;

B. for every i we have sup
j :a j∈Ĉi

‖a j‖ = ∞.

Then for any y, y′ ∈ Y with y′ /∈ O(y), where O(y) denotes the G-orbit of y,

there is j ∈ N such that dY (Ga j
y, Ga j

y′) ≥ κ
4

.

In order to prove the lemma, we first establish the divergence on the universal

cover.

Lemma 11.3 There exists κ̄ > 0 such that for any y, y′ ∈ H with y′ /∈ O(y)

and any {a j } satisfying A., B., there exists j0 such that

dH (Ga j0
y, Ga j0

y′) > κ̄.

Proof To simplify notation we denote Gt y simply by ty.

Fix y, y′ ∈ H . WLOG, assume dH (y, y′) < ζ0 where ζ0 is defined above

(10.2). We can write y = exp(Z)y′, where Z ∈ h, and Z =
⊕

i Zi with

Zi ∈ hi . Since y′ /∈ O(y), there exists i such that χi 	= 0 and Zi 	= 0.

Accordingly there is a Weyl chamber C such that splitting Z = Z++ Z− with

Z± ∈ h±
C

we have Z+ 	= 0. Let y′′ = W−
C
(y) ∩W+

C
(y′). Then y′′ 	= y′ since

Z /∈ h−
C
.

Let Ĉ be a cone which is strictly contained inside C. Note that by the def-

inition of y′′, there is a global constant K > 0 such that for each a j ∈ C

we have dH (a j y, a j y′′) ≤ K ζ0. By triangle inequality, dH (a j y, a j y′) ≥
dH (a j y′, a j y′′) − dH (a j y, a j y′′). To complete the proof it is enough to

note that since the vectors in h+
C

are expanded by Ĉ at a uniform rate and

sup
j :a j∈Ĉ

‖a j‖ = ∞, there exists j such that dH (a j y′, a j y′′) ≥ K ζ0 + κ̄, for

some κ̄ > 0. ��

Proof of Lemma 11.2 To simplify notation we denote Gt y simply by ty. Since

� ⊂ H is co-compact, it follows that there exists c > 0 such that

inf
y∈H

inf
γ 	=e

dH (y, yγ ) > c > 0. (11.1)
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Let C1 := sup j ‖a j+1 − a j‖ <∞ and let C = C(α) > 0 be such that

sup
0<dH (y,y′)≤1

sup
‖b‖<C1

dH (by,by′)

dY (y, y′)
≤ C, (11.2)

Let 0 < κ < κ̄ be such that c ≥ (C + 1/4)κ (recall that κ̄ is the constant

from Lemma 11.3 ). Let y, y′ ∈ Y , with y′ /∈ O(y), with dY (y, y′) ≤ κ/4. By

taking appropriate lifts of y and y′ to H , we can assume that dH (y, y′) ≤ κ/4.

By Lemma 11.3, there exists j0 ∈ N such that dH (a j0 y, a j0 y′) > κ/4. Let

us take the smallest j0 with this property. Then, dH (a j0−1y, a j0−1y′) ≤ κ/4.

Therefore by the bound in (11.2)

dH (a j0 y, a j0 y′)=dH

(
(a j0−a j0−1)(a j0−1y), (a j0−a j0−1)(a j0−1y′)

)
≤ Cκ.

Take γ ∈ H such that dY (a j0 y, a j0 y′) = dH

(
a j0 y, a j0 y′γ

)
. By (11.1) we get

dH

(
a j0 y, a j0 y′γ

)
≥ dH

(
a j0 y′, a j0 y′γ

)
− dH

(
a j0 y, a j0 y′

)

≥ c − Cκ ≥ κ/4.

This finishes the proof. ��

Recall that for τ : �A → Rd and n ∈ N, we denote τn(ω) :=∑n−1

j=0
τ(σ jω), and τ−n(ω) = −τn(σ

−nω). The next result, proven in §B.2,

helps verifying condition (B) of Lemma 11.2.

Lemma 11.4 Let τ : �A → Rd be a zero mean Hölder function that is

not cohomologous to a function taking values in a linear subspace of Rd of

dimension < d. Then for any cone C ⊂ Rd , for μ a.e. ω ∈ �A

sup
v∈({τn(ω)}n≥0)∩C

‖v‖ = ∞ and sup
v∈({τn(ω)}n<0)∩C

‖v‖ = ∞. (11.3)

Proof of Proposition 11.1 Take ε0 := κ(G, ‖τ‖C0)/5 where κ is from

Lemma 11.2. By Corollary 2 in [57], the skew product F is ergodic. Let

� be the set of points (ω, y) whose forward and backward orbits are dense

and such that (11.3) holds for ω and every cone {Ĉi } from Lemma 11.2. By

ergodicity of F and Lemma 11.4 ζ(�) = 1.

Notice that if (ω, y) ∈ �, and (ω, y), (ω̄, y′) lie in the same atom of∨∞
i=0

F i (P × Qε0), then ω− = ω̄−. Since τ depends only on the past,

τ− j (ω) = τ− j (ω̄) for j ∈ N. We will show that y′ = y.
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Assume first that y′ ∈ O(y) and let y′ = Gw · y, for some w ∈ Rd . Let

Q be an atom of Qε0 . Note that there exists q ∈ Q and ε = ε(w) > 0 such

that B(q, ε) ⊂ Q and Gw · B(ε, q) ∩ Q = ∅. Indeed, if not then Q would be

invariant under the translation Gw which is impossible if Gw 	= I d by Moore

ergodicity theorem [87].

This contradiction shows that such q and ε exist. Since the F orbit of (ω, y)

is dense, there exists n, such that F−n(ω, y) ∈ �A × B(ε, q) ⊂ �A × Q. Let

u = τ−n(ω). Then Gu y′ = GwGu y /∈ Q. So F−n(ω, y) and F−n(ω′, y′) are

not in the same atom of P ×Q. If y′ /∈ O(y) then we use Lemmas 11.4 and

11.2 with a j = τ j (ω) to finish the proof. ��

Remark 11.5 We believe that ALL partially hyperbolic algebraic abelian

actions satisfy the assertion of Proposition 11.1. However, the proof is more

complicated if there is a polynomial growth in the center. We plan to deal with

the general situation in a forthcoming paper.

12 Non Bernoullicity under zero drift. Proof of Theorem 9.1

12.1 The main reduction

We introduce the notion of (ε, n)-closeness which is an averaged version of

Bowen closeness. Let d denote the product metric on � × Y. Two points

(ω, y), (ω′, y′) ∈ �A × Y are called (ε, n)-close if

#
{

i ∈ [1, n] : d
(
F i (ω, y), F i (ω′, y′)

)
< ε

}
≥ (1− ε)n.

We will now state two propositions that imply Theorem 9.1.

Proposition 12.1 If F is Bernoulli then for every ε, δ > 0 there exists n0

such that for every n ≥ n0 there exists a measurable set W ⊂ �A × Y

with ζ(W ) > 1 − δ such that if (ω, y), (ω̄, ȳ) ∈ W , then there exists a map

�(ω−,y)(ω̄−,ȳ) : �+A (ω) → �+A (ω̄) with (�ω−,ω̄−)∗(μ
+
ω ) = μ+ω̄ and a set

Uω− ⊂ �+A (ω) such that:

(1) μ+ω (Uω−) > 1− δ;

(2) if z ∈ Uω− then ((ω−, z), y)and ((ω̄−,�(ω−,y)(ω̄−,ȳ)z), ȳ)are (ε, n)-close.

We will also need another result. For ε > 0, n ∈ N, ω ∈ �A, y′ ∈ Y , let

D(ω, y′, ε, n)

:=
{

y ∈ Y : ∃ω′ ∈ �A s.t. (ω, y) and (ω′, y′) are (ε, n)-close
}
.
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Proposition 12.2 There exists ε′ > 0, an increasing sequence {nk}, and a

family of sets {�k}, �k ⊂ �A, μ(�k)→ 1, such that

lim
k→∞

sup
ω∈�k

y′∈Y

ν(D(ω, y′, ε′, nk)) = 0.

We will prove Proposition 12.1 in a Sect. 12.2 and Proposition 12.2 in

Sect. 12.3. Now we show how these two propositions imply Theorem 9.1:

Proof of Theorem 9.1 We argue by contradiction. Fix ε = ε′/100, δ = ε, and

let n = nk (for some sufficiently large k, specified below). Let W ⊂ �A × Y

be the set from Proposition 12.1. Let

W y := {ω ∈ �A : (ω, y) ∈ W } and Wω := {y ∈ M : (ω, y) ∈ W }.

By Fubini’s theorem, there exists Z ⊂ �A, μ(Z) ≥ 1 − 2ε such that for

every ω ∈ Z , ν(Wω) > 1/2. Let k be large enough (in terms of ε) such

that μ(Z ∩ �k) ≥ 1 − 4ε. By Fubini’s theorem, it follows that there exists

Z ′ ⊂ Z ∩�k , μ(Z ′) > 1− 4ε such that for ω ∈ Z ′, μ+ω (Z ∩�k) > 1− 8ε.

In particular, it follows that

μ+ω ({ω̄+ ∈ Uω− : (ω−, ω̄+) ∈ Z ∩�k}) > 1− 16ε.

Let ω = (ω−, ω+) ∈ Z ∩ �k ∩ ({ω−} × Uω−) and let (ω̄, y′) ∈ W . Since

ω ∈ Z it follows that ν(Wω) > 1/2. Since ω ∈ �k , it follows that for k large

enough there exists

y ∈ Wω \ D(ω, y′, ε′, nk). (12.1)

Since ω+ ∈ Uω− , by (2) we get that (ω−, ω+, y) and (ω̄−,�ω−,ω̄−(ω
+), y′)

are (ε, nk)-close. This by the definition of D(ω, y′, ε′, nk) implies that y ∈
D(ω, y′, ε′, nk). This however contradicts (12.1). This contradiction finishes

the proof. ��

12.2 Hamming–Bowen closeness

We start with introducing the notion of VWB (very weak Bernoulli) partitions

in the setting of skew-product for which the assertion of Proposition 11.1

holds (see e.g. [22] or [62]). Let R be a partition of �A × Y . Two points

(ω, y), (ω′, y′) ∈ �A × Y are called (ε, n,R)-matchable if

#{i ∈ [1, n] : F i (ω, y) and F i (ω′, y′) are in the same R atom} ≥ (1− ε)n.

Definition 12.3 F is very weak Bernoulli with respect to R if and only if

for every ε′ > 0, there exists n′ such that for every n ≥ n′ there exists
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a measurable set W ′ ⊂ �A × M with μ × ν(W ′) > 1 − ε′ such that if

(ω, y), (ω̄, ȳ) ∈ W ′, then there exists a map�(ω−,y)(ω̄−,ȳ) : �+A (ω)→ �+A (ω̄)
with (�ω−,ω̄−)∗(μ

+
ω ) = μ+ω̄ and a set U ′

ω− ⊂ �+A (ω) such that:

(1) μ+ω (U
′
ω−) > 1− ε′;

(2) if z ∈ U ′
ω− then ((ω−, z), y) and ((ω̄−,�(ω−,y)(ω̄−,ȳ)z), ȳ) are (ε′, n,R)-

matchable.

Proof of Proposition 12.1 Recall that by [88] if F is Bernoulli then it is VWB

with respect to every non-trivial partition.

Let (P × Q)n be the sequence of partitions defined above, where the atoms

have diameter that goes to 0 as n → ∞. Let n̄ be such that the atoms of

(P × Q)n̄ have diameter ≤ ε. This then implies that if two points (ω, y) and

(ω′, y′) are (ε, n) matchable, then they are (ε, n)-close. It is then enough to

use VWB definition for (P×Q)n̄ with ε′ = min{δ, ε}. This finishes the proof.

��

Remark 12.4 Now we explain why it is easier to work with closeness rather

than matchability, in the case G = Rd . Notice that if (ω, y) and (ω′, y′)
are (ε, n)-close, and ‖u‖ < δ < ε, then (ω, y) and (ω′, Gu y′) are (ε + δ, n)

close.16 This is not necessarily true for matchability (if the orbit of y′ is always

close to the boundary of the partition). This property of closeness crucially

simplifies our consideration as it allows us to obtain a crucial inclusion (15.4).

12.3 Proof of Proposition 12.2

Given �k, nk denote

ak(ε
′) := sup

ω∈�k

y′∈Y

ν(D(ω, y′, ε′, nk)).

Proposition 12.5 There exists n1 ∈ N and a family of sets {�k} such that if

εk :=
(

1− 1

50k2

)
εk−1, ε1 := 1

10n1
and nk+1 = (10k)100 · nk , then we have

ak(εk)→ 0, as k →∞.

16 Notice that for any i ∈ N the points F i (ω′, y′) and F i (ω′, Gu y′) are δ close. Indeed, they

have the same first coordinate and the second one is Gτi (ω)y′ vs Gu+τi (ω)y′ which are δ close

since ‖u‖ < δ.
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We remark that the recursive relations in Proposition 12.5 imply that

εk = ε1

k∏

j=2

(
1− 1

50 j2

)
, (12.2)

nk+1 = n1(10kk!)100. (12.3)

Proposition 12.5 which is proven in Sect. 15 immediately implies Proposi-

tion 12.2:

Proof of Proposition 12.2 We define ε′:= infk≥1 εk=
∏∞

j=2
ε1

(
1− 1

50 j2

)
.

Then by the definition of {εk}, ε′ > 0 and monotonicity, we have

0 ≤ ak(ε
′) ≤ ak(εk)→ 0,

as k →∞. This finishes the proof. ��

13 Consequence of exponential mixing

We have the following quantitative estimates on independence of the sets

D(ω, y′, ε′, nk) under the action G t . This is the only place in the proof where

we use exponential mixing of G t .

In this section we shall denote �k = 2k20√nk−1.

Lemma 13.1 For k ∈ N let ω1, ω2 ∈ �A be such that

sup
r≤nk−1

‖τr (ωi )‖ ≤ �k (13.1)

for i = 1, 2. Then, for any y1, y2 ∈ Y , any v ∈ Zd , ‖v‖ ≥ k25n
1/2
k−1, and any

ε > 0.

ν
(

Gv(D(ω1, y1, ε, nk−1)) ∩ D(ω2, y2, ε, nk−1)
)

≤ C# ·
∏

i=1,2

ν
(

D(ωi , yi , ε + 2−n
1/2
k−1, nk−1)

)
.

Proof Let L := max{ sup
‖v‖=1

‖Gv‖C1, 100}. Then if d(y, y′) ≤ (2L)−�k , then

d(Gu y, Gu y′) ≤ L�k · (2L)−�k ≤ 2−�k ≤ 2−n
1/2
k−1
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for all u ∈ A with ‖u‖ ≤ �k . Using this for u = τr (ωi ), r < nk−1, (13.1)

implies that if d(y, y′) ≤ (2L)−�k , then

d(Gτ j (ωi )(y), Gτ j (ωi )(y′)) ≤ 2−n
1/2
k−1, for all j < nk−1. (13.2)

Therefore for every y ∈ D(ωi , yi , ε, nk−1),

B
(

y, (2L)−�k

)
⊂ D(ωi , yi , ε + 2−n

1/2
k−1, nk−1). (13.3)

Using Besicovitch theorem for the cover
{

B
(
y, (2L)−�k

)}
, where

y ∈ D(ωi , yi , ε, nk−1),

we get a finite cover by a family of balls {B j,i
s } j≤C ′,s≤m j

i = 1, 2, such that for

every i ∈ {1, 2}, j ≤ C ′, the balls {B j,i
s }s≤m j

are pairwise disjoint. Therefore

ν
(

Gv(D(ω1, y1, ε, nk−1)) ∩ D(ω2, y2, ε, nk−1)
)

≤
∑

j, j ′

∑

s,s′
ν(Gv(B

j,1
s ) ∩ B

j ′,2
s′ ).

Using that G is exponentially mixing on balls in the sense of (10.3), and the

fact that e−η′‖v‖ ≤ ( 1
2L

)�k (since ‖v‖ ≥ k25n
1/2
k−1) we get that the above term

is upper bounded by

C ·
∑

j, j ′

∑

s,s′
ν(B

j,1
s )ν(B

j ′,2
s′ ) = C

⎡
⎣∑

j

∑

s

ν(B
j,1

s )

⎤
⎦ ·

⎡
⎣∑

j ′

∑

s′
ν(B

j ′,2
s′ )

⎤
⎦ .

(13.4)

Since the balls are disjoint for fixed i and j , we have

∑

s

ν(B
j,i

s ) = ν

(⋃

s

B
j,i

s

)
≤ ν(D(ωi , yi , ε + 2−n

1/2
k−1, nk−1)),

where the last inequality follows from (13.3). Since the cardinality of j ′s is

globally bounded (only depending on the manifold Y ), (13.4) is upper bounded

by

C · Cd ·
∏

i

ν(D(ωi , yi , ε + 2−n
1/2
k−1, nk−1)).

123



Flexibility of statistical properties 99

This finishes the proof. ��

We also have the following lemma.

Lemma 13.2 For any constant C2 > 1 the following is true. If n1 > C2 and

bk is a sequence of real numbers satisfying

b1 ≤
( 1

100n1

)300d

and bk ≤ C2 · n2d+1
k · b2

k−1,

then bk → 0.

Proof By induction, we see that

ln bk ≤ (2k−1 − 1) ln C2 + (2d + 1)

[
k∑

l=2

2k−l ln nl

]
+ 2k−1 ln b1

Now using (12.3), we obtain

ln bk ≤ (2k−1 − 1) ln C2 + (2d + 1)

[
k∑

l=2

2k−l100l(ln 10+ ln l)

]

+2k+2d ln n1 + 2k−1 ln b1.

Using the condition on b1, the result follows. ��

14 Construction of �k

Let n1 be a number specified below and nk be defined by (12.3). For k ≥ 2

define

Ak :=
{
ω ∈ �A : #{(i, j) ∈ [0, (10k)100] × [0, (10k)100],

i 	= j : 1

(| j − i |nk−1)1/2
‖τ( j−i)nk−1

(σ ink−1ω)‖ ≥ k−20}

> (10k)200(1− k−9)
}
,

Bk :=
{
ω ∈ �A : #{i < (10k)100 : sup

r≤nk−1

1

n
1/2
k−1

‖τr (σ
ink−1ω)‖ ≤ k20}

> (10k)100(1− k−9)
}
.
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For ω ∈ �A, let ω[0,n−1) denote the cylinder in coordinates [0, . . . , n − 1)

determined by ω and let

Ãk =
⋃

ω∈Ak

ω[0,nk−1) and B̃k =
⋃

ω∈Bk

ω[0,nk−1).

This way, Ãk and B̃k are unions of cylinders of length nk .

The next lemma is proven in §B.3.

Lemma 14.1 For any C0 > 0, there exists an n0, such that if n1 ≥ n0, we

have:

m1. for every k ≥ 1, min
(
μ( Ãk), μ(B̃k)

)
≥ 1− C0k−8.

m2. for every ω ∈ Ãk ,

#
{
(i, j) ∈ [0, (10k)100] × [0, (10k)100], i 	= j :

1

(| j − i |nk−1)1/2
‖τ( j−i)nk−1

(σ ink−1ω)‖ ≥ k−20/2
}
> (10k)200(1− k−9)

(14.1)

and for every ω ∈ B̃k ,

#

{
i < (10k)100 : sup

r≤nk−1

1

n
1/2
k−1

‖τr (σ
ink−1ω)‖ ≤ 2k20

}
> (10k)100(1− k−9). (14.2)

Define

�̄1 :=
{
ω : ‖τn1(ω)‖ ≥ n

1/2−1/11
1

}
and �1 :=

⋃

ω∈�̄1

ω[0,n1−1). (14.3)

Notice that by Hölder continuity of τ it follows that for every ω ∈ �1, we

have ‖τn1(ω)‖ ≥ n
1/2−1/10
1 , if n is large enough.

We suppose that n1 is large enough, see below. For k ≥ 2 we define:

�k := Ãk ∩ B̃k ∩
{
ω ∈ �A : #{i < (10k)100 : σ ink−1(ω) ∈ �k−1}

> (10k)100(1− k−5)
}
.

Lemma 14.2 For every k, the set �k is a union of cylinders of length nk .

Proof For k = 1, this follows from the definition of �1. Also by definition the

sets Ãk and B̃k are unions of cylinders of length nk . Now inductively, if �k−1

is a union of cylinders of length nk−1, then for every i < (10k)100, the event
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σ ink−1(ω) ∈ �k−1, depends only on the [ink−1, (i + 1)nk−1] coordinates of

ω. Since i < (10k)100, the union of these events depends only on the first nk

coordinates of ω. ��

Let Ck = {C : C is a union of cylinders of length nk−1}. Since μ is Gibbs,

by (9.2) there exists a constant C1 ≥ 1 independent of the cylinders C and of

k such that for any cylinders C1, C2 ∈ Ck , for any m ≥ nk−1

μ(C1 ∩ σmC2) ≤ C1μ(C1)μ(C2).

We obtain by induction that for any C1, . . . , C� ∈ Ck , any j1 < · · · < j�,

μ

(
�⋂

i=1

σ ji nk−1Ci

)
≤ C�

1

�∏

i=1

μ(Ci ). (14.4)

We assume that n1 is so large that μ(�1) ≥ 1− C−2
1 2−200.

Proposition 14.3 There exists a constant C0 > 0, such that for any k ≥ 1,

μ(�k) ≥ 1− C0k−7. (14.5)

Proof of Proposition 14.3: Set C0 =
1

C2
1 20200

.We prove (14.5) by induction.

By the choice of n1 and C0, (14.5) holds for k = 1. Now assume it holds for

k − 1 ≥ 1. We are going to show it holds for k.

We claim that μ(Dk) ≤ C0k−7/3, where

Dk =
{
ω ∈ �A : #{i < (10k)100 : σ ink−1 (ω) ∈ �k−1} < (10k)100 − (10k)95

}
.

By Lemma 14.2, the set �k−1 is a union of cylinders of length nk−1. So is the

complement �c
k−1.

Divide the interval [0, (10k)100] into 10(10k)94 intervals of length 105k6.

If ω ∈ Dk , one of those intervals I should contain at least k visits to �c
k−1.

Let i1, . . . ik be the times of the first k visits inside I. By (14.4), for each tuple

i1, . . . , ik

μ
(
σ i j nk−1ω ∈ �c

k−1 for j = 1, . . . , k
)
≤ (C1μ(�c

k−1))
k .

Since the number of tuples inside I is less than |I |k = 105kk6k ,

μ
(

#{i ∈ I : σ iω ∈ �c
k−1} ≥ k

)
≤ (10k)6kCk

1μ(�c
k−1)

k .
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Since there are 10(10k)94 intervals, we have

μ(Dk) ≤ 10(10k)94(10k)6kCk
1μ(�c

k−1)
k ≤ 1

Ck
12100kkk

≤ C0k−7/3.

By m1 in Lemma 14.1 and the definition of�k , we obtainμ(�k) ≥ 1−C0k−7.

��

Definition 14.4 We say that a pair (i, j) ∈ [0, (10k)100]2 is nk–good for ω if

for v ∈ {i, j} σ vnk−1ω ∈ �k−1,

1

(| j − i |nk−1)1/2
‖τ( j−i)nk−1

(σ ink−1ω)‖ ≥ k−20/2, (14.6)

and

sup
r≤nk−1

1

n
1/2
k−1

‖τr (σ
vnk−1ω)‖ ≤ 2k20. (14.7)

By definition of �k , there are at least (10k)200(1−5k−5) nk–good pairs (i, j),

for every ω ∈ �k .

15 Proof of Proposition 12.5

We will show that Proposition 12.5 holds for sets �k and n1 from Sect. 14.

Let C2 = 10200 · C# · dd · 100d(sup ‖τ‖)d , where C# is from Lemma 13.1.

We start with the following lemma:

Lemma 15.1 Let n1 > C2 be sufficiently large. Then

a1(ε1) ≤
( 1

100n1

)300d

.

Proof Let ω ∈ �1 and y ∈ D(ω, y′, ε1, n1). Thus there is some ω′ so that

(ω, y) and (ω′, y′) are (ε1, n1)-close. Since ε1 = 1
10n1

it follows that for every

0 ≤ i ≤ n1 − 1,

d
(

F i (ω, y), F i (ω′, y′)
)
< ε1.

Since τ depends only on the past and is Hölder continuous with exponent

β, this implies in particular that

‖τi (ω)− τi (ω
′)‖ ≤ Cε

β
1 for i ≤ n1.
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Let ε0 = ε
β
1 . Using closeness of F i (ω, y) and F i (ω′, y′) on the second coor-

dinate, we get

d
(

Gτi (ω)y, Gτi (ω)y
′
)
< 2Cε0 for i ≤ n1. (15.1)

We claim that (15.1) implies that

dH

(
Gτi (ω)y, Gτi (ω)y

′
)
< 2Cε0 for i ≤ n1. (15.2)

Indeed, if not let i0 ≤ n1 be the smallest index i for which (15.2) doesn’t hold.

This means that

dH

(
Gτi0−1(ω)y, Gτi0−1(ω)y

′
)
< 2Cε0.

Note that by (15.1) there is some γ so that

dH

(
Gτi0

(ω)y, Gτi0
(ω)y

′γ
)
< 2Cε0,

and by the definition of i0, γ 	= e. The last two displayed inequalities imply

that for some global constant C ′′ > 0,

dH

(
Gτi0

(ω)y
′, Gτi0

(ω)y
′γ
)
< C ′′ε0.

If ε0 is small enough, this gives a contradiction with the systole bound (11.1).

So (15.2) indeed holds.

Since ω ∈ �1 (see (14.3)), it follows that

‖τn1(ω)‖ ≥ n
1/2−1/10
1 . (15.3)

It follows that Gτn1
(ω) expands the leaves of one of the Lyapunov foliations

by at least ecn
2/5
1 . Hence each leaf intersects the set of y′ satisfying (15.2) in a

set of measure O
(

e−cn
2/5
1

)
.

Therefore ν(D(ω, y′, ε1, n1)) ≤ C ′ ·e−cn
2/5
1 , whence a1(ε1) ≤ C ·e−cn

2/5
1 ≤( 1

100n1

)300d

if n1 is sufficiently large. The proof is finished. ��

The next result constitutes a key step in the proof.

Lemma 15.2 For any k ∈ N, any ω ∈ �k , any y′ ∈ M and any

y ∈ D(ω, y′, εk, nk), there exists (ik−1, jk−1) ∈ [1, (10k)100]2, such that

123



104 D. Dolgopyat et al.

|ik−1 − jk−1| ≥ (10k)95, (ik−1, jk−1) is nk good for ω (see Definition 14.4)

and there are uk, vk such that ‖uk‖ ≤ (sup |τ |)nk, ‖vk‖ ≤ (sup |τ |)nk, and

Gτik−1nk−1
(ω)y ∈ D

(
σ ik−1nk−1ω, Guk

y′,
(

1− 1

100k4

)
εk−1, nk−1

)
,

Gτ jk−1nk−1
(ω)y ∈ D

(
σ jk−1nk−1ω, Gvk

y′,
(

1− 1

100k4

)
εk−1, nk−1

)
.

Before we prove the above lemma, let us show how it implies Proposi-

tion 12.5.

Proof of Proposition 12.5 Let �k = {u : ‖u‖ ≤ (sup |τ |)nk, 100dnku ∈
Zd}. It is easy to see that #�k ≤ (100d(sup |τ |)n2

k)
d . Notice that for any �k

with ‖�k‖ ≤ nk there exists � ∈ �k such that ‖�k − �‖ ≤ n−1
k . Therefore, for

any ω̄ ∈ �A

D

(
ω̄, G�k

y′,
(

1− 1

100k4

)
εk−1, nk−1

)
⊂ D

(
ω̄, G� y′, δk−1, nk−1

)

(15.4)

where δk−1 :=
(

1− 1
100k4

)
εk−1+ 1

nk
. Now combining Lemma 15.2 and (15.4)

with the choice �k ∈ {uk, vk} where uk, vk are from Lemma 15.2, we deduce

D(ω, y′, εk, nk)

⊂
⋃

(ik−1, jk−1)∈[1,(10k)100]2

⋃

u,v∈�k

⋂

(w,z)∈{(ik−1,u),( jk−1,v)}
G−τwnk−1

(ω)

D
(
σwnk−1ω, Gz y′, δk−1, nk−1

)
. (15.5)

Fix u, v and (i, j) = (ik−1, jk−1). Then by invariance of the measure,

ν
(

G−τink−1
(ω)D(σ ink−1ω, Gu y′, δk−1, nk−1)

∩G−τ jnk−1
(ω)D(σ jnk−1ω, Gv y′, δk−1, nk−1)

)

= ν
(

Gτ jnk−1
(ω)−τink−1

(ω)D(σ ink−1ω, Gu y′, δk−1, nk−1)

∩ D(σ jnk−1ω, Gv y′, δk−1, nk−1)
)
. (15.6)

Since i, j are nk good and |i − j | ≥ (10k)95, it follows by (14.6) that

‖τ jnk−1
(ω)− τink−1

(ω)‖ ≥ k25n
1/2
k−1.
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Moreover, since i, j are nk good, by (14.7), for w ∈ {i, j},

sup
r<nk−1

‖τr (σ
wnk−1ω)‖ ≤ 2k20n

1/2
k−1.

Therefore, by Lemma 13.1 (with ωw = σwnk−1ω), it follows that (15.6) is

bounded from above by

C#

∏

w∈{i, j}
ν(D(σwnk−1ω, Gu y′, δk−1 + 2−n

1/2
k−1, nk−1)). (15.7)

Moreover, since i, j are good, σwnk−1(ω) ∈ �k−1. Also by (12.3), nk ≤
(1+ 1/100) · 2n

1/2
k . Since inf εk > 0 and nk grows exponentially, using (12.3)

again, we have

δk−1 + 2−n
1/2
k−1 =

(
1− 1

100k4

)
εk−1 +

1

nk

+ 2−n
1/2
k−1 ≤ εk−1.

Using this, we obtain that (15.7) is bounded by C#(ak−1(εk−1))
2. Using (15.5)

and summing over all u, u′ ∈ �k and (ik−1, jk−1) ∈ [1, (10k)100]2 (using that

k200 ≤ nk), we have

ak(εk) ≤ C# · [100d(sup |τ |)n2
k]d · (10k)200 · ak−1(εk−1)

2

≤
(

10200 · C# · (100d(sup |τ |))d
)
· n2d+1

k ak−1(εk−1)
2.

This by Lemmas 15.1 and 13.2 (with C2 = 10200 · C# · (100d(sup |τ |))d and

bk = ak(εk)) implies that ak(εk)→ 0 which finishes the proof. ��

It remains to prove Lemma 15.2.

Proof of Lemma 15.2 We consider the intervals [rnk−1, (r + 1)nk−1). Since

y ∈ D(ω, y′, εk, nk), it follows from the definition of {εk} that for at least

(10k)98 of r < (10k)100, the points

Frnk−1(ω, y) and Frnk−1(ω′, y′) are

((
1− 1

100k4

)
εk−1, nk−1

)
-close.

(15.8)

Otherwise the cardinality of i ≤ nk such that d
(

F i (ω, y), F i (ω′, y′)
)
< εk

would be bounded above by

(10k)98nk−1 + ((10k)100 − (10k)98)nk−1

(
1−

(
1− 1

100k4

)
εk−1

)
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< (10k)100nk−1

(
1−

(
1− 1

50k2

)
εk−1

)
= nk(1− εk).

This however contradicts the fact that (ω, y) and (ω′, y′) are (εk, nk)-close. So

there exists at least (10k)196 pairs (i, j) ∈ [0, (10k)100]2 which satisfy (15.8).

Note that

#{(i, j) ∈ [0, (10k)100]2 : |i − j | < (10k)95} ≤ (10k)100+95.

Therefore

#{(i, j) ∈ [0, (10k)100]2 : (i, j) satisfies (15.8) and |i − j | ≥ (10k)95}
≥ (10k)196 − (10k)195.

Moreover, since ω ∈ �k , the cardinality of nk–good pairs (i, j) (see Defi-

nition 14.4) is at least (10k)200 − 5(10k)195. Since (10k)196 − (10k)195 >

5(10k)195, it follows that there exists (i, j) such that (15.8) holds for r = i

and r = j , and (i, j) is nk-good. This means that for r = i, j ,

(σ rnk−1ω′, Gτrnk−1
(ω′)y

′) and (σ rnk−1ω, Gτrnk−1
(ω)y) (15.9)

are
((

1− 1
100k4

)
εk−1, nk−1

)
-close. Hence we find that for some ‖uk‖ ≤

(sup |τ |)nk ,

Gτink−1(ω)y ∈ D(σ ink−1ω, Gui
y′, (1− 1/(100k4))εk−1, nk−1),

and the same holds for j with some vk . This finishes the proof. ��
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Part VI. Appendices

Appendix A. Entropy of skew products

Proof of Lemma 2.1. We prove the statement for (T, T−1) diffeomorphisms,

the result for flows then follows by considering the time 1 map.
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By Ruelle inequality it suffices to show that all Lyapunov exponents of F

are non positive.17 Differentiating (1.3) we get that for each (x, y) ∈ (X ×Y ),

u ∈ Tx X, v ∈ TyY

DF N (x, y)

(
u

v

)
=

⎛
⎜⎝

D f N u
d∑

j=1

d(τ( j))N (u)Y j + D(GτN
)(v)

⎞
⎟⎠ (x, y),

where τ( j) denotes the j-th component of τ , Y j = d
ds
|s=0Gse j

and {e j } is the

standard basis in Rd .

Since f has zero entropy, the Pesin formula shows that the Lyapunov expo-

nents of f are zero. Hence lim
N→∞

ln ‖D f N (x)‖
N

= 0 for a.e. x . Also since

(d(τ( j))N (v))(x) =
N−1∑

n=0

dτ( j)( f nx)(D f nv)

it follows that for a.e. x and all j ∈ {1, . . . , d}, lim sup
N→∞

ln ‖d(τ( j))N (x)‖
N

≤ 0.

Also for a.e. (x, y)

lim sup
N→∞

ln ‖DGτN (x)(y)‖
N

≤ C lim
N→∞

‖τN (x)‖
N

= 0

where the last step follows since f is ergodic and τ has zero mean.

The foregoing discussion shows that for a.e. (x, y), lim sup
N→∞

ln ‖DF N‖(x, y)

N
≤ 0. Therefore all Lyapunov exponents of F indeed non positive, and so

entζ (F) = 0. ��

Appendix B. Ergodic sums over subshifts of finite type

B.1 CLT for (T, T
−1) transformations with SFT in the base

Theorem B.1 Consider a generalized (T, T−1) transformation (1.2) with

(X, f ) being a subshift of finite type, μ is a Gibbs measure with a Hölder

potential, and G t is an Rd action which is exponentially mixing of all orders.

17 Applying this result to F−1 gives that all exponents of F are in fact zero, but we do not need

this fact for the proof of Lemma 2.1.
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Suppose that d ≥ 3 and τ : X → Rd is an irreducible Hölder cocycle. Then

F satisfies the CLT on the space of Hölder functions.

Remark B.2 As it was mentioned in Sect. 2.4, this result is a special case of

Theorem 5.1 in [35]. We include the proof here to make this paper more self

contained and to demonstrate the power of Theorem 3.1. We also note that

in contrast to [35] the present proof does not rely on the exponential mixing

of f , it just uses the the properties of the local distribution of τ such as the

anticoncentration inequality (B.2) below.

Proof By Lemma 5.6 it suffices to show that F satisfies the quenched CLT in

the sense of Definition 5.1.

We define mN by (5.2) and check the conditions of Proposition 4.1.

(a) is evident.

To prove property (b), let �(x, t, N ) = Card{n ≤ N : |τn(x) − t | ≤ 1}.
We claim that for each p, there is a constant C p such that for each t ∈ Rd for

each n

μ
(
�p(·, t, n)

)
≤ C p. (B.1)

Indeed,

μ
(
�p(·, t, n)

)
≤

p∑

q=1

Ĉ p

∑

n1≤n2≤···≤nq≤n

μ

⎛
⎝

q∏

j=1

1‖τn j
(x)−t‖≤1

⎞
⎠

≤
p∑

q=1

Ĉ p

∑

n1<n2≤···<nq≤n

μ

⎛
⎝1‖τn1

(x)−t‖≤1

⎡
⎣

q∏

j=2

1‖τn j−n j−1
( f

n j−1 x)‖≤2

⎤
⎦
⎞
⎠ .

The multiple anticoncentration inequality of [35, Lemma A.4] tells us that

there is a contant C̄ such that for each tuple (n1, . . . nq) we have

μ

⎛
⎝1‖τn1

(x)−t‖≤1

⎡
⎣

q∏

j=2

1‖τn j−n j−1
( f

n j−1 x)‖≤2

⎤
⎦
⎞
⎠

≤ C̄(n1)
−d/2

⎡
⎣

q∏

j=2

(n j − n j−1)
−d/2

⎤
⎦ . (B.2)

Summing over n1, ..., nq , we obtain (B.1).

With (B.1) proven, the Markov inequality implies that for each ε, t, p we

have

μ
(

x : �(x, t, N ) ≥ N (1/5)−ε
)
≤ C p

N [(1/5)−ε]p .
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It follows that

μ
(

x : ∃t : ‖t‖ ≤ ‖τ‖N and �(x, t, N ) ≥ N (1/5)−ε
)
≤

C∗p N d

N [(1/5)−ε]p .

Taking p = 6d, ε = 0.01, property (b) follows.

Recall (5.5). In view of Lemma 5.5, to prove property (c) it suffices to check

that (5.8) holds for some β > 1. Using (5.7) we get

∫

M

∣∣σ0,k(x)
∣∣ dμ(x) ≤ C

∞∑

m=0

[
μ(‖τk‖ ∈ [m,m + 1))e−cm

]

≤ C

∞∑

m=0

[
md−1

kd/2
e−cm

]
≤ C

kd/2
,

where the second inequality relies on (B.2) with q = 1 (noting that we can

cover the set {z ∈ Rd : ‖z‖ ∈ [m,m+1)}with Cmd−1 unit cubes). This shows

that (5.8) holds with β = d/2. This completes the verification of conditions

of Proposition 4.1. ��

B.2 Visits to cones

Proof of Lemma 11.4 We only prove the result for the forward orbits, the proof

for the backward orbits is similar.

Set n1 = 2, nk+1 = n3
k, mk = nk − nk−1 and consider the sets Ak = {ω :

τnk
(ω) ∈ C}.
Let Fa,b denote the σ -algebra generated by {ω j }a≤ j≤b. Since τ only

depends on the past, Ak is measurable with respect to F−∞,nk
.

Therefore by Lévy’s extension of the Borel–Cantelli Lemma (see e.g. [107,

§12.15]) it is enough to show that for almost all ω

∑

k

μ(Ak+1|F−∞,nk
) = ∞. (B.3)

Let Ĉ = {v ∈ C : dist(v, ∂C) ≥ 1}, Âk =
{
ω : τmk

(σ nk−1ω)
√

mk

∈ Ĉ

}
,

A∗k = {ω : ∃ω̂ ∈ Âk : ω j = ω̂ j for j ∈ [nk−1, nk]}. Note that A∗k ⊂ Ak

because for any ω ∈ A∗k and for the corresponding ω̂, τmk
(σ nk−1ω̂) is inside C

and is at least 1
2

√
mk away from the boundary whereas

τnk
(ω)− τmk

(σ nk−1ω̂) = [τnk
(ω)− τnk

(ω̂)] + [τnk
(ω̂)− τmk

(σ nk−1ω̂)]
= O(nk−1)"

√
mk .
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Next

μ(Ak+1|F−∞,nk
) ≥ μ(A∗k+1|F−∞,nk

) ≥
μ(A∗k+1|Fnk ,nk

)

K̂
≥ μ( Âk+1|Fnk ,nk

)

K̂
,

where the second inequality is due to (9.2) (note that A∗k is Fnk−1,nk
–

measurable, and hence F−∞,nk
–measurable and so (9.2) can be applied), and

the third one holds because A∗k+1 ⊃ Âk+1. Since μ is shift invariant

μ( Âk+1|Fnk ,nk
)(ω) = μ

(
τmk+1√
mk+1

∈ Ĉ

∣∣∣F0,0

)
(σ−nkω)

By the mixing CLT ( [44,92]) if ω is any symbol in the alphabet of �A

lim
m→∞

μ

(
τm(ω)√

m
∈ Ĉ|ω0 = ω

)
= P(N ∈ Ĉ)

uniformly in ω, where N is the normal random variable with zero mean and

variance D2(τ ) given by (2.9). By the assumptions of Lemma 11.4 and Propo-

sition 2.8, we see that D2(τ ) is non degenerate. Thus P(N ∈ Ĉ) > 0 for any

cone C. It follows that there exists ε = ε(C) such that for all sufficiently large

k and all ω

μ(Ak+1|F−∞,nk
)(ω) ≥ ε. (B.4)

(B.3) follows competing the proof of the lemma. ��

B.3 Separation estimates for cocycles

Proof of Lemma 14.1 (m2) follows from the fact that there exists a constant

Cτ such that if ω′ and ω′′ belong to the same cylinder of length N , then

|τN (ω′)− τN (ω′′)| ≤ Cτ .

To prove (m1) let

NA(ω, k)=#
{
(i, j) ∈ [0, (10k)100] × [0, (10k)100],

i 	= j :
‖τ( j−i)nk−1

(σ ink−1ω)‖
(| j − i |nk−1)1/2

< k−20

}
.

Denote mi j = |i− j |nk−1.Covering the ball with center at the origin and radius√
mi j

k20
in Rd by unit cubes and applying the anticoncentration inequality (B.2)
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with q = 1 (or [35, formula (A.4)]) to each cube, we obtain that

μ

(
‖τmi j

(ω)‖ ≤
√

mi j

k20

)
≤ Ck−20d . (B.5)

Since μ is shift invariant we conclude that

μ

(
‖τmi j

(σ ink−1ω)‖
m

1/2
i j

<
1

k20

)
≤ Ck−20d .

Summing over i and j we obtain

μ (NA(·, k)) ≤ C(10k)200−20d .

Next, by the Markov inequality,

μ
(
ω : NA(ω, k) ≥ (10k)191

)
≤ C

k20d−9
.

This shows that the measure of the complement of Ak is small. The estimate

of measure of Bk is similar except we replace (B.5) by

μ

(
max
n≤m

‖τn(ω)‖ ≥ k20
√

m

)
≤ c1e−c2k40

. (B.6)

To prove (B.6) it is sufficient to consider the case d = 1 since for higher

dimensions we can consider each coordinate separately. Thus it suffices to

show that

μ

(
max
n≤m

τn(ω) ≥ k20
√

m

)
≤ c1e−c2k40

(B.7)

(the bound on μ

(
min
n≤m

τn(ω) ≤ −k20
√

m

)
is obtained by replacing τ by−τ ).

To prove (B.7) with d = 1 we use the reflection principle. Namely, [35,

formula (A.3)] shows that for each L

μ
(
|τm(ω)| ≥ L

√
m
)
≤ c̄1e−c̄2 L2

. (B.8)

Let

Dm(k) =
{
ω : ∃n ≤ m, and ω̄ : ω̄ j = ω j for j ∈ 0, . . . n − 1 and τn(ω) ≥ k20

√
m
}
.

Note that Dm(k) contains the LHS of (B.7) and that Dm(k) is a disjoint union

of the cylinders of length at most m, Dm =
⋃

j
D j (to see this, take for each
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ω the smallest n such that the last display holds and recall that τ only depends

on the past). Next, similarly to (B.4) (since d = 1 the relevant cone is the cone

of positive numbers) there exists ε > 0 such that for each cylinder D of length

n = n(D) and for each m ≥ n,

μ
(
τm−n(ω) ≥ 0|ω ∈ σ−nD

)
≥ ε.

Combining this with (B.8), we obtain

c̄1e−c̄2k40/4 ≥ μ

(
τm ≥

k20
√

m

2

)
≥
∑

j

μ

(
ω ∈ D j , τm ≥

k20
√

m

2

)

≥
∑

j

μ(D j )μ

(
τm ≥

k20
√

m

2

∣∣∣ω ∈ D j

)
≥ ε

∑

j

μ(D j ) = εμ(Dm)

proving (B.7) and completing the proof of the lemma. ��

Appendix C. The main results in general context

Here we put our results into a general context of flexibility of statistical prop-

erties in smooth dynamics.

There is a vast literature on statistical properties of dynamical systems. A

survey by Sinai [100] lists the following hierarchy of chaotic properties for

dynamical systems preserving a smooth measure (the properties marked with

* are not on the list in [100] but we added them to obtain a more complete list
18).

(1) (Erg) Ergodicity; (2*) (WM) Weak Mixing (3) (M) Mixing; (4*) (PE)

Positive entropy; (5) (K) K property; (6) (B) Bernoulli property; (7) (CLT)

Central Limit Theorem19; (8) (PM) Polynomial mixing; (9) (EM) Exponential

mixing.

Recall that a formal definition of (CLT), (PM), and (EM) were given in

Sect. 1. The definitions of the other properties are standard.

Properties (1)–(6) are qualitative. They make sense for any measure pre-

serving dynamical system. Properties (7)–(9) are quantitative. They require

smooth structure but provide quantitative estimates. Currently there are many

examples of systems enjoying a full array of chaotic properties which follow

from either uniform hyperbolicity or non-uniform hyperbolicity, in case there

18 Other interesting statistical properties include Large Deviations, Poisson Limit Theorem,

and Local Limit Theorem. We do not include them into our list since our paper does not contain

new results or counter examples pertaining to these properties
19 [100] refers to classical CLT, but since the time it was written several CLTs with non classical

normalization has been proven, cf. footnote 4.
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is a control on the region where hyperbolicity is weak [11,14,26,109]. Systems

which satisfy only some of the above properties are less understood. In fact,

it is desirable to have more examples of such systems in order to understand

the full range of possible behaviors of partially chaotic systems.

Thus we have the following list of statistical properties of dynamical sys-

tems.

(Erg), (WM), (M), (PE), (K), (M), (CLT), (PM), (EM).

While properties on the bottom of the list are often more difficult to establish

especially in the context of nonuniformly hyperbolic systems discussed in

[100], property ( j) of the list in general does not imply property i for i ≤ j.

Thus it is desirable to study the following realizability problem: given two

disjoint subsets A1,A2 ⊂ {1, . . . , 9}, is there a smooth20 map preserving a

smooth probability measure that satisfies all properties in A1 and does not

have any of the properties in A2?

The simplest version of the realizability problem is when |A1| = |A2| = 1,

which case is presented in the following table. Here Y in cell (i, j) means

that the property in row i implies the property in the column j. (k) in cell

(i, j) means that a diffeo number (k) on the list below has property (i) but not

property ( j).

The examples in the table below are the following (the papers cited in the

list contain results needed to verify some properties in the table):

(1) irrational rotation; (2) horocycle flow ( [20]); (3) Anosov diffeo× iden-

tity; (4) maps from Theorem 1.3; (5) skew products on T2 × T2 of the form

(Ax, y + ατ(x)) where A is linear Anosov map, α is Liouvillian and τ is not

a coboundary [33]; (6) Anosov diffeo×Diophantine rotation (see [27,71] and

Theorem 3.1).

Erg WM/M PE K/B CLT PM EM

Erg ♣ (1) (1) (1) (1) (1) (1)

WM/M Y ♣ (2) (2) (5) (5) (5)

PE (3) (3) ♣ (3) (3) (3) (3)

K/B Y Y Y ♣ (5) (5) (5)

CLT Y (6) (4) (6) ♣ (6) (6)

PM Y Y (2) (2) (2) ♣ (2)

EM Y Y Y Y ?? Y ♣

We combined (WM) and (M) (as well as (K) and (B)) together since the

same counter examples work for both properties. It is well known that weak

20 Realizabilty problem also makes sense and is interesting in other settings such as for symbolic

or hamiltonian systems.
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mixing does not imply mixing (see Sect. 8.3) and that K does not imply

Bernoulli (see Part V).

The positive implications in the top left 4 × 4 corner are standard and can

be found in most textbooks on ergodic theory. It is also clear that Exponential

Mixing⇒ Polynomial Mixing⇒Mixing and that CLT implies the weak law

of large numbers which in turn entails ergodicity. The fact that the exponential

mixing implies the Bernoulli property (and hence both K property and positive

entropy) is more recent [37].

The only open problem in the above table, namely the existence of a system

satisfying (EM) but not (CLT) seems hard. Recall from Sect. 4 that the classical

CLT follows if the system enjoys exponential mixing of all orders. Therefore

the problem whether (EM) implies (CLT) is related to the question whether

exponential mixing implies multiple exponential mixing which can be thought

of as a quantitative version of the famous open problem of Rokhlin. Except

for this specific question, the realizability problem is well understood in case

|A1| = |A2| = 1.

Next, we study the realizability problem with |A1| = 2, |A2| = 1 and

CLT∈ A1. The table below lists in cell (i, j) a map which has both property

(i) and satisfies CLT but does not have property j. Clearly the question makes

sense only if we have an example of a system which has property (i) but not

property (j).

WM M PE K B PM

WM ♣ (8) (9) (9) (9) (10)

M ♣ ♣ (9) (9) (9) (10)

PE (6) (6) ♣ (6) (6) (6)

K ♣ ♣ ♣ ♣ (7) ??

B ♣ ♣ ♣ ♣ ♣ ??

PM ♣ ♣ (9) (9) (9) ♣

Here, (6) refers to the diffeomorphisms from the previous table, while (7),

(8), (9), and (10) and refer to the maps from Theorems 1.5, 1.4(a), (b) and

1.3(a). To see that the example of Theorem 1.3(a) is not polynomially mixing

we note that for polynomially mixing systems the growth of ergodic integrals

can not be regularly varying with index one. Namely (see e.g. [35, §8.1]), for

polynomially mixing systems there exists δ > 0 such that the ergodic averages

of smooth functions H satisfy lim
T→∞

HT

T 1−δ
= 0 almost surely, and hence, in

law.
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Appendix D. Open problems

Here we list some open problems related to our results that we believe should

be studied in the future.

In the examples in Theorem 1.3(b), dim(Mr ) grows with r which leads to

the following natural problem:

Problem D.1 (a) Construct a C∞ diffeomorphism with zero entropy satisfy-

ing the classical CLT.

(b) Construct a C∞ flow with zero entropy satisfying the classical CLT.

The next problem is also motivated by Theorem 1.3:

Problem D.2 For which α does there exist a smooth system satisfying the

CLT with normalization which is regularly varying of index α?

We mention that several authors [8,18,29,43] obtained the Central Limit

Theorem for circle rotations where normalization is a slowly varying function.

However, firstly, the functions considered in those papers are only piecewise

smooth and, secondly, they require an additional randomness or remove zero

density subset of times. Similar results in the context of substitutions are

obtained in [15,91].

In the examples in Theorem 1.4(b) the rate of polynomial mixing is rather

slow (slower than linear). This motivates the following problem:

Problem D.3 Given m ∈ N construct a diffeomorphism which is mixing at

rate n−m and satisfies at least one of the following: (a) is not K ; (b) has zero

entropy; (c) does not satisfy the CLT.

Theorem 1.5 motivates the following problems:

Problem D.4 Construct an example of K (or even Bernoulli) diffeomorphism

which satisfies the CLT but is not polynomially mixing.

Problem D.5 Let M a compact manifold of dimension at least two. Does there

exists a C∞ diffeomorphism of M preserving a smooth measure satisfying a

Central Limit Theorem?

Currently it is known that any compact manifold of dimension at least two

admits an ergodic diffeomorphism of zero entropy [3], a Bernoulli diffeomor-

phism [17], and, moreover, a nonuniformly hyperbolic diffeomorphism [41].

We note that a recent preprint [97] constructs area preserving diffeomorphisms

on any surface of class C1+β (with β small) which satisfy (CLT). It seems

likely that similar constructions could be made in higher dimensions. However,

the method of [97] requires low regularity to have degenerate saddles where a

typical orbit does not spent too much time, and so those methods do not work
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in higher smoothness such as C2. We also note that [21] shows that for any

aperiodic dynamical system there exists some measurable observable satisfy-

ing the CLT21 (see [76,77,79,105] for related results). In contrast Problem D.5

asks to construct a system where the CLT holds for most smooth functions.

Problem D.6 Let M be a compact manifold of dimension at least three. Does

there exist a diffeomorphism of M preserving a smooth measure which is K

but not Bernoulli?

We note that in case of dimension two, the answer is negative due to Pesin

theory [7]. At present there are no example of K but not Bernoulli maps

in dimension three. We refer the reader to [62] for more discussion on this

problem.
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