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Abstract We exhibit new classes of smooth systems which satisfy the Central
Limit Theorem (CLT) and have (at least) one of the following properties:

e Zero entropy;

e Weak but not strong mixing;

e (Polynomial) mixing but not K;

e K but not Bernoulli and mixing at arbitrary fast polynomial rate.

We also give an example of a system satisfying the CLT where the normalizing
sequence is regularly varying with index 1. All these examples are C*° except
for a zero entropy diffeomorphism satisfying the CLT which can be made C”
for an arbitrary finite r.
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Flexibility of statistical properties 33

Part I. Main results
1 Introduction

An important discovery made in the last century is that deterministic systems
can exhibit chaotic behavior. The Central Limit Theorem (CLT) is a hallmark
of chaotic behavior. There is a vast literature on the topic. In particular there
are numerous methods of establishing CLT including the method of moments
(cumulants) [10,25], spectral method [54], the martingale method [51,58,75]
(the list of references here is by no means exhaustive, we just provide a sample
of papers which could be used for introducing non-experts to the corresponding
techniques and their applications to dynamical systems). However, the above
methods require strong mixing properties of the system. As a result, they apply
only to systems which have strong statistical properties including Bernoulli
property and summable decay of correlations. The only example going beyond
strongly chaotic framework as manifested by the Bernoullicity and summable
correlations is the product of an Anosov'! diffeomorphism (called diffeo in the
sequel) and a Diophantine rotation, which is shown in [27] to satisfy the CLT
(see also [71,93] or Theorem 3.1 below).

Thus the knowledge on possible ergodic behaviors of smooth systems sat-
isfying CLT is very restricted. The main goal of this paper is to provide new
classes of systems satisfying CLT with intermediate ergodic properties. In
Appendix C we will describe how our results fit into a general program of
flexibility of statistical properties in smooth dynamics.

In order to formulate our results we need a few definitions. Let (M, ¢)
be a smooth orientable manifold with a smooth measure ¢. For an integrable
function A on M, we denote { (A) = fM A(x)d¢(x).Forr € (0, oo] we denote
by C" (M, ¢) the space of C" diffeomorphisms of M preserving the measure
c.

Definition 1.1 Let r € (0, co]. We say that F satisfies the Central Limit
Theorem (CLT) on C" if F € C"(M, ¢) and there is a sequence a, such that
for each A € C" (M),

Y AoFI()—n-t(A)
0<j<n

dp

converges in law as n — oo to normal random variable with zero mean and
variance o 2(A) (such normal random variable will be denoted N (0, 02(A))
in the sequel) and, moreover, o2(-) is not identically equal to zero on C" (M).

' The methods of [27] apply to more general systems in the first factor, however, they seem
insufficient to produce the examples described in Theorems 1.3-1.5.
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34 D. Dolgopyat et al.

We say that F' satisfies the CLT if it satisfies the CLT on C” for some r > 0.
We say that F satisfies the classical CLT if one can take a, = +/n.

One can analogously define the CLT for a flow (Fr) € C" (M, ¢) replacing

S
LS Ao PG —n- ) byi[/ AoFs<-)ds—S-;<A>],
as 0

a
n 0<j<n

where ag is now a real valued function.

Definition 1.2 Let ¢ : N — R be a function. We say that F' is mixing on C"
at the rate ¢ if F € C"(M, ¢) and for any Ay, Ay € C" (M) the correlation
function p, (A1, A2) = (A1 - (Ay 0o F™)) — £ (A1)¢(A») satisfies

lon (A1, A2)| < [[Atlicr |l Azller i (n). (1.1)

We say that F' is mixing at the rate i if it is mixing with the rate ¢ on C”
for some r > 0. In case ¥ (n) = Cn~?% for some C,8 > 0, we say that F is
polynomially mixing. If ¥ (n) = Ce™®" for some C, 8 > 0, we say that F is
exponentially mixing.?

The above definitions can be extended to flows in a straightforward way by
replacing the discrete parameter n € N with a continuous parameter ¢ € R. We
are ready to state the main results only using basic notions of ergodic theory
and the above two definitions. A more detailed exposition of the main results
as well as prerequisite earlier work will be presented shortly in Sect. 2. Our
first main result deals with the CLT for zero entropy systems:

Theorem 1.3 (a) There exists an analytic flow of zero entropy which satisfies
the CLT with normalization ap = T /In'/* T.

(b) For each r € N there is a smooth manifold (M, &) and a zero entropy
diffeomorphism F, € C"(M,, &) which satisfies the classical CLT.

We note that in all previous results on the CLT the normalization was regularly
varying® with index %.4 Theorem 1.3(a) is the first result for a CLT with a

2 We note that a simple interpolation argument shows that if F is mixing with exponential
(respectively polynomial rate) on C” for some r > 0 then it is mixing with exponential (respec-
tively polynomial) rate on C” for all r > 0, however the exponent § depends on r.

3 Recall that a real valued function a(-) defined on [m, co) for some m € Ris regularly varying

o . . oa(st .
in the sense of Karamata with index « if for each s > 0, lim (([)) = s%. A sequence qay is
-0 a

regularly varying with index « if the function a(¢) = ayy) is regularly varying with index a.

4 CLT with normalization ~/7 Inn appears for expanding and hyperbolic maps with neutral
fixed points [19,53], as well as in several hyperbolic billiards [5,6,101]. In a followup paper
we will show it also appears for generalized T, T~! transformations with hyperbolic base and
two parameter exponentially mixing flows in the fiber.
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Flexibility of statistical properties 35

different regularly varying index, namely 1.> We say that a system F is K if
it has no non-trivial zero entropy factor, [98]. In the theorem below, we give
examples of weakly mixing but not mixing as well as polynomially mixing
but not K systems satisfying the CLT.

Theorem 1.4 (a) There exists a weakly mixing but not mixing C°°-flow, which
satisfies the classical CLT.

(b) There exists a polynomially mixing C°°-flow, which is not K and satisfies
the classical CLT.

Recall that a system is Bernoulli if it is isomorphic to a Bernoulli shift.
Our next result shows existence of K non Bernoulli systems which satisfy the
classical CLT and are mixing at arbitrary fast polynomial rate.

Theorem 1.5 For each m € N there exists a manifold (M,,, {,,) and F,, €

C>®(M,,, &) which is mixing at rate n~"™ but is not Bernoulli. Moreover, F,
is K and satisfies the classical CLT.

To the best of our knowledge, the first part of the theorem provides the first
example of a system which has summable correlations but is not Bernoulli.
The second (“moreover”) part answers a question that we heard from multiple
sources, initially from J-P. Thouvenot.

All the systems in Theorems 1.3—1.5 belong to the class of generalized
(T, T~1) transformations which we now describe. The class of generalized
(T, T~1) transformations is a classical subject (see [59,85,106] and reference
therein for some early work on this topic) with a rich range of applications in
probability and ergodic theory. In fact, generalized (7, T~!) transformations
were used to exhibit examples of systems with unusual limit laws [28,68], cen-
tral limit theorem with non standard normalization [12], K but non Bernoulli
systems in abstract [60] and smooth setting in various dimensions [62,63,99],
very weak Bernoulli but not weak Bernoulli partitions [31], slowly mixing
systems [32,35,80], systems with multiple Gibbs measures [45,83]. To define
(C"- smooth) (T, T~') transformations, let X, Y be compact orientable man-
ifolds, f : X — X be an ergodic C" map preserving a smooth measure i
and G, : Y — Y be a C”-smooth R? action on the manifold ¥ preserving a
smooth measure v.

Definition 1.6 Let X, Y, f, G; be as above. Lett : X — R4 be a C”- smooth
function that will be called a cocycle. The map F : X x ¥ — X x Y defined

5 We note that the requirement that the limiting distribution is Gaussian is important. If we
allow other limit distributions, then there are several examples in both non-uniformly hyperbolic
and parabolic settings where normalization is different, see [1,20,48] and references therein. If
we allow our system to preserve an infinite measure then, there is an additional freedom related
to the rate of return times, see e.g. [30,96].
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36 D. Dolgopyat et al.

by
F(x,y) = (f(x), Gr)y) (1.2)

is called a (C"-smooth) (T, T™1) transformation.

Note that F' is C” (since so are f, G, and 7) and it preserves the measure
¢ = i X v. Moreover,

FYx,y) = (fVx, Goyoyy), (1.3)
where
N—1
) =) (") (1.4)
n=0

We also analogously define (7', T~!) flows. Namely let /; be a C"-flow on
X preserving p. Set

T
Fr(x,y) = (hr(x), G¢r(x)y) where 17(x) = /0 T(hyx)dt. (1.5)

Note that if Frisa (T, T_l) flow, then for each 7y, the time 7o map of F is
a generalized (7, T—") tranformation.

In this paper we study (7, T~!) systems whose fiber dynamics are very
chaotic:

Definition 1.7 G; is exponentially mixing of all orders if there is r > 0 such
that for every m € N there exist Cy,, §,; > 0 such that for every A; € C"(Y),
j=1,...,m, we have

m

‘/ ]_[A(G,x) dv(x) — [ va))

j=1

<Cn H 1Al or e dmminizi =4, (1.6)
j=1

We note that if G, is exponentially mixing of all orders then so is its any
subaction, that is, the action of any proper subgroup V C R?.

Throughout the paper we assume that the action G, is exponentially
mixing of all orders.

The main example that the reader should keep in mind is the following:

Example 1.8 Letd > 1 and let I" be a co-compact lattice in SL(d + 1, R). Let
D be the group of diagonal matrices in SL(d + 1, R) with positive elements
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Flexibility of statistical properties 37

on the diagonal. It is easy to see that D is isomorphic to R?. The group D
actson SL(d + 1, R)/ " by left translation. When d = 1, this one parameter
flow is called the geodesic flow. When d > 2, we obtain a R? action (G,),
which is called the Weyl Chamber flow. Then (G;) is exponentially mixing of
all orders (see [9]).

Notice that by Definition 1.1, for all the systems appearing in Theorems 1.3—
1.5, the variance is not identically zero. One could ask for a stronger property
(motivated by classical results in hyperbolic dynamics): the variance of an
observable is zero if and only if the observable is a coboundary for the system.
This stronger property does not hold in the setting of Theorems 1.3 and 1.4.
Indeed one of the key steps in the skew product constructions of Theorems 1.3
and 1.4 is to choose base transformations (or flows) with some zero mean
cocycle over them whose ergodic sums (or integrals) are not tight, while the
growth of all cocycles with the same regularity is of order o(ay) (o(as)). This
inevitably produces a class of observables, namely, those depending only on
the base coordinate, that have zero asymptotic variance while not all of them are
coboundaries. The situation is different in the setting of Theorem 1.5 where the
base map f is hyperbolic (and hence in particular satisfies the above stronger
property). This in fact allows to show that systems constructed in Theorem 1.5
satisfy this stronger version of CLT (see also Remark 5.6. in [35]). Itis an open
question if one can produce systems as in Theorems 1.3 and 1.4 satisfying this
stronger version of CLT.

In order to construct our examples we need to extend significantly the exist-
ing methods for proving both the CLT and the non Bernoulli property of these
maps. In fact, the main difficulty in Theorems 1.3 and 1.4 is to establish the
CLT while other properties are rather straightforward. On the other hand, the
main difficulty in Theorem 1.5 is to show non Bernoullicity. We note that even
though the question about the CLT and the non Bernoulli properties seem quite
different, the key tools needed to answer both questions are the same. Namely,
the proofs of all theorems in the paper rely on the exponential mixing in the
fiber and the fine recurrence properties of deterministic cocycles. More details
on the general framework for proving the CLT for generalized (7', T ~!) trans-
formations is presented in Sect. 3, while the precise results pertaining to the
non Bernoullicity are described in Part V.

Outline of the paper: The rest of the paper is organized as follows. In
Sect. 2 we showcase the examples realizing Theorems 1.3-1.5. Specifically,
in §2.1 we discuss Theorem 1.3(a), in §2.2 we discuss Theorem 1.3(b), in
§2.3 we discuss Theorem 1.4, and in §2.4 we discuss Theorem 1.5. There are
no technical proofs in Sect. 2, we just formulate more specific results, namely
Theorems 2.2-2.7 that imply the main Theorems 1.3—1.5. Parts II-IV complete
the proof of the theorems from Sect. 2.

@ Springer



38 D. Dolgopyat et al.

In Part II, we discuss the CLT for generalized (7, T~ transformations.
In Sect. 3, we state two results (Theorems 3.1 and 3.2) that are the main
tools in proving CLT for all our examples (in the discrete and continuous case
respectively). The proofs of these results occupy the rest of Part II. Part III is
devoted to the proof of Theorems 2.2 and 2.3. Part IV is devoted to the proof of
Theorems 2.4 and 2.5. In Part V, we prove Theorem 2.7. Finally in Part VI we
prove some technical results needed in the proof (Appendix A and Appendix
B) as well as discuss the general context of flexibility of statistical properties
(Appendix C) and state some open problems (Appendix D).

2 Specifying systems appearing in Theorems 1.3-1.5

We will now make precise what type of generalized (T, T~") transformations
will be used in the proofs of our main results. We present the examples in four
subsections below.

2.1 Zero entropy flow

We start with the following lemma which shows that the entropy of a general-
ized (T, T~") transformation is zero provided that the base map has entropy
zero and the cocycle has zero mean. Recall Definition 1.6.

Lemma2.1 Let F € C"(X x Y, ¢) withr > 1 be a generalized (T, T™")
transformation such that f is ergodic, ent,(f) = 0 and pu(tr) = 0. Then
ent; (F) = 0. The same result holds for (T, T*I)ﬂows.

Here ent,, (-) denotes the metric entropy. The proof is given in Appendix A.
Let QO be a hyperbolic surface of constant negative curvature of arbitrary

genus p > 1. Let &, be the (stable) horocycle flow on the unit tangent bundle

X = S0, thatis, h; is moving x € X at unit speed along its stable horocycle

He) = {FeX: lim dGi), Gi(%) =0 @.1)
—00
where G; is the geodesic flow on X. Let y1, ..., y2), be the basis in homology
of Q. Choosei € {1,...2p}and let A be a closed form on Q such that
/ A =6ij, 2.2)
Vi

where ¢ is the Kronecker symbol. Set
(g, v) = Mq) ("), (2.3)
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Flexibility of statistical properties 39

where v*™ is a unit vector obtained from v by the 90 degree rotation. Let
(G¢, Y, v) be an R action which is exponentially mixing of all orders. Consider
the system (see (1.5))

Fr(x,y) = (hr(x), Grr )y (2.4)

We have
r(x) = / A, (2.5)
h(x,T)

where h(x, T) is the projection of the horocyle starting from x and of length
T,to Q.
Theorem 1.3(a) follows immediately from the following theorem:

Theorem 2.2 Let (F7)7cr be the flow defined in (2.4). Then

hl. ent.(Fr) =0;
h2. For every smooth observable H € C*°(X x Y) with ((H) = 0, there
exists o2(H) > 0 such that

(n7)!* T)1/4
/ H(F;(-))dt

converges as T — oo to the normal distribution with zero mean and
variance o*z(H);
h3. There exists H € C°°(X x Y) with ¢ (H) = 0 such that 62(H) > 0.

The proof of Theorem 2.2 is provided in Sect. 6. To demystify the normal-
ization 7' /(In T)'/4 let us write

T
/0 H(F()dt =Y Zo 7, 2.6)

where Z,, 7 contains the contribution of the times  when t;(x) € [n,n + 1).
According to the analysis in [43] of

mes(t € [0, T]: t;(x) € [n,n+ 1)), 2.7)

(2.7) is significant if n is of order ~/In 7" and we will show that in this case
(2. 7)isof order T/+/InT.

Thus (2.6) is the sum of O(+/InT) summands, each with variance
(T/~/InT)?. As we will see, these summands are only weakly correlated and
50 (2.6) will be approximately normal with variance 72 /+/In T. This explains
h2. In the proof, we will in fact need a more precise estimate related to (2.7)
which, besides [43, Theorem 5.1] also uses some methods introduced in [40].
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40 D. Dolgopyat et al.

Another important step of the proof is to quantify the weak dependence among
the summands to the extent that the CLT holds. To this end, we use a CLT by
Bjorklund and Gorodnik [10] (see Sect. 4 for a precise statement). We will
need some extensions of the main theorem of [10] not just here but also for the
forthcoming Theorems 2.3-2.5. We refer the reader to Sect. 6 for a complete
proof of Theorem 2.2.

2.2 Zero entropy map

We will now define the generalized (T, 71 transformations used in Theo-
rem 1.3 (b). Let m € N and let | - || denote the distance to the nearest integer
in R™. For k > 0, let

- D(x)

D(k) = {a €T : 3D(a) > O such that H (k,oz)“ >

for every k € ZM \ {0}}.

Recall that from Khintchine’s theorem ( [70]) it follows that ID(k) is non-
empty if k > m and it has full measure if k¥ > m. Theorem 1.3 (b) immediately
follows from

Theorem 2.3 Let m € N and k € [m, 2m). Let i be the Lebesgue measure
on T™. For every o € D(k) and every r € (k/2, m) there exists d € N and
a function T € C"(T™, R?) such that if (G, Y, v) is a C*® smooth R? action
which is exponentially mixing of all orders then the system

F:(MxY,uxv)—> (T"xY,uxv), F@,y)=+a Gy

satisfies:
rl. ent,x,(F)=0;
r2. Forevery H € C"(T™ x Y) with (u x v)(H) = 0, there is c>(H) > 0
such that
1 1

Hy = H(F"(-
7 H ﬁZ (F" ()

n<N
converges as N — oo to the normal distribution with zero mean and

variance o2(H);
r3. Thereexists H € C"(T™xY) with (uxv)(H) = Osuchthato*(H) > 0.

Since the rotation by « and the action (G, Y, v) are both C*° and the cocycle
7 is of class C"(T™, R¥) it follows that the map F is of class C" and so indeed
the above theorem implies Theorem 1.3 (b). We prove Theorem 2.3 in Sect. 7.
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Flexibility of statistical properties 41

2.3 Flows with intermediate mixing properties

We will now describe the class of generalized (7, T—1) transformations used
to prove Theorem 1.4. The base flows in our construction are a subclass of
the class of smooth flows on surfaces. For more details on smooth flows on
surfaces we refer the reader to [4,73,74,103,104]. In particular it follows by
Pesin entropy formula ( [7]) that the entropy of any smooth flow on a surface is
equal to 0. Let M be a surface and let (¢;) be a C* flow on M that preserves the
area u. Ergodic properties of smooth flows on surfaces have been successfully
studied via their special representation. More precisely, one considers a one
dimensional closed transversal 7 on M and represents the flow as the special
flow over the first return map to T ~ T and under the roof function f which
is the first return time. Since the flow is smooth, the return function is also
smooth except for fixed points of the flow, at which f blows up. In particular,
every point in x € M which is not a fixed point can be written as x = ¢;0,
where 0 € 7 and 0 < s < f(0).

In what follows we will always assume that the set of fixed points of (¢;) is
non-empty and finite. In the case of smooth flows on surfaces the first return
map to 7 is an interval exchange transformation or in some cases (which will
be our main focus) an irrational rotation. For a more detailed discussion on
special representation of (¢;) we refer the reader to [49,73,74]. We will now
describe what examples of smooth flows (¢;) will be considered in this paper.

Let ¢ € T be an irrational number. Let f : T — R be a function which is
C3 on T\ {0}, satisfies | fdLeb = 1 and

e _

£e)
o0+ B'(0) wi—g 2 28)

and im =
o—~1- h"(1 —6)
where A% + B? # 0 and the function / belongs to one of the classes specified
below.

(1) h(0) =logh and A = B, thenforevery @ € T\Q there exists f satisfying
(2.8) such that R,6 = 6 + « is the first return map and f is the first return
time of some C ergodic flow (¢;) on a surface (M, u) with genus > 2
(see e.g. [73] or [49, Proposition 2]). Such flows are not mixing, [73], but
are weakly mixing for every «, [49]. Let us denote K(«, logsym) the set
of C*° area preserving flows (¢;) for which R, is the first return map and
the corresponding first return time f satisfies (2.8) (with 2(0) = log(6)).

(2) h(x) = x77,y € Bsing Where By, is anon-empty set such that for every
a € T\ Q there exists f satisfying (2.8) with & such that R0 = 0 + « is
the first return map and f is the first return time of some C* ergodic flow
(¢y) on the torus (TZ, w), [74]. In [74] it is shown that y = 1/3 € Byjp,.
Moreover by [74] (¢;) is mixing for every « and by [47] if y < 2/5,
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42 D. Dolgopyat et al.

then the flow is polynomially mixing for a.e. «. In what follows we will
always assume that y < 2/5. For y € By, let us denote (o, y) the
set of smooth area preserving flows (¢,) on T? for which Ry is the first
return map and the corresponding first return time f satisfies (2.8) with
hx) =x77.

We will consider the continuous flow Fr given by (see (1.5)) Fr(x,y) =
(o7 (x), G (¥)), where (¢;) is as in (1) or (2) above and t and G, are defined
in the theorems below.

Theorem 2.4 Let (G;,Y,v) be a C* flow which is exponentially mixing of
all orders and let T : M — R be any C* positive function. There exists
F C T with Leb(F) = 1 such that if « € F, (¢;) € K(a,logsym), and
Fr(x,y) == (o1 (), Ger(x)(¥)), then

wl. (Fr)rer is weakly mixing but not mixing;
w2. ForeveryH € C®(M xY) with(uxv)(H) = 0, there existso>(H) > 0
such that

1 1 (T
— Hy = — H(F;(\))d
= T '_T/O (F;(-))dt

converges as T — oo to the normal distribution with zero mean and
variance GZ(H);

w3. There exists H € C*°(M x Y) with (u x v)(H) = 0 such that 62(H) >
0.

The above theorem immediately implies Theorem 1.4 (a).

Theorem 2.5 Let (G;, Y, v) be a C* flow which is exponentially mixing of all
orders and let T : T> — R be any C™ positive function. There exists F' C T
with Leb(F") = 1 such that if « € F', () € K(a, y) for y € Bsing and
Fr(x,y) := (o1 (x), Grp(x)(¥)), then

nl. (Fr)rer is polynomially mixing and not K;

n2. Forevery H € C®(T? x Y) with (u x v)(H) = 0, there exists c>(H) >
0 such that

1 1 r
—  Hy = — H(F,(-))d
= T ﬁ/o (F;(-)dt

converges as T — oo to the normal distribution with zero mean and
variance o*(H);

n3. There exists H € C®°(T? x Y) with (u x v)(H) = 0 such that c*(H) >
0.
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Notice that the above theorem immediately implies Theorem 1.4 (b).

Remark 2.6 In the above two theorems we only need that the C* cocycle t
is positive. The simplest case of our theorem is to take 7 = 1. In this case the
resulting (7, T—1) transformation is just the direct product flow (¢; x Gy).

2.4 K not Bernoulli example

We will now specify the (T, T~!) transformations that we will use in the proof
of Theorem 1.5. Let f : (T, u) — (T™, u) be a volume preserving Anosov
diffeomorphism.

Let 7 : T — R be a mean zero cocycle. We shall say that 7 is irreducible
if it is not cohomologous to a cocycle taking value in a proper linear subspace
of R“.

Recall Example 1.8. Theorem 1.5 is a consequence of the following result.

Theorem 2.7 Fix an integer d > 1. Let f : (T", n) — (T™, u) be a
volume preserving Anosov diffeomorphism. Let (G;) be a geodesic flow on
SLQ2,R)/T (ifd = 1), or a Weyl chamber flow on SL(d 4+ 1, R)/T" (when
d > 2). Let T : T" — R< be a mean zero irreducible Holder cocycle. Then
the map on T™ x SL(d + 1, R)/ I" defined by

Fa(x,y) = (fx, Gr(x)y)

with the invariant measure (v x Haar is non-Bernoulli.

The irreducibility assumption is not too restrictive.

First, it holds for most cocycles. To see this we shall use the following well
known fact. Let 7(1)(x), ... 7(z)(x) denote the components of the vector 7 (x).
Recall that by the CLT for Anosov diffeos (see e.g. [92, Chapter 4]) T/ VN
converges in law as N — oo to a normal random variable with zero mean and
covariance matrix with components

D} (@) = ) n(xi () o f™). (2.9)

n=0

Proposition 2.8 Ler f : (T, u) — (T™, w) be a volume preserving Anosov
diffeomorphism and t : T" — R? be a zero mean Hélder cocycle. Then the
following are equivalent.

(i) There is a measurable function h : T" — RY such thatt —h + h o f
takes values in a proper linear subspace;

(ii) There is a Holder function h : T™ — RY such that t —h + h o f takes
values in a proper linear subspace;
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(iii) The diffusion matrix D*(t) is degenerate, i.e. there is a unit vector u
such that D*(t)u = 0
(iv) There is a unit vector u such that if x is a periodic point of period p then

Tp(x) Lu
Thus if 7 is reducible, then for any collection of d periodic points xy, . . ., X4
of periods pi, ..., pg the determinant of the matrix with components Q;; =

(7(i))p; (xj) 18 zero. Since there are infinitely many periodic orbits, T must
satisfy infinitely many algebraic equations. Thus the set of reducible cocycles
is contained in an algebraic submanifold of infinite codimension.

Second, if 7 is reducible we still can apply Theorem 2.7 to a lower rank
subaction. Namely suppose T = v — h + h o f takes values in a proper
subspace V. Then the transformations defined by t and by T are conjugated
via the change of variables (x,y) +— (x, Gj(y)). Thus to understand the
(T, T~") map defined by t one can study the (7, 7~!) map defined by 7
which is associated to the lower rank subaction of V C R,

Proof of Proposition 2.8 If t — h + h o f € V where V is a proper linear
sAubspaceA: of R?, then takiAng a unit vector u orthogonal to V we get (t(x), u) =
h(x) — h o f(x) where h(x) = (h(x), u). Conversely, if for some unit vector
u we have that (t,u) = h—ho f then 7 — [fl —ho f] u belongs to the

orthogonal complement of u. Also denoting 7, = (7, u) we have that

o0

(D*@u,u) = Y wEa(tuo M) =07 (Fu).

n=—0oo

The foregoing discussion shows that for y € {i, i, S 1, iv} we have that (y)
holds iff there exists a unit vector u € R¢ such that (y)u holds where

(z)u The equation 7, = h—ho f has a measurable solution;
(ll)u The equation 7, = h—ho f has a Holder solution;

i)y 02 (2a) = 0;

(z v), For each periodic point x of period p, rp (x) =0.

However, for each fixed u the propertles (z)u, (zz)u (/m\)u, and mu are
equivalent. Indeed the equivalence of (z)u, (ll)u, and (/15,1 follows from

Livsic Theorem [82], while the equivalence of (z)u and (m),l follows from
the L,—Gottschalk-Hedlund Theorem ( [23]). This completes the proof of the
proposition. O

Proof of Theorem 1.5 The K property for F; with any d > 1 follows from
Corollary 2 in [57], the classical CLT for any d > 3 follows from [35, Theorem
5.1] (since the proof of Theorem 5.1 in [35] is relatively long we provide a
different proof of the CLT in §B.1 using the tools developed in Part ) and
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mixing of F; with rate n—4/2 follows from [35, Theorem 4.6]. Finally non-
Bernoullicity follows from Theorem 2.7. O

The proof of Theorem 2.7 is carried out in Part V.
Part II. Central Limit Theorem for (7, 7~') transformations

3 The main result

Here we present sufficient conditions for generalized (7', 7~!) transformations
defined by (1.2) (and (1.5)) to satisty the CLT. Namely, Theorems 3.1 and
3.2 below give such conditions for discrete and continuous time (7, 7~ !)-
transformations, respectively.

Recall (1.4).

Theorem 3.1 Let r € Ry and f € C"(M) satisfy the following: for each
A € C"(M) with w(A) = 0, there is a number o>(A) > 0 such that

1
— A(f") = N(0, 0% (A 3.1
«WO;N(” (0, 02 (A)) 3.1)

as® N — oo, where the left hand side is understood as a random variable
with respect to the measure . Let T : M — R? be a C” cocycle satisfying
the following: there are ¢ > 0 and C > 0 so that for every N > 2,

c
pw(xeM : |ty <logt* N) < (3.2)

N5

Let (G;, Y, v) be a C® R? action which is exponentially mixing of all orders
and let F(x,y) = (fx, G¢(x)y). Then for every H € C" (M x Y) with (u x
V)(H) = 0, there is 2(H) > 0 such that

1
— > H(F'(.) = N, =*(H))
W 0<n<N
as N — 00. Moreover, ifaz(A) =0forall A € C" (M), then

2= Y [ [ ARG Gawndidnm. 63
k=—00

where H(x,y) = H(x, y) — fY H(x, y)dv(y).

6 Here, and in the sequel, = denotes weak convergence of random variables. Note that in
contrast with Definition 1.1, we do not require UZ(A) > 0.
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Next, we extend Theorem 3.1 to continuous time. Below, t7(x) =
T
fo T(fix)dt.

Theorem 3.2 Let r € Ry and f € C"(M) satisfy the following: for each
A € C"(M) with u(A) = 0, there is a number o2(A) > 0 such that

1 T
— | A(f)dt = N, 0%(A 3.4
ﬁ/o (fi)dt = N(0,0°(A)) (3.4)

as T — oo. Let T : M — R? be a C" cocycle satisfying: there are & > 0 and
C > 0 so that for every T > 2,

C
,u(x eM : |tr(x)| <log'*® T) <

75" (3.5)

Let (Gy, Y, v) be a C*®, RY action which is exponentially mixing of all orders
and let Fi(x,y) = (fix, Gy, (x)y). Then for every H € C"(M x Y) with
(u x v)(H) = 0 there is >2(H) > 0 such that

1 T
— | H(F(,)dt = N, 2*(H
\/7/0 (Fe(-,-)) ( (H))
as T — oo. Moreover, ifaz(A) =O0forall A € C"(M), then
2= [ [ A Gawondvodnwd G6)

where H(x,y) = H(x, y) — [y Hx, y)dv(y).

Remark 3.3 We remark that in Theorems 3.1 and 3.2, the conditions (3.2) and
(3.5) hold trivially in case t is bounded below by a positive constant ¢ (indeed,
in this case min, {|ty (x)|} = ¢N > log2 N for N sufficiently large).

4 A criterion of CLT for R? actions

In the proof of Theorem 3.1, we will use the strategy of [12] except that we
replace the Feller Lindenberg CLT for iid random variables used in [12] by a
CLT for R? actions which are exponentially mixing of all orders. This CLT
for such R actions was proven by Bjorklund and Gorodnik in [10]. Since it
is a key tool in our argument, we devote this section to recalling it.

Proposition 4.1 (Theorem 1.5 in [10]) Let (G, Y, v) be an R? action which
is exponentially mixing of all orders. Let (mp)Lcr be a sequence of non-
negative measures on R¢. Fort € R%, let A, € C'(Y) be a family of functions
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satisfying: v(A;) = 0 for every t € R¢ and sup;cprd |A¢llc1yy < +o00. For
any L € R, let Sp(y) := fRd A (G,y)dmyp (t). Suppose that

(a) hm mL(Rd) =
(b) Foreachr eN, r >3, and each K > 0,

lim /mrL_l(B(t, KIn mL(Rd)))dmL(t) =0,

L—o0

where B(t, v) denotes a ball in R? of radius v > 0 centered at t.
(c) There exists 0% = o2(A;) > 0 so that lim o Vi = o2, where

v, = / S2(n)dv(y) = / [ / A (G )AL (G y)dmy ()dmy (1) dv ().

Then S () converges as L — 00 to normal distribution with zero mean
and variance o>.

Proposition 4.1 is proven in [10, Theorem 1.5] in case A; does not depend
on t. Since the proof directly extends to the case of -dependent observables A;
(with uniform C! norm), we do not repeat it here. (The proof uses the method
of moments (cumulants). This method requires showing that

01— o00(1) if p is odd
[ steavey = {0 § s ose
2m — Do (1 4+ 0p—o0(1)) if p = 2m is even.

4.1
The proof of (4.1) proceeds by expanding

,,,,,

4.2)

and showing that the main contribution to (4.2) comes from the region where
(t1, .. .tyy) can be partitioned into m pairs so that the points in each pair
are close to one another but all pairs are far apart. The contribution of points
(t1, . . . tay) that do not satisfy this property is estimated by exponential mix-
ing and that estimate only uses the fact that the functions A; have uniformly
bounded norms. Thus the proof extends to the case when A, depends on 7.)

In the case of discrete (T, T~!) transformations, we will only need Propo-
sition with L € N. In this case, we will replace L by N and write my, Sy,
etc.
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5 The CLT for skew products
5.1 A quenched CLT

In this section, we use Proposition 4.1 to derive a quenched CLT (Lemma 5.2).
In the next section, we will use this quenched CLT to prove Theorems 3.1 and
3.2.

It is convenient to make the following definition. Let FF € C"(X x Y, ¢)
be a skew product of the form F(x, y) = (fx, g(x, y)). Thus we assume that
f preserves a probability measure i on X and for each x, g(x, -) preserves a
probability measure v on Y, so that F preserves the measure { = u X v.

Definition 5.1 F satisfies a quenched CLT on C" if for each function H €
C" (X x Y) satistying (5.1) there exist a constant o (H) and sets Xy C X such
that limy_, oo (Xn) = 1 and for each xy € Xy the sequence of random
variables W, where y is distributed according to v, converges in law as

N — o0 to the normal random variable with zero mean and variance o2 (H).

In this definition, we regard the fiber Y as the phase space of a random
dynamical system and X as a source of external noise. From this point of view
the quenched limit theorem means the theorem which holds for a typical but
fixed realization of the noise, while annealed limit theorem is the limit theorem
when both x and y are assumed random.

Our first step is to obtain a quenched CLT (Lemma 5.2) under the assump-
tions of Theorem 3.1. Thus we suppose that f € C"(M), T : M — R? and
(Gy, Y, v) satisty the assumptions of Theorem 3.1. Let H € C"(M x Y) be
such that

/ H(x,y)dv(y)=0 (5.1)

for each x € M. Given x € M, we define the measure my (x) and the observ-
able A; , forallt R? as

1= 1 \
my() = gsmm, AxO) = T =T n<N;x):,H(f X, ).
) (5.2)

Then

;N ) 1
SN =SNx(y) = —= Y H(f"x, Gr,0y) = —=Hy(x, ),
=0

N & N
where Hy is the ergodic sum of H.

One may think about my as the rescaled local time of the deterministic
random walk . It is enough to verify the conditions of Proposition 4.1:
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Lemma 5.2 Assume that (5.1) holds and that the assumptions of Theorems 3.1
are satisfied. Then the number

oityi= 3 [ [ He o HG S Gandv o)t
k=—00

is non-negative and finite. Furthermore, there are subsets XN C M such that
lim w(Xy) =1
N—o00

and for any sequence xy € Xy the measures {mpy(xn)} and the functions
(As xy)icrd defined by (5.2) satisfy the conditions of Proposition 4.1, with
ol = O’Z(H) in part (c).

The rest of Sect. 5.1 contains the proof of Lemma 5.2. In Sect. 5.2 we will
show how Lemma 5.2 implies Theorems 3.1 and 3.2.

To prove Lemma 5.2, we need to check properties (a)—(c) of Proposition 4.1.

Property (a) is clear since for every x € M, my(x)(RY) = V'N. Other
properties are less obvious and will be checked in separate subsections below.

5.1.1 Proof of Property (b)

Let

XN = {x € M :Card{n : |n| < N and ||7,(x)|| < In'**/2 N} > NO'23},
(5.3)

where ¢ is from (3.2).
Lemma 5.3 If 7 satisfies (3.2), then limy_ oo Nu(Xy) = 0.
Proof First observe that for large N
Xy C X% :={x:L(x,N) = N},
where
L(x,N) = Card{n : N>2' < |n| < N, |lt,(x)| < In'*¢/2 N}.
Next, note that if T satisfies (3.2), then for every n > N 021 e have

wlltll < 2Ny < (1l < ' n) < Cln
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for N sufficiently large, where C is the constant from (3.2). We conclude by
the Markov inequality that

w(Xy) < uw(X%) < N2 (L(x, N))
— N70.22 Z M(||Tn|| < 1n1+8/2 N) < CN*1.06

n:NO2l<|n|<N
for N sufficiently large, where C is the constant from (3.2). O

Lemma 5.4 There are sets XN C M such that M(XN) — 1 and for all
xn € Xy the measures my (xy) satisfy property (b).

Proof Let Xy = {x : f"x ¢ Xy foralln =1, ..., N}. By Lemma 5.3
u(Xy) > 1—Np(Xy) - 1

as N — oo. Thus for each K we have that for N large enough and for each
xeX N

/ m'y L (x)(B(t, K In N))dmy (x)(t)

N—1
1 — .
= 7 > Card'j < N [|7j(x) — ()| < K In N}
n=0

N—1
1 1,
< 7z 2 Card T < N o llgja(f" )l < I+ )
n=0

< NO.23(r—l —5+1 — N0477—0427r - 0.

Here, in the last line we used that x € X and that » > 3. Property (b) follows.

O
5.1.2 Property (c)
Note that by definition of Sy,
1 R,
Vv =+ / Sy (x, ydv(y) = an%j_oom,m(x), (5.4)

where
Onyny (X) = / H(f"x, G,nl(x)y)H(f"Zx, thz(x)y)dv(y). (5.5)
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Notice that since v is G; invariant,

Gnl,nz(x) = 00,np—n (fnl-x)- (56)

To prove property (¢) we need to show that o 2(H) is indeed finite and that
there exist subsets Xy C X of measure close to 1 such that for any sequence
xy € Xy we have limy o Vy(xy) = O’Z(H). We first study o2(H). We
have

N-1
/MVN(x)du(x)=% > /Monl,nz(x)du(x)

ni,np=0
- N—1 N — k] .
= D | HEODHE Y, Gawndp(odv(y)
k=—N+1
— N -
= > 5 ostodneo
k=—N-+1 M
> 4!
- 00 k() (x) — k1 [ onctodute)
k=—N+1"M Nk:—N+1 M

Due to (5.1) and exponential mixing of G,, there are constants ¢, C so that for
all x
|o0.6(0)] < ClIH [[gre™ I, (5.7)

If t satisfies (3.2), then by (5.7) there are constants 8 > 1 and C > 0 such
that

| Jooato| duecr) < ci? (538)

(in fact, (5.8) holds for each § < 5).
In particular, (5.8) implies that the following limit exists

oty i= fim [ Yy = Y [ooxwdue.  69)

k=—00

This shows that o2(H) is finite.
The next result shows that property (c) holds with probability close to 1.

Lemma 5.5 Let F be an ergodic (T, T~ ") transformation and H be a function

satisfying (5.1) and (5.8) with B > 1. Let Vi be given by (5.4) and o2(H) be
given by (5.9). Then Vy converges to o> (H) in probability as N — oo.
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Lemma 5.5 completes the proof of Lemma 5.2. Indeed given N let ey be
the smallest number ¢ such that M(X}kv,e) > 1 — & where X}k\,’g ={xeX:

|VN(x) — 02(H)| < ¢e}. By Lemma 5.5, limy_, o ey = 0. Therefore the set
X N = X NN X% N.ey? where X n 1s from Lemma 5.4, satisfies the conclusions
of Lemma 5.2.

Thus it remains to prove Lemma 5.5.

Proof Recall (5.8). Given ¢ > 0 let k. be the smallest number such that

> ullooxl) < .

Ik > ke

By ergodicity for large N we have for |k| < k;

N—1—k,
1 ¢ e P
YN o X 00| = 5~ | < 5 5.10
12 N Z 0.k (f"x) — u(ook) o | =% (5.10)
n=ke
Next, we write
N—1 min{N—1,N—1—k}
Vn(x) = N Z 00,k (f"x)
k=—N+1 n=max{—k,0}
1 N—1—k; min{N—-1,N—-1—k}
=N Z Z ook (f" X)-l-— Z Z o0k (f"x)
Iki<ks  n=ke AP
1 ke—1 min{N—-1,N—1—k}
n
Ty Z Z + Z 00,k (f"x)
|k|<ke \n=max{—k,0} n=N—k,

= Vy+Vy+Vy.

Definition of k, and the Markov inequality imply that 1 (x : [Vy| > ¢€) < e.
Next, |Vy/| < 2k||H |2,/N and so Vy/ is negligible. Also by (5.10)

x|V = > woon|>el| <e
Ikl <ke
for N sufficiently large. Using the definition of k, again we see that
> mloop) | =0’ (H)| <.

k| <ke
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Combing the above estimates we obtain
plx |V (x) — o (H)| = 3¢) < 2¢ + &7

for N sufficiently large. Since ¢ is arbitrary, the lemma follows. O

5.2 From quenched to annealed CLT: proofs of Theorems 3.1 and 3.2

In this section we give the proof of Theorem 3.1 using the quenched CLT
(Lemma 5.2). We do not give a separate proof of Theorem 3.2 because the
proof of Theorem 3.1 with trivial modifications applies in continuous time.

Recall Definition 5.1. Lemma 5.2 and Proposition 4.1 tell us that F satisfies a
quenched CLT on C”. Thus Theorem 3.1 follows immediately from Lemma 5.6
below.

Lemma 5.6 Let F € C"(X x Y, ¢) be a skew product such that f satisfies
the CLT on C" and F satisfies the quenched CLT on C". Then F satisfies the
CLT on C".

Proof of Lemma 5.6 Split
H(x,y) = H(x,y) + H(x) where H(x):/H(x,y)dv(y). (5.11)

We will show that for each & € R

lim eiéHN(x,y)/«/Ndé— — e_UZ(H)SZ/Z

N—o00

where 62(H) = 62(H) + az(H) o2(H) is the limiting variance in the CLT
for Hy and 02(H ) is the limiting variance in the quenched CLT for H. Let
Xy be the sets from Definition 5.1 for H. Split

/ PEHN VN g
XxY
:/ PEHV VN g
XNXY
+/ PEHN /YN g
X xY

The second integral converges to 0 since Nlirn w(X4) = 0. On the other hand
— 00

forx € Xy 11m feiSﬁN(x’Y)/mdv(y) — E)2 uniformly on Xy

N—o0
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(otherwise we could take a subsequence x N; C XN; such that the distribution
Hy (XN, e .

of % does not converges to the normal distribution with zero mean and

variance 02(1:1 ) which is a contradiction with the assumption that F' satisfies

a quenched CLT on C”). Hence

) it Hy (x,y)
lim e’ YN dux)dv(y)
N—oo XyxY
Hy (x) Ay (x,y)

= lim &SN |:/ TN dv(y)} dp(x)
Y

N—oo Jxy

Hpy (x)

— lLm e—fszz(’?)/z/ ¢S VN du(x)
XN

- .. Hy(x)
= lim 6_5252(11)/2/ ¢ W d,u(X)ze_szGZ(H)/z,
X

N—oo

where the last equation follows from the assumption that f satisfies the CLT
on C”. This completes the proof of the lemma. O

Proof of Theorem 3.1 The CLT for F follows from Lemma 5.6. So it remains
to establish the formula for the variance. If 62(H) = 0, then o 2(H) = 0%(H),
where

A=Y /M /Y A, WH(f*x, Gy ) dv()dpn(x)
k=—00

by Lemma 5.2. This gives (3.3) and hence completes the proof of the theorem.
]

Remark 5.7 We note that the proof of Theorem 3.1 proceeds in two steps.

SN
v VN(x)
conditions of Proposition 4.1. The second step is to prove a weak law of large
numbers for Vi (x). In a forthcoming paper we consider (T, T~") transfor-
mations with 1 dimensional action in the fiber, in which case Vy(x) has a
nontrivial limit law. This leads to the limit distributions of the form &Z where
G and Z are independent, Z has a standard normal distribution and & is the
limiting distribution of the quenched standard deviation (cf. [80]). We note
that similar distributions appear in limit theorems for Z and Z? extensions of
hyperbolic systems ( [96]) in which case & stands for the limiting distribution
of the local time. However, the approach of [96] is quite different from ours
and relies on the symmetry of the infinite measure system with respect to fiber
translations.

The first step is to establish a quenched CLT for by verifying the
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Part III. CLT for systems of zero entropy, Theorem 1.3 By the discussion
in Part I, it is enough to prove Theorem 2.2 (which implies Theorem 1.3 (a))
and Theorem 2.3 (which implies Theorem 1.3 (b)). We provide the proofs of
these two theorems in the next two sections.

6 Theorem 2.2

Here we prove Theorem 2.2. We need to show h1-h3. hl is an immediate
consequence of Lemma 2.1 since the entropy of the horocycle flow (4;) is
zero and 1 given by (2.3) has mean zero. (u(t) = 0 since u is invariant under
the involution given by I (g, v) = (¢, —v), while Tt o I = —t.) We will prove
h2 in Sect. 6.1 and h3 in Sect. 6.2. Finally, Sect. 6.3 contains the proof of
the key technical result: mixing temporal local limit theorem for horocycle
windings.

6.1 Reduction of h2 to a mixing local limit theorem

Proof of h2. As in Sect. 5, it suffices to give a proof under the assumption
(5.1). Indeed we can split arbitrary H as H(x, y) = H(x) + H(x, y) where
H satisfies (5.1) and use the fact that due to [20], the ergodic integrals of H
satisfy Hr (x) = O(T%) for some’ o < 1.

Since |H7, (x, y) — Hr, (x, ¥)| < [|H||co|T1 — T3] it suffices to consider the
case when T is an integer. Analogously to (5.2), we define

T—1
(InT)1/4
mr(x) = T E 3, (x)>
n=0

1 1
#n< N :1,(x) =t} Z /0 H(hpysx, Gsy)ds.

n<T:t,(x)=t

Arx(y) =

As before we check properties (a)—(c) of Proposition 4.1. Property (a) is imme-
diate as |[mz|| = (In T)'/4.
To prove (b) and (c) we need some preliminary information. Let

~ (h’l T)1/4 T
fir (1) = —— | Snwdr.
0

7 Let Ag be the smallest eigenvalue of the Laplacian on Q. According to [20, Theorem 1.2 and

1+ VT =4k
2

1
Corollary 1.3] (which relies on [48]) one can take o = if g < T If Ao > %

1 . . .
one can take o = 3 + ¢ forany ¢ > 0. The precise value of « is not important for our purposes.
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Note that for each set I C R, we have
mr(x)(I) < mrx)(D), fr@)[) < mrE)d),

where 1 is the unit neighborhood of /. Therefore it suffices to check (b) with
myr in place of my. Thus for part (b), we need to control

m7(B(s, KInlnT))
mes({t € [0, T]: |ty (x) —s| < KInlnT})
T .

= (In'*T) x

The second factor here is the probability that 7;(x) is within distance K InIln T
from s when x is fixed and t is uniformly distributed on [0, T]. Such results
are referred to in [42] as temporal limit theorems (in contrast to more classical
spatial limit theorems where 7 is fixed and x is random). The study of temporal
limit theorems goes back to [46]. By now there are several systems where
the temporal limit theorem is proven (see [18,42] and the references therein).
However, there is only one such system which involves a smooth observable,
namely, horocycle windings, and this is the main reason for the choice of
the base map in Theorem 2.2. The availability of the temporal limit theorem
is crucial in our construction. In fact, we need to extend the temporal limit
theorem for horocycle windings ( [42, Theorem 5.1]) in two ways. First, the
results of [42] concern the probability that 7;(x) belong to an interval of length
+/In T whereas we need to consider intervals of unit size (to verify part (b) it
is sufficient to handle intervals of size O (Inln 7") but for part (c) we need to
consider shorter intervals). It is natural to call this extension a local temporal
limit theorem. Secondly we need a mixing limit theorem which claims, roughly
speaking, that the values of 7,(x) and G;(x) are asymptotically independent.

To state our temporal limit theorem we need some notation. Write x =
(g, v) € X and say that g is the configurational component of x.

Let go € Q be an arbitrary reference point and for each g € Q let I'; be a
shortest geodesic from g to g. Define S(g) = fl"q A and let

Er(x) = 17 (x) — B(hrx) + B(x).

Equation (2.5) shows that &7 (x) is an integral of A over a curve starting and
ending at gg, so by (2.2) it is an integer.
Let g7 (x) be the configurational component of the geodesic of length In T

starting at ¢ with speed —v. Denote s7(x) = < / k) +B(x)—pB(x), where
gr(x)

x = G_1p7x and G; denotes the geodesic flow. O
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Proposition 6.1 There is a constant C > 0 and a zero mean Gaussian density
9, so that the following statements are true for all x € X.
(a) For each 7 € R,

& st

sInT

(b) For any set A C X whose boundary is a finite union of proper compact
submanifolds (with boundary), we have

1 Z
—mes <t <T z) = / p(s)ds + or—oo(l).
T —c0

VInT [T k —s7(x)
T fo L, )=k Ln; (xyeadt = n(A)p (TZ) + 075 00(1), (6.1)
k—s7(x)

where the convergence is uniform when NV varies over a compact set.
n

(c) For any k € 7, we have 8

mes(f{t < T : &(x) =k}) < (6.2)

T
VInT’

Part (a) of Proposition 6.1 is proven in [42]. Parts (b) and (c) are new but
they could be established by the methods of [42]. To focus on the new ideas
first, we complete the proof of h2 in Sect. 6.1 and h3 in Sect. 6.2 assuming
Proposition 6.1. Finally, in the separate Sect. 6.3, we prove Proposition 6.1.

Thus we proceed with the proof of property h2. Recall, that it remains to
verify properties (b) and (c) of Proposition 4.1. Property (b) of Proposition 4.1
reduces to showing that for each K and each r > 3,

f @ (B(t, K Inln T))dmr (1) — 0.

Observe that by Proposition 6.1 (c), for each unit segment I C R, mp (/) <

C/In'/* T and hence M7 (B(t, K InlnT)) < %. Thus

C" " YK)(InlnT) !
In¢—b/AT

/ﬁirT_l(B(t, KInlnT))dm(@) < lm7 oo
C" Y (K)(InlnT) !
< —

ln% T

since » > 2. This implies property (b) of Proposition 4.1.

8 Estimates such as (6.2) are often called anticoncentration inequalities since (6.2) shows that
the probability that 7(.) belongs to a unit interval is small no matter where this interval is located.
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To establish property (c) of Proposition 4.1 it suffices to show that there is
a number v such that

VInT V
sup | lim H—ZT(")—V‘ =0, (6.3)
xeXx |T—o0 T
where
T 2
Vr(x) = f ( /0 H(FT<x,y>)dr) dv(y).
We have
Vi) = Y Ty sy (), (6.4)
ki,ko€Z
where
Tky kp (X)
T T
- fo /O e, —ta lemko £(hi X, iy, Ky — K1 + B(d) — Blgn)dndna,
6.5)

q: is the configurational component of %, (x) and

p(x' x", ) =/H(x/, MH ", Ggy)dv(y). (6.6)

Fix a large R and partition the sum in (6.4) into three parts. Let / be sum
of the terms where

lky — kil <= R, |ki —s7(x)| < RVInT; (6.7)
Il be sum of the terms where |k, —k{| > R; and Il be sum of the terms where
ko —ki| <R but |kj —s7(x)] > RVInT.

We split our analysis in two parts. Lemma 6.2 says that for large R the
main contribution to the variance comes from 7, while Lemma 6.3 obtains the
asymptotics of the main contribution.

Lemma 6.2 Foreach§ > 0 there is Ry > 0 such that for R > Ry there exists
To = To(R) such that for T > Ty

2 (STZ

and || < .
3/InT

)
|| <
3
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Lemma 6.3 Foreach§ > 0O there is Ry > O such that for R > Ry there exists
To = To(R) such that for T > Ty

AH)| < =,

‘ I _p(0) 8
T2/InT V2 3

where®

A =Y [[ ot 5 8" = B + 0dut e,

keZ

Since § is arbitrary, combining Lemmas 6.2 and 6.3, we obtain that

VInT Vi p(0)

li A(H
Tee T2 V2 (H)
. . p(0) o
completing the proof (6.3) (with v = _ZA(H )) and thus verifying h2. It

remains to prove Lemmas 6.2 and 6.3.

Proof of Lemma 6.2 Since G, is exponentially mixing and H satisfies (5.1),
there are constants Cp, ¢y such that |p(x’, x”,t)] < Cie " uniformly in
x’, x”. Hence using Proposition 6.1(c), we obtain

=y >

k1€Z ka:lka—k1|>R
mes (7] € [0, T] : &, (x) = kp)mes(ry € [0, T] : &,(x) = ko) x Cre 11—kl
C/T C//T2 iR
—¢

< mes(t; < T :& (x)=k)e k<
VInT %: ( S ) VInT

where the second inequality is obtained by summing over k, for fixed k.

Taking Ry so large that C"e~¢1R0 < % we obtain the required estimate on 7.

Similarly, after summing over k> we obtain

C'RT
=~ > mes (11 < T : &, (x) = ki)
n ki: lki—s7(x)|>R~/InT

«C/lf;_mes <t1 =T 18y (x) —s7(¥)] > RVIn T)‘ (©8)

9 Note that A depends on H since p depends on H, see (6.6).
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By Proposition 6.1(a)

mes (tl <T:1&x)—=s7(x)] > RVIn T)
lim

T—00 T

=P(N|> R),

where N is the normal random variable with density p. Therefore for large T,

2
> x (2C'R-P(IN| = R)) . Since limg— oo R -

T
(6.8) is smaller than (
VInT
P(N| > R) = 0 we can make (6.8) smaller than

2

8T
3/InT

sufficiently large. This completes the proof of the lemma. O

by taking R

Proof of Lemma 6.3 The plan of the proof is the following. We need to estimate
Zk L Tk, .k, Where Zy, i, is defined in (6.5) and k1, k> are as in (6.7). First,
1,K2

we choose Ry = Ro(8) so that for all R > Ry, an integral Jg over the interval
[—R, R]is /100 close to the limiting integral over R (see (6.14)). Then, we
replace h,x = (qy, vyy) and hy,x = (qy,, V) in (6.5) by elements of a fixed
e-neton X. This allows us to decouple the integrals over ¢| and #; in (6.5) at the
expense of introducing a small relative error of size n = 1(§, R) assuming that
the diameter of our net e = ¢(8, R, 1) is small enough. Once the two integrals
in the definition of 7, i, are decoupled, we can use the mixing local limit
theorem for both integrals. Specifically, we will use Proposition 6.1(b) with A
being any element of a fixed partition {C;} of X, where each partition element
C; contains exactly one element of the e-net. To quantify Proposition 6.1(b),
we choose another small parameter n = (8, R, n, €) and then a large Ty =
To(8, R, n, &, 1) so that the term o7, (1) in Proposition 6.1(b) is smaller
then 1. We will obtain a Riemann sum over k1 which we will replace by a
Riemann integral to complete the proof.

Now we give the details of the proof. For an ¢ = ¢(§, R, ), divide X into
cubes {C;} with diameter smaller than €. Let x; = (g;, v;) be the center of C;.

Next decompose Ty, x, = le b Ty ko 1y,1>» Where

T T
Tiy kol = / / le, o=k e, (hiy X) g, (0=ky 1c;, (M1 X)
0 0
X p(htlx, htzxa k2 - kl + /6(6112) - ,B(qtl))dtldtZ-

Using uniform continuity of p(x’, x”, t) on the set |[f| < 2R, we see that for
any n > 0 we can take & so small that for all (x’, x”) € C;;, x C;, and for all
k1, ky satisfying |k; — k2| < R, we have

‘p(xl’ XN, k2 - kl + IB(qu) - lg(qll)) - pkl,kz,ll,lz‘ =< n,
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where
Pk kool b = P X1,y X1y, ko — k1 + B(q1,) — Bqu,))-

Therefore, we have

T
Ikl,kz,ll,lz_/o /(; lg, =k Ley, (hiy X) Le, y=ky Ley, Ry X) Py ko 1y 1 dT1d 1T

= |Ik1,k2,l|,l2 - Jkl,ll sz,lzpk1,k2,11,]2| < an],l] sz,lz = Kky,11,ko,l» (69)
where
Jig =mes(t € [0,T]: &(x) = ki, hyx € Cp).

Next, Proposition 6.1(b) implies that for any fixed 7, R, and partition {C;}, we

k—
can take 7" so large so that for all £ with k= srlo) <

VinT | T
|Jid = Jii1] < Jri2, (6.10)
where
T k—s7(x) T _
ki1 = ——u(C) (—) Jki1n = —1). (6.11
k11 m#( NP NV k1,2 mn )

That is, J ;.1 is the leading term and Ji ;2 is an error term. Then by (6.10)
and by the triangle inequality, we have
T27
|1 Jints — Tty 1 Dot | < T 2Tty + Tk 1 Jkn,2 < Cﬁ
Multiplying by pk, k,.1;.;, and then summing for (k1, k2) as in (6.7) and for
l1, >, we obtain

Z Jkr.ly Tyl Py kol b — Z a1k 1 Pk oy | < (6.12)
kil1 kol ki 11 kol
2 7 22 T
| ollocCard ({(k1, k2)})Card ({Cz})C— < CR*Card*({C}) 1.
Oo VInT

(6.13)

2

10/InT

We choose 1 small so that the right hand side of (6.13) is smaller than
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To study the leading term, i.e. the second sum in (6.12), let us note that by
(6.11),
InT
Ri=—7 Z Jir 1y 1 ka1 1Pky ko 01 o
k.l ,ko, 1o

is expressed by

R= Y M(QJM(%)F(

ki,l1,ka,0>

ky —ST(X)) (kZ—ST(x))pk o
VInT VInT P

Next, decreasing ¢ if necessary'? and then taking T sufficiently large, we
can approximate the Riemann sum R by the corresponding integral. Thus we
can achieve that

L
Rl=10

/InT a

where

R
k= (/ RPZ(Z)‘IZ> > // p(x', x" k + Bg(x"))

k<R
—B(q(x")Ndux"dux").

Here, as before, +/In T appears in the denominator to account for the summa-
tion with respect to k1, the sum with respect to k> is rewritten as a sum over
k = ko — k1, and we have used the fact that due the first constraint in (6.7),

. (kz —ST(X)> —y (kl —ST(X)> p ( R )
~InT InT ~InT '
Next, we verify that the error terms ky, 1, k,,1, defined in (6.9) are negligible.
To this end, we claim that

CR2T?
Z |Kky 11k, 1o | = ot n
ki,l1,ka. n

uniformly in . Indeed, each term in the sum satisfies

CT?y CeST?y
C Cp) <
T w(Cr)u(Cp) < T

Kiy Iy kol | <

10 Recall that ¢ is the diameter of {Cy}.
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and the number of terms is of order
R2/InT
0 (sz/ln T Card2({Cl})> —0 (8—6”> .

Therefore choosing 7 sufficiently small, we get

| P T8
Kky kol | = ——F7—-
PR 0In T

Finally, using the fact that for Gaussian densities

/ p(2)dz = &O),

V2

p(0)

we obtain limp_ 00 Jp = ﬁA(H ). Thus choosing Ry so large that for all
R > Ry,
p(0)

Jp — —2 A 6.14
R (H)| = 750 (6.14)
completes the proof of the lemma. O
We have finished the proofs of Lemmas 6.2 and 6.3. The proof of h2 is
complete. |

6.2 Variance
Proof of h3. Recalling the definition of p we can rewrite
A(H) = Z// H& ) H ", Gerpgem-paoendnxdux")dv(y)
k

=2 //f H&', Gpgun N H ", iy pigaery )dnx)dp(xdv(y)
k

= p(H)

where
H(y) = /X H(x. G g ) (x) (6.15)

and

p) = Y- [ HOBG)av() (6.16)
k
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Observe that for each H € C"(Y) there is H € C"(X x Y) such that

H(y) :/;(H(vaﬂ(q(x))Y)dM(x)-

Indeed we can just take H(x,y) = ¥ (q(x))H(G_pg4x)y) where ¥ is a
probability density supported on a small ball centered at gg. (Note that 8(g (x))
is smooth if d(g(x), go) is smaller than the injectivity radius of our surface
Q)

Therefore h3 follows from the result below. m|
Theorem 6.4 Let G be a diffeomorphism of a compact manifold Y which

preserves a smooth measure v. Assume that (G, v) is exponentially mixing (of
order 2) on C*(Y). Then 3H € C* such that p(H) # 0 where'!

o0

p(H) = Y [v(H(Ho GY) — (W(IH)*]. (6.17)

k=—00

Proof Call a point yg € Y slowly recurrent if for each A, K there exists
ro = ro(A, K) such that for each r < rg we have

v(B(y0. 7))

v(B(yo,r) N G_kB(yo, 1)) < 1
|Inr|

for1 <k < K|Inr|. By [36, Lemma 4.13] for exponentially mixing systems
almost every yg is slowly recurrent. Take such a point yg and let r < M
where K is large enough (see (6.18) below). With these parameters fixed,
choose a function ¥ such that

() supp(y) € B(yo.7);

(i) v(¢¥) = 05

(i) [¥llco < 1

(iv) v(¥?) = c1v(B(yo, 1);

V) I¥lles < car™.
By (i1), p(¥) = v(wz) +2 Z:: V(¥ (¥ o Gg)). By (iv) the first term is at
least cjv(B(xg, r)). We will show that the remaining sum is of the lower order

if 7 is small enough. Indeed by exponential mixing and (v), [v(¥ (¥ o G))| <
c3r~29% . Hence

o0

> W oGl = Tv(BG0.r) (6.18)

k=K|Inr|

11 Note that if H is given by (6.15) where H satisfies (5.1) then v(H) = 0 so (6.17) reduces to
(6.16).
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if K is large enough. Note that [ (y)¥(Gry)| < 1 and moreover, this product
is zero unless y € B(yg,r) N G_;B(yg, r). Since yg is slowly recurrent it
follows thatfor 1 <k < K|Inr|

v(B(yo. 7))
(W (¥ o Gi)l = v(B(yo,r) NGk B(yo, 7)) < “nrf
Hence by further decreasing r if necessary we get that
K|lnr| .
1
Y @@ oGl < To (B0 ). (6.19)
k=1
Combining (ii), (6.18) and (6.19) we obtain the result. O

Remark 6.5 While Theorem 6.4 appears to be new for general exponentially
mixing systems, it seems to be well known for all currently known examples
of exponentially mixing systems.

We also note that Theorem 6.4 is much stronger than what is needed to
prove Theorem 1.3(a). Namely, to prove Theorem 1.3(a) it suffices to produce
one flow G which is exponentially mixing of all orders and one function H
such that p(H) # 0. In particular, one can take (Y, v) = (X, u) (recall that
X is the unit tangent bundle of a compact hyperbolic surface with constant
negative curvature) and G = G—the geodesic flow. Next, take

1
H(y)=f0 J(Gsy)dy where J(y) = w(q(y))(w(y))

and w is a harmonic one form. Then
o0
p(H) = [ / J() T (Gyy) ds dv(y) = 4 / P3)dv(y)
YJ—o0 Y

where the first identity is obtained by direct computation and the second one
is proven in [81, Theorem 2]. In fact, in the case G = G, a much stronger
result than Theorem 6.4 is known, namely, the set of H such that p(H) = 0 is
a linear subspace of infinite codimension.

Indeed, if p(H) = 0 then L? Gottschalk—-Hedlund Theorem ([23]), implies
that H is an L? coboundary, that is there is an L? function A such that H =
A — A o G1. Then the Livsic theorem for partially hyperbolic systems ([108,
Theorem A]) implies that A has a continuous (in fact smooth) version. It then
follows that the ergodic sums of H are uniformly bounded, which implies that
H has zero mean with respect to any G invariant ergodic measure. Since there
are uncountably many such measures ([14]), the condition p(H) = 0 holds on
a subspace of infinite codimension.
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6.3 Mixing local limit theorem for geodesic flow

Proof (Proof of Proposition 6.1) Part (a) is [42, Theorem 5.1] but we review
the proof as it will be needed for parts (b) and (c). The key idea is to rewrite
the temporal limit theorem for the horocycle flow as a central limit theorem
for the geodesic flow. To be more precise, let h(x, t) and g(x, t) denote the
configurational component of the horocycle H (x, ) and the geodesic of length
t starting from x. Consider the quadrilateral I1(x, ¢, 7') formed by

[](X,f), —g(h;(X), T)’ —h(G_]nTX,t/T), g(xs T)a

where — indicates that the curve is run in the opposite direction. This curve
[1(x, t, T) is contractible as can be seen by shrinking ¢ and T to zero. Therefore
the Stokes Theorem gives

InT
§&(x) = (/ T*(Grhu)?)dl’> + B(hux) — B(X), (6.20)
0

where x = G_1y7x,u =t/T and 7*(q, v) = A(v). Note that if 7 is uniformly

distributed on [0, T'] then u = ¢/ T is uniformly distributed on [0, 1]. Since the

curvature is constant, it follows that 4, x is uniformly distributed on H(x, 1).

Now part (a) follows from the central limit theorem for the geodesic flow G.
To prove part (b), write

£(y) = /O (G y)dr + B(Y) — B(Gay). 621)

Then by (6.20), we have

~InT T 1
T /0 1s[<x):k1h,(x>eAdf=V1nT/O Lo r @)=k 1 G (hu (7)) ead U

Denote t = In T'. Then the claim of part (b) is reduced to showing that

1
\/Tt/ Lty =k LG (hutreadu = plk/NOIL(A) + 00 (1). (6.22)
0
Next, we claim that if n is a smooth measure on X, then
«/E/ L3 @)=k LG @)eadn = p(k/VOR(A) + 0 00(1). (6.23)
X

Note that (6.23) is a special case of the mixing local limit theorem proven in
[40]. Specifically, with the notation of [40, Definition 3.1] (Mixing local limit
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theorem for flows), we choose uy to be the counting measure on V = Z and
define the functions X : X > R, Y : X >R, F=F : X >R, 3:R—> R
by

d
X(%) = ﬁm, VE) = lzen, FE) = 2(F) — W), 32) = 1.0,

where W = k/+/t and W(¢) = k. Noting that by (6.21) and by choosing
¢ = 7%, Fis indeed of the required form, we conclude that [40, Definition 3.1]
gives (6.23). (Minor remark: ) is required to be continuous in [40, Definition
3.1]. Our 2) is not continuous, but it is almost everywhere continuous due to
our assumption on A which is sufficient for the mixing local limit theorem to
hold, cf. Remarks 2.1 and 3.3 in [40].)

Mixing Local Limit Theorem for Anosov flows is proven in [40]. However,
we need to verify that we have )V = Z in [40, Definition 3.1]. To this end, we
need to verify the technical assumption of [40, Proposition 6.1], namely that
the observable is “minimal and its linearized group falls into case (B)”.

To explain the exact meaning of this condition, we need some definitions.
Let us represent the geodesic flow G as a suspension flow over a Poincaré
section M such that the first return map 7 : M — M is Markov ( [13]). Let
r : M — R, be the first return time, that is G is a suspension over the base
(M, T) with roof function r. Denote 7 (x) = 7,(y)(x) for x € M. Define

n—1 n—1
) = _r(Tlx), T(x) =Y #(T/x). (6.24)
j=0 j=0

For a function f : M — R?, denote by &(f) the smallest closed subgroup of
R4, a translate of which contains the range of { and let M(f) = ﬂh~f &),

where ~ stand for the coboundary relation. Now let { : M — R? be defined
by f(x) := (T (x), r(x)). Itis clear that S(f) = Z x R. The condition quoted at
the end of the previous paragraph states that 0t(f) = Z x R. This is proven for
a different system in [38, Lemma A.3]. However the same proof works for any
system assuming that the following two conditions hold: first, for any positive
constant b, the suspension over (M, 7) with roof function b + r is weakly
mixing and second, T is minimal. The first condition follows from the contact
property of the geodesic flow (see the proof of Lemma A.2 in [38] which only
relies on the contact structure). To verify the second condition assume the
contrary, that is, T is not minimal. In this case where would exist h ~ T and
¢ > 1 such that () = £Z. As a result the integral of A from (2.2) over all
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periodic orbits would be a multiple of £. This however would contradict the
main result of [67]. The contradiction shows that 7 is in fact, minimal.'2

Note that the LHS of (6.22) also has the form of (6.23), however, in the
case of (6.22) the initial measure is not smooth, in fact, it is a uniform measure
on an unstable curve of the geodesic flow. However, one can deduce (6.22)
from (6.23) by the standard argument going back to Margulis’ thesis [84]
approximating the measures supported on unstable curve by smooth measures.
We sketch the argument here for completeness. To simplify the notation we
assume that g is continuous (and hence smooth) on h(x, 1). If it is not the
case, we break!? h(x, 1) into several pieces and apply the argument below to
each piece. Note that it suffices to show that for each compactly supported
Lipschitz probability density ¥ on R and each Lipschitz function ¢ on X we
have

L= VA /R V) sy, 5k ® Gk R)du = plh/DRB) + 0ro0(1)

(6.25)
since (6.22) follows from (6.25) by approximating 1o, 1] and 14 from above
and below by Lipschitz functions. To prove (6.25), take a small ¢ and consider

o = V[ [ v /00000 e Gt s D)dudsar,

where x(u, s, t) = G,ﬁ shyx and h is the unstable horocycle flow. On one
hand, for each fixed ¢ the distribution of x(u, s, t) is smooth, whence (6.23)
implies

I = plk/VOR(D) + 00o(D). (6.26)

On the other hand since x (u, s, t) belongs to the weak stable manifold of 4, x,
we conclude that G¢i,x and Gyx (u, s, t) are O (¢) close. Hence there exists a
constant C = C (¥, ¢) such that

2 eus.0y=k P(Gex(u, s,1) — 13 n,5)=k ¢ (GthyX)| < Ce

12 The minimality of 7 is not essential for our argument. If 7 was not minimal the argument of
Sect. 6.1 would still go through but the summations over k € Z would need to be replaced by
the summations over k € ¢Z for some £ > 1. What is important is that the results of [40] allow
us to describe the local distribution of 7; in all the cases.

13 Note that the discontinuity set of § on Q is a finite number of geodesic arcs. Namely
let 0 = H2 /. If g is a discontinuity point of B, then there is y € I' \ {/d} such that
d(q,q0) = d(q,yq0) = miny,cr d(q, yqo)- Since the diameter of Q is finite, the discontinuity
set of the map x — B(g(x)) on X is contained in a finite number of analytic surfaces transverse
to the orbits of /.
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unless Gix (u, s, t) € D, where D, denotes the Ce neighborhood of the dis-
continuity set of 8. Accordingly, denoting by n. the initial distribution of
x(u, s, t) defined by

ne(A) = / f VG 16 A Gy B)dudsdr,
R

we obtain

[Iee — I
<C [ﬂng(x SR — k| < De+ Vg (x: |F(x) —k| <1, Gyx € Dg)].
(6.27)

Since n, is smooth, (6.23) gives
Ving(x: [Te(x) — k| < 1) = 0(). (6.28)

Next, approximating 1p, from above by a Lipschitz function and arguing as
before we get that

Vin.(x: [7(x) —k| < 1, G;x € D,) = O(). (6.29)

Combining (6.27), (6.28) and (6.29) we see that Iy, = I + O(e) where
the implied constant depends on the Lipschitz norms of v and ¢. Since ¢ is
arbitrary, (6.25) follows from (6.26). Part (b) of Proposition 6.1 follows.

To prove part (c), we again use the approach of [40] to lift the anticoncentra-
tion inequality from discrete to continuous time. Let us represent the geodesic
flow G as a suspension flow over a Poincaré section M such that the first return
map 7 : M — M is Markov ( [13]). The approximation arguments of the
proof of part (b) also show that it suffices to prove that for any smooth measure
nonM,

n(x : t(x) = k) < C/V/t (6.30)

holds uniformly in k. Recall the notation r,, 7, from (6.24). Let R =
max(||7 [, [T loo)- Focusing on the last time before time t then the orbit
crosses M we see that it suffices to show that there exists C so that for all t
and m,

nfx € M:In:t—R <ry(x) <t T,(x) =m}) < C/V/t (6.31)
(indeed, (6.30) follows from (6.31) by summing over m such that [m —k| < R).

To prove (6.31), we use a discrete anticoncentration estimate. Namely, we
use the following fact: there exists a constant C and a two dimensional Gaussian
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density g such that for each m, n

P <£[ (t_m ﬁ)Jri] (6.32)
P ) T AL |

where
Po=nxeM:t— R <r,(x) <t, T,(x) =m)

and r is the mean free path (the average time between the crossings of M).
The estimate (6.32) was proven by Peéne ([94]). Specifically, the last dis-

played formula on page 834 of [94] in the special case k = 0, A = B = M

(with the notation of [94]) reduces to (6.32). Now to prove (6.31), it is suffi-

t -
cient to show that E . tP" < C/\/E, where c;y = 1/R and ¢cp = 1/ minr.
n=c

Indeed, the number of returns to M before time t is always between ¢t and

ot 1
cat. Since 222:611 = <C/ Vi, itis enough to prove that

oot
> P < C/VA

n=cyt

1 t—rn m
where P, = < Now let I = [t/r — 2K/, t/r — 2K-1\/4),
NN )

where k ranges over positive integers such that t/r — 2=/t > ¢|t. Then

222k_2f 1
Z < |Ik|— [exp( —)] <C—2F exp(—6322k).
nely Czt \/{

t
Summing over k, we obtain Z rr tP’; < C/v/t. A similar argument gives
n=ci

n=ct .
Zt/r P, <C/ Vt. This completes the proof of (6.31). O

7 Theorem 2.3

In this section we prove Theorem 2.3. Recall that © denotes the Lebesgue
measure on T™ and Ry : T™ — T™ is defined by Ry (x) = x + «.

The main result used in the proof is the following proposition which gives
bounds on ergodic averages of the base rotation by «:

Proposition 7.1 For every k/2 < r < m, there exists d € N such that for
every o € D(k), we have:

@ Springer



Flexibility of statistical properties 71

D1. for every ¢ € C"(T™, R) with u(¢) =0,

213 ek, =0

asn — oQ.
D2. there is a function T := @ e C"(T™, R?) such that u(t) = 0 and

nz'cmu<{x eT™ : ‘ Z T(x —i—koz)‘ < logzn}) — 0,

0<k<n
asn — oQ.
Let us show how to prove Theorem 2.3 using the above proposition:

Proof of Theorem 2.3 Forr € (k/2, m) letd € Nbe from Proposition 7.1 and
fixa € D(k).Lett = @ be from D2 and consider F (x, y) = (x+a, Gex)y)
where (G, Y, v) is smooth R? action action that is exponentially mixing of
all orders. F' has zero entropy by Lemma 2.1 and so r1 holds.

Property r2 follows from Theorem 3.1. Namely, by D1 it follows that (3.1)
holds for f = R, and for all A € C"(T™, R) with a2(") identically equal to
0. Moreover property (3.2) follows from D2 by taking m so that 2km > 5.
Next, we show r3, i.e., that the variance is non identically zero. Let 7 (x)=
Zi<k 7(x + i). Recall that the last part of Theorem 3.1, namely (3.3) states

that for functions H satisfying (5.1), the asymptotic variance is given by
o0
= 3 [ [ HeDHG +ka Goydvidne. (1)
o /T Y

We shall use that the map f(x) = x + « satisfies the following: for every
1/k
8 > 0, and every xo € T™, if p = <D2(§’)> , then

fIB(x0,8) N B(xp,8) =¥ forevery |j| < p. (7.2)
Indeed, if the intersection is non-empty, then by o € D (k)

D(x)

e

28 > |lxo — (xo + jo)l| = [lje|l =

Let ¢ € C*°(R) be a non-negative function supported on the unit interval.

Set H(x, y) = ¢ ('x _Bx"') D(y), where D € C®(Y), v(D) = 0. Note that
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H satisfies (5.1) and so its asymptotic variance is given by (7.1). Next, the
term in (7.1) corresponding to k = 0 equals

/m / ( )z)(y)] dv(y)dp(x)
:/m¢2(' . |>dM(X) /D(y)zdwy)

By a change of variables, the above term is equal to to

D3 - 8“‘/ 2(Ix))dx.
Rn‘l

Notice that by (7.2), the terms in (7.1) with O < |k| < p are equal to zero

_ ky
since for such k, the function ¢ (PC(S—X(H> ¢ (Ifx(s—xo|> is identically

equal to 0.
For |k| > p, notice that for every x € T™ by exponential mixing of G

/ H(x, ) H(x +ka, Gy y)dv(y) < C||D|? - e %O, (7.3)
Y

If |7 (x)| = log? k, then the above integral is upper bounded by
c'IDIF k2

By D2, u(|tx(x)| < log? k) < C”k~2*™ Tt follows that

/T ) /Y Hx, vV H (x + kat, Gy oy y)dv(y)d i (x)
< C'|D||? - k728™ + C"k~*™ | D|3, (7.4)

where the first term reflects the contribution of points x where |tx(x)| >
log? k (and the factor 8™ appears since the LHS of (7.3) vanishes unless x €
supp(¢) C B(0, §)) and the second term reflects the contribution of points x
where |t (x)| < 10g2 k. Therefore (7.1) is equal to

D157 [ 9*(xax+ Err
Rm
where the error term comes from the terms with k # 0 and so it satisfies

|Err| < C'8™|DI Y k7> +C"IDIg Y k7"
|k|>p |k|>p
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< C/l/|:I|D”28m -1 + ||D||%p—2km+1:|

(recall that the correlations vanish for 0 < |k| < p.)

1/
Since p = (%) , by taking & small enough, we can guarantee that

c"IID|Fs™p~ < % D3 - 8™ /Rm ¢ (Ix])dx,
and
C"”IDlop~> "+ < % IDI3 - 8™ /R ¢ (IxDax.
Therefore the LHS of (7.1) is positive. This finishes the proof. |

It remains to prove Proposition 7.1:
Proof of Proposition 7.1 We start with property D1, which is much simpler.
. _ 2mwilk,x)
Note that if ¢ (x) = Zk#o age then

1— eZm'N(k,a)

2mi(k,x)
PN (x) = Za ¢ [ — e2nitka)

k#0
Therefore
lonll3 =D lal|Ar(N)? (7.5)
k#0
ZmN k,a)
where Ay (N) = W A simple calculation gives
— TN sin( N (k, o))
e sin(r e
|Ak(N)| = | = o : (7.6)
1 — e2mitk.) | sin(rr (k, a))|

Since r > k /2, Property D1 is a direct consequence of the following:

Lemma 7.2 Forevery o € D(k) there exists C > O such that for everyr < k
and ¢ € C"(T™), we have

lpnlla < CNIZC/0),
Proof Note that

ALN) < N - | sin(zr N (k, a7 (k, )| <Cy N
| sin(m (k, a))|[|7 N (k, a)||
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Also if |(k, @)| < 1, then |Ax(N)| < m < Co(|{k, a))~". There-
fore

|Ax(N)I? < € min {(k, &) 7%, N?}.
Since @ € D(k), using the above estimate on |Ax (V) 12, we get

lgnlz <CD@) Y k*alP+C Y Nax*=C'lI + 1]

k| <N1/e k|>N1/k
where
I'= Z (kP a K> " < Z (k1 |ag ) N1 =)
lk|<N1/% lk|<N1/x
< Cllpllgr (N'=C/0)2,
and = ) (Kl ax DV < Cliglie (N0 0

|k|=N1/x
So it remains to establish property D2. We start with the following lemma:
Lemma 7.3 Let o € D(k). There exists Ry > 0 such that for every N € N

there exists ky € 7™ satisfying:

1
k, —, lky| < RaNY™.
|(N05)|<4N lkn| < Rm

Proof Leta = (ay, ..., a,). For N € N, consider the lattice
N-U/m 0 0 1...0 0
. m+1 m+1
Ll Ny= "o y=im 0o..10 |2 CcR
o ... 0 N o] ..o, 1

The points in this lattice are of the form
e=(x,2) eR" xR
k
where x = Nim ¢= N - ((k,a) +m) and (k, m) € Z™ x Z.

Let Ry be such that a ball B of radius Rp in R™ has volume 2™+3. Then

vol(B x [—1/4,1/4]) > 2™+2,
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So by Minkowski’s Theorem, L£(«, N) contains a non-zero vector (x, z) in

B x [~1/4,1/4]. Let x = # and z = N((kn. @) + m). Then |z| < 1/4

and x € B. This finishes the proof. O

The following lemma gives an lower bound on the A (N) for k of the form
kzl, £ eN.

Lemma 7.4 Foreverya € D(k) let (kn) nyeN be the sequence from Lemma 7.3.
There exists ¢ > 0 such that for every | € N and every N € [2!,2/71], we
have

Ay N _
E—— C
k7 =

Proof By the bound on ky from Lemma 7.3 it suffices to show that
A (N)] = ¢/~ N.
i i _; sing
By Lemma 7.3, | N (ky, a)| < 1/2. Now using the estimate C~" < — < C
Z
for z = N{ky, a) and z = (ky, ) in (7.6), we obtain the result. O

For o € D(k), let (ky);en be the sequence from Lemma 7.4. For a real
sequence {a;}ieny C [—1, 1], let T%((a;)) = 1(a;) : T™ — C be given by

aleZm(kzl,x)

_— 7.7
ol 12 77

(tla)(x) =Y

>0

For d € N let ‘L'(al(l), ...,al(d) - ™ — C9 be defined by (t(x)); =
(t (al(J ) ))(x). Let {al(] ) } j<d,len be random variables uniformly distributed on
the unit interval in R¢ and the corresponding probability measure is denoted
by Pz, i.e.

Pi(a\” € Aiy, for j < d, € eN)
= ] Leb({x el-1,11:a"(x) e Aj,g})

j<d,teN

Lemma 7.5 For every ¢ > 0 there exists C > 0 such that for every x € T™
and every N € N,

C d
Pz (I(z@)n )l < N°) < (—> .

N1-r/m=2¢
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Proof Since for a fixed x different components of t are independent, it suffices
to consider the case d = 1. In this case, 7 is given by (7.7). Let [ be such that
N e [2!,2!*1]. We now fix all the aj for j # 1. Then, since N, x and all
frequencies 2/ except 2 are fixed, we can write (with some ¢ € C depending
onaj, j #1land N),

alAkzl (N)ezﬂi(kzz ,X)

7.8
k|12 (7.8)

v(x) =c+

Let M=(M, M2)2=W (éR(Akz, (N)ez”"“‘z“”), S<Ak2, (N)eZ””kzl’x))).
By Lemma 7.4,

10

lky |12~
Letus WLOG assume that |M;| > ¢/2- N'="/™=€ (if M| > ¢/2- N'~"/m=¢
the proof is analogous). It then follows that the measure of z € [—1, 1] for

which |M1 cZ — Eﬁ(c)| < NG’ is bounded above by W Since aj is
c
uniformly distributed on [—1, 1], (7.8) finishes the proof. O

Now we are ready to define the map t and hence also finish the proof of D2.
Take d € Nsuch thatd(1 —r/m —2¢) > 10km. Summing the estimates of
Lemma 7.5 over N, we obtain that for some C’ > 0 and every fixed x € T™,

/

C
P; ({ there exists N > n : |[(t(a))y(x)| < Ng}) < oem=T"
n

It follows by Fubini’s theorem that

Cl
10em—1"

g x )((@ ) : forall N = n, (z@)w )l = N}) = 1=

Using Fubini’s theorem again, we get that there exists 2, with P(2(,) >
1— such that for every a € 2,,,

c
pniem >

/

p({x : forall N > n, [(r(@)n ()|l = N} = 1 -

n4lcm :

It is then enough to take a € ﬂ N 2, for any fixed Ny (notice that
nznNg

ﬂ N 2, is non-empty if Ng is large enough). Then the corresponding
n=No
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7(a) : T™ - C¢ = R gatisfies D2 (with 2d instead of ). This finishes the
proof of the proposition. O

Part IV. Flows with intermediate mixing properties satisfying CLT.

8 Surface flows in the base
8.1 Proofs of Theorems 2.4 and 2.5

In this section we prove Theorems 2.4 and 2.5. The proofs rely on two auxiliary
results, Proposition 8.1 and Lemma 8.2, which will proven later.

Proposition 8.1 There exists a set P C T with Leb(P) = 1 such that for

every o € P if (¢;) € K(a,logsym) U K(a, y), with y € Bying, then there
exists €,8 > 0 such that for every A € C3(M),

T
T5|M ({x eM : ‘/0 Algx)di — Tu(A)| = O(Tl/z—f)}) - 1} -0,

as T — oo.

Lemma 8.2 Let Fr bea C®° (T, T~ ") flowon M x Y :

Fr(x,y) = (o1 (x), G ().

Suppose that G-action on (Y, v) is exponentially mixing of all orders and that
the base flow on M preserves a measure [ and satisfies the following: there
exists C, m > O such that for every § > 0, we have

@sB(x0,8) N B(xp,8) =0 (8.1)

1

for |s| € (C4, p), with p = (%)W Then there exists H € C®°(M x Y)
satisfying (5.1) such that EZ(H ) > 0 where

S2(H) = f /M /Y Hxe ) H(fix, Goon)dv()du(di.  (82)

The proof of Lemma 8.2 is relatively short and will be given in Sect. 8.2.
The proof of Proposition 8.1 is longer and will be given in Sect. 8.3.

Proof of Theorem 2.4. By [49] there exists a full measure set P’ such that for
every « € P/, every (¢;) € K(a, logsym) is weakly mixing and not mixing.
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Let us take (¢;) € K(a,logsym), with @ € P’ NP N D, where P is from
Proposition 8.1, and

c
D= {oe €T : 3C.m > 0 such that [[ta]| = . fork € Z\ {0}}

is the set of Diophantine numbers (the set D will be used in proving that the
variance is not identically zero).

Then (¢;) is weakly mixing but not mixing and so (F7) is also not mixing
(since the base is not mixing). To see that F7 is weakly mixing we note that if
H € C®(M x Y), then analogously to (5.11)

H(x,y) = H@x,y) + H),
where H(x) = [, H(x, y)dv, and for every x € M, [, H(x, y)dv = 0. We

can WLOG assume that [,, H(x)dp = [y, H(x, y)dpdv = 0.
Then

//H(x,y)H(FT(x,y))dvdu

MJY

- f / Ao, ) A (Fr (5, y)dvdp + f f A(x, A (erx)dvdp
MJY MJY

+ f f H(x)H (Fr(x, y)dvdp + / / H(x)H (¢r (x))dvdp.
MJY MJY

The mixed terms (involving H and H) are 0, since for every x € M,

/ H (x,y)dv = 0 and H only depends on x. Moreover, the term involv-
Y

ing only H goes to 0 as T goes to oo by exponential mixing of (G,) and
positivity of t. Finally, by weak mixing of (¢;)

R
i/ (f fﬁ(x)l-_](cpr(x))dvdu)dTeO
RJo 'JulJy

as R — oo.

Putting this together, we get
1 R
—/ \f fH(my)H(Fﬂmy))dvdu\dTe 0
RJo 'JulJy
as R — oo.

So (Fr) is weakly mixing. This gives wl. Next w2 follows from Theorem 3.2,
since Proposition 8.1 implies that (3.4) is satisfied with o> () identically equal
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to 0, and by Remark 3.3 we know that (3.5) holds. Moreover since o2(A) =0
for all functions which depend only on the base variables, the limiting variance
for functions satisfying (5.1) is given by (8.2). Hence the fact that the limiting
variance is non-zero follows from Lemma 8.2 once we check that the base
flow satisfies (8.1). To check (8.1) we consider the representation of ¢ as a
special flow over a rotation. Thus

@s(0,u) = (0 +no,u+s — f,(6))

for some |n| < C|s| where f, is the ergodic sum of f. If n = 0 then (8.1)
holds since the second coordinates differ by at least C§. If n 7 0O then the first
coordinates differ by at least § since « is Diophantine. This shows that (8.1)
holds and completes the proof of Theorem 2.4. O

Proof of Theorem 2.5 By [47] there exists a full measure set P’ such that for
every a € P”, every (¢;) € K(«, y) is polynomially mixing. Let use take
(¢r) € K(a, y), with @ € P” NP N D. Then (¢;) is polynomially mixing.
Moreover by Proposition 8.1 for 7, it follows that t satisfies polynomial large
deviation bounds:

/L({x eM : |tr(x) — Tu()| < e}) <c-T7°

Therefore by Theorem 4.1(b) in [35]'4, (Fr) is also polynomially mixing.
Moreover, the entropy of (¢;) is zero and so (F7) is not K. This gives nl.
Next, n2 follows from Theorem 3.2 since by Proposition 8.1, (3.4) holds with
o2(-) identically equal to 0 and (3.5) holds by Remark 3.3. Now n3 follows
by Lemma 8.2 similarly to the proof of Theorem 2.4. O

8.2 Variance

Proof of Lemma 8.2 Let ¢ be a non negative function supported on the unit

: , d(x, xo)
interval, with¢ (1) = 1fort € [1/4,3/4].SetH(x,y) = ¢ 5 > D(y),

where D is a C* observable on Y with v(D) = 0. Note that v(D) = 0 implies
that H satisfies (5.1).

We split the integral over (—o0, 00) into three summands £2(H) = Ij +
I, + Iz, where

cs
I :/ / /H(x,y)H(%x,Gts(x)y)dv(y)du(x)ds,
—csImJy

14 Although Theorem 4.1(b) in [35] only covers the discrete case, the proof is the same for
continuous time, see Remark 4.11 in [35].
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L= / / / H(x, y)H (¢sx, G, (x)y)dv(y)du(x)ds
(—p,—C&U(CS,p) JM JY
and
b / / / (x, Y H (@sx, Gry(x)y)dv(y)dpu(x)ds.
(—=00,—p)U(p,00) /M JY

Notice that I equals zero as for every |s| € (C§, p),

d(x, x0) d(psx, x0)
¢( 3 >'¢( 5 )

is identically equal to zero by (8.1). Moreover, since 7 is positive, and (G,) is
exponentially mixing, it follows that for any u > p, 7,(x) > ¢; - u, and so for
some global C" > 0,

= [ [ D0IDGaum v
lu|>p JY
S C”HD”%’/ e_ncrudu
|u|>p
< C"||DI|} - 7P,
Finally,
(or)
I = f / / Hx, ) H (@5x, Gr, oo 0)dv(n)dp(x)ds
—CsJIMJY
Cé
- / / / Hx, v H (@sx, v)dv(»)dp(x)ds + O(5%)
—CSJMJY

cs
— ||D||§-/ / ¢(d(x’x0)> ¢(M> duds + 0%,
—csIm J )

Next, there exists C:p >0

Cé d(x, d ,
/ / ¢ ( (xax(’)) " <M> duds = ¢y - C25- 8% = ¢, C?8%,
—C§JIM

If we take ¢ sufficiently small we can then guarantee that | /1| > 2|I3|and |I{] >

0 (the first inequality since we have p = (&) E). Summarizing £*(H) > 0.
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8.3 Proof of Proposition 8.1

We start with some results on deviation of ergodic averages for functions with
logarithmic singularities and with power singularities.

For N € N, let Oin, v = minj_y |0 + jal|, where 6 € T and |z|| =
min{z, 1 — z}. In the lemmas below we want to cover the cases of logarithmic
and power singularities simultaneously. For roof functions with logarithmic
singularities one can get much better bounds (with deviations being a power
of log) but we do not pursue the optimal bounds here since the bounds of the
present section are sufficient for our purposes. Let J € C%(T \ {0}) be any
function satisfying

0 0
im & =P and lim L =0, (8.3)
6—0*t 077 o—>1- (1 —0)77

for some constants P, Q. Notice that by 1’Hopital’s rule it follows that any f
as in (2.8) satisfies (8.3) (with P = Q = 0 if f has logarithmic singularities).
Recall that y < 2/5.

In what follows, let (a,) denote the continued fraction expansion and (g;)
denote the sequence of denominators of «, i.e. g9 = g; = 1 and

dn+1 = ap+19n + gn—1- (8.4)

Set

In(x) = > J(x+ ja).

0<j<m

Lemma 8.3 Forevery x € T and everyn € N,

Joy ) = g /T J(z?)dz?‘ =0 (0:0,.)-

Proof Let J(0) = (1— X b, 1 1(0))- (6). Then J is of bounded variation.
qn > 10gn
Notice that fori £ j,0 <1, j < gy,

. . . 1
10 +ie) =@+ jo)ll = G = el = sup |saf = 5

O<s<qn n

Therefore the cardinality of the set {0 + ja}j<g, [) [— 101qn’ 1()1qn ] is either

zero or one. It follows that
0, ®) = 40, @] =0 (6,7, ).
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by the definition of 6,,,,4,. By the Denjoy—Koksma inequality,

< Var(J) = O(g}).

T 0) = dn f J()dv
T

Moreover, since > 1 it follows that Oy g, <

_ 10 10
{g'i‘J()‘}j<qnﬁ — s T
qn 4qn

—,andsog), =0 <9m17; 0 ) It remains to notice that

qn
1 1
_ T0qn
f]dz?—/]dﬁ‘:f dz?—i—/ Jdv =0(qy, /qn) »
T T 0 1—@
by the definition of J. Since y < %, the result follows. O
Lemma 8.4 Fix ¢, C > 0 and assume that « is such that sup 1 + { < C for
neN gy

some ¢, C > 0. Then for every N € N

min, N

JN(G)—N/J(z‘})dz‘}‘ :o(NflogN o7 )
T

Proof Let N = ka brqi, with by < ag, by # 0, M = O(log N) be the

Ostrovski expansion of N. Forevery pointd = 0+ ja, j < Nwith j+q; < N,
we have that Omin,g, > Omin,nv. Hence for each such point Lemma 8.3 gives

@ = a [ s@1d01=0(6%). 8.5)
T

Fork < Mand0 < j < bxlet;x := 0+ (31 bsqs + jqr)a. Since N =
Zk M brgy it follows that for every k < M we have (0} k)min,g, = Omin,N-

Using cocycle identity we can split Jy(0) = ZkgM Zj by Jg (0} k). Then
using (8.5) for each 0 ; (and remembering that (6 x)min,g, = Omin,n), We get

JN(Q)—N/J(ﬁ)dﬁ):O(M supbk mmN)
T
:O(logN NeOT ).

where we use that M = O(log N) and (using (8.4))

sup by < supag = O(g;) = O(N®).
k k
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This finishes the proof. O

We now define the full measure set P from Proposition 8.1. Let 0 < ¢ <
1/1000 and

P:={axaeT : 3C > 0 suchthatg,4+| < Cq,l“ for every n € N}. (8.6)

The set P has full measure by Khintchine’s theorem, [70]. Assume now that we
fix (¢;) € K(a, logsym) U K(a, y), with y € Byjpe (in particular y < 2/5).
By definition Ry, : T — T is the first return map and f is the first return
time. In particular for every x € M (except the singularity), x = ¢ (6), where
0 € Tands < f(0). We will denote this by x = (8, s).

Letc = infr f > 0. For T > 0, we say that & € T is T-good if the orbit

1 1
T71+1/100° T1+1/100i|-We have the

{6+ ja}j<1 does not visit the interval |:—
following

Lemma 8.5 Let (¢;) € K(w, logsym) U K(«, y) be a flow on M. Let
W(T):={x=@0,s) e M : 0isT-good}.

Then there exists n > 0 such that T"u(W(T)°) — 0as T — oo.
Proof For an interval I C T, let I7:={0,s):s < f(0),6 € I}. Note that

W = J 1/,

T
J=7¢

1
T 1+1/100° T 1+1/100
phantine assumptions on «, all the intervals /; are pairwise disjoint. Therefore,
for j # 0,

where I; = [— jo — —jo+ } Moreover, by the dio-

sup f(9) < C . T1+1/100y
96]1'

Hence

wl U 1] | = crt+/1ow=n, (8.7)
0#£j<¢

Moreover, since f satisfies (2.8), for some n > 0,

MUE 1 . fdLeb = T2, (8.8)

[* 7IF1/100 ° 71+1/100
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for T sufficiently large. Combining (8.7) and (8.8) gives the result. O
Using the two lemmas above we can prove Proposition 8.1.

Proof of Proposition 8.1 Let P be as in (8.6) and let (¢;) € K(«, logsym) U
K(a, y), with y € By, (in particular y < 2/5). Let A € C3(M) and denote
Ar(x) = fOT A(psx)dt. We will show that there exists C > 0 such that for

every T, and every x € W(T'), we have
A7 (0) = Tu(A)| < CTV/2VI00,

This by Lemma 8.5 will finish the proof of the proposition, as u(W(7T)) — 1
as T — oo.Letx = (0,5) € W(T), i.e. 8 is T-good. Then we have in
particular that

s < f(0) < cTU+1/100y  cp1/2-1/1000
and

A7 (0, s) — A7 (0,0)| < C's < C'T!/>~1/1000,
Therefore, it is enough to show that if (6, 0) € W(T'), then
|A7(6,0) = Tu(A)| < C"T'/27 1100, (8.9)
for some constant C” > 0. For r > 0 let N (@, 0, r) be such that
00,00 =0+ N@O,0,ra,r),

i.e. N(0, 0, r) is equal to the number of returns to the transversal T up to time
r.

Note that since ¢ = mint f > 0, we have that the minimal return time is ¢
and so

¢N@®H,0,T) <T. (8.10)
Therefore [ + N (0,0, T)a|| = min [|6 + jo| = 7117100 gince 6 is T-
J=<<
good. In particular by (2.8)
fO+N@®,0, T)ax) < C"TI+/1007 (8.11)

So
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T
/O A (6, 0)di — Tu(A)

N(@©,0,T)
=0 (T““/“’O)V) + (f A (6, 0)dt — N (0,0, T);L(A))
0
+(T = N@®,0, T)u(A).

Since y < 2/5, it is enough to bound the second and last term above. It is
therefore enough to prove the following: for every 6 which is T-good,

IT — N©,0,T)| = O (T"/>1/1000) (8.12)

and
N(6,0,T)
(/ Al (6, 0))dt — N (8,0, T)M(A)‘ = O(T!/271/100) (313
0

Since N (6, 0, T') is the number of returns up to time 7', we have

nw.or) (@) <T < fne.or+1)(0) < fye.o.r@) +C"TIH/007

the last inequality by (8.11). Hence up to an additional negligible error of size
7 (1+1/100)7 't is enough to control

| fnw.0.1)(0) — N(©,0, T)|.
By (8.10) it follows that Omin §6,0,7) = 7—1-1/10 Hence Lemma 8.4, the
estimate N (0,0, T) < T /c and the fact that fT fdLeb = 1 imply that
| fn@.01) (@) —N(@©,0,T)] <O (TH(IH/IOO)V log T) -

Since ¢ +(1+1/100)y < 1/1000+ (1+1/100)2/5 < 1/2—1/1000, (8.12)
follows.
To prove (8.13) we can WLOG assume that ;£(A) = 0. Note that

N(@6,0,T)—1 F(O+ia)

> f Algs(0 +ia, 0))ds
i=0 Y0

N(©,0,T)—1

= Z F(O +ia)

i=0

N(9,0,T)
/ Alg: (0, 0))dt =
0

f©)
where F(0) = / A(ps(0,0))ds. Moreover, Leb(F) = u(A) =0and F

0
is smooth except at 0.
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Let p be the fixed point. We claim that for every € > 0 there exists § > 0
such that

(AP)—€) F(O)—2[Allod™" < F(6) < (A(p)+e) F(O)+2[Allos™". (8.14)
Indeed, we write

5! 1©)
Fo)= [ aw@onds+ [ A0,

The first integral is estimated trivially by || A o8~ !. If the second integral is non
trivial, i.e. £(0) > 87!, this means that for sufficiently small § > 0, ¢, (0, 0) is
in €2 neighborhood of the fixed point p for every s € [§ -1 f(0)). Therefore,
|A(ps(0,0)) — A(p)| < €. In particular,

£
mmrfnﬂm—vﬂs/l Alps(0,0)) < (A(p) — ) f(O) — 8]

Putting the above together, we get (8.14). Since f satisfies (8.3) and A € C°,
it follows by (8.14) that

. F(@) / . F(9)
Iim —— =P and lIlm ———
6—0+ 07V o—>1- (1 —6)77

= Q/

where P’ = PA(p), Q' = QA(p).Thus F(-) also satisfies the assumptions
(8.3). So by Lemma 8.4, the fact that 6 is T-good and the bound N (6,0, T) <
T

c°

N@6,0,T)—1
Z F@O+ia)=0 (TC+(1+1/100))/ log T) — O (T1/2-1/1000)
i—0

This finishes the proof of (8.13) and completes the proof of the proposition. O

Part V. Non Bernoullicity of 7, 7~! transformations.

This part is devoted to the proof of Theorem 2.7. Our approach is motivated
by [60,99]. In particular, the statement of the key Proposition 15.2 is similar
to the corresponding statements of [60,99]. However, its proof in our case is
different, since the other authors rely on fine properties of the ergodic sums
of the cocycle t while our approach uses exponential mixing in the fiber.
We note that in dimension d > 3 if the dynamics of the fiber is the full
Z@ shift then the corresponding skew product is Bernoulli ( [32]). Therefore
using properties of the fiber dynamics is essential. We exploit them mainly
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by establishing that the relative atoms (on the fiber) of the past partition are
points (see Proposition 11.1). The proof uses the geometry of Weyl chambers,
see Sect. 11. We emphasize that Proposition 11.1 does not hold if the fiber
dynamics is the full Z¢ shift with d > 3. Another place where the fiber mixing
plays a key role is Sect. 13.

Another important ingredient in our approach is the use of Bowen-Hamming
distance (see Proposition 12.1) which allows us to handle continuous higher
rank actions in the fiber, and so it plays a crucial role in constructing the
example of Theorem 1.5. We also emphasize that the systems considered in
[60,99] were shown by the authors not to be loosely Bernoulli. We believe that
our methods would work also to show non loose Bernoullicity at a cost of rather
technical combinatorial considerations as one needs to consider the f metric
instead of the Hamming metric. To keep the presentation relatively simple and
since our goal was to establish smooth K but non Bernoulli examples satisfying
CLT, we restrict our attention to only dealing with non Bernoullicity.

We note that the assumption that t has zero mean in Theorem 2.7 is essential.
Indeed, if T has non-zero mean, then by [35, Theorem 4.1(a)], F is exponen-
tially mixing, and then one can show using the argument of [61] that F is
Bernoulli. The details are given in a separate paper [37].

9 Background on symbolic dynamics

Symbolic dynamics provides a powerful tool for studying hyperbolic systems.
In this section we briefly recall the facts from symbolic dynamics needed in
our proof.

Let Q@ = {1, ... p} be a finite set with p elements and A = (A;;) be an
p X p matrix whose entries are zeroes and ones. The subshift of finite type is
the set

Wjwj+1

4= {{wj}oo el A

j=—00

— 1 forall j e Z}.
The shift on X 4 is defined by o (w) ; = wj 1. We endow X 4 with the distance
d(@, ") = 27" where k = max(k = 0: o = o] Vj : | j| <k).

34 is topologically mixing iff there is ¢ > 0 such that all entries of A? are
positive. We shall assume henceforth that A is such that X4 is topologically
mixing. Given a Holder function, ¢ : ¥4 — R we define its pressure by
P(¢) = inf[ent,, + 1 (¢)], where the minimum is taken over all shift invariant
measures and ent, is the entropy of . An invariant measure u is called the
equilibrium measure for ¢ if P(¢) = ent, + u(¢).
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A word is a finite sequence @y, . .., w,—1 such that Ag,4,,, = 1 for all
0 <j <n—1.Theset

D@0, ... @n—1) ={w € Ta: 0j =d; Vj € [0,n — 1]}

is called a cylinder of length n. An invariant measure p is called Gibbs with
potential ¢ if there is a constant K > 0 such that for each n € Z for each
cylinder D of length n for each w € D

1 n(D)
% S @ = K ©.1)

It is known (see e.g. [92, Chapter 3]) that ¢ is a Holder function on X 4 then it
has unique equilibrium state 114 which is also a Gibbs measure with potential
P.
The Gibbs property (9.1) implies the following important quasi indepen-
dence estimate. If p is a Gibbs measure with a Holder potential, then there
is a constant K such that if D; and D, are cylinders of lengths n; and ny
respectively and if n > n is such that D} N o ~"D, # ¥ then

1 _w@ino ™) _ g 9.2)
K w(D)u(Dy)

We note the following consequence of (9.2). Let F, , denote the o-algebra
generated by {wj},<;<p. Then there is a constant K such that for each set
B C Fr.o

1 _ HBIF o)
K =~ uw(B|Fix)

Indeed since w is shift invariant it suffices to analyze the the case k = 0.
Consider two cylinders D = D(wy, ..., w,) and D = D(ay, ..., d,) with
wy = @o. Then

<K. 9.3)

w(D(wo, ..., o, o1, ..., 0y))
Mg)(é)o, cel, y))

L RDGL. e pD)

- K ~ K2u(D(@0)

uw(w € Dlo'"w € D) =

1 ~ -
ﬁﬂ(w € D|Fo,0) (o)

proving the lower bound in (9.3). The upper bound is similar.

Let f : T™ — T be an Anosov diffeomorphism preserving a smooth
measure ft. Using Markov partitions one constructs a measure preserving
(Holder) isomorphism j between (X4, 0, tg) and (T™, f, 1) where X4 is a
topologically transitive subshift of finite type (SFT), w4 is the Gibbs measure
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with Holder potential

¢(w) = In|det(df|E")(j(@))] (9.4)

and E" is the unstable distribution of f ([14]). (Note that the fact that & is
the equilibrium measure for the potential ¢(x) = In | det(df|E")(x)| follows
from Pesin entropy formula). Therefore, Theorem 2.7 follows from:

Theorem 9.1 Let d > 1, ¥4 be a topologically mixing subshift of finite type
and  be a Gibbs measure with a Holder potential. Let (G;) be a geodesic
flowon SL(2,R)/ T (ifd = 1), or a Weyl chamber flow on SL(d + 1,R)/T’
(whend > 2). Let T : £ 4 — R? be a mean zero Hélder cocycle which is not
cohomologous to a cocycle taking value in a proper linear subspace of RY.
Then the homeomorphism on X4 x SL(d + 1, R)/ I" defined by

F(x,y) = (cw, Grw)y)

with the invariant measure ¢ = u X Haar is non-Bernoulli.

10 Weyl chamber flow

Letd > 1. Let H := SL(d + 1,R), I" be a co-compact lattice in H and
Y := H/T'. Let Dy C H be the subgroup of diagonal matrices in H with
positive elements. It is easy to see that D, is isomorphic to R?. The group D
acts on Y by left translation. When d = 1, this one parameter flow is called
geodesic flow. When d > 2, it is a R action, which is called Weyl Chamber
flow. Leth = sl(d + 1, R) be the Lie algebra of H and let dg denote the right-
invariant metric on H and dy the induced metricon Y. For 1 <i,j <d + 1,
let v; ; be the elementary (d + 1) x (d + 1) matrix with only one nonzero
entry equal to one in the row i and the column j. If i # jleth; ; C b be the
subalgebra generated by v; ;. Leto C b be the subalgebra of diagonal matrices

with zero trace. Then
h=o@(EBhi,j). (10.1)
i#]
For each pair (i, j) define y; ; : RY > R by xij(t) = xij(t1, ..., 1) =
ti —tj. Then for v € b;;

Gy - exp(v) = exp(eX-i Vp) - Gy.

The x;, ; are exactly the Lyapunov functionals of G in classical Lyapunov
theory. For every i # j, the equation #; = t; defines a hyperplane H; ; in
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R4, where the functional Xi,j vanishes (notice that fori = j, x;; = 0). The
connected components of

d
R J Hi
i#]j

are called Weyl chambers of the action G. By continuity each Lyapunov func-
tional has constant sign in a Weyl chamber. For any Weyl chamber C we denote

bi= P b

Xi,j>0 onC

with an analogous notation for b, . The above distributions define foliations
on G:fory € H let W(J{(y) = exp(hér) and W, (y) = exp(h; )y respectively.

To simplify notations, we enumerate the Lyapunov functionals as { x; } 1 <i<m
and the corresponding splitting (10.1) as

h=EPhni.

i<m

Using the above splitting and the exponential map we can introduce the system
of local coordinates on Y : there exists a constant £ such thatif dg (v, y') < o,
then

y =exp(Z)y’, where Z = Zzi, and Z; € b;. (10.2)

1

By [66], any Weyl chamber flow is exponentially mixing. !

Moreover, we say that G is exponentially mixing on balls if there exist
C,n',n > 0 such that for every v € R?, every B(y, r), B(y',r’) C Y with
y,y' € Yandr,r' € (e "M 1) the following holds:

[W(B(y,r) N GyB(Y', 1)) — v(B(y, Mv(B(, r')Hl < Ce ™I (10.3)

A standard approximation argument (see eg. [50]) shows that exponential
mixing for sufficiently smooth functions implies that G is exponentially mixing
on balls. So we have:

Lemma 10.1 Any Weyl chamber flow is exponentially mixing on balls.

15 1n fact, by [9] G is exponentially mixing of all orders. The multiple exponential mixing
plays important role in verifying that F' satisfies the CLT if d > 3 (see §B.1), but it is not needed
in the proof of Theorem 9.1.
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11 Relative atoms of the past partition

Recall that F : (¥4 x Y, ) — (¥4 x Y,¢) is given by F(w,y) =
(cw, Gr(w)y). Let Pc be a partition of ¥4 given by cylinders on coordinates

[—e_%, 0], where B is the Holder exponent of t. Let Q. be a partition of ¥
into sets with piecewise smooth boundaries and of diameter < .

Recall that €2 denotes the alphabet of the shift space. For o~ =
(...,0—1, wp) € QZ=0_ et

SHo) = (0" = (0, w,...) € QP 1 (., 01, wp, w1, ...) € Ta).

Note that E:{ (w™) only depends on wp. We will also use the notation w =
(@, o) and Tf(w) = T} (). Foro = (0™, w") and ST C =1 (w), we
write

1y (ST = p{@™,0") : 0" e §.

With a slight abuse of notation, we also denote by i/} a measure on £ 4 defined
by ul(S) = pf({@t : (w,0") € S}). Notice that, for any measurable
subset S C X4,

n(S) =/E nlh (S)du(w).

We can assume that t only depends on the past. Indeed, if this is not the case,
then ( [92, Proposition 1.2]) 7 is cohomologous to another Holder function
T depending only on the past: T(w) = T(®w™) + h(w) — h(ow). If F is the
(T, T~Y) transformation constructed using 7 and L(w,y) = (0, Ghw)y),
then Lo F = F o L. Since F and F are conjugate, we can indeed assume that
7 only depends on the past.

The main result of this section is:

Proposition 11.1 There exists g > 0 and a full measure set V. C X4 X Y
such that for every (w, y) € V, the atoms of

\/ F'(Pey x Qcy)

i=0

are of the form {w™ X Ej"(a)_)} x {y}, i.e. the past of w and the Y -coordinate
are fixed.
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Before we prove the above proposition, we need some lemmas. For a non-
zero x;, letC; C R be a cone

Ci={aeR’: xi(a) > |all}, where ¢’ = mi;lo llxill /2.
LiXi

We start with the following lemma:

Lemma 11.2 Let (G, Y, v) be a Weyl chamber flow. Choose cones Ci properly
contained in C;. Then for each a € Ry there exists k = k (G, a) > 0 such that
the following holds. Let {a;}jen C R, be a sequence such that a; = 0 and

A. sup;llaji —ajll <a;
B. for everyi we have SUP;a 6, la;|| = oo.

Then forany y,y’ € Y withy' ¢ O(y), where O(y) denotes the G-orbit of y,
there is j € N such that dy(Ga;y, Ga;y') > 7.

In order to prove the lemma, we first establish the divergence on the universal
cover.

Lemma 11.3 There exists k > 0 such that for any y, y' € H with y' ¢ O(y)
and any {a;} satisfying A., B., there exists jo such that

dr(Gay,y, Ga;y) > K.

Proof To simplify notation we denote Gy simply by ty.

Fix y, y' € H. WLOG, assume dy (y, y’) < ¢o where ¢ is defined above
(10.2). We can write y = exp(Z)y’, where Z € b, and Z = P, Z; with
Z; € b;. Since y' ¢ O(y), there exists i such that x; # 0 and Z; # O.
Accordingly there is a Weyl chamber C such that splitting Z = Z* + Z~ with
Z* e b we have Z*t # 0. Let y” = W (y) N W (). Then y” # y’ since
Z¢he.

Let C be a cone which is strictly contained inside C. Note that by the def-
inition of y”, there is a global constant K > 0 such that for each a; € C
we have dy(ajy,a;y") < K¢o. By triangle inequality, dy(ajy,a;y’) >
du(a;y’,a;y") —duy(ajy,a;y”). To complete the proof it is enough to
note that since the vectors in bzr are expanded by C at a uniform rate and
SUD .5 €6 laj|l = oo, there exists j such thatdy(a;y’,a;y") > Ko+ k, for
some k > 0. O

Proof of Lemma 11.2 To simplify notation we denote Gy simply by ty. Since
[' C H is co-compact, it follows that there exists ¢ > 0 such that

inf inf dg(y,yy) > c > 0. (11.1)
YEH y#e
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Let Cy :=sup; [laj11 — aj|| < ooandlet C = C(x) > 0 be such that

du(by, by’ -

sup <, (11.2)

0<dy(y.y)<1 Ibl<C; Ay (¥, Y')

Let 0 < k¥ < ik be such that ¢ > (C + 1/4)k (recall that « is the constant
from Lemma 11.3). Let y, y' € Y, with y’ ¢ O(y), withdy (y, y) < k/4. By
taking appropriate lifts of y and y’ to H, we can assume that dy (y, y') < k /4.
By Lemma 11.3, there exists jo € N such that dy(aj,y,aj,y") > «/4. Let
us take the smallest jo with this property. Then, dg(aj—1y, aj,—1y") < k/4.
Therefore by the bound in (11.2)

du(ajyy,ajy)=dy ((ajo—ajo_l)(ajo_w), (ajo—ajo—l)(ajo—ly’)> < Ck.
Take y € H suchthatdy(aj,y,a;y’) = dH(ajOy, ajoy’y>. By (11.1) we get

dy (ajoy’ aj()y/y) > dy <ajoy/’ aj()y/y) —duy (ajoy’ ajoy/)

>c—Ck > «/4.
This finishes the proof. m|

Recall that for t : ¥4 — R and n € N, we denote 7,(w) =
-1 .
Zn 0 (0’ w), and 7_, (w) = —1,(0 " w). The next result, proven in §B.2,
]=
helps verifying condition (B) of Lemma 11.2.
Lemma 114 Let v : £4 — R? be a zero mean Hélder function that is

not cohomologous to a function taking values in a linear subspace of R? of
dimension < d. Then for any cone C C R%, for pa.e. w € £

sup lv]| = o0 and sup [v]| = oc. (11.3)
Ue({fn(w)}nzo)mc ve({t (@)}n<0)NC
Proof of Proposition 11.1 Take €y = «(G, ||t]c0)/5 where « is from

Lemma 11.2. By Corollary 2 in [57], the skew product F is ergodic. Let
A be the set of points (w, y) whose forward and backward orbits are dense
and such that (11.3) holds for w and every cone {éi} from Lemma 11.2. By
ergodicity of F and Lemma 11.4 ¢(A) = 1.

Notice that if (w,y) € A, and (w, y), (@, y’) lie in the same atom of
\/io F'(P x Q¢), then @~ = . Since t depends only on the past,
r_j(_a)) = 7_;(®) for j € N. We will show that y’ = y.
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Assume first that y/ € O(y) and let y/ = G, - y, for some w € R¥. Let
Q be an atom of Q,. Note that there exists ¢ € Q and € = e(w) > 0 such
that B(g,€) C Q and Gy, - B(e, g) N Q = @. Indeed, if not then Q would be
invariant under the translation G, which is impossible if G, # Id by Moore
ergodicity theorem [87].

This contradiction shows that such g and € exist. Since the F orbit of (w, y)
is dense, there exists n, such that F ™" (w, y) € ¥4 x B(e,q) C X4 x Q. Let
u=1t_p(w).Then G,y = G,G,y ¢ Q.So F " (w, y) and F (e, y') are
not in the same atom of P x Q. If y’ ¢ O(y) then we use Lemmas 11.4 and
11.2 with a; = 7;(w) to finish the proof. |

Remark 11.5 We believe that ALL partially hyperbolic algebraic abelian
actions satisfy the assertion of Proposition 11.1. However, the proof is more
complicated if there is a polynomial growth in the center. We plan to deal with
the general situation in a forthcoming paper.

12 Non Bernoullicity under zero drift. Proof of Theorem 9.1
12.1 The main reduction

We introduce the notion of (e, n)-closeness which is an averaged version of
Bowen closeness. Let d denote the product metric on X x Y. Two points
(w, V), (@,y) € s x Y are called (e, n)-close if

# {i ell.nl:d(F(w.y). Fl@.y)) < e} > (1 —e)n.

We will now state two propositions that imply Theorem 9.1.

Proposition 12.1 If F is Bernoulli then for every €,5 > 0 there exists ng
such that for every n > nq there exists a measurable set W C X4 x Y
with L (W) > 1 — § such that if (0, y), (0,y) € W, then there exists a map
D)@,y - EX(w) — Z:{(d)) with (@wf,éf)*(ub = ,ug and a set
U,- C EX(a)) such that:

() whUy) > 1 =5
(2) ifz € Uy-then (0™, 2), y) and (0, (- y)(@~,5)2)> ¥) are (€, n)-close.

We will also need another result. Fore > 0,n e N,w € ¥4,y €7, let

D(w,y', €, n)
= {y €Y : 30 € Ty st (w,y) and (o, y') are (e, n)—close}.
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Proposition 12.2 There exists € > 0, an increasing sequence {n;}, and a
Sfamily of sets {21}, Q. C X4, u(RQ) — 1, such that

lim sup v(D(w, ', €, ny)) =0.
k— o0 we
yey
We will prove Proposition 12.1 in a Sect. 12.2 and Proposition 12.2 in
Sect. 12.3. Now we show how these two propositions imply Theorem 9.1:

Proof of Theorem 9.1 We argue by contradiction. Fix € = €¢//100, § = €, and
let n = ny (for some sufficiently large k, specified below). Let W C X4 x Y
be the set from Proposition 12.1. Let

WY ={weXs : (w,y) e W} and W, :={yeM : (w,y) € W}.

By Fubini’s theorem, there exists Z C X4, u(Z) > 1 — 2¢ such that for
every w € Z, v(W,) > 1/2. Let k be large enough (in terms of €) such
that w(Z N Q) > 1 — 4e. By Fubini’s theorem, it follows that there exists
Z' CZNQ, u(Z') > 1—4esuchthatforw € Z/, uf(ZN Q) > 1 — 8e.
In particular, it follows that

pidat eU, (@ ,07) e ZN)) > 1 — 16e.

Letw = (0 ,0") € ZN QN (o~} x U,-) and let (@, y") € W. Since
w € Z it follows that v(W,,) > 1/2. Since w € g, it follows that for k large
enough there exists

ye W, \ D,y €, ng). (12.1)

Since ™ € U,-, by (2) we get that (0™, @™, y) and (@7, - 5- (@), y')
are (€, ny)-close. This by the definition of D(w, y’, €/, ny) implies that y €
D(w, y’, €, ny). This however contradicts (12.1). This contradiction finishes
the proof. O

12.2 Hamming-Bowen closeness

We start with introducing the notion of VWB (very weak Bernoulli) partitions
in the setting of skew-product for which the assertion of Proposition 11.1
holds (see e.g. [22] or [62]). Let R be a partition of ¥4 x Y. Two points
(w, ), (@,y") € Xg x Y are called (¢, n, R)-matchable if

#{i € [1,n]: F'(w, y) and F' (', y') are in the same R atom} > (1 — €)n.

Definition 12.3 F is very weak Bernoulli with respect to R if and only if
for every € > 0, there exists n’ such that for every n > n’ there exists
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a measurable set W C X4 x M with u x v(W’') > 1 — € such that if
(@, ), (@, y) € W, thenthereexistsamap @, )5~ .5) : T4 (@) > 1 (@)
with (@, 5-)«(1) = pf and aset U/ - C T (w) such that:

(D) ub(U! ) >1-¢€;
(2) ifz € U] _ then (0™, 2), y) and (@, @ (- y)(a-,)2)> V) are (€', n, R)-
matchable.

Proof of Proposition 12.1 Recall that by [88] if F is Bernoulli then itis VWB
with respect to every non-trivial partition.

Let (P x Q), be the sequence of partitions defined above, where the atoms
have diameter that goes to 0 as n — o00. Let n be such that the atoms of
(P x Q)i have diameter < €. This then implies that if two points (w, y) and
(o', y') are (¢, n) matchable, then they are (e, n)-close. It is then enough to
use VWB definition for (P x Q);; with €’ = min{8, €}. This finishes the proof.

O

Remark 12.4 Now we explain why it is easier to work with closeness rather
than matchability, in the case G = R?. Notice that if (w, y) and (&', y')
are (€, n)-close, and ||u|]| < & < €, then (w, y) and (o', G, y’) are (€ + 6, n)
close.'® This is not necessarily true for matchability (if the orbit of y’ is always
close to the boundary of the partition). This property of closeness crucially
simplifies our consideration as it allows us to obtain a crucial inclusion (15.4).

12.3 Proof of Proposition 12.2

Given 2, nj denote

ar(€") := sup v(D(w,y', €, ny)).
we
yey
Proposition 12.5 There exists n1 € N and a family of sets {Q} such that if
1
€k = (1 - W) €k—1, €1 1= ﬁ and ng41 = (10k)1%0 . ny, then we have

ai(ex) — 0, as k — oo.

16 Notice that for any i € N the points F! (', y') and F! (o', G,y’) are § close. Indeed, they
have the same first coordinate and the second one is G, (w)y/ vs Gy (w)y/ which are § close
since |ju|| < 4.
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We remark that the recursive relations in Proposition 12.5 imply that

T ]_[ ( 5072 ) (12.2)

g1 = np(10Kk1)100, (12.3)

Proposition 12.5 which is proven in Sect. 15 immediately implies Proposi-
tion 12.2:

o, fo__: _ oo _ 1
Proof of Proposition 12.2 Wedefine e :=infy>] €x= szz €1 (1 _50j2) .

Then by the definition of {€;}, ¢’ > 0 and monotonicity, we have
0 < ar(¢') < ar(er) — 0,

as k — oo. This finishes the proof. O

13 Consequence of exponential mixing
We have the following quantitative estimates on independence of the sets
D(w, y', €, ny) under the action G;. This is the only place in the proof where

we use exponential mixing of G;.
In this section we shall denote ¢; = 2k2° /nj_;.

Lemma 13.1 Fork € N let w;, wy € X4 be such that

sup |l (wi) |l < €k (13.1)

r<ng—i

fori = 1,2. Then, for any y\, y» € Y, any v € Z%, ||v| > kzsn,i/_zl, and any
e > 0.

V(Gl)(D(wls Y1, €, nk—1)) N D(w2, y2, €, nk—l))

< Cy- l_[ <D(wz,yl,6+2 my M- 1))
i=1,2

Proof Let L := max{ sup [|G,ll¢c1, 100}. Thenif d(y, y’) < (2L)"%, then
lvll=1

/ Li — U —Ll —nl/}
d(Guy, Guy) < L™ - 2L)"*F <2770 <277k
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for all u € A with ||u|| < €. Using this for u = 7, (w;), r < ng—1, (13.1)
implies that if d(y, y') < (2L)™%, then

a2 .
d(ij(wi)(y), ij(wi)(y,)) < 2 nk—l, for all J < nkg—1. (13.2)
Therefore for every y € D(w;, yi, €, ng—1),
¢ 12
B (v, QL) C D@,y e +27 e (133)
Using Besicovitch theorem for the cover { B (y, (2L) %)}, where
y € D(wi, yi, €, nk—1),
we get a finite cover by a family of balls {st & }j<crs<m; i = 1,2, such that for

everyi € {1,2}, j < C’, the balls {B!’i}ssmj are pairwise disjoint. Therefore

V(G (D(w1, y1,€,nk-1)) N D(wy, y2, €, nk71)>

<ZZv(G (BN B,

J.jl s,

Using that G is exponentially mixing on balls in the sense of (10.3), and the
fact that eIVl < (ﬁ)gk (since ||v]| > k25n,i£21) we get that the above term
is upper bounded by

C- ZZv(B”)v(BJ D= | DI vl
Jj.jos,s J N jos

(13.4)
Since the balls are disjoint for fixed i and j, we have
.. - 1/2
D vBIH=v (U B!”) < v(D(w;, yi, € + 271, 1)),
N N

where the last inequality follows from (13.3). Since the cardinality of j's is
globally bounded (only depending on the manifold Y), (13.4) is upper bounded
by

1/2
C-Ca-[[v(D(@i, yis e + 271, ng)).

i
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This finishes the proof. O
We also have the following lemma.

Lemma 13.2 For any constant Cy > 1 the following is true. If ny > C; and
by is a sequence of real numbers satisfying

13004 241 32
b15(100n1> and by < Cy -2 B2,

then by, — 0.
Proof By induction, we see that
k
Inby <" = DInCa+ Q2d + 1) {Z 2k=1n nli| + 2k 1n b,

=2

Now using (12.3), we obtain
k
Inby < X' = DInCy+ 2d + 1) {Z 25=1100/(In 10 + lnl)j|

=2
+2 2010y + 25" 1np,.

Using the condition on b1, the result follows. O

14 Construction of €2

Let n; be a number specified below and n; be defined by (12.3). For k > 2
define

A = {a) € =4 : #{G, j) € [0, (10k)'%° x [0, (10k)'],

1 | —20
[ p— TGt (™ w)|| > k=20
(1j — il /2" 7D

> (10k)2%0(] — k—9)},

. 100 _1
By = {w € Xp: #{i < (10k)™ : sup 172 |
r=ng—i nk_l

7 (0" w) || < k*°)
> (10k)1%0(1 — k*9)}.
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For w € ¥4, let wyp,,—1) denote the cylinder in coordinates [0, ..., n — 1)
determined by w and let

Ak = U W[0,n;—1) and Bk = U W[0,n5—1)-

weAy we By

This way, Ay and By, are unions of cylinders of length ny.
The next lemma is proven in §B.3.

Lemma 14.1 For any Co > O, there exists an no, such that if ny > ng, we
have:

ml. for every k > 1, min (M(Ak), M(ép) > 1— Cok™®.

m2. for every o € Ay,

#{(i,j) € [0, (10K)1%°7 x [0, (10k)'90], i  j -
|
(|j —ilng—1)17?

It ("™ @) = k‘ZO/Z} > (10k)%°(1 — k=)
(14.1)

and for every w € By,

1
# i<(10k)100 :sup l—/zllrr
rEmer

™) < 21<20} > (10001 k7). (14.2)

Define

= 1/2—1/11

Q= {w |ty @) = 0P } and Qp:= U w[o,n—1)- (14.3)
wGS:Z]

Notice that by Holder continuity of t it follows that for every w € Q1, we
have ||t,, (w)| > n}/%l/w, if n is large enough.
We suppose that n1 is large enough, see below. For £k > 2 we define:

Q= AN B N {a) € T4 #i < (1000 : 671 (w) e Q)
> (10k)'%0(1 —k—S)}.

Lemma 14.2 For every k, the set Qi is a union of cylinders of length ng.

Proof For k = 1, this follows from the definition of £2;. Also by definition the
sets Ax and By are unions of cylinders of length n;. Now inductively, if Q;_1
is a union of cylinders of length n;_1, then for every i < (10k)'%, the event
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oM=1(w) € Q_1, depends only on the [ing_1, (i + 1)ng—1] coordinates of
w. Since i < (10k)'%, the union of these events depends only on the first ny
coordinates of w. O

Let Cr = {C : C is a union of cylinders of length n;_1}. Since u is Gibbs,
by (9.2) there exists a constant C; > 1 independent of the cylinders C and of
k such that for any cylinders C1, Cp € Cyg, for any m > nj_1

w(CiNa™C) < Cru(Crp(Ca).

We obtain by induction that for any Cy, ...,C¢ € Cg, any j1 < --- < jg,

b4 b4
w (m O-ji”lklci> < Cf 1_[ w(C). (14.4)
i=1 i=1

We assume that 1 is so large that £ (21) > 1 — Cf22_200.

Proposition 14.3 There exists a constant Cy > 0, such that for any k > 1,

w(Qp) >1— Cok™". (14.5)

Proof of Proposition 14.3: SetCy = We prove (14.5) by induction.

By the choice of n1 and Cy, (14.5) holds for £k = 1. Now assume it holds for
k —1 > 1. We are going to show it holds for k.
We claim that u(Dy) < Cok~’/3, where

Dy = {w € D4 #i < (100190 : o1 () € Q_1} < (10k)10 — (10k)95].

By Lemma 14.2, the set 2x—1 is a union of cylinders of length ng_1. So is the
complement €2 _ ;.

Divide the interval [0, (10k)'%°] into 10(10k)** intervals of length 10°k5.
If w € Dy, one of those intervals / should contain at least k visits to ;.
Letiy, ...i be the times of the first k visits inside /. By (14.4), for each tuple
Iy...,10k

" (Oif""*la) e forj=1,..., k) e
Since the number of tuples inside [ is less than |/ |k = 109 kO,

" <#{i el:olweQ ) > k) < 10Kk Ch (s k.
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Since there are 10(10k)* intervals, we have

1
94 6k ~k k -7
w(Dy) < 10(10k)”" (10k)™ Cy (" < CE2 100k < Cok™"/3.

Byml in Lemma 14.1 and the definition of 2z, we obtain u(2;) > 1— Cok™".
O

Definition 14.4 We say that a pair (i, j) € [0, (10k)10012 ig nx—good for w if
forv e {i, j} oV 1w € Q_1,

1
— |
(1j — ilng—1)'/?

(i ()| = k7202, (14.6)

and

sup 7[5 (6" @) | < 2k%0. (14.7)

rm-1n

By definition of €2, there are at least (10k)290(1 — 5k79) nx—good pairs (i, j),
for every w € €.

15 Proof of Proposition 12.5

We will show that Proposition 12.5 holds for sets €2; and n; from Sect. 14.
Let Co = 10?90 . Cy - d? - 1009 (sup || 7|)?, where Cy is from Lemma 13.1.
We start with the following lemma:

Lemma 15.1 Let n|; > C; be sufficiently large. Then

1 )300d

ay(e)) < (100n1

Proof Let w € Q and y € D(w, y', €1, ny). Thus there is some o’ so that
(w, y) and (', y') are (€1, ny)-close. Since €| = ﬁ it follows that for every
0<i<n;-—1,

d(Fi(w, y), Fl(, y')) < €.

Since t depends only on the past and is Holder continuous with exponent
B, this implies in particular that

7 (@) — 7@l < Ce fori <ny.
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Leteg = 6{3 . Using closeness of F w, y) and F o, y’) on the second coor-

dinate, we get
d(Gawy, Guwy') <2Ce fori =m. (15.1)
We claim that (15.1) implies that
dH(Gri(w)y, Grw)') <2Cey fori <ny. (15.2)

Indeed, if not let i < n; be the smallest index i for which (15.2) doesn’t hold.
This means that

dH <G'L'i0,1(a))y, GTiO,l(w)y/) < 2C€O

Note that by (15.1) there is some y so that

dy (Gr,-o(w)y, Gr,-o(w)y’y> < 2Ce¢,

and by the definition of ip, Y # e. The last two displayed inequalities imply
that for some global constant C” > 0,

dH(Gfiow)y/’ Gr,-o(w)y/y) < C"e.

If €p is small enough, this gives a contradiction with the systole bound (11.1).
So (15.2) indeed holds.
Since w € Q1 (see (14.3)), it follows that

T, (@) = ny/> 7110,

(15.3)

It follows that G, () expands the leaves of one of the Lyapunov foliations

2/5
by at least ¢“"1 . Hence each leaf intersects the set of y’ satisfying (15.2) in a

2
set of measure O (e cm ) .

2/5 25
Therefore v(D(w, y', €1,n1)) < C'-e™ "1 ,whencea;(e]) < C-e”" <

1 \300d
(100 ) if ny is sufficiently large. The proof is finished. |
ni

The next result constitutes a key step in the proof.

Lemma 15.2 For any k € N, any o € i, any y/ € M and any
y € D(w, V', €k, ny), there exists (ix_1, jx—1) € [1, (lOk)lOO]z, such that

@ Springer



104 D. Dolgopyat et al.

lik—1 — Jk—1| > (10k)%, (ix_1, Jk—1) is n good for w (see Definition 14.4)
and there are uy, vy such that |\ug|| < (sup |tDng, vl < (sup|t|)nk, and

i 1
lk—1Nk— /
Gr,.kfl,lkfl(w)y eD <o’ T w, Gy (1 - 100k4)€k—1, nk—]) )

. 1
— — /
Grjk—lnk—1(w)y €D (ajk 1 la)’ Gvky ’ (1 - 100k4)€k—15 nk—l) .

Before we prove the above lemma, let us show how it implies Proposi-
tion 12.5.

Proof of Proposition 12.5 Let Ay = {u : |u|| < (sup|t|)ng, 100dniu €
74} 1t is easy to see that #A; < (100d (sup |t|)n,%)d. Notice that for any £

with || €]l < ny there exists £ € A such that ||¢; — €|| < n; ". Therefore, for
any @ € X4

- 1 -
D (a) Gy, (1 - 100k4)6k—1, nk—l) CD (@, Gy, 81, n5-1)
(15.4)
where §;_1 = (1 — W)Gk—l +%. Now combining Lemma 15.2 and (15.4)

with the choice ¢y € {uy, vi} where uy, vy are from Lemma 15.2, we deduce

D(w,y', e, nx)

< U U ﬂ G_Twnk_l (@)

(ix—1.jk—1)€l1,(10k) 10012 u,ve Ak (w,2) €{(ix—1.u),(jk—1,v)}
D (c""'w, Gy, Sk—1,nr—1) . (15.5)

Fix u, v and (i, j) = (ix—1, jk—1). Then by invariance of the measure,

v<G—r,»,,k71 @)D" w, Gy, Sk—1, nk—1)
NGoryy @ D@0, Gy, Semr, i)
= V<Grjnk71 (w)_tink71 (w)D(Uink_la)v Guy/, 8]{715 nk*l)

N D@™ 1w, Gyy', 1, nk_o). (15.6)

Since i, j are n; good and |i — j| > (10k)%3, it follows by (14.6) that

25,172

”Tjnkq (a)) — Ting_, ((1))” > ne_q-
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Moreover, since i, j are nx good, by (14.7), for w € {i, j},

sup |7, (0" w) | < 262,
r<ng—i

Therefore, by Lemma 13.1 (with w,, = o""-1w), it follows that (15.6) is
bounded from above by

wnj— / 7n1/2
Co [ vD@"™ 1w, Guy' Semt +27"1 ). (15.7)

wefi, j}

Moreover, since i, j are good, o""*-1(w) € Qi_1. Also by (12.3), n; <

1/2
(141/100) - 2" . Since inf €, > 0 and ny grows exponentially, using (12.3)
again, we have

_nl/2 1 a2
Sk—1 + 2771 = (1 )Gk—l + — + 271 < €.
nk

1

100k*
Using this, we obtain that (15.7) is bounded by Cy (ax—1 (ek_l))z. Using (15.5)
and summing over all u, u’ € Ay and (ix—1, jr—1) € [1, (10k)10072 (using that
k290 < 5p), we have

ar(e) < Cy - [100d (sup [t hng]? - (106> - a1 (ex-1)°
< (1020 Cy - (100d(sup 7)) - mP* apy (ex—)?.

This by Lemmas 15.1 and 13.2 (with C; = 10?9 . Cy - (100d (sup |7|))? and
by = ay(ex)) implies that ag(€x) — 0 which finishes the proof. O

It remains to prove Lemma 15.2.

Proof of Lemma 15.2 We consider the intervals [rng—_1, (r + 1)ng—1). Since
y € D(w, Y, €, ny), it follows from the definition of {e;} that for at least
(10k)?8 of r < (10k)'%, the points

1
F™1(w, y) and F"™1 (o', y') are ((1 — 100k4) €k—1, nk_l) -close.
(15.8)
Otherwise the cardinality of i < nj such that d (F Nw, V), Fi(o', y' )) < €
would be bounded above by

1
10k) B ne_1 + (10k)'%° — (10k)*®)ng_; <1 — (1 - W) ekl)
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< (10k)" %, (1= 1—L €r—1 ) = ne(l — &)
- 50k2) T ‘

This however contradicts the fact that (w, y) and (o', y’) are (g, ng)-close. So
there exists at least (10k)!%6 pairs (i, j) € [0, (10k)'9912 which satisfy (15.8).
Note that

#{(l, J) € [0, (IOk)IOO]Z . |l o ]| < (10]()95} < (10k)100+95.
Therefore

#{(i, j) € [0, (10k)1%°1% . (i, j) satisfies (15.8) and |i — j| > (10k)*}
> (10k)"° — (10k)'%°.

Moreover, since w € Q, the cardinality of ng—good pairs (i, j) (see Defi-
nition 14.4) is at least (10k)?%° — 5(10k)'%. Since (10k)'%® — (10k)!%° >
5(10k)193, it follows that there exists (i, J) such that (15.8) holds for r =i
and r = j, and (i, j) is ng-good. This means that for r =i, j,

("1, Grrnkﬂ @)Y) and ("o, GT’”kfl @) (15.9)

are ((1 — W) €r—1, nk_1>—close. Hence we find that for some |Ju;| <
(sup [t|)nk,

Gy 1@ € D™ 1w, Gyyy', (1= 1/(100k%)eg 1, ni—1),

and the same holds for j with some vg. This finishes the proof. |
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Part VI. Appendices
Appendix A. Entropy of skew products

Proof of Lemma 2.1. We prove the statement for (7, T~") diffeomorphisms,
the result for flows then follows by considering the time 1 map.
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By Ruelle inequality it suffices to show that all Lyapunov exponents of F
are non positive.!” Differentiating (1.3) we get that for each (x, y) € (X x Y),
ueTl X, veTlyY

DfNu
DFN(x, ) ”) B (x, y),
v D dEp)IN@WY; + D(Gry)(v)

j=1

where 7(;) denotes the j-th component of 7, ); = f—SIS:oGsej and {e;} is the
standard basis in R,

Since f has zero entropy, the Pesin formula shows that the Lyapunov expo-

. In||IDf¥ )| :
nents of f are zero. Hence th ——— =0 for a.e. x. Also since
— 00

N1
d(t )N (x) = Z drj(f"x)(Df"v)

n=0
In ||d(7¢;
it follows that fora.e. x and all j € {1, ..., d}, limsup 0z v @l =0.
N—o0 N
Also for a.e. (x, y)
In||DG
lim sup n || oy @) W)l < C lim M =0
Neoo N N—o0

where the last step follows since f is ergodic and 7 has zero mean.

o . . In |[DFY|(x, y)
The foregoing discussion shows that fora.e. (x, y), lim sup
N—oo N
< 0. Therefore all Lyapunov exponents of F indeed non positive, and so

ent:(F) =0. O

Appendix B. Ergodic sums over subshifts of finite type
B.1 CLT for (T, T~1) transformations with SFT in the base

Theorem B.1 Consider a generalized (T, T transformation (1.2) with
(X, f) being a subshift of finite type,  is a Gibbs measure with a Holder
potential, and G, is an R? action which is exponentially mixing of all orders.

17" Applying this result to F~! gives that all exponents of F are in fact zero, but we do not need
this fact for the proof of Lemma 2.1.
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Suppose that d > 3 and © : X — R< is an irreducible Holder cocycle. Then
F satisfies the CLT on the space of Hélder functions.

Remark B.2 As it was mentioned in Sect. 2.4, this result is a special case of
Theorem 5.1 in [35]. We include the proof here to make this paper more self
contained and to demonstrate the power of Theorem 3.1. We also note that
in contrast to [35] the present proof does not rely on the exponential mixing
of f, it just uses the the properties of the local distribution of 7 such as the
anticoncentration inequality (B.2) below.

Proof By Lemma 5.6 it suffices to show that F' satisfies the quenched CLT in
the sense of Definition 5.1.

We define my by (5.2) and check the conditions of Proposition 4.1.

(a) is evident.

To prove property (b), let £(x, ¢, N) = Card{n < N : |t,(x) —t] < 1}.
We claim that for each p, there is a constant C, such that for each ¢ € R for
each n

w (P (-, t,n)) < Cp. (B.1)

Indeed,

14 q
(€ Cotm) Z > u(]_llrn,m—zm)
a=1 j=1

RSNy =-=ng=n

P q
<26 ) om (lfmm—fsl [l’[ Vi o 1<f”f—'x>|52D :

q:] n]<n2§-~<nq§n j:2

The multiple anticoncentration inequality of [35, Lemma A.4] tells us that
there is a contant C such that for each tuple (n1, ...n,) we have

q
i\ Uiy wo-m=t | T e, 0 grmron
| /=2
) ¢
< C(ny) ™2 l_[(nj —nj_) | (B.2)
| /=2
Summing over ny, ..., ng, we obtain (B.1).

With (B.1) proven, the Markov inequality implies that for each ¢, ¢, p we
have
Cp

‘ (1/5)—¢ __-r
W <x :€(x,t,N) = N ) = NIA/5)—elp”
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It follows that

C*N4
' ' (1/5)—¢ __r
n (x 23t ||t < |tV and £(x, ¢, N) > N ) = NI1/5—¢lp”

Taking p = 6d, ¢ = 0.01, property (b) follows.
Recall (5.5). In view of Lemma 5.5, to prove property (c) it suffices to check
that (5.8) holds for some 8 > 1. Using (5.7) we get

AA%MMWMMSCE:Mmeﬂmm+DWﬁﬂ
m=0

S d—1
m —em C
ECE |:kd/26 ]EW,
m=0

where the second inequality relies on (B.2) with ¢ = 1 (noting that we can
coverthe set {z € R? : ||z|| € [m, m+1)} with Cm?~! unit cubes). This shows
that (5.8) holds with 8 = d/2. This completes the verification of conditions
of Proposition 4.1. |

B.2 Visits to cones

Proof of Lemma 11.4 We only prove the result for the forward orbits, the proof
for the backward orbits is similar.

Setny =2, ngy1 = ni, my = ni — ni—1 and consider the sets Ay = {w :
7 (@) € C}.

Let F, 5 denote the o-algebra generated by {w;},<j<p. Since T only
depends on the past, Ay is measurable with respect to F_xo ;-

Therefore by Lévy’s extension of the Borel-Cantelli Lemma (see e.g. [107,
§12.15]) it is enough to show that for almost all w

Y Ak 11 F—oony) = 00, (B.3)

k
5 A ng—1 R
LetC = {v e C: dist(v, 9C) = 1}, Ak:{w;M }

e eC

A ={w:3b € Ay . w; = dj for j € [ng—1, nx]}. Note that A¥ C Ay
because for any @ € A} and for the corresponding @, 7, (0%~ ®) is inside C
and is at least % my away from the boundary whereas

Tny (@) — Ty (01 D) = [Ty (@) — Ty (©)] + [T (@) — Ty (6™ D)]
= O(nk—1) < V/my.
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Next

WAL | F ) - M(Ak+1|-7:nk,nk)

M(Akﬂ‘}—foo,nk) > N«(AZ+| Iffoo.nk) > %

where the second inequality is due to (9.2) (note that Az 1S Fu o~

measurable, and hence F_, ,,—measurable and so (9.2) can be applied), and
the third one holds because AZ 2 AH]. Since p is shift invariant

/J“(AAk+1|~7:nk,nk)(w) =M (ﬂ S é)F()i)) (a_"ka))
v/ Mk+1

By the mixing CLT ( [44,92]) if @ is any symbol in the alphabet of X 4

lim (Trj/(i)) e Clwg = w) =P\ € ()
m— 00 m

uniformly in @, where A is the normal random variable with zero mean and
variance D?(7) given by (2.9). By the assumptions of Lemma 11.4 and Propo-
sition 2.8, we see that D?(7) is non degenerate. Thus P(N € (f) > 0 for any
cone C. It follows that there exists ¢ = ¢(C) such that for all sufficiently large
k and all w

(A1 F oo m ) (@) = €. (B.4)

(B.3) follows competing the proof of the lemma. m|
B.3 Separation estimates for cocycles

Proof of Lemma 14.1 (m2) follows from the fact that there exists a constant
C; such that if ®’ and »” belong to the same cylinder of length N, then

[ty (@) — v (@")] < Cr.
To prove (m1) let

Na(w, kby=#{(, j) € [0, (10k)'] x [0, (10k)'],

T(j—i o!M=1g
; 7& ] : || (j .l)l’lkjl( 1 2)” k_20
(1j = iln—n)V

Denotem;j = |i — j|ni—1. Covering the ball with center at the origin and radius

/mlJ

k20

in R? by unit cubes and applying the anticoncentration inequality (B.2)
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with ¢ = 1 (or [35, formula (A.4)]) to each cube, we obtain that

M (”Tmij ()| = kmij) < Ck—20d, (B.5)

20

Since w is shift invariant we conclude that

T, (™)1 od
mij

Summing over i and j we obtain
w (NG, k) < C(10k)* 07200,

Next, by the Markov inequality,

1 (w: Na(w, k) > (106)"1) < x20d—0"

This shows that the measure of the complement of A is small. The estimate
of measure of By is similar except we replace (B.5) by

m (ngg (@) = k”ﬁ) < cre 2k (B.6)

To prove (B.6) it is sufficient to consider the case d = 1 since for higher
dimensions we can consider each coordinate separately. Thus it suffices to
show that

m (ggan)g Ty () > kzoﬂ) < crek” (B.7)

(the bound on p (nlm T (w) < —kzo\/ﬁ) is obtained by replacing T by —1).
n<m

To prove (B.7) with d = 1 we use the reflection principle. Namely, [35,
formula (A.3)] shows that for each L

i (1tn(@)] = Ly/m) < &e~L, (B.8)
Let
Dyk)={w:3n <m, and®: @; = w; forje0,...n—1and 5,(w) > k**/m} .

Note that D,, (k) contains the LHS of (B.7) and that D,, (k) is a disjoint union
of the cylinders of length at most m, D,, = U . Dj (to see this, take for each
J
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w the smallest n such that the last display holds and recall that T only depends
on the past). Next, similarly to (B.4) (since d = 1 the relevant cone is the cone
of positive numbers) there exists ¢ > 0 such that for each cylinder D of length
n = n(D) and for each m > n,

1 (tm—n(w) = Ol € 67"D) > &.

Combining this with (B.8), we obtain

_ k20 k20
516“2"40/4 > W <rm > ﬁ) > ZM (w €Dj, th = ﬂ)
J

- 2 2

k20
>y u@pu (rm > zﬁ\w - D,-) > &Y u(D)) =epn(Dy)
J J

proving (B.7) and completing the proof of the lemma. O

Appendix C. The main results in general context

Here we put our results into a general context of flexibility of statistical prop-
erties in smooth dynamics.

There is a vast literature on statistical properties of dynamical systems. A
survey by Sinai [100] lists the following hierarchy of chaotic properties for
dynamical systems preserving a smooth measure (the properties marked with
Tgare not on the list in [100] but we added them to obtain a more complete list

).

(1) (Erg) Ergodicity; (2*) (WM) Weak Mixing (3) (M) Mixing; (4*) (PE)
Positive entropy; (5) (K) K property; (6) (B) Bernoulli property; (7) (CLT)
Central Limit Theorem'; (8) (PM) Polynomial mixing; (9) (EM) Exponential
mixing.

Recall that a formal definition of (CLT), (PM), and (EM) were given in
Sect. 1. The definitions of the other properties are standard.

Properties (1)—(6) are qualitative. They make sense for any measure pre-
serving dynamical system. Properties (7)—(9) are quantitative. They require
smooth structure but provide quantitative estimates. Currently there are many
examples of systems enjoying a full array of chaotic properties which follow
from either uniform hyperbolicity or non-uniform hyperbolicity, in case there

18 Other interesting statistical properties include Large Deviations, Poisson Limit Theorem,
and Local Limit Theorem. We do not include them into our list since our paper does not contain
new results or counter examples pertaining to these properties

19 [100] refers to classical CLT, but since the time it was written several CLT's with non classical
normalization has been proven, cf. footnote 4.
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is a control on the region where hyperbolicity is weak [11,14,26,109]. Systems
which satisfy only some of the above properties are less understood. In fact,
it is desirable to have more examples of such systems in order to understand
the full range of possible behaviors of partially chaotic systems.

Thus we have the following list of statistical properties of dynamical sys-
tems.

(Erg), (WM), (M), (PE), (K), (M), (CLT), (PM), (EM).

While properties on the bottom of the list are often more difficult to establish
especially in the context of nonuniformly hyperbolic systems discussed in
[100], property (j) of the list in general does not imply property i fori < j.
Thus it is desirable to study the following realizability problem: given two
disjoint subsets Ay, Ay C {1,...,9}, is there a smooth?’ map preserving a
smooth probability measure that satisfies all properties in .4; and does not
have any of the properties in 4, ?

The simplest version of the realizability problem is when | A;| = |A2| = 1,
which case is presented in the following table. Here Y in cell (i, j) means
that the property in row i implies the property in the column j. (k) in cell
(i, j) means that a diffeo number (k) on the list below has property (i) but not
property (j).

The examples in the table below are the following (the papers cited in the
list contain results needed to verify some properties in the table):

(1) irrational rotation; (2) horocycle flow ( [20]); (3) Anosov diffeo x iden-
tity; (4) maps from Theorem 1.3; (5) skew products on T2 x T2 of the form
(Ax,y + at(x)) where A is linear Anosov map, « is Liouvillian and 7 is not
a coboundary [33]; (6) Anosov diffeo x Diophantine rotation (see [27,71] and
Theorem 3.1).

Erg WM/M PE K/B CLT PM EM
Erg L) (D (D (D) (D (D (D
WM/M Y & () 2 Q) ©) ©)
PE (3) 3) & (3) 3) 3) (3)
K/B Y Y Y rY 5) ) 5)
CLT Y (6) “4) (6) & (6) (6)
PM Y Y 2 ) 2 & 2
EM Y Y Y Y 2 Y FY

We combined (WM) and (M) (as well as (K) and (B)) together since the
same counter examples work for both properties. It is well known that weak

20 Realizabilty problem also makes sense and is interesting in other settings such as for symbolic
or hamiltonian systems.
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mixing does not imply mixing (see Sect. 8.3) and that K does not imply
Bernoulli (see Part V).

The positive implications in the top left 4 x 4 corner are standard and can
be found in most textbooks on ergodic theory. It is also clear that Exponential
Mixing = Polynomial Mixing = Mixing and that CLT implies the weak law
of large numbers which in turn entails ergodicity. The fact that the exponential
mixing implies the Bernoulli property (and hence both K property and positive
entropy) is more recent [37].

The only open problem in the above table, namely the existence of a system
satisfying (EM) but not (CLT) seems hard. Recall from Sect. 4 that the classical
CLT follows if the system enjoys exponential mixing of all orders. Therefore
the problem whether (EM) implies (CLT) is related to the question whether
exponential mixing implies multiple exponential mixing which can be thought
of as a quantitative version of the famous open problem of Rokhlin. Except
for this specific question, the realizability problem is well understood in case
A1l = A2 = 1.

Next, we study the realizability problem with |A;| = 2, |42 = 1 and
CLTe A;. The table below lists in cell (7, j) a map which has both property
(1) and satisfies CLT but does not have property j. Clearly the question makes
sense only if we have an example of a system which has property (i) but not

property (j).

WM M PE K B PM
WM L) @) ©)) ) C)) (10)
M & & ) ) ©)) (10)
PE (6) (0) & (0) (6) (0)
K & & & & (7) 2?
B & & & & & 7
PM & & ) (©)] ) &»

Here, (6) refers to the diffeomorphisms from the previous table, while (7),
(8), (9), and (10) and refer to the maps from Theorems 1.5, 1.4(a), (b) and
1.3(a). To see that the example of Theorem 1.3(a) is not polynomially mixing
we note that for polynomially mixing systems the growth of ergodic integrals
can not be regularly varying with index one. Namely (see e.g. [35, §8.1]), for
polynomially mixing systems there exists § > 0 such that the ergodic averages

of smooth functions H satisfy Tlim = 0 almost surely, and hence, in
— 00

T
Tl—(S
law.

@ Springer



Flexibility of statistical properties 115

Appendix D. Open problems

Here we list some open problems related to our results that we believe should
be studied in the future.

In the examples in Theorem 1.3(b), dim(M;) grows with r which leads to
the following natural problem:

Problem D.1 (a) Construct a C* diffeomorphism with zero entropy satisfy-
ing the classical CLT.
(b) Construct a C* flow with zero entropy satisfying the classical CLT.

The next problem is also motivated by Theorem 1.3:

Problem D.2 For which o does there exist a smooth system satisfying the
CLT with normalization which is regularly varying of index o?

We mention that several authors [8,18,29,43] obtained the Central Limit
Theorem for circle rotations where normalization is a slowly varying function.
However, firstly, the functions considered in those papers are only piecewise
smooth and, secondly, they require an additional randomness or remove zero
density subset of times. Similar results in the context of substitutions are
obtained in [15,91].

In the examples in Theorem 1.4(b) the rate of polynomial mixing is rather
slow (slower than linear). This motivates the following problem:

Problem D.3 Given m € N construct a diffeomorphism which is mixing at
rate n~™ and satisfies at least one of the following: (a) is not K; (b) has zero
entropy; (c) does not satisfy the CLT.

Theorem 1.5 motivates the following problems:

Problem D.4 Construct an example of K (or even Bernoulli) diffeomorphism
which satisfies the CLT but is not polynomially mixing.

Problem D.5 Let M acompact manifold of dimension at least two. Does there
exists a C*° diffeomorphism of M preserving a smooth measure satisfying a
Central Limit Theorem?

Currently it is known that any compact manifold of dimension at least two
admits an ergodic diffeomorphism of zero entropy [3], a Bernoulli diffeomor-
phism [17], and, moreover, a nonuniformly hyperbolic diffeomorphism [41].
We note that a recent preprint [97] constructs area preserving diffeomorphisms
on any surface of class C 144 (with 8 small) which satisty (CLT). It seems
likely that similar constructions could be made in higher dimensions. However,
the method of [97] requires low regularity to have degenerate saddles where a
typical orbit does not spent too much time, and so those methods do not work
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in higher smoothness such as C2. We also note that [21] shows that for any
aperiodic dynamical system there exists some measurable observable satisfy-
ing the CcLT?! (see [76,77,79,105] for related results). In contrast Problem D.5
asks to construct a system where the CLT holds for most smooth functions.

Problem D.6 Let M be a compact manifold of dimension at least three. Does
there exist a diffeomorphism of M preserving a smooth measure which is K
but not Bernoulli?

We note that in case of dimension two, the answer is negative due to Pesin
theory [7]. At present there are no example of K but not Bernoulli maps
in dimension three. We refer the reader to [62] for more discussion on this
problem.
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