ASYMPTOTIC EXPANSION OF CORRELATION FUNCTIONS FOR Z?
COVERS OF HYPERBOLIC FLOWS.

DMITRY DOLGOPYAT, PETER NANDORI, AND FRANCOISE PENE

ABSTRACT. We establish expansion of an arbitrary order for the correlation function of suffi-
ciently regular observables of Z¢ extensions of some hyperbolic flows. Our examples include
the Z2 periodic Lorentz gas and geodesic flows on abelian covers of compact manifolds with
negative curvature.

Résumé. Nous établissons des développements asymptotiques de tous ordres pour la fonction
corrélation d’observables suffisamment réguliéres de Z%-extensions de flots hyperboliques. Nos
résultats s’appliquent au gaz de Lorentz Z2-periodique et au flot géodesique sur des revétements
abéliens de variétés compactes de courbure négative.

1. INTRODUCTION

1.1. Setup. Let (M,v,T) be a probability preserving dynamical system. Consider (M,0,T)-
the Z%-extension of (M,v,T) by & : M — Z% for a positive integer d. Let (®;);>0 be the
suspension semiflow over (M, v, T) with roof function 7 : M — (0,+00) and let (&)t)tzo be the
corresponding Z? cover. That is, (&)t)tzo is the semi-flow defined on

Q:={(x,0,5) € M x Z? x [0,400) : s € [0,7(x))}
such that ®;(z, £, s) corresponds to (z, £, s+t) by identifying (z, £, s) with (Tz, {+r(z), s—7(x)).

We will consider throughout this article that x and 7 are bounded. The semi-flow o preserves
the restriction ji on €2 of the product measure ¥ ® m ® [, where m is the counting measure on
7% and [ is the Lebesgue measure on [0, +00).

In the present paper we study the following correlation functions

Ci(f.9) = /ﬁf.gocitdﬁ,

as t goes to infinity, for suitable observables f,g. Our goal is to establish expansions of the form
K d d
Ci(f,9) =D Culfi9)t 2  +o(t™275). (1.1)
k=0

More precisely we assume that ®; is C*° away from singularities, which is a finite (possibly
empty) union of positive codimension submanifolds. We say that ®; admits a complete asymp-
totic expansion in inverse powers of t if for f and g which are C*° and have compact support
which is disjoint from the singularities of ®, the correlation function Cy(f, ¢) admits the expan-
sion for each K € N.

The precise statement of our results will be given in Sections 2H4l Here we mention some
important applications.

Date: May 20, 2021.
2000 Mathematics Subject Classification. Primary: 37A25.
Key words and phrases. Sinai, billiard, Lorentz process, Young tower, local limit theorem, decorrelation, mix-
ing, infinite measure, Edgeworth expansion.
1



2 DMITRY DOLGOPYAT, PETER NANDORI, AND FRANCOISE PENE

Theorem 1.1. Complete asymptotic expansion in inverse powers of t holds for finite horizon
periodic Lorentz gases and geodesic flows on abelian covers of negatively curved manifolds.

In fact, our results are more general than Theorem Namely,

e we consider an abstract setup applicable to other hyperbolic flows;

e we allow the support of f and g to be unbounded (provided they decay sufficiently fast);

e we allow f and g to take non-zero values on the singularities of the flow. In addition,
we allow them to be only Holder continuous (note that continuity is required in the flow
direction as well) with one of them being C*° in the flow direction.

1.2. Related results. The correlation function has been studied by several authors. The
leading term (K = 0) for hyperbolic maps (for functions of non-zero integral) is sometimes called
mixing, Krickeberg mixing or local mixing. In case of Z? extensions as above, it is a consequence
of some versions of the local limit theorem. See related results in e.g. [1,22-24,/44]. Less is known
about higher order expansions for maps, but see the recent results in [42]. For flows, the leading
term has been studied in e.g. [2,/15,27,45]. We also mention that there are other quantities
besides the correlation functions whose asymptotic expansions are of interest. In particular,
the asymptotic expansions have been obtained (using techniques similar to ones employed in
the present paper) for the rate of convergence in the central limit theorem [19,]20] and for the
number of periodic orbits in a given homology class [33,41]. The relation of mixing with the
other above mentioned problems is the following. First, the problem of counting periodic orbits

can be reformulated as a special case of the mixing problem /A(x, ®yx)dp(x) in case A(-,-) is

a distribution supported on the diagonal (see [30,34]). Also given a function 7 : M — R of zero
mean, one can consider a skew product on M x R defined by

F(z,s) = (Tx,s + 7(x)).

Studying the higher order terms in the mixing local limit

Vi ($@)g(T"2)6 (ry — V) ) = W)l Fula) /R o(s)ds + ..

where ¢ is a compactly supported test function, ¥ is a Gaussian density, gives, in the special case
z = 0, the asymptotic expansions of correlation functions for F' similar to the one considered
in the present paper. While these relations are useful in computing the main terms in the
asymptotic expansions, and consequently similar techniques may be applicable in all these cases,
the study of a more complete expansion seems simpler when performed in each case, separately.

To comment on our smoothness assumption, we note that a comparison of the results of [19}20]
for smooth ¢ with the results of [7,/14] for the case where ¢ is an indicator shows that the
assumption on the smoothness of ¢ is essential to derive expansions of the form . Therefore
we expect that the assumption that some observable is smooth in the flow direction is essential.
It is an interesting open problem to obtain corrections to our asymptotic expansions for non-
smooth observables.

Other results are known for some hyperbolic systems preserving an infinite measure which
may not be a Z% cover and so the powers may be different from —% — k. See the leading
term in e.g. [16}38,40] and expansions in e.g. [31,3637]. We note that the expansions in
the above papers are of the form ¢(¢)a(f)i(g) where ¢(t) admits an expansion of the form

K
o(t) = Z axt P 40 (tiﬁ K ) . Thus these expansions do not provide a leading term in the case
k=1
a(f)i(g) = 0. In contrast, our expansion gives a leading term for a large class of zero mean
observables. The main reason we are able to obtain the complete expansion in our problem is
that the leading eigenvalue of the appropriate transfer operator is smooth near the origin in
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our setting but not in the setting considered in [31}/36,37]. We note that recently |11] obtained
asymptotic expansions of the leading eigenvalue in a non-smooth setting, so obtaining complete
asymptotic expansions beyond the abelian covers is the natural next question.

We note that the results described above discuss mixing for the observables concentrated in
a compact part of the phase space. Recently, a number of papers discuss mixing for extended
observables. This topic is beyond the scope of our paper, we refer the readers to [17,25,32] and
the references wherein for more information on this subject.

1.3. Layout of the paper. The rest of the paper is organized as follows. In Section |2 we
present some abstract results on expansion of correlation functions for general suspension semi-
flows and flows. Theorems [2.1] and guarantee that under a list of technical assumptions,
expansions of the kind hold. The results are proved by a careful study of the twisted trans-
fer operator. One major difference from the case of maps (cf. [42]) is an extra assumption called
a weak non-lattice property along the lines of [12]. In Section |3| we study billiards and verify
the abstract assumptions of Theorem for the Lorentz gas obtaining a complete asymptotic
expansion in inverse powers of ¢ for that system. In Section [4 we verify the abstract assump-
tions for geodesic flows on Z? covers of compact negatively curved Riemannian manifolds. Some
technical computations are presented in the Appendix.

2. ABSTRACT RESULTS.

2.1. Notations. We will work with symmetric multilinear forms. Let &,, be the set of permu-
tations of {1,...,m}. We identify the set of symmetric m-linear forms on C%*! with

Sm = {A = (Ai1,...,im)(ih_,,7im) S C{l""’d+1}m : Vil, ...,im, Vs € Gm, Aisu),._.,is(m) = Ai17---,im} .

For any A € S,,, and B € Si, we define A ® B as the element C of S, such that
1

Vits e imik € {1 d+ 1}, Ciy iy = (m+ k)! D Ao Biagm ) ety
’ 566m+k

Note that ® is associative and commutative. For any A € S,;, and B € S with k£ < m, we
define A % B as the element C € S,,,_; such that

Vit cimer €{1,...,d+ 1}, Cyy i, = Z A i By sty
ikt 1 seeesim €{ 1,0y d 1}
Note that when & = m = 1, A x B is simply the scalar product A.B. For any C™-smooth
function F : C4! — C, we write F(™ for its differential of order m, which is identified with a
m-linear form on C4'. We write A®¥ for the product A® ... ® A. With these notations, Taylor
expansions of F' at 0 are simply written

1
> EF('“)(O) s« 2%k
k=0

It is also worth noting that A+ (B® C) = (A% B) xC, for every A € S,,,, B€ Sy and C € Sy
with m > k + £.
For any v ® l-integrable function hg : M x R — C, we set

ho(z, &) = /R ¢S ho(z, ) ds,

(this quantity is well defined for v-a.e. x).

In both Sections and we will use notations )\ék), a(()k), H(()k) for the k-th derivatives of
A, a and IT at 0. The function a is defined below in (2.4, whereas A and IT will be introduced
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in Assumptions (A1) (at the begining of Section and (B3) (at Section [2.3).
We write P for the Perron-Frobenius operator of 1" with respect to v, which is defined by:

Vf, g e L (v), / Pf-gdu:/ f-(goT)dv. (2.1)
M M
We also consider the family (P ¢)pec|—r, 2 ccr Of operators given by
Pye(f) =P (ew'“ei&' f) . (2.2)

Throughout this work, we assume that 7 is bounded from both below and above by two positive
numbers and |k| is bounded above. To simplify notations, we write v(h) := [,, hdv.

Let ¥ be a (d + 1)-dimensional positive symmetric matrix. We will denote by ¥ = Wy, the
(d + 1)-dimensional centered Gaussian density with covariance matrix X:

6—%2’1*5‘@2

(27)F Vdet S
In particular, () is the differential of U of order k. Let

P D (2.4)
be the Fourier transform of W. Given a non-negative integer o and a real number v, we define

hary i R2 = Say  hany(s,2) = 2wl (0,5/\/2'/1/(7')) (2.5)

where 0 denotes the origin in R?. This function will appear in the expansion formulas (2.17))

and (2.43)).

We will use the notations

U(s) = Ws(s) 1= (2.3)

n—1 n—1
Knp 1= g koTF and Tn::ZToTk.
k=0 k=0

Note that with this notation, we have
Dy(x,0,5) = (T2, b+ kin(x), s+t — T(z)), withn st. 7p(z) < s+t < Tp1(x).

It will be also useful to consider the suspension flow (®;)¢>g over (M, v, T') with roof function
7 which is defined on Q := {(z,s) € M x [0,+00) : s € [0,7(x))} and preserves the measure p
which is the restriction of the product measure v ® [ to 2. Note that p is a finite measure but
not necessarily a probability measure.

2.2. A general result under spectral assumptions. We start by making some assumptions.
The first assumption is variant of the standard Perron-Frobenious type spectral condition.
(A1) Perron-Frobenius assumption. We say that (A1) holds with positive integers J and

K if there is a Banach space of functions from M to C (denoted by B) such that B < L'(M,v)

and 1y € B. Furthermore, (FPy¢)gc|—nnjdccr 18 a family of linear continuous operators on

B such that there exist constants b € (0,7], C > 0, ¥ € (0,1), 8 > 0 and three functions

A i [=b,b]* — C (assumed to be CK+3-smooth) and TI., R. : [~b,b]**! — L(B,B) (assumed

to be CE*1l_smooth) such that IIp = E,[-]1)/, and 5\9’5 1= g ce (7 satisfies

vk <J, AP =alP), (2.6)

with a positive definite (d + 1) x (d 4+ 1) matrix ¥ and, in £(B, B),
Vs € [<b, 04T, P, =M\, + R,, I R, =R, =0, II?=II,, (2.7)
D R g WElean SO

Our next assumption helps control the Fourier transform for large values of &.
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(A2) Weak non-lattice property. We say that f,g : Q — C and the Banach space B
satisfy (A2) if there exist two families (f¢),cza and (ge)seza of functions defined on M xR — C

and vanishing outside Qo :=QU (M X [—’nfT 0]) such that

10 °
Vhe{f.g} V(z.ls)€Q, hx,l,s)=h(x,s)+ hppue) (T, s — 7(x)). (2.9)
and
, [SHP y 1Pl e,y < ClE|% —nalelme (2.10)
e|—m,m

for some suitable positive C,d and «, and

>0, Y (e =)ls 130 &)l ) = O™ (2.11)
L0 €7
The last and most technical assumption is about regularity of observables: smoothness and
quick decay at infinity. This assumption allows for a wide extension of compactly supported C*
test functions. _
(A3) Regularity of the observables. We say that f,g:  — C and the Banach spaces B,
B satisfy (A3) if (2.9) holds and one of the families (f¢)scz¢ and (g¢)seza is made of functions
continuous in the last variable. Furthermore, the following estimates hold true: []

/ ST 1) (1ol + lge ) ) du < 0o, (2.12)
€74
1 1
Ipo,qo € [L,400] st. —+ — =1 and > [|fellzroen llgell Lo wen < 00, (2.13)
po o 0,0 ezd
sp 37 1ol =) 8lde (- )l < oo (2.14)
SR p ez

Given two positive integers J and p, we write

i = > , (2.15)

m,r,q,k>0,j>kJ
m+j+r+q—2k=2p

ie. Z means the sum over k =0, ..., [2p/(J —2)], j = kJ, ..., 2k + 2p, and then m,r,q > 0 such

P
that m+r+q=2p+ 2k —j.
Theorem 2.1. Let K and J be two positive integers such that 3 < J §~K + 3. Assume (A1),
(A2) and (A3) hold with Banach spaces B, B and some functions f,g:Q — C. Then
LEJ _4_p
~ t 2 K+d
DS e 21
Gt =3 Clra) (i) T ot (2.16)

p=0

x

as t — +oo where

1
Z'/ m+j+rk m+]+d+r+1 S\/ v 1 qu (2.17)
p

r'm‘ Z/ ger (- H( )(f ( ,u)))) ® (0 —lyu—0)* dudv @ A,

I

IThe notation |G|/ means here |G| g := SUPpes, |F|g=1 [Ev [G-F]l.
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Here, Z is defined by (2.15)), O3hqa  denotes the derivative of order q with respect to the second

P
variable of ha (defined by (2.5)) and A, € S; is given by (A.2) of Appendix for k >0,
AO,(] =1 and Aj70 =0 for 7 > 0.

Corollary 2.2. Under the assumptions of Theorem [2.1 with K =0,

Cilf.9) = méfdﬁ/ﬁgdﬁﬂ(fg) ,

where g is the submatriz of X corresponding to its d first lines and rows. Equivalently

d
~ t2 - - _d
/~f.go<1>tduo—~/~fduo/~gduo+o(t )
Q \/(27r)ddet2d Q Q

where [ig = “) is the measure proportional to [i such that fig(M x {0} x [0,+00)) = 1 and

v(T

~ o Zd . . . . . . . - - p2o<I>t

g = 70 is the variance matriz of the Gaussian distribution limit of ( NG ) (with respect
to any probability measure P absolutely continuous with respect to fig), with py : Q — 72 the
canonical projection.

Proof. We have to prove that

_ 1 N .
Co(f,9) = o (27r)ddetzd/§fd”/§gd“'

We assume p = 0. Then the sum Z contains a single term corresponding tom =j=r =¢q =

P
k = 0. Thus, using the fact that Ago = 1 and that IIy = v(-)1p, the second part of the right
hand side of (2.17)) is then simply

> [ vaetoplfio) dudo = [ i [ gdi

o0 Q Q

whereas the first part of the right hand side of (2.17) is

1

1
h_dlS\/VT,ldSZ/\IfO,SI/T ds:/\I/O,s'ds': ,
/R o2 (svr(r) 1) R (0, (7)) v(r) Jr (0,%) V(1) (E D141 (2r)ddet
due to (2.5) and to (2.3). We conclude by noticing that (X71) 441 441 det ¥ = det Zy.

The fact that our assumptions imply that both (k,/v/n), and ((7, — nv(7))/+/n), satisfy a
central limit theorem with respective variances ¥4 and X, is well known (see for example |26]).
We can thus deduce using e.g. [39, Theorem 1.1] (or, alternatively, using a functional central limit

theorem) the convergence in distribution (with respect to v ® dg ® [) of (p 2\0/(?’5> to a centered

Gaussian random variable with variance $4. The fact that the convergence in distribution is
valid for any probability measure absolutely continuous with respect to fi comes then from [47,
Theorem 1]. O

Proof of Theorem[2.1. Step 1: Fourier transform.
Notice that

ZZ/ (2,5) g (T2, 5 + £ — 70(2)) L, ey dv® D(z,5),  (2.18)

00 n>0 M xR



CORRELATION FUNCTIONS FOR Z¢ COVERS OF HYPERBOLIC FLOWS 7

due to the dominated convergence theorem, (2.13)), and the fact that the sum over n is compactly
supported, as explained below. Indeed gy (T"z, s + t — 7,(x)) # 0 implies that

inf inf
mlOT <s+t—mp(x) < 7(T"2), ie. 7(x)— HiOT

and so the sum over n in (2.18) is in fact is supported in {¢t_,¢_ +1,...,t4}, where
= [t/supT] —2, ty=|t/inf7T]+2.

inf
—5 <t < Tpyi(x)—s with —% <s < 7(x)

Note that
1 —i0-('—0) i 0-kn
Lk, ()=0—0y = (2n)d /[_7r i e 00 g . (2.19)

Moreover, for every € M and every positive integer n,
heer zn(-) /fel“sgé'(T%S+)d

is the convolution of f(x,—-) with gy (T™z,-). Due to -, for v-a.e. x and any choice of
0,0, n, this hy gy 5, (-) well defined. Furthermore, it is continuous (since fy(z,-) or gy (T"x,-) is
continuous) with compact support and its Fourier transform is
fo(@, =)go (T"x,-) € L®(R) N L(R).
Consequently, hy ;. is equal to its inverse Fourier transform, that is
1

pr / e R fy(, —€)go (T"x, €) dE .
T JR

Combining this with (2.18) and with (2.19)), we obtain

h[,é’,x,n(t — Tn(.fv)) ==

Ct(f,g) (2.20)
277 d+1 Z Z/ (/ z&tfe( f) e—w.(f’ Z) 10-kin () z{fn(:r:)ge, ( nx,ﬁ) d@d{) dl/(ac)
L0 n>0 ]
—i&t —i0-(¢'—¢) pn o (- 9 .
d+l %’:nzt: / </[ 7'r7r]d><R P <f€( §)> ge ( ’5) d d§> dv (2 21)

where we used the fact that P"(e?"n+imn ) = Py F. We split (2m)1Cy(f, 9) = I1 + I where
I, stands the contribution of £ € [—b, b] and I stands the contribution of €| > b.
Step 2: Reduction to the integration over a compact domain.

Here we prove that |I3] = o (t‘L) Observe that

ey y [

00 n—t_ m,m]% X ([—o00,—b]U[b,00])

[ B3 (7. =©)) (- €) | avava

<O L SR (G 0) | e (8 L | .

nEt t+] 0,0

Now due to , we have
lzct [ [ et S =) e €l dede.
[—m,m]? Jb<|g] Z H HB

00
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We apply (2.11) to see that for any v > 0 there is C’,’y’ , CY > 0 such that

Bl <Ol [ g < O [ e g
<

Choosing v large, we get |I2| = o <t ) In the remaining part of the proof, we compute ;.

Step 3: Expansion of the leading eigenvalue and eigenprojector.

First, we use , and to write
Ci(f.9) ~ dﬂ ZZ / €O v (o (fu—9) g (,€)) d(6,),

o0 b ”]d“

where ~ means that the difference between the LHS and the RHS is o (t_¥>.
Now the change of variables (0,&) — (0,£)/+/n gives

e
Ci(f,9) = 2ﬂd+1zzn AYND

Ly n

where

o —¢ R
Iﬁ,ﬁ’,n :/ e \Fte—w Vn \" (H - (f - § > be (’f)) 40 de |
( ) [—by/m,by/n)d+1 (0.6)/v/n” \ 1H0.6)/vn o \/~) 1 NG

K+d

Next with an error o (t‘T), we can replace Z(¢,¢',n) in the last sum by

K+1
—i0- é R 6 R g (97£)®m
/[_bffﬂf:le vr 95/\r2 ( <fe ('7—\/ﬁ>)gz' (’ﬁ)) *Tdedg.

(2.22)
Indeed, for every u € R4*!, there exist w € [0, 1] and z, = wu such that
N (m) @m 1 (K+1) uSE+D)
I, (-) = ZQHO (:) % u +7(K+1)!qu (-) * .
m=0

Denote

HK+1 H8K+1)H ’3‘K+1ds.

E, = /
[fb\/ﬁ,bmd“ Fal

Then lim F, =0 by the Lebesgue dominated convergence theorem. Therefore

n—r—+oo
t4
. K+d _ar1 E,
lim ¢ 2 E n- 2 —75 =0,
t—+o00 ol n-2

justifying the replacement of II by its jet.
Recalling elementary identities a?/ N and a,/a, I3 = gy /3 Lemma gives

R L[(K+1)/(J-2)] K+1+2k ‘ .
" m G Z ST wF A (/v | <aysn L s S0n(s/v)
i=kJ

with lim7(¢t) = 0 and sup |n| < co. Let
t—0 [—bJ)}d

B, = ayya(L+ [s0)n(s/ /) ds

/[—b\/ﬁvb\/ﬂc” !
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Since the Lebesgue dominated convergence theorem gives lim E! = 0, the same argument as
n—oo

above shows that the error term arising from replacing in ([2.22)) 5\;‘/ N by the above sum is

negligible. Since ;\95 =N\ ge_if”(T), we conclude

Ci(f,9) (27) d+1 ZZ”_%

Ll n

_et—nu(T) —if Yy
e Ve T agg

)

/ b\/ﬁ,b\/rﬂd+1
[(K4+1)/(J—-2)] (K+1)+2k

B o () (- (R )

m=0 n2 k=0 j=kJ n

\ 3

[N

Step 4. Integrating by parts. ' '
Note that VA € S;,VB € S,, and s € CTL, (B s%™)(A % s%7) = (A® B) * s®m+7). We
claim that

1 —igt= nV(T) —1 4,;4 ~ m R
| () (1 (1)) 40)

[—bv/m,by/n]dH1
« (0,6 dgde

i iy (U =0 t—nv(T)+u—wv m
i /R2 ol +J)( N (\T/)ﬁ >*u(H(() )(fé(.vu))gé,(.’v)®j4j7k) dudv

+o<p sup |7 9), 10 M) (2:23)

where ¥ is defined by (2.3) and p < 1. Note that the integration in the second line of (2.23)) is
over a compact set since f; and gy vanish outside of a compact set.
To prove , we first note that, due to (2.14)) by making an exponentially small error we

can replace the mtegratlon in the first hne to Rd+1 Second, we observe that H fg m where

fmi = 0 fg and that h(¢/\/n) = (\fh(f))( ). Third, since a is the Fourier transform of
W, it follows that

82d+1 k)
v
@) - G

Fourth, we use the inversion formula for the Fourier transform. To take the inverse Fourier
transform with respect to & we note that we have a triple product, which is a Fourier transform
of the triple convolution of the form

- Ny
it /R2 g (mtd) < NCh %(T) —t; — t2> # frm 0 (-, —v/nit1) g (-, V/ribg ) dty dts.

Making the change of variables u = —y/nt;, v = y/nty we obtain ([2.23)).
Formula (2.23)) implies that

K+1 [(K+1)/(J-2)] K+1+2k st

~> Z PO D B S e (2.24)

j=ks " e Th

@ (m+d) <£’\/—ﬁ€7 t— nl/(\T/)ﬁ—i— u— v> . (H(()m)(fz(w u))ge (-, v) ® Aj,k) dudv

Step 5: Simplifying the argument of W.

0,8) — (— )Z;j ki gkt .Hsdﬁkd“a(g@ is the Fourier transform of s —

/ inf 7

oo sup 7)?
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Note that there exist ao, ag, ¢m+j,Cp,; > 0 such that, for every ¢',£ € 72 and every u,v €
(_infT
10 °

supT),

m+j - t_nV(T)+u_U — 20 (' =)+ (t—nv(T)+u—v)? _a% —nv(T))?
o +y><\/ﬁ, - ><Cm+je S S P R

Combining this estimate with

Ly ol ) t+ al) (V(T))2 00 ap(v(r)s)?
S R ? <93 T E " < / e ds=O(WD).  (2.26)
n=0 0

(2.25)

n=t_
Lemma (with a = 0), we obtain that
L+
 mejtd+1-2k N0 =0 t—nv(T)+u—v _m4jtd—2k
sup n 2 g () ( , )‘ =0t 2 ) .
u,ve(— infr ,Sup T) n:Zt \/ﬁ \/ﬁ (

10

Therefore, the terms of corresponding to (m, k, j) with m+ j — 2k > K are in o (t_ Kiﬂ)
and so the third summation in can be replaced by ZJK: ;’}LH’“. The constraint K —m+2k >
kJ implies that we can replace the second summation in by > ,E,I:((/)(JQ)J.

Next let p = K —m — j + 2k. We claim that we can replace W(m+J) (%, %) in
by

SN t—nv(r)
3oL gomssen (07 W) (0= 0w — )"
—0 ’r" n2 \/ﬁ

Indeed by Taylor’s theorem, we just need to verify that for

t+

/ NP — 0w — )P _metjtdil-2ktp
Jim 5 > 'Y [ 1t lslget ol € - ) PR (2.27)
; 0—0 t— — A t—
sup p (m+3i+p) (m : nv(7) 4+ z(u U)) _ y(m+i+p) (0’ TW(T))‘ dudv
z€(0,1) vn Vn NG
0.
By (2:25) and (2.26)
t+
Z n_w sup \Il(m+j+17) <x£’_€7t—nl/(7‘)+x(u—v))'
n=t_ z€(0,1) \/ﬁ \/ﬁ
t4 N o e
n=t_

uniformly in ¢,¢ € Z% and u,v € (—1 10 TosupT). T hlS combmed with (2.12)) shows that the LHS
of (2.27)) is dominated by an integrable function, so ([2.27)) follows by the dommated convergence
theorem
Therefore
K41 |K/(J=2)] K—m+2k K—m—j+2k ..\

m v i t—
5 M T T T o (R

0 m=0 k= j=kJ n—t_

/RZ (V (W(-, v) (Hom (fol-, u))) ® (' — £, +u — v)® dudv @ Aj,k)) . (2.28)

Step 6: Summing over n.
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Performing the summation over n and using Lemma, we obtain

K/(J-2) K— 2k K+2k— : +j+d+rt+g—2k
K+1 |K/(J-2)] K—m+2k K—m—j+2k K+2k—m—j—r mﬂ(t/y(T))_%

=22 2 2 X X =

60 m=0 k=0 j=kJ q=0 rimlq! (v(71)) 2

(2.29)

J R T
R I

([ (oot (W) ) 1€ = b= o) dudo s 430

Therefore Cy(f, g) ~ Z;(:o C'p/g(f,g) (ﬁ) * where

p/2 (f,9) Z /33 bk m+]+d+r+1 sv/v(r),1)(—s)%ds (2.30)

> [ v (o) (W00 u)) @ (€ o o)rdudv e Ay )
oo TR

k
rim!

and the first sum is taken over the nonnegative integers m, j, r, ¢, k satisfying m+j+r+q—2k = p.
Applying Lemma with b=m+j+r, wesee that C},, = 0 if p is an odd integer. This
concludes the proof of Theorem O

2.3. A general result for hyperbolic systems. Here we consider extensions of systems with
good spectral properties. To define the setup, let (M, v, T) be an extension, by p : M — A, of
a dynamical system (A, 7, T') with Perron-Frobenius operator P. In the applications considered
in the present article, p is essentially collapsing along stable manifolds.

Similarly to (A1)—(A3), we need to make assumptions to prove the complete asymptotic
expansion in inverse powers of . However this time we need more assumptions. On the one hand
we need that the factor map T satisfies variants of (A1)—(A3) (see assumptions (B3), (B4), (B6))
and on the other hand we need assumptions relating the factor map to the extension (namely,
assumptions (B1), (B2), (B5)). In particular, we will use Banach spaces B,B of observables
defined over A, the phase space of the factor map as before as well as another Banach space
(W, ||-]lv) of functions f : M — C with V — L*°(v). Namely, we make the following assumptions.

(B1)  is independent of the past. There exist a nonnegative integer mg and a v-centered
bounded function & : A — Z% such that K op = k o T™.

(B2) 7 is quasi independent of the past. There exist 8y > 0, a function 7 : A — R and
a function y : M = Rst. 7=7op+x —xoT and for every & € R, we have X € V with
HeigXHV = O (|¢]%0) and (7yn,)%e %m0 € B for every ¢ < L = K + 3.

Our next assumption is a variant of (Al).

(B3) Perron-Frobenius assumption of the factor map. We say that (B3) holds with
positive integers J and K and for the Banach space B of complex functions f : A — C with
B — LY(A,7) and 14 € B if the following is true with the notation L = K + 3. The family of
linear continous operators on B, defined by (Pp¢ : f — P(eia'ﬁeigTf))(gyg)e[_mﬂ]de satisfies

sup || Pgell < oo, (2.31)

757”

and there exist constants b € (0,7], C > 0,9 € (0,1), B > 0 and three functions \. : [-b, bt —
Cand I, R. : [~b,b]"*! — £(B, B) (assumed to be C'-smooth) such that Ag ¢ := Mg ce™%¥(7)

Vk<J AP =l (2.32)



12 DMITRY DOLGOPYAT, PETER NANDORI, AND FRANCOISE PENE

where as is given by (2.4) with a sutiable positive definite (d + 1) x (d + 1) matrix 3, \g = 1
and IIp = E;[-]15 and such that, in £(B, B),

Vs € [<b, 04T, P, =M\, + R,, I R, = R, =0, II?=II,, (2.33)
VEeN sup  sup [[(RE)™|ysp + sup 1Pellesp < CO*. (2.34)
m=0,...,L se[—b,b]d+1 O[—m,m|4\[-b,b]4, [€]<b

The next assumption corresponds to (A2) for the factor map.
(B4) Weak non-lattice property of the factor map. We say that the Banach space B
satisfies (B4) if

3C, 4, > 0, sup ||P§f§

e @, < Clgle ™k (2.35)
e|—m,mT

Our next assumption says that observables in V can be well approximated by regular functions
only depending on the past.

(B5) Functions in V are well approximable by liftup of BNB. We say that L, my and
the Banach spaces V, B and B satsify (B5) if there exist Cp > 0 and ¢ € (0,1) and continuous
linear maps II,, : V — BN B, such that, for every f € V and every integer n > mg and for any
6 ¢ [—m, 7% ¢ € R and for any non-negative integer j = 0, ..., L,

If o T" = TLu(f) o plloe < Coll fllv 0", (2.36)

| Ppe(e oo, )| < CoL+ I€DI Iy (2.37)
|sre Pt oy | < o+ €D (2.39)
Ha(j,]g)j(nn(f el nomo e < Con v, (2.39)

with &y, := Y p g ko TF and 7, := Y73 7o TF.

Finally we discuss the regularity of observables. As before, we allow a large class of observ-
ables, going well beyond compactly supported C* functions. N

(B6) Regularity of observables. We say that the observables f, g :  — C, Banach spaces
V,B,B and the constants K, L = K + 3 satsify (B6) if

Vh e {fyg} V(CC,Z, 5) € ﬁv h(liafy S) = hf(x’ 8) + h2+n(m)(Tx’ s = T('T)) ) (240)

where (f¢)seza and (g¢)geza are two families of functions defined on M x R — C and vanishing

outside 2y := QU (M X [—inlfOT,O]). Furthermore, one of these families is made of functions

continuous in the last variable and that there exists Sy such that { — eif'xfe('vf) and £ —
%X gy(-,€) are CF from R to V and for every k =0, ..., L,

O iex O ( iex,
w2 (g (ose0)| + 57 (osea)] )< e
S [ D (Sl + o)) du < oo, (2.42)
P R
vy >0, 3 (I fl =0y e XG0 (. O)lv) = (€. (2.43)
00
> feloe <00 or > lgelloo < 00, (2.44)

ez Lez4
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Theorem 2.3. Assume that (M,v,T) is extension, by p : M — A, of a dynamical system
(A, 0, T) and K, J are two integers such that 3 < J < L = K + 3. Assume furthermore that
(B1)-(B6) hold with some Banach spaces V,B,B, a constant mg and functions f,g : Q@ — C.

Then
[5]

Ci(f,9) = Co(f,9) <t)_g_p+0 (f%) ,

2 V()

vl %

as t — 400, where

~ — 1 1
Co(f, = /aqh . mtjtdrr+1 (S, 1)(—s)? ds 2.45
p(f g) ZP:Q' (V(T))%l . 2 m+j+7«’k_#( )( ) ( )
i B 0 O dudv @ A
*r‘m' Z - m(ff(':u)agf’('7v)) ®( - 7u_v) uUaY @ 7,k

L

Here, Z is defined by (2.15), h is defined in (2.5), A;i for k > 0 are the multilinear forms

P
given by equation (A.2) from Appendi:z: App=1and Ajo=0 forj>0and B, : VXV = S,
are bilinear forms defined in (2.46) below.

To define B,,, we need the following preliminary lemma, the proof of which is given at the end
of this section, after the proof of Theorem

Lemma 2.4. Under the assumptions of Theorem let u,v: M x ([—7, 7% x R) = C be two
functions such that (0,€) — e~®Xu(-,0,&) and (0,&) — e Xv(-,0,€) are L times differentiable
at 0 as functions from [—m, 7] x R to V.
Then, for every integer N =0, ..., L, the quantity

An(u,v) := lim (EV [u(-, ) —g)ew-“mémv(T"(.),e,g)} A;g)

n—-+00

(N)
1(6,£)=0
is well defined and satisfies

AN (u,v)] = O (Jlullw [|v][w) -

Moreover for each L € N we have

el rn+iktn = n (N) -
An(0) = (By [u(, =0, -0 T 0),0.0] 357) =0 (lulbwllolwn ")
with
& (m)
= —Xy(-, 0, .
by o= 32 (7 0.8)), | <22

We let B, to be the restriction of A,, on the space of functions depending on neither 6 nor
&. Thus

: 10K & (Tn () —nu(T n y—n (m)
B (F,G) = HETOO (Eu [F(-)e Otin ()i (T ()= (M) (T (-))} )\975>|(9 o0’ (2.46)

Observe that (2.45) has the same form as (2.17) with v (Gﬂém)(F )) replaced by B, (F,G).
In fact these two quantities coincide under the assumptions of Theorem More precisely,
suppose that (M,v,T) = (A,7,T). Then, for (0,&) € [—b, b]*H!,

lim (B, [P(-)e? O emO-mgr ()| 3gr) = tim (B, [(PieF) 6] Apz)

n—-+o0o n—-+o0o

— lim v (G [HMF + )\;E‘RQEFD = v(GIIy¢(F)).

n—-+00
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In particular, in this case By(F,G) = v(GIIy(F')). A similar argument shows that
Bou(F,G) = v(GIY™(F)),

see the proof of Lemma [2.4] for details.
We also note that due to mixing of 7" we have

Bo(F,G) = v(F)uv(G). (2.47)

Let us mention that B,,(F,G) for m < 3 as well as )\(()k) for k < 4 have been computed in [42]
in the case of the Sinai billiard with finite horizon with k, instead of (ky,7, — nv(7)). The
formulas of [42, Propositions A.3] are also valid by replacing ~ therein by (k,7 — v(7)) since

(k,7) is dynamically Lipschitz. Moreover formulas for )\ék) can be obtained by adapting the
proof of |42, Propositions A.4], up to replace the time-reversibility property of |42, Lemma 4.3]
by the fact that (((x,7 — (7)) o T*); has the same distribution as (((—x,T — (7)) 0 T7F);.

Proof of Theorem[2.3, The proof of Theorem is in many places similar to the proof of The-
orem so below we mostly concentrate on the places requiring significant modifications. We
note that we could have presented Theorem without discussing Theorem first, however,
since the formulas are quite cumbersome in the present setting we prefer to discuss the argument
in the simpler setup of Theorem [2.1]first. The strategy of the proof of Theorem 2 3 can be quickly
summarized as follows. For h € {f, g}, we will approximate the function e=*x(T"( Tkt (),€)
by I, (e~ ©XO by (-, €)), with k; large enough so that this approximation is good (see ([2-36)), but
with k; not too large so that the controls in norm given by (2.38]) and (2.39) are manageable.
Then we will use the argument of the proof of Theorem thanks to the nice properties of the
transfer operator of (A, 7, T).
Decreasing the value of b if necessary, we can assume that

gl gk
Vs € [, 0], 9T < |\ < a5, (2.48)
where ¥ is given by (2.34)). Let &k, := [(L + L%Hd)logt/\ log ¥|].
We consider Fy, Gy : A x Z% x R — C given by
VeeZIVEER,  Fi(-£,€) =TIy, (e XU fy(,€)) and Gyl £,€) = Ty, (e XV gy(-, €)) .
As in ([2.20), using (2.42) and (2.44), Ci(f, g) is equal to

d+1 Z Z / (/[ ]d Re_iﬁtff(xg _é-) e—’ie‘(é/_é)ei@#{,n(af)e’ian(Z')gE, (Tnl',&) d@df) dV(.’E) )
—7,m| %X

L0 n=t_

(2.49)
In order to apply the spectral method, as in the proof of Theorem we want to reduce the
integration over M in (2.49)) to integration over A. Namely

E, [ ful, =€) e reitm gy (17, )|
= E, ZgXOTktf (TF (), -¢) ¢i0-RnoT 00 igTnoT op —ibxoT ¥ " 5 (Tkﬁn',g)}
— E, zonTktf (Tkt( D), _g)efie.ﬁkt,moop—i&r?ktop i0-Fnop Gi&Tnop

ei@.kkt_mo oT"op—l—iE.ﬂctoT"ope—ifxoTkt+"g€l (Tkt-ﬁ-n.’ é—):| (250)

— Ef/ Ft('y E, —g)eiia'kkt*moiig‘ﬂ“t eie-ﬁneif?»ﬂ

ew"_‘kt—MOOTn‘H‘E'%ktOTnGt (Tn()a £/7 5)} +0 (ﬂktd&g/ (5)) ’
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with dye () = ([leXfo(, =€) [ lle” X (-, €)l|v ) where we used

e the T-invariance of v and the definitions of £ and 7 in the first equation, B
e the identities &, o TF~™0 = g, — Kly—mo + Kky—mo © 1™ and 7, o Tk =7, — Th, + Tk, 0T
in the second one,

e (2.36) and V < L*°(v) in the last one.
Now using the properties of Perron-Frobenius operator given by ([2.1)) and (2.2) we obtain

E, [ ful, =€) e reitm gy (17|
= By [Bfe(Fyo( £, =€) Gro(,,€)] + 0 (9 (©)) | (2.51)
where
gz, 0, &) := Fy(x, ¢, —f)e_ie’%’“t—mo (@) g =Tk, ()
Gro(z,0,€) = Gt(x 0, €)eFri—mo (@) 187k, (@),
Due to (2.41)) and (2.43), substituting (2.51) into (2.49) yields

Ci(fr9) = d+1 > Z/ )

00 n=t_ 7r71']d><R

E, [Pn 2k, (P%t ) f))Gtg( §)Dd9d§+0(q9kt). (2.52)

Note that ([2.52) is the analogue of (2.21)) (with (M, v), P, fo(-, =€) and go (-, €) being replaced
by (Av ]7)7 pén_Zkta p;ktpt,—e('a ¢, _g) and Gt,@('a Ela 5)7 respectlvely).

Due to (2.37) and (2.38)

1P Fy (6, —E) I8 + | Pre Frmo (-, £, =)llB < 2C0(1 + €)X fol-, =€) [lv-

Next, we estimate

1Geo( 6l < [1Gro(- €, €)oo
le™ X0 g (-, €)lloc + lle™ X" g (T7(),€) = Ty, (¢ XV g (-, )) 0 pl
1+ Co)lle™™ X gy (-, &)l

where we used the fact that L is continuously embedded into B’ in the first line, the definition
of G; and the triangle inequality in the second one and (2.36) and V < L*(v) in the third one.

Therefore, due to (2.43)),
¥y >0, > BB E (6, ~)llslIGro(-, €. 6)ll = OEIT).

INAYA

N

IA A

Hence, proceeding as in Step 2 of the proof of Theorem we obtain that

Ci(f.g9) =~ d+1 > Z/ ikt —if-('~0)

00 n=t_ 7 [=bbldt
E, [P" 2kt (PQkth o0, g)) G- 5)} dfde . (2.53)
Using (2.51)) again we obtain

Ci(f,g9) = d+1 > Z / it —if-(¢'~0)

o0 n=t_ J[=bb4t

E, [ﬁ(-, —€) gy (T, €)] db (2.54)
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Moreover, for every (6,£) € [—b,b]*t! and every integer n satisfying t_ < n < t,, using Taylor
expansion, the following holds true

E, [fe(-, —¢) e e, (Tn.@)} Mg

(N)

x (0, oN
[(6,£)=0 (6,¢)

(L)

1(6,6)1" |. (2.55)
1(67.€")
Let us study the derivatives involved in this formula. First, since Il, is linear and continuous,
for every m =0, ..., L, we have

—i€X T, _ —iEX T,
(1 (= 0hu0.90)) " = ((5ha0.9) ") (2.56)
Using (2.56)) and (2.50) we obtain the following analogue of (2.51),

(B [~ (1, 352) | =

_ Lleél( el =€) eP5n gy (T7,6)] Mg
N=0

E, [ ful, =€) e ei€m g (17, €))|
+0 sup

we0,1],(6" ' )=(ub,ug) Ao

(o [Bre™ (PRY (Fio(0.-9)) Gual 0.0 352) . +0 (% nbd() g]) 257
with Jgg/(f) 1= SUD /=0, L <H59Tm(lgxfz )H H(%m e EXgu (-, H )

Using (2.33)), (2.38), (2-39), we find that the first term of (2.57) is bounded from above by

n— t n _ (L_m)
((Re,g% /o) + Ae,gkt)m’f) 0.)

CAL+le) sup KPdpe(©) ]

m=0,...,

L(B.B)

9m 2k

- B ky
which is in O (kthdg,g/(f) ( o v 5L(d+1)>>. This observation, combined with (2.55), (2.57))

and our choice of k; yields

By [ fu(-, =€) e mgy (17, 6)] 0y (2.58)
B LZ 31 (B [ —g et 0] 357) O« 0,07 +0 (b (010,01

N= )

+OQf gﬁ@g), (2.59)

for (0,¢) € [—b, b7+
Now we apply Lemma to conclude that (2.58)) is equal to

L-1
1 P ~ _ Kotdel _Ltitd | _,
> A (forde ) # (605N +0 (du(€) (n= "5 +nb |0, 01 + M) - 260
N=0"""
Recalling the notation a, := e 27" and Lemma we have
' L(E+1)/(J=2)] K+1+2k
Al = emf”(T)asﬁ Z Z nF Ay * 5% (2.61)

j=kJ
K+
+ 0 (%\/ﬁ/\/i”_T(l +[svalS)n(s) )
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where 1ir% n(s) = 0. Note that the modulus of the dominating term of (2.60) is bounded by
5—

@) (C?g}gl(f)) uniformly in (6,¢) € [~b,b]*"! and that the modulus of A\ in (2.61) is bounded by
Olay /m / v3) (the first one follows from Lemma the second one follows from (2.48))). Thus
multiplying (2.60) and (2.61)) we conclude

E, |fol,—€) ™™gy (17,6)] 202
L—1 [(K+1)/(J-2)] K+1+2k einév(r

= 2 Z > —S‘fn (AN <fg,gg,) ® Aj,k) « s®WV+)
N=0 —

j=kJ
+ (Mm ) (S R S )

+ (Z AN (fogur) 52 awm‘f?a+|sﬁ|f(°>n<s>>

where s = (6,&). This leads to the following error term
@) <dg7gl £) (as\/ﬁ/\/ﬁ (n_K+2d+1 +n5|5]L> +n_L+21+d))
O (e (€)ay ympyan™ 3 (1 + Isv/nl“)n(s)) (2.63)
= 0(de(©) ("5 agmyys (07 E i s+ (1 sy S) n(s))))

Observe that

Lo aura (n 5 b lsl 0 0 sVl n(s)) ds

_dtl

= n 2 as/\/i(

Rd+1

_ K+42+d
_ o ().
Therefore ([241), (2:54) and (2:62), (2:63) imply

L(K+1)/(J-2)] K+1+2k

(f g d+1 Z N! Z Z Z Z Zﬁ’kﬁ]’ <2'64)

j=kJ €0 n=t_

K+d+1

+ni- |8|L + nf%(l + |S|K°)17(s/\/ﬁ)) ds

where
TV = nk/ e—iet=m(r)) =060 (4 (F, 3, & A, 0.¢ Na | dgde .
o o ( N( ¢ @) j,k> (0,€)% JA(0,6)

By changing variables, we see that

jEt=nr(r) . 0-('~0)

A (AN (fe,%) ®Aj,k)*e_ Vi e (6,6 W ag ¢ dod.

0,0 \n

/[—b\/ﬁb\/ﬂf” !

At first sight, this expression looks simpler than (2.23]) since Ay ( fg, gg,) does not depend on &

and so no convolution is involved when taking the inverse Fourier transform. Namely we obtain

Nk.j a1, — BEENEI=2k N (N U —10 t—nv(r) A
Tyl ~ (2m) ™ P iNFIg(N+I) < NN * (AN (fe,ge') ®Aj,k>> (2.65)
where Z ~ 7' means that (2.64) holds for Z and Z' at the same time (i.e. the difference obtained
when substituting Z and Z' to (2.64)) is in o (t_%) ). Now recall the definition By from ([2.46]).
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Note that the difference between Ay and By is that the latter one is defined for function that
do not depend on £. Thus
. N! . R
Ay (foae) = X gt (U B (L) GLLaEy). (266
mi1+mo+msz=

Note that
(b @ LN = [ )™ o)™ f a6 u)gly, ) dude
Hence is equal to
> N!/RQ(O,—W)Wl @ (0,0)%™ @ By, (f(-,4,u), g(-, £, v)) dudv.

| | |
mi1+ma+mz=N 12T

Now using the binomial theorem, we find that (2.66) is equal to

N
mzzj() TI?J(]\A;VLTI’L)' /RQ (O’i(v - u))@]\/—m ® B, (f(aga u)ag('7€7v)) dudv.

Substituting this into and using (2 and the identity (—1)N—mN+N=" —im we find
L=1 [(K+1)/(J=2)] K+1+2k

. d14N4j—2k
TE SR SIS D 9 3D SFRETEES

j=kJ L4 m=0n=t_

g N+9) <€\/_ﬁ£’ t _%(T)> * (/RQ(O,U — )N @ B (£ 4, w), g(-, £, v)) dudv ®Aj7k> )

Now proceeding as in Step 5 of the proof of Theorem [2.1] we get
L—1 [(K+1)/(J=2)] K+1+2k N K—-N—j+2k ty

NZOZ )IDID DD DD

j=kJ 00 m=0 =0 n=t. m{(N —m)lrln

iag)

d+1+N+j+r—2k
2

G NF7+7) <0, H\;f”) w (0 = 0)%r (/RQ (0,1 — )N @ By (F(-, 4, ), g(-, £,v)) dudv ® AM) .

Performing summation over n as in Step 6 of the proof of Theorem (using again Lemma

A.3]), we derive

K |K/(J-2)] K+1+2k N K—-N—j+2k K+2k—N—j—r 1
IED DD DD DD ID DD . v g
N=0 k=0 j=kJ €0 m=0  r=0 q=0
d+N+]+T+q 2k
t/v(T
( / ( Z)( ))q+1 RaghN_kj.kr’k_W(&l)(_s)q ds

«(0 — 0)%" (/R2 (0,u —v)*N"" @ By (f(+ 4,1), (-, £, v)) dudv @ Am) :

We will set R = N —m + r. The binomial theorem tells us that, m, j, k being fixed, for every
R=0,..,K —m — j+ 2k, the following identity holds true

R! ) -
> il 0” ® (0,u — v)ENT = (¢ — 0 —v)®E.
(r,N): N—m+r=R e

‘We conclude that
K |K/(J-2)] K—m+2k K—m—j+2k K+2k—m—j—R

DD IS S M > il ) M

060 m=0 k=0 j=kJ 7=0 R!m!q! (v(7)) =

_ m+j+d+R+q—2k
2
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q ) _ )4
/Ra2hm+j+R’k_ m+]+§l+R+1 (S, 1)( S) dS

i < Bm (fg(',U),gg/(',’U)) ®(£/_f7u—v)®Rdudv®Aj,k> '
RQ
This implies the theorem. O

Proof of Lemma[2.4 Let N € {0,...,L} be fixed. Let us prove that, for every N,
. , ()
= .0 — 10K+ n
(At = (B, [ute =016l (0,0.0] 3 ) 0 )

is a Cauchy sequence. Observe that (2.50)) is valid with k; replaced by any integer k such that
mo < k < n. That is, for such k we have

Anplu,0) = (B [ (T (T (), 0, —€)eT koo B iTior ) 0 nciticron
10— OT M op+i&T0T ™ op  —i&xoT Tk ESLIAW" AT (N)
oo ‘ A ORR] Ry I
Thus, we obtain
AN (u,0) = Ay g <Uk, Vk) ) (2.67)
where
A 10-Fp op+i&Tn 0p n (N)
Ava(U,V) = (E” [U("_a’ —8e VT (), 0 5)} 95)>|(9 =0
Uk(,0,€) = (e~ Xu(-,0,€)) o TF.e!Or-maenor,
and

Vi, 6,€) = (7Y, 6,)) o TH.e T €700
Recall (2.36)) and denote
Ui(-,0,8) := T(e " Xu(-, 0,£)).e@F-mote) and  Vi(-,0,&) := (e X (-, 0, €).' rmo )

Since I}, is linear and continuous and since (0, &) — e~ Xu(-,0,€) is L times differentiable at 0
as a V-valued function, for every m = 0, ..., L, we have

—i€x — —i€x
(Hk (e ul-,8 g))) e =TT ((e ul-,0 5)) 060 ) . (2.68)
Thus
—i&xoT*, Tk () o (m) L 3" 0 m)
(e urt o) - (M ut.o0) os

< Ot (e*iﬁxu( 9 g)) ool < Cod*|[ullw (2.69)

and idem by replacing v by v. Next, observe that
172+ Rl ™o + | (A7) ko] = © (2.70)
Combining ([2.68)), (2.69), and (2.70) we obtain
AN (u,v) = AN (Ug 0 p, Vi 0 p) = An (U, Vie) — Ann(Us 0 p, Vi 0 p) (2.71)

(N)

_ (EU [eie-fenei&n (Uk(.,_9,_5)Vk(Tn(-),9,g)—Uk(p(-),—G,—#E)Vk(p( ())95))] >|<e,£>—o

O (9" ulwlivlw) -
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Let k, := [log?n]. Take n’ € [n,2n]. Using we obtain
| AN (u,v) —Anw (u, U)‘
< )AVN,n(Ukn o, Vi, op) — Anw (U, 0 p, Vi, P)‘ +0 (nNHUHW ||U||w19k”) :

The main term on the RHS equals to

E, [((At”a"—%ﬂ 7B (B (U (1) vknc,t))(fo] en

Since \; P2 = AR TL, 4 AT Rk we can use the definition of B’ to bound (2.72) by

H <()\t_nR?_2k" _ )\t—n/R?/_an) <]5t2kn (Ukzn(', —t))) an('7 t))
< )
L(B,B)

Now observe that the max over my is bounded by O(¥"/?) by (2.34) and the other terms cannot
grow faster than a polynomial in n. In particular, we use (2.38]) to bound the max over ms and

(2.39) to bound the max over m4. We conclude that (2.72) is exponentially small.
Therefore, for each L € N we have

(™)

=0llw)

g 3

max (/\t_”/)(ml)< max H(RZ‘_zkn)(mQ) 1t=0

[t=0 \ 1<mo<N

|t=0

sSON +
n’€[n,2n],1<m; <N L(B,B) 1<mg

max (Pfkn e —t)))

1<m3<N

(m3)
3 Vi, (-, t)(m4)

X max 0
1<ma<N |t=

t=0 || 5 5

sup [An (4, v) = Avpia(u,0)] < Y7 sup [ Angen(u,v) — Avornia(u, v)]
n>0 p>0 n=0,...,2Pn

< | D_@n) Fllullw [l

p=>0

O (Ifulhw el =) -

Hence Ay (u,v) is well defined and satisfies

A, 0) = A (u,0)] = O (Jlulbw [olw ") . O

3. MIXING EXPANSION FOR THE SINAI BILLIARD FLOW

3.1. Sinai billiards. In the plane R?, we consider a Z2-periodic locally finite family of scatterers
{0;+0; i=1,...1, L € Z*}. We assume that the sets O; + £ are disjoint, open, strictly convex
and their boundaries are C® smooth with strictly positive curvature.

The dynamics of the Lorentz gas can be described as follows. A point particle of unit speed
is flying freely in the interior of @ = R?\ Uy; (O; + ¢) and undergoes elastic collisions on Q
(that is, the angle of reflection equals the angle of incidence). Throughout this paper we assume
the so-called finite horizon condition, i.e. that the free flight is bounded. The same dynamics
on the compact domain is called Sinai billiard. The position of the particle is a point ¢ € o
and its velocity is a vector v € S! (as the speed is identically 1). Since collisions happen
instantaneously, the pre-collisional and post-collisional data are identified. By convention, we
use the post-collisional data, i.e. whenever ¢ € OQ, we assume that v satisfies 7,.v > 0, where
. stands for the scalar product and 7, is the unit vector normal to 8Q directed inward Q
The phase space, that is, the set of all possible positions and velocities, will be denoted by
Q=09 xS

The billiard flow is denoted by &, :Q — Q, where t € R. Let o be the Lebesgue measure
on € normalized so that fig((Q N[0,1]?) x S') =1.
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The Sinai billiard is defined analogously on a compact domain. That is, we consider disjoint
strictly convex open subsets O; C T2 (corresponding to the canonical projection of O;), i =
1,...,1, whose boundaries are C? smooth with strictly positive curvature. Then we put Q =
T2\ U;0;. We define the billiard dynamics (€2, ®;, o) exactly as (Q, ®;, fig) except that we use
the billiard table Q instead of Q and Lo is a probability measure.

Next, we represent the flow ®; as a suspension over a map. This map is called the billiard
ball map: the Poincaré section of ®; corresponding to the collisions. That is, we define

M ={(q,v) e Q:qec 09} ={(q,v) € Q:qe0Q,iigv>0}.

T : M — M is defined by T'(x) = ®,(x), where 7 = 7(z) is the smallest positive number such
that ®,(x) € M. The projection of pg to the Poincaré section is denoted by v. In fact, v has
the density cii,.vdgdv, where ¢ = 2|0Q]| is a normalizing constant such that v is a probability
measure. Clearly, we can write

Q={(z,t),xe M, t€[0,7(x))}.
1
v(T)
Note that the measure g is a probability measure unlike i defined in Section

Finally, we define the measure preserving dynamical system (M T, U) analogously to the
Lorentz gas. For every { € 72, we define the f-cell Cy as the set of the points with last reflection
off Q took place in the set Ule(Oi +¢). Identifying T? with the unit square [0, 1) C R?, we see
that (M, T, ) is the Z*-extension of (M, T,v) by k : M — 72, where k(z) = £ if T(x) € C,.

The observable (k,7) : M — Z? x R satisfies the central limit theorem (see e.g. [10]). That
is, there exists a 3 x 3 positive definite matrix 3, - so that for any A C R? whose boundary has
zero Lebesgue measure

v <a; eM: (R"’T”\/_ﬁm(ﬂ) € A> = /A\I/gm

where ¥ is the Gaussian density defined by . Consequently, the central limit theorem holds
for the observable k with a covariance matrix ¥, which is obtained from ¥, » by deleting the
last row and the last column.

Denote

With this notation, we have pg = v ® I, where [ is the Lebesgue measure on [0, +00).

_ 1h(y) — b(2)|
10ll32 = ;telg 1b(y)| + y’zesgpy# T

We will say that a function b : Q@ — R is smooth in the flow direction if
oN ~
veo Y2 (5o
el Zz:HasN ho®) s

Note that in order for (3.1)) to hold, it is sufficient that b is C'™° in the position ¢ € é and

< 00. (3.1)
He,

satisfies
8N
\V/N>0, ZH@Q‘N[}‘ ) <OO,
14 Cp

We say that h : @ — R is n-Hélder continuous if it is n-Holder continuous on Q x S* and
satisfies (3.2) with N = 0.

Now we are ready to formulate the main result of this section.
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Theorem 3.1. Let f,g: Q — R be two n-Holder continuous functions with at least one of them
smooth in the flow direction. Assume moreover that there exists an integer Ko > 1 such that

S (415 (Ully, + sl ) < oo (33)
l

Then there are real numbers €y(f,8), €1(f,9), ..., €k, (f, 8) so that we have

Ko
[ fao B = 3 et ol ), (3.4)
k=0

as t — 4o00. Furthermore, €o(f,g) = o [g fdfto [ 9dfto with

)
0 2my/det X

and the coefficients €, as functionals over pairs of admissible functions, are bilinear.

(3.5)

We note that the bilinear forms €, are linearly independent. Namely in Appendix [B] we give
examples of functions fy, g, such that €4 (fx, gx) # 0 while €;(fx, gx) = 0 for all j < k.

In the remaining part of Section [3] we derive Theorem from Theorem We will not
be applying Theorem directly to (M,v,T), but instead we apply it to the Young tower
extension of the Sinai billiard. Thus we first briefly review the Young tower construction in
Section Then we prove condition (B4) in Section along the lines of [12]. We complete
the proof of Theorem in Section and finally s established in Section

3.2. Young towers. Let R C M be the hyperbolic product set constructed in [46] Section 8].
Furthermore, let (A, F') be the corresponding Young tower (”Markov extension”). There is a
natural bijection ¢ between Ay, the base of the tower and R. We will denote points of R by
x = (v*,~v*), which is to be interpreted as v* N ~*, where 4" = ~%(x) and 7* = ~*(x) are an
unstable and a stable manifold containing x. Points of Ay will be denoted by & = (%,4°). Note
that ¢ can be extended to 7, a mapping from A to M (this map is in general not one-to-one).
We recall the most important ingredients of the construction of |[46]. The base of the tower
has the product structure X = Ag = I'* x I'S. The sets of the form A x I', A C I'* are called
u-sets if «(A C T'*) is compact. Similarly, sets of the form I'* x B, B C I'* are called s-sets if
t(B C T'%) is compact. Also, sets of the form I'* x {4°} are called stable manifolds and sets of the
form {4%} x I'* are unstable manifolds as they are images of (un)stable manifolds (or rather, the

intersections of (un)stable manifolds and R) by the map :~!. Ag has a partition Ay = U Aok,

k€Z+
where Agj = I'" x I'} are s-sets. The return time to the base on the set Ay, is identically ry,
T‘k—l
that is A = U U Ay, where Ay = {(2,0) : £ € Agx}. There is an F-invariant measure v
keZ 1=0

on A so that m,v = p and F is an isomorphism between A;, and Ay 5 and F(z,1) = (2,1+1)
if | <rp—1. Also F is an isomorphism between A,, 1 and F(A,, _1 1), the latter being a u-set
of Ag. Furthermore, if 1,22 € Aoy belong to the same (un)stable manifold, so do F"*(&1,0)
and F"*(29,0). We write F = F"™* ! on Ay and 7(3%,4%) = r(§°) = i, for (%,%°) € Ag-
Define = on A by

2((3",4°),1) = (3% 4°),1) with a fixed I* € T'*. (3.6)

Let A = Z(A) and v = E,v. There is a well defined F : A — A such that 2o F = F o E.
The dynamical system (A, 7, F') is an expanding tower in the sense that it satisfies assumptions

(E1)—(E5) below.
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Let (A, 7, F) be a probability preserving dynamical system with a partition (él,k)ke 11=0,. .. rp—1
into positive measure subsets, where I is either finite or countable and ry = r(Aq ) is a positive
integer. We call it an expanding tower if

(E1) for every i € [ and 0 < j < r; — 1, F is a measure preserving isomorphism between A;;
and Aj+1,i~ B B
(E2) for every i € I, F'is an isomorphism between A,,_;; and

X = Ao = U Aoﬂ'.
i€l
(Remark on convention: points of the space X are identified with and sometimes denoted
as stable manifolds.) B o B
(E3) Let r(z) = r(Aog) if € Ay and F : X — X be the first return map to the base,
ie. F(z) = F'®(z). Let s(x,y), the separation time of z,y € X, be defined as the
smallest integer n such that F"x € Ag;, F'y € Ag,; with ¢ # j. As F : Ag; — X is an
isomorphism, it has an inverse. Denote by a the logarithm of the Jacobian of this inverse
(w.r.t. the measure 7). Then there are constants ¥, < 1 and C > 0 such that for every
T,y € A07i7
) ala) — ay)] < OV, ) (37)
(E4) Extend s to A by setting s(z,y) = 0 if 2,y do not belong to the same A;; and s(x,y) =
s(F iz, FIy)+1ifx,y € Aj;. (A, 1, F) is exact (hence ergodic and mixing) with respect
to the metric
dy(z,y) := 95(@Y),
Furthermore, in case of Sinai billiards, we have
(E5) v(x :r(x) >n) < Cp™ with some p < 1.

3.3. Weak non-lattice property for Sinai billiards. In this section we verify condition (B4)
for Sinai billiards. We note that the methods of this section are similar to those used in some
earlier work [12,|13,35]. Those methods are useful for proving that the mixing in some uniformly
and non-uniformly hyperbolic flows are faster than any polynomial. In the context of Sinai
billiard flows, more precise results are available. In particular, [9] proves stretched exponential
bounds for the correlations functions. More recently, [4] showed that the correlations in fact
decay exponentially. To prove this result, [4] uses Banach spaces which are more sophisticated
than the spaces used here. We note that using the spaces from [4] would not improve our
result since the decay of correlations for the infinite measure system is actually polynomial, not
exponential.

Given a function f : M — C, we define f : A — C by f = fox. Now for a function
f:A=C (which may or may not be a lift-up of a function f: M — C), we write X = Ay and
define

f:A_>(C7 .]E(;ys’l):f(juvﬁyil)’
1
fg:X—=C, [x(3) = FEI(3",5°,0))

Fix 5 < 1 and consider the space of dynamically Lipschitz functions on X (w.r.t. the metric
d,.):
C,.(X,C) = {f : X — C bounded and L(f) < oo},
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where )
L(f) = 1nf{C’ : V.T,y c X : |f($) _ f(y)| < C%S(‘T’y)},
The larger s is, the bigger the space C,,(X,C) is. It is best to take s very close to 1 to include

many functions in C,(X,C). For example we assume that > > 9,. More lower bounds on s
will be imposed in (3.49)). The space C,,.(X,C) is equipped with the norm

£l = LCF) + 11 £l oo-

Let @ be the Perron-Frobenius-Ruelle operator associated with F, i.e.

(Qh)(z) = > e*Wh(y)

y:Fy=zx
where e® is the Jacobian defined in (E3). We have for h with ||h]],, < oo
Q"h =v(h)1+ R"h, (3.8)

where ||R"™h||,, < Cp"™||h|,. for some p < 1.
Now we introduce the (signed) temporal distance function D on R by defining
D(z.y) = Y [F(T(1"(2),7°(2))) = 7(T*(v"(2).7*(v))) + (3.9)
f=—00
(T (V" (1), 7 () — T(T (4" (). 7 (2)))],
where 7 is defined in Note that there is a lift-up 7 : A — R, defined by 7(z) = 7(n(2))
and corresponding functions 7x, T, Tx.
We also define the operators '
Qeh = Q(e*7xh). (3.10)

For real valued functions defined on X, we will consider the norms

Jloos MMl I = ma ooy == ¢, 3.11
s B (Mg = max { e, 1 } (3.11)

where £ > 1 and Cj is a constant to be specified later.
Next we define several special points in the rectangle R. Namely, let g € R be defined by
the requirement
NI (20)) € Apy for all k€ Z

and for m € Z4 we define y,,, € R by
U075 (y)) € Age,  forall 1=0,1,2, ...
U TR (y)) € Aoy, forall [=—1,-2, ...

where the sequence (a;); depends on m € Z and is defined by

2ifj=—-lorj=m-—1
a; =
J 1 otherwise.

The points z,y1, Y2, ... exist and are uniquely defined by Axioms (P1) and (P2) of [46] (com-
pactness and Markov intersection). Note that upon each Markov return to A (in both positive
and negative time), x in fact returns to Ag ;. Likewise y,, always returns to Ag; except for
times —1 and m — 1, when it returns to Ag . In fact, the forthcoming proof would work for any
xo and v, as long as they share their symbolic sequence for Markov return times —m!*e, ..., m
except for the times —1 and m — 1 when they differ and their symbolic sequences are bounded.
We chose the symbolic sequence to only contain 1 and 2 for simplicity and prescribed infinite
orbit for the convenience of a unique definition.
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To simplify notation, we write

[21, 22] = (7"(21),7°(22))- (3.12)

Let 9, be the solid rectangle with corners x, [Zo, Ym], Ym, [Um, Tol, i.e. the unique topological
rectangle inside the convex hull of R which is bounded by two stable and unstable manifolds,
such that two of its corners are xg and y,,,. We claim that there are two constants 0 < ca < ¢; < 1
so that

ey < w(Qm) < " (3.13)

for sufficiently large m.

To prove this claim, let Qp; denote the smallest topological rectangle containing ¢(Ag ;) for
i = 1,2. Note that T is a C> map when restricted to the interior of Qo,;- By construction,
TI"9,, is a subset of Qg for j = 0,1,...,m — 2. Now consider a foliation of Q,, by unstable
curves. Each such curve is expanded by a factor A > 1 by the C?>-map T"" and so the upper
bound follows. To prove the lower bound, first observe that v*(y,,) and v*(z¢) are independent
of m (since the past itinerary of y,, does not depend on m) and consequently the stable size of
0, is bounded from below by a positive constant. Next, note that T~ intersects both
Qo,1 and Qo2 and so, as we can assume that the distance between Qg ; and Qg2 is positive, the
length of the image of each unstable curve in our foliation under the map T(™~ Y™ is uniformly
bounded from below. Furthermore, the expansion of T"' on Qg ; is bounded from above (since
T is C? on Q1) and so the lower bound follows as well. Next, Lemma 5.1 of [28] states that

N(Qm) = ‘D(JIO, ym)| (3.14)

(see also [10, §6.11]). Note that D(xg, ) has another representation: it is the unique small
number ¢ so that ®°Y; = Y5, where ® is the billiard flow, Y7, ...,Y5 are points whose last
collisions were at xo, [0, Ym], Ym, [YUm, To], To, respectively and the pairs (Y1, Y2), (Y3, Yy) are on
the same stable manifold of ® while the pairs (Y3, Y3), (Y4, Y5) are on the same unstable manifold
of @ (see Lemma 6.40 in [10]). The following property of the points z¢ and y,, is crucial.

Lemma 3.2. There exist some ag > 0, and ¢ € Ry such that for any € > 3 the unique positive
integer m = m(§) defined by the property

< et <t (3.15)

satisfies
‘eifD(ﬂﬁo,ym) — 1] >, (3.16)

Proof. It is sufficient to prove the lemma for £ large. Indeed, if we can prove the lemma for
& > &, then we can extend it to any £ > 3 by choosing ¢ small enough unless there is some
¢ € [3,&)] so that & D(z,y) = 0 (mod 27) for all z,y. Note that this cannot happen since this
would imply 1&'D(z,y) = 0 (mod 27) where we can choose | € Z so that &' > &.

Now given ¢ large, (3.13) and imply that m satisfies ¢ < |D(zo, ym)| < cf*. Thus

In c.

crea' e < 7 < €D (o, ym)| < 1
proving ([3.16]). O
Recall the definition of Q¢ from (3.10). We have

Lemma 3.3. Suppose that Cy in 1s large enough. Then there are constants ai,Cy,dy so
that for every € > 3,

dy
gor -

o <] o <1~

)@) (3.17)
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Proof. The proof consists of several steps. We will need several large constants Ca, Cs, ...,
b1, bo,... and small constants do,ds,... before being able to define the large constant C7, a
and the small constant d;.

Let h satisfy [|h]|¢) = 1. By [8], there exists a constant C such that for every n,

L(Q¢h) < Cal¢llhllco + 5" L(R)], (3.18)

(see also Proposition 3.7 in [35]). Thus fixing any Cp > 4C> in the definition of the norm ||.[|)
we have that for any C3 > —%

J(Q?m%)g@g+%%m%mﬂgaﬁ+c&H%mﬂga€. (3.19)

In order to prove the lemma, it remains to verify (3.17) for || - ||oc norm.
This proof is divided into three parts:

Step 1. We show that glven constants dy and b; there exist d3 and by so that for any
£=0,1,2,.. HQth]} <1-— 51,2 assuming the following hypothesis:

(H): for any £ > 3 there is some u € X<o := {Z € X : F*(Z) € Ag1 UAgy for all n € N} so
that

|h(u)] <1-— (3.20)

571
Let U be the da& b1~ 1/(200) neighborhood of u (w.r.t the metric d,,) in X. Since L(h) < Cp€,
we have |h(u)] < 1— for any v’ € U. By the bounded distortion property and the fact that

_ 25”1
u € X<g, there are constants d4 and b3 depending only on the billiard table so that
dy _ _

Observing that
|Q¢h| < Q"R (3.22)

holds pointwise (by definition of those operators), and using ||hl|s < 1, we derive that for any ¢

/|Q£hldy</QZ\h|du/\h\dy—/ ]h!du—i—/ |h|dD

do _ do d2d4/2
S(l 25[)) (U)+1—V(U)<1—@(U>§1 ghirbs -
This proves the statement of Step 1 with
ds = d2d4/2 and by = by + b3 (3.23)

where dy4 and b3 come from (3.21).
Step 2. Under hypothesis (H), we show that if Cy is sufficiently large then there is a constant

ds so that

d
Cylng 5
Jagten] <1
For any u € X, we have
Q¢ "4h| (w) <EZ (QO€h]) (w) < 7 (h]) + CE(Co+ 1™, (3:24)

where the last inequality follows from (3.8) and the following computation
IR 14 [Al|oo < |REE IR < Cp“ 14| < Cp& (1 4+ €Co)lIR )

Combining (3.24]) with the result of Step 1 (with ¢ = 0), we conclude

ds/2

L CE(Co+1)pfr e <1 — R

o] <1
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where the last inequality holds if Cy is so big that for all £ > 3,

glHCalnpthr < ds

< G T (3.25)

This completes Step 2.

Step 3. In Step 3, we will show the following: B
(%): there exist constants C4, d2 and by so that for any £ > 3, there is some v € X<y that
either satisfies (3.20)) or satisfies the following:

da

[Q¢h(v)] <1— 2

Before proving (%), we first prove the lemma assuming (x). Namley, we show that if Cy is
large enough, then for all £ > 3,

with n = Cylné. (3.26)

Cs1n
HQ§5 thoo <1- (3.27)

with C5 = 2Cy. Indeed, if there is a v satisfying (3.20)), then the proof in Step 2 applies
with by = by + b3 (see (3.23])). On the other hand, if there is a v satisfying ([3.26]), then since
1Q¢lley < 1, we have [|Q¢hl|) < 1 and so we can apply the results of Step 2 for the function
h replaced by Q¢h. Hence (3.27) holds. The estimate (3.27)) implies the lemma because we can

assume Cs > —(lné;lﬁ, define C; = Cs, a1 = ba, di = ds and combine (3.19)) with (3.27]).
In the remaining part of the proof, we verify (x).

n—1
For a function f: X — R, we write f,(z) = Z f(Fix).
=0

‘7_
Recall that for any fixed &, Lemma [3.2] tells us that zo and y,,, with

m ~ (In(1/c1)) tné (3.28)
(see (3.15)) satisfy (3.16)). Recalling the definition of n from (3.26)), we note that
n/m ~ Cyln(1/cq). (3.29)

Next, we write (7%(2), 3°(2)) = ¢~ (2), (3*(9), 3°(9)) = "), v = FP2(3°(2)), w = F2(3°(y).
We will show that in case no point in X< satisfies (3.20)), then either v or w satisfies (3.26[). This
will complete the proof of Step 3. To this end, assume by contradiction that neither satisfies
(13.26]).

Writing h(z) = 7(Z)e®, we have

(Q?h) (’U) = Z ean(u)+i§(f)?)n(u),r,(u)eid)(u)
uweX :Fru=v
= ean(v',n)+i£(fx)n(v’,n)T(U/_n)ew(v’,n) + ean(v','n)-i-if(_X)n(vﬁn)r(vﬁn)ei ) 4

where

v, = E@THTTR (@), 40 (2)), 07, = 2T (1 () 45 ()
and ... corresponds to all other preimages.
Thus (Q¢h)(v) is expressed as a weighted sum of the unit vectors z, := T +o(w)] ¢ ¢,

with non-negative weights 3, := e®(r(u). Next, we claim that if v violates (3.26)), then any
two unit vectors zy, z,/, with weights B,/, B,» > € necessarily satisfy arg(z,/) — arg(z,) < &,
where

£ = (8dy)/3¢01/3, (3.30)
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To prove this claim, first note that Z e =1 and |r] < 1. Now consider the special
] ) ue X :Fru=v B B
case zy = €12 2y = /% By = By =cand z, = L forallu € U := {u € X\ {v/,u"} : F'u =
v} and ), o, Bu = 1 —2¢. In this case, z, + z,» = 2cos(e/2) and so
[(Q¢h)(v)] = (1 — 2¢) +2ecos(e/2) <1 — e3/8

and so v satisfies (3.26]). In any other case, whenever there is z,, z,» with By, B, > € and
arg(z,/) — arg(z,») > €, we have

<1-—2¢

etarg(—zyr—z,n) [(ﬂu, —&)zy + (Bur — €) 2y + Z ﬁuzu]

uel

and
e 2B m 2w (2 4 2n) < 2cos(e/2).

Thus [(Q¢h)(v)| cannot be bigger than in the above special case. This proves the claim.

If r(v',) < 1/2 or r(v”,) < 1/2, then one of these points satisfies and so the proof of
Step 3 is complete.

Next consider the case when 7(v’,) > 1/2 and r(v”,,) > 1/2. Recall that v ,,v", € X<o.
Since « is a Holder function (recall ), it is bounded from below on the compact set X<o
and so e® is bounded from below by some 7 > 0 on the set X<o. Consequently,

17

min (€a7L(ULn), ean(vfn)) Z 7771 — 604 Inn

where the last step relies on (3.26)). Hence

B(ul,), Bv2,) > 5472, (3.31)
Next, we need to guarantee that
1
5‘&-6'411177 > (8d2)1/3£_b1/3. (332)
We now select .
dy = 61 (3.33)
so that (8dy)/3 = 3. We will also assume that by = by (Cy) satisfies
by = —3C4lnn (3.34)

(the precise conditions Cy will become clear at the end of Step 3). (3.33) and (3.34) ensure that
(3.32) holds.
Now ([3.31)) and (3.32)) imply that S(v",,), B(v”,,) > . Recall that we assumed by contradic-
tion that v does not satisfy (3.26[). Then our earlier claim implies that
[E(T)n(vy) = €T )n(vln)] = [P(v,,) — d(02,)]] < e

Repeating the above argument for w, and writing

w', = Z T () A0 (y))), w, = 2T (N (@), 7 (1))
we find

16(T)n(w’y,) = E(Tg)n(w”,)] = [B(w!,) = d(w?,)]| <e.

/ "

By construction, s(v’,,,w”,) > n/2 and so further increasing Cj if necessary, we can guarantee

Similarly, we can assume |¢(v”,) — ¢(w'_,,)| < e. Hence, denoting dg = 4(8ds)"/3,

by =b1/3+1 (3.35)



CORRELATION FUNCTIONS FOR Z¢ COVERS OF HYPERBOLIC FLOWS 29

and recalling , we obtain
|A| < de = dg /€™, (3.36)
where
A= (Tg)n(vly) = (Tx)n(00,) + (T )n(wl,) — (Tx)n(w’,)- (3.37)
The inequality is a major step in deriving a contradiction with . As we will see, A
is a good approximation of the finite chunk of the sum defining the temporal distance of xg and

Ym (cf. (3.9)) corresponding to times ¢ with [¢| < n. We need to verify that the remaining part
of the sum satisfies an inequlaity similar to (3.36)).

Recall (3.6) and (3.9). Using the notations z = (v%(2),7%(2)) € R, 2 = ¢~ 1(2) = (4(2),5%(2))
and

H(z) = i[T(TZ(ZD — (T3, 7*(2)))], (3.38)
observe that -
x(74(2),4°(2)) = T2 (3°(2)) = H(y*(2),7°(2)) = HT"T D (3%(2),7°(2))) - (3.39)
Recalling the notation (3.12), let us write
dpj(z1,22) = f(T([z21, 21]) = (T ([21, 22))) = F(T*([22, 21])) + f(T“([22, 22])). (3.40)

Recall the dynamical Holder continuity of 7: there are some constant Cr and ¥+ < 1 so that
if 21,29 € M are such that T%(z;) and T(z1) stay on the same local unstable manifold for all
¢ < L, then

|T(21) — T(22)| < COL. (3.41)
Likewise, if T%(21) and T*(z;) stay on the same local stable manifold for all £ > —L, then
|T(21) — T(22)] < CrOE.

With the above notation, we have

D(x0,ym) = Y, der(0,ym)-
f=—00
The sum is absolutely convergent as both |f(T*(z1) — f(T*([21,22]))| and | — f(T*([22, 21])) +
f(T*(,22))| are exponentially small in |¢| for £ < 0 and both |f(T*(21) — f(T*([22,21]))| and
| — f(T%([21, 22])) + f(T*(22))| are exponentially small in ¢ for £ > 0. We will decompose the
above series as

> dpr (20, Ym) = S1+ Sz + s, (3.42)

{=—00

where S3 = Z de +(z0,ym) and

l=ri(n/2—-1)+1
—rin/2—1
Si= Y 7(Tx0)) — (T ([0, ym]))
{=—0c0
—ri(n/2—1)—ra—1
+ > ~7(T([ym, z0))) + 7(T" (ym)).
{=—00
ri(n/2—1) ri(n/2—1)

So= Y  T(Two)— Y 7(T([xo,ym]))

b=—rin/2 l=—rin/2
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ri(n/2—1) r1(n/2—1)
- Yo (@ ([Ymo o)) + Yo (T (ym))-
l=—r1(n/2-=1)—r2 b=—r1(n/2—1)—7r2

Directly checking all four choices of z,w € {x,ym}, we see that the sum S; + Sy contains the
term (—1)'=#wr(T([z,w])) for every £ < ri(n/2 — 1) exactly once. Since Ss is a finite sum, and
since by our previous observation both series in S; converge absolutely, holds.

Let us study S. First, we have by the definition of g that ¢~ (T"*(zq)) € Ag 1 for all k € Z.
Consequently,

r1(n/2-1) n/2—1
Yo T(@xo) = Y Ax (T (@)
l=—rin/2 k=—n/2

Next, recalling that Z(.~H(T~""/%(z9))) = v'_,,, we have Z(:~1(T"*(x))) = FFtn/2y , for

k=-n/2,..,n/2 —1. Now applying (3.39), we conclude

ri(n/2-1) n/2—1
o T(Tw0)) = (F)all) + Y [H(T”k(xo)) — H(T"" D (x0))
l=—r1in/2 k=—n/2

= (F)n(Vly) + H(T "2 (x0)) — H(T™"(xp))
Arguing similarly with the other three sums in Sy, we find
Sy = A+ do, (T~ (xo), T~ 2077 (y,0)) — do (T2 (o), T 2472 (y)), (3.43)
where A is defined by , do, i is defined by with £ =0 and H as in .

Next we claim that if n > 4m (which can be achieved by increasing Cy) then

|S1] + |82 — A| + [S3] < dr&™", (3.44)
where . 1
=4C,——, by = nCilnv,. 4
d7 C-,-1 — ’ﬁ‘,-’ b5 47‘104 Il’L9‘,- (3 5)
To prove (3.44)), we first use the dynamical Holder property of 7 to conculde that both series

whose sum defines S are absolutely convergent and in absolute value bounded by C.,-ﬁﬁ?n/ 2,

Thus by the definition of n (see (3.26)) and bs (see (3.45)), we have |S;| < d7&~% /2.
Estimating Ss is simpler: since n/2 > m it follows that all of the points

Té(.%'g), TZ([l'O? ymD? Tg(ym% Tz([yﬂ% .%'0])

lie on the same local stable manifold for ¢ > n/2. Since n/4 > m, the dynamical Holder
continuity of 7 implies |S3| < C’Tﬁﬂﬁ/ * and so by the definition of n and b5, we have
|S3| < drE705)2.

It remains to study S»—A. Recall (3.43). Writing 21 = T7"1"/2(zq), 2o = Tt (/2= D="2(y, ),
we note that by the definition of zg and v,,, z1 and z9 are on the same local unstable manifold.
Thus [21, 22] = 22 and [z9, 21] = 21 and so dp g (21, 22) = 0. Likewise,

do,u (T2 (o), T 270472 (y,,)) = 0

and so So — A = 0. We have verified (3.44]).
Finally, we combine ({3.36)) and (3.44)) to conclude that

D(z0,ym) < do&"* + dr& ™. (3.46)
By (3.35)), (3.34) and (3.45), both b4 and b5 are a constant multiple of Cy where this constant

only depends on the geometry of the billiard. Thus we can increase Cy if necessary to ensure

that both b4 and b5 are bigger than ag given in Lemma Then ([3.46) is a contradiction with
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Lemma Thus (%) is valid. This completes the proof of Step 3 and finishes the proof of
Lemma [3.3 O

Now we revisit the tower (A, F'). Recall that a separation time s was defined in (E4). Let

1 £lls = || flloo +sup{C : Va,y € A : | f(z) — f(y)| < Cs*@W)}. (3.47)

Let us denote by P the Perron-Frobenius operator associated with I and let Py ¢ be defined by
Pye(f) := P (eFHET £} We conclude this section by

Lemma 3.4. There are constants Cs, an and d so that

L 1P|l .ty < Cal€loze 06772 (3.48)
el—m,m

Proof. The proof follows the lines of [35]. Consider the operator
QG,s,zh — Q(eie-kx-l-sfj(-l-in’h)

where k : M — Z? is defined in Section and r : X — Z is defined by (E3). Here, s and z
are complex numbers. In particular Qg ;¢ 0 = Q.

Assume first that § = 0. By Lemma |(I — Q%QBE)*IH(O < d7'¢™ and so by the identity

(I-A)t=T+A+..+ A" H(T - A™)~L, we have

(I = Qojie0) (e < CEM
for any a} > a;. This inequality can be extended from Qg i¢ 0 to Qo.s,» With s = a+i§, z = o +iw
for |al,|o| < €|€]~%, w € [0,2n) for some small € as in Lemma 3.14 of [35].
Now we can repeat the proof by operator renewal theory as in Section 4 in [35]. Specifically,
their Proposition 4.1 is applicable by (E5) and so their Lemma 4.4 gives with 8 = 0.
Finally, since k is constant on local stable manifolds, the proof can be extended to arbitrary
0 € [—m, 7% as explained in the proof of Lemma 3.14 in [35]. O

3.4. Proof of Theorem Let S = OM = {(¢q,v) € M : fi;v = 0} be the singularity set,
i.e. the collection of points in the phase space corresponding to grazing collisions.
The transformation T defines a C? diffeomorphism from M \ (SyUT1Sp) to T'\ (So UTSy).
Moreover there exist Cy > 0 and 6y € (0,1) such that the diameter of every connected
n

component of M \ U TSy is less than Cobj. We consider now a suitable separation time §
j=-—n
on A. The main difference between s and § is that counts the steps straight up in the tower, i.e.
5((x, 1), (y, 1)) = 5((x,0), (y,0)) — I. The exact definition of § is not important for us and can be
found in [46).
Recall that, by construction of [46], for every x,y € A in the same unstable manifold, 7 (x)
8(zyy)
and 7(y) lie in the same connected component of M\ U T8y, with 5(z,y) := §(Z(2), Z(y)).
j=—o00
We will prove that the assumptions of Theorem namely (B1)—(B6), are satisfied with:
e Y =Yur
K =2K)
=2,
v,T)=(A,v,F), 7:==T=Tom k:=R=KoT,
v, T)= (A0, F),p==and P =
the space of functions f : A — C such that the following quantity is finite
x) — F'(x)) — f(F™
o= 1l s _sup JEIOL L WEEI =S

n
Y @yEYY n>0, v%; z,yey* »

K
P

d
(M,
(A,
%
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where s is a fixed real number satisfying
max (65, 00,0, 97 ) < 5 < 1, (3.49)

where 7, ¥, and ¥, are defined by (3.3), (3.7) and (3.41)), respectively.
e The space B is the Young space of complex-valued functions f : A — C such that

| fllz < oo with || - ||5 defined by

@) = FWI ey

@) (3.50)

1z = Sup 1f1, lloce ™" + supess sup
zy€l

with s as in (3.49)) and a suitable ¢g. B
e The space B is the space of complex-valued bounded Lipschitz functions f : A — C such

that || f||p < oo with || - ||p defined in for the same choice of .
In view of (E5),
B — L% (v) for some qp € (1, +00) (3.51)
provided that g is small enough. o
Observe that, with these notations (€2, ®,, fip) can be represented by the suspension semiflow

(®¢)¢>0 (with roof function 7) over the Z*extension of (M, v, T) by 7.
We define

1180 = || flloo +inf{C :Va,y € A:|f(x) — f(y)| < Cs*@V)}

Observe that By C BN B and that the multiplication by an element of By defines a continuous
linear operator on B and on B.

Now we proceed to verifying assumptions (B1)—(B6). Since  is constant on stable manifolds,
there exists a v-centered Z2-valued bounded function & € B such that Zop = k. Therefore, (B1)
holds with mg = 0.

Next, since 7 is 1/2-Hélder on every connected component of M \ (So U Ty *(Sp)) and since
V0o < 3, we have 7 € V.

Now, on A, we define x := ).+, (7- oFk —1o0Fko E) By construction,

T=Top+x—xoF, where 7o =(z",l) = 7(z“,1) = (2", 2°,1) . (3.52)

Next, we claim that y € V and 7 € By.
Indeed, first,

IXlloo <D ITo F¥ =70 F¥0Z]ee <Y |I7llvs < 0.
k>0 k>0

Second, if x,y € A are on the same stable manifold, then Z(F"(z)) = Z(F"(y)) and so, since T
is 1/2-Hélder, for every nonnegative integer n,

1
|X(Fn($)) - | < Z ‘ Fk+n T(F]H'n ‘ S Z ( 9k+n> 2 _ O( n)
k>0 k>0
Third, if z,y € A are on the same unstable manifold, then
/ ' j j S(x,y)—j\ L
|T(F7(x)) — 7(F(y))| + |7 (FV (E(z))) — 7(FV(E()))| < 207(0090( Y) oF
and

IT(F(x)) = m(F(2(2))] + [7(F(y)) — 7(FI (E(y)))| < 2C;(Cotd)>.

1
So, since 05 < s

0<k<3(z,y)/2 k>8(z,y)/2
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This shows that x € V. Then clearly x o F' € V as well. Since 7 € V, implies Top € V
which in turn gives 7 € By.

Observe that [|eX||,, = O(1+ [¢]) and that (7,)*e%™0 € B for every k and mg = 1. Thus
we have verified (B2).

The fact that (Ppe : f P(eie’Reig'ff))(975)6[_mr]de satisfies (2.31)), (2.32)), (2.33)), (2.34),
with J = 3 follows from [44,46] (see also [42]). This implies (B3). Condition (B4) is proved in
Lemma [3.4

Next, we check (B5). For any f € V and any nonnegative integer n, we define I, f : A — C
by

Vee A, (IL,f)o=(z) :=E,[f o F"|5(-,x) > 2n].

Note that II,, is linear and continuous from V to By with norm in O (2%_2”). By definition of
V, if s(x,y) > 2n, then by considering z in the stable manifold containing x and in the unstable
manifold containing y, F™(z) is in the same unstable manifold as F"(y) with §(F"(y), F™(z)) > n
and so

|fE™ (@) = f(E" ()| < [f(F"(2)) = f(F"(2)[ + [f(F"(2)) = FF" ()] < | fllva" .
Therefore we have proved that

VieV, |[[foF" —IL(f)o &l < Collfllv ",

and so ([2.36) holds for any 9 > s.
Recall that

szh(iﬂ) _ Z eagn(z)+i9.kgn (z)—i—i{.?gn(z)h(z) ’
zeF~2n({z})

with
-1 -1 -1
- Lk = =0 Bk = . - 1k
Oél~f§ ao F¥, /ﬁ}l.—g ko F*, and Tl.—g ToF".
k=0 k=0 k=0

By construction of (@,E,F), for every x,y € A with §(x,5) > 1, there exists a bijection
Way, : F722({z}) — F~2"({y}) such that 5(z, Wa,(2)) > 2n and so IL, f(z) = IL,f(Wa,(2)).
Moreover, since «, &, T € By, for g € {a,k, 7} and for any z,y, z as above, we have

|9(F*(2)) = g(F* (Wi (2)))] < [l gl 22"+ E
Hence
19 (FE(2)) = gu(F* (W ()] < llgllsy (1 = 22) ook,

We conclude that there exists Cy > 0 such that, for every § € [~ n]¢, € € R and for every
non-negative integer j,

o7 _ L o o N Fm
4 P2n efze.nnflé.Tan < H 'P2n 61(9.nn+£.7n)oF ]-_-[n H +
“8(076)3( 9,5( f)) 5o = 8(9,5)] ( f) -
A 5 o .
—5(z,y) aon (2)+(10Rn+i€mn)oF™(2) _  aon(Wn(2))4+(i0Rn+imn)oF™ (Wy(2))
s e (e ‘ )T

)2 R

< Con? (1+ [N flloo
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and

(T, (f)e!? Fnmmotieny (TL, (f )€™ Fn—moti&Tn)

e
0 f) Lr(z)

< H < (f)610~kn7n0+i§.?n)> ‘

< Con]HfHoo,

8(97 f)] B’

o

Where we used that & and T are uniformly bounded and p is such that - a 5 = 1 with ¢ defined

in . Therefore we have proved (2.37)), (2-38) and | and so Verlﬁed (B5).

Next we define f and g as follows: f(x, € 5) = f(q + €~+ sv,¥) and similarly g(z,/¢,s) =
g(qg+ ¢+ st,7) if m(x) = (¢, 7). Note that (¢ + ¢ + sv,9) = ®5(¢q+ ¢,7) for s € [0,7(g,7)). Let
(b, h) = (F, f) or (g, 9). We define

halw, ) i= xo(s)b (Bola + 6,7)) (1= xo(s = 7(2)),

with xo : R — [0,1] a fixed increasing C* function such that yo(u) = 0 if u < —2BT and
Xo(u) =1if u>0.
Note that hy(z,-) have support in [— migT, T :1:)] coincide with h(z,¢,-) in [0, 7(z) — migT], and
satisfy (2.40). Let u € R be fixed. Then ||h(-,u)|jec <  sup Hf)lcz,

|

. Furthermore, since
o
'—f|<maxT

min 7

7€V, 0] < and ho P, is uniformly 7-Hélder continuous for s € [—™5T,

max 7], we obtain
that there exists a uniform constant C' > 0 such that

lhe(- )y <C sup 1Bl - (3.53)
e/

[0/ —¢|<max T

Thus, (2.44) and (2.42)) follow directly from (3.3). Recall that

ik (eﬂ&'xhe(ani)) :mzom'(k!)( ix)Me X /( (is)* "M e hy(x, 5) ds . (3.54)

k—m — 2z r(2))

Next, to prove (2.41)) it suffices to show that

7i£.xff('7 5)
2 (Joe

Observe that |le~%X||,, = O(1+|¢]) and the integral in ([3.54)) is uniformly bounded by 2 max 7 ||| co-
Furthermore, for x,y € 4" such that §(z,y) > n (resp. for z,y € F"(y°)) and such that
7(z) < 7(y), we have

/ ' . hy(z,8)ds — / ‘ . hey,s)ds
(=57 7(@) (=555 ()

10 10

& s

) <C@+E). (3.55)

v

()

Yy
S/( min 7 ( )) |’ ‘hé(x,s) _hg(y7s)’ d8+/ ’| |h£(y78)| dS

10 7(z)

o ))C e 5)ly 2" ds 7l 2°C e 5) o .
~ 710 ,T(T

Now ) follows from ) and .
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Assume next that b satisfies (3.1, then the functions h(x,-) are C* and there exists a
uniform constant Cy > 0 such that

N m

d
ds™ <h o >|5:0

Moreover, since hy is C*° with compact support, by classical integration by parts, we have

h(,)|| <Co sup  sup

0
VN € N, H
% m:(]:"'7N |£,_Z|§ma‘XT

sV

Ul
Hce/

N
YN EN, hyle,€) = (=i)Ne N / €59 1,( ) ds
R

sV
Therefore, since x € V, we have proved that, if h satisfies (3.1)), we have
v7 >0, Z He_igxilf('v _g)HV = O(‘&’_’y) ) (356)
‘

which, combined with (3.55) implies (2.43]). We have finished the proof of (B6). Now Theorem
implies Theorem [3.1]

3.5. Identifying €. We can identify the constant €y by a computation similar to the proof of
Corollary Recall the notations X +, X, from Section and that here d = 2.

Set o := \/det X, +/ det B,.. Observe that Wy, (0,0,u) = ﬁ.
Now the leading term of Cy(f, g) can be obtained by taking m = j =k =r = ¢ =0 in ([2.45)):

Jlim tCi(f,9) = v(m)Co(f.g) (3.57)

= (V(T))i/Rw(O 0, sv/v(T) / Bo(fe(-,u), gor (-, v)) dudv

Ll eZ?

a(f)ig)

= ———(f)ilg) =
ory/dots,,, MY
where we used By(u,v) = v(u)v(v) (see (2.47)).
Recalling that the left hand side of (3.4) is an integral with respect to fip as opposed to
C¢(f, g) which is an integral with respect to i and using i = v(7T)fig, we obtain (3.5).

27r\/det Yk

4. GEODESIC FLOWS

Let Q be a compact Riemannian manifold with strictly negative curvature and Q be a cover
of ) with automorphism group Z%. Then Q can be identified with Q x Z<.

The unit tangent bundle of Q is denoted by Q and unit tangent bundle of Q is denoted by .

The phase space of the geodesic flow ® on Q is Q) and likewise, the phase space of the geodesic
flow ® on Q is Q. Thus Q is a Z% cover of  and we denote by p the covering map. We endow {2
with the normalized Liouville measure fig so that jig(Q' x S') = 1, where Q' C Q corresponds to
Q@ x{0}. Geodesic flows are Anosov and can be represented as a suspension flows over a Poincaré

section M such that T': M — M, the first return map to M is Markov (see [5| and [6]). Thus
K

M is a union of rectangles M = U Aj where Ay, have product structure Ay, = [A} x A}] where

A} are u-sets and A} are s-sets and [+, -] is defined by (3.12] -

Let 7 be the first return to M. Choose a copy M C Q such that p(M) = M and p : M — M
is one-to-one. As for billiards, we define Cy as the set of points in that € such that the last visit
to the Poincaré section was in M x {¢} for £ € Z%. We denote by fi the Liouville measure.

Now we have the following analogue of Theorem
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Theorem 4.1. Let f,g: Q — R be two n-Holder continuous functions with at least one of them
being smooth in the flow direction. Assume moreover that there exists an integer Ko > 1 such
that (3.3) holds. Then there are real numbers €y(f,9), €1(f,9), ..., €k, (f, 8) so that we have

Ko
[ fgodudin=> &lf, o)t = " +o (t*%*KO) , (4.1)
Q k=0

as t — +oo. Furthermore, €y(f,g) = ¢ fQ fdiio fQ gdiig and the coefficients €, as functionals
over pairs of admissible functions, are bilinear.

Proof. The proof of Theorem is a simplified version of the proof of Theorem Namely,
we apply the abstract Theorem to an appropriate symbolic system. This system is now a
subshift of finite type that is constructed using a Markov partition {Ay}. By mixing and by the
Perron-Frobenius theorem, there exists r¢ so that for any r > ryp and any 4,5 = 1,..., K, T"(A;)
and A; have a non empty intersection. We define the spaces V, B, and B the same way as in
Section [3] with

K
AQZM and A():UA%
k=1
and with constant height . Consequently, the norms ||.||g and ||.||s are equivalent. The assump-
tions of Theorem are verified similarly to Section [3| with additional simplifications coming
from the boundedness of the return time and the equivalence of B and B.

The only point in the proof of Theorem where we used the special properties of billiards
is in the proof of Lemma where we referred to Lemma 6.40 in [10] (which is specific to
billiards). It remains to revisit this part of the argument (again, in a simplified version as the
alphabet is finite and so the symbolic sequence of any specially chosen point is bounded).

Geodesic flows preserve the natural contact form « on the unit tangent bundle (corresponding
to the symplectic structure on the tangent bundle). According to the results of [29] (Lemma
B.6), there is some ¢ > 0 so that for any z € @) and for any sufficiently small unstable vector
v € E%(z) and stable vector w € E*(z) with the notation x = exp,(v), y = exp,(w), the
temporal distance function D(x,y) (defined as in (3.9))) satisfies

D(x,y) = da(v,w) + O([vll*lw]* + [[v]*lw]) -

Since the contact form is non-degenerate, there is a constant Ry such that for any z and any
v € E%(z), we can find some w € T, such that w < da(v,w) < Rpljv|||lw|. Let us
decompose w into center unstable and stable components w = w® +w®. By Lemma B.2 in [29],
da(v,w™) = 0 and so we can assume w = w® € E*(z). We conclude that for fixed z, there
are constants g, Rg, so that for any § < dy there exist vectors v € E%(z),w € E*(z) such that
[0l = [[w]| = & and

52 9

Now we can complete the proof of the analogue of Lemma as before by choosing § in a way
that for given &, 62 ~ 71, O

APPENDIX A. SOME FACTS ABOUT TAYLOR EXPANSIONS.

Lemma A.1. Let a be given by and X : [=b, b4t — C (for some b > 0) be a CK3-smooth
function satisfying for some J < K + 3. Denote (s = 2—:, M= [(K+1)/(J—2)]. Then
there are Ajj, € Sj (where j =0,...|J(K+1)/(J=2)], k=1,...,M), Ko € N (depending on
K and J) and a function n : R4TL — [0, 400) continuous at 0, satisfying n(0) = 0 such that
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after, possibly, decreasing the value of b, for every n large enough, every s € [—by/n, by/n]?t!
and every j = J,..., K + 3, we have

M M
3 <Z> 3 (Ve m ) = S ontay, (A.1)
k=1

k=1 Fagi > e JL R
and
oy 3 (S>®j < LT s s/ V). (A2)
o S " vn YN . )

Recalling that the first J — 1 derivatives of ¢ vanish at zero, we see that in case \is €Y
(namely, if j < K +3), the LHS of (A1) is simply equal to 4 (¢™)5".

Proof. Decreasing if necessary the value of b, we may assume that |/~\u] <a, Nox <a, I3 and

A — | < Clu)’ for every u € R with |u| < b (the existence of b with these properties
follows from our assumptions on J and A). Applying Taylor’s theorem to the function x — z"
near 1 we conclude that for every s € R™1! with |s| < by/n,

a2 () (G -)

< (") 'c( ) - 1]MH max(1,fc (=) D)1 (4.3)

Recall that |)\s/\f| < as/\/ﬁ This together with the fact that a /m/as/\f (a s/\/?Tn)_l
implies that the RHS of (A.3) is bounded by

M+1

M ¢(s/vi) = 1M (0 ) "M = M N V) — als/ V)| (g M

Next, we use the identity (a,, ;)" = a5 and the inequality A — au| < Clul’ to conclude
that the last displayed expression is bounded by

Crn™(ay,5) 7 ((s/vm) M) |

-1
for every s, for every n large enough since (a /\/3—)_”_M_1 = <a \/T) < (a 57"
s/V3n sy/(1+2LEL) /3 8/V2

for every n large enough. Now observe that by definition (2 — J)(M + 1) < —K — 1 and so
(2—J)(M +1) < —K — 2. Thus the last display, and hence (A.3|) is bounded by

Chrlay, ) a5 s7OTHD), (A4)

Clearly, (|A.4) can be included in the RHS of (A.2). Thus it remains to compute the sum in the
LHS of (A.3)).
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To do so, we fix some k =1,.... M. Let L = K + 1+ 2k — J(k —1). Using the elementary
estimate |a* — b*| < kmax(|a|, |b|)*~!|a — b|, we find

k
() (Cls/v/m) = 1) Z e (s ) (A.5)
k—1
< nfkmax | [((s/vn) = 1], Z 67 % (s/v/m)® (A-6)
L
« lets/vmy—1- Z i (s//)® (A7)

Next by our choice of L
L=K+1+Q2-Nk+J<K+1+2-J)+J=K+3.

Recalling that A /a is CE+3 smooth and its first J —1 derivatives at zero vanish, Taylor’s theorem
implies that (A.7) is bounded by (s/v/n)En0(s/+/n), where n9(0) = 0 and 7 is continuous at 0.
On the other hand, (A6) is bounded by n*k (s/ \/ﬁ)J(kfl). We conclude that (A.5)) is bounded
by

= R (s Vi), (A-8)
where 71 = kng. Since a, /v3 18 bounded from above, ({A.8]) can be included in the RHS of (A.2]).
So we have approximated (;L/ NG by

k
M
2 () Z L6 x (s /)
k=1
_ 1+§:<”> i 1 <g(j1)®...®c(jk)) s (o )Ol )
h=1 g jl,...,jk:lel...jk! 0 5
M n K+1+2k 1 ) X
_ 1+Z<k> 2 > m((o ®...® ¢ )

Jj=kJ  Ji,engx=>J g1+t g=J
(/)™ 40 (w3 541241

uniformly on s € [~by/n, by/n]%t!. Note that the last step above uses the observation that if

1y g = Jand j1 + - - + jr < K + 1+ 2k, then necessarily j; < L for all [. Again, the last

error term can be included in the right hand side of as ag, /5 is bounded from above.
Finally, observe that

1 . .
<Z> Z g1l gk! ( éh) © @ Cé]k))

J1seensde2d 0 Jite k=]

is a polynomial of degree k in n with values in S;. This ensures the existence of A; . O

Lemma A.2. If H : R — R is in the Schwartz space (i.e. *H® (z) is bounded for any positive
integers a and b), then for any L € N there is some constant cy 1, such that

> nH(t + kn) — / H(x)dx

kEZ

vVt e R,Vn >0, <cun® (A.9)
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Proof. We can assume without loss of generality that ¢ € [0,1). Given L,¢ and 7, we choose
Ap and By, so that the above sum for k ¢ [Ar/n, Br/n] and the above integral as well as the
first L derivatives of H for = ¢ (Ap, Br) are less than n’. Such A; and By, exist since H is in
the Schwartz space. Now Euler’s summation formula (e.g. Theorem 4 in [3] with the notation
f(z) =nH(t+ 2y — Ar), m = L) implies that

Br/n By, 1 By,
Y nH(t+kn) — [ H(@)de= o [ Popyile/mHPHD (@)der?
A 2L+ 1) Ju
k=—Ap/n r E
L 82
r H(?T*l) B o H(erl) A 2r
+§(2T)! (D (By) (4)] 0
1
+ 277[H(BL) H(AL)],
where Pk (x) are the periodic Bernoulli polynomials and By are Bernoulli numbers. Now ((A.9)
follows from the choice of Ay, By.. O

Observe that (A.9) and the fact that H is in the Schwartz space imply

1
t/v(r)+t2Te

t—nv(t)\ Vi \d K
VK >0, Ve o0, 3 H< v >_V(T)/RH( Jiz + 0t 5)  (A.10)

n:t/V(T)—t%+E
(clearly, the constant in ”O” depends on K and ¢).
Lemma A.3. For every y€ R and Q) € Z,

i g <07 t —\%(7)>

- (s#) S

where ha is defined by 1’ 83 denotes the derivative of order q with respect to the second
variable.

ar (5,1) (=)0 ds + O (t’Y*%) (A.11)

Proof. For ease of notation, we prove the lemma coordinate-wise, i.e. we replace \I'(O‘)(s) by

80(
stl ...aSja \IJ(S)
th t/u(r) 3t
Observe that due to the rapid decay of p (mtj+r) (0,-), we can replace Z by Z ,
n=t_

n—=t /u(r)—t 3+
for any € > 0 (for example, we can choose ¢ = 1/4).
Next, observe that by the definition ([2.5)),

Thus it remains to estimate the sum

t/u(r)+t3+e

Y has (t _\”/;(T), m’t(T)) . (A.12)

1
n=t/v(r)—t2 T
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Using Taylor expansion, we can rewrite (A.12)) as

t/v(r) 13+

> Z% S ha (\H/;(T)l) <—t_2”(7)>q +0 (%), (A.13)
n=t/u(r)—t3+ =

Indeed, we control the error term using the estimate

Z sup 82Q+1ha,’y (t —nv(T) ? y) ' ’t —nv(T)
ke ly—1]<1/2 Vi t

which can be derived similarly to (A.10]). Performing summation over n in (A.13]), using (A.10)),
we obtain that (A.12)) (and thus the left hand side of (A.11))) equals to

_a-1
P /aghm(s,n(—s)qdﬁo(t—?).
q=0 = R

This completes the proof of the lemma. O

t)u(r) 3t 0+1

Lemma A.4. Let b,q be non-negative integers. The function s — O3hy(s,1)(—s)? is even if
b+ q is even (and is odd if b+ q is odd).

Proof. The lemma follows since if P(z) is a polynomial with odd (even, resp.) leading term, then

%(P(x)e“2) = Q(x)e™”* where Q(z) is a polynomial with even (odd, resp.) leading term. [

APPENDIX B. CORRELATION FUNCTIONS OF COBOUNDARIES

Lemma B.1. Let G! : M — M be a flow preserving a measure p (finite or infinite). Let
fof'yg: M — M be bounded integrable observables such that f'(x) = %h:of(Gt:c). Denote

Ci= [ FlaoG)dn Ci= [ 1'{aoG")dn.

Assume that there exist real numbers o > 0, co, ..., CK—1,Ch, ..., Cr satisfying:
) ) ) » “0» 'y K y g

K-1 K
Ce=t¢ (Z at F+o (t_(K_1)>) and C} =1t (Z gt F+o (t_K)> . (B.1)
k=0

k=0
Then ¢y =0 and ¢j, = —cx—1(a+k —1) for every k =1,..., K — 1.
In particular if K =1 and ¢y # 0, then ¢j; =0 and

Ci(f'yg) ~ —coat— 1 (B.2)

We note that the fact that the rate of mixing for coboundaries is faster than for general
observables is used, for example, in [18,21].

Proof. By integration by parts

¢ = /f(goGt) du=—[ 1(sG") dn

0 0
_ t — t _
— / 8tgoG dp = at/f(goG)du Ct
Since lim Cy =0
t—-+o0

+o0 +oo K
/ C;ds:/ Zc’ ok 4 o(s72 K ds.
t ¢
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It follows that ¢j, =0if o« +k <1 and

K
C, = Z % otk o (g Kty

—~ —a— k+1
The lemma follows by comparing the above expansion with the first equation in (B.I]). O
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