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Abstract. We establish expansion of an arbitrary order for the correlation function of suffi-
ciently regular observables of Zd extensions of some hyperbolic flows. Our examples include
the Z2 periodic Lorentz gas and geodesic flows on abelian covers of compact manifolds with
negative curvature.

Résumé. Nous établissons des développements asymptotiques de tous ordres pour la fonction
corrélation d’observables suffisamment régulières de Zd-extensions de flots hyperboliques. Nos
résultats s’appliquent au gaz de Lorentz Z2-periodique et au flot géodesique sur des revêtements
abéliens de variétés compactes de courbure négative.

1. Introduction

1.1. Setup. Let (M,ν, T ) be a probability preserving dynamical system. Consider (M̃, ν̃, T̃ )–
the Zd-extension of (M,ν, T ) by κ : M → Zd for a positive integer d. Let (Φt)t≥0 be the

suspension semiflow over (M,ν, T ) with roof function τ : M → (0,+∞) and let (Φ̃t)t≥0 be the

corresponding Zd cover. That is, (Φ̃t)t≥0 is the semi-flow defined on

Ω̃ := {(x, `, s) ∈M × Zd × [0,+∞) : s ∈ [0, τ(x))}

such that Φ̃t(x, `, s) corresponds to (x, `, s+t) by identifying (x, `, s) with (Tx, `+κ(x), s−τ(x)).

We will consider throughout this article that κ and τ are bounded. The semi-flow Φ̃ preserves

the restriction µ̃ on Ω̃ of the product measure ν ⊗ m ⊗ l, where m is the counting measure on
Zd and l is the Lebesgue measure on [0,+∞).

In the present paper we study the following correlation functions

Ct(f, g) :=

∫
Ω̃
f.g ◦ Φ̃t dµ̃ ,

as t goes to infinity, for suitable observables f, g. Our goal is to establish expansions of the form

Ct(f, g) =

K∑
k=0

Ck(f, g) t−
d
2
−k + o(t−

d
2
−K) . (1.1)

More precisely we assume that Φt is C∞ away from singularities, which is a finite (possibly

empty) union of positive codimension submanifolds. We say that Φ̃t admits a complete asymp-
totic expansion in inverse powers of t if for f and g which are C∞ and have compact support
which is disjoint from the singularities of Φ̃, the correlation function Ct(f, g) admits the expan-
sion (1.1) for each K ∈ N.

The precise statement of our results will be given in Sections 2–4. Here we mention some
important applications.
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Theorem 1.1. Complete asymptotic expansion in inverse powers of t holds for finite horizon
periodic Lorentz gases and geodesic flows on abelian covers of negatively curved manifolds.

In fact, our results are more general than Theorem 1.1. Namely,

• we consider an abstract setup applicable to other hyperbolic flows;
• we allow the support of f and g to be unbounded (provided they decay sufficiently fast);
• we allow f and g to take non-zero values on the singularities of the flow. In addition,

we allow them to be only Hölder continuous (note that continuity is required in the flow
direction as well) with one of them being C∞ in the flow direction.

1.2. Related results. The correlation function (1.1) has been studied by several authors. The
leading term (K = 0) for hyperbolic maps (for functions of non-zero integral) is sometimes called
mixing, Krickeberg mixing or local mixing. In case of Zd extensions as above, it is a consequence
of some versions of the local limit theorem. See related results in e.g. [1,22–24,44]. Less is known
about higher order expansions for maps, but see the recent results in [42]. For flows, the leading
term has been studied in e.g. [2, 15, 27, 45]. We also mention that there are other quantities
besides the correlation functions whose asymptotic expansions are of interest. In particular,
the asymptotic expansions have been obtained (using techniques similar to ones employed in
the present paper) for the rate of convergence in the central limit theorem [19, 20] and for the
number of periodic orbits in a given homology class [33, 41]. The relation of mixing with the
other above mentioned problems is the following. First, the problem of counting periodic orbits

can be reformulated as a special case of the mixing problem

∫
A(x, Φ̃tx)dµ(x) in case A(·, ·) is

a distribution supported on the diagonal (see [30,34]). Also given a function τ : M → R of zero
mean, one can consider a skew product on M × R defined by

F (x, s) = (Tx, s+ τ(x)).

Studying the higher order terms in the mixing local limit

√
nµ
(
f(x)g(Tnx)φ

(
τN − z

√
N
))

= Ψ(z)µ(f)µ(g)

∫
R
φ(s)ds+ . . .

where φ is a compactly supported test function, Ψ is a Gaussian density, gives, in the special case
z = 0, the asymptotic expansions of correlation functions for F similar to the one considered
in the present paper. While these relations are useful in computing the main terms in the
asymptotic expansions, and consequently similar techniques may be applicable in all these cases,
the study of a more complete expansion seems simpler when performed in each case, separately.

To comment on our smoothness assumption, we note that a comparison of the results of [19,20]
for smooth φ with the results of [7, 14] for the case where φ is an indicator shows that the
assumption on the smoothness of φ is essential to derive expansions of the form (1.1). Therefore
we expect that the assumption that some observable is smooth in the flow direction is essential.
It is an interesting open problem to obtain corrections to our asymptotic expansions for non-
smooth observables.

Other results are known for some hyperbolic systems preserving an infinite measure which
may not be a Zd cover and so the powers may be different from −d

2 − k. See the leading
term in e.g. [16, 38, 40] and expansions in e.g. [31, 36, 37]. We note that the expansions in
the above papers are of the form φ(t)µ̃(f)µ̃(g) where φ(t) admits an expansion of the form

φ(t) =

K∑
k=1

akt
−βk + o

(
t−βK

)
. Thus these expansions do not provide a leading term in the case

µ̃(f)µ̃(g) = 0. In contrast, our expansion gives a leading term for a large class of zero mean
observables. The main reason we are able to obtain the complete expansion in our problem is
that the leading eigenvalue of the appropriate transfer operator is smooth near the origin in
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our setting but not in the setting considered in [31,36,37]. We note that recently [11] obtained
asymptotic expansions of the leading eigenvalue in a non-smooth setting, so obtaining complete
asymptotic expansions beyond the abelian covers is the natural next question.

We note that the results described above discuss mixing for the observables concentrated in
a compact part of the phase space. Recently, a number of papers discuss mixing for extended
observables. This topic is beyond the scope of our paper, we refer the readers to [17,25,32] and
the references wherein for more information on this subject.

1.3. Layout of the paper. The rest of the paper is organized as follows. In Section 2, we
present some abstract results on expansion of correlation functions for general suspension semi-
flows and flows. Theorems 2.1 and 2.3 guarantee that under a list of technical assumptions,
expansions of the kind (1.1) hold. The results are proved by a careful study of the twisted trans-
fer operator. One major difference from the case of maps (cf. [42]) is an extra assumption called
a weak non-lattice property along the lines of [12]. In Section 3 we study billiards and verify
the abstract assumptions of Theorem 2.3 for the Lorentz gas obtaining a complete asymptotic
expansion in inverse powers of t for that system. In Section 4, we verify the abstract assump-
tions for geodesic flows on Zd covers of compact negatively curved Riemannian manifolds. Some
technical computations are presented in the Appendix.

2. Abstract results.

2.1. Notations. We will work with symmetric multilinear forms. Let Sm be the set of permu-
tations of {1, ...,m}. We identify the set of symmetric m-linear forms on Cd+1 with

Sm :=
{
A = (Ai1,...,im)(i1,...,im) ∈ C{1,...,d+1}m : ∀i1, ..., im, ∀s ∈ Sm, Ais(1),...,is(m)

= Ai1,...,im

}
.

For any A ∈ Sm and B ∈ Sk, we define A⊗B as the element C of Sm+k such that

∀i1, ..., im+k ∈ {1, ..., d+ 1}, Ci1,...,im+k
=

1

(m+ k)!

∑
s∈Sm+k

Ais(1),...,is(m)
Bis(m+1)...,is(m+k)

.

Note that ⊗ is associative and commutative. For any A ∈ Sm and B ∈ Sk with k ≤ m, we
define A ∗B as the element C ∈ Sm−k such that

∀i1, ..., im−k ∈ {1, ..., d+ 1}, Ci1,,...,im−k =
∑

im−k+1,...,im∈{1,...,d+1}

Ai1,...,imBim−k+1,...,im .

Note that when k = m = 1, A ∗ B is simply the scalar product A.B. For any Cm-smooth
function F : Cd+1 → C, we write F (m) for its differential of order m, which is identified with a
m-linear form on Cd+1. We write A⊗k for the product A⊗ ...⊗A. With these notations, Taylor
expansions of F at 0 are simply written

m∑
k=0

1

k!
F (k)(0) ∗ x⊗k .

It is also worth noting that A ∗ (B ⊗ C) = (A ∗ B) ∗ C, for every A ∈ Sm, B ∈ Sk and C ∈ S`
with m ≥ k + `.

For any ν ⊗ l-integrable function h0 : M × R→ C, we set

ĥ0(x, ξ) :=

∫
R
eiξsh0(x, s) ds ,

(this quantity is well defined for ν-a.e. x).

In both Sections 2.2 and 2.3, we will use notations λ
(k)
0 , a

(k)
0 , Π

(k)
0 for the k-th derivatives of

λ, a and Π at 0. The function a is defined below in (2.4), whereas λ and Π will be introduced
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in Assumptions (A1) (at the begining of Section 2.2) and (B3) (at Section 2.3).
We write P for the Perron-Frobenius operator of T with respect to ν, which is defined by:

∀f, g ∈ L2(ν),

∫
M
Pf · g dν =

∫
M
f · (g ◦ T ) dν. (2.1)

We also consider the family (Pθ,ξ)θ∈[−π,π]d,ξ∈R of operators given by

Pθ,ξ(f) := P
(
ei θ·κei ξτf

)
. (2.2)

Throughout this work, we assume that τ is bounded from both below and above by two positive
numbers and |κ| is bounded above. To simplify notations, we write ν(h) :=

∫
M h dν.

Let Σ be a (d + 1)-dimensional positive symmetric matrix. We will denote by Ψ = ΨΣ the
(d+ 1)-dimensional centered Gaussian density with covariance matrix Σ:

Ψ(s) = ΨΣ(s) :=
e−

1
2

Σ−1∗s⊗2

(2π)
d+1

2

√
det Σ

. (2.3)

In particular, Ψ(k) is the differential of Ψ of order k. Let

as := e−
1
2

Σ∗s⊗2
(2.4)

be the Fourier transform of Ψ. Given a non-negative integer α and a real number γ, we define

hα,γ : R2 → Sα, hα,γ(s, z) = zγΨ(α)
(
0, s/

√
z/ν(τ)

)
(2.5)

where 0 denotes the origin in Rd. This function will appear in the expansion formulas (2.17)
and (2.45).

We will use the notations

κn :=

n−1∑
k=0

κ ◦ T k and τn :=

n−1∑
k=0

τ ◦ T k .

Note that with this notation, we have

Φ̃t(x, `, s) = (Tnx, `+ κn(x), s+ t− τn(x)) , with n s.t. τn(x) ≤ s+ t < τn+1(x) .

It will be also useful to consider the suspension flow (Φt)t≥0 over (M,ν, T ) with roof function
τ which is defined on Ω := {(x, s) ∈ M × [0,+∞) : s ∈ [0, τ(x))} and preserves the measure µ
which is the restriction of the product measure ν ⊗ l to Ω. Note that µ is a finite measure but
not necessarily a probability measure.

2.2. A general result under spectral assumptions. We start by making some assumptions.
The first assumption is variant of the standard Perron-Frobenious type spectral condition.
(A1) Perron-Frobenius assumption. We say that (A1) holds with positive integers J and

K if there is a Banach space of functions from M to C (denoted by B) such that B ↪→ L1(M,ν)
and 1M ∈ B. Furthermore, (Pθ,ξ)θ∈[−π,π]d,ξ∈R is a family of linear continuous operators on

B such that there exist constants b ∈ (0, π], C > 0, ϑ ∈ (0, 1), β > 0 and three functions
λ· : [−b, b]d+1 → C (assumed to be CK+3-smooth) and Π·, R· : [−b, b]d+1 → L(B,B) (assumed

to be CK+1-smooth) such that Π0 = Eν [·]1M , and λ̃θ,ξ := λθ,ξe
−iξν(τ) satisfies

∀k < J, λ̃
(k)
0 = a

(k)
0 , (2.6)

with a positive definite (d+ 1)× (d+ 1) matrix Σ and, in L(B,B),

∀s ∈ [−b, b]d+1, Ps = λsΠs +Rs, ΠsRs = RsΠs = 0, Π2
s = Πs , (2.7)

sup
s∈[−b,b]d+1

‖Rks‖L(B,B) + sup
θ∈[−π,π]d\[−b,b]d, |ξ|≤b

‖P kθ,ξ‖L(B,B) ≤ Cϑk . (2.8)

Our next assumption helps control the Fourier transform for large values of ξ.
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(A2) Weak non-lattice property. We say that f, g : Ω̃ → C and the Banach space B
satisfy (A2) if there exist two families (f`)`∈Zd and (g`)`∈Zd of functions defined on M ×R→ C
and vanishing outside Ω̃0 := Ω ∪

(
M ×

[
− inf τ

10 , 0
])

such that

∀h ∈ {f, g} ∀(x, `, s) ∈ Ω̃, h(x, `, s) = h`(x, s) + h`+κ(x)(Tx, s− τ(x)) . (2.9)

and

sup
θ∈[−π,π]d

‖Pnθ,ξ‖L(B,L1) ≤ C|ξ|αe−nδ|ξ|
−α

(2.10)

for some suitable positive C, δ and α, and

∀γ > 0,
∑

`,`′∈Zd

(
‖f̂`(·,−ξ)‖B ‖ĝ`′(·, ξ)‖∞

)
= O(|ξ|−γ) . (2.11)

The last and most technical assumption is about regularity of observables: smoothness and
quick decay at infinity. This assumption allows for a wide extension of compactly supported C∞
test functions.

(A3) Regularity of the observables. We say that f, g : Ω̃→ C and the Banach spaces B,
B satisfy (A3) if (2.9) holds and one of the families (f`)`∈Zd and (g`)`∈Zd is made of functions
continuous in the last variable. Furthermore, the following estimates hold true: 1∫

R

∑
`∈Zd

(1 + |`|K)(‖f`(·, u)‖B + ‖g`(·, u)‖B′) du <∞ , (2.12)

∃p0, q0 ∈ [1,+∞] s.t.
1

p0
+

1

q0
= 1 and

∑
`,`′∈Zd

‖f`‖Lp0 (ν⊗l) ‖g`′‖Lq0 (ν⊗l) <∞ , (2.13)

sup
ξ∈R

∑
`,`′∈Zd

‖f̂`(·,−ξ)‖B‖ĝ`′(·, ξ)‖B′ <∞ . (2.14)

Given two positive integers J and p, we write∑̃
p

=
∑

m,r,q,k≥0,j≥kJ
m+j+r+q−2k=2p

, (2.15)

i.e.
∑̃
p

means the sum over k = 0, ..., b2p/(J −2)c, j = kJ, ..., 2k+ 2p, and then m, r, q ≥ 0 such

that m+ r + q = 2p+ 2k − j.

Theorem 2.1. Let K and J be two positive integers such that 3 ≤ J ≤ K + 3. Assume (A1),

(A2) and (A3) hold with Banach spaces B, B and some functions f, g : Ω̃→ C. Then

Ct(f, g) =

bK
2
c∑

p=0

C̃p(f, g)

(
t

ν(τ)

)− d
2
−p

+ o
(
t−

K+d
2

)
, (2.16)

as t→ +∞ where

C̃p(f, g) :=
∑̃
p

1

q!

∫
R
∂q2hm+j+r,k−m+j+d+r+1

2
(s
√
ν(τ), 1)(−s)q ds (2.17)

∗ i
m+j

r!m!

∑
`,`′

∫
R2

ν
(
g`′(·, v)

(
Π

(m)
0 (f`(·, u))

))
⊗ (`′ − `, u− v)⊗rdudv ⊗Aj,k

 .

1The notation ‖G‖B′ means here ‖G‖B′ := supF∈B, ‖F‖B=1 |Eν [G.F ]|.
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Here,
∑̃
p

is defined by (2.15), ∂q2hα,γ denotes the derivative of order q with respect to the second

variable of hα,γ (defined by (2.5)) and Aj,k ∈ Sj is given by (A.2) of Appendix A for k > 0,
A0,0 = 1 and Aj,0 = 0 for j > 0.

Corollary 2.2. Under the assumptions of Theorem 2.1 with K = 0,

Ct(f, g) =
ν(τ)

d
2
−1t−

d
2√

(2π)d det Σd

∫
Ω̃
f dµ̃

∫
Ω̃
g dµ̃+ o

(
t−

d
2

)
,

where Σd is the submatrix of Σ corresponding to its d first lines and rows. Equivalently∫
Ω̃
f.g ◦ Φ̃t dµ̃0 =

t−
d
2√

(2π)d det Σ̃d

∫
Ω̃
f dµ̃0

∫
Ω̃
g dµ̃0 + o

(
t−

d
2

)
,

where µ̃0 := µ̃
ν(τ) is the measure proportional to µ̃ such that µ̃0(M × {0} × [0,+∞)) = 1 and

Σ̃d = Σd√
ν(τ)

is the variance matrix of the Gaussian distribution limit of
(
p2◦Φ̃t√

t

)
t

(with respect

to any probability measure P absolutely continuous with respect to µ̃0), with p2 : Ω̃ → Zd the
canonical projection.

Proof. We have to prove that

C̃0(f, g) =
1

ν(τ)
√

(2π)d det Σd

∫
Ω̃
f dµ̃

∫
Ω̃
g dµ̃ .

We assume p = 0. Then the sum
∑̃
p

contains a single term corresponding to m = j = r = q =

k = 0. Thus, using the fact that A0,0 = 1 and that Π0 = ν(·)1M , the second part of the right
hand side of (2.17) is then simply∑

`,`′

∫
R2

ν (g`′(·, v)ν[f`(·, u)]) dudv =

∫
Ω̃
f dµ̃

∫
Ω̃
g dµ̃ ,

whereas the first part of the right hand side of (2.17) is∫
R
h0,− d+1

2
(s
√
ν(τ), 1) ds =

∫
R

Ψ(0, sν(τ)) ds =
1

ν(τ)

∫
R

Ψ(0, s′) ds′ =
1

ν(τ)
√

(Σ−1)d+1,d+1(2π)d det Σ
,

due to (2.5) and to (2.3). We conclude by noticing that (Σ−1)d+1,d+1 det Σ = det Σd.

The fact that our assumptions imply that both (κn/
√
n)n and ((τn − nν(τ))/

√
n)n satisfy a

central limit theorem with respective variances Σd and Στ is well known (see for example [26]).
We can thus deduce using e.g. [39, Theorem 1.1] (or, alternatively, using a functional central limit

theorem) the convergence in distribution (with respect to ν ⊗ δ0 ⊗ l) of
(
p2◦Φ̃t√

t

)
t

to a centered

Gaussian random variable with variance Σ̃d. The fact that the convergence in distribution is
valid for any probability measure absolutely continuous with respect to µ̃ comes then from [47,
Theorem 1]. �

Proof of Theorem 2.1. Step 1: Fourier transform.
Notice that

Ct(f, g) =
∑
`,`′

∑
n≥0

∫
M×R

f`(x, s) g`′ (T
nx, s+ t− τn(x)) 1{κn(x)=`′−`} d(ν ⊗ l)(x, s) , (2.18)
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due to the dominated convergence theorem, (2.13), and the fact that the sum over n is compactly
supported, as explained below. Indeed g`′(T

nx, s+ t− τn(x)) 6= 0 implies that

− inf τ

10
≤ s+t−τn(x) < τ(Tnx), i.e. τn(x)− inf τ

10
−s ≤ t < τn+1(x)−s with − inf τ

10
≤ s < τ(x)

and so the sum over n in (2.18) is in fact is supported in {t−, t− + 1, ..., t+}, where

t− = dt/ sup τe − 2, t+ = bt/ inf τc+ 2 .

Note that

1{κn(x)=`′−`} =
1

(2π)d

∫
[−π,π]d

e−i θ·(`
′−`)ei θ·κn dθ . (2.19)

Moreover, for every x ∈M and every positive integer n,

h`,`′,x,n(·) :=

∫
R
f`(x, s) g`′ (T

nx, s+ ·) ds

is the convolution of f`(x,−·) with g`′(T
nx, ·). Due to (2.13), for ν-a.e. x and any choice of

`, `′, n, this h`,`′,x,n(·) well defined. Furthermore, it is continuous (since f`(x, ·) or g`′(T
nx, ·) is

continuous) with compact support and its Fourier transform is

f̂`(x,−·)ĝ`′(Tnx, ·) ∈ L∞(R) ∩ L1(R).

Consequently, h`,`′,x,n is equal to its inverse Fourier transform, that is

h`,`′,x,n(t− τn(x)) =
1

2π

∫
R
e−iξ(t−τn(x))f̂`(x,−ξ)ĝ`′(Tnx, ξ) dξ .

Combining this with (2.18) and with (2.19), we obtain

Ct(f, g) (2.20)

=
1

(2π)d+1

∑
`,`′

∑
n≥0

∫
M

(∫
[−π,π]d×R
e−iξtf̂`(x,−ξ) e−iθ·(`

′−`)eiθ·κn(x)eiξτn(x)ĝ`′ (T
nx, ξ) dθdξ

)
dν(x)

=
1

(2π)d+1

∑
`,`′

t+∑
n=t−

∫
M

(∫
[−π,π]d×R

e−iξte−iθ·(`
′−`)Pnθ,ξ

(
f̂`(·,−ξ)

)
ĝ`′ (·, ξ) dθdξ

)
dν (2.21)

where we used the fact that Pn(eiθ·κn+iξτnF ) = Pnθ,ξF . We split (2π)d+1Ct(f, g) = I1 + I2 where

I1 stands the contribution of ξ ∈ [−b, b] and I2 stands the contribution of |ξ| > b.
Step 2: Reduction to the integration over a compact domain.

Here we prove that |I2| = o
(
t−

K+d
2

)
. Observe that

|I2| ≤
∑
`,`′

t+∑
n=t−

∫
[−π,π]d×([−∞,−b]∪[b,∞])

∫
M
|Pnθ,ξ

(
f̂`(·,−ξ)

)
ĝ`′ (·, ξ) | dνdθdξ

≤ C ′t
∫

[−π,π]d×([−∞,−b]∪[b,∞])

 sup
n∈[t−,t+]

∑
`,`′

∥∥∥Pnθ,ξ (f̂`(·,−ξ))∥∥∥
1
‖ĝ`′ (·, ξ) ‖∞

 dθdξ .

Now due to (2.10), we have

|I2| ≤ C ′′t
∫

[−π,π]d

∫
b<|ξ|
|ξ|αe−δt−|ξ|−α

∑
`,`′

∥∥∥f̂`(·,−ξ)∥∥∥
B
‖ĝ`′(·, ξ)‖∞ dξdθ .
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We apply (2.11) to see that for any γ > 0 there is Ĉ ′′γ , C
′′
γ > 0 such that

|I2| ≤ Ĉ ′′γ t
∫
b<|ξ|

e−δt−|ξ|
−α |ξ|α−γdξ ≤ C ′′γ t2+ 1−γ

α

∫
R
e−δ|u|

−α |u|α−γ du.

Choosing γ large, we get |I2| = o
(
t−

K+d
2

)
. In the remaining part of the proof, we compute I1.

Step 3: Expansion of the leading eigenvalue and eigenprojector.
First, we use (2.7), (2.8) and (2.14) to write

Ct(f, g) ' 1

(2π)d+1

∑
`,`′

∑
n

∫
[−b,b]d+1

e−iξte−iθ·(`
′−`)λnθ,ξν

(
Πθ,ξ

(
f̂`(·,−ξ)

)
ĝ`′ (·, ξ)

)
d(θ, ξ) ,

where ' means that the difference between the LHS and the RHS is o
(
t−

K+d
2

)
.

Now the change of variables (θ, ξ) 7→ (θ, ξ)/
√
n gives

Ct(f, g) ' 1

(2π)d+1

∑
`,`′

∑
n

n−
d+1

2 I(`, `′, n)

where

I(`, `′, n) =

∫
[−b
√
n,b
√
n]d+1

e
−i ξ√

n
t
e
−iθ· `

′−`√
n λn(θ,ξ)/

√
nν

(
Π(θ,ξ)/

√
n

(
f̂`(·,−

ξ√
n

)

)
ĝ`′

(
·, ξ√

n

))
dθ dξ .

Next with an error o
(
t−

K+d
2

)
, we can replace I(`, `′, n) in the last sum by∫

[−b
√
n,b
√
n]d+1

e
−i ξ√

n
t
e
−iθ· `

′−`√
n λn(θ,ξ)/

√
n

K+1∑
m=0

1

m!
ν

(
Π

(m)
0

(
f̂`

(
·,− ξ√

n

))
ĝ`′

(
·, ξ√

n

))
∗ (θ, ξ)⊗m

n
m
2

dθ dξ .

(2.22)
Indeed, for every u ∈ Rd+1, there exist ω ∈ [0, 1] and xu = ωu such that

Πu(·) =

K∑
m=0

1

m!
Π

(m)
0 (·) ∗ u⊗m +

1

(K + 1)!
Π(K+1)
xu (·) ∗ u⊗(K+1).

Denote

En :=

∫
[−b
√
n,b
√
n]d+1

∣∣∣λns/√n∣∣∣ ∥∥∥Π(K+1)
xs/
√
n
−Π

(K+1)
0

∥∥∥ |s|K+1 ds .

Then lim
n→+∞

En = 0 by the Lebesgue dominated convergence theorem. Therefore

lim
t→+∞

t
K+d

2

t+∑
n=t−

n−
d+1

2
En

n
K+1

2

= 0 ,

justifying the replacement of Π by its jet.
Recalling elementary identities an

s/
√
n

= as and as/as/
√

2 = as/
√

2, Lemma A.1 gives∣∣∣∣∣∣λ̃ns/√n − as
b(K+1)/(J−2)c∑

k=0

K+1+2k∑
j=kJ

nkAj,k ∗ (s/
√
n)⊗j

∣∣∣∣∣∣ ≤ as/√2 n
−K+1

2 (1 + |s|K0)η(s/
√
n) ,

with lim
t→0

η(t) = 0 and sup
[−b,b]d

|η| <∞. Let

E′n :=

∫
[−b
√
n,b
√
n]d+1

as/
√

2(1 + |s|K0)η(s/
√
n) ds .
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Since the Lebesgue dominated convergence theorem gives lim
n→∞

E′n = 0, the same argument as

above shows that the error term arising from replacing in (2.22) λ̃n
s/
√
n

by the above sum is

negligible. Since λ̃θ,ξ = λθ,ξe
−iξν(τ), we conclude

Ct(f, g) ' 1

(2π)d+1

∑
`,`′

∑
n

n−
d+1

2

∫
[−b
√
n,b
√
n]d+1

e
−iξ t−nν(τ)√

n e
−iθ. `

′−`√
n a(θ,ξ)

K+1∑
m=0

1

m!
ν

(
ĝ`′

(
·, ξ√

n

)
Π

(m)
0

(
f̂`

(
·,− ξ√

n

)))
∗(θ, ξ)⊗m

n
m
2

b(K+1)/(J−2)c∑
k=0

(K+1)+2k∑
j=kJ

nkAj,k ∗
(θ, ξ)⊗j

n
j
2

 dθ dξ.

Step 4. Integrating by parts.
Note that ∀A ∈ Sj ,∀B ∈ Sm and s ∈ Cd+1, (B ∗ s⊗m)(A ∗ s⊗j) = (A ⊗ B) ∗ s⊗(m+j). We

claim that

1

(2π)d+1

∫
[−b
√
n,b
√
n]d+1

e
−iξ t−nν(τ)√

n
−iθ. `

′−`√
n a(θ,ξ)ν

(
ĝ`′

(
·, ξ√

n

)(
Π

(m)
0

(
f̂`

(
·,− ξ√

n

))
⊗Aj,k

))

∗ (θ, ξ)⊗(m+j) dθdξ

= im+j

∫
R2

Ψ(m+j)

(
`′ − `√
n
,
t− n ν(τ) + u− v√

n

)
∗ ν
(

Π
(m)
0 (f`(·, u))g`′(·, v)⊗Aj,k

)
dudv

+o

(
ρn sup

ξ∈R

∥∥∥f̂`(·, ξ)∥∥∥
B
‖ĝ`′(·, ξ)‖B′

)
(2.23)

where Ψ is defined by (2.3) and ρ < 1. Note that the integration in the second line of (2.23) is
over a compact set since f` and g`′ vanish outside of a compact set.

To prove (2.23), we first note that, due to (2.14) by making an exponentially small error we

can replace the integration in the first line to Rd+1. Second, we observe that Π
(m)
0 f̂` = f̂m,` where

fm,l = Π
(m)
0 f` and that ĥ(ξ/

√
n) = ̂(

√
nh(
√
n·))(ξ). Third, since a is the Fourier transform of

Ψ, it follows that

(θ, ξ) 7→ (−i)
∑d+1
j=1 kj θk1

1 . . . θkdd ξ
kd+1a(θ,ξ) is the Fourier transform of s 7→ ∂

∑d+1
j=1 kj

(∂s1)k1 · · · (∂sd+1)kd+1
Ψ.

Fourth, we use the inversion formula for the Fourier transform. To take the inverse Fourier
transform with respect to ξ we note that we have a triple product, which is a Fourier transform
of the triple convolution of the form

im+j

∫
R2

Ψ(m+j)

(
`′ − `√
n
,
t− n ν(τ)√

n
− t1 − t2

)
∗ nfm,`(·,−

√
nt1)g`′(·,

√
nt2)dt1dt2.

Making the change of variables u = −
√
nt1, v =

√
nt2 we obtain (2.23).

Formula (2.23) implies that

Ct(f, g) '
K+1∑
m=0

b(K+1)/(J−2)c∑
k=0

K+1+2k∑
j=kJ

im+j

m!

∑
`,`′

∑
n

n−
m+j+d+1−2k

2 (2.24)

∫
[− inf τ

10
,sup τ)2

Ψ(m+j)

(
`′ − `√
n
,
t− n ν(τ) + u− v√

n

)
∗ ν
(

Π
(m)
0 (f`(·, u))g`′(·, v)⊗Aj,k

)
dudv

Step 5: Simplifying the argument of Ψ.
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Note that there exist a0, a
′
0, cm+j , c

′
m+j > 0 such that, for every `′, ` ∈ Z2 and every u, v ∈

(− inf τ
10 , sup τ),

Ψ(m+j)

(
`′ − `√
n
,
t− n ν(τ) + u− v√

n

)
≤ cm+je

−a0
n ((`′−`)2+(t−nν(τ)+u−v)2) ≤ c′m+je

−a
′
0
n

(t−nν(τ))2
.

(2.25)
Combining this estimate with

t+∑
n=t−

e−
a′0
n

(t−nν(τ))2 ≤ 2

t+∑
n=0

e
−a
′
0(ν(τ))2

t+
n2

≤ 2

∫ ∞
0

e
−a
′
0(ν(τ)s)2

t+ ds = O(
√
t) . (2.26)

Lemma A.3 (with α = 0), we obtain that

sup
u,v∈(− inf τ

10
,sup τ)

t+∑
n=t−

n−
m+j+d+1−2k

2

∣∣∣∣Ψ(m+j)

(
`′ − `√
n
,
t− n ν(τ) + u− v√

n

)∣∣∣∣ = O
(
t−

m+j+d−2k
2

)
.

Therefore, the terms of (2.24) corresponding to (m, k, j) with m+ j− 2k > K are in o
(
t−

K+d
2

)
and so the third summation in (2.24) can be replaced by

∑K−m+2k
j=kJ . The constraint K−m+2k ≥

kJ implies that we can replace the second summation in (2.24) by
∑bK/(J−2)c

k=0 .

Next let p = K −m − j + 2k. We claim that we can replace Ψ(m+j)
(
`′−`√
n
, t−n ν(τ)−u−v√

n

)
in

(2.24) by
p∑
r=0

1

r!n
r
2

Ψ(m+j+r)

(
0,
t− n ν(τ)√

n

)
∗ (`′ − `, u− v)⊗r .

Indeed by Taylor’s theorem, we just need to verify that for

lim
t→+∞

t
K+d

2

∑
`,`′

∫
R2

‖f`(·, u)‖B‖g`′(·, v)‖B′ |(`′ − `, u− v)|p
t+∑

n=t−

n−
m+j+d+1−2k+p

2 (2.27)

sup
x∈(0,1)

∣∣∣∣Ψ(m+j+p)

(
x
`′ − `√
n
,
t− n ν(τ) + x(u− v)√

n

)
−Ψ(m+j+p)

(
0,
t− n ν(τ)√

n

)∣∣∣∣ dudv
= 0 .

By (2.25) and (2.26)

t+∑
n=t−

n−
m+j+d+1−2k−p

2 sup
x∈(0,1)

∣∣∣∣Ψ(m+j+p)

(
x
`′ − `√
n
,
t− n ν(τ) + x(u− v)√

n

)∣∣∣∣
≤ c′m+j+p

t+∑
n=t−

n−
m+j+d+1−2k+p

2 e−
a′0
n

(t−n ν(τ))2
= O

(
t−

m+j+d−2k+p
2

)
uniformly in `, `′ ∈ Zd and u, v ∈ (− inf τ

10 , sup τ). This combined with (2.12) shows that the LHS
of (2.27) is dominated by an integrable function, so (2.27) follows by the dominated convergence
theorem.

Therefore

Ct(f, g) '
∑
`,`′

K+1∑
m=0

bK/(J−2)c∑
k=0

K−m+2k∑
j=kJ

K−m−j+2k∑
r=0

im+j

r!m!

t+∑
n=t−

n−
m+j+d+r+1−2k

2 Ψ(m+j+r)

(
0,
t− nν(τ)√

n

)
∗∫

R2

(
ν
(
g`′(·, v)

(
Π

(m)
0 (f`(·, u))

)
⊗ (`′ − `,+u− v)⊗rdudv ⊗Aj,k

))
. (2.28)

Step 6: Summing over n.
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Performing the summation over n and using Lemma A.3 we obtain

Ct(f, g) '
∑
`,`′

K+1∑
m=0

bK/(J−2)c∑
k=0

K−m+2k∑
j=kJ

K−m−j+2k∑
r=0

K+2k−m−j−r∑
q=0

im+j(t/ν(τ))−
m+j+d+r+q−2k

2

r!m! q! (ν(τ))
q+1

2

(2.29)

∫
R
∂q2hm+j+r,k−m+j+d+r+1

2
(s, 1)(−s)q ds

∗
(∫

R2

ν
(
g`′(·, v)

(
Π

(m)
0 (f`(·, u))

))
⊗ (`′ − `, u− v)⊗rdudv ⊗Aj,k

)
.

Therefore Ct(f, g) '
∑K

p=0 C̃p/2(f, g)
(

t
ν(τ)

)− d+p
2

where

C̃p/2(f, g) :=
∑ 1

q!

∫
R
∂q2hm+j+r,k−m+j+d+r+1

2
(s
√
ν(τ), 1)(−s)q ds (2.30)

∗ i
m+j

r!m!

∑
`,`′

∫
R2

ν
(
g`′(·, v)

(
Π

(m)
0 (f`(·, u))

))
⊗ (`′ − `, u− v)⊗rdudv ⊗Aj,k

 ,

and the first sum is taken over the nonnegative integers m, j, r, q, k satisfying m+j+r+q−2k = p.
Applying Lemma A.4 with b = m + j + r, we see that C̃p/2 = 0 if p is an odd integer. This
concludes the proof of Theorem 2.1. �

2.3. A general result for hyperbolic systems. Here we consider extensions of systems with
good spectral properties. To define the setup, let (M,ν, T ) be an extension, by p : M → ∆̄, of
a dynamical system (∆̄, ν̄, T̄ ) with Perron-Frobenius operator P̄ . In the applications considered
in the present article, p is essentially collapsing along stable manifolds.

Similarly to (A1)–(A3), we need to make assumptions to prove the complete asymptotic
expansion in inverse powers of t. However this time we need more assumptions. On the one hand
we need that the factor map T̄ satisfies variants of (A1)–(A3) (see assumptions (B3), (B4), (B6))
and on the other hand we need assumptions relating the factor map to the extension (namely,
assumptions (B1), (B2), (B5)). In particular, we will use Banach spaces B,B of observables
defined over ∆̄, the phase space of the factor map as before as well as another Banach space
(V, ‖·‖V) of functions f : M → C with V ↪→ L∞(ν). Namely, we make the following assumptions.

(B1) κ is independent of the past. There exist a nonnegative integer m0 and a ν̄-centered
bounded function κ̄ : ∆̄→ Zd such that κ̄ ◦ p = κ ◦ Tm0 .

(B2) τ is quasi independent of the past. There exist β0 ≥ 0, a function τ̄ : ∆̄→ R and
a function χ : M → R s.t. τ = τ̄ ◦ p + χ − χ ◦ T and for every ξ ∈ R, we have eiξ χ ∈ V with∥∥eiξ χ∥∥V = O

(
|ξ|β0

)
and (τ̄m0)qe−iξτ̄m0 ∈ B for every q ≤ L = K + 3.

Our next assumption is a variant of (A1).
(B3) Perron-Frobenius assumption of the factor map. We say that (B3) holds with

positive integers J and K and for the Banach space B of complex functions f : ∆̄ → C with
B ↪→ L1(∆̄, ν̄) and 1∆̄ ∈ B if the following is true with the notation L = K + 3. The family of
linear continous operators on B, defined by (P̄θ,ξ : f̄ 7→ P̄ (eiθ·κ̄eiξ τ f̄))(θ,ξ)∈[−π,π]d×R satisfies

sup
θ,ξ,n
‖P̄nθ,ξ‖ <∞ , (2.31)

and there exist constants b ∈ (0, π], C > 0, ϑ ∈ (0, 1), β > 0 and three functions λ· : [−b, b]d+1 →
C and Π·, R· : [−b, b]d+1 → L(B,B) (assumed to be CL-smooth) such that λ̃θ,ξ := λθ,ξe

−iξν(τ)

∀k < J λ̃
(k)
0 = a

(k)
0 (2.32)
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where as is given by (2.4) with a sutiable positive definite (d + 1) × (d + 1) matrix Σ, λ0 = 1
and Π0 = Eν̄ [·]1∆̄ and such that, in L(B,B),

∀s ∈ [−b, b]d+1, P̄s = λsΠs +Rs, ΠsRs = RsΠs = 0, Π2
s = Πs , (2.33)

∀k ∈ N sup
m=0,...,L

sup
s∈[−b,b]d+1

‖(Rks )(m)‖L(B,B) + sup
θ∈[−π,π]d\[−b,b]d, |ξ|≤b

‖P̄ kθ,ξ‖L(B,B) ≤ Cϑk. (2.34)

The next assumption corresponds to (A2) for the factor map.
(B4) Weak non-lattice property of the factor map. We say that the Banach space B

satisfies (B4) if

∃C, δ, α > 0, sup
θ∈[−π,π]d

‖P̄nθ,ξ‖L(B,L1) ≤ C|ξ|αe−nδ|ξ|
−α
. (2.35)

Our next assumption says that observables in V can be well approximated by regular functions
only depending on the past.

(B5) Functions in V are well approximable by liftup of B ∩B. We say that L,m0 and
the Banach spaces V,B and B satsify (B5) if there exist C0 > 0 and ϑ ∈ (0, 1) and continuous
linear maps Πn : V → B ∩ B, such that, for every f ∈ V and every integer n ≥ m0 and for any
θ ∈ [−π, π]d, ξ ∈ R and for any non-negative integer j = 0, ..., L,

‖f ◦ Tn −Πn(f) ◦ p‖∞ ≤ C0‖f‖V ϑn , (2.36)∥∥∥P̄ 2n
θ,ξ(e

−iθ.κ̄n−m0−iξ.τ̄nΠnf)
∥∥∥
B
≤ C0(1 + |ξ|)‖f‖V , (2.37)∥∥∥∥ ∂j

∂(θ, ξ)j
(P̄ 2n

θ,ξ(e
−iθ.κ̄n−m0−iξ.τ̄nΠnf))

∥∥∥∥
B
≤ C0n

j(1 + |ξ|)‖f‖V , (2.38)∥∥∥∥ ∂j

∂(θ, ξ)j
(Πn(f)eiθ·κ̄n−m0+iξ.τ̄n)

∥∥∥∥
B′
≤ C0n

j‖f‖V , (2.39)

with κ̄n :=
∑n−1

k=0 κ̄ ◦ T̄ k and τ̄n :=
∑n−1

k=0 τ̄ ◦ T̄ k.
Finally we discuss the regularity of observables. As before, we allow a large class of observ-

ables, going well beyond compactly supported C∞ functions.

(B6) Regularity of observables. We say that the observables f, g : Ω̃→ C, Banach spaces
V,B,B and the constants K,L = K + 3 satsify (B6) if

∀h ∈ {f, g} ∀(x, `, s) ∈ Ω̃, h(x, `, s) = h`(x, s) + h`+κ(x)(Tx, s− τ(x)) , (2.40)

where (f`)`∈Zd and (g`)`∈Zd are two families of functions defined on M × R→ C and vanishing

outside Ω̃0 := Ω̃ ∪
(
M ×

[
− inf τ

10 , 0
])

. Furthermore, one of these families is made of functions

continuous in the last variable and that there exists β0 such that ξ 7→ eiξ.χf̂`(·, ξ) and ξ 7→
eiξ.χĝ`(·, ξ) are CL from R to V and for every k = 0, ..., L,

sup
|ξ|≤b

∑
`∈Zd

(∥∥∥∥ ∂k∂ξk (e−iξ.χf̂`(·, ξ))
∥∥∥∥
V

+

∥∥∥∥ ∂k∂ξk (e−iξ.χĝ`(·, ξ))
∥∥∥∥
V

)
<∞ , (2.41)

∑
`

∫
R

(1 + |`|)K (‖f`(·, u)‖V + ‖g`(·, u)‖V) du <∞ , (2.42)

∀γ > 0,
∑
`,`′

(
‖eiξ.χf̂`(·,−ξ)‖V ‖e−iξ.χĝ`′(·, ξ)‖V

)
= O(|ξ|−γ) . (2.43)

∑
`∈Zd
‖f`‖∞ <∞ or

∑
`∈Zd
‖g`‖∞ <∞ , (2.44)
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Theorem 2.3. Assume that (M,ν, T ) is extension, by p : M → ∆̄, of a dynamical system
(∆̄, ν̄, T̄ ) and K,J are two integers such that 3 ≤ J ≤ L = K + 3. Assume furthermore that

(B1)-(B6) hold with some Banach spaces V,B,B, a constant m0 and functions f, g : Ω̃ → C.
Then

Ct(f, g) =

bK
2
c∑

p=0

C̃p(f, g)

(
t

ν(τ)

)− d
2
−p

+ o
(
t−

K+d
2

)
,

as t→ +∞, where

C̃p(f, g) =
∑̃
p

1

q!

1

(ν(τ))
q+1

2

∫
R
∂q2hm+j+r,k−m+j+d+r+1

2
(s, 1)(−s)q ds (2.45)

∗ i
m+j

r!m!

∑
`,`′

∫
R2

Bm (f`(·, u), g`′(·, v)) ⊗ (`′ − `, u− v)⊗r dudv ⊗Aj,k

 .

Here,
∑̃
p

is defined by (2.15), h is defined in (2.5), Aj,k for k > 0 are the multilinear forms

given by equation (A.2) from Appendix A, A0,0 = 1 and Aj,0 = 0 for j > 0 and Bm : V×V → Sm
are bilinear forms defined in (2.46) below.

To define Bm we need the following preliminary lemma, the proof of which is given at the end
of this section, after the proof of Theorem 2.3.

Lemma 2.4. Under the assumptions of Theorem 2.3, let u, v : M × ([−π, π]d]×R)→ C be two
functions such that (θ, ξ) 7→ e−iξχu(·, θ, ξ) and (θ, ξ) 7→ e−iξχv(·, θ, ξ) are L times differentiable
at 0 as functions from [−π, π]d × R to V.
Then, for every integer N = 0, ..., L, the quantity

AN (u, v) := lim
n→+∞

(
Eν
[
u(·,−θ,−ξ)eiθ·κn+iξτnv(Tn(·), θ, ξ)

]
λ−nθ,ξ

)(N)

|(θ,ξ)=0

is well defined and satisfies
|AN (u, v)| = O (‖u‖W ‖v‖W) .

Moreover for each L̄ ∈ N we have∣∣∣∣AN (u, v)−
(
Eν
[
u(·,−θ,−ξ)eeiθ·κn+iξτn

v(T̄n(·), θ, ξ)
]
λ−nθ,ξ

)(N)

|(θ,ξ)=0

∣∣∣∣ = O
(
‖u‖W ‖v‖W n−L̄

)
with

‖u‖W :=
L∑

m=0

∥∥∥∥(e−iξχu(·, θ, ξ)
)(m)

|(θ,ξ)=0

∥∥∥∥
V
<∞ .

We let Bm to be the restriction of Am on the space of functions depending on neither θ nor
ξ. Thus

Bm(F,G) := lim
n→+∞

(
Eν
[
F (·)eiθ·κn(.)+iξ(τn(.)−nν(τ))G(Tn(·))

]
λ̃−nθ,ξ

)(m)

|(θ,ξ)=0
. (2.46)

Observe that (2.45) has the same form as (2.17) with ν
(
GΠ

(m)
0 (F )

)
replaced by Bm(F,G).

In fact these two quantities coincide under the assumptions of Theorem 2.1. More precisely,
suppose that (M,ν, T ) = (∆̄, ν̄, T̄ ). Then, for (θ, ξ) ∈ [−b, b]d+1,

lim
n→+∞

(
Eν
[
F (·)eiθ·κn(.)+iξ(τn(.)−nν(τ))G(Tn(·))

]
λ̃−nθ,ξ

)
= lim

n→+∞

(
Eν
[(
Pnθ,ξF

)
G
]
λ−nθ,ξ

)
= lim

n→+∞
ν
(
G
[
Πθ,ξF + λ−nθ,ξR

n
θ,ξF

])
= ν(GΠθ,ξ(F )).
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In particular, in this case B0(F,G) = ν(GΠ0(F )). A similar argument shows that

Bm(F,G) = ν(GΠ
(m)
0 (F )),

see the proof of Lemma 2.4 for details.
We also note that due to mixing of T we have

B0(F,G) = ν(F )ν(G). (2.47)

Let us mention that Bm(F,G) for m ≤ 3 as well as λ
(k)
0 for k ≤ 4 have been computed in [42]

in the case of the Sinai billiard with finite horizon with κn instead of (κn, τn − nν(τ)). The
formulas of [42, Propositions A.3] are also valid by replacing κ therein by (κ, τ − ν(τ)) since

(κ, τ) is dynamically Lipschitz. Moreover formulas for λ
(k)
0 can be obtained by adapting the

proof of [42, Propositions A.4], up to replace the time-reversibility property of [42, Lemma 4.3]
by the fact that (((κ, τ − ν(τ)) ◦ T k)k has the same distribution as (((−κ, τ − ν(τ)) ◦ T−k)k.

Proof of Theorem 2.3. The proof of Theorem 2.3 is in many places similar to the proof of The-
orem 2.1 so below we mostly concentrate on the places requiring significant modifications. We
note that we could have presented Theorem 2.3 without discussing Theorem 2.1 first, however,
since the formulas are quite cumbersome in the present setting we prefer to discuss the argument
in the simpler setup of Theorem 2.1 first. The strategy of the proof of Theorem 2.3 can be quickly

summarized as follows. For h ∈ {f, g}, we will approximate the function e−iξχ(Tkt (·))ĥ`(T
kt(·), ξ)

by Πkt(e
−iξχ(·)ĥ`(·, ξ)), with kt large enough so that this approximation is good (see (2.36)), but

with kt not too large so that the controls in norm given by (2.38) and (2.39) are manageable.
Then we will use the argument of the proof of Theorem 2.1 thanks to the nice properties of the
transfer operator of (∆̄, ν̄, T̄ ).

Decreasing the value of b if necessary, we can assume that

∀s ∈ [−b, b]d+1, ϑ
1

10L(d+1) ≤ |λs| ≤ as/√2 , (2.48)

where ϑ is given by (2.34). Let kt := d(L+ L+1+d
2 ) log t/| log ϑ|e.

We consider Ft, Gt : ∆̄× Zd × R→ C given by

∀` ∈ Zd, ∀ξ ∈ R, Ft(·, `, ξ) := Πkt(e
−iξχ(·)f̂`(·, ξ)) and Gt(·, `, ξ) := Πkt(e

−iξχ(·)ĝ`(·, ξ)) .
As in (2.20), using (2.42) and (2.44), Ct(f, g) is equal to

1

(2π)d+1

∑
`,`′

t+∑
n=t−

∫
M

(∫
[−π,π]d×R

e−iξtf̂`(x,−ξ) e−iθ·(`
′−`)eiθ·κn(x)eiξτn(x)ĝ`′ (T

nx, ξ) dθdξ

)
dν(x) .

(2.49)
In order to apply the spectral method, as in the proof of Theorem 2.1, we want to reduce the
integration over M in (2.49) to integration over ∆̄. Namely

Eν
[
f̂`(·,−ξ) eiθ·κneiξτn ĝ`′ (Tn·, ξ)

]
= Eν

[
eiξχ◦T

kt
f̂`(T

kt(·),−ξ) eiθ·κ̄n◦T̄kt−m0◦peiξτ̄n◦T̄
kt◦pe−iξχ◦T

kt+n
ĝ`′
(
T kt+n·, ξ

)]
= Eν

[
eiξχ◦T

kt
f̂`(T

kt(·),−ξ)e−iθ.κ̄kt−m0
◦p−iξ.τ̄kt◦p eiθ·κ̄n◦peiξτ̄n◦p

eiθ.κ̄kt−m0
◦T̄n◦p+iξ.τ̄kt◦T̄

n◦pe−iξχ◦T
kt+n

ĝ`′
(
T kt+n·, ξ

)]
(2.50)

= Eν̄
[
Ft(·, `,−ξ)e−iθ.κ̄kt−m0

−iξ.τ̄kt eiθ·κ̄neiξτ̄n

eiθ.κ̄kt−m0
◦T̄n+iξ.τ̄kt◦T̄

n
Gt
(
T̄n(·), `′, ξ

)]
+O

(
ϑktd`,`′(ξ)

)
,
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with d`,`′(ξ) :=
(
‖eiξ.χf̂`(·,−ξ)‖V ‖e−iξ.χĝ`′(·, ξ)‖V

)
where we used

• the T -invariance of ν and the definitions of κ̄ and τ̄ in the first equation,
• the identities κ̄n ◦ T̄ kt−m0 = κ̄n − κ̄kt−m0 + κ̄kt−m0 ◦ T̄n and τ̄n ◦ T̄ kt = τ̄n − τ̄kt + τ̄kt ◦ T̄n

in the second one,
• (2.36) and V ↪→ L∞(ν) in the last one.

Now using the properties of Perron-Frobenius operator given by (2.1) and (2.2) we obtain

Eν
[
f̂`(·,−ξ) eiθ·κneiξτn ĝ`′ (Tn·, ξ)

]
= Eν̄

[
P̄nθ,ξ(F̄t,−θ(·, `,−ξ))Ḡt,θ(·, `′, ξ)

]
+O

(
ϑktd`,`′(ξ)

)
, (2.51)

where

F̄t,−θ(x, `,−ξ) := Ft(x, `,−ξ)e−iθκ̄kt−m0
(x)e−iξτ̄kt (x)

Ḡt,θ(x, `
′, ξ) := Gt(x, `

′, ξ)eiθκ̄kt−m0
(x)eiξτ̄kt (x).

Due to (2.41) and (2.43), substituting (2.51) into (2.49) yields

Ct(f, g) =
1

(2π)d+1

∑
`,`′

t+∑
n=t−

∫
[−π,π]d×R

(
e−iξt e−iθ·(`

′−`)

Eν̄
[
P̄n−2kt
θ,ξ

(
P̄ 2kt
θ,ξ F̄t,−θ(·, `,−ξ)

)
Ḡt,θ(·, `′, ξ)

])
dθdξ +O(ϑkt). (2.52)

Note that (2.52) is the analogue of (2.21) (with (M,ν), Pnθ,ξ, f̂`(·,−ξ) and ĝ`′(·, ξ) being replaced

by (∆̄, ν̄), P̄n−2kt
θ,ξ , P̄ 2kt

θ,ξ F̄t,−θ(·, `,−ξ) and Ḡt,θ(·, `′, ξ), respectively).

Due to (2.37) and (2.38)

‖P̄ 2kt
θ,ξ F̄t,−θ(·, `,−ξ)‖B + ‖P̄ 2kt

θ,ξ F̄t,−θ(·, `,−ξ)‖B ≤ 2C0(1 + |ξ|)‖eiξχ(·)f̂`(·,−ξ))‖V .
Next, we estimate

‖Ḡt,θ(·, `, ξ)‖B′ ≤ ‖Ḡt,θ(·, `′, ξ)‖∞
≤ ‖e−iξχ(·)ĝ`′(·, ξ)‖∞ + ‖e−iξχ◦Tn ĝ`′(Tn(·), ξ)−Πkt(e

−iξχ(·)ĝ`′(·, ξ)) ◦ p‖∞
≤ (1 + C0)‖e−iξχ(·)ĝ`′(·, ξ)‖V ,

where we used the fact that L∞ is continuously embedded into B′ in the first line, the definition
of Gt and the triangle inequality in the second one and (2.36) and V ↪→ L∞(ν) in the third one.
Therefore, due to (2.43),

∀γ > 0,
∑

`,`′∈Zd
‖P̄ 2kt

θ,ξ F̄t,−θ(·, `,−ξ)‖B‖Ḡt,θ(·, `
′, ξ)‖∞ = O(|ξ|−γ) .

Hence, proceeding as in Step 2 of the proof of Theorem 2.1 we obtain that

Ct(f, g) ' 1

(2π)d+1

∑
`,`′

t+∑
n=t−

∫
[−b,b]d+1

e−iξt e−iθ·(`
′−`)

Eν̄
[
P̄n−2kt
θ,ξ

(
P̄ 2kt
θ,ξ F̄t,−θ(·, `,−ξ)

)
Ḡt,θ(·, `′, ξ)

]
dθdξ . (2.53)

Using (2.51) again we obtain

Ct(f, g) ' 1

(2π)d+1

∑
`,`′

t+∑
n=t−

∫
[−b,b]d+1

e−iξt e−iθ·(`
′−`)

Eν
[
f̂`(·,−ξ) eiθ·κneiξτn ĝ`′ (Tn·, ξ)

]
dθdξ . (2.54)
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Moreover, for every (θ, ξ) ∈ [−b, b]d+1 and every integer n satisfying t− ≤ n ≤ t+, using Taylor
expansion, the following holds true

Eν
[
f̂`(·,−ξ) eiθ·κneiξτn ĝ`′ (Tn·, ξ)

]
λ−nθ,ξ

=
L−1∑
N=0

1

N !

(
Eν
[
f̂`(·,−ξ) eiθ·κneiξτn ĝ`′ (Tn·, ξ)

]
λ−nθ,ξ

)(N)

|(θ,ξ)=0
∗ (θ, ξ)⊗N

+O

 sup
u∈[0,1],(θ′,ξ′)=(uθ,uξ)

Eν
[
f̂`(·,−ξ′) eiθ

′·κneiξ
′τn ĝ`′ (T

n·, ξ′)
]

λnθ,ξ

(L)

|(θ′,ξ′)

|(θ, ξ)|L

. (2.55)

Let us study the derivatives involved in this formula. First, since Πkt is linear and continuous,
for every m = 0, ..., L, we have(

Πkt

(
e−iξχĥ`(·, θ, ξ)

))(m)

|(θ,ξ)
= Πkt

((
e−iξχĥ`(·, θ, ξ)

)(m)

|(θ,ξ)

)
. (2.56)

Using (2.56) and (2.50) we obtain the following analogue of (2.51),∣∣∣∣(Eν [f̂`(·,−ξ) eiθ·κneiξτn ĝ`′ (Tn·, ξ)]λ−nθ,ξ )(L)

(θ,ξ)

∣∣∣∣ =

(
Eν̄
[
P̄n−2kt
θ,ξ

(
P̄ 2kt
θ,ξ

(
F̄t,−θ(·, `,−ξ)

))
Ḡt,θ(·, `′, ξ)

]
λ−nθ,ξ

)(L)

(θ,ξ)
+O

(
ϑktnLd̃`,`′(ξ)

∣∣∣λ−nθ,ξ ∣∣∣) (2.57)

with d̃`,`′(ξ) := supm,m′=0,...,L

(∥∥∥ ∂m

∂ξm

(
eiξ.χf̂`(·,−ξ)

)∥∥∥
V

∥∥∥ ∂m
′

∂ξm′
(
e−iξ.χĝ`′(·, ξ)

)∥∥∥
V

)
.

Using (2.33), (2.38), (2.39), we find that the first term of (2.57) is bounded from above by

C2
0 (1 + |ξ|) sup

m=0,...,L
kmt d̃`,`′(ξ)

∥∥∥∥((Rn−2kt
θ,ξ /λnθ,ξ) + λ−2kt

θ,ξ )Πθ,ξ

)(L−m)

(θ,ξ)

∥∥∥∥
L(B,B)

,

which is in O

(
kLt d̃`,`′(ξ)

(
ϑn−2k

ϑ
n
10

+ ϑ
− kt

5L(d+1)

))
. This observation, combined with (2.55), (2.57)

and our choice of kt yields

Eν
[
f̂`(·,−ξ) eiθ·κneiξτn ĝ`′ (Tn·, ξ)

]
λ−nθ,ξ (2.58)

=

L−1∑
N=0

1

N !

(
Eν
[
f̂`(·,−ξ) eiθ·κneiξτn ĝ`′ (Tn·, ξ)

]
λ−nθ,ξ

)(N)

|(θ,ξ)=0
∗ (θ, ξ)⊗N +O

(
n

2
5 d̃`,`′(ξ)|(θ, ξ)|L

)
+O

(
n−

L+1+d
2 d̃`,`′(ξ)

∣∣∣λ−nθ,ξ ∣∣∣) , (2.59)

for (θ, ξ) ∈ [−b, b]d+1.
Now we apply Lemma 2.4 to conclude that (2.58) is equal to

L−1∑
N=0

1

N !
AN

(
f̂`, ĝ`′

)
∗ (ξ, θ)⊗N +O

(
d̃`,`′(ξ)

(
n−

K+d+1
2 + n

2
5 |(θ, ξ)|L + n−

L+1+d
2

∣∣∣λ−nθ,ξ ∣∣∣)) . (2.60)

Recalling the notation as := e−
1
2

Σ∗s⊗2
and Lemma A.1, we have

λns = einξν(τ)as
√
n

b(K+1)/(J−2)c∑
k=0

K+1+2k∑
j=kJ

nkAj,k ∗ s⊗j (2.61)

+ O
(
as
√
n/
√

2 n
−K+1

2 (1 + |s
√
n|K0)η(s)

)
,
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where lim
s→0

η(s) = 0. Note that the modulus of the dominating term of (2.60) is bounded by

O
(
d̃`,`′(ξ)

)
uniformly in (θ, ξ) ∈ [−b, b]d+1 and that the modulus of λns in (2.61) is bounded by

O(as
√
n/
√

2) (the first one follows from Lemma 2.4, the second one follows from (2.48)). Thus

multiplying (2.60) and (2.61) we conclude

Eν
[
f̂`(·,−ξ) eiθ·κneiξτn ĝ`′ (Tn·, ξ)

]
(2.62)

=
L−1∑
N=0

b(K+1)/(J−2)c∑
k=0

K+1+2k∑
j=kJ

einξν(τ)as
√
nn

k

N !

(
AN

(
f̂`, ĝ`′

)
⊗Aj,k

)
∗ s⊗(N+j)

+ O
(
|λns |d̃`,`′(ξ)

(
n−

K+d+1
2 + n

2
5 |s|L + n−

L+1+d
2

∣∣λ−ns ∣∣))
+ O

(
L−1∑
N=0

1

N !
AN

(
f̂`, ĝ`′

)
∗ s⊗Nas√n/√2 n

−K+1
2 (1 + |s

√
n|K0)η(s)

)
where s = (θ, ξ). This leads to the following error term

O
(
d̃`,`′(ξ)

(
as
√
n/
√

2

(
n−

K+d+1
2 + n

2
5 |s|L

)
+ n−

L+1+d
2

))
+ O

(
d̃`,`′(ξ)as

√
n/
√

2 n
−K+1

2 (1 + |s
√
n|K0)η(s)

)
(2.63)

= O
(
d̃`,`′(ξ)

(
n−

L+1+d
2 + as

√
n/
√

2

(
n−

K+d+1
2 + n

2
5 |s|L + n−

K+1
2
(
1 + |s

√
n|K0

)
η(s)

)))
,

Observe that ∫
Rd+1

as
√
n/
√

2

(
n−

K+d+1
2 + n

2
5 |s|L + n−

K+1
2 (1 + |s

√
n|K0)η(s)

)
ds

= n−
d+1

2

∫
Rd+1

as/
√

2

(
n−

K+d+1
2 + n

2
5
−L

2 |s|L + n−
K+1

2 (1 + |s|K0)η(s/
√
n)
)
ds

= o
(
n−

K+2+d
2

)
.

Therefore (2.41), (2.54) and (2.62), (2.63) imply

Ct(f, g) ' 1

(2π)d+1

L−1∑
N=0

1

N !

b(K+1)/(J−2)c∑
k=0

K+1+2k∑
j=kJ

∑
`,`′

t+∑
n=t−

IN,k,j`,`′,n , (2.64)

where

IN,k,j`,`′,n = nk
∫

[−b,b]d+1

e−iξ(t−nν(τ)) e−iθ·(`
′−`)

(
AN

(
f̂`, ĝ`′

)
⊗Aj,k

)
∗ (θ, ξ)⊗(N+j)a√n(θ,ξ) dθdξ .

By changing variables, we see that

IN,k,j`,`′,n = n−
d+1+N+j−2k

2

∫
[−b
√
n,b
√
n]d+1

(
AN

(
f̂`, ĝ`′

)
⊗Aj,k

)
∗e−i

ξ(t−nν(τ))√
n e

−i θ·(`
′−`)√
n (θ, ξ)⊗(N+j)aθ,ξ dθdξ.

At first sight, this expression looks simpler than (2.23) since AN
(
f̂`, ĝ`′

)
does not depend on ξ

and so no convolution is involved when taking the inverse Fourier transform. Namely we obtain

IN,k,j`,`′,n ≈ (2π)d+1n−
d+1+N+j−2k

2 iN+jΨ(N+j)

(
`′ − `√
n
,
t− nν(τ)√

n

)
∗
(
AN

(
f̂`, ĝ`′

)
⊗Aj,k

)
, (2.65)

where I ≈ I ′ means that (2.64) holds for I and I ′ at the same time (i.e. the difference obtained

when substituting I and I ′ to (2.64) is in o
(
t−

K+d
2

)
). Now recall the definition BN from (2.46).
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Note that the difference between AN and BN is that the latter one is defined for function that
do not depend on ξ. Thus

AN
(
f̂`, ĝ`′

)
=

∑
m1+m2+m3=N

N !

m1!m2!m3!
(−1)m1Bm2

(
(f̂(., `, ξ))

(m1)
|ξ=0 , (ĝ(., `, ξ))

(m3)
|ξ=0

)
. (2.66)

Note that

(f̂(x, `, ξ))
(m1)
|ξ=0 (ĝ(y, `, ξ))

(m3)
|ξ=0 =

∫
R2

(iu)m1(iv)m3f(x, `, u)g(y, `, v)dudv.

Hence (2.66) is equal to∑
m1+m2+m3=N

N !

m1!m2!m3!

∫
R2

(0,−iu)⊗m1 ⊗ (0, iv)⊗m3 ⊗ Bm2 (f(·, `, u), g(·, `, v)) dudv.

Now using the binomial theorem, we find that (2.66) is equal to

N∑
m=0

N !

m!(N −m)!

∫
R2

(0, i(v − u))⊗N−m ⊗ Bm (f(·, `, u), g(·, `, v)) dudv.

Substituting this into (2.65) and using (2.64) and the identity (−1)N−miN+N−m = im, we find

Ct(f, g) '
L−1∑
N=0

b(K+1)/(J−2)c∑
k=0

K+1+2k∑
j=kJ

∑
`,`′

N∑
m=0

t+∑
n=t−

1

m!(N −m)!
im+jn−

d+1+N+j−2k
2

Ψ(N+j)

(
`′ − `√
n
,
t− nν(τ)√

n

)
∗
(∫

R2

(0, u− v)⊗N−m ⊗ Bm (f(·, `, u), g(·, `, v)) dudv ⊗Aj,k
)
.

Now proceeding as in Step 5 of the proof of Theorem 2.1 we get

Ct(f, g) '
L−1∑
N=0

b(K+1)/(J−2)c∑
k=0

K+1+2k∑
j=kJ

∑
`,`′

N∑
m=0

K−N−j+2k∑
r=0

t+∑
n=t−

im+j

m!(N −m)!r!n
d+1+N+j+r−2k

2

Ψ(N+j+r)

(
0,
t− nν(τ)√

n

)
∗ (`′ − `)⊗r

(∫
R2

(0, u− v)⊗N−m ⊗ Bm (f(·, `, u), g(·, `, v)) dudv ⊗Aj,k
)
.

Performing summation over n as in Step 6 of the proof of Theorem 2.1 (using again Lemma
A.3), we derive

Ct(f, g) '
K∑
N=0

bK/(J−2)c∑
k=0

K+1+2k∑
j=kJ

∑
`,`′

N∑
m=0

K−N−j+2k∑
r=0

K+2k−N−j−r∑
q=0

1

m!(N −m)!r!q!
im+j

(t/ν(τ))−
d+N+j+r+q−2k

2

(ν(τ))
q+1

2

∫
R
∂q2hN+j+r,k−N+j+d+r+1

2
(s, 1)(−s)q ds

∗(`′ − `)⊗r
(∫

R2

(0, u− v)⊗N−m ⊗ Bm (f(·, `, u), g(·, `, v)) dudv ⊗Aj,k
)
.

We will set R = N −m + r. The binomial theorem tells us that, m, j, k being fixed, for every
R = 0, ...,K −m− j + 2k, the following identity holds true∑

(r,N) :N−m+r=R

R!

(N −m)!r!
(`′ − `)⊗r ⊗ (0, u− v)⊗N−m = (`′ − `, u− v)⊗R .

We conclude that

Ct(f, g) '
∑
`,`′

K∑
m=0

bK/(J−2)c∑
k=0

K−m+2k∑
j=kJ

K−m−j+2k∑
R=0

K+2k−m−j−R∑
q=0

im+j(t/ν(τ))−
m+j+d+R+q−2k

2

R!m! q! (ν(τ))
q+1

2
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R
∂q2hm+j+R,k−m+j+d+R+1

2
(s, 1)(−s)q ds

∗
(∫

R2

Bm (f`(·, u), g`′(·, v)) ⊗ (`′ − `, u− v)⊗R dudv ⊗Aj,k
)
.

This implies the theorem. �

Proof of Lemma 2.4. Let N ∈ {0, ..., L} be fixed. Let us prove that, for every N ,(
AN,n(u, v) :=

(
Eν
[
u(·,−θ,−ξ)eiθ·κn+iξτnv(Tn(·), θ, ξ)

]
λ−n(θ,ξ)

)(N)

|(θ,ξ)=0

)
n

is a Cauchy sequence. Observe that (2.50) is valid with kt replaced by any integer k such that
m0 ≤ k ≤ n. That is, for such k we have

AN,n(u, v) =
(
Eν
[(
eiξχ◦T

k
u(T k(·),−θ,−ξ)e−iθκ̄k−m0

◦p−iξτ̄k◦p
)
eiθ·κ̄n◦p+iξτ̄n◦p

eiθκ̄k−m0
◦T̄n◦p+iξτ̄k◦T̄n◦pe−iξχ◦T

n+k
v(Tn+k(·), θ, ξ)

]
λ−n(θ,ξ)

)(N)

|(θ,ξ)=0
.

Thus, we obtain

AN,n(u, v) = ÃN,n
(
Ũk, Ṽk

)
, (2.67)

where

ÃN,n(U, V ) =
(
Eν
[
U(·,−θ,−ξ)eiθ·κ̄n◦p+iξτ̄n◦pV (Tn(·), θ, ξ)

]
λ−n(θ,ξ)

)(N)

|(θ,ξ)=0
,

Ũk(·, θ, ξ) := (e−iξχu(·, θ, ξ)) ◦ T k.ei(θ·κ̄k−m0
+ξτ̄k)◦p ,

and

Ṽk(·, θ, ξ) := (e−iξ.χv(·, θ, ξ)) ◦ T k.ei(θ·κ̄k−m0
+ξ·τ̄k)◦p .

Recall (2.36) and denote

Uk(·, θ, ξ) := Πk(e
−iξχu(·, θ, ξ)).ei(θ·κ̄k−m0

+ξτ̄k) and Vk(·, θ, ξ) := Πk(e
−iξχv(·, θ, ξ)).ei(θ·κ̄k−m0

+ξτ̄k) .

Since Πk is linear and continuous and since (θ, ξ) 7→ e−iξ.χu(·, θ, ξ) is L times differentiable at 0
as a V-valued function, for every m = 0, ..., L, we have(

Πk

(
e−iξχu(·, θ, ξ)

))(m)

|(θ,ξ)=0
= Πk

((
e−iξχu(·, θ, ξ)

)(m)

|(θ,ξ)=0

)
. (2.68)

Thus ∥∥∥∥(e−iξχ◦Tku(T k(·), θ, ξ)
)(m)

|(θ,ξ)=0
−
(
Πk(e

−iξχu(·, θ, ξ))
)(m)

|(θ,ξ)=0
◦ p
∥∥∥∥
∞

≤ C0ϑ
k

∥∥∥∥(e−iξχu(·, θ, ξ)
)(m)

|(θ,ξ)=0

∥∥∥∥
V
≤ C0ϑ

k‖u‖W , (2.69)

and idem by replacing u by v. Next, observe that

‖τ̄mn + |κ̄n|m‖∞ +
∣∣∣(λ−n)(m)

|(θ,ξ)=0

∣∣∣ = O(nm). (2.70)

Combining (2.68), (2.69), and (2.70) we obtain

AN,n(u, v)− ÃN,n(Uk ◦ p, Vk ◦ p) = ÃN,n(Ũk, Ṽk)− ÃN,n(Uk ◦ p, Vk ◦ p) (2.71)

=
(
Eν
[
eiθ·κneiξτn

(
Ũk (·,−θ,−ξ) Ṽk (Tn(·), θ, ξ)− Uk (p(·),−θ,−ξ)Vk (p(Tn(·)), θ, ξ)

)]
λ−nθ,ξ

)(N)

|(θ,ξ)=0

= O
(
nNϑk‖u‖W‖v‖W

)
.
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Let kn := dlog2 ne. Take n′ ∈ [n, 2n]. Using (2.71) we obtain

|AN,n(u, v) −AN,n′(u, v)
∣∣

≤
∣∣∣ÃN,n(Ukn ◦ p, Vkn ◦ p)− ÃN,n′(Ukn ◦ p, Vkn ◦ p)

∣∣∣+O
(
nN‖u‖W ‖v‖Wϑkn

)
.

The main term on the RHS equals to

Eν̄
[(

(λ−nt P̄n−2kn
t − λ−n′t P̄n

′−2kn
t )

(
P̄ 2kn
t (Ukn(·,−t))

)
Vkn(·, t)

)(N)

|t=0

]
. (2.72)

Since λ−ñt P̄ ñ−2kn
t = λ−2kn

t Πt + λ−ñt Rñ−2kn
t we can use the definition of B′ to bound (2.72) by∥∥∥∥((λ−nt Rn−2kn

t − λ−n′t Rn
′−2kn
t )

(
P̄ 2kn
t (Ukn(·,−t))

)
Vkn(·, t)

)(N)

|t=0

∥∥∥∥
L1(ν̄)

≤

≤CN max
n′∈[n,2n],1≤m1≤N

(λ−n
′

t )
(m1)
|t=0

(
max

1≤m2≤N

∥∥∥(Rn−2kn
t )

(m2)
|t=0

∥∥∥
L(B,B)

+ max
1≤m2≤N

∥∥∥(Rn
′−2kn
t )

(m2)
|t=0

∥∥∥
L(B,B)

)
×
∥∥∥∥ max

1≤m3≤N

(
P̄ 2kn
t (Ukn(·,−t))

)(m3)

|t=0

∥∥∥∥
B

∥∥∥∥ max
1≤m4≤N

Vkn(·, t)(m4)
|t=0

∥∥∥∥
B′
.

Now observe that the max over m2 is bounded by O(ϑn/2) by (2.34) and the other terms cannot
grow faster than a polynomial in n. In particular, we use (2.38) to bound the max over m3 and
(2.39) to bound the max over m4. We conclude that (2.72) is exponentially small.

Therefore, for each L̄ ∈ N we have

sup
n̄≥0
|AN,n(u, v)−AN,n+n̄(u, v)| ≤

∑
p≥0

sup
n̄=0,...,2pn

|AN,2pn(u, v)−AN,2pn+n̄(u, v)|

≤

∑
p≥0

(2pn)−L̄‖u‖W ‖v‖W

 = O
(
‖u‖W ‖v‖W n−L̄

)
.

Hence AN (u, v) is well defined and satisfies

|AN,n(u, v)−AN (u, v)| = O
(
‖u‖W ‖v‖W n−L̄

)
. �

3. Mixing expansion for the Sinai billiard flow

3.1. Sinai billiards. In the plane R2, we consider a Z2-periodic locally finite family of scatterers
{Oi + `; i = 1, ..., I, ` ∈ Z2}. We assume that the sets Oi + ` are disjoint, open, strictly convex
and their boundaries are C3 smooth with strictly positive curvature.

The dynamics of the Lorentz gas can be described as follows. A point particle of unit speed
is flying freely in the interior of Q̃ = R2 \ ∪`,i (Oi + `) and undergoes elastic collisions on ∂Q̃
(that is, the angle of reflection equals the angle of incidence). Throughout this paper we assume
the so-called finite horizon condition, i.e. that the free flight is bounded. The same dynamics
on the compact domain is called Sinai billiard. The position of the particle is a point q ∈ Q̃
and its velocity is a vector v ∈ S1 (as the speed is identically 1). Since collisions happen
instantaneously, the pre-collisional and post-collisional data are identified. By convention, we
use the post-collisional data, i.e. whenever q ∈ ∂Q̃, we assume that v satisfies ~nq.v ≥ 0, where

. stands for the scalar product and ~nq is the unit vector normal to ∂Q̃ directed inward Q̃.
The phase space, that is, the set of all possible positions and velocities, will be denoted by
Ω̃ = Q̃× S1.

The billiard flow is denoted by Φ̃t : Ω̃ → Ω̃, where t ∈ R. Let µ̃0 be the Lebesgue measure
on Ω̃ normalized so that µ̃0((Q̃ ∩ [0, 1]2)× S1) = 1.
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The Sinai billiard is defined analogously on a compact domain. That is, we consider disjoint
strictly convex open subsets Ōi ⊂ T2 (corresponding to the canonical projection of Oi), i =
1, ..., I, whose boundaries are C3 smooth with strictly positive curvature. Then we put Q =
T2 \∪iOi. We define the billiard dynamics (Ω,Φt,µ0) exactly as (Ω̃, Φ̃t, µ̃0) except that we use

the billiard table Q instead of Q̃ and µ0 is a probability measure.
Next, we represent the flow Φt as a suspension over a map. This map is called the billiard

ball map: the Poincaré section of Φt corresponding to the collisions. That is, we define

M = {(q, v) ∈ Ω : q ∈ ∂Q} = {(q, v) ∈ Ω : q ∈ ∂Q, ~nq.v ≥ 0}.

T : M →M is defined by T (x) = Φτ (x), where τ = τ (x) is the smallest positive number such
that Φτ (x) ∈M . The projection of µ0 to the Poincaré section is denoted by ν. In fact, ν has
the density c~nq.vdqdv, where c = 2|∂Q| is a normalizing constant such that ν is a probability
measure. Clearly, we can write

Ω = {(x, t), x ∈M , t ∈ [0, τ (x))}.

With this notation, we have µ0 = 1
ν(τ )ν ⊗ l, where l is the Lebesgue measure on [0,+∞).

Note that the measure µ0 is a probability measure unlike µ defined in Section 2.1.
Finally, we define the measure preserving dynamical system (M̃ , T̃ , ν̃) analogously to the

Lorentz gas. For every ` ∈ Z2, we define the `-cell C` as the set of the points with last reflection

off Q̃ took place in the set
⋃I
i=1(Oi+ `). Identifying T2 with the unit square [0, 1)2 ⊂ R2, we see

that (M̃ , T̃ , ν̃) is the Z2-extension of (M ,T ,ν) by κ : M → Z2, where κ(x) = ` if T̃ (x) ∈ C`.
The observable (κ, τ ) : M → Z2 × R satisfies the central limit theorem (see e.g. [10]). That

is, there exists a 3× 3 positive definite matrix Σκ,τ so that for any A ⊂ R3 whose boundary has
zero Lebesgue measure

ν

(
x ∈M :

(κn, τn − nν(τ))√
n

∈ A
)

=

∫
A

ΨΣκ,τ

where Ψ is the Gaussian density defined by (2.3). Consequently, the central limit theorem holds
for the observable κ with a covariance matrix Σκ, which is obtained from Σκ,τ by deleting the
last row and the last column.

Denote

‖h‖HηE = sup
y∈E
|h(y)|+ sup

y,z∈E, y 6=z

|h(y)− h(z)|
d(y, z)η

.

We will say that a function h : Ω̃→ R is smooth in the flow direction if

∀N ≥ 0
∑
`

∥∥∥∥ ∂N∂sN (h ◦ Φ̃s

)
|s=0

∥∥∥∥
HηC`

<∞ . (3.1)

Note that in order for (3.1) to hold, it is sufficient that h is C∞ in the position q ∈ Q̃ and
satisfies

∀N ≥ 0,
∑
`

∥∥∥∥ ∂N∂qN h

∥∥∥∥
HηC`

<∞ ,

∀(q,~v) ∈ ∂Q̃× S1,
∂N

∂qN
h(q,~v) =

∂N

∂qN
h (q,~v − 2(~nq.~v)~nq) . (3.2)

We say that h : Ω̃ → R is η-Hölder continuous if it is η-Hölder continuous on Q̃ × S1 and
satisfies (3.2) with N = 0.

Now we are ready to formulate the main result of this section.
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Theorem 3.1. Let f, g : Ω̃→ R be two η-Hölder continuous functions with at least one of them
smooth in the flow direction. Assume moreover that there exists an integer K0 ≥ 1 such that∑

`

(1 + |`|)2K0

(
‖f‖HηC`

+ ‖g‖HηC`

)
<∞ . (3.3)

Then there are real numbers C0(f, g),C1(f, g), ...,CK0(f, g) so that we have∫
Ω̃
f g ◦ Φ̃tdµ̃0 =

K0∑
k=0

Ck(f, g)t−1−k + o(t−1−K0) , (3.4)

as t→ +∞. Furthermore, C0(f, g) = c0
∫
Ω̃ fdµ̃0

∫
Ω̃ gdµ̃0 with

c0 =
ν(τ )

2π
√

det Σκ
(3.5)

and the coefficients Ck, as functionals over pairs of admissible functions, are bilinear.

We note that the bilinear forms Ck are linearly independent. Namely in Appendix B we give
examples of functions fk, gk such that Ck(fk, gk) 6= 0 while Cj(fk, gk) = 0 for all j < k.

In the remaining part of Section 3, we derive Theorem 3.1 from Theorem 2.3. We will not
be applying Theorem 2.3 directly to (M ,ν,T ), but instead we apply it to the Young tower
extension of the Sinai billiard. Thus we first briefly review the Young tower construction in
Section 3.2. Then we prove condition (B4) in Section 3.3 along the lines of [12]. We complete
the proof of Theorem 3.1 in Section 3.4 and finally (3.5) is established in Section 3.5.

3.2. Young towers. Let R ⊂M be the hyperbolic product set constructed in [46, Section 8].
Furthermore, let (∆, F ) be the corresponding Young tower (”Markov extension”). There is a
natural bijection ι between ∆0, the base of the tower and R. We will denote points of R by
x = (γu, γs), which is to be interpreted as γu ∩ γs, where γu = γu(x) and γs = γs(x) are an
unstable and a stable manifold containing x. Points of ∆0 will be denoted by x̂ = (γ̂u, γ̂s). Note
that ι can be extended to π, a mapping from ∆ to M (this map is in general not one-to-one).

We recall the most important ingredients of the construction of [46]. The base of the tower
has the product structure X = ∆0 = Γu × Γs. The sets of the form A × Γs, A ⊂ Γu are called
u-sets if ι(A ⊂ Γu) is compact. Similarly, sets of the form Γu × B, B ⊂ Γs are called s-sets if
ι(B ⊂ Γu) is compact. Also, sets of the form Γu×{γ̂s} are called stable manifolds and sets of the
form {γ̂u}×Γs are unstable manifolds as they are images of (un)stable manifolds (or rather, the

intersections of (un)stable manifolds and R) by the map ι−1. ∆0 has a partition ∆0 =
⋃
k∈Z+

∆0,k,

where ∆0,k = Γu × Γsk are s-sets. The return time to the base on the set ∆0,k is identically rk,

that is ∆ =
⋃
k∈Z+

rk−1⋃
l=0

∆l,k, where ∆l,k = {(x̂, l) : x̂ ∈ ∆0,k}. There is an F -invariant measure ν

on ∆ so that π∗ν = µ and F is an isomorphism between ∆l,k and ∆l+1,k and F (x̂, l) = (x̂, l+ 1)
if l < rk−1. Also F is an isomorphism between ∆rk−1,k and F (∆rk−1,k), the latter being a u-set
of ∆0. Furthermore, if x̂1, x̂2 ∈ ∆0,k belong to the same (un)stable manifold, so do F rk(x̂1, 0)

and F rk(x̂2, 0). We write F = F rk−l on ∆l,k and r(γ̂u, γ̂s) = r(γ̂s) = rk for (γ̂u, γ̂s) ∈ ∆0,k.
Define Ξ on ∆ by

Ξ((γ̂u, γ̂s), l) = ,uג̂)) γ̂s), l) with a fixed uג̂ ∈ Γu. (3.6)

Let ∆̄ = Ξ(∆) and ν̄ = Ξ∗ν. There is a well defined F̄ : ∆̄ → ∆̄ such that Ξ ◦ F = F̄ ◦ Ξ.
The dynamical system (∆̄, ν̄, F̄ ) is an expanding tower in the sense that it satisfies assumptions
(E1)–(E5) below.
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Let (∆̄, ν̄, F̄ ) be a probability preserving dynamical system with a partition (∆̄l,k)k∈I,l=0,...,rk−1

into positive measure subsets, where I is either finite or countable and rk = r(∆̄0,k) is a positive
integer. We call it an expanding tower if

(E1) for every i ∈ I and 0 ≤ j < ri − 1, F̄ is a measure preserving isomorphism between ∆̄j,i

and ∆̄j+1,i.
(E2) for every i ∈ I, F̄ is an isomorphism between ∆̄ri−1,i and

X̄ := ∆̄0 :=
⋃
i∈I

∆̄0,i.

(Remark on convention: points of the space X̄ are identified with and sometimes denoted
as stable manifolds.)

(E3) Let r(x) = r(∆̄0,k) if x ∈ ∆̄0,k and F̄ : X̄ → X̄ be the first return map to the base,

i.e. F̄(x) = F̄ r(x)(x). Let s(x, y), the separation time of x, y ∈ X̄, be defined as the
smallest integer n such that F̄nx ∈ ∆̄0,i, F̄ny ∈ ∆̄0,j with i 6= j. As F̄ : ∆̄0,i → X̄ is an
isomorphism, it has an inverse. Denote by α the logarithm of the Jacobian of this inverse
(w.r.t. the measure ν̄). Then there are constants ϑα < 1 and C > 0 such that for every
x, y ∈ ∆̄0,i,

|α(x)− α(y)| ≤ Cϑs(x,y)
α . (3.7)

(E4) Extend s to ∆̄ by setting s(x, y) = 0 if x, y do not belong to the same ∆̄j,i and s(x, y) =
s(F̄−jx, F̄−jy)+1 if x, y ∈ ∆̄j,i. (∆̄, ν̄, F̄ ) is exact (hence ergodic and mixing) with respect
to the metric

dϑ(x, y) := ϑs(x,y).

Furthermore, in case of Sinai billiards, we have

(E5) ν̄(x : r(x) > n) ≤ Cρn with some ρ < 1.

3.3. Weak non-lattice property for Sinai billiards. In this section we verify condition (B4)
for Sinai billiards. We note that the methods of this section are similar to those used in some
earlier work [12,13,35]. Those methods are useful for proving that the mixing in some uniformly
and non-uniformly hyperbolic flows are faster than any polynomial. In the context of Sinai
billiard flows, more precise results are available. In particular, [9] proves stretched exponential
bounds for the correlations functions. More recently, [4] showed that the correlations in fact
decay exponentially. To prove this result, [4] uses Banach spaces which are more sophisticated
than the spaces used here. We note that using the spaces from [4] would not improve our
result since the decay of correlations for the infinite measure system is actually polynomial, not
exponential.

Given a function f : M → C, we define f̂ : ∆ → C by f̂ = f ◦ π. Now for a function
f̂ : ∆→ C (which may or may not be a lift-up of a function f : M → C), we write X = ∆0 and
define

f̂X : X → C, f̂X(x̂) =

r(x̂)−1∑
j=0

f̂(F j(x̂, 0)),

f̄ : ∆̄→ C, f̄(γ̂s, l) = f̂(̂גu, γ̂s, l) ,

f̄X̄ : X̄ → C, f̄X̄(γ̂s) =

r(γ̂s)−1∑
j=0

f̂(F j(̂גu, γ̂s, 0)) .

Fix κ < 1 and consider the space of dynamically Lipschitz functions on X̄ (w.r.t. the metric
dκ):

Cκ(X̄,C) = {f : X̄ → C bounded and L(f) <∞},
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where
L(f) = inf{C : ∀x, y ∈ X̄ : |f(x)− f(y)| ≤ Cκs(x,y)}.

The larger κ is, the bigger the space Cκ(X̄,C) is. It is best to take κ very close to 1 to include
many functions in Cκ(X̄,C). For example we assume that κ > ϑα. More lower bounds on κ
will be imposed in (3.49). The space Cκ(X̄,C) is equipped with the norm

‖f‖κ = L(f) + ‖f‖∞.
Let Q be the Perron-Frobenius-Ruelle operator associated with F̄ , i.e.

(Qh)(x) =
∑

y:F̄y=x

eα(y)h(y)

where eα is the Jacobian defined in (E3). We have for h with ‖h‖κ <∞
Qnh = ν̄(h)1 +Rnh, (3.8)

where ‖Rnh‖κ ≤ Cρn‖h‖κ for some ρ < 1.
Now we introduce the (signed) temporal distance function D on R by defining

D(x, y) =

∞∑
`=−∞

[τ (T `(γu(x), γs(x)))− τ (T `(γu(x), γs(y))) + (3.9)

τ (T `(γu(y), γs(y)))− τ (T `(γu(y), γs(x)))],

where τ is defined in §3.1. Note that there is a lift-up τ̂ : ∆ → R+ defined by τ̂ (x̂) = τ (π(x̂))
and corresponding functions τ̂X , τ̄ , τ̄X̄ .

We also define the operators

Qξh = Q(eiξτ̄X̄h) . (3.10)

For real valued functions defined on X̄, we will consider the norms

‖.‖∞, ‖.‖κ, ‖.‖(ξ) := max

{
‖.‖∞,

L(.)

C0ξ

}
, (3.11)

where ξ � 1 and C0 is a constant to be specified later.
Next we define several special points in the rectangle R. Namely, let x0 ∈ R be defined by

the requirement

ι−1(T r1k(x0)) ∈ ∆0,1 for all k ∈ Z
and for m ∈ Z+ we define ym ∈ R by

ι−1(T
∑l−1
j=0 raj (ym)) ∈ ∆0,al for all l = 0, 1, 2, ...

ι−1(T−
∑−1
j=l raj (ym)) ∈ ∆0,al for all l = −1,−2, ...

where the sequence (aj)j depends on m ∈ Z+ and is defined by

aj =

{
2 if j = −1 or j = m− 1

1 otherwise.

The points x, y1, y2, ... exist and are uniquely defined by Axioms (P1) and (P2) of [46] (com-
pactness and Markov intersection). Note that upon each Markov return to ∆ (in both positive
and negative time), x0 in fact returns to ∆0,1. Likewise ym always returns to ∆0,1 except for
times −1 and m− 1, when it returns to ∆0,2. In fact, the forthcoming proof would work for any
x0 and ym as long as they share their symbolic sequence for Markov return times −m1+ε, ...,m
except for the times −1 and m− 1 when they differ and their symbolic sequences are bounded.
We chose the symbolic sequence to only contain 1 and 2 for simplicity and prescribed infinite
orbit for the convenience of a unique definition.
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To simplify notation, we write

[z1, z2] = (γu(z1), γs(z2)). (3.12)

Let Qm be the solid rectangle with corners x0, [x0, ym], ym, [ym, x0], i.e. the unique topological
rectangle inside the convex hull of R which is bounded by two stable and unstable manifolds,
such that two of its corners are x0 and ym. We claim that there are two constants 0 < c2 < c1 < 1
so that

cm2 < µ(Qm) < cm1 (3.13)

for sufficiently large m.
To prove this claim, let Q0,i denote the smallest topological rectangle containing ι(∆0,i) for

i = 1, 2. Note that T r1 is a C2 map when restricted to the interior of Q0,i. By construction,
T jr1Qm is a subset of Q0,1 for j = 0, 1, ...,m − 2. Now consider a foliation of Qm by unstable
curves. Each such curve is expanded by a factor Λ > 1 by the C2-map T r1 and so the upper
bound follows. To prove the lower bound, first observe that γu(ym) and γu(x0) are independent
of m (since the past itinerary of ym does not depend on m) and consequently the stable size of

Qm is bounded from below by a positive constant. Next, note that T (m−1)r1Qm intersects both
Q0,1 and Q0,2 and so, as we can assume that the distance between Q0,1 and Q0,2 is positive, the

length of the image of each unstable curve in our foliation under the map T (m−1)r1 is uniformly
bounded from below. Furthermore, the expansion of T r1 on Q0,1 is bounded from above (since
T r1 is C2 on Q0,1) and so the lower bound follows as well. Next, Lemma 5.1 of [28] states that

µ(Qm) = |D(x0, ym)| (3.14)

(see also [10, §6.11]). Note that D(x0, ym) has another representation: it is the unique small
number σ so that ΦσY1 = Y5, where Φ is the billiard flow, Y1, ..., Y5 are points whose last
collisions were at x0, [x0, ym], ym, [ym, x0], x0, respectively and the pairs (Y1, Y2), (Y3, Y4) are on
the same stable manifold of Φ while the pairs (Y2, Y3), (Y4, Y5) are on the same unstable manifold
of Φ (see Lemma 6.40 in [10]). The following property of the points x0 and ym is crucial.

Lemma 3.2. There exist some a0 > 0, and c ∈ R+ such that for any ξ > 3 the unique positive
integer m = m(ξ) defined by the property

cm1 < ξ−1 ≤ cm−1
1 (3.15)

satisfies

|eiξD(x0,ym) − 1| > cξ−a0 . (3.16)

Proof. It is sufficient to prove the lemma for ξ large. Indeed, if we can prove the lemma for
ξ > ξ0, then we can extend it to any ξ > 3 by choosing c small enough unless there is some
ξ′ ∈ [3, ξ0] so that ξ′D(x, y) = 0 (mod 2π) for all x, y. Note that this cannot happen since this
would imply lξ′D(x, y) = 0 (mod 2π) where we can choose l ∈ Z+ so that lξ′ > ξ0.

Now given ξ large, (3.13) and (3.14) imply that m satisfies cm2 < |D(x0, ym)| < cm1 . Thus

c1c2ξ
1− ln c2

ln c1 ≤ c−m+1
1 cm2 ≤ ξ|D(x0, ym)| ≤ 1

proving (3.16). �

Recall the definition of Qξ from (3.10). We have

Lemma 3.3. Suppose that C0 in (3.11) is large enough. Then there are constants a1, C1, d1 so
that for every ξ > 3, ∥∥∥QC1 ln ξ

ξ

∥∥∥
(ξ)
< 1− d1

ξa1
. (3.17)
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Proof. The proof consists of several steps. We will need several large constants C2, C3, ...,
b1, b2, ... and small constants d2, d3, ... before being able to define the large constant C1, a1

and the small constant d1.
Let h satisfy ‖h‖(ξ) = 1. By [8], there exists a constant C2 such that for every n,

L(Qnξ h) ≤ C2[ξ‖h‖∞ + κnL(h)] , (3.18)

(see also Proposition 3.7 in [35]). Thus fixing any C0 > 4C2 in the definition of the norm ‖.‖(ξ)
we have that for any C3 > − ln 4

(ln 3)(lnκ)

L
(
QC3 ln ξ
ξ h

)
≤ C2[ξ + κC3 ln ξL(h)] ≤ C2[ξ + C0ξ

1+C3 lnκ] ≤ C0
ξ

2
. (3.19)

In order to prove the lemma, it remains to verify (3.17) for ‖ · ‖∞ norm.
This proof is divided into three parts:

Step 1. We show that given constants d2 and b1 there exist d3 and b2 so that for any
` = 0, 1, 2, ..., ‖Q`ξh‖L1 < 1− d3

ξb2
assuming the following hypothesis:

(H): for any ξ > 3 there is some u ∈ X̄≤2 := {x̄ ∈ X̄ : F̄n(x̄) ∈ ∆̄0,1 ∪ ∆̄0,2 for all n ∈ N} so
that

|h(u)| < 1− d2

ξb1
. (3.20)

Let U be the d2ξ
−b1−1/(2C0) neighborhood of u (w.r.t the metric dκ) in X̄. Since L(h) ≤ C0ξ,

we have |h(u′)| < 1− d2

2ξb1
for any u′ ∈ U . By the bounded distortion property and the fact that

u ∈ X̄≤2, there are constants d4 and b3 depending only on the billiard table so that

d4

ξb3
≤ ν̄(U). (3.21)

Observing that
|Qnξ h| ≤ Qn|h| (3.22)

holds pointwise (by definition of those operators), and using ‖h‖∞ ≤ 1, we derive that for any `∫
|Q`ξh|dν̄ ≤

∫
Q`|h|dν̄ =

∫
|h|dν̄ =

∫
U
|h|dν̄ +

∫
X̄\U
|h|dν̄

≤
(

1− d2

2ξb1

)
ν̄(U) + 1− ν̄(U) ≤ 1− d2

2ξb1
ν̄(U) ≤ 1− d2d4/2

ξb1+b3
.

This proves the statement of Step 1 with

d3 = d2d4/2 and b2 = b1 + b3 (3.23)

where d4 and b3 come from (3.21).
Step 2. Under hypothesis (H), we show that if C4 is sufficiently large then there is a constant

d5 so that ∥∥∥QC4 ln ξ
ξ h

∥∥∥
∞
< 1− d5

ξb2
.

For any u ∈ X̄, we have∣∣∣QC4 ln ξ
ξ h

∣∣∣ (u) ≤(3.22)
(
QC4 ln ξ |h|

)
(u) ≤ ν̄ (|h|) + Cξ(C0 + 1)ρC4 ln ξ , (3.24)

where the last inequality follows from (3.8) and the following computation

‖RC4 ln ξ|h|‖∞ ≤ ‖RC4 ln ξ|h|‖κ ≤ CρC4 ln ξ‖h‖κ ≤ CρC4 ln ξ(1 + ξC0)‖h‖(ξ).
Combining (3.24) with the result of Step 1 (with ` = 0), we conclude∥∥∥QC4 ln ξ

ξ h
∥∥∥
∞
≤ 1− d3

ξb2
+ Cξ(C0 + 1)ρC4 ln ξ ≤ 1− d3/2

ξb2
,
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where the last inequality holds if C4 is so big that for all ξ > 3,

ξ1+C4 ln ρ+b1 ≤ d3

2C(C0 + 1)
. (3.25)

This completes Step 2.

Step 3. In Step 3, we will show the following:
(?): there exist constants C4, d2 and b1 so that for any ξ > 3, there is some v ∈ X̄≤2 that

either satisfies (3.20) or satisfies the following:

|Qnξ h(v)| < 1− d2

ξb1
with n = C4 ln ξ. (3.26)

Before proving (?), we first prove the lemma assuming (?). Namley, we show that if C4 is
large enough, then for all ξ > 3, ∥∥∥QC5 ln ξ

ξ h
∥∥∥
∞
< 1− d5

ξb2
(3.27)

with C5 = 2C4. Indeed, if there is a v satisfying (3.20), then the proof in Step 2 applies
with b2 = b1 + b3 (see (3.23)). On the other hand, if there is a v satisfying (3.26), then since
‖Qξ‖(ξ) ≤ 1, we have ‖Qnξ h‖(ξ) ≤ 1 and so we can apply the results of Step 2 for the function

h replaced by Qnξ h. Hence (3.27) holds. The estimate (3.27) implies the lemma because we can

assume C5 > − ln 4
(ln 3)(lnκ) , define C1 = C5, a1 = b2, d1 = d5 and combine (3.19) with (3.27).

In the remaining part of the proof, we verify (?).

For a function f : X̄ → R, we write fn(x) =
n−1∑
j=0

f(F̄ jx).

Recall that for any fixed ξ, Lemma 3.2 tells us that x0 and ym with

m ∼ (ln(1/c1))−1 ln ξ (3.28)

(see (3.15)) satisfy (3.16). Recalling the definition of n from (3.26), we note that

n/m ∼ C4 ln(1/c1). (3.29)

Next, we write (γ̂u(x), γ̂s(x)) = ι−1(x), (γ̂u(y), γ̂s(y)) = ι−1(y), v = F̄n/2(γ̂s(x)), w = F̄n/2(γ̂s(y)).
We will show that in case no point in X̄≤2 satisfies (3.20), then either v or w satisfies (3.26). This
will complete the proof of Step 3. To this end, assume by contradiction that neither satisfies
(3.26).

Writing h(x̄) = r(x̄)eiφ(x̄), we have

(Qnξ h)(v) =
∑

u∈X̄:F̄nu=v

eαn(u)+iξ(τ̄X̄)n(u)r(u)eiφ(u)

= eαn(v′−n)+iξ(τ̄X̄)n(v′−n)r(v′−n)eiφ(v′−n) + eαn(v′′−n)+iξ(τ̄X̄)n(v′′−n)r(v′′−n)eiφ(v′′−n) + ...

where

v′−n = Ξ(ι−1(T−r1n/2(γu(x), γs(x)))), v′′−n = Ξ(ι−1(T−r1(n/2−1)−r2(γu(y), γs(x))))

and ... corresponds to all other preimages.
Thus (Qnξ h)(v) is expressed as a weighted sum of the unit vectors zu := ei[ξ(τ̄X̄)n(u)+φ(u)] ∈ C,

with non-negative weights βu := eαn(u)r(u). Next, we claim that if v violates (3.26), then any
two unit vectors zu, zu′ , with weights βu′ , βu′′ ≥ ε necessarily satisfy arg(zu′) − arg(zu′′) < ε,
where

ε := (8d2)1/3ξ−b1/3. (3.30)
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To prove this claim, first note that
∑

u∈X̄:F̄nu=v

eαn(u) = 1 and |r| ≤ 1. Now consider the special

case zu′ = eiε/2, zu′′ = eiε/2, βu′ = βu′′ = ε and zu = 1 for all u ∈ U := {u ∈ X̄ \{u′, u′′} : F̄nu =
v} and

∑
u∈U βu = 1− 2ε. In this case, zu′ + zu′′ = 2 cos(ε/2) and so

|(Qnξ h)(v)| = (1− 2ε) + 2ε cos(ε/2) ≤ 1− ε3/8

and so v satisfies (3.26). In any other case, whenever there is zu, zu′ with βu′ , βu′′ ≥ ε and
arg(zu′)− arg(zu′′) ≥ ε, we have∣∣∣∣∣ei arg(−zu′−zu′′ )

[
(βu′ − ε)zu′ + (βu′′ − ε)zu′′ +

∑
u∈U

βuzu

]∣∣∣∣∣ ≤ 1− 2ε

and

ei arg(−zu′−zu′′ )(zu′ + zu′′) ≤ 2 cos(ε/2).

Thus |(Qnξ h)(v)| cannot be bigger than in the above special case. This proves the claim.

If r(v′−n) < 1/2 or r(v′′−n) < 1/2, then one of these points satisfies (3.20) and so the proof of
Step 3 is complete.

Next consider the case when r(v′−n) ≥ 1/2 and r(v′′−n) ≥ 1/2. Recall that v′−n, v
′′
−n ∈ X̄≤2.

Since α is a Hölder function (recall (3.7)), it is bounded from below on the compact set X̄≤2

and so eα is bounded from below by some η > 0 on the set X̄≤2. Consequently,

min
(
eαn(v′−n), eαn(v′′−n)

)
≥ ηn = ξC4 ln η

where the last step relies on (3.26). Hence

β(v′−n), β(v′′−n) > ξC4 ln η/2. (3.31)

Next, we need to guarantee that

1

2
ξC4 ln η ≥ (8d2)1/3ξ−b1/3. (3.32)

We now select

d2 =
1

64
(3.33)

so that (8d2)1/3 = 1
2 . We will also assume that b1 = b1(C4) satisfies

b1 = −3C4 ln η (3.34)

(the precise conditions C4 will become clear at the end of Step 3). (3.33) and (3.34) ensure that
(3.32) holds.

Now (3.31) and (3.32) imply that β(v′−n), β(v′′−n) > ε. Recall that we assumed by contradic-
tion that v does not satisfy (3.26). Then our earlier claim implies that

|[ξ(τ̄X̄)n(v′−n)− ξ(τ̄X̄)n(v′′−n)]− [φ(v′−n)− φ(v′′−n)]| ≤ ε.

Repeating the above argument for w, and writing

w′−n = Ξ(ι−1(T−r1(n/2−1)−r2(γu(y), γs(y)))), w′′−n = Ξ(ι−1(T−r1n/2(γu(x), γs(y)))),

we find

|[ξ(τ̄X̄)n(w′−n)− ξ(τ̄X̄)n(w′′−n)]− [φ(w′−n)− φ(w′′−n)]| ≤ ε.
By construction, s(v′−n, w

′′
−n) ≥ n/2 and so further increasing C4 if necessary, we can guarantee

that |φ(v′−n)− φ(w′′−n)| ≤ ε.
Similarly, we can assume |φ(v′′−n)− φ(w′−n)| ≤ ε. Hence, denoting d6 = 4(8d2)1/3,

b4 = b1/3 + 1 (3.35)
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and recalling (3.30), we obtain

|A| ≤ 4ε = d6/ξ
b4 , (3.36)

where

A = (τ̄X̄)n(v′−n)− (τ̄X̄)n(v′′−n) + (τ̄X̄)n(w′−n)− (τ̄X̄)n(w′′−n). (3.37)

The inequality (3.36) is a major step in deriving a contradiction with (3.16). As we will see, A
is a good approximation of the finite chunk of the sum defining the temporal distance of x0 and
ym (cf. (3.9)) corresponding to times ` with |`| / n. We need to verify that the remaining part
of the sum satisfies an inequlaity similar to (3.36).

Recall (3.6) and (3.9). Using the notations z = (γu(z), γs(z)) ∈ R, ẑ = ι−1(z) = (γ̂u(z), γ̂s(z))
and

H(z) =
∞∑
`=0

[τ (T `(z))− τ (T `(ι(̂גu, γs(z)))] , (3.38)

observe that

τ̂X(γ̂u(z), γ̂s(z))− τ̄X̄(γ̂s(z)) = H(γu(z), γs(z))−H(T r(γ̂
s(z))(γu(z), γs(z))) . (3.39)

Recalling the notation (3.12), let us write

d`,f (z1, z2) = f(T `([z1, z1])− f(T `([z1, z2]))− f(T `([z2, z1])) + f(T `([z2, z2])). (3.40)

Recall the dynamical Hölder continuity of τ : there are some constant Cτ and ϑτ < 1 so that
if z1, z2 ∈M are such that T `(z1) and T `(z1) stay on the same local unstable manifold for all
` ≤ L, then

|τ (z1)− τ (z2)| < Cτϑ
L
τ . (3.41)

Likewise, if T `(z1) and T `(z1) stay on the same local stable manifold for all ` ≥ −L, then
|τ (z1)− τ (z2)| < Cτϑ

L
τ .

With the above notation, we have

D(x0, ym) =
∞∑

`=−∞
d`,τ (x0, ym).

The sum is absolutely convergent as both |f(T `(z1) − f(T `([z1, z2]))| and | − f(T `([z2, z1])) +
f(T `(, z2))| are exponentially small in |`| for ` < 0 and both |f(T `(z1) − f(T `([z2, z1]))| and
| − f(T `([z1, z2])) + f(T `(z2))| are exponentially small in ` for ` > 0. We will decompose the
above series as

∞∑
`=−∞

d`,τ (x0, ym) = S1 + S2 + S3, (3.42)

where S3 =
∞∑

`=r1(n/2−1)+1

d`,τ (x0, ym) and

S1 =

−r1n/2−1∑
`=−∞

τ (T `(x0))− τ (T `([x0, ym]))

+

−r1(n/2−1)−r2−1∑
`=−∞

−τ (T `([ym, x0])) + τ (T `(ym)),

S2 =

r1(n/2−1)∑
`=−r1n/2

τ (T `(x0))−
r1(n/2−1)∑
`=−r1n/2

τ (T `([x0, ym]))
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−
r1(n/2−1)∑

`=−r1(n/2−1)−r2

τ (T `([ym, x0])) +

r1(n/2−1)∑
`=−r1(n/2−1)−r2

τ (T `(ym)).

Directly checking all four choices of z, w ∈ {x0, ym}, we see that the sum S1 + S2 contains the
term (−1)1z 6=wτ (T `([z, w])) for every ` ≤ r1(n/2− 1) exactly once. Since S2 is a finite sum, and
since by our previous observation both series in S1 converge absolutely, (3.42) holds.

Let us study S2. First, we have by the definition of x0 that ι−1(T r1k(x0)) ∈ ∆0,1 for all k ∈ Z.
Consequently,

r1(n/2−1)∑
`=−r1n/2

τ (T `(x0)) =

n/2−1∑
k=−n/2

τ̂X(ι−1(T r1k(x0))).

Next, recalling that Ξ(ι−1(T−r1n/2(x0))) = v′−n, we have Ξ(ι−1(T r1k(x0))) = F̄k+n/2v′−n, for
k = −n/2, ..., n/2− 1. Now applying (3.39), we conclude

r1(n/2−1)∑
`=−r1n/2

τ (T `(x0)) = (τ̄X̄)n(v′−n) +

n/2−1∑
k=−n/2

[
H(T r1k(x0))−H(T r1(k+1)(x0))

]
= (τ̄X̄)n(v′−n) +H(T−r1n/2(x0))−H(T r1n/2(x0))

Arguing similarly with the other three sums in S2, we find

S2 = A+ d0,H(T−r1n/2(x0),T−r1(n/2−1)−r2(ym))− d0,H(T r1n/2(x0),T r1(n/2−1)+r2(ym)), (3.43)

where A is defined by (3.37), d0,H is defined by (3.40) with ` = 0 and H as in (3.38).
Next we claim that if n > 4m (which can be achieved by increasing C4) then

|S1|+ |S2 −A|+ |S3| ≤ d7ξ
−b5 , (3.44)

where

d7 = 4Cτ
1

1− ϑτ
, b5 = −1

4
r1C4 lnϑτ . (3.45)

To prove (3.44), we first use the dynamical Hölder property of τ to conculde that both series

whose sum defines S1 are absolutely convergent and in absolute value bounded by Cτ
1

1−ϑτ ϑ
r1n/2
τ .

Thus by the definition of n (see (3.26)) and b5 (see (3.45)), we have |S1| ≤ d7ξ
−b5/2.

Estimating S3 is simpler: since n/2 > m it follows that all of the points

T `(x0),T `([x0, ym]),T `(ym),T `([ym, x0])

lie on the same local stable manifold for ` > n/2. Since n/4 > m, the dynamical Hölder

continuity of τ implies |S3| ≤ Cτ
1

1−ϑτ ϑ
n/4
τ and so by the definition of n and b5, we have

|S3| ≤ d7ξ
−b5/2.

It remains to study S2−A. Recall (3.43). Writing z1 = T−r1n/2(x0), z2 = T−r1(n/2−1)−r2(ym),
we note that by the definition of x0 and ym, z1 and z2 are on the same local unstable manifold.
Thus [z1, z2] = z2 and [z2, z1] = z1 and so d0,H(z1, z2) = 0. Likewise,

d0,H(T r1n/2(x0),T r1(n/2−1)+r2(ym)) = 0

and so S2 −A = 0. We have verified (3.44).
Finally, we combine (3.36) and (3.44) to conclude that

D(x0, ym) ≤ d6ξ
−b4 + d7ξ

−b5 . (3.46)

By (3.35), (3.34) and (3.45), both b4 and b5 are a constant multiple of C4 where this constant
only depends on the geometry of the billiard. Thus we can increase C4 if necessary to ensure
that both b4 and b5 are bigger than a0 given in Lemma 3.2. Then (3.46) is a contradiction with
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Lemma 3.2. Thus (?) is valid. This completes the proof of Step 3 and finishes the proof of
Lemma 3.3. �

Now we revisit the tower (∆̄, F̄ ). Recall that a separation time s was defined in (E4). Let

‖f‖B = ‖f‖∞ + sup{C : ∀x, y ∈ ∆̄ : |f(x)− f(y)| ≤ Cκs(x,y)} . (3.47)

Let us denote by P̄ the Perron-Frobenius operator associated with F̄ and let P̄θ,ξ be defined by

P̄θ,ξ(f) := P̄
(
eiθ·κ̄+iξτ̄f

)
. We conclude this section by

Lemma 3.4. There are constants C3, α2 and δ so that

sup
θ∈[−π,π]d

‖P̄ n
θ,ξ‖L(B,L1) ≤ C3|ξ|α2e−nδ|ξ|

−α2
. (3.48)

Proof. The proof follows the lines of [35]. Consider the operator

Qθ,s,zh = Q(eiθ·κ̄X̄+sτ̄X̄+zrh)

where κ : M → Z2 is defined in Section 3.1 and r : X̄ → Z+ is defined by (E3). Here, s and z
are complex numbers. In particular Q0,iξ,0 = Qξ.

Assume first that θ = 0. By Lemma 3.3, ‖(I −QC1 ln ξ
0,iξ,0 )−1‖(ξ) < d−1

1 ξa1 and so by the identity

(I −A)−1 = (I +A+ ...+Am−1)(I −Am)−1, we have

‖(I −Q0,iξ,0)−1‖(ξ) < Cξa
′
1

for any a′1 > a1. This inequality can be extended from Q0,iξ,0 to Q0,s,z with s = a+iξ, z = σ+iω

for |a|, |σ| < ε|ξ|−a′1 , ω ∈ [0, 2π) for some small ε as in Lemma 3.14 of [35].
Now we can repeat the proof by operator renewal theory as in Section 4 in [35]. Specifically,

their Proposition 4.1 is applicable by (E5) and so their Lemma 4.4 gives (3.48) with θ = 0.
Finally, since κ is constant on local stable manifolds, the proof can be extended to arbitrary

θ ∈ [−π, π]d as explained in the proof of Lemma 3.14 in [35]. �

3.4. Proof of Theorem 3.1. Let S0 = ∂M = {(q, v) ∈M : ~nq.v = 0} be the singularity set,
i.e. the collection of points in the phase space corresponding to grazing collisions.

The transformation T defines a C1 diffeomorphism from M \ (S0∪T−1S0) to T \ (S0∪TS0).
Moreover there exist C0 > 0 and θ0 ∈ (0, 1) such that the diameter of every connected

component of M \
n⋃

j=−n
T−jS0 is less than C0θ

n
0 . We consider now a suitable separation time ŝ

on ∆. The main difference between s and ŝ is that counts the steps straight up in the tower, i.e.
ŝ((x, l), (y, l)) = ŝ((x, 0), (y, 0))− l. The exact definition of ŝ is not important for us and can be
found in [46].

Recall that, by construction of [46], for every x, y ∈ ∆ in the same unstable manifold, π(x)

and π(y) lie in the same connected component of M \
ŝ(x,y)⋃
j=−∞

T−jS0, with ŝ(x, y) := ŝ(Ξ(x),Ξ(y)).

We will prove that the assumptions of Theorem 2.3, namely (B1)–(B6), are satisfied with:

• Σ = Σκ,τ

• K = 2K0

• d = 2,
• (M,ν, T ) = (∆, ν, F ), τ := τ̂ = τ ◦ π, κ := κ̂ = κ ◦ π,
• (∆̄, ν̄, T̄ ) = (∆̄, ν̄, F̄ ), p = Ξ and P̄ = P̄
• V the space of functions f : ∆→ C such that the following quantity is finite

‖f‖V = ‖f‖∞ + sup
γu; x,y∈γu

|f(x)− f(y)|
κŝ(x,y)

+ sup
n≥0, γs; x,y∈γs

|f(Fn(x))− f(Fn(y))|
κn

,
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where κ is a fixed real number satisfying

max
(
θ

1/4
0 , θη0 , ϑα, ϑτ

)
< κ < 1, (3.49)

where η, ϑα and ϑτ are defined by (3.3), (3.7) and (3.41), respectively.
• The space B is the Young space of complex-valued functions f : ∆̄ → C such that
‖f‖B <∞ with ‖ · ‖B defined by

‖f‖B = sup
l
‖f |∆̄l

‖∞e−lε0 + sup
l

ess sup
x,y∈∆̄l

|f(x)− f(y)|
κŝ(x,y)

e−lε0 . (3.50)

with κ as in (3.49) and a suitable ε0.
• The space B is the space of complex-valued bounded Lipschitz functions f : ∆̄→ C such

that ‖f‖B <∞ with ‖ · ‖B defined in (3.47) for the same choice of κ.

In view of (E5),
B ↪→ Lq0(ν̄) for some q0 ∈ (1,+∞) (3.51)

provided that ε0 is small enough.
Observe that, with these notations (Ω̃, Φ̃t, µ̃0) can be represented by the suspension semiflow

(Φ̃t)t≥0 (with roof function τ) over the Z2-extension of (M,ν, T ) by τ .
We define

‖f‖B0 = ‖f‖∞ + inf{C : ∀x, y ∈ ∆̄ : |f(x)− f(y)| ≤ Cκŝ(x,y)}.
Observe that B0 ⊂ B ∩ B and that the multiplication by an element of B0 defines a continuous

linear operator on B and on B.
Now we proceed to verifying assumptions (B1)–(B6). Since κ is constant on stable manifolds,

there exists a ν̄-centered Z2-valued bounded function κ̄ ∈ B such that κ̄◦p = κ. Therefore, (B1)
holds with m0 = 0.

Next, since τ is 1/2-Hölder on every connected component of M \ (S0 ∪ T−1
0 (S0)) and since√

θ0 ≤ κ, we have τ ∈ V.
Now, on ∆, we define χ :=

∑
k≥0

(
τ ◦ F k − τ ◦ F k ◦ Ξ

)
. By construction,

τ = τ̄ ◦ p + χ− χ ◦ F, where τ̄ ◦ Ξ(x̂u, l) = τ̄ (x̂u, l) = τ̂ (x̂u, x̂s, l) . (3.52)

Next, we claim that χ ∈ V and τ̄ ∈ B0.
Indeed, first,

‖χ‖∞ ≤
∑
k≥0

‖τ ◦ F k − τ ◦ F k ◦ Ξ‖∞ ≤
∑
k≥0

‖τ‖Vκk <∞ .

Second, if x, y ∈ ∆ are on the same stable manifold, then Ξ(Fn(x)) = Ξ(Fn(y)) and so, since τ
is 1/2-Hölder, for every nonnegative integer n,

|χ(Fn(x))− χ(Fn(y))| ≤
∑
k≥0

∣∣∣τ(F k+n(x))− τ(F k+n(y))
∣∣∣ ≤ Cτ∑

k≥0

(
C0θ

k+n
0

) 1
2

= O(κn).

Third, if x, y ∈ ∆ are on the same unstable manifold, then

|τ(F j(x))− τ(F j(y))|+ |τ(F j(Ξ(x)))− τ(F j(Ξ(y)))| ≤ 2Cτ (C0θ
ŝ(x,y)−j
0 )

1
2

and
|τ(F j(x))− τ(F j(Ξ(x)))|+ |τ(F j(y))− τ(F j(Ξ(y)))| ≤ 2Cτ (C0θ

j
0)

1
2 .

So, since θ
1
4
0 ≤ κ

|χ(x)− χ(y)| ≤ O

 ∑
0≤k≤ŝ(x,y)/2

κ2(ŝ(x,y)−k) +
∑

k>ŝ(x,y)/2

κ2k

 = O
(
κŝ(x,y)

)
.
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This shows that χ ∈ V. Then clearly χ ◦ F ∈ V as well. Since τ ∈ V, (3.52) implies τ̄ ◦ p ∈ V
which in turn gives τ̄ ∈ B0.

Observe that
∥∥eiξ.χ∥∥V = O(1 + |ξ|) and that (τ̄m0)ke−iξτ̄m0 ∈ B for every k and m0 = 1. Thus

we have verified (B2).
The fact that (P̄θ,ξ : f̄ 7→ P̄ (eiθ·κ̄eiξ.τ̄ f̄))(θ,ξ)∈[−π,π]d×R satisfies (2.31), (2.32), (2.33), (2.34),

with J = 3 follows from [44, 46] (see also [42]). This implies (B3). Condition (B4) is proved in
Lemma 3.4.

Next, we check (B5). For any f ∈ V and any nonnegative integer n, we define Πnf : ∆̄→ C
by

∀x ∈ ∆, (Πnf) ◦ Ξ(x) := Eν [f ◦ Fn|ŝ(·, x) ≥ 2n] .

Note that Πn is linear and continuous from V to B0 with norm in O
(
2κ−2n

)
. By definition of

V, if s(x, y) ≥ 2n, then by considering z in the stable manifold containing x and in the unstable
manifold containing y, Fn(z) is in the same unstable manifold as Fn(y) with ŝ(Fn(y), Fn(z)) ≥ n
and so

|f(Fn(x))− f(Fn(y))| ≤ |f(Fn(x))− f(Fn(z))|+ |f(Fn(z))− f(Fn(y))| ≤ ‖f‖Vκn .

Therefore we have proved that

∀f ∈ V, ‖f ◦ Fn −Πn(f) ◦ Ξ‖∞ ≤ C0‖f‖V κn ,

and so (2.36) holds for any ϑ ≥ κ.
Recall that

P̄ 2n
θ,ξh(x) =

∑
z∈F̄−2n({x})

eα2n(z)+iθ.κ̄2n(z)+iξ.τ̄2n(z)h(z) ,

with

αl :=
l−1∑
k=0

α ◦ F̄ k, κ̄l :=
l−1∑
k=0

κ̄ ◦ F̄ k, and τ̄l :=
l−1∑
k=0

τ̄ ◦ F̄ k.

By construction of (∆̄, ν̄, F̄ ), for every x, y ∈ ∆̄ with ŝ(x, y) ≥ 1, there exists a bijection
W2n : F̄−2n({x}) → F̄−2n({y}) such that ŝ(z,W2n(z)) ≥ 2n and so Πnf(z) = Πnf(W2n(z)).
Moreover, since α, κ̄, τ̄ ∈ B0, for g ∈ {α, κ̄, τ̄} and for any x, y, z as above, we have

|g(F̄ k(z))− g(F̄ k(Wn(z)))| ≤ ‖g‖B0κŝ(x,y)+2n−k .

Hence

|gn(F̄ k(z))− gn(F̄ k(Wn(z)))| ≤ ‖g‖B0(1− κ)−1κŝ(x,y)+n−k .

We conclude that there exists C0 > 0 such that, for every θ ∈ [−π, π]d, ξ ∈ R and for every
non-negative integer j,∥∥∥∥ ∂j

∂(θ, ξ)j
(P̄ 2n

θ,ξ(e
−iθ.κ̄n−iξ.τ̄nΠnf))

∥∥∥∥
B0

≤
∥∥∥∥ ∂j

∂(θ, ξ)j
P̄ 2n(ei(θ.κ̄n+ξ.τ̄n)◦F̄nΠnf)

∥∥∥∥
∞

+

sup
x,y∈∆̄,
ŝ(x,y)≥1

κ−ŝ(x,y)

∣∣∣∣∣∣ ∂j

∂(θ, ξ)j

∑
z∈F̄−2n(x)

(
eα2n(z)+(iθκ̄n+iξτn)◦F̄n(z) − eα2n(Wn(z))+(iθκ̄n+iξτn)◦F̄n(Wn(z))

)
Πnf(z)

∣∣∣∣∣∣
≤ C0n

j(1 + |ξ|)‖f‖∞
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and ∥∥∥∥ ∂j

∂(θ, ξ)j
(Πn(f)eiθ·κ̄n−m0+iξ.τ̄n)

∥∥∥∥
B′
≤

∥∥∥∥ ∂j

∂(θ, ξ)j
(Πn(f)eiθ·κ̄n−m0+iξ.τ̄n)

∥∥∥∥
Lp(µ̄)

≤
∥∥∥∥( ∂j

∂(θ, ξ)j
(Πn(f)eiθ·κ̄n−m0+iξ.τ̄n)

)∥∥∥∥
∞

≤ C0n
j‖f‖∞ ,

where we used that κ̄ and τ̄ are uniformly bounded and p is such that 1
q0

+ 1
p = 1 with q0 defined

in (3.51). Therefore we have proved (2.37), (2.38) and (2.39) and so verified (B5).
Next, we define f and g as follows: f(x, `, s) = f(q + ` + s~v,~v) and similarly g(x, `, s) =

g(q + `+ s~v,~v) if π(x) = (q,~v). Note that (q + `+ s~v,~v) = Φ̃s(q + `, ~v) for s ∈ [0, τ(q,~v)). Let
(h, h) = (f, f) or (g, g). We define

h`(x, s) := χ0(s)h
(
Φ̃s(q + `, ~v)

)
(1− χ0(s− τ(x))) ,

with χ0 : R → [0, 1] a fixed increasing C∞ function such that χ0(u) = 0 if u ≤ −min τ
10 and

χ0(u) = 1 if u ≥ 0.
Note that h`(x, ·) have support in

[
−min τ

10 , τ(x)
]
, coincide with h(x, `, ·) in [0, τ(x)− min τ

10 ], and

satisfy (2.40). Let u ∈ R be fixed. Then ‖h`(·, u)‖∞ ≤ sup
|`′−`|≤max τ

∥∥h1C`′∥∥∞. Furthermore, since

τ ∈ V, θη0 < κ, and h ◦ Φ̃s is uniformly η-Hölder continuous for s ∈ [−min τ
10 ,max τ ], we obtain

that there exists a uniform constant C̃ > 0 such that

‖h`(·, u)‖V ≤ C̃ sup
|`′−`|≤max τ

‖h‖HCη
`′
. (3.53)

Thus, (2.44) and (2.42) follow directly from (3.3). Recall that

∂k

∂ξk

(
e−iξ.χĥ`(x, ξ)

)
=

k∑
m=0

k!

m! (k −m)!
(−iχ)me−iξχ

∫
(−min τ

10
,τ(x))

(is)k−meiξsh`(x, s) ds . (3.54)

Next, to prove (2.41) it suffices to show that∑
`∈Zd

(∥∥∥∥ ∂k∂ξk (e−iξ.χf̂`(·, ξ))
∥∥∥∥
V

+

∥∥∥∥ ∂k∂ξk (e−iξ.χĝ`(·, ξ))
∥∥∥∥
V

)
< C(1 + |ξ|) . (3.55)

Observe that ‖e−iξχ‖V = O(1+|ξ|) and the integral in (3.54) is uniformly bounded by 2 max τ‖h`‖∞.
Furthermore, for x, y ∈ γu such that ŝ(x, y) ≥ n (resp. for x, y ∈ Fn(γs)) and such that
τ(x) ≤ τ(y), we have∣∣∣∣∣

∫
(−min τ

10
,τ(x))

... h`(x, s) ds−
∫

(−min τ
10

,τ(y))
... h`(y, s) ds

∣∣∣∣∣
≤
∫

(−min τ
10

,τ(x))
|...| |h`(x, s)− h`(y, s)| ds+

∫ τ(y)

τ(x)
|...| |h`(y, s)| ds

≤
∫

(−min τ
10

,τ(x))
C ‖h`(·, s)‖V κ

n ds+ ‖τ‖V κ
nC ‖h`(·, s)‖∞ ds .

Now (3.55) follows from (3.53) and (3.3).
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Assume next that h satisfies (3.1), then the functions h`(x, ·) are C∞ and there exists a

uniform constant C̃0 > 0 such that

∀N ∈ N,
∥∥∥∥ ∂N∂sN h`(·, s)

∥∥∥∥
V
≤ C̃0 sup

m=0,...,N
sup

|`′−`|≤max τ

∥∥∥∥ ∂m∂sm (h ◦ Φ̃s

)
|s=0

∥∥∥∥
HηC`′

.

Moreover, since h` is C∞ with compact support, by classical integration by parts, we have

∀N ∈ N, ĥ`(x, ξ) = (−i)Nξ−N
∫
R
eiξ s

∂N

∂sN
h`(·, s) ds

Therefore, since χ ∈ V, we have proved that, if h satisfies (3.1), we have

∀γ > 0,
∑
`

‖e−iξ χĥ`(·,−ξ)‖V = O(|ξ|−γ) , (3.56)

which, combined with (3.55) implies (2.43). We have finished the proof of (B6). Now Theorem
2.3 implies Theorem 3.1.

3.5. Identifying C0. We can identify the constant C0 by a computation similar to the proof of
Corollary 2.2. Recall the notations Σκ,τ ,Σκ from Section 3.1 and that here d = 2.

Set σ :=
√

det Σκ,τ/det Σκ. Observe that ΨΣκ,τ (0, 0, u) = e
− u2

2σ2

(2π)
3
2
√

det Σκ,τ

.

Now the leading term of Ct(f, g) can be obtained by taking m = j = k = r = q = 0 in (2.45):

lim
t→∞

tCt(f, g) = ν(τ )C̃0(f, g) (3.57)

= (ν(τ ))
1
2

∫
R
ψ
(

0, 0, s
√
ν(τ )

)
ds

∑
`,`′∈Z2

∫
R2

B0(f`(·, u), g`′(·, v)) dudv

=
σ

2π
√

det Σκ,τ

µ̃(f)µ̃(g) =
1

2π
√

det Σκ
µ̃(f)µ̃(g)

where we used B0(u, v) = ν(u)ν(v) (see (2.47)).
Recalling that the left hand side of (3.4) is an integral with respect to µ̃0 as opposed to

Ct(f, g) which is an integral with respect to µ̃ and using µ̃ = ν(τ )µ̃0, we obtain (3.5).

4. Geodesic flows

Let Q be a compact Riemannian manifold with strictly negative curvature and Q̃ be a cover
of Q with automorphism group Zd. Then Q̃ can be identified with Q× Zd.

The unit tangent bundle of Q̃ is denoted by Ω̃ and unit tangent bundle of Q is denoted by Ω.
The phase space of the geodesic flow Φ̃ on Q̃ is Ω̃ and likewise, the phase space of the geodesic

flow Φ on Q is Ω. Thus Ω̃ is a Zd cover of Ω and we denote by p the covering map. We endow Ω̃
with the normalized Liouville measure µ̃0 so that µ̃0(Q′×S1) = 1, where Q′ ⊂ Q̃ corresponds to
Q×{0}. Geodesic flows are Anosov and can be represented as a suspension flows over a Poincaré
section M such that T : M → M , the first return map to M is Markov (see [5] and [6]). Thus

M is a union of rectangles M =

K⋃
k=1

∆k where ∆k have product structure ∆k = [∆u
k×∆s

k] where

∆u
k are u-sets and ∆s

k are s-sets and [·, ·] is defined by (3.12).

Let τ be the first return to M . Choose a copy M̃ ⊂ Ω̃ such that p(M̃) = M and p : M̃ →M

is one-to-one. As for billiards, we define C` as the set of points in that Ω̃ such that the last visit
to the Poincaré section was in M̃ × {`} for ` ∈ Zd. We denote by µ̃ the Liouville measure.

Now we have the following analogue of Theorem 3.1
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Theorem 4.1. Let f, g : Ω̃→ R be two η-Hölder continuous functions with at least one of them
being smooth in the flow direction. Assume moreover that there exists an integer K0 ≥ 1 such
that (3.3) holds. Then there are real numbers C0(f, g),C1(f, g), ...,CK0(f, g) so that we have∫

Ω̃
f g ◦ Φ̃tdµ̃0 =

K0∑
k=0

Ck(f, g)t−
d
2
−k + o

(
t−

d
2
−K0

)
, (4.1)

as t → +∞. Furthermore, C0(f, g) = c0
∫

Ω̃ fdµ̃0

∫
Ω̃ gdµ̃0 and the coefficients Ck, as functionals

over pairs of admissible functions, are bilinear.

Proof. The proof of Theorem 4.1 is a simplified version of the proof of Theorem 3.1. Namely,
we apply the abstract Theorem 2.3 to an appropriate symbolic system. This system is now a
subshift of finite type that is constructed using a Markov partition {∆k}. By mixing and by the
Perron-Frobenius theorem, there exists r0 so that for any r ≥ r0 and any i, j = 1, ...,K, T r(∆i)
and ∆j have a non empty intersection. We define the spaces V,B, and B the same way as in
Section 3 with

∆0 = M and ∆̄0 =
K⋃
k=1

∆u
k .

and with constant height r. Consequently, the norms ‖.‖B and ‖.‖B are equivalent. The assump-
tions of Theorem 2.3 are verified similarly to Section 3 with additional simplifications coming
from the boundedness of the return time and the equivalence of B and B.

The only point in the proof of Theorem 3.1 where we used the special properties of billiards
is in the proof of Lemma 3.2, where we referred to Lemma 6.40 in [10] (which is specific to
billiards). It remains to revisit this part of the argument (again, in a simplified version as the
alphabet is finite and so the symbolic sequence of any specially chosen point is bounded).

Geodesic flows preserve the natural contact form α on the unit tangent bundle (corresponding
to the symplectic structure on the tangent bundle). According to the results of [29] (Lemma
B.6), there is some ε > 0 so that for any z ∈ Q and for any sufficiently small unstable vector
v ∈ Eu(z) and stable vector w ∈ Es(z) with the notation x = expz(v), y = expz(w), the
temporal distance function D(x, y) (defined as in (3.9)) satisfies

D(x, y) = dα(v, w) +O(‖v‖ε‖w‖2 + ‖v‖2‖w‖ε) .

Since the contact form is non-degenerate, there is a constant R0 such that for any z and any

v ∈ Eu(z), we can find some w ∈ TzQ such that ‖v‖‖w‖R0
≤ dα(v, w) ≤ R0‖v‖‖w‖. Let us

decompose w into center unstable and stable components w = wcu+ws. By Lemma B.2 in [29],
dα(v, wcu) = 0 and so we can assume w = ws ∈ Es(z). We conclude that for fixed z, there
are constants δ0, R0, so that for any δ < δ0 there exist vectors v ∈ Eu(z), w ∈ Es(z) such that
‖v‖ = ‖w‖ = δ and

D(x, y) ∈
[
δ2

2R0
, 2R0δ

2

]
.

Now we can complete the proof of the analogue of Lemma 3.2 as before by choosing δ in a way
that for given ξ, δ2 ≈ ξ−1. �

Appendix A. Some facts about Taylor expansions.

Lemma A.1. Let a be given by (2.4) and λ̃ : [−b, b]d+1 → C (for some b > 0) be a CK+3-smooth

function satisfying (2.6) for some J ≤ K + 3. Denote ζs = λ̃s
as
, M = b(K + 1)/(J − 2)c. Then

there are Aj,k ∈ Sj (where j = 0, ...bJ(K + 1)/(J − 2)c, k = 1, . . . ,M), K0 ∈ N (depending on

K and J) and a function η : Rd+1 → [0,+∞) continuous at 0, satisfying η(0) = 0 such that
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after, possibly, decreasing the value of b, for every n large enough, every s ∈ [−b
√
n, b
√
n]d+1

and every j = J, ...,K + 3, we have

M∑
k=1

(
n

k

) ∑
j1,...,jk≥J : j1+...+jk=j

1

j1!...jk!

(
ζ

(j1)
0 ⊗ ...⊗ ζ(jk)

0

)
=

M∑
k=1

nkAj,k (A.1)

and ∣∣∣∣∣∣ζns/√n − 1−
M∑
k=1

K+1+2k∑
j=kJ

nkAj,k ∗
(

s√
n

)⊗j∣∣∣∣∣∣ ≤ 1

as/
√

2

n−
K+1

2 (1 + |s|K0)η(s/
√
n) . (A.2)

Recalling that the first J − 1 derivatives of ζ vanish at zero, we see that in case λ̃ is Cj

(namely, if j ≤ K + 3), the LHS of (A.1) is simply equal to 1
j!(ζ

n)
(j)
0 .

Proof. Decreasing if necessary the value of b, we may assume that |λ̃u| ≤ au/
√

2.5 ≤ au/
√

2 and

|λ̃u − au| ≤ C|u|J for every u ∈ Rd+1 with |u| < b (the existence of b with these properties

follows from our assumptions on J and λ̃). Applying Taylor’s theorem to the function x 7→ xn

near 1 we conclude that for every s ∈ Rd+1 with |s| < b
√
n,∣∣∣∣∣ζns/√n −

M∑
k=0

(
n

k

)(
ζ

(
s√
n

)
− 1

)k∣∣∣∣∣
≤
(

n

M + 1

) ∣∣∣∣ζ ( s√
n

)
− 1

∣∣∣∣M+1

(max(1, |ζ
(

s√
n

)
|))n−M−1 . (A.3)

Recall that |λ̃s/√n| ≤ as/
√

1.5n. This together with the fact that as/
√

1.5n/as/
√
n = (as/

√
3n)−1

implies that the RHS of (A.3) is bounded by

nM+1
∣∣ζ(s/

√
n)− 1

∣∣M+1
(as/

√
3n)−(n−M−1) = nM+1

∣∣∣λ̃(s/
√
n)− a(s/

√
n)
∣∣∣M+1

(as/
√

3n)−n−M−1 .

Next, we use the identity (as/
√

3n)n = as/
√

3 and the inequality |λ̃u − au| ≤ C|u|J to conclude

that the last displayed expression is bounded by

CMn
M+1(as/

√
2)−1

(
(s/
√
n)J(M+1)

)
,

for every s, for every n large enough since (as/
√

3n)−n−M−1 =

(
a
s
√

(1+M+1
n

)/3

)−1

≤ (as/
√

2)−1

for every n large enough. Now observe that by definition (2 − J)(M + 1) < −K − 1 and so
(2− J)(M + 1) ≤ −K − 2. Thus the last display, and hence (A.3) is bounded by

CM (as/
√

2)−1n−
K+2

2 sJ(M+1). (A.4)

Clearly, (A.4) can be included in the RHS of (A.2). Thus it remains to compute the sum in the
LHS of (A.3).
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To do so, we fix some k = 1, ...,M . Let L = K + 1 + 2k − J(k − 1). Using the elementary
estimate |ak − bk| ≤ kmax(|a|, |b|)k−1|a− b|, we find(

n

k

) ∣∣∣∣∣∣∣
(
ζ(s/
√
n)− 1

)k −
 L∑
j=J

1

j!
ζ

(j)
0 ∗ (s/

√
n)⊗j

k
∣∣∣∣∣∣∣ (A.5)

≤ nkkmax

|ζ(s/
√
n)− 1|,

∣∣∣∣∣∣
L∑
j=J

1

j!
ζ

(j)
0 ∗ (s/

√
n)⊗j

∣∣∣∣∣∣
k−1

(A.6)

×

∣∣∣∣∣∣ζ(s/
√
n)− 1−

L∑
j=J

1

j!
ζ

(j)
0 ∗ (s/

√
n)⊗j

∣∣∣∣∣∣ . (A.7)

Next by our choice of L

L = K + 1 + (2− J)k + J ≤ K + 1 + (2− J) + J = K + 3.

Recalling that λ̃/a is CK+3 smooth and its first J−1 derivatives at zero vanish, Taylor’s theorem
implies that (A.7) is bounded by (s/

√
n)Lη0(s/

√
n), where η0(0) = 0 and η is continuous at 0.

On the other hand, (A.6) is bounded by nkk (s/
√
n)
J(k−1)

. We conclude that (A.5) is bounded
by

n−
K+1

2 sK+1+2kη1(s/
√
n) , (A.8)

where η1 = kη0. Since as/
√

2 is bounded from above, (A.8) can be included in the RHS of (A.2).

So we have approximated ζn
s/
√
n

by

1 +

M∑
k=1

(
n

k

) L∑
j=J

1

j!
ζ

(j)
0 ∗ (s/

√
n)⊗j

k

= 1 +

M∑
k=1

(
n

k

) L∑
j1,...,jk=J

1

j1!...jk!

(
ζ

(j1)
0 ⊗ ...⊗ ζ(jk)

0

)
∗ (s/

√
n)⊗(j1+...+jk)

= 1 +
M∑
k=1

(
n

k

)K+1+2k∑
j=kJ

∑
j1,...,jk≥J : j1+...+jk=j

1

j1!...jk!

(
ζ

(j1)
0 ⊗ ...⊗ ζ(jk)

0

)
∗(s/
√
n)⊗j +O

(
n−

K+2
2 sK+1+2k+1

)
uniformly on s ∈ [−b

√
n, b
√
n]d+1. Note that the last step above uses the observation that if

j1, ..., jk ≥ J and j1 + · · · + jk ≤ K + 1 + 2k, then necessarily jl ≤ L for all l. Again, the last
error term can be included in the right hand side of (A.2) as as/

√
2 is bounded from above.

Finally, observe that(
n

k

) ∑
j1,...,jk≥J : j1+...+jk=j

1

j1!...jk!

(
ζ

(j1)
0 ⊗ ...⊗ ζ(jk)

0

)
is a polynomial of degree k in n with values in Sj . This ensures the existence of Aj,k. �

Lemma A.2. If H : R→ R is in the Schwartz space (i.e. xaH(b)(x) is bounded for any positive
integers a and b), then for any L ∈ N there is some constant cH,L such that

∀t ∈ R,∀η > 0,

∣∣∣∣∣∑
k∈Z

ηH(t+ kη)−
∫ ∞
−∞

H(x)dx

∣∣∣∣∣ < cH,Lη
L. (A.9)
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Proof. We can assume without loss of generality that t ∈ [0, 1). Given L, t and η, we choose
AL and BL so that the above sum for k /∈ [AL/η,BL/η] and the above integral as well as the
first L derivatives of H for x /∈ (AL, BL) are less than ηL. Such AL and BL exist since H is in
the Schwartz space. Now Euler’s summation formula (e.g. Theorem 4 in [3] with the notation
f(x) = ηH(t+ xη −AL), m = L) implies that

BL/η∑
k=−AL/η

ηH(t+ kη)−
∫ BL

AL

H(x)dx =
1

(2L+ 1)!

∫ BL

AL

P2L+1(x/η)H(2L+1)(x)dxη2L+1

+
L∑
r=1

B2r

(2r)!

[
H(2r−1)(BL)−H(2r−1)(AL)

]
η2r

+
1

2
η[H(BL)−H(AL)],

where Pk(x) are the periodic Bernoulli polynomials and Bk are Bernoulli numbers. Now (A.9)
follows from the choice of AL, BL. �

Observe that (A.9) and the fact that H is in the Schwartz space imply

∀K > 0, ∀ε > 0,

t/ν(τ)+t
1
2 +ε∑

n=t/ν(τ)−t
1
2 +ε

H

(
t− nν(τ)√

t

)
=

√
t

ν(τ)

∫
R
H(x)dx+O(t−K) (A.10)

(clearly, the constant in ”O” depends on K and ε).

Lemma A.3. For every γ∈ R and Q ∈ Z+,

t+∑
n=t−

nγΨ(α)

(
0,
t− nν(τ)√

n

)

=

(
t

ν(τ)

)γ Q∑
q=0

1

q!

t−
q−1

2

ν(τ)

∫
R
∂q2hα,γ (s, 1) (−s)q ds+O

(
tγ−

Q
2

)
(A.11)

where hα,γ is defined by (2.5) ∂q2 denotes the derivative of order q with respect to the second
variable.

Proof. For ease of notation, we prove the lemma coordinate-wise, i.e. we replace Ψ(α)(s) by
∂α

∂sj1 ...∂sjα
Ψ(s).

Observe that due to the rapid decay of Ψ(m+j+r)(0, ·), we can replace

t+∑
n=t−

by

t/ν(τ)+t
1
2 +ε∑

n=t/ν(τ)−t
1
2 +ε

,

for any ε > 0 (for example, we can choose ε = 1/4).
Next, observe that by the definition (2.5),(

n

t/ν(τ)

)γ
Ψ(α)

(
0,
t− nν(τ)√

n

)
= hα,γ

(
t− nν(τ)√

t
,
nν(τ)

t

)
.

Thus it remains to estimate the sum

t/ν(τ)+t
1
2 +ε∑

n=t/ν(τ)−t
1
2 +ε

hα,γ

(
t− nν(τ)√

t
,
nν(τ)

t

)
. (A.12)
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Using Taylor expansion, we can rewrite (A.12) as t/ν(τ)+t
1
2 +ε∑

n=t/ν(τ)−t
1
2 +ε

Q∑
q=0

1

q!
∂q2hα,γ

(
t− nν(τ)√

t
, 1

)(
− t− nν(τ)

t

)q+O
(
t−

Q
2

)
. (A.13)

Indeed, we control the error term using the estimate

t/ν(τ)+t
1
2 +ε∑

n=t/ν(τ)−t
1
2 +ε

sup
|y−1|<1/2

∣∣∣∣∂Q+1
2 hα,γ

(
t− nν(τ)√

t
, y

)∣∣∣∣ ∣∣∣∣ t− nν(τ)

t

∣∣∣∣Q+1

= O
(
t−

Q
2

)
,

which can be derived similarly to (A.10). Performing summation over n in (A.13), using (A.10),
we obtain that (A.12) (and thus the left hand side of (A.11)) equals to

Q∑
q=0

1

q!

t−
q−1

2

ν(τ)

∫
R
∂q2hα,γ (s, 1) (−s)q ds+O

(
t−

Q
2

)
.

This completes the proof of the lemma. �

Lemma A.4. Let b, q be non-negative integers. The function s 7→ ∂q2hb,γ(s, 1)(−s)q is even if
b+ q is even (and is odd if b+ q is odd).

Proof. The lemma follows since if P (x) is a polynomial with odd (even, resp.) leading term, then
d
dx(P (x)ecx

2
) = Q(x)ecx

2
where Q(x) is a polynomial with even (odd, resp.) leading term. �

Appendix B. Correlation functions of coboundaries

Lemma B.1. Let Gt : M → M be a flow preserving a measure µ (finite or infinite). Let
f, f ′, g : M→M be bounded integrable observables such that f ′(x) = d

dt |t=0f(Gtx). Denote

Ct =

∫
M
f
(
g ◦Gt

)
dµ, C ′t =

∫
M
f ′
(
g ◦Gt

)
dµ.

Assume that there exist real numbers α > 0, c0, ..., cK−1, c
′
0, ..., c

′
K satisfying:

Ct = t−α

(
K−1∑
k=0

ckt
−k + o

(
t−(K−1)

))
and C ′t = t−α

(
K∑
k=0

c′kt
−k + o

(
t−K

))
. (B.1)

Then c′0 = 0 and c′k = −ck−1(α+ k − 1) for every k = 1, ...,K − 1.
In particular if K = 1 and c0 6= 0, then c′0 = 0 and

Ct(f
′, g) ∼ −c0αt

−α−1 (B.2)

We note that the fact that the rate of mixing for coboundaries is faster than for general
observables is used, for example, in [18,21].

Proof. By integration by parts

C ′t =

∫
M
f ′
(
g ◦Gt

)
dµ = −

∫
M
f
(
g′ ◦Gt

)
dµ

= −
∫

M
f.
∂

∂t

(
g ◦Gt

)
dµ = − ∂

∂t

∫
M
f
(
g ◦Gt

)
dµ = − ∂

∂t
Ct.

Since lim
t→+∞

Ct = 0

Ct =

∫ +∞

t
C ′s ds =

∫ +∞

t

K∑
k=0

c′ks
−α−k + o(s−α−K) ds .
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It follows that c′k = 0 if α+ k ≤ 1 and

Ct =
K∑
k=0

c′k
−α− k + 1

t−α+1−k + o
(
t−α−K+1

)
.

The lemma follows by comparing the above expansion with the first equation in (B.1). �
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[22] Gouëzel, S., Correlation asymptotics from large deviations in dynamical systems with infinite measure.

Colloq. Math. 125 (2011) 193–212.
[23] Guivarc’h, Y., Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés, Ergod. Th.
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