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Abstract—We consider a generalization of the community
detection problem, where for inference we have access to an
additional non-graphical side information about the label of each
node. Specifically, we study the effect of side information on the
information theoretic limits of recovering a hidden community
of size K inside a graph consisting of n nodes with K = o(n).
Two asymptotic recovery metrics are considered, namely, weak
recovery and exact recovery. We consider side information in the
form of a vector of length F', where each component in the vector
belongs to a set with finite cardinality and the components are
generated i.i.d. according to some conditional distribution. We
assume I’ to be a function of n, while the conditional probabilities
of the outcomes are independent of n. We show when and
by how much side information can improve the information
theoretic limits of weak and exact recovery by providing tight
necessary and sufficient conditions for both weak and exact
recovery. Furthermore, we show that, under certain conditions,
any algorithm achieving weak recovery can also achieve exact
recovery if followed by a local voting procedure.

Index Terms—Community detection, Stochastic block model,
Side information, Information Theoretic Limits.

I. INTRODUCTION

Detecting communities (or clusters) in graphs is a fun-
damental problem that has been studied in various fields,
statistics [1], [2], computer science [3], [4], [5], [6] and
theoretical statistical physics [7]. In this paper, we consider the
problem of finding a single sub-graph (community) hidden in
a large graph, where the community size is much smaller than
the graph size. Examples for application of finding a hidden
community problem are fraud activity detection in [8], [9]
and correlation mining [10].

Several models are now being studied for random graphs
that exhibit a community structure; a survey can be found
in [11]. A widely used model in the context of community
detection is the stochastic block model (SBM) [12]. In this
paper, we use the stochastic block model for one community,
also known as the planted dense sub-graph model [13], [14],
[15], [16]. The stochastic block model for one community is
characterized by the following parameters: n is the number of
nodes in the graph, K is the size of the community, p is the
probability of having an edge between any two nodes inside
the community, and ¢ is the probability of having an edge
otherwise. The goal is to recover/detect the hidden community
upon observing the graph edges.

The problem of finding a hidden community upon observing
only the graph has been studied in [13], [14], [15]. The infor-

mation theoretic limits of weak recovery (expected number of
misclassified nodes is o(K)) and exact recovery (probability
of correctly recovering all the labels converges to one) of a
hidden community have been established in [14]. The limit of
the belief propagation (BP) algorithm for weak recovery and
exact recovery has been also established in [15], [13].

The literature on community detection has, for the most
part, concentrated on purely graphical observations. However,
in many practical applications, non-graphical relevant infor-
mation is available that can aid the inference. For example,
social networks such as Facebook and Twitter have access
to much information other than the graph edges. A citation
network has the authors names, keywords, and abstracts of
papers. This paper presents new results on the utility of side
information in community detection, in particular shedding
light on the conditions under which side information can
improve the information theoretic limits of weak and exact
recovery of a hidden community.

A few results have recently appeared in the literature
regarding the community detection problem in the presence
of additional (non-graphical) information. In the context of
detecting two or more communities: (1) [17] studied the
effect of noisy label information on the performance of a
belief propagation algorithm. (2) Cai et. al [18] demonstrated
regimes for BP to achieve weak recovery upon observing a
vanishing fraction of labels. Neither of [17], [18] includes
a converse, so they do not establish the phase transition.
(3) [19], [20] studied the effect of side information in scalar
and vector form on the phase transition of exact recovery for
the binary symmetric communities. (4) [21] studied the effect
of side information only in vector form with a specific length
on the phase transition of exact recovery for more than two
communities. (5) In the context of detecting a single hidden
community: Kadavankandy et al. [16] studied the effect of
noisy labels with vanishing noise on the performance of belief
propagation in detecting a single-community.

The present work is motivated by the following observations
in the problem of detecting a hidden community. The effect of
side information on the information theoretic limits of weak
and exact recovery has not been available to date, Most of the
work done on two or more communities assumed only binary
side information, but practical scenarios motivate the study of
more general side information whose alphabet does not match
the number/identity of communities. Moreover, the work done



on two or more communities focused only on information
limits of exact recovery and not weak recovery.

The contributions of the paper in the problem of detecting
a hidden community and can be summarized as follows:

« For the information theoretic limits of weak recovery with
side information, we provide necessary and sufficient
conditions that are tight. We also show some cases
where side information will not improve the information
theoretic limits of weak recovery. Moreover, we show
that under the same sufficient conditions, weak recovery
is achievable even when the size of the community is
random and unknown.

 For the information theoretic limits of exact recovery with
side information, we provide necessary and sufficient
conditions that are tight. We also show that any algorithm
that achieves weak recovery can achieve also exact recov-
ery under certain conditions. Furthermore, we provide
an example for a popular model of side information,
namely, noisy labels and compare the new limits for exact
recovery to the ones obtained without side information.

II. SYSTEM MODEL AND DEFINITIONS

We consider the stochastic block model for a hidden com-
munity with side information. Let G(n, K,p, q) denote the
ensemble of graphs with n nodes, a hidden community C*
with size |C*| = K and an edge between a pair of nodes
is drawn with probability p if both nodes are in C* and
probability g otherwise. Finally, for each node i € {1,-- ,n},
a vector of length F' containing side information is observed.
We assume all components of the vector have the same finite
alphabet and are i.i.d. conditioned on the labels.

We define P = Bernoulli(p), @ = Bernoulli(q) and
G(V,E) to be a graph realization of G(n, K,p,q). Let x;
denote the label of node i € {1,---,n}, where z; = 1 if
i€ C*and x; =0 if i ¢ C* and define * € {0,1}" denote
the vector of the true labels. Let y; ¢, f € {1,--- , F'} be the
f" component of the vector of side information of node i and
define y; be a vector of length n denoting the side information
of all the nodes for component f. For a given node i and
component f, let V and U denote the probability distribution
of y; f, conditioned on i € C* and ¢ ¢ C*, respectively. Define
Lo (i, f) = log({ (yi,y)) to be the log-likelihood ratio of y; ¢
with respect to V' and U. Finally, let G;; denote a random
variable denoting the existence of an edge between nodes @
and j in the graph and define L (4, ) = 1og(g(Gij)) denote
the log-likelihood ratio of edge G;; with respect to P and Q'.

In this paper, we focus on the problem of recovery the
hidden community upon observing G(V, E) and the vector of
nodes side information by y1,--- ,yr. Let (G, y1, - ,yFr)
be an estimator of x* given G(V, E) and y1,--- ,yr. The
following assumption and definitions of recovery metrics are
used throughout the paper:

'Throughout the paper, we use L and Ls to denote the random variables of
the log-likelihood ratio of the graph edge and the outcome of side information.

Assumption 1. A4s n — oco: K — oo such that K = o(n),
p>q, % =0(1), limsup,,_,.o p < 1 and Lo is bounded.

An estimator (G, y1,--- ,yr) is said to achieve exact
recovery if, as n — oo, P(& = x*) — 1. Also, an estimator

2(G,y1, -+ ,yr) is said to achieve weak recovery if, as
n — oo, X2 _ 0 in probability, where d.,.) denotes

the hamming distance. It was shown in [14] that the latter
definition is equivalent to the existence of an estimator &
such that E[d(&,z*)] = o(K). We will use this equivalence
throughout this paper.

Finally, for the ease of notation we define the following:

You (£, m1,ma2) £ my log(Eq [etLl]) + My log(EU[etLQ])

(1
$pv (t,m1,me) £ mylog(Ep[e"™]) 4 ma log(Ey [e"2])
(2
Equ (6, m1, m2) £ sup th— You(t, m1, me) 3)
te[0,1]
Epy(0,mi,mz2) £ sup t0 —Ypy(t,mi,ms) 4

te[—1,0]

Remark 1. Due to space limitations, most of the proofs are
provided online [22] for the reviewers.

ITI. WEAK RECOVERY
Theorem 1. Suppose Assumption 1 holds. If

(K —1)D(P||Q) + FD(V||U) — oo and
liminf(K — 1)D(P||Q) + 2FD(V|[U) > 210g(%) )

then weak recovery is possible. If weak recovery is possible,
then:

(K —1)D(P||Q) + FD(V||U) — 0o and
liminf(K — 1)D(P||Q) + 2FD(V||U) = 2log(2)  (6)

Remark 2. Theorem 1 shows that if F' grows with n slow
enough, e.g., F is fixed and independent of n or F =
o(log()), then the information theoretic limits are the same
as the ones characterized in [14] without side information.
This holds because by assumption Ly is bounded which implies
that D(V||U) is bounded, and hence, (5) and (6) can
be simplified to KD(P||Q) — oo and liminf, . (K —
1)D(P||Q) > 2log(3), which are the same limits as in [14].

Remark 3. If the components of the vector of side information
are not i.i.d. conditioned on the labels, we conjecture that a
necessary and sufficient conditions for weak recovery would
be:

F
(K —~ )D(P||Q) + 3 D(Vf|Uy) — o0 and
f=1
F n
liminf(K —1)D(PI|Q) +2 3" D(Vyl|Uy) > 2log( )
f=1

where V; and Uy are the conditional probability distribution
of each component in the vector of side information.



Proof.

Necessary Conditions: Provided online [22].

Sufficient Conditions: The sufficient conditions for weak
recovery is derived for the maximum likelihood (ML) estima-
tor. Note that although ML is optimal for exact recovery by
definition, it is not optimal for weak recovery. Before we go
into the proof, we need to derive the rule of ML for recovering
a hidden community with side information.

For any subsets S,7° C {1,--- ,n}, define:

e1(S,T) £ > Li(i,j) ()
(1<7):(3,J)E(SXT)U(T X S)
F
e2(S) 2> N La(i, f) ®)

i€ f=1
Using these definitions, it is easy to write the rule of the

maximum likelihood using the log-likelihood function of the
observations G, y1,- -+ ,yF given the labels « as follows:

n}{el(C, C)+e(C) :|C|=K} (9)

CML = arg max
cc{l,,

Let R = \C’ML N C*| denote the intersection of Cur
with the true hidden community C*. Thus, we can write the
difference as |C’MLAC*\ = 2(K — R), and hence, to show
that ML achieve weak recovery, it is sufficient to show that
there exists € = o(1), such that P(R < (1 — €)K) < o(1).
To show this, we need to bound the error event of ML. The
complete proof is provided online [22]. O

A. Sufficient Conditions for Random Community Size

In this section, we show that the conditions of Theorem 1 is
sufficient for weak recovery even when |C*| is random. This
is needed for the proof of the sufficient conditions for exact
recovery. We will continue using C' as the estimator defined
in (9) although here it is not actually ML estimator because
|C*| need not be K.

Lemma 1. Suppose that Assumption 1 and the conditions of
Theorem 1 hold. Moreover, assume the size of the community
is random such that:

IP>(||C*|—K|Sm)21—0(1) (10)
then,
P(% <2+ 10;1()) S1-01) (1)
where € = - L = o(1).
/min(log(K),(K—1)D(P||Q)+FD(VI|U))
Proof. Provided online [22]. O

IV. EXACT RECOVERY

Theorem 2. Suppose Assumption [ holds. If (5) and the
following hold:

. . n
liminf Equ (log( ), K, F') > log(n) (12)

TABLE 1
ALGORITHM FOR EXACT RECOVERY.

Algorithm 1
1: Input: n € N, K > 0, distributions P,Q,V,U, G, y1, - ,Yp,
5€(0,1):nd, + €N.

2: Partition {1,--- ,n} into % subsets S} of size nd each,
k=1, 1.

3: Weak Recovery: For each k =1,--- | %, let G, and ylf, cee ,y’;,
denote the sub-graph and the part of side information, respectively,
restricted to {1,--- ,n}\Sk.

Run an estimator capable of weak recovery with inputs
(n(1=9),[K(1-90)],PQ,V,U, Gk,y’f, e ,y]f, and let

C‘k be the output.

4: Voting Procedure: For each k =1,--- , %, compute

Ty = (Zjeék L1(i5)) + Z?:l Lo(i, f) for all ¢ € S and return
C: the set of K indices in {1,--- ,n} with the largest value of r;.

then exact recovery is possible. If exact recovery is possible,
then (5) and the following hold:
- n
lim inf Equ (log( )

(K, F) > log(n) (13)

Remark 4. Theorem 2 shows if F' grows with n slow enough,
eg, F is fixed and independent of n or F = o(K), the
information theoretic limits are the same as the ones char-
acterized in [14] without side information. To see this, note
that since t € [0,1] and Lo are bounded, this implies that
Equ(log( ), K, F) = K(1 + o(1))sup;e(o.1) % log() —
log(Eqe'r1]) which is the same limit characterized in [14]

for exact recovery without side information.

Proof of Sufficient Conditions of Theorem 2.

The sufficient conditions are derived for Algorithm I that
achieves exact recovery in two steps. First, we apply an
algorithm that achieves weak recovery for a random com-
munity size, like the one presented in Section III-A. Then,
a local voting procedure is performed. This shows that exact
recovery is achieved for any algorithm that can achieve weak
recovery on a random community size followed by the voting
procedure.

The following theorem gives sufficient conditions under
which Algorithm I achieves exact recovery. The proof of the
sufficiency part of Theorem 2 will be given after the proof of
the theorem.

Theorem 3. Let C be the output of Algorithm I using an
estimator for weak recovery Cy, such that as n — oo:

N 1
P(|OkAO;| <K for 1 <k < 5) —1 (14)

where Cj; = C* N ({1,--- ,n}\Sk). Suppose that (12) and
Assumption 1 hold. Then, P(C' = C*) = 1 as n — oc.

Proof. To prove Theorem 3, we need the following Lemma.

Lemma 2. Suppose that (12) and Assumption 1 hold. Let
{Wi} and {W,} denote sequence of i.i.d. copies of Ly under
P and Q, respectively. Also, for any node i, let Z and Z



denote Z?=1 Lo(i, f) under V and U, respectively. Then, for

sufficiently small, but constant, § and v = %:
K(1-5) 1
Z Wi+27Z>K(1—3d)y) = 0(5) (15)
=1
K(1-29) SK

S Wi+ Wi+ Z<K(1-6)9) :o(%) (16)

1=1 1=1
Proof. Provided online [22] O

Now we prove Theorem 3. From the statement of the theo-
rem, we have the conditions of Lemma 2 satisfied, and hence,
(15) and (16) hold. Define the event F' = {|C,AC;| < 0K}
On F, we have:

Gk N Ci| > [Ch| = [CRACE| = [K (1 —
> K(1-—20)
Thus, on the event F, r; (from Algorithm I) for i € C*
is stochastlcally greater than or equal to ZK(l 2) W) +

(Zl "W)) + Z . For i ¢ C*, r; has the same distribution
as (Zz:(11 9 W;) + Z. Thus, by Lemma 2, with probability
converging to 1, r; > K(1 — §)y for all i € C* and
r; < K(1 —0)y for all i ¢ C*. Hence, P(C = C*) — 1
as n — oo. This concludes the proof of Theorem 3. O

0)] — 1CkAC|

To complete the proof of the sufficient conditions of
Theorem 2, it suffices to verify (14) when Cy for each k
is the ML estimator for C}; based on observing Gj and
y%, -+, y%. The distribution of |C}| is obtained by sampling
the indicies of the original graph without replacement. Hence,
from [14], we have for any convex function ¢: E[¢(|C])] <
E[¢(Binomial(n(1 — 6), £))]. Therefore, Chernoff bounds
for Binomial(n(1 —§),%) also holds for |C}|. Thus, we have:

K

P(ICi| = (1= 6)K| > 1 g(K))
P(|Binomial(n(1 — 6), %) — (1=Kl = logffK))

<o) (17)

where (a) holds by Chernoff bounds which states that for
X ~ Binomial(n,p): ]P’(X > (1+n)np) < e and
P(X < (1—n)np) <e "% forall n € [0,1].

Since (5) holds, then we have: liminf, ,.[(1 —
S)K|D(P||Q) + 2FD(V||U) > 2log(#) for sufficiently
small §. This result and (17) show that ML achieves weak
recovery with K replaced [(1—4)K] in Lemma 1. Thus, for
any 1 <k < 4,

|CLACK] 1
P(———* <2 >1-o0(1
R 2 ) 21
with € = o(1). Since § is constant, thus, by the union bound

over all 1 <k < %, we have:

|GG
IP’( % < 26+1Og

(18)

—_

Vi<k<3)

1
&) sks<s >1-o0(1) (19)

Since € = o(1), the desired (14) holds.

Proof of Necessary Conditions of Theorem 2.

The outline is as follows: First, assuming that the maximum
likelihood (ML) detector exactly recovers the community, i.e.
P(ML fails) = o(1), we find conditions for the failure of ML
in recovery the community. Then, we express these conditions,
generally for bounded and unbounded side information, in
terms of large deviations inequalities. Next, we relate these
inequalities to the parameters of the graph and the side
information. Recall that ML is optimal for exact recovery since
C* is chosen uniformly.

Let i, = argmin;ec-e;(i,C*) + E}:l Lo(i, f) and
define F]\/[ = {miniEC* el(i, C*) + Z?:l L2 (’L, f) <
max;¢c- €(j,C*\{io}) + Yj_; L2(j, f)}. Define C =
C*\{i,} Uy for j ¢ C*. Then, using (9), we have:

e1(C,C) + ex(C) — e1(C*,C*) + e3(C*) =

F
(e(G, C*\{io}) + > L2(4, /) = (ex (i, C) Z Lo
f=1

(20)
where (a) holds by assuming F; happens. Hence, F); implies
the failure of ML. Then, we have:

P(Fy) < P(ML fails) 2 o(1) @1

where (a) holds by assumption that ML achieves exact re-
covery. The following lemma characterizes general necessary
conditions for exact recovery for both bounded and unbounded
side information.

Lemma 3. Suppose Assumption 1 holds. Let {W;} and {W;}
denote sequence of i.i.d. copies of L, under P and Q,
respectively. Also, for any node i, let Z and Z denote a copy
of 2?21 Lo(i, f) if node i belong to C* or does not belong
to C*, respectively. Let K, — oo such that K, = o(K).
Then, for an estimator C to achieve exact recovery, i.e.,
P(C = C*) — 1, there exists a threshold 0, such that for
all sufficiently large n:
K—K,

~ 2
P( Y Wit Z<(K—-1)0,—0,) < — (22)
=1 ¢
K-1 )
P( 1+ Z > (K —1)6,) < % (23)
=1
where 0, = (K, — 1)D(P||Q) + 60 for 0 = K,varp(L;)
and varp(Ly) denote the variance of Ly under P.
Proof. Provided online [22] O

In view of Lemma 3, we now need to show for which
parameters of the graph and side information there exists 6,,
such that (22) and (23) hold. We will show that if (12) does
not hold, then there does not exist #,, such that (22) and (23)
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Fig. 1. Exact recovery threshold, 1) —1 for different values of « atc = b = 1.

hold simultaneously. This is shown in the extended version
provided online [22].
O

A. Example

To illustrate our results, we compare our results to the
information theoretic limits of exact recovery without side
information in the following regime:

alog?(n)

cn blog?(n
s n) -, als ) )

~ log(n)’ e n
for fixed positive c,a > b as n — oo. In the above regime,
we have K D(P||Q) = log(n), and hence, weak recovery is
always information theoretic possible without side informa-
tion, and by extension, with side information. Moreover, exact
recovery is information theoretic possible if and only if:

sup tc(a —b) + be — bc(g)t > 1
te0,1] b

(25)

We focus on side information with two possible outcomes,
where each component of the vector of side information is
the true label passed though a binary symmetric channel
with cross-over probability «.. Thus, exact recovery with side
information is possible if and only if:

sup te(a —b) + be — bc(g)t—
te[0,1] b

@ log((1—a)fa™ + (1-a)Yat) > 1
(26)

The last displayed equation shows that if ' = o(log(n)),
then exact recovery is possible if and only if (25) holds,
and hence, side information does not improve the information
theoretic limits of exact recovery. If F' is not o(log(n)), note
that log((1 — a)ta' =" 4+ (1 — a)(*=Yat) is always negative
since ¢t € [0, 1], and hence, (26) > (25).

Let F' = log(n)) and ¢ = sup;¢(o 1) tc(a—b)+be—be(§)" —
log((1—a)ta= 4 (1—a)1=at). Figure 1 shows the curve
1 —1 for different values of . From the figure, it can be shown

that side information helps BP to achieve recovery in regimes
where it was known to fail without side information.

REFERENCES

[1] A. Zhang and H. Zhou, “Minimax rates of community detection in
stochastic block models,” arXiv:1507.05313, Nov. 2015.

[2] P. J. Bickel and A. Chen, “A nonparametric view of network models
and newmangirvan and other modularities,” Proceedings of the National
Academy of Sciences, vol. 106, no. 50, pp. 21 068-21 073, 2009.

[3] J. X. Y. Chen, “Statistical-computational tradeoffs in planted problems
and submatrix localization with a growing number of clusters and
submatrices,” ICML, In proceedings of, Feb. 2014.

[4] A. Coja-oghlan, “Graph partitioning via adaptive spectral techniques,”
Comb. Probab. Comput., vol. 19, no. 2, pp. 227-284, Mar. 2010.

[5] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821-7826, 2002.

[6] J. Chen and B. Yuan, “Detecting functional modules in the yeast
proteinprotein interaction network,” Bioinformatics, vol. 22, no. 18, pp.
2283-2290, Sep. 2006.

[71 A. Decelle, F. Krzakala, C. Moore, and L. Zdeborova, “Asymptotic
analysis of the stochastic block model for modular networks and its
algorithmic applications,” Phys. Rev. E, vol. 84, p. 066106, Dec. 2011.

[8] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos, “Copy-
catch: Stopping group attacks by spotting lockstep behavior in social
networks,” in WWW 2013 - Proceedings of the 22nd International
Conference on World Wide Web, 05 2013, pp. 119-130.

[9] D. H. Chau, S. Pandit, and C. Faloutsos, “Detecting fraudulent per-
sonalities in networks of online auctioneers,” in Proceedings of the
10th European Conference on Principle and Practice of Knowledge
Discovery in Databases, ser. PKDD’06. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 103-114.

[10] H. Firouzi, B. Rajaratnam, and A. H. III, “Predictive correlation

screening: Application to two-stage predictor design in high dimension,”

in Proceedings of the Sixteenth International Conference on Artificial

Intelligence and Statistics, ser. Proceedings of Machine Learning

Research, C. M. Carvalho and P. Ravikumar, Eds., vol. 31. Scottsdale,

Arizona, USA: PMLR, 29 Apr—01 May 2013, pp. 274-288. [Online].

Available: http://proceedings.mlr.press/v3 1/firouzil3a.html

S. Fortunato, “Community detection in graphs,” arXiv:0906.0612v2, Jan.

2010.

[12] E. Abbe, A. Bandeira, and G. Hall, “Community detection in general
stochastic block models: fundamental limits and efficient recovery
algorithms,” arXiv:1503.00609, Mar. 2015.

[13] A. Montanari, “Finding one community
arXiv:1502.05680v2, Jul. 2015.

[14] B. Hajek, Y. Wu, and J. Xu, “Information limits for recovering a hidden
community,” /EEE Transactions on Information Theory, vol. 63, no. 8,
pp. 4729-4745, Aug 2017.

[15] J. X. B. Hajek, Y. Wu, “Recovering a hidden community beyond the
spectral limit in o(|e|log™ |v]) time,” arXiv:1510.02786v2, Jun. 2017.

[16] A. Kadavankandy, K. Avrachenkov, L. Cottatellucci, and R. Sun-
daresan, “The power of side-information in subgraph detection,”
arXiv:1611.04847v3, Mar. 2017.

[17] E. Mossel and J. Xu, “Local algorithms for block models with
side information,” in ACM Conference on Innovations in Theoretical
Computer Science, ser. ITCS *16. New York, NY, USA: ACM, 2016,
pp. 71-80. [Online]. Available: http://doi.acm.org/10.1145/2840728.
2840749

[18] T. Tony Cai, T. Liang, and A. Rakhlin, “Inference via message passing
on partially labeled stochastic block models,” arXiv:1603.06923v1, Mar.
2016.

[19] H. Saad, A. Abotabl, and A. Nosratinia, “Exact recovery in the binary
stochastic block model with binary side information,” in Allerton Con-
ference on Communications, Control, and Computing, Oct 2017.

, “Side information in the binary stochastic block model: Exact
recovery,” arXiv:1708.04972vi, Aug 2017.

[21] A. R. Asadi, E. Abbe, and S. Verd, “Compressing data on graphs with
clusters,” in 2017 IEEE International Symposium on Information Theory
(ISIT), June 2017, pp. 1583—1587.

[22] H. Saad and A. Nosratinia, “Side information in recovering a single
community: Information theoretic limits,” 2017. [Online]. Available:
http://www.utdallas.edu/%7Ehussein.saad/IT.pdf

(11]

in a sparse graph,”

(20]



