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Abstract

Most functional processes of biomolecules are rare events. Key to a rare event is the rare
fluctuation that enables the energy activation process that precedes and powers crossing of the
activation barrier. But the physical nature of this rare fluctuation and how it enables energy
activation and subsequently barrier crossing are unknown. We developed a novel metric, the
reaction capacity p., that rigorously defines the beginning and parameterizes the progress of
energy activation. This enabled us to identify the rare fluctuation as a special phase-space
condition that is necessary and sufficient for initiating systematic energy flow from the non-
reaction coordinates into the reaction coordinates. The energy activation of a prototype
biomolecular isomerization reaction is dominated by kinetic energy transferring into and
accumulating in the reaction coordinates, administered by inertial forces alone. This mechanism

for energy activation is fundamentally different from the mechanism suggested by Kramers theory.



I. Introduction
Many important functional processes in molecular systems, such as chemical reaction, protein
folding, enzymatic reaction, are rare events—events with time scales much slower than elementary

molecular motions !-3.

A rare event is rare because it requires activation: between the initial
(reactant) and final (product) states that define the transition there is an activation barrier much
higher than thermal energy that the system must cross, which requires extra energy. In a rare event,
there are two characteristic times, one is the long waiting time a molecule spent in the reactant
state, the other is the much shorter transition time, in which a molecule moves from the reactant to

the product state 4.

Predicting the time scales of rare events, i.e. reaction rates, has been a central topic in chemical
physics and biophysics since the beginning of studies on rare events. The standard conceptual and
theoretical framework is based on transition state theory and Kramers theory, with Grote-Hynes
theory an extension of the latter to the non-Markovian regime >-12. The focus of these theories was
to estimate the first passage time (i.e. waiting time), which is the foundation for calculating the
reaction rate. In recent years, advances in single molecule experiments have enabled measurements
of transition time, which motivated considerable theoretical efforts in determining the transition

time distribution for model systems %!3-15,

On the other hand, there is a compelling need to
understand the mechanism of the transition period dynamics, which is of particular importance for

biomolecules.

A fundamental difference between biomolecules and small molecules is that the former is much
larger and structurally more complex. The added size and structural complexity endow
biomolecules with functions that are not possible for small molecules. Aside from the natural
interest in understanding how the added complexity leads to the enriched functionality, there is a
practical demand for understanding how to modify functions of biomolecules to better suit human
needs (e.g. new or improved catalytic power of enzymes) or avoid undesirable consequences (e.g.
drug resistance). Either way requires understanding the detailed mechanism of rare events in
biomolecules because there is a plethora of tunable factors in a functional process that coordinate
with each other to achieve the function of a biomolecule. To modify a function effectively, we

need to know what these factors are and how they work together *'°. Only in this way will we be



able to tune the proper factors and achieve intended outcomes. Without reliable understanding of
the mechanism, the success rate for blind trial-and-error approach will be too low. Therefore,
understanding the physical mechanism of rare events is of crucial importance. The essence of a

rare event is its transition period.

In the general physical picture of a rare event, a molecule spends a long time in the reactant basin
undergoing equilibrium fluctuations and waits for a rare fluctuation that brings it across the
activation barrier 1>!°, This picture highlights two points: 1) the long waiting period is to prepare
the system for the transition period, 2) the transition period is caused by a rare fluctuation. To
understand the physical mechanism of a rare event, we need to answer a few critical questions. 1)
What is this rare fluctuation? 2) How does it cause transition? 3) What is the physical feature that
distinguishes the dynamics during the transition and the waiting periods? This is challenging
because we have little knowledge about this rare fluctuation except that it is the cause of the

transition process—the only reliable clue is causality.

Answering these questions requires understanding the dynamics of reaction coordinates (RCs)—
the small number of essential coordinates that can fully determine the progress of a rare event.
More specifically, RCs are the coordinates sufficient for determining the value of committor,
defined as the probability of dynamic trajectories initiated from a system configuration, with
momenta drawn from equilibrium distribution, to reach the product basin. Because committor
provides rigorous parameterization of the progress of a rare event in configuration space, RCs that

defined this way provides an accurate reduced description of a rare event.

The dynamics of RCs, consequently the dynamics of a rare event, can be divided into three periods:
1) waiting period, in which RCs are undergoing equilibrium fluctuations within the reactant basin;
2) energy activation (EA) phase, in which RCs gain extra energy so that they can cross the
activation barrier; 3) barrier crossing (BC) phase, in which RCs climb up the activation barrier and

cross it. The last two periods form the transition period.

The boundary between the waiting period and the energy activation phase defines the rare

fluctuation that initiates the transition period. Identifying this boundary can provide answer to the



first question above. Energy activation is the reason that RCs can cross the barrier, thus
understanding of the dynamics of EA can provide answer to the second question above. Both tasks
require rigorous parameterization of the EA phase as the first step, which requires a new metric

because committor can only parameterize the BC phase.

In this paper, we developed a new metric, the reaction capacity, that can rigorously parameterize
the progress of the EA phase. This enabled us to identify the boundary between the waiting period
and the EA phase and carry out rigorous energy flow analysis of the dynamics of EA and
understand its physical mechanism. Our results show that the rare fluctuation that initiates the
transition period is a special phase-space condition (i.e. a point in the phase space) that triggers
systematic energy flows in the system. The dynamics of the transition period are fundamentally
different from the equilibrium fluctuations of the waiting period in that it ensures systematic
energy flow from the non-RCs into the RCs. For a prototype of biomolecular isomerization
reaction, the (7.4 = C74, transition of an alanine dipeptide in vacuum, the systematic energy flow
during EA is achieved through direct transfer of kinetic energy from one coordinate to another,
administered by inertial forces alone, while forces from potential energy have little effects. This
mechanism is fundamentally from the mechanism for EA in Kramers theory; it could represent a

general mechanism for biomolecular conformational changes.

II. Theory and Results

Energy flow theory. Our main theoretical tool for analyzing the dynamics of a rare event is the
energy flow theory we developed '7'8. This theory defines both potential (PEFs) and kinetic
(KEFs) energy flows. The PEF through a coordinate g; is its work '®:

4(t2) gU (g)
dq;

AWty t5) = — f dg; (1),

qi(t1)
According to Eq. (1), AW;(t;,t,) is the change in the potential energy of the system due to the
motion of g; alone along a dynamic trajectory in the time interval [ t;,t,]. Itis a projection of the
change in the total potential energy onto the motion of g; and a measure of the cost of the motion
of g; in terms of potential energy. The change in the total potential energy of the system can be
decomposed into PEFs through different coordinates: AU(t;,t,) = U(t,) —U(ty) =

— YN AW;(t,,t,) , where the summation is over all the coordinates in the system. Along a



similar line, the force from one coordinate q; to another coordinate q; is defined as: AF;_,; =

_ ftl 32U(R)

t 3909 dq;, which measures how much of the force on g; is due to the motion of q; and its
0 i9q;

interaction with q; '3.

The KEF through a coordinate g; is !”:
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where K is the system kinetic energy, ¢’ = (q41,92,***» qi—1,Qi+1, ***»qy) is the position vector in
internal coordinates excluding q;, and ¥ = (g4, {5, **, qy) is the velocity vector. Since 9, K; is the
change in the system kinetic energy caused by changes in (g;, q;) alone, which completely
specifies the motion of q;, it rigorously defines the KEF through g;. It is equivalent to the change

in the kinetic energy of q; because it is always and only caused by motions of g;, even though we
cannot define kinetic energy per coordinate in generalized coordinates because K = %Zi, iSij9:4;>

where s;; is the coupling factor between ¢; and q; and a function of the structure of the system.

Similar to PEFs, we can decompose AK as AK = YN A K; 7.

To gain mechanistic insights, we need to look at how the PEFs and KEFs of individual coordinates
change with the progress of a rare event. We first project the PEF or KEF onto a projector (")
that parameterizes the progress of a rare event, then average over the ensemble of reactive

trajectories:

J dTp(D)SA;(§(T) - (1) +dHEEM) — M)
JdTp(M)8(EM) - %)

(64;(§M)) =
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Here, /1 (G)d G is the probability of finding the system in an infinitesimal volume dG around a

point I' in phase space in the reactive trajectory ensemble; §(x) is the Dirac d-function;
S§A;(E(T) » é(T) + dé) is the change in A; in a differential interval [X(G), )((G)+d)() :

(AA; (&, — &,)) is the change in A; in a finite interval [&;,&,], 8A; can be either dW; or 3,,K; 718,



The ensemble of reactive trajectories consists of trajectories that cover the transition period but

exclude the waiting period.

The PEFs and KEFs through individual coordinates can provide critical information for systematic
understanding of protein dynamics. The major source of complexity in protein dynamics is the
entangled couplings among different coordinates. As shown in refs. 718, this leads to complex
network architecture in the energy flow channels. To systematically dissect and understand this
network and consequently protein dynamics, the first step is to identify the important energy-flow
channels in this network. The PEFs and KEFs through individual coordinates provide a rigorous
ranking of the importance of different coordinates. As shown in previous studies 718, the
coordinates with the highest PEFs and KEFs corresponds to the RCs. This information is critical

for understanding the dynamics of rare events in biomolecules.

Model System and Simulation Method. The process we study is the C7.4 = C74, isomerization
of an alanine dipeptide in vacuum. This process is a prototype of conformational dynamics of
proteins because alanine dipeptide is the smallest example of complex molecules. Here, we define
a complex molecule as molecule whose non-reaction coordinates form a large enough heat bath
for powering the reaction coordinates (RCs) to cross the activation barrier !'8-22. In contrasts,
small molecules need an external energy source for activation, such as buffer gas in gas-phase and
solvents in solution-phase reactions. For this reason, we refer to the non-RCs in a complex
molecule as the intra-molecular bath. The isomerization of an alanine dipeptide in vacuum carries
some fundamental features that are unique to rare events in biomolecules but are absent in small

molecules.

This isomerization process is mainly a rotation around the ¢ dihedral (Fig. 1). In previous studies,
two backbone dihedrals ¢ and 8, were identified as the RCs for this process, as they are sufficient
for determining the committor value for any configuration of the system 2!?>. Here, committor
pp(X,) is the probability that a trajectory launched from the system configuration X,, with
momenta randomly drawn from equilibrium distribution, to reach the product basin before it visits

the reactant basin 192428 By definition, pg(X,) is the reaction probability of X, and rigorously



parameterizes the progression of a rare event in the region of the configuration space that

corresponds to pg € (0,1).

In previous energy flow analyses of this isomerization process !7-'8, we found that ¢ needs to cross
a potential energy barrier of ~10 kJ-mol™ in the region pg € (0, 1) and the energy required for
crossing this barrier is mostly provided by KEF through ¢. In contrast, 8, receives ~3 kJ -mol ™! of
energy from other coordinates via PEF and uses this energy to help ¢ by directly transferring
kinetic energy to ¢p. An important question is: Where does the kinetic energy consumed by ¢

come from?

An Example of the Rare Fluctuation That Leads to Barrier Crossing. Figure 2 (upper panel)
shows the time evolution of ¢ and 8, along a reactive trajectory that contains both a failed and a
successful barrier crossing. At t = 0.4 ps, ¢ reached a critical value: ¢ = 0.55. This value
matches the value of ¢ at ¢ = 1.03 ps when the successful barrier crossing starts, marked by
committor beginning to rise above 0. Instead of moving forward and crossing the activation barrier,
however, ¢ reversed its direction and went back to the reactant basin. After a brief stay there, ¢
moved towards the activation barrier again and reached the critical value of 0.55 at t = 1.03 ps.
This time, it crossed the barrier successfully. Why did ¢ fail the first time but succeed the second

time?

Apparently, ¢ = 0.55 is a critical point for deciding the outcome of a barrier crossing. Inspecting
the motion of ¢ gives the impression this is a stochastic and instantaneous decision because the
motions of ¢ during the failed and successful barrier crossings do not show meaningful difference
until ¢ = 0.55. Examination of quantities with more mechanistic significance, however, reveals

that this decision is deterministic and it was made long before ¢ reaches 0.55.

Figure 2 (lower panel) shows the time evolution of AFy _4, the force from 6, to ¢, along the
same trajectory. In the failed attempt, AFg _¢ rises rapidly as ¢ approaches 0.55 and reaches a

very high value at ¢ = 0.55. This force pushed ¢ away from the activation barrier, even though
the other coordinates collectively applied a very large force (Fy) to push ¢ forward. In the



successful attempt, in contrast, AFg 4 increases slowly, making its value at ¢ = 0.55 orders of
magnitude smaller. Despite that Fy is small this time, it is sufficient to push ¢ forward to cross

the activation barrier. Based on these observations, the physical factor that makes the instantaneous

decision on the outcome of a barrier crossing is the value of AFy _,4 at ¢ = 0.55.

The value of AFy_ _,4 at ¢ = 0.55 is not instantaneously decided. Instead, it is determined by its
evolution before ¢ reaches 0.55. Thus, the real cause of barrier crossing is the factor that
determines this evolution process. Since Hamiltonian dynamics is deterministic, this evolution
process is fully determined by the phase-space condition of its starting point. This specific starting
point, therefore, decides the fate of an attempt at barrier crossing. The question is: Where is this

specific starting point?

Figure 2 shows that, as ¢ approaches 0.55 during the second attempt, a systematic change in
AFg, ¢ starts around t = 0.9 ps when ¢ is still well within the reactant basin. It is tempting to
deduce that this is the starting point that we look for. However, this reasoning is not warranted
because it is based on an empirical observation without justifications from a physically more
rigorous ground. Itis safe, however, to infer that a period of systematic dynamics starts somewhere

between the time when ¢ returned to the reactant basin and the time it reached 0.55 again.

In the example above, barrier crossing is enabled by a proper value of Fy _,4 at ¢ = 0.55, which
is determined by its evolution beforehand. This evolution appears systematic, pointing to a
systematic component of the underlying dynamics that determines Fy _4. Since Fy, _,4 is unique
to this example while dynamics is universal, the lesson is: the dynamics of the transition period
has a systematic component. This systematic dynamics is distinct from equilibrium fluctuations
that precede it because it serves a specific purpose: making the system ready at the onset of barrier
crossing. In contrast, equilibrium fluctuations are thermal noise and do not serve any purpose.

The key for successful barrier crossing is to maintain this systematic dynamics.

In Hamiltonian dynamics everything is fully determined by phase-space conditions, thus we need

special phase-space conditions to maintain this systematic dynamics. Since this systematic process



is determined by the phase-space point at its beginning, this point is the real cause of a successful
barrier crossing. Reaching this special phase-space point is the rare fluctuation emphasized in the
general picture of a rare event. The central questions are: 1) When does this systematic dynamics
begin? 2) What does the system do during this period of systematic dynamics? To obtain rigorous

answers, we need a comprehensive analysis of a rare event.

Identification and Systematic Parameterization of the Transition Period. We consider a long
Hamiltonian trajectory X (I'(t), t € [0, T]) that covers the entire course of one incidence of a rare
event, from the moment when the system first enters the reactant basin at t = 0 until it finally
leaves the reactant basin, crosses the activation barrier and reaches the product basin attime t = T
(Fig. 3). Here, T'(t) = (X(¢), (1)) is the phase-space point on X at time t; ¥(t) and p(t) are the
positions and momenta of all the degrees of freedom in the system respectively. The deterministic
nature of Hamiltonian dynamics warrants that X contains all the relevant information for

understanding the mechanism of a rare event.

This trajectory can be divided into two segments, the waiting period followed by the transition
period. The waiting period is marked by equilibrium fluctuations. The transition period consists
of two segments (Fig. 3): 1) the barrier crossing process that starts at 7z, 2) the systematic
dynamics that precedes barrier crossing and ensures its success, which starts at 74. The systematic
dynamics in the time interval [74,7g) is the essence of a rare event; it is enabled by the phase-

space condition Ty = (¥(z4),5(t4)) on X at 7,. Our task is to identify 7,.

Committor can be computed independently, thus 75 can be identified by finding the latest point
on X with pz (¥(75) = 0) (i.e. among all the time t with pz(%(t)) = 0, T is the largest). Then
7,4 can be located by tracing back in time from 7 until we hit the point that is the necessary and

sufficient condition for maintaining the systematic dynamics. The reason is the following.

A phase-space point [ (t € [14,75]) on X during [74, Tg] is a part of the systematic dynamics and
determines all the dynamics after ¢ and ensures it remains systematic. This makes I} a sufficient
condition for maintaining the systematic dynamics. In contrast, a point earlier than 74 is not a

sufficient condition because the systematic dynamics has not started yet--it cannot be maintained

10



before it starts. The point at 74 is therefore the first sufficient condition for maintaining the
systematic dynamics. It is also the necessary condition because it is needed to start the systematic
dynamics. Together, these make the point at 74 (i.e. [) the necessary and sufficient condition for

maintaining the systematic dynamics.

In contrast, a point on X after 7, is a sufficient but not necessary condition. When we trace
backward in time along X from 73, all the points on the way are sufficient conditions, but only the
point at 74 is also a necessary condition. Thus, we can identify T, as the first necessary condition
we encounter as we trace back in time from 5. The key for locating t,, therefore, is a rigorous
way to recognize the necessary condition, which requires a rigorous way to quantify the necessity

of a condition for maintaining systematic dynamics.

The definition for statement A as a necessary condition for statement B is: if A is false, then B is
false. If we want to show that a phase-space condition [) is necessary for maintaining systematic
dynamics, we need to show that if [}, is modified, systematic dynamics will be disrupted. Below

is a procedure for testing necessity based on this idea.

For a phase-space condition Iy = (X,,P,), a small perturbation 6p is added to its momenta to
obtain a new condition I'' = (¥,, P, + 6p). If the trajectory starting from I'" does not have a
successful barrier crossing, it means that I'" cannot preserve systematic dynamics because
systematic dynamics is defined as being able to ensure barrier crossing. This would mean [} is a
necessary condition because modifying it disrupts systematic dynamics. If the trajectory from I’
has a successful barrier crossing, it means that I'' can preserve systematic dynamics and T is not

a necessary condition because [, contains unnecessary components of at least the size of §p.

Based on this reasoning, §p provides a measure of the level of necessity, but there is remaining
uncertainty because 8p is not unique. To deal with this uncertainty, we use a set of perturbations
(6p,, 6Dy, ..., 6Py, ) to generate an ensemble of perturbed conditions E(Iy) = (I, T, ..., [,). From
each condition, we have a trajectory that either does or does not cross the barrier successfully. For
the entire ensemble, we have a fraction of trajectories that have successful barrier crossings, which

defines a probability p.(Iy) that a perturbation to I, will sustain systematic dynamics. We call

11



pc(Tp) the reaction capacity because it indicates the capability of I}y to launch reactive trajectories.
Reaction capacity p.(Iy) provides a statistical measure of how necessary [, is for maintaining
systematic dynamics; a larger value of p.(I;) means [, is less necessary. Consequently,
pc(Ty) = 0 means [}, is a necessary condition for maintaining systematic dynamics. Here,

pc(Ty) = 0 means p¢(I}) is infinitely close but not equal to 0.

Consider the phase-space condition at Tg, [y = (¥(75),B(15)), we expect pc(Ig) = 1. This is
because pg(%(t5)) = 0, which means a complete change of p(zp) is required to disrupt the
systematic nature of the dynamics. If we only perturb the momenta of [z by a small amount, as
required by the definition of p., we expect most trajectories from the perturbed conditions should
have successful barrier crossing, thus p.(I's) = 1. As we move backward in time, we expect that
the p. value of points on the trajectory on average will decrease--the necessity of the phase-space
conditions along the trajectory increases. The first point with p; =~ 0 is the starting point of the

transition period.

In the definition of p, the magnitude of §p is the resolution for measuring the necessity for
maintaining systematic dynamics; a larger magnitude of §p means lower resolution. It is an
adjustable parameter that needs to be chosen empirically. For the current system, §p is generated
by randomly sampling a value in the interval [—0.2p,, 0.2p,] (i.e. 6p; € [—O.Zpo,i, 0.2p0,i], dp; is
the perturbation added to the momentum of coordinate x;) according to the uniform distribution.
From each [; we launch a trajectory and check if it is reactive. In this way, we obtain the

probability that trajectories launched from E (Iy) are reactive, which is the value of p.(I}).

EA Precedes BC and Has Much Longer Duration. Figure 4 (left panel) shows the values of p.
and pg along a typical reactive trajectory. They parameterize two consecutive segments; the
segment with p. € (0, 1] precedes the segment with pg € (0, 1]; the portion with p = 1 and the
portion with pp = 0 coincide with each other. We call the first segment the energy activation (EA)
phase and the second segment the barrier crossing (BC) phase (Fig. 3). The combination of EA
and BC forms the transition period. The EA phase lasts more than 1 ps and p. experiences several

turns of back-and-forth changes in its course of increasing from 0 to 1. In contrast, BC lasts less

12



than 200 fs and py increases monotonically ?°. Figure 4 (right panel) shows that on average the
duration of EA is about 5 times longer than the duration of BC, suggesting that EA is more complex
and more important for the 7., = C74, transition. Both distributions can be fit to a log-normal

form.

EA is Dominated by Direct Transfer of Kinetic Energy Administered by Inertial Forces
Alone. Figure 5 shows the PEFs and KEFs through all the coordinates in the system during both
EA and BC. To calculate energy flows during EA, we used p, as the projector. For the BC phase,
the projector is pg. The energy flows for the BC phase were shifted so that the energy flows at

pc = 1 and pg = 0 are continuous because these two regions coincide with each other.

As expected, only the two dominant reaction coordinates, ¢ and 8, experience significant energy
flows during EA. The KEFs of ¢ and 8, are high and of opposite sign--¢ gains while 8, loses
kinetic energy. The dependence of (A,,K(l,) and (A,,Kg 1) on p. are like mirror images of each other
except that the magnitude of the latter is about 50% of the former. Since the PEFs through both
coordinates are much lower than the KEFs, this means the kinetic energy attained by ¢ is mainly
through direct transfer of kinetic energy into ¢,~50% from 6, and the other ~50% from the intra-
molecular bath. This process is realized via the actions of inertial forces instead of forces derived
from potential energy according to the general mechanism of KEFs discovered in ref. !
Throughout EA, kinetic energy accumulates in ¢ and reaches ~10 kJ/mol at p. = 1, about the
same amount as the energy ¢ consumed while crossing the activation barrier. Therefore, the
kinetic energy consumed during BC, first identified in ref. '®, is supplied by the accumulation
during EA. To summarize, the main feature of the dynamics of EA phase is that kinetic energy
systematically flows into and accumulates in the dominant RC, a process mainly administered by
inertial forces. To our knowledge, this mechanism has not been discussed before and is unique to

biomolecules.

Another essential feature of EA is the timing of different energy flows. If we consider the starting
point of a systematic energy flow as when it rises above the noise level defined by the energy flows
of all non-RCs (the cloud of gray lines in Fig. 5), then among all the systematic energy flows

during EA, the PEF of 0, starts the earliest. While the PEF of ¢ is negligible, 6; needs to cross a

13



moderate barrier of ~2.5 kJ/mol at p. = 0.4. This is also the starting point of the systematic KEFs
of ¢ and 6, with the nearly perfect correlation between them pointing to a tight synergy between
the motions of ¢ and 6,. Since proper KEF into ¢ is the necessary condition for BC, this means
it is impossible for ¢ to start BC before 8; crossed its own barrier and became ‘ready’ to help ¢
17, Therefore, 6, acts as a gating mechanism on ¢. This effect also shows up in the trajectory: 6,
was in a wrong position during the failed attempt at t = 0.4 ps in Fig. 2 (upper panel), which is the
reason that ¢ is pushed back by Fy _4 (Fig. 2). This precise coordination between ¢ and 6,

highlights the intricate mechanism of EA.

Difference from the Mechanism of EA in Kramers Theory. In Kramers theory, EA is achieved
through the action of the random force, which originates from the interactions between the bath
modes and the RC. Sometimes the random force deposits energy into the RC, sometimes it extracts
energy from the RC. Overall, the RC gains energy during successful transitions. Based on the
magnitude of the change in the energy of the RC caused by the random force, the mechanism of
EA is classified as either energy diffusion or spatial diffusion. In the former, the random force is
weak and only causes small change in the energy of the RC each time. In the latter case, the
random force is strong and causes large change in the energy of the RC each time. In either case,
it is always that the total energy of the RC changes because potential and kinetic energy constantly
interconvert into each other. In essence, the Kramers picture suggests that total energy of the RC
changes stochastically and gradually, with an overall trend of increasing during the barrier crossing;

EA and BC are concurrent.

The mechanism for EA that we found in alanine dipeptide is fundamentally different. The major
RC, ¢, keeps receiving kinetic energy from the inter-molecular heat bath and accumulating it,
without releasing it or converting it into potential energy. When this accumulation of kinetic
energy reaches the threshold that is sufficient for crossing the activation barrier, it is consumed
during BC in one pass, converting into potential energy at the same time. As such, EA precedes

BC and completes before the onset of BC.

Finally, the energy activation in alanine dipeptide is achieved through the action of inertial forces

alone, while the forces from potential energy have little effects. This exclusive action of inertial

14



force is made possible by the special structural features of protein-like molecules, as discussed in

ref. 17,

A Physical Picture of Rare Events in Biomolecules. The results above suggest an intriguing
physical picture of a rare event in a complex biomolecule that obeys Hamiltonian dynamics. A
rare event has three phases: the waiting period, the EA phase and the BC phase. Each phase has
distinctive features. During the waiting period, the system searches randomly in the phase space
until it encounters a special phase-space condition that can initiate systematic energy flows. This
is the moment that waiting ends and EA starts. During EA, energy flows from the intra-molecular
bath into the RCs and accumulates there. The progress of EA is gauged by the amount of energy
accumulated in RCs. When energy accumulation in RCs reaches its maximum, EA ends and BC
starts. In this phase, the energy accumulated in RCs during EA is consumed to power barrier

crossing.

Formulation of this picture was enabled by introducing p.(Iy) as a measure of how necessary [,
is for maintaining systematic dynamics and energy flow, a rather abstract definition motivated by
logical deduction. But p;(Iy) also has an intuitive meaning based on the concept of reactive
trajectory. Since p¢ (Iy) is the probability that a trajectory launched from I'" = Ty + §p is reactive,
it is the probability that a reactive trajectory passes through the close neighborhood around [y, an
“ellipsoid” of “radius” 8p centered at Iy. Therefore, p-(Iy) is a measure of the density of reactive
trajectories in the close neighborhood around Iy. A small p.(T}) indicates a low density and a
large p.(T,) indicates a high density. Since pg(¥X,) is essentially p.(Ty) (Ty = (¥4, Po)) With §p
as large as p,, even small value of pg indicates high density of reactive trajectories. This is why

the regions of p. =~ 1 and pp = 0 coincide at the boundary between EA and BC (Fig. 4, left panel).

The alternative meaning of p.(I'y) above leads to a physical picture of a rare event from a different
perspective. Throughout the entire waiting period p stays 0, thus the system is searching in non-
reactive regions of the phase space—regions with no reactive trajectories. This search is random
because the dynamics during the waiting period is thermal fluctuations. This random search stops
when the system encounters a phase-space condition Iy with p.(T;) = 0 by pure chance. These

phase-space conditions mark the region with low-density of reactive trajectories, thus they are the
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starting points of reactive trajectories and the entrance points to the reactive region—the phase-
space region occupied by reactive trajectories. They are rare and scattered through the vast non-
reactive region, thus the chance for the system to come across them is small, making the search
and waiting long. In the EA phase, p. increases from 0 to 1, thus the system moves from region
with low-density to region with high density of reactive trajectories. This increase in reactive
trajectory density continues into the BC phase and peaks at pg = 0.5, i.e. the transition state region,
confirming its status as the dynamic bottleneck !. Afterwards, the reactive trajectory density starts

to decrease gradually as pg passes 0.5 and approaches 1.

II1. Discussions

In this paper, we developed a new metric, the reaction capability p., that parameterizes the
progress of the EA phase of a rare event. Together with committor pp that parameterizes the BC
phase, they provide rigorous parameterization of the entire transition period and enable us to
identify its starting point and carry out rigorous analysis of its dynamics. Our results showed that
EA precedes BC and has much longer duration; the energy accumulation during EA is a necessary
condition for BC and critical for the function of biomolecules. Therefore, understanding the

mechanism of EA is critical for understanding the mechanism of rare events in biomolecules.

Surprisingly, in contrast to the BC phase dominated by PEFs, the EA phase is dominated by kinetic
energy that systematically flows from the intra-molecular bath to the RC and accumulates there.
From our analysis on the relation between kinetic and potential energy flows in ref. !7, this fact
means that the systematic KEFs during EA are achieved through direct transfer of kinetic energy
from one coordinate to another under the actions of inertial forces rather than forces derived from
potential energy. This is made possible by the special structural features of biomolecules that
introduce structural couplings between different coordinates that synergize with the activation
process to sustain systematic transfer and accumulation of kinetic energy. This may be the key to
the unique functions of biomolecules that are not possible in small molecules. Although large
proteins may involve more sophisticated mechanisms for EA, systematic transfer and

accumulation of kinetic energy is likely an important component.
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This effect cannot be explained by transition state theory or Kramers theory: the former skips
dynamics and the latter is based on an equation of motion, the Langevin equation, that does not
support energy transfer administered by the inertial forces >!%!!. This might be the reason that
application of Kramers theory to understanding observations from single molecule spectroscopy
has met significant challenges. For example, Neupane et al found that the barrier height and
diffusion constant extracted from single molecule experiments on protein folding are inconsistent

4,13,30-32

with the measured transition path time . Antoniou and Schwartz found that velocities of

some key residues play a critical role in determining the progress of the hydride transfer reaction

33 These observations

in lactate dehydrogenase, suggesting the importance of momentum space
cast doubt on whether protein conformational dynamics and folding can be adequately described
by Kramers theory in the spatial diffusion regime #!!!3, To our knowledge, this systematic transfer
and accumulation of kinetic energy steered by inertial forces has not been discussed in the well-

studied process of intra-molecular vibrational redistribution either 3439,

The picture discussed here is based on Hamiltonian dynamics, which is always valid because any
system will obey Hamiltonian dynamics if all of its degrees of freedom are explicitly considered
(e.g. both the buffer gas and the reactants in a gas phase reaction are explicitly included in the
system Hamiltonian). Therefore, this picture is generally valid as long as quantum effects can be
neglected. Although the example we examined is in vacuum whereas proteins work in solutions,
the picture and approach presented here provide a foundation for understanding activation of
biomolecules in solutions. This is because we developed a general and rigorous approach for
understanding the intra-molecular bath, which is an extra layer of functional machinery that plays
a critical role in the activation dynamics and functions of biomolecules. The intra-molecular bath
is the reason that a biomolecule can organize systematic energy flows of much higher magnitude
than what is possible in a small molecule, which is key for achieving the unique functions of a
protein (e.g. enzymatic catalysis) that are not possible for small molecules. Solvent molecules will
have strong and extensive interactions with the intra-molecular bath, whereas their interactions
with the protein RCs could be more limited due to the small number of RCs. On the other hand,
our previous study showed that solvents play a dominant role of an isomerization of an alanine
dipeptide in water, but that could be due to the small size of the solute so that the RC is fully

exposed to the solvents 2!. It remains to be seen whether solvents should be treated on an equal
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footing as the protein using full Hamiltonian representation, or they should be treated in a statistical
manner as an additional bath for providing energy input into the intra-molecular bath to augment

the energy flow of the latter.

Finally, we note that the reaction capacity p.(I'y) defined here is fundamentally different from the
extended committor by Antoniou and Schwartz 33, which was based on the stochastic separatrix

40,41

idea derived from Kramers theory **'. Calculating the extended committor involves randomizing

all the momenta except those conjugate to the RCs by sampling from a Boltzmann distribution.

Methods

All simulations were performed using the molecular dynamics software suite GROMACS “with
transition path sampling implemented. Amber 94 force field was used to facilitate comparison with
previous results 1718234344 The structure of the alanine dipeptide was minimized using steepest
descent algorithm and heated to 300 K using velocity rescaling with a coupling constant of 0.2 ps.
The system was then equilibrated for 200 ps and no constraints were applied. The time step of
integration was 1 fs. Basin (7,4 is defined as —190° < ¢ < —55°and -60° < ¥ < 190°; basin
C74x 18 defined as 50° < ¢ < 100° and —80° < ¥ < 0°. We used transition path sampling
method to generate the ensemble of reactive trajectories between these two basins that are used in
all the analyses discussed here !. All the averaged quantities discussed in the text were averaged

over 12,000 trajectories.
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Figure 1: Two representative structures of an alanine dipeptide for the €74 (solid color) and Cy 4y
(semi-transparent color) states. The parts of the molecule that does not change in the C70q = Cyox

transition are completely overlapped between the two representations. The reaction coordinates
¢ and 6, are labeled.
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Figure 2: (Upper) Time evolution of ¢ (Green) and 6, (Red) along a reactive trajectory that
includes a failed attempt of barrier crossing marked by an arrow. Blue dashed line: time evolution
of pg. The horizontal dashed line shows the critical value of ¢ that marks the onset of barrier
crossing. The two vertical dashed lines mark the region of the successful barrier crossing. The
two shaded rectangles mark the corresponding periods that precede ¢ reaching the critical value
in the failed (Green) and successful (Yellow) barrier crossing respectively. The Brown shade mark
the period for the successful barrier crossing. (Lower) Time evolution of the total force acting on
¢ (AFy; Green) and the force from 6; to ¢ (AFg,4; Red). Note the huge difference in the
magnitudes of AFy and AFg 4 between the failed attempt around t = 0.4 ps and the successful
transition during t € [1, 1.3] ps.
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Figure 3: A schematic showing different phases of a dynamic trajectory that covers the entire
course of one incidence of a rare event. The trajectory of the waiting period is shown as Black
line, the trajectory of EA phase is shown in Green, and the trajectory of BC phase is shown in
Orange. The schematic free energy profile along the reaction coordinate is shown in Blue. The
vertical dashed lines mark the ranges of the three periods along the time axis; the horizontal dashed
lines mark their ranges along the reaction coordinate axis.
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Figure 4: (Left) The values of p. (Red) and pg (Green) along a typical reactive trajectory. (Right)
The probability density functions for the durations of the EA (tz4) and BC (tg) phases. The
PDFs are generated from 12,000 reactive trajectories. The duration of EA is much longer than that

T 2
of BC. The dashed lines are the log-normal fits: pg,(7) = 1.456_1'01(1n(m)) (Red), pgc(1) =
T 2
6.52¢~585(1n(55)) (Green).
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Figure 5: The PEFs ((AW;) i = ¢, 0,; dashed lines) and KEFs ({(A,K;) i = ¢, 6;; solid lines)
during the EA phase (left panel) and the BC phase (right panel). The Blue arrow marks the top of
the barrier on the path of 8, during energy activation. The gray dashed lines are the PEFs and
KEFs of the other coordinates (58 in total) in the system.
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