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Abstract—Consider the task of matrix estimation, in which
we desire to estimate a ground truth matrix given sparse and
noisy observations. Each entry is observed independently with
probability p, and additionally perturbed with additive observa-
tion noise. Assume the (u,7)-th entry of the ground truth matrix
can be described by f(cw., ;) for some Holder smooth function
f. We consider the setting where the row covariates o are
unobserved yet the column covariates 3 are observed. We provide
an algorithm and accompanying analysis which shows that our
algorithm improves upon naively estimating each row separately
when the number of rows is not too small. Furthermore when
the matrix is moderately proportioned, our algorithm achieves
the minimax optimal nonparametric rate of an oracle algorithm
that knows the row covariates. In simulated experiments we show
our algorithm outperforms other baselines in low data regimes.

Index Terms—nonparametric regression, matrix estimation,
side information

I. INTRODUCTION

Matrix completion, or matrix estimation, refers to the task of
estimating a ground truth matrix F' € R™*™ from a sparse and
noisy dataset X. Matrix estimation is a fundamental building
block of standard data analysis pipelines, as most datasets in
reality have measurement noise, mistakes, and missing data.
The statistical properties of matrix estimation has been well
studied in the context of low-rank models under anonymity, i.e.
supposing that the only available data is the matrix X itself,
and no further attributes of the rows and columns are known.

In this paper, we additionally consider the impact of having
access to one-sided covariate information, which is often
available in real-world applications. Previous works in matrix
estimation that consider access to side information assume that
the side information reveals the row or column subspace of
the ground truth matrix. In simple terms, this imposes that
the data behaves linearly with respect to the revealed side
information. In practice this is unrealistic, and there is often
considerable effort put into heuristic feature engineering to
generate a large set of functions of the covariates, with the hope
that the generated features contain the desired subspace. In
contrast, in this work we consider models of side information
in which the subspace is nonlinearly related to the covariates.

The results presented in this paper quantify the statistical
gain for matrix estimation due to having access to one-side
covariate information, under a nonparametric setting where the
primary assumption is that the ground truth matrix is smooth

with respect to the covariates. In particular, we assume that the
ground truth matrix F' can be described by a latent function
f such that F;; = f(«, 3;), where o; € [0,1]% are unknown
latent features of the rows, and 3; € [0,1]% are the known
column features. For each of the n rows and m columns,
the corresponding features, or covariates, are assumed to be
sampled independently uniformly on the unit hypercubes. This
nonparametric setting is a more expressive model class than
low rank models. The dataset consists of the known column
features {3;}cm) along with a sparsely observed matrix X
where each entry (i, j) € [n]xm is sampled independently with
probability p. For each observed entry (i, j), Xi; = Fij + €5
where €;; ~ N(0,0?). The goal is to produce an estimate F'
for the ground truth matrix F' given the dataset of observations
and column features. We measure performance by the mean
squared error (MSE) defined as

MSE = E[ 5 e Sjepm (B — Fig)?]
A. Contributions

Our results show that there are three data regimes depending
on the number of rows relative to the number of datapoints
per row. When the matrix is short and fat, in particular n =
O((mp)@/(2A+d2)) then the optimal estimator is to simply
estimate each row separately. In this regime, the bias introduced
by incorporating data from another row is larger than the
accuracy to which a single row can already be estimated.

In a moderate regime when n = w((mp)“/A*+d2)) and

n=0 (mp)min((Q/\erl)/Ub7(2d1+d2)/(4)\+d2))2

, We propose
an algorithm that matches the minimax-optimal nonparametric
rate of the oracle algorithm which is given access to the row
covariates. This implies that we in fact lose very little by only
knowing the column covariates and not the row covariates as
our algorithm performs as well as if it knew the row covariates.

When the matrix is tall and narrow, in particular n =

)111in((2)\+d1)/d27(2d1+d2)/(4A+d2)))’ we show that our

w ((mp
proposed algorithm still outperforms naive regression on each
row separately, as the distance between rows can be estimated
more efficiently than estimating the full function for each row
separately. However, our algorithm does not match the oracle
algorithm that has knowledge of the row covariates, as the
relatively few observations per row limits the accuracy to which

the relationship between rows can be estimated.
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We provide simulations that show our algorithm outperforms
other existing baselines, even compared to low rank matrix
estimation algorithms on low rank data itself. Our empirical
results highlight that in sparse data regimes, even when the
true model is actually low rank, our algorithm which utilizes
nonlinear side information at a cost of considering the larger
class of nonparametric models outperforms low rank matrix
completion algorithms.

B. Related Literature

The related work spans a wide literature across matrix
estimation and nonparametric regression, both old and well-
established fields of study. In addition, there is a host of
empirical work in recommendation systems that proposes
heuristics for matrix completion with side information, e.g.
using neural netowrks. As the contribution of this paper is in
theoretically quantifying statistical complexity, we focus our
comparison on algorithms that have accompanying theoretical
guarantees, giving attention to existing lower and upper bounds
from nonparametric regression and matrix estimation.

Classical sparse matrix estimation assumes that there are no
observed covariates, and the only data available is a sparse
noisy observation of a ground truth matrix. This problem has
been widely studied for the setting when the ground truth
matrix is low rank and incoherent, i.e. the latent factors exhibit
regularity, and the observations are sampled uniformly across
the matrix. Algorithms include nuclear norm minimization [1],
[2], singular value thresholding [3], [4], gradient descent [5],
[6], alternating least squares [7], and nearest neighbor [8], [9].
For any rank r matrix, low rank matrix completion algorithms
produce estimates that converge in MSE as long as the number
of observed entries scales as Q(r max(n, m)log min(n,m)),
linear in the maximum dimension of the matrix. This was
shown to be tight up to polylog factors in [1], [5].

In the low rank setting, there have been a sequence of
works that consider additional side information in the form
of covariate matrices or similarity based graphs. In inductive
matrix completion, the primary assumption is that the covariate
matrices reveal the row and column subspace of the ground
truth matrix [10]-[20]. This implies that the ground truth matrix
F' can be factored according to Y M 7T, where Y € R"*"
and Z € R™*" are the given covariate matrices. As the
unknown parameters reduces to only 7; X 7o, the given side
information significantly reduces the sample complexity of
matrix estimation from linear in max(n, m) to logarithmic in
the dimension. Assuming that the observed covariates directly
reveal the subspace is a strong condition that is often not
satisfied in practice, as it assumes the data is linearly related
to the observed covariates.

An alternate form of side information has been considered
in the form of graph or clustering based side information. The
key idea of graph regularized matrix completion is to impose
a regularizer that encourages the estimate to be smooth with
respect to an underlying graph [21]-[27]. The majority of these
works are primarily empirical with limited statistical guarantees,

with limited results where the sample complexity still scales
linearly in max(n,m).

There has been a limited number of works that also consider
a nonparametric model class as we assume in this paper.
Under a Lipschitz model, [28], [29] require a significantly
costlier sample complexity of min(rn,m)max(n,m)'/2. The
models most relevant to our setting is from the graphon
estimation literature, which specifically focuses on the case
with binary observations and a symmetric matrix [30]-[33].
When n = m, a; = B; € [0,1]%, and f is a symmetric
2d-dimensional (A, L)-Holder function, the singular value
thresholding estimator achieves MSE = O((pm) 2/ (2A+d)),
This matches the mimimax-optimal nonparametric rate for
estimating a d-dimensional function given pn observations,
which would be the setting of estimating the latent function
for a single row given the column covariates using only the
datapoints within the row. Under the nonparametric setting,
there has not been any existing works that incorporate side
information with matrix estimation.

As we assume a nonparametric model, the crux of our
algorithm will build upon nonparametric kernel regression. An
excellent presentation of results and techniques in nonparamet-
ric estimation can be found in [34], of which we summarize a
few key results below. Let the function class F (A, L) denote
all d-dimensional (A, L)-Holder functions with A € (0, 1] such
that for all z,2’ € [0,1]¢ and f € F()\, L),

|f(@) = f@")] < Lllz - 2'|1%. (D

Let N denote the total number of observed datapoints. The
minimax optimal mean squared error rate for the class of (A, L)-
Holder functions is Q(N~2*/(2A+d)) This rates is achieved by
locally polynomial estimators and thus it is tight. This literature
however does not consider the value of sharing data amongst
different regression tasks, as considered in our setting. If we
performed regression on each row’s data separately, then the
minimax error rate would be (pm)~2*(2A+4) ag the number
of datapoints in a given row is N = pm.

Our proposed algorithm and analysis will rely upon the task
of estimating the Lo distance between two functions f and f’
given observations from both. In particular we take inspiration
from the results in [35] which show that the minimax optimal
rate for estimating the norm || f||2 with N observations is

E[(IFll2 = 1/112)%] = max(N @D N=172),
which is faster than the minimax rate of estimating the full f.

II. MODEL

Consider a dataset consisting of a sparse data matrix X €
R™>™ and observed column covariates {/3; }ic[n]- The goal is
to estimate a ground truth matrix F’ given the data matrix and
observed covariates. We make the following assumptions on
the data generating model.

Assumption 1 (Row and column covariates). Each row u € [n]
is associated with a latent covariate o, € [0,1]%, and each
column i € |[m] is associated with an observed covariate
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B; € [0,1]92. These covariates are sampled independently
uniformly on the specified unit hypercubes, o, ~ U([0,1]%)
and 3; ~ U([0,1]%). The column covariates {Bi}ieim) are
observed, but the row covariates {cv, }ye[n) are not known.

Assumption 2 (Gaussian observation noise). Each observed
datapoint X,; is a noisy signal of a ground truth function f,
perturbed with additive Gaussian noise,

Xui = f(aua 57,) + €ui,

where €,; ~ N(0,0?) are independent mean-zero Gaussian
noise terms. For F' € R™"*™ denoting the ground truth matrix,
it follows that E[X,;] = Fy; = f(w, 5i)-

Assumption 3 (Smoothness of latent function). The latent
Sfunction f is an (A, L)-Holder function with A € (0,1]. For
A =1, fis L-Lipschitz.

Assumption 4 (Uniform Bernoulli sampling). Each entry is
observed independently with probability p. For £ denoting
the set of observed indices, each index pair (u,i) € & with
probability p. We overload notation and also let &,; denote
the indicator function 1((u,1) € &).

We assume a nonparametric model, where the ground truth
matrix is described by a latent function f. This is in contrast
to the majority of the literature which assumes a low rank
model. Any Lipschitz function can be approximated by an
approximately low rank matrix [4], [33], [36]. Any rank
r matrix can be described with the inner product function
computed over r dimensional latent feature spaces, which also
exhibits Lipschitzness. When it comes to side information
however, our model is more realistic as we allow for nonlinear
relationships between the side information and the observed
matrix data. In particular, the attempts to incorporate side
information to low rank models require the side information
to reveal the latent subspace, which is a significantly stronger
assumption than mildly assuming smoothness as in our model.

We consider an asymmetric side information setting, in
which the row covariates are not known whereas the column
covariates are know. This asymmetry arises in applications
where one side could be anonymized due to privacy concerns,
e.g. a customer-product interaction dataset with anonymized
customer information, or when one side corresponds to time,
date, or geographical location, which can be linked to publically
available covariates.

III. ALGORITHM

Assume that we have two freshly sampled sets of observa-
tions, £ used for learning the row distances, and £” used for
generating the final prediction. The independence of the two
datasets facilitates easier analysis by decoupling the different
steps of the algorithm; empirically we reuse the same dataset
for each part of the algorithm, which still performs well.

If we knew the row latent variables « in addition to
the column latent variables /3, then we can simply use any
nonparametric regression estimator such as kernel regression to
match the minimax optimal rates. The idea of kernel regression

is simple; estimate the value of the target function at («, 3)
using a weighted average of the datapoints, where higher
weights are given to nearby or similar datapoints, as determined
by the kernel. For simplicity we consider a rectangular kernel,
which gives equal weight to all datapoints for which the
corresponding (o, 3’) are at distance no more than a specified
threshold. This is also equivalent to a fixed threshold nearest
neighbor algorithm, where the nearest neighbor set is defined
by the distances in the latent space.

In our problem setting, we do not have knowledge of a.
Instead we propose an algorithm that uses data to estimate
a proxy for distance between the rows, which is then used
to determine the set of nearest neighbors used to construct
the final estimates. As a result, the crux of the algorithm and
resulting analysis is to make sure that the estimated distances
are estimated closely enough to add value to the final estimates
with respect to the bias variance tradeoff. We construct distances
that approximate the L» difference in the latent functional space,
evaluated with respect to the column latent variables, given by

d2(ua 'U) = % Zle[m] (f(auvﬁl) - f(avaﬁl))2 .

Since we don’t have access to the latent function f, we instead
estimate the function f(ay,, -) associated to row  using the data
in row u itself. While any nonparametric estimator could be
used, we use the Nadaraya-Watson estimator with a rectangular
kernel with respect to the infinity norm for ease of analysis
[34]. Our algorithm has three steps, which we detail below.

Step 1: Initial row latent function estimates. For each row
u, compute f(u,4) to approximate f (o, 3;) via the Nadaraya-
Watson estimator on row u’s data, according to

fwi) = 3

“ jeiml
for Wy =3 e H(u, j) € €K (%) )
with bandwidth h and kernel function K (b) = I(||b]| < 1),

where || - || denotes the infinity norm, ||b|| = max; |b;], and E,;
denotes the indicator function I((u,) € &).

I((u, ) € £ Xy K (@)

Step 2: Pairwise row distance estimates. For each pair of
rows u and v, compute d(u, v) to approximate d*(u,v) by
comparing f(u,4) and f(v,4) across all i € [m], according to

dz(u’v) = % Eze[m](f(ual) - f(U, Z))Q - 1241;’

for £2, computed to offset the bias that arises from the squared
terms involving the observation noise (distributed N (0, 0?)),

02 w ’ v , .
€.=2 T 3 (g ) o (52

i€[m] l€[m]

Step 3: Nearest neighbor estimates. For each index pair (u, %),
estimate F,; using a fixed radius nearest neighbor estimator,

J - Zve/\/l(u,m) ZJ'GNE(NM) X”j]l((v’j) €&’
“ |(N1(uy 1) x Na(i,m2)) N E| 7
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where the neighborhood sets are defined as

Ni(u,m) = {v € [n] : d*(u,v) < i}
Na(i,n2) == {j € [m] : [|Bi — Bl < na}

for some chosen thresholds 7y, 72.

Our algorithm has three tuning parameters, A, 71, and 72. The
most costly step is computing the nearest neighbor estimates.
This can be accelerated using approximate nearest neighbor
algorithms, or by computing a block constant estimate resulting
from clustering using the distances. The same performance
guarantees can be achieved with reduced computational com-
plexity by choosing an appropriate number of clusters.

IV. THEORETICAL GUARANTEES

We quantify the gain due to side information by bounding
the mean squared error achieved by our algorithm relative
to naive row regression. When there are few rows, i.e. n =
O((mp)?1/(2A+d2)) " then estimating each row separately using
classical regression techniques obtains the minimax rate

MSE = O((mp)—2/\/(2,\+d2))_

Even if the row covariates o were observed, the achieved MSE
from performing regression on the full matrix dataset would
be O((pmn)~2M (A +ditd2) \which is worse than the MSE
achieved from estimating on each row separately, as it ignores
the additional structure in a matrix dataset which enforces that
the covariates of all the datapoints are aligned along a grid
corresponding to the rows and columns. Essentially, when n is
small, each row is sufficiently different so that the bias from
sharing data outweighs the benefits of variance reduction.

Our algorithm focuses on the more interesting regime where
n = w((mp)h/rd2)) We will choose the bandwidth of our
initial row regression estimates according to

B pm N\~ min(1/ds 2/(da+43)
h_@((logmn) )
Theorem IV.l. For n = w((mp)©/G )y and n =

0 ((mp)min((Q/\+d1)/dz,(2d1+d2)/(4)\+d2))>) our algorithm with

m = 77% = (pﬂm)f)‘/(z)‘J“lerdQ) achieves rate

MSE = O ((pmn)_2’\/(2’\+d1+d2)) .

Forn=w ((mp our algo-

)min((2>\+d1)/d2,(2d1+d2)/(4)\+d2))>
rithm with 0, = 2h*, 1y = h achieves rate

pm ) — min(2X\/d2 ,4)\/(d2+4)\))>

MSE = 0 (

log mn

In the regime that n = w((mp)©/Ad)) and n =
0 ((mp)min((Z/\erl)/dg,(2d1+d2)/(4)\+d2))

fact achieves the nonparametric minimax optimal rate of an
oracle regression algorithm which observed both row and
column covariates. This means that even without knowledge of
the row covariates, the algorithm can learn the row distances
from the data itself accurately enough to match the oracle.

), our estimator in

For n — )min<(2x+d1)/dz,<2d1+d2>/<4A+d2)>)

w ((mp , our
algorithm still improves upon the performance of naive row
regression, but does not match the oracle. This is expected as
the knowledge of the row covariates is more powerful when
there is a large number of rows relative to the datapoints in
each row. When the number of datapoints in each row is small
relative to the number of rows, the performance of our algoritm
is limited by the rate of estimating Lo distance between the
latent functions associated to pairs of rows. Our analysis for
our algorithm is nearly tight, as there is a matching (up to
polylog factors) minimax lower bound of (mp) =4/ (4A+d2) for
estimating the Lo norm of a function when the 3 covariates
are evenly spaced [35]. The term (pm/log mn)fz’\/ “ arises
from the randomness of the column covariates /3.

Without access to side information, classical matrix estima-
tion requires a sample complexity linear in max(n,m), i.e.
p = w(min(n, m)~!) in order for a convergent estimator to
exist, as any low rank matrix completion algorithm requires a
growing number of observed entries in each row and column. In
contrast, when we have access to column covariates, the sample
complexity is only linear in n, i.e. p = w(m™!). When m
grows faster than n, then this could significantly reduce sample
complexity. In particular, when m is large and p = o(n™1!),
with high probability there will be columns which have zero
entries observed. Using covariate knowledge, we can predict
empty columns with other columns having similar covariates.

V. PROOF SKETCH

As the final estimate is constructed using fixed radius nearest
neighbor, the primary piece of the proof is to show that the
estimated distances concentrate, as stated in Lemma V.1.

Lemma V.1. With prob 1 — o(1), for all u,v € [n]?,

. <23d2/4alog1/2(n)

|d(u,v) = d(u,v)| <O () 2 haTd + 2L(h/2)A>

for h satisfying h = o(log=%/%2(n)).

To prove Lemma V.1, we will separately bound the error due
to the additive Gaussian observation noise, and the error due
to the randomness in sampling {/3;}ic[) and the indices in
&' Let f(u,i) and d?(u,v) denote the hypothetical distances
estimated from comparing the Nadaraya-Watson estimator on
row u’s data assuming no observation noise,

F1) = e See, K (257) Fo.8y)
P(u,0) = & Sie (F.) - Fo.0)

The proof of Lemma V.1 bounds the error due to observation
noise as captured by |d(u,v) — d(u,v)| using concentration
inequalities that exploit the Gaussian distribution of the additive
observation noise terms. We bound the error due to the sparse
sampling as captured by |d(u,v) — d(u,v)| using Holder-
smoothness and regularity of the sampling model for the column
covariates and the location of the observed entries.
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Fig. 1: Results of the experiments on the synthetic dataset: (Left) latent function f; (Center) plots MSE vs. number of rows n
for different algorithms; (Right) plots MSE vs. sparsity p for different algorithms

By approximating (u, ¢) via averaging over nearby datapoints
(v, j) for which 8; — 3, is small and d(u,v) is small, we can
bound the MSE using the Holder smoothness property of f,
the construction of d(u,v), and the uniformity of the sampling
model. Our proof slightly deviates from the typical bias variance
calculations common to nearest neighbor estimators, as d(u, v)
only estimates the Lo difference between the latent functions of
v and v. A bound on the Lo difference can translate into a very
loose bound on the L, distance especially in high dimensions.
As a result, d(u,v) being small does not imply that f(c,, 5)
is close to f(aw, ) for all values of 5. However as our goal
is to compute an aggregate MSE bound, we can still obtain a
good bound on the MSE without having a tight L., bound. In
particular, under the good event that the distances estimates
concentrate and the nearest neighborhood sets are sufficiently
large, Lemma V.2 bounds the MSE of our estimator.

Lemma V.2. Conditioned on ﬂu’ve[n]zﬂa?(u,v) —d(u,v)| <
A} Nuem{Ni(u,m)| > 21} and Qe {IN2(i,m2)| > 22},
with respect to the randomness in " and {Xav}(4,p)cer, for
p = w((z122)71), with probability 1 — o(1), it holds that

MSE=O< o

I+ L0+ + A)2) .

The final result follows from appropriately choosing the
parameters h, 7, and 72, which determine A, z;, and zs.

VI. SYNTHETIC EXPERIMENTS

We construct synthetic experiments to illustrate the perfor-
mance of our algorithm in practice. We use the following
latent function f to generate the ground truth matrices for our
experiments, where the row covariates {c; };c[,) and column
covariates {/3;} e[ are sampled independently from U0, 1].

f(ev, B) = sin(10c) sin(48) + 0.2 (sin(40a) sin(403))*

The corresponding ground truth matrix is rank 2, where the
latent factors of the low rank decomposition are non-linear
functions of « and f3, such that knowledge of « and S without
knowledge of the nonlinear transformation does not reveal the
latent row and column subspaces. For a given sparsity level
p, each index (i,7) € [n] x [m] is observed independently

with probability p, upon which the associated datapoint X;; is
perturbed by additive noise distributed as N (0, 0?).

We compare our algorithm both to the naive algorithm that
estimates each row separately using kernel regression, and to
an oracle kernel regression algorithm that is given knowledge
of both a and (. We also compared our algorithm against
classical matrix completion algorithms such as Softlmpute and
alternating least squares (ALS) with rank parameter 2.

The center plot of Figure 1 shows the resulting MSE of
each of the algorithms as a function of the number of rows
n, where we set m = 500, p = 0.05, and ¢ = 0.2. The
right plot of Figure 1 shows the resulting MSE of each of
the algorithms as a function of the sparsity of observations p,
where we set m = 500, n = 200, and ¢ = 0.2. SoftImpute
performed significantly worse by an order of magnitude, such
that it is not displayed in the right plot. For each combination
of parameters, we generate 10 datasets, each of which is then
given to each of the algorithms we benchmark. The line plot
shows the MSE averaged over the 10 sampled datasets, and
the shaded region shows the standard deviation of the resulting
MSE from these 10 datasets. Our algorithm performs well
across all values of n, matching the oracle at small values of
n and still performing close to the oracle even at larger values
of n. Our algorithm also performs well even at low levels of
sparsity, significantly outperforming other benchmarks, and
nearly matching the oracle at fairly low sparsity levels.

Our results and simulations show that simple nonparametric
nearest neighbor style estimators can outperform low rank
methods even in the class of low rank matrices, when the matrix
is far from square, and when there is available covariate side
information. As a point of reference, when m = 500, n = 200,
the minimum sparsity such that we observe 2 datapoints in
each row and column on average would be p = 0.02, which is
the rough threshold after which there is sufficient information
to fit a rank 2 model. Our algorithm performs well at this
level of extreme sparsity, outperforming row regression and
classical matrix completion. At a sparsity level of p = 0.05,
we would expect that there is sufficient information to fit a low
rank model at roughly n = 40. While our algorithm performs
well at such low values of n, the matrix completion algorithms
do not perform well until significantly higher values of n.
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