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Abstract 

 
Understanding the mechanism of functional protein dynamics is critical to understanding protein 

functions.  Reaction coordinate is a central topic in protein dynamics and the grail is to find the 

one-dimensional reaction coordinate that can fully determine the value of committor (i.e. the 

reaction probability in configuration space) for any protein configuration.  We present a new 

method that, for the first time, uses a fundamental mechanical operator, the generalized work 

functional, to identify the rigorous one-dimensional reaction coordinate in complex molecules.  

For a prototypical biomolecular isomerization reaction, the one-dimensional reaction coordinate 

identified by the current method can determine committor with an accuracy far exceeding what 

was achieved by previous methods.  This method only requires modest computational cost and can 

be readily applied to large molecules.  Most importantly, the generalized work functional is the 

physical determinant of the collectivity in functional protein dynamics and provides a tentative 

roadmap that connects the structure of a protein to its function. 
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Proteins are the building blocks of biological systems responsible for most biological functions.  

Understanding the mechanism of protein function is of paramount importance.  The central dogma 

of protein science is that structure determines function.  The holy grail is the physical principle 

that explains how the structure of a protein determines its function.  The route to this principle 

starts with recognizing that most protein functions, such as ligand binding, allostery and effects of 

mutations, involve significant conformational dynamics because a protein has multiple functional 

structures and transitions between these structures are required for its function 1, 2.  Structure 

determines function because the specific structure enables the desired functional dynamics.  

Understanding protein function requires understanding functional dynamics.   

 

Importance of reaction coordinates.  Most functional dynamics are activated processes similar 

to chemical reactions: a protein must cross an activation barrier much higher than thermal energy 

to move from the reactant (initial) state to the product (final) state.  A central concept here is the 

reaction coordinates (RCs): the small number of  essential coordinates that fully determine the 

progress of a reaction 3.  In particular, RCs determine the location of the transition state.  The 

reaction progresses in the forward direction when RCs move towards the product state; it regresses 

when RCs move towards the reactant state; movements of all the other coordinates are irrelevant. 

 

Reaction coordinates are the cornerstone of the standard reaction rate theories.  Reaction dynamics 

is the dynamics of RCs.  Indeed, Kramers theory assumes that the dynamics of the RC is governed 

by a Langevin equation 4, which is extended to generalized Langevin equation in Grote-Hynes 

theory 5.  Similarly, transition state theory relies on simplifying assumptions on the essential 

features of the dynamics of the RC 6-10.  The applicability of all these theories requires full 

knowledge of the RCs.   

 

Reaction coordinates are also central to enhanced sampling, a major current research direction in 

computational biophysics.  Most algorithms rely on applying biasing potentials on one or a few 

collective variables (CVs) selected by intuitions to increase sampling of the relevant configuration 

space 11-17.  However, these algorithms are effective only if the CVs coincide with RCs.  Otherwise, 

the infamous “hidden barrier” problem will inevitably appear and prevent effective sampling 18-20.  
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The “hidden barrier” is the actual activation barrier that lies on the true RCs, which is missed by 

the biasing potentials along CVs that do not overlap with the RCs significantly. 

 

The rigorous concept of RC.  Given the central importance of RCs, a rigorous definition is 

essential.  An important concept is committor (!! ): the probability that a dynamic trajectory 

initiated from a system configuration, with initial momenta drawn from Boltzmann distribution, 

to reach the product state 3, 21-23.  Committor rigorously parameterizes the progress of a reaction 

(e.g. the transition state has !! = 0.5).  Consequently, RCs are the set of coordinates that can fully 

determine the committor value of any system configuration.  Other coordinates in the system are 

irrelevant.  Reaction coordinates that satisfy this definition provide an accurate reduced description 

of a reaction.  In contrast, ad hoc RCs that do not satisfy this definition bear little relevance to 

reaction dynamics and mechanism 24, 25. 

 

A critical question is: How many RCs are there in a system?  The standard reaction rate theories 

assume that, for a single-channel reaction, there exists a single one-dimensional RC (1D-RC) that 

can fully determine committor.  Even though the multi-dimensional extensions of these theories 

assume that a reaction is controlled by the free energy surface of multiple RCs, it is assumed that 

there is only one unstable direction in the saddle region 7, 26, which is the direction of the 1D-RC.  

The seminal work by Berezhkovskii and Szabo 27 showed that it is possible to find a 1D-RC that 

reproduces the same reaction rate determined by multiple RCs 28, 29. 

 

For single-channel reactions, the concept of multiple RCs is an approximation to the concept of 

1D-RC.  In the schematic example of Fig. 1a, &" and &# are considered RCs because they both 

have significant overlaps with '$, the 1D-RC.  However, they also have components orthogonal to 

'$, pointing to their inaccuracy as RCs.  The concept of multiple RCs is semi-quantitative and has 

some leeway; the concept of 1D-RC is quantitative and precise.  The former is adopted much more 

widely 3, 30 because, compared to the 1D-RC, they are much easier to identify. 

 

The goal for studying RCs.  The rigorously defined RCs offer a chance to bring order to the 

apparent chaos and complexity of protein dynamics that thwarted understanding of protein 

function. The small number of RCs compared to the myriad of coordinates in a protein indicates 
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that protein dynamics has an intrinsic order and governing principles, which is embedded in the 

RCs as they accurately describe the progress of protein dynamics.  The physical cause behind the 

RCs is the physical determinant of this intrinsic order. The goal for studying RCs is to uncover 

and, furthermore, understand the principle behind this physical determinant.   

 

Challenges in identifying RCs.  The first step towards this goal is to identify the less strictly 

defined multiple RCs, since it is easier than identifying the 1D-RC.  However, it turned out to be 

a daunting challenge.  Despite much efforts, over the past two decades there have been only a few 

successful cases where RCs that can determine committor were identified 30-33.  In each case, two 

or three RCs were successfully identified.  The most important lesson from these examples is that 

RCs are often counter-intuitive 30, 31.  This counter-intuitiveness demonstrates why it is challenging 

to identify the few RCs out of practically infinitely many potential candidates in a complex 

molecule.  For example, over 6,000 candidates were tested in ref. 31 for the (%&' → *( 

isomerization of an alanine dipeptide in solution to uncover the three RCs. 

(a) (b)
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Figure 1: One-dimensional reaction coordinate and structure-funciton relationship. (a) A schematic
of the potential energy surface and RCs of a two-dimensional system. The light yellow region
indicates the contours of the potential energy surface, with the reactant and product states marked
by R and P respectively. The green dashed rectangle marks the transition region. The orange
curve !! indicates the 1D-RC and the blue line segments !!′ is its piecewise linear approximation.
(b) Flow chart for the tentative roadmap for the physical principle that connects the structure of a
protein with its function.
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As a result, systematic methods that go beyond intuition-based trial-and-error experimentation are 

required, as it is not feasible to enumerate the enormous number of potential candidates.  The first 

systematic method used neural network and successfully identified the RCs for the (%&' → *( 

isomerization of an alanine dipeptide in solution that eluded human intuitions 31.  This early success 

is followed by many machine-learning methods along similar lines, a research direction that is 

currently attracting intensive attention but also facing significant challenges 25, 34-38.  More 

importantly, machine-learning methods cannot answer the question central to the goal of studying 

RCs: Why do RCs exist and how do they control functional dynamics?  Answering this question 

requires the correct mechanical model of functional dynamics, which machine-learning cannot 

provide because it can only optimize parameters based on a pre-formulated model but cannot 

construct a model de novo.  An approach based on fundamental physics is required. 

 

Physics-based approach for understanding RCs. The recently developed energy-flow theory 

offered some insights into the physical principle behind RCs 32, 39.  It showed that energy flows 

from the fast to the slow coordinates during a reaction 32.   Because RCs are the slowest, they carry 

the highest energy flows.  This picture is intuitively appealing and explains why RCs are so 

important: energy is the currency of dynamics and movements of RCs incur the highest cost, thus 

they control reaction dynamics by dictating the overall cost.  However, this picture is still semi-

quantitative and does not answer a critical question: What is the relationship between different 

RCs?   

 

This question is automatically answered if we can identify the 1D-RC, because it is a function of 

the multiple RCs, which defines the precise relationship between them.  Moreover, 1D-RC answers 

a key conceptual question: What is the physical origin of collectivity in functional dynamics?  It 

is generally assumed that functional dynamics are controlled by one or a few CVs, the reason that 

CVs are widely used in enhanced sampling.  However, the critical questions have never been 

answered: Why functional dynamics are collective and what determine the CVs?  By definition, 

1D-RC is the optimal CV, thus the physical determinant of 1D-RC is the physical origin of 

collectivity in functional dynamics.  
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In this paper, we introduced a fundamental mechanical operator rooted in Newton’s law, the 

generalized work functional (GWF), which determines the correct 1D-RC.  Applying this new 

approach to a prototypical biomolecular isomerization process, the (%&' → (%)* transition of an 

alanine dipeptide in vacuum, we obtained, as an accurate approximation, the piecewise 

linearization of the 1D-RC (e.g. '$+ in the example of Fig. 1a) throughout the entire transition region 

(i.e. !! ∈ (0, 1)).  Each linear segment is a combination of four component RCs: two dihedrals 

and two improper dihedrals.  This 1D-RC can predict the committor value throughout the entire 

range of !! with an accuracy that approaches the limit of the numerically evaluated committor 

values.  This accuracy far exceeds what was achieved by previous methods 30, 31.  Among the four 

component RCs, the two improper dihedrals were only identified by the current method; their 

inclusion significantly improved the accuracy in predicting the committor value.   

 

Most importantly, the GWF is a generic physical property universal to all protein molecules, 

allowing us to answer fundamental questions concerning RCs and functional protein dynamics. 1) 

Why do RCs exist and how do they control protein dynamics? 2) What is the relationship between 

different RCs? 3) What is the origin of collectivity in protein dynamics?   

 

The GWF summarizes the mechanical effects of the couplings between different coordinates.  It 

shows that, due to the special structural features of a protein, a small number of essential forces 

have high impacts on the dynamics of the entire system, while the other forces have only minor 

effects.  The directions of these essential forces are the RCs.  Motions of RCs control these 

essential forces, thus RCs control the reaction dynamics.  The GWF is a tensor; its inherent 

structure can be revealed by singular value decomposition (SVD).  The leading singular vector 

from SVD identifies the single dominant force; its direction is the 1D-RC, which is a function of 

all the RCs.  The motion of 1D-RC is a synergized motion of all the RCs.  This synergy is the 

origin of collectivity in functional dynamics, as dynamics of RCs is the crux of protein dynamics. 

 

From these results emerges a tentative roadmap that connects the structure of a protein to its 

function (Fig. 1b).  Protein structure determines both atom-atom interactions and the structural 

coupling tensor responsible for the mechanical couplings between different coordinates.  Together, 

they determine the GWF, which determines the directions of the strong forces that appear as the 
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RCs.  Finally, RCs control the functional dynamics, which determines function.  In this roadmap, 

the GWF plays a pivotal role: it is the underlying “mechanical structure” that determines the 

behaviors of the geometric structure we observe. 

 

Results 

Energy-Flow Theory.  A major theoretical tool we use for analyzing reaction dynamics is the 

energy flow theory 32, 39.  It was motivated by a simple physical intuition: motions of the most 

important coordinates in a dynamic process require high energy cost. In the Lagrange-Hamiltonian 

formulation of classical mechanics, energy is the cost function of motion.  If the motion of a 

coordinate requires high energy cost, then it has a slow time scale and controls the rate of a reaction 

process. To identify these important coordinates, we need a rigorous definition of the energy cost 

of the motion of a coordinate.  This is challenging because the energy function of a system is 

dominated by complex coupling terms between different coordinates; there is no well-defined 

energy per coordinate. Therefore, we can only find the energy cost of the motion of a coordinate 

by projection. This is achieved through integration over partial differentials.   

 

The total differential of a multi-variable function 0(1", … , 1,) is 30 = ∑ -.
-*!
31/

,
/0" , thus each 

partial differential -.-*! 31/  is the exact contribution of the change in 1/  to the total change in 

0(1", … , 1,). The coupling terms in 0(1", … , 1,) are precisely partitioned among all the variables 

through partial derivatives -.-*!. Consequently,  ∫ -.
-*!
31/ rigorously defines the contribution to the 

accumulated change in 0(1", … , 1,) from changes in 1/. 

 

Applying this idea to the potential energy of the system, we deine the potential energy flow through 

a coordinate &/ as the work on &/ 32: 

∆7/(8", 8#) = 	−;
<=(&⃗)

<&/
3&/

'!(2")

'!(2#)
		(1), 

where =(&⃗) is the potential energy of the system, &⃗ is the position vector of the system in the 

configuration space.  According to Eq. (1), Δ7/(8", 8#) is the change in =(&⃗) caused by the motion 

of &/ alone along a dynamic trajectory in the time interval [	8", 8#].   It is a projection of the change 
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in the total potential energy onto the motion of &/ and a measure of its cost.  Kinetic energy flow 

is not used in the current analysis and is not discussed here 39. 

 

To gain mechanistic insights, we need to look at how a mechanical quantity B(Γ) (e.g. potential 

energy flow) change as a reaction progresses.  We first project B(Γ) onto a quantity D(Γ) that 

parameterizes the progress of a reaction, which we call the projector, then average over the 

ensemble of reactive trajectories: 

〈FB(D∗)〉 =
∫3ΓH(Γ)FB(D(Γ) → D(Γ) + 3D)F(D(Γ) − D∗)

∫ 3ΓH(Γ)F(D(Γ) − D∗)
		

〈ΔB(D" → D#)〉 = ; 〈FB(D)〉
5"

5#
			(2) 

Here,  is the probability of finding the system in an infinitesimal volume  around a 

phase-space point Γ in the reactive trajectory ensemble; F(1) is the Dirac δ-function; FB(D(Γ) →

D(Γ) + 3D) is the change in B/ in a differential interval ; 〈ΔB(D" → D#)〉 is the 

change in B in a finite interval [D", D#]; ΔB can be Δ7/ 32, 39.  The ensemble of reactive trajectories 

consists of trajectories that cover the transition period of a reaction process but exclude the waiting 

period 3. 

 

Generalized Work Functional.  The source of complexity of protein dynamics is the highly 

entangled mechanical couplings between different coordinates.  The potential energy flow through 

a coordinate &/ provides an exact account of the energetic cost of its motion but does not account 

for the effects of the mechanical couplings between different coordinates. These mechanical 

couplings are a consequence of the mathematical structure of Lagrange’s equation.   

 

The Lagrange’s equation for a generalized coordinate &/ is: 662 K
-7
-'̇!
L =

-7
-'!

, where L is the system 

Lagrangian M = N − =, defined as the difference between the kinetic energy N =
"
#∑ O/9&̇9&̇:

;
9,:0"  

and the potential energy =.  Here, O is the structural coupling tensor: O/: = ∑ Q=
-*$
-'!

-*$
-'%

;
=0" , 

where the sum is over all the R coordinates in the system; Q= and 1= are the mass and a Cartesian 

coordinate of atom *.  After expanding all the terms, we obtain:  

ρ(Γ)dΓ dΓ

ξ(Γ),  ξ(Γ) + dξ⎡⎣ )
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S/ = −
<=
<&/

=TUȮ/:&̇: + O/:&̈:W +
1
2
T

<O9:
<&/

&̇9&̇:

;

9,:0"

;

:0"
		(3). 

On the left-hand side is the force induced by 3&/, the infinitesimal movement of &/.  The right-

hand side involves the velocities (&̇: , Y ∈ [1, R]) and accelerations (&̈:) of all the coordinates in 

the system.  This means S/ directly affects the movements of all the coordinates in the system.  The 

effects of S/ on &: and the effects of S: on &/ are determined by the values of O/: and Ȯ/:, which 

are determined by the time-dependent system configuration.  In contrast, the Lagrange’s equation 

for a Cartesian coordinate 1=  is the same as the Newton’s equation: S= = Q=1̈= ; S=  directly 

affects only the motion of 1= , not any other coordinate.  This is because O=> = Q=F=>  in 

Cartesian coordinates, where F=> is the Kronecker-F. 

 

Because S/ directly affects motions of all coordinates, it is important to have a measure of the 

impact of S/ on the motion of &9 	(Z ≠ \).  One choice is ]S/3&9^	(\ ≠ Z); ⟨⋯ ⟩ is the average over 

the reactive trajectory ensemble.  The physical motivation is that, if  S/ strongly affects the motion 

of &9,  ⟨S/3&:⟩ should have a high value.  Otherwise, it will be small.  Accordingly, we define the 

generalized work of S/ on &9 as:  

b/9(D; D? → D") = ; ]S/(D)3&9(D)^
5#

5&
		(4),	

which accumulates the impact of S/ on the motion of &: as the reaction progresses from D? to D".  

The collection of all the b/9(D) is a tensorial functional b(D) in the configuration space, which 

we call the generalized work functional because S/3&9 	(\ ≠ Z) is a generalization of the concept 

of mechanical work.  For a specific value D", b(D) is a tensor b(D;	D? → D"), which we call the 

generalized work tensor.   

 

With this definition, b(D)  summarizes the accumulated effects of the pairwise mechanical 

couplings between different coordinates as a function of the progress of a reaction.  Because b/9 ≠

b9/, SVD is the proper tool to extract its inherent structure: b(D;	D? → D") = ∑ e/fg⃗ / ⋅ i⃗/
@;A"

/0? , 

where e/ is the i-th singular value, fg⃗ / is the i-th left and i⃗/@ is the transpose of the i-th right singular 

vector.  The leading term in this decomposition, e?fg⃗ ? ⋅ i⃗?@ , is the dominant component of 
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b(D;	D? → D").  Accordingly, ℱg⃗ ? = −<=/<fg⃗ ? is the force in the direction of fg⃗ ?. This force has 

the largest overall effects on the motions of individual coordinates in the system.  Because the 1D-

RC is generally considered the “driving force” of a reaction process 3, it is intuitively enticing to 

contemplate that it may coincide with fg⃗ ?.  If this is the case, we have also found in GWF the 

physical determinant of the 1D-RC. 

 

An Example of Biomolecular Conformational Change. To test if the GWF can determine the 

1D-RC, we applied it to the (%&' → (%)* isomerization of an alanine dipeptide in vacuum.  This 

process is a prototype of conformational dynamics of proteins because alanine dipeptide is the 

smallest example of complex molecules.  Here, we define a complex molecule as molecule whose 

non-RCs form a heat bath that can provide the RCs with enough energy to cross the activation 

barrier 21, 27, 31, 32, 37, 40.  In contrasts, small molecules need an external energy source, such as buffer 

gas in gas-phase and solvents in solution-phase reactions.  The isomerization of an alanine 

dipeptide in vacuum carries some fundamental features that are unique to reactions in protein-like 

molecules but are absent in small molecules.  Consequently, it has served as a standard system for 

testing methods for identifying RCs 3, 30, 31.  This isomerization process is mainly a rotation around 

the l dihedral (Fig. 2a,b).  In previous studies, two backbone dihedrals l and m" were identified 

as the RCs, as they can determine the committor value with adequate accuracy 31, 41.   

 

For analyses using energy flow and GWF, internal coordinates are the proper choice because they 

are the natural coordinates for describing protein motions and automatically satisfy all the 

C7eq

C7ax
θ1 ϕ ψ

τ1
τ2 τ3

(a) (b)

Figure 2: Schematics for the !7"# → !7$% isomerization of alanine dipeptide. (a) The molecular structure of alanine dipeptide. For a dihedral, its bond of rotation
is marked by a curved arrow. For an improper dihedral, each of the two planes that define the it is spanned by 3 atoms, with the central atom chemically bonded
to the other 2 atoms. We mark each plane by connecting the 2 atoms that are not bonded to each other with a dashed line. The edge shared by the 2 planes is the
bond of rotation for the improper dihedral. (b) The definition of the !7"# and !7$% basins in the ($, &)-plane. The heat map is the logarithm of the joint
probability (($, &) obtained from a 6 )* equilibrium molecular dynamics simulation.
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restraints from the bonded interactions in a protein (Fig. 3a,b).  In contrast, Cartesian coordinates 

cannot provide useful mechanistic information because their movements are dominated by strong 

restraint forces from bonded interactions that bear little relevance to the mechanism of protein 

dynamics.  

 

1D-RC is Determined by the GWF.  Figure 3a shows the GWF for all the proper and improper 

dihedrals in the system computed with committor as the projector.  The motion of the major RC, 

l, is strongly affected by the forces from four coordinates: l itself, the other known RC m", and 

two improper dihedrals n" and n# (Fig. 2a).  Interestingly, both n" and n# are important players in 

transferring kinetic energy into l based on our previous analysis of kinetic energy flows in this 

system 39.  In contrast, bBC(!!) is significant but bCB(!!) is small, suggesting that SB  has 

significant impact on the motion of o but SC has little influence on the motion of l.  This suggests 

that the motion of o is slaved to the motion of l because the latter is the dominant factor for 

determining SB  42, 43.  Consequently, o , though important for distinguishing the reactant and 

product states, is not an RC.   

 

Figure 3c shows b(!!; 0 → 0.5), the generalized work tensor for !! = 0 to 0.5. We included all 

the dihedrals and improper dihedrals in constructing b(!!; 0 → 0.5), consisting of 19 coordinates 

in total.  We did not include bonds or bond angles in b(!!; 0 → 0.5) because terms involving 

forces from them have high noise.  This is because these forces are of high magnitude and oscillate 

very fast compared to forces from dihedrals. 

!
!"
(0
→
% #
)

!
!"
('

$
→
')

(a) (b) (c)

∫⟨"!#$⟩ ∫⟨""!#$⟩ ∫⟨"#"#$⟩ ∫⟨"#!#$⟩ ∫⟨"###$⟩ ∫⟨"$#$⟩

Figure 3: Generalized work functional and generalized work tensor. (a) The GWF with !! as the projector for all the dihedrals and improper dihedrals in the
system. There are 19 x 19 = 361 lines in the plot. The thick colored lines are ∫ ⟨$"%&⟩#(%!)

#(0) for ("that has significant magnitude, corresponding to the blocks
with distinct colors in the second column of the generalized work tensor in panel (c). The rest are colored light gray. (b) The GWF with & as the projector.
(c) The 19 x 19 generalized work tensor)(!!; 	0 → 0.5) calculated for all the dihedrals and improper dihedrals in the system. Each tensor element is colored
based on its value.
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The leading left singular vector of b(!!; 0 → 0.5) is: ℛ$ = 0.57m" + 0.72l + 0.34n# − 0.21n".  

To test the accuracy of ℛ$ , we carried out the standard “committor test” and compared the 

performance of ℛ$  with RCs identified in previous studies 3, 30, 31, 44.  Because RCs must be 

sufficient for determining !!, configurations that share the same values of the RCs but differ in 

other coordinates should all have the same !! value.  To test the quality of specific RCs, we harvest 

an ensemble of configurations that all have the values of the RCs corresponding to the transition 

state, with the other coordinates randomly sampled. The distribution of !! values for this ensemble 

should peak around 0.5 if the RCs can determine !! ; a narrower distribution indicates higher 

accuracy of the RCs. 

 

Figure 4a shows the results of the committor test.  The orange line is the distribution of !! for 

configurations with l = 0° and o = 40°, corresponding to the value of l at the transition state.  

This distribution peaks at !! = 0 and !! = 1, indicating that l alone cannot determine committor.  

The green line is the distribution of !!  for configurations with l = 0°  and m" = 3.6° .  This 

combination was identified in previous studies as sufficient for determining committor  30, 31.  

Indeed, this distribution peaks at !! = 0.5, though it is rather broad, indicating either missing RCs 

or the uncertainty inherent in the numerical calculation of !!  44.  This is the limit reached by 

previous methods, both intuition-guided trial-and-error and machine-learning with neural network 
30, 31.   

 

The blue line is the distribution of !! for configurations with ℛ$ = −80.9°.  It sharply peaks at 

!! = 0.5 and has a narrow width, showing the high accuracy of ℛ$. This significant improvement 

in the accuracy in determining committor value compared to previous results is due to two factors: 

1) the inclusion of two improper dihedrals n" and n#, 2) the correct coefficients in the analytical 

expression of ℛ$.  Because the effects of n" and n# on reaction dynamics are much weaker than 

those of m" and l, shown by their smaller coefficients in ℛ$, they are much more difficult to detect, 

explaining why they eluded both human intuitions and machine learning 30, 31.  The fact that they 

are uncovered by b(!!; 0 → 0.5)  demonstrates the capability and precision of the GWF in 

capturing the essence of dynamics.   
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The red line is the distribution of !! for configurations with ℛ$∗ = 0.57m" + 0.71l + 0.34n" −

0.21n" − 0.1nD = −99.5°, which is almost identical to the blue line.  This suggests that the 

improper dihedral nD is a very minor RC, consistent with its small coefficient in ℛ$∗ .   

 

Moreover, the matrix elements of b(!!; 0 → 0.5) have inherent numerical uncertainty, especially 

because !! is numerically evaluated 3, 30, 44.  The reason that ℛ$∗  has minimal improvement over 

ℛ$ is likely that we have already reached the numerical limit, thus ℛ$ is likely the optimal 1D-RC.  

Since the GWF determines the rigorous 1D-RC, it is likely the correct physical operator for 

rigorous analysis of protein dynamics in general. 

 

Figure 4b shows that Δ7ℛ' ≃ Δ7B + Δ7F#. Because l and m" carry the dominant majority of the 

total potential energy flow through the system based on previous studies 32, 39, this means ℛ$ is 

responsible for the majority of the total potential energy flow through the system, confirming the 

1D-RC as the single dominant channel for energy flows during a reaction. 

 

Figure 4: Committor test and potential energy flow. (a) Comparison of the results of
committor tests for different RCs. Orange: PDF of pB values of the ensemble of
configurations (ϕ=0° and ψ=40°) with ϕ as the RC, the same as used in ref. [30].
Green: PDF of pB values of the ensemble of configurations (ϕ=0° and θ1=3.6°) with
both ϕ and θ1 as the RCs, the same choice as in refs. [30, 31]. Blue: PDF of the
ensemble of configurations with Rc=-80.9°. Red: PDF of the ensemble of
configurations with Rc*=-99.5°. (b) Potential energy flows through ϕ (orange), θ1
(blue), τ1 (pink), τ2 (grey), and Rc (red). The cyan dashed line represents
⟨ΔWϕ+ΔWθ1+ΔWτ1+ΔWτ2⟩.

(a) (b)
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Is 1D-RC Curved?  An important conceptual question in reaction dynamics is whether the 1D-

RC is straight or curved.  There is no physical reason to expect that the 1D-RC should be straight, 

but in practice it is often assumed so for simplicity 27, 28.  This assumption is likely true for small 

molecules because the barrier top region is very narrow.  For complex molecules, this assumption 

is less warranted due to the extended span of the barrier top.  Since alanine dipeptide is the smallest 

complex molecule, it offers an excellent place to examine this matter. 

 

Figure 5: The curvedness of 1D-RC. (a) The scattered points represent projection of ensembles of
configurations with !! = 0.02, 0.3, 0.5, 0.7, 0.9 onto the (,, -1)-plane. The white straight line through a
colored “cloud” is its linear regressions, thus each one represents an approximation to the intersection of the
corresponding iso-committor surface with the (,, -1)-plane. The solid black line is ℛ#(!!) constructed as a
concatenation of 10 short line segments; each segment is the ℛ# for an interval of !!. The ℛ#(!!) for a specific
!!∗ is the leading left singular vector of the tensor 0(!!; 	0 → !!∗ ). To construct the short line segments
corresponding to different values of !!, we first prepare 11 ensembles of configurations; each one contains
configurations of a specific !! value: !! = 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98. Each ensemble of
configurations are then projected onto the (,, -1)-plane and the center of mass, 4%	(5 = 1, … , 11), of each
ensemble is computed. The , coordinate of this series of 4% defines a sequence of positions along the ,-
direction: ,% =-18.9°, -12.3°, -7.8°, -3.9°, -0.2°, 3.3°, 7.2°, 11.7°, 18.4°, 24.8°. We start from 41 as the starting
point of the first line segment, with its slope as the slope of ℛ#(0.02) projected onto (,, -1)-plane. The first
segment ends at 42′ , with its ,-coordinate equal to ,2, and its -1-coordinate equal to: slope ℛ# 0.02 ⋅ (,2 −
,1). The other segments are constructed in a similar way. The red solid line is constructed in the same manner
as the black solid line, but the direction for each line segment is chosen as the direction normal to the linear
regression of each !!	ensemble. The black dashed line is a straight line in the direction normal to the linear
regression of the ensemble of !! = 0.9. Both solid lines deviate from this straight dashed line, demonstrating
the curvedness of the 1D-RC. The black and red solid lines are essentially coincidental, showing that ℛ# is
perpendicular to the isocommittor surfaces throughout the transition region. (b) The slopes of the line segments
in panel (a) as function of committor. (c) Results of committor tests for ensembles of configurations with
ℛ# !! = -89.0°, -86.3°, -83.9°, -82.6°, -80.9°, -79.2°, -77.5°, -74.8°, -71.8°, corresponding to !! = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, respectively.

(a)

(b)

(c)
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Because the GWF in Fig. 3a is nonlinear, the direction of the 1D-RC determined by b(!!; 	0 →

!!
∗ ) likely changes with !!∗ , which means the direction of the 1D-RC in different intervals of 

committor value will be different.  Figure 5a (solid black line) shows the projection of the 

concatenation of 1D-RCs for all the intervals of !!∗  onto the (l, m")-plane, amounts to a piecewise 

linearization of the true 1D-RC.  We choose this projection because it is easier to visualize in a 

plane, and l  and m"  are the dominant RCs.  Indeed, the 1D-RC is slightly curved.  This 

curvilinearity is quantified in Fig. 5b (orange line), which shows the slope of the 1D-RC as a 

function of !!.  Figure 5c shows the results of the committor test on the curved 1D-RC.  Indeed, 

it can predict committor value with high accuracy over the entire range of !!. 

 

To better understand this curvilinearity of the 1D-RC, we projected onto the (l, m")-plane five 

ensembles of configurations. Each ensemble consists of configurations on the iso-committor 

surface of a specific !!∗ ± F; the five ensembles correspond to  !!∗ = 0.02, 0.3, 0.5, 0.7, 0.9; 	F =

0.05.  It is often assumed that an iso-committor surface is a hyperplane in the configuration space 
27, 28, 35.  If this is true, each ensemble of configurations should form a straight strip with a width 

determined by F in the (l, m")-plane.  Instead, each ensemble of configurations clusters into an 

ellipse.  To find out the intersections of each iso-committor surface with the (l, m")-plane, we 

obtain a straight line through each ellipse by linear regression.  Figure 5a (white lines) shows that 

the direction of these iso-committor lines changes slowly with !!∗ .  The red solid curve is the 

concatenation of the normal directions of all the iso-committor lines; it is slightly bent.  

Intriguingly, it essentially coincides with the 1D-RC, suggesting that the 1D-RC, though curved, 

is always perpendicular to the iso-committor surfaces.   

 

The New Method is Robust and Cost-Effective.  In the results above, the GWF was computed 

using committor as the projector.  Since numerical evaluation of committor is computationally 

expensive 44, it could limit the use of the current method for identifying the 1D-RC in large systems.  

Therefore, we computed the GWF using l as the projector, which is a good order parameter that 

can distinguish the reactant and product basins 3, but insufficient for parameterizing the 

progression of the reaction (Fig. 4a). Since RCs control the dynamics of the transition period, not 

the dynamics within the reactant basin, we consider the range of l ∈ [−35°, 35°], corresponding 

to the region of !! ∈ (0, 1). 
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Figure 3b shows b(l), the GWF calculated with l as the projector, which differ from b(!!) in 

Fig. 3a.  This is expected because projector significantly affects the ensemble average.  Importantly, 

the 1D-RC from b(l;	−35° → 0°) , ℛ$
B = 0.57m" + 0.71l + 0.37n" − 0.19n# , is essentially 

identical to ℛ$. Therefore, we can use an order parameter as the projector instead of the committor. 

This tremendously decreases the computational cost of the current method compared to previous 

methods 31, 36, as now the dominant cost is to harvest sufficient number of reactive trajectories, 

which is low compared to cost of computing the committor 31, 36.  Most importantly, substituting 

!! with an order parameter does not affect the accuracy of the resulting 1D-RC.   

 
Another important factor is that the number of reactive trajectories required for obtaining the 

correct 1D-RC is much lower than what is required for smooth GWF curves. The results in Fig. 3 

are averages over 2,000 trajectories, but the 1D-RC obtained from averaging over 200 trajectories, 

ℛ$(200	8'xZ) = 0.59m" + 0.70l + 0.32n" − 0.24n#, is effectively the same as ℛ$ obtained from 

2,000 trajectories. Moreover, the 1D-RC obtained from 100 trajectories is: ℛ$(100	8'xZ) =

0.47m" + 0.56l + 0.64n" − 0.23n#. Although it does not have the correct coefficients, it does 

correctly distinguish the four important coordinates, l, m", n", n#, from the other coordinates in the 

system, which is what previous methods aimed at and provides highly valuable mechanistic 

insights 31, 35, 36. The reason behind this robustness is probably two-fold. 1) The GWF tensor is an 

integration of the GWF curves, thus noise in the GWF curves is canceled out by integration, 

leading to improved accuracy in the 1D-RC. 2) The SVD results are likely constrained by the 

structure of the GWF tensor and robust to numerical errors. This makes the current approach a 

robust and cost-effective method for identifying the 1D-RC in complex molecules. 

 

It is also possible to apply the current method to analyzing existing long-time scale MD simulations 

of complex conformational dynamics, such as the datasets by D. E. Shaw research. The major 

requirement is that the progress of the conformational transition of interest can be characterized 

by an order parameter selected by the user. This transition can involve more than two 

stable/metastable states and the user does not have to correctly identify all the stable states from 

the beginning. The basic idea can be explained by a schematic example of a two-dimensional 

system (Fig. 6a). In this example, &" and &# are two RCs and there are three stable states, y", y# 
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and yD , in the &", &# -space. The order parameter *  can identify y"  and yD  but not yD  from the 

simulation data and is the projector in GWF calculations. The key is that both the GWF b(*) and 

the 1D-RC are functions of *.  

 

Figure 6b shows the expected features of the four elements of b(*). Because &" is the only RC 

for y" → y# transition, only b""(*) has significant magnitude. All the other terms of b(*) are 

vanishingly small because &"  and &#  are not coupled in this region, leaving b"#  and b#" 

essentially zero, and &# only undergoes thermal fluctuations, leading to complete cancelations in 

b##. The resulting 1D-RC will be just &". In the y# → yD transition, both &" and &# are RCs, thus 

all the elements of b(*) are significant and the resulting 1D-RC is a linear combination of &" and 

&# . Consequently, we expect to observe a significant change in the direction of the 1D-RCs 

determined in the intervals (*", *#) and (*#, *D) respectively, corresponding to the two red arrows 

in Fig. 6a. This kind of change in the 1D-RC determined at different values of the projector could 

be due to hidden stable states in the initial analysis, or the intrinsic nonlinearity of 1D-RC in 

complex systems. The actual situation could then be determined by further analysis. In the 

discussions above, we assume that the simulation data contain sufficient number of instances of 

the transition of interest so that the GWF analysis converges. Otherwise, the existing trajectory 

segments that contain the transition of interest can be used as seeds for TPS to proliferate more 

reactive trajectories. 

!!!

!""!!"

!"!

Figure 6: Schematic 
for using the GWF to 
identify 1D-RC for a 
transition involving 
three stable states in 
a two-dimensional 
system. (a) The 
contour of the 
potential energy in 
the "!, ""-plane. The 
three stable states are 
$!, $", $#. The red 
dashed line indicates 
the order parameter 
%. The red arrows 
indicates the 1D-RC 
for $! → $" and 
$" → $# transition
respectively. (b) The 
four different 
elements of !(%). 
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Discussions 

In this paper, we developed a general mechanical operator, the GWF, that can help to answer some 

fundamental questions in protein dynamics. 

 

Collectivity in Functional Protein Dynamics. Functional protein dynamics often involve 

significant changes in the global protein structure, which are assumed to be controlled by collective 

modes.  However, it remains a puzzle what these collective modes are and what their physical 

origin is. 

 

A global conformational change results from aggregation of many local movements. Each local 

movement is described by an internal coordinate.  Individual local movements are mechanically 

coupled together by the O tensor, thus they are synergized with each other, forming collective 

modes. Understanding the collectivity in conformational dynamics requires understanding what 

this synergy is and what determines it.   

 

The GWF encapsulates the effects of the couplings induced by the O tensor.  Its left singular 

vectors are the collective mode responsible for the global conformational change.  The coefficients 

of these singular vectors define the synergy between different internal coordinates.  For example, 

in ℛ$∗ , l, m" and n" correlate with each other but anti-correlate with n# and nD.  The GWF is the 

physical determinant of this synergy and the collectivity of protein dynamics. 

 

A Tentative Roadmap for the Structure-Function Relationship of Proteins.  A critical link 

between the structure and the function of a protein is its functional dynamics, which is controlled 

by the RCs.  The RCs are determined by the GWF, which summarizes how the forces in the protein 

impact the motions of the coordinates that are extensively coupled together by the O tensor.  Both 

the forces and the O tensor are determined by the protein structure.   

 

Summing these factors up leads to a tentative roadmap for the structure-function relationship (Fig. 

1b).  The structure of a protein determines both atom-atom interactions and the O tensor.  Together, 
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they determine the GWF, which determines the dominant forces in the protein and the RCs.  The 

RCs control the functional dynamics, which determines the protein function. 

 
Finally, the GWF provides a rigorous and computationally efficient method for identifying the 1D-

RC for a single-channel reaction. For the (%&' → (%)* isomerization of an alanine dipeptide in 

vacuum, we obtained the piecewise linearization of the true 1D-RC over the entire transition region, 

which showed that the 1D-RC is slightly curved.  The curved 1D-RC can predict the committor 

value with an accuracy far exceeding what was achieved before by both human intuitions and 

machine learning, attesting the value of rigorous physics-based method.  Most importantly, the 

1D-RC is determined by a general mechanical operator, without resorting to any informatics 

approach or human intuitions.   

 

Methods 

All simulations were performed using the molecular dynamics software suite GROMACS 45with 

transition path sampling implemented. Amber 94 force field was used to facilitate comparison with 

previous results 32, 39, 41, 46, 47.  The structure of the alanine dipeptide was minimized using steepest 

descent algorithm and heated to 300 K using velocity rescaling with a coupling constant of 0.2 ps. 

The system was then equilibrated for 200 ps and no constraints were applied. The time step of 

integration was 1 fs. Basin (%&' is defined as −190° < l < −55° and -60° < o < 190°; basin 

(%)*  is defined as 50° < l < 100°  and −80° < o < 0° . We used transition path sampling 

method to generate the ensemble of reactive trajectories between these two basins that are used in 

all the analyses discussed here 40. All the averaged quantities discussed in the text were averaged 

over 2,000 trajectories.  
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