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Abstract

Understanding the mechanism of functional protein dynamics is critical to understanding protein
functions. Reaction coordinate is a central topic in protein dynamics and the grail is to find the
one-dimensional reaction coordinate that can fully determine the value of committor (i.e. the
reaction probability in configuration space) for any protein configuration. We present a new
method that, for the first time, uses a fundamental mechanical operator, the generalized work
functional, to identify the rigorous one-dimensional reaction coordinate in complex molecules.
For a prototypical biomolecular isomerization reaction, the one-dimensional reaction coordinate
identified by the current method can determine committor with an accuracy far exceeding what
was achieved by previous methods. This method only requires modest computational cost and can
be readily applied to large molecules. Most importantly, the generalized work functional is the
physical determinant of the collectivity in functional protein dynamics and provides a tentative

roadmap that connects the structure of a protein to its function.



Proteins are the building blocks of biological systems responsible for most biological functions.
Understanding the mechanism of protein function is of paramount importance. The central dogma
of protein science is that structure determines function. The holy grail is the physical principle
that explains how the structure of a protein determines its function. The route to this principle
starts with recognizing that most protein functions, such as ligand binding, allostery and effects of
mutations, involve significant conformational dynamics because a protein has multiple functional

1.2 Structure

structures and transitions between these structures are required for its function
determines function because the specific structure enables the desired functional dynamics.

Understanding protein function requires understanding functional dynamics.

Importance of reaction coordinates. Most functional dynamics are activated processes similar
to chemical reactions: a protein must cross an activation barrier much higher than thermal energy
to move from the reactant (initial) state to the product (final) state. A central concept here is the
reaction coordinates (RCs): the small number of essential coordinates that fully determine the
progress of a reaction 3. In particular, RCs determine the location of the transition state. The
reaction progresses in the forward direction when RCs move towards the product state; it regresses

when RCs move towards the reactant state; movements of all the other coordinates are irrelevant.

Reaction coordinates are the cornerstone of the standard reaction rate theories. Reaction dynamics
is the dynamics of RCs. Indeed, Kramers theory assumes that the dynamics of the RC is governed
by a Langevin equation 4, which is extended to generalized Langevin equation in Grote-Hynes
theory °. Similarly, transition state theory relies on simplifying assumptions on the essential
features of the dynamics of the RC ®!°. The applicability of all these theories requires full
knowledge of the RCs.

Reaction coordinates are also central to enhanced sampling, a major current research direction in
computational biophysics. Most algorithms rely on applying biasing potentials on one or a few
collective variables (CVs) selected by intuitions to increase sampling of the relevant configuration
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space ''"'/. However, these algorithms are effective only if the CVs coincide with RCs. Otherwise,

the infamous “hidden barrier” problem will inevitably appear and prevent effective sampling '5-2°.



The “hidden barrier” is the actual activation barrier that lies on the true RCs, which is missed by

the biasing potentials along CVs that do not overlap with the RCs significantly.

The rigorous concept of RC. Given the central importance of RCs, a rigorous definition is
essential. An important concept is committor (pg): the probability that a dynamic trajectory
initiated from a system configuration, with initial momenta drawn from Boltzmann distribution,

to reach the product state * 223

. Committor rigorously parameterizes the progress of a reaction
(e.g. the transition state has pp = 0.5). Consequently, RCs are the set of coordinates that can fully
determine the committor value of any system configuration. Other coordinates in the system are
irrelevant. Reaction coordinates that satisfy this definition provide an accurate reduced description
of a reaction. In contrast, ad hoc RCs that do not satisfy this definition bear little relevance to

reaction dynamics and mechanism 2425,

A critical question is: How many RCs are there in a system? The standard reaction rate theories
assume that, for a single-channel reaction, there exists a single one-dimensional RC (1D-RC) that
can fully determine committor. Even though the multi-dimensional extensions of these theories
assume that a reaction is controlled by the free energy surface of multiple RCs, it is assumed that
there is only one unstable direction in the saddle region 7-2°, which is the direction of the 1D-RC.
The seminal work by Berezhkovskii and Szabo %7 showed that it is possible to find a 1D-RC that

reproduces the same reaction rate determined by multiple RCs 2% 2%

For single-channel reactions, the concept of multiple RCs is an approximation to the concept of
ID-RC. In the schematic example of Fig. la, q; and g, are considered RCs because they both
have significant overlaps with 7., the 1D-RC. However, they also have components orthogonal to
7., pointing to their inaccuracy as RCs. The concept of multiple RCs is semi-quantitative and has
some leeway; the concept of 1D-RC is quantitative and precise. The former is adopted much more

widely 30 because, compared to the 1D-RC, they are much easier to identify.

The goal for studying RCs. The rigorously defined RCs offer a chance to bring order to the
apparent chaos and complexity of protein dynamics that thwarted understanding of protein

function. The small number of RCs compared to the myriad of coordinates in a protein indicates



that protein dynamics has an intrinsic order and governing principles, which is embedded in the
RC:s as they accurately describe the progress of protein dynamics. The physical cause behind the
RCs is the physical determinant of this intrinsic order. The goal for studying RCs is to uncover

and, furthermore, understand the principle behind this physical determinant.
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Figure 1: One-dimensional reaction coordinate and structure-funciton relationship. (a) A schematic
of the potential energy surface and RCs of a two-dimensional system. The light yellow region
indicates the contours of the potential energy surface, with the reactant and product states marked
by R and P respectively. The green dashed rectangle marks the transition region. The orange
curve 7, indicates the 1D-RC and the blue line segments 7 is its piecewise linear approximation.
(b) Flow chart for the tentative roadmap for the physical principle that connects the structure of a
protein with its function.

Challenges in identifying RCs. The first step towards this goal is to identify the less strictly
defined multiple RCs, since it is easier than identifying the 1D-RC. However, it turned out to be
a daunting challenge. Despite much efforts, over the past two decades there have been only a few
successful cases where RCs that can determine committor were identified 3°-33. In each case, two
or three RCs were successfully identified. The most important lesson from these examples is that

RCs are often counter-intuitive 3%-3!

. This counter-intuitiveness demonstrates why it is challenging
to identify the few RCs out of practically infinitely many potential candidates in a complex
molecule. For example, over 6,000 candidates were tested in ref. *! for the Cy.q — ap

isomerization of an alanine dipeptide in solution to uncover the three RCs.



As a result, systematic methods that go beyond intuition-based trial-and-error experimentation are
required, as it is not feasible to enumerate the enormous number of potential candidates. The first
systematic method used neural network and successfully identified the RCs for the C7.q = ag
isomerization of an alanine dipeptide in solution that eluded human intuitions 3!. This early success
is followed by many machine-learning methods along similar lines, a research direction that is
currently attracting intensive attention but also facing significant challenges 2% 3*38, More
importantly, machine-learning methods cannot answer the question central to the goal of studying
RCs: Why do RCs exist and how do they control functional dynamics? Answering this question
requires the correct mechanical model of functional dynamics, which machine-learning cannot
provide because it can only optimize parameters based on a pre-formulated model but cannot

construct a model de novo. An approach based on fundamental physics is required.

Physics-based approach for understanding RCs. The recently developed energy-flow theory

offered some insights into the physical principle behind RCs 3% ¥

. It showed that energy flows
from the fast to the slow coordinates during a reaction *2. Because RCs are the slowest, they carry
the highest energy flows. This picture is intuitively appealing and explains why RCs are so
important: energy is the currency of dynamics and movements of RCs incur the highest cost, thus
they control reaction dynamics by dictating the overall cost. However, this picture is still semi-
quantitative and does not answer a critical question: What is the relationship between different

RCs?

This question is automatically answered if we can identify the 1D-RC, because it is a function of
the multiple RCs, which defines the precise relationship between them. Moreover, 1D-RC answers
a key conceptual question: What is the physical origin of collectivity in functional dynamics? It
is generally assumed that functional dynamics are controlled by one or a few CVs, the reason that
CVs are widely used in enhanced sampling. However, the critical questions have never been
answered: Why functional dynamics are collective and what determine the CVs? By definition,
ID-RC is the optimal CV, thus the physical determinant of 1D-RC is the physical origin of

collectivity in functional dynamics.



In this paper, we introduced a fundamental mechanical operator rooted in Newton’s law, the
generalized work functional (GWF), which determines the correct 1D-RC. Applying this new
approach to a prototypical biomolecular isomerization process, the €74 = C74, transition of an
alanine dipeptide in vacuum, we obtained, as an accurate approximation, the piecewise
linearization of the 1D-RC (e.g. 7; in the example of Fig. 1a) throughout the entire transition region
(i.e. pg € (0,1)). Each linear segment is a combination of four component RCs: two dihedrals
and two improper dihedrals. This 1D-RC can predict the committor value throughout the entire
range of pp with an accuracy that approaches the limit of the numerically evaluated committor

values. This accuracy far exceeds what was achieved by previous methods 3% 3!

. Among the four
component RCs, the two improper dihedrals were only identified by the current method; their

inclusion significantly improved the accuracy in predicting the committor value.

Most importantly, the GWF is a generic physical property universal to all protein molecules,
allowing us to answer fundamental questions concerning RCs and functional protein dynamics. 1)
Why do RCs exist and how do they control protein dynamics? 2) What is the relationship between

different RCs? 3) What is the origin of collectivity in protein dynamics?

The GWF summarizes the mechanical effects of the couplings between different coordinates. It
shows that, due to the special structural features of a protein, a small number of essential forces
have high impacts on the dynamics of the entire system, while the other forces have only minor
effects. The directions of these essential forces are the RCs. Motions of RCs control these
essential forces, thus RCs control the reaction dynamics. The GWF is a tensor; its inherent
structure can be revealed by singular value decomposition (SVD). The leading singular vector
from SVD identifies the single dominant force; its direction is the 1D-RC, which is a function of
all the RCs. The motion of 1D-RC is a synergized motion of all the RCs. This synergy is the

origin of collectivity in functional dynamics, as dynamics of RCs is the crux of protein dynamics.

From these results emerges a tentative roadmap that connects the structure of a protein to its
function (Fig. 1b). Protein structure determines both atom-atom interactions and the structural
coupling tensor responsible for the mechanical couplings between different coordinates. Together,

they determine the GWF, which determines the directions of the strong forces that appear as the



RCs. Finally, RCs control the functional dynamics, which determines function. In this roadmap,
the GWF plays a pivotal role: it is the underlying “mechanical structure” that determines the

behaviors of the geometric structure we observe.

Results
Energy-Flow Theory. A major theoretical tool we use for analyzing reaction dynamics is the

energy flow theory 32 %

. It was motivated by a simple physical intuition: motions of the most
important coordinates in a dynamic process require high energy cost. In the Lagrange-Hamiltonian
formulation of classical mechanics, energy is the cost function of motion. If the motion of a
coordinate requires high energy cost, then it has a slow time scale and controls the rate of a reaction
process. To identify these important coordinates, we need a rigorous definition of the energy cost
of the motion of a coordinate. This is challenging because the energy function of a system is
dominated by complex coupling terms between different coordinates; there is no well-defined

energy per coordinate. Therefore, we can only find the energy cost of the motion of a coordinate

by projection. This is achieved through integration over partial differentials.

The total differential of a multi-variable function f (x4, ..., x;) is df = Z?ﬂg—;dxi, thus each

partial differential :dexi is the exact contribution of the change in x; to the total change in
i
f (x4, ..., xp). The coupling terms in f (x4, ..., X,,) are precisely partitioned among all the variables

through partial derivatives aBTf' Consequently, [ g—i dx; rigorously defines the contribution to the
i i

accumulated change in f (x4, ..., x,) from changes in x;.

Applying this idea to the potential energy of the system, we deine the potential energy flow through
a coordinate g; as the work on g; **:

4(t2) U (§)
9q;

AW, (ty, t;) = —f dq; (1),

q;i(t1)
where U(q) is the potential energy of the system, ¢ is the position vector of the system in the
configuration space. According to Eq. (1), AW;(t4, t,) is the change in U(q) caused by the motion

of q; alone along a dynamic trajectory in the time interval [ t;,t,]. Itis a projection of the change



in the total potential energy onto the motion of g; and a measure of its cost. Kinetic energy flow

is not used in the current analysis and is not discussed here *°.

To gain mechanistic insights, we need to look at how a mechanical quantity A(T") (e.g. potential
energy flow) change as a reaction progresses. We first project A(I') onto a quantity ¢(T') that
parameterizes the progress of a reaction, which we call the projector, then average over the

ensemble of reactive trajectories:

J dp(MEAE(T) - §(M) +dHEM) — &)
Jdrp(M&EM) —§)

(6A() =

&
(A1 = §2)) = . (6A) (2)

Here, P(F)dr is the probability of finding the system in an infinitesimal volume dI" around a

phase-space point I in the reactive trajectory ensemble; §(x) is the Dirac §-function; §A(E(T) —
£(T) + dé) is the change in A; in a differential interval [5(1“), &)+ dé‘) (AA(&, = &,)) is the

change in A in a finite interval [é;, &,]; AA can be AW, >3, The ensemble of reactive trajectories
consists of trajectories that cover the transition period of a reaction process but exclude the waiting

period 3.

Generalized Work Functional. The source of complexity of protein dynamics is the highly
entangled mechanical couplings between different coordinates. The potential energy flow through
a coordinate g; provides an exact account of the energetic cost of its motion but does not account
for the effects of the mechanical couplings between different coordinates. These mechanical

couplings are a consequence of the mathematical structure of Lagrange’s equation.

. . . . d(d ] .
The Lagrange’s equation for a generalized coordinate g; is: = (ﬁ) = ﬁ, where L is the system
i i

Lagrangian L = K — U, defined as the difference between the kinetic energy K = %Zﬂv k=15ij4;9x

: . . 9xq 0
and the potential energy U. Here, S is the structural coupling tensor: S;; = Y N_; m, aiq"‘f,
i k

where the sum is over all the N coordinates in the system; m, and x, are the mass and a Cartesian

coordinate of atom a. After expanding all the terms, we obtain:



R P oI
Fi=—7—= Z(Sik% + Siklix) + z ——q;qx (3).
dq; 2 dq;
k=1 Jj,k=1

On the left-hand side is the force induced by dg;, the infinitesimal movement of q;. The right-
hand side involves the velocities (g, k € [1, N]) and accelerations (g ) of all the coordinates in
the system. This means F; directly affects the movements of all the coordinates in the system. The
effects of F; on q; and the effects of F, on g; are determined by the values of S;; and S;;, which
are determined by the time-dependent system configuration. In contrast, the Lagrange’s equation
for a Cartesian coordinate x, is the same as the Newton’s equation: F, = m,X,; F, directly

affects only the motion of x,, not any other coordinate. This is because S,3 = myd,p in

Cartesian coordinates, where 6,4 is the Kronecker-6.

Because F; directly affects motions of all coordinates, it is important to have a measure of the
impact of F; on the motion of q; (j # i). One choice is (Fidqj> (i #j); (-++) is the average over
the reactive trajectory ensemble. The physical motivation is that, if F; strongly affects the motion
of q;, (F;dqy) should have a high value. Otherwise, it will be small. Accordingly, we define the
generalized work of F; on q; as:

1
W;; (€580 — €1) :f (Fi(©)dq;(©)) (4,

0

which accumulates the impact of F; on the motion of g, as the reaction progresses from &, to &;.
The collection of all the W;;(¢) is a tensorial functional W(¢) in the configuration space, which
we call the generalized work functional because F;dq; (i # j) is a generalization of the concept
of mechanical work. For a specific value &, W(§) is a tensor W(¢; &, — &;), which we call the

generalized work tensor.

With this definition, W(¢) summarizes the accumulated effects of the pairwise mechanical
couplings between different coordinates as a function of the progress of a reaction. Because W;;
W;;, SVD is the proper tool to extract its inherent structure: W(¢; §o = &) = YN Lo vl

where o; is the i-th singular value, #; is the i-th left and ¥ is the transpose of the i-th right singular

vector. The leading term in this decomposition, gy, - U3 , is the dominant component of
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W(¢; & — &1). Accordingly, 3_:')0 = —dU /0, is the force in the direction of #,. This force has
the largest overall effects on the motions of individual coordinates in the system. Because the 1D-
RC is generally considered the “driving force™ of a reaction process 3, it is intuitively enticing to
contemplate that it may coincide with %,. If this is the case, we have also found in GWF the

physical determinant of the 1D-RC.

An Example of Biomolecular Conformational Change. To test if the GWF can determine the
1D-RC, we applied it to the C7.4 = C74x isomerization of an alanine dipeptide in vacuum. This
process is a prototype of conformational dynamics of proteins because alanine dipeptide is the
smallest example of complex molecules. Here, we define a complex molecule as molecule whose
non-RCs form a heat bath that can provide the RCs with enough energy to cross the activation
barrier 2!-27:31:32.37.40_[n contrasts, small molecules need an external energy source, such as buffer
gas in gas-phase and solvents in solution-phase reactions. The isomerization of an alanine
dipeptide in vacuum carries some fundamental features that are unique to reactions in protein-like
molecules but are absent in small molecules. Consequently, it has served as a standard system for
testing methods for identifying RCs *-3% 3!, This isomerization process is mainly a rotation around
the ¢ dihedral (Fig. 2a,b). In previous studies, two backbone dihedrals ¢ and 6; were identified

as the RCs, as they can determine the committor value with adequate accuracy 3! #!,

—60+
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Figure 2: Schematics for the C704 = C74x isomerization of alanine dipeptide. (a) The molecular structure of alanine dipeptide. For a dihedral, its bond of rotation
is marked by a curved arrow. For an improper dihedral, each of the two planes that define the it is spanned by 3 atoms, with the central atom chemically bonded
to the other 2 atoms. We mark each plane by connecting the 2 atoms that are not bonded to each other with a dashed line. The edge shared by the 2 planes is the
bond of rotation for the improper dihedral. (b) The definition of the C7. and C74, basins in the (¢,3)-plane. The heat map is the logarithm of the joint
probability p(¢, ) obtained from a 6 us equilibrium molecular dynamics simulation.

For analyses using energy flow and GWF, internal coordinates are the proper choice because they

are the natural coordinates for describing protein motions and automatically satisfy all the
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restraints from the bonded interactions in a protein (Fig. 3a,b). In contrast, Cartesian coordinates
cannot provide useful mechanistic information because their movements are dominated by strong
restraint forces from bonded interactions that bear little relevance to the mechanism of protein

dynamics.

1D-RC is Determined by the GWF. Figure 3a shows the GWF for all the proper and improper
dihedrals in the system computed with committor as the projector. The motion of the major RC,
¢, is strongly affected by the forces from four coordinates: ¢ itself, the other known RC 6,, and
two improper dihedrals 7; and 7, (Fig. 2a). Interestingly, both 7, and 7, are important players in
transferring kinetic energy into ¢ based on our previous analysis of kinetic energy flows in this
system *°. In contrast, W, (pp) is significant but W4 (pp) is small, suggesting that Fy has
significant impact on the motion of ¥ but Fy, has little influence on the motion of ¢. This suggests
that the motion of Y is slaved to the motion of ¢ because the latter is the dominant factor for
determining Fy, *>**. Consequently, 1, though important for distinguishing the reactant and

product states, is not an RC.
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Figure 3: Generalized work functional and generalized work tensor. (a) The GWF with pp as the projector for all the dihedrals and improper dihedrals in the

system. There are 19 x 19 =361 lines in the plot. The thick colored lines are f;((op)ﬁ

with distinct colors in the second column of the generalized work tensor in panel (c). The rest are colored light gray. (b) The GWF with ¢ as the projector.
(¢) The 19 x 19 generalized work tensor W(pp; 0 — 0.5) calculated for all the dihedrals and improper dihedrals in the system. Each tensor element is colored
based on its value.

)(Fi&i)) for g;that has significant magnitude, corresponding to the blocks

Figure 3c shows W(pg; 0 — 0.5), the generalized work tensor for pz = 0 to 0.5. We included all
the dihedrals and improper dihedrals in constructing W(pg; 0 — 0.5), consisting of 19 coordinates
in total. We did not include bonds or bond angles in W(pg; 0 = 0.5) because terms involving
forces from them have high noise. This is because these forces are of high magnitude and oscillate

very fast compared to forces from dihedrals.
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The leading left singular vector of W(pp; 0 — 0.5) is: R, = 0.5760; + 0.72¢ + 0.347, — 0.217;.
To test the accuracy of R., we carried out the standard “committor test” and compared the
performance of R, with RCs identified in previous studies 3% 3! 44 Because RCs must be
sufficient for determining py, configurations that share the same values of the RCs but differ in
other coordinates should all have the same pg value. To test the quality of specific RCs, we harvest
an ensemble of configurations that all have the values of the RCs corresponding to the transition
state, with the other coordinates randomly sampled. The distribution of py values for this ensemble
should peak around 0.5 if the RCs can determine pp; a narrower distribution indicates higher

accuracy of the RCs.

Figure 4a shows the results of the committor test. The orange line is the distribution of pg for
configurations with ¢ = 0° and Y = 40°, corresponding to the value of ¢ at the transition state.
This distribution peaks at pp = 0 and pp = 1, indicating that ¢ alone cannot determine committor.
The green line is the distribution of pp for configurations with ¢ = 0° and 6, = 3.6°. This
combination was identified in previous studies as sufficient for determining committor 3% 3!,
Indeed, this distribution peaks at pg = 0.5, though it is rather broad, indicating either missing RCs

or the uncertainty inherent in the numerical calculation of pg **. This is the limit reached by

previous methods, both intuition-guided trial-and-error and machine-learning with neural network

30,31

The blue line is the distribution of pp for configurations with R, = —80.9°. It sharply peaks at
ps = 0.5 and has a narrow width, showing the high accuracy of R.. This significant improvement
in the accuracy in determining committor value compared to previous results is due to two factors:
1) the inclusion of two improper dihedrals t; and 7,, 2) the correct coefficients in the analytical
expression of R.. Because the effects of 7; and 7, on reaction dynamics are much weaker than
those of 8; and ¢, shown by their smaller coefficients in R, they are much more difficult to detect,
explaining why they eluded both human intuitions and machine learning 3% 3!. The fact that they
are uncovered by W(pg; 0 = 0.5) demonstrates the capability and precision of the GWF in

capturing the essence of dynamics.

13



(a) (b)*
o {a —
35 ofl—
301 T2 — (W)
| IS} — (AWp,)
L 23 E —4 | (AW;)
Q 0 oy - (AW, + AWp, + AW:, + AWy,)
S -6f — (AW,
1.5+ < (AWTQ)
SN
100
_10 -
05Ff
_12 -
9% 02 04 06 08 10 0.0 02 04 06 08 1.0
Ps Ps

Figure 4: Committor test and potential energy flow. (a) Comparison of the results of
committor tests for different RCs. Orange: PDF of pB values of the ensemble of
configurations (¢=0° and y=40°) with ¢ as the RC, the same as used in ref. [30].
Green: PDF of pB values of the ensemble of configurations (¢=0°and 61=3.6 9 with
both ¢ and 6] as the RCs, the same choice as in refs. [30, 31]. Blue: PDF of the
ensemble of configurations with Rc=-80.9°° Red: PDF of the ensemble of
configurations with Rc*=-99.5° (b) Potential energy flows through ¢ (orange), 6/
(blue), 7/ (pink), 72 (grey), and Rc (red). The cyan dashed line represents
(AWS+AWOI+AWTI+AW72).

The red line is the distribution of pg for configurations with R; = 0.576, + 0.71¢ + 0.347; —
0.217t; — 0.1t3 = —99.5°, which is almost identical to the blue line. This suggests that the

improper dihedral 75 is a very minor RC, consistent with its small coefficient in R.

Moreover, the matrix elements of W(pg; 0 — 0.5) have inherent numerical uncertainty, especially
because py is numerically evaluated * 3% 44, The reason that R} has minimal improvement over
R. is likely that we have already reached the numerical limit, thus R, is likely the optimal 1D-RC.
Since the GWF determines the rigorous 1D-RC, it is likely the correct physical operator for

rigorous analysis of protein dynamics in general.

Figure 4b shows that AWy = AW, + AW, . Because ¢ and 6, carry the dominant majority of the

total potential energy flow through the system based on previous studies 3% 3, this means R, is
responsible for the majority of the total potential energy flow through the system, confirming the

1D-RC as the single dominant channel for energy flows during a reaction.
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Is 1D-RC Curved? An important conceptual question in reaction dynamics is whether the 1D-
RC is straight or curved. There is no physical reason to expect that the 1D-RC should be straight,
but in practice it is often assumed so for simplicity 2”28, This assumption is likely true for small
molecules because the barrier top region is very narrow. For complex molecules, this assumption
is less warranted due to the extended span of the barrier top. Since alanine dipeptide is the smallest

complex molecule, it offers an excellent place to examine this matter.

—m— linear regression
—#— 1D-RC

0.0 0.2 0.4 0.6 0.8 1.0 %
Ps

Figure S5: The curvedness of 1D-RC. (a) The scattered points represent projection of ensembles of
configurations with pp = 0.02,0.3,0.5,0.7,0.9 onto the (¢, 6;)-plane. The white straight line through a
colored “cloud” is its linear regressions, thus each one represents an approximation to the intersection of the
corresponding iso-committor surface with the (¢, 81)-plane. The solid black line is R (pg) constructed as a
concatenation of 10 short line segments; each segment is the R, for an interval of pg. The R.(pg) for a specific
pp is the leading left singular vector of the tensor W(pp; 0 = pg). To construct the short line segments
corresponding to different values of pp, we first prepare 11 ensembles of configurations; each one contains
configurations of a specific pp value: pg = 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98. Each ensemble of
configurations are then projected onto the (¢, 8;)-plane and the center of mass, ¢; (i =1,...,11), of each
ensemble is computed. The ¢ coordinate of this series of ¢; defines a sequence of positions along the ¢-
direction: ¢; =-18.9°, -12.3°, -7.8°, -3.9°, -0.2°, 3.3°, 7.2°, 11.7°, 18.4°, 24.8°. We start from c; as the starting
point of the first line segment, with its slope as the slope of R.(0.02) projected onto (¢, 61)-plane. The first
segment ends at clz, with its ¢p-coordinate equal to ¢,, and its 8;-coordinate equal to: slope(RC (0.02)) (¢ —
¢1). The other segments are constructed in a similar way. The red solid line is constructed in the same manner
as the black solid line, but the direction for each line segment is chosen as the direction normal to the linear
regression of each pp ensemble. The black dashed line is a straight line in the direction normal to the linear
regression of the ensemble of pp = 0.9. Both solid lines deviate from this straight dashed line, demonstrating
the curvedness of the 1D-RC. The black and red solid lines are essentially coincidental, showing that R, is
perpendicular to the isocommittor surfaces throughout the transition region. (b) The slopes of the line segments
in panel (a) as function of committor. (c) Results of committor tests for ensembles of configurations with
R.(pg) = -89.0°, -86.3°, -83.9°, -82.6°, -80.9°, -79.2°, -77.5°, -74.8°, -71.8°, corresponding to pp = 0.1, 0.2,
0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, respectively.
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Because the GWF in Fig. 3a is nonlinear, the direction of the 1D-RC determined by W(pp; 0 —
pp) likely changes with pg, which means the direction of the 1D-RC in different intervals of
committor value will be different. Figure 5a (solid black line) shows the projection of the
concatenation of 1D-RCs for all the intervals of py onto the (¢, 8,)-plane, amounts to a piecewise
linearization of the true 1D-RC. We choose this projection because it is easier to visualize in a
plane, and ¢ and 6, are the dominant RCs. Indeed, the 1D-RC is slightly curved. This
curvilinearity is quantified in Fig. 5b (orange line), which shows the slope of the 1D-RC as a
function of pg. Figure 5c shows the results of the committor test on the curved 1D-RC. Indeed,

it can predict committor value with high accuracy over the entire range of pjp.

To better understand this curvilinearity of the 1D-RC, we projected onto the (¢, 8,)-plane five
ensembles of configurations. Each ensemble consists of configurations on the iso-committor
surface of a specific pg * §; the five ensembles correspond to pg = 0.02,0.3,0.5,0.7,0.9; § =
0.05. It is often assumed that an iso-committor surface is a hyperplane in the configuration space
27,2835 If this is true, each ensemble of configurations should form a straight strip with a width
determined by § in the (¢, 8;)-plane. Instead, each ensemble of configurations clusters into an
ellipse. To find out the intersections of each iso-committor surface with the (¢, 68;)-plane, we
obtain a straight line through each ellipse by linear regression. Figure 5a (white lines) shows that
the direction of these iso-committor lines changes slowly with p;. The red solid curve is the
concatenation of the normal directions of all the iso-committor lines; it is slightly bent.

Intriguingly, it essentially coincides with the 1D-RC, suggesting that the 1D-RC, though curved,

is always perpendicular to the iso-committor surfaces.

The New Method is Robust and Cost-Effective. In the results above, the GWF was computed
using committor as the projector. Since numerical evaluation of committor is computationally
expensive *, it could limit the use of the current method for identifying the 1D-RC in large systems.
Therefore, we computed the GWF using ¢ as the projector, which is a good order parameter that
can distinguish the reactant and product basins °, but insufficient for parameterizing the
progression of the reaction (Fig. 4a). Since RCs control the dynamics of the transition period, not
the dynamics within the reactant basin, we consider the range of ¢ € [—35°,35°], corresponding

to the region of pg € (0, 1).
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Figure 3b shows W(¢), the GWF calculated with ¢ as the projector, which differ from W(p3) in

Fig. 3a. This is expected because projector significantly affects the ensemble average. Importantly,

the 1D-RC from W(¢; —35° — 0°), Rf =0.5760; + 0.71¢ + 0.377; — 0.197,, is essentially
identical to R .. Therefore, we can use an order parameter as the projector instead of the committor.
This tremendously decreases the computational cost of the current method compared to previous

methods 3! 3¢

, as now the dominant cost is to harvest sufficient number of reactive trajectories,
which is low compared to cost of computing the committor 3!-3¢. Most importantly, substituting

pg with an order parameter does not affect the accuracy of the resulting 1D-RC.

Another important factor is that the number of reactive trajectories required for obtaining the
correct 1D-RC is much lower than what is required for smooth GWF curves. The results in Fig. 3
are averages over 2,000 trajectories, but the 1D-RC obtained from averaging over 200 trajectories,
R.(200 traj) = 0.596; + 0.70¢ + 0.327; — 0.247,, is effectively the same as R obtained from
2,000 trajectories. Moreover, the 1D-RC obtained from 100 trajectories is: R.(100 traj) =
0.476, + 0.56¢ + 0.647; — 0.237,. Although it does not have the correct coefficients, it does
correctly distinguish the four important coordinates, ¢, 84, 7, T,, from the other coordinates in the
system, which is what previous methods aimed at and provides highly valuable mechanistic
insights 3!-3% 3¢ The reason behind this robustness is probably two-fold. 1) The GWF tensor is an
integration of the GWF curves, thus noise in the GWF curves is canceled out by integration,
leading to improved accuracy in the 1D-RC. 2) The SVD results are likely constrained by the
structure of the GWF tensor and robust to numerical errors. This makes the current approach a

robust and cost-effective method for identifying the 1D-RC in complex molecules.

It is also possible to apply the current method to analyzing existing long-time scale MD simulations
of complex conformational dynamics, such as the datasets by D. E. Shaw research. The major
requirement is that the progress of the conformational transition of interest can be characterized
by an order parameter selected by the user. This transition can involve more than two
stable/metastable states and the user does not have to correctly identify all the stable states from
the beginning. The basic idea can be explained by a schematic example of a two-dimensional

system (Fig. 6a). In this example, g; and g, are two RCs and there are three stable states, Sy, S,
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and S3, in the qq, g,-space. The order parameter a can identify S; and S3 but not S from the
simulation data and is the projector in GWF calculations. The key is that both the GWF W(a) and
the 1D-RC are functions of a.

Figure 6: Schematic
for using the GWF to
identify 1D-RC for a
transition involving
three stable states in
a two-dimensional
system. (a) The
contour of the
potential energy in
the g4, g,-plane. The
three stable states are
S1,S;,53. The red
dashed line indicates
the order parameter
a. The red arrows
indicates the 1D-RC
for S; = S, and

S, — S3 transition
respectively. (b) The
four different
elements of W(a).

(a) s

Figure 6b shows the expected features of the four elements of W(a). Because q; is the only RC
for §; — S, transition, only W4 («) has significant magnitude. All the other terms of W(a) are
vanishingly small because q; and g, are not coupled in this region, leaving W,;, and W,
essentially zero, and g, only undergoes thermal fluctuations, leading to complete cancelations in
W,,. The resulting 1D-RC will be just q;. In the S, — S5 transition, both g; and g, are RCs, thus
all the elements of W(a) are significant and the resulting 1D-RC is a linear combination of q; and
q,. Consequently, we expect to observe a significant change in the direction of the 1D-RCs
determined in the intervals (a, a;) and (a,, a3) respectively, corresponding to the two red arrows
in Fig. 6a. This kind of change in the 1D-RC determined at different values of the projector could
be due to hidden stable states in the initial analysis, or the intrinsic nonlinearity of 1D-RC in
complex systems. The actual situation could then be determined by further analysis. In the
discussions above, we assume that the simulation data contain sufficient number of instances of
the transition of interest so that the GWF analysis converges. Otherwise, the existing trajectory
segments that contain the transition of interest can be used as seeds for TPS to proliferate more

reactive trajectories.
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Discussions
In this paper, we developed a general mechanical operator, the GWF, that can help to answer some

fundamental questions in protein dynamics.

Collectivity in Functional Protein Dynamics. Functional protein dynamics often involve
significant changes in the global protein structure, which are assumed to be controlled by collective
modes. However, it remains a puzzle what these collective modes are and what their physical

origin is.

A global conformational change results from aggregation of many local movements. Each local
movement is described by an internal coordinate. Individual local movements are mechanically
coupled together by the S tensor, thus they are synergized with each other, forming collective
modes. Understanding the collectivity in conformational dynamics requires understanding what

this synergy is and what determines it.

The GWF encapsulates the effects of the couplings induced by the S tensor. Its left singular
vectors are the collective mode responsible for the global conformational change. The coefficients
of these singular vectors define the synergy between different internal coordinates. For example,
in R;, ¢, 0; and 1, correlate with each other but anti-correlate with 7, and 73. The GWF is the

physical determinant of this synergy and the collectivity of protein dynamics.

A Tentative Roadmap for the Structure-Function Relationship of Proteins. A critical link
between the structure and the function of a protein is its functional dynamics, which is controlled
by the RCs. The RCs are determined by the GWF, which summarizes how the forces in the protein
impact the motions of the coordinates that are extensively coupled together by the S tensor. Both

the forces and the S tensor are determined by the protein structure.

Summing these factors up leads to a tentative roadmap for the structure-function relationship (Fig.

1b). The structure of a protein determines both atom-atom interactions and the S tensor. Together,
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they determine the GWF, which determines the dominant forces in the protein and the RCs. The

RCs control the functional dynamics, which determines the protein function.

Finally, the GWF provides a rigorous and computationally efficient method for identifying the 1D-
RC for a single-channel reaction. For the (7.4 = (74, isomerization of an alanine dipeptide in
vacuum, we obtained the piecewise linearization of the true 1D-RC over the entire transition region,
which showed that the 1D-RC is slightly curved. The curved 1D-RC can predict the committor
value with an accuracy far exceeding what was achieved before by both human intuitions and
machine learning, attesting the value of rigorous physics-based method. Most importantly, the
ID-RC is determined by a general mechanical operator, without resorting to any informatics

approach or human intuitions.

Methods

All simulations were performed using the molecular dynamics software suite GROMACS “with
transition path sampling implemented. Amber 94 force field was used to facilitate comparison with

32,39,41.46.47 " The structure of the alanine dipeptide was minimized using steepest

previous results
descent algorithm and heated to 300 K using velocity rescaling with a coupling constant of 0.2 ps.
The system was then equilibrated for 200 ps and no constraints were applied. The time step of
integration was 1 fs. Basin C7,4 is defined as —190° < ¢p < —55° and -60° < ¢ < 190°; basin
Cyax 1s defined as 50° < ¢ < 100° and —80° < ¢ < 0°. We used transition path sampling
method to generate the ensemble of reactive trajectories between these two basins that are used in

all the analyses discussed here #°. All the averaged quantities discussed in the text were averaged

over 2,000 trajectories.
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