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Uncertainty-Informed Operation Coordination in
a Water-Energy Nexus

Mohannad Alhazmi
Mostafa Nazemi

Abstract—The widespread deployment of smart hetero-
geneous technologies and the growing complexity in our
modern society calls for effective coordination of the in-
terdependent lifeline networks. In particular, operation co-
ordination of electric power and water infrastructures is
urgently needed as the water system is one of the most
energy-intensive networks, an interruption in which may
quickly evolve into a dramatic societal concern. This paper
develops a novel analytic for uncertainty-aware day-ahead
operation optimization of the interconnected power and
water systems (PaWS). Joint probabilistic constraint (JPC)
programming is employed to capture the uncertainties in
wind resources and water demand forecasts. The proposed
integrated stochastic model is presented as a non-linear
non-convex optimization problem, where the non-linear hy-
draulic constraints in the water network are linearized using
piece-wise linearization technique, and the non-convexity is
efficiently tackled with a solution methodology to convert
the proposed model with JPCs to a tractable mixed-integer
linear programming (MILP) formulation that can be quickly
solved to optimality. The suggested framework is applied to
a 15-node commercial-scale water network jointly operated
with a power transmission system using a modified IEEE
57-bus test system. The numerical results demonstrate the
of the proposed stochastic framework, resulting in cost
reduction (13% on average when compared to the tradi-
tional setting) and energy saving of the integrated model
under different realizations of uncertain renewable energy
sources (RESs) and water demand scenarios. Additionally,
the scalability of the proposed model is tested on a mod-
ified IEEE 118-bus test system connected to five water
networks.

Index Terms—Interdependent networks, joint probabilis-
tic constraints (JPCs), power and water systems (PaWs),
water distribution system, water-energy nexus (WEN).
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NOMENCLATURE
Sets
beB Set of electric system buses.
g€ NG Set of power generating units.
kel Set of power transmission lines.
weW Set of wind turbines.
Parameters
M Arc-Node A x N incidence matrix.
C Reservoir-Node R x N incidence matrix.
K Pump-Arc P x A incidence matrix.
g Tank-Node 7 x A incidence matrix.
(C] Bus-Pump B X P incidence matrix.
Pyt Expected wind power forecast of wind farm w at
time t (MW).
Py Electricity demand at bus b at time ¢t (MW).

poax prmin Maximum/minimum PaWS electricity demand at

bus b at time t (MW).

P Maximum flow limit of transmission line k.

Py, P;’”” Maximum/minimum capacity limit of generating
unit g (MW).

dy Vector of water demand (m? /sec) at time t.

h Reservoirs’ geographical height (m).

q(g_)7 q? ) Linearized flow rate for pipe ¢ and pump p.

pmax pmin Maximum/minimum volume of water tanks.

AE™/min - Maximum/minimum of the difference in the water
flow rate to water tanks.

hMa pmin - Maximum/minimum nodal pressure heads.

ppmav/min - Maximum/minimum power consumption of wa-
ter pump p at each bus b (MW).

Co,t Fixed cost coefficients of generating unit g at time
t ($).

Cq,t linear cost coefficients of generating unit g at time
t ($/MW).

Cst Vector of reservoirs’ water price at time ¢.

Cp,t Electricity price of pump p at time ¢ ($/MW).

gmax/min Maximum/minimum water flow rate though the

water network.
M Water network arc-node incidence matrix.
Variables and Functions

R Vector of water inflow rate from reservoir s at
time ¢.

qt Water flow rate at time ¢.

hy Pressure heads loss for node n at time ¢.

Sign(.) Sign function.
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AE; The difference in water tanks’ inflow/outflow rate
at time ¢.

Tin Vector of water inflow to tanks at time ¢.

" Vector of water outflow to tanks at time ?.

Vi Volume of stored water in tanks at time ¢.

Wy Pumps’ speed at time .

pr Power consumption for pump p at time ¢.

prowd Vector of water electricity consumption wd for
pump p at time ¢.

Xit Continuous decision variable for the sampling
coordinate ¢ associated with the linearization of
pipe € at time .

Xt Continuous decision variable for the sampling
coordinates v and m associated with the lineariza-
tion of pump p at time .

oy Scheduled wind power at time ¢.

D! Scheduled water demand at time ¢ (m? /sec).

Py Output power of generating unit ¢ at time ¢.

Pyt Power flow on transmission line k at time .

Pay Total PaWS electricity demand at bus b at time ¢
(MW).

0.+ Voltage angle difference between bus n and m at
time ¢.

Kq: Water flow rate through pump at time ¢.

agy, () Pump performance parameters.

Random Variables

p;“”’f Wind power forecast at time ¢.

Di’f Water demand forecast at time ¢ (m?> /sec).

Binary Variables

Y Binary variable for pressure head breakpoint ¢ of
water pipe € at time ?.

h‘j}’ﬁffgf’ Binary variable for the upper left triangle as-
sociated with the linearization of pump p at
time ¢.

ht",‘ffrtp Binary variable for the lower left triangle asso-

ciated with the linearization of pump p at time
t.

[. INTRODUCTION

OWER and water networks (PaWS) are among the critical

lifeline infrastructures due to their pivotal roles in back-
boning our modern society and human life. Water pumps receive
a remarkable portion of the total electricity needed to run the
water system infrastructure: Around 4% of the total electricity
usage in the USA is exhausted by electric pumps in water net-
works [1]. As the water networks undergo rapid electrification
due to the sharp increase in the national population, it calls for
improvements in PAWS energy and cost efficiency. Traditionally,
PaWS have been independently planned as decoupled systems,
while the two networks are operated interdependently in real-
world applications [2]. Power systems are in need of water
for refining fuels and generating electricity; on the other hand,
electricity is needed for the daily operation of water systems. The
interdependency in PaWS is further highlighted in the case of

limited availability of resources in either system. For instance,
if a shortage in cooling water for conventional steam power
plants is realized, the water system may not be supplied with
the needed energy to pump the water through the network; this
could, in turn, result in a cascading failure in both systems. Such
lack of coordination was experienced during the hurricane Maria
in Puerto Rico [3], where the storm damaged around 90% of the
state’s electrical system, and large areas were not supplied with
water for a long time due to the severance of the hurricane and the
lack of coordination between different interconnected sectors,
i.e., power and water operators, which resulted in a longer re-
covery time [4], [5]. This closely-intertwined ecosystem of water
and power infrastructures is commonly known as water-energy
nexus (WEN) [6].

A literature review on the role of WEN in the optimization of
water distribution system is presented in [7]. WEN is analyzed
in [8] to investigate the effect of PaWS interdependence on
different economic sectors. An approach for the optimal dispatch
of PaWSs is presented in [9], considering the impacts of battery
storage facilities. The authors in reference [10] studies the im-
pacts of power and water economic dispatch on the supply side
of the WEN (e.g., hydroelectric and thermal desalination plants).
A mathematical codispatch model for the optimal network flows
in PaWS is developed in [11]. The authors in reference [12] pre-
sented arobust optimization formulation for daily hydro-thermal
operation scheduling taking only the water network constraints
into account. Energy flexibility through coordination of PaWS
is introduced in [13]. The authors in references [14]-[16] in-
troduced a methodology to assess the infrastructural and opera-
tional resilience of PaWS under critical conditions (e.g., limited
water and/or energy availability). Another scope of research in
this area focuses on the optimal demand response and regulation
markets for water distribution systems [17], [18].

The aforementioned studies did not effectively capture the
critical role of renewable energy sources (RESs), e.g., wind
power, in the operation of interconnected PaWS, taking into
account the complete model for both power and water systems.
Nevertheless, PaWS is facing growing challenges due to the
uncertainty in both networks. PaWS operators experience a
high level of uncertain RESs, and an increased level of cus-
tomer demand. Few studies have been conducted to optimize
the utilization of RESs in PaWS. A framework for utilizing
water pumps and tanks to receive the needed energy for their
operation from RESs is proposed in [19]. A cooptimization
model for PaAWS considering the availability of solar energy is
suggestedin [20] and [21]. Neither the RESs stochasticity nor the
uncertainty in water demand forecast has been well addressed
in the literature.

A scenario approach is used in [22] to model the variability
of water demand forecasts, while the complete set of water
network hydraulic constraints and the RES uncertainty were
neglected. Multiobjective optimization for PAWS operation un-
der the uncertainty in river inflows is introduced in [23]. A
dynamic multiobjective framework for the operation of WEN
in off-grid islands is presented in [24]. The authors in refer-
ence [25] models a multiobjective framework for planning WEN
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Fig. 1. Overview of the proposed methodology for integrated PaWs.

at regional scales. The robust operation of WEN against the
variability of wind generation units is studied in [26]. The uncer-
tainty in PaWS demand at the distribution level is studied in [27].
A two-stage distributionally robust optimization approach is
pursued in [28] to model the uncertainty of wind energy sources
in WEN, including power, gas, and water systems. However, a
complete integration of the PaWS that effectively captures the
prevailing stochasticities in both networks need to be further
researched.

Different from the conventional practice where the PaWS
operation is approached either independently or coordinated
through an iterative exchange of status information between
both networks, this article bridges the gap in the literature to
optimize the operation of interlinked water and power systems
under uncertainty. We propose a novel approach for capturing the
uncertainties in both networks (i.e., in RESs and water demand)
using a joint probabilistic constrained (JPC) formulation. In
particular, the proposed model with JPCs enables the opera-
tion of PaWS where the entire set of uncertain constraints are
enforced to be satisfied with a predefined reliability level. The
suggested stochastic formulation with JPCs appears in form
of a nonlinear nonconvex optimization model. The proposed
formulation is then linearized, convexified, and reformulated
through a boolean programming approach into an equivalent
mixed-integer linear programming (MILP) formulation to cope
with the computational complexity. The proposed reformulation
allows for a very fast solution of the stochastic optimization
model in which the random variables are represented by a
large number of scenarios. Fig. | illustrates a big picture of

the proposed stochastic framework for integrated operation of
the interdependent PaWS under uncertainty. Wind and water
demand forecast datasets are collected using historical data for
scenario generation. The PaWS operator then uses these data as
the input for the PaWS cooptimization engine. The stochasticity
of wind power and water demand realizations are captured
through the proposed optimization model with JPCs which is
then reformulated to a MILP model that ensures the solutions
are globally optimal.

The main contributions of this article are as follows.

1) The article proposes an uncertainty-aware mechanism for
the operation optimization of the RES-integrated PaWS.
Effectively capturing the prevailing uncertainties in RESs
and water demand, we introduce new models with JPCs
that enforce the entire set of uncertain constraints to be
satisfied with a predefined reliability level. The suggested
model provides a set of globally optimal solutions with
less conservativeness and more flexibility compared to the
classical models with individual probabilistic constraint
IPC).

2) A boolean approach is applied to reformulate the pro-
posed stochastic models with JPCs into an equivalent
MILP formulation. The employed boolean reformulation
requires fewer newly-introduced integer variables, which
enhances the computational efficiency of the suggested
framework.

The rest of this article is organized as follows. Section II
introduces a deterministic model of the coordination framework
for PaWS operation utilizing wind units. The proposed formu-
lation with JPCs and the suggested reformulation technique are
presented in Section III. Numerical case studies and simulation
results on a modified IEEE 57-bus test system integrated with a
15-node water network are demonstrated in Section I'V. Finally,
Section V concludes this article.

[I. DETERMINISTIC PROBLEM FORMULATION

In this section, a deterministic formulation for the integrated
operation optimization of PaWS is presented. The compo-
nents of the water network (e.g., reservoirs, pipes, pumps, and
tanks) are mathematically modeled based on a directed graph
G = (N, A), ie., a set of nodes connected together by pipes
directed from one node to another; where A represents the set
of nodes with water sources s € S (i.e., reservoirs or tanks) and
demand junctions € £,i.e.,N'= {S U L}.Pipelines ¢ € ¢ and
pumps p € P are reflected by set A € A, ie., A ={PUc}.
Positive and negative values for the water flow rate ¢ defines the
direction of each arc [29].

1) Objective Function: The objective function of the proposed
optimization model is presented as follows:

NT NG § P

min Z Z Z Z o+ g Pyt + co R + cp PP

t=1 g=1 s=1 p=1
ey
The objective function aims to minimize the total operation cost
of PaWS over the entire time period N7', and on a system with
NG number of generating units, S number of reservoirs, and
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‘P number of water pumps. The first two terms in the objective
function are the fixed and linear costs of the power generating
units. The third term represents the cost incurred by purchasing
water from reservoirs. The last term reflects the cost of electricity
needed to operate the water pumps. The objective function of the
integrated PaWS model is subject to the following set of system
and operation constraints.

2) Water Flow Operational Constraints: Water demand is
delivered to end users from the reservoirs and tanks through
a network of pipes and pumps. The day-ahead water flow con-
straints are modeled as follows:

R{ —d; — M ¢ —GAE; =0 vt )
AE, =T;" — T vt 3)

"™ < q < q™ vt “4)
0<Kq < ¢™ vt (5)
R >0 Vit (6)

~Mhy =1y | g0 |"¥? Sign(a) Wt 7

Chy —h=0 Vit )
pmin < Ry < RMAX vt )
Vig1 = Vi + AE, Ve (10)
Vi = SaGhy vt (1)
ymin <Y, < pmax vt (12)
AE™" < AE, < AE™ Vit (13)
prmin < pP < pp.max vt (14)
KMh; = W} (m —a, (’%)3) vt (15)

(16)

PP =w3 (zl . <’§5’*>) Vt.
t

Water flow balance equation is modeled in (2). The difference
between the input and output water flow of the tanks, AF,
is modeled in (3). The water flow through pipes is limited
in (4), where the positive/negative value of ¢; indicates the
direction of the water flow rate. Water flow through pumps
is bounded in constraint (5). Constraint (6) ensures that only
positive values can be taken for water inflow rates at reservoir
nodes.

The nodal pressure head loss constraint for water pipes is
modeled in (7)—(9). The pressure head loss in water pipes is
modeled in (7) by the Hazen—Williams formula [30], where
the coefficient 7, depends only on the water flow. Note,
the Hazen—Williams formula is a quantitative term used to
describe the pressure loss that occurs in water pipes due to
friction. The pressure head of the water reservoirs is fixed by
its geographical heights in (8). Constraint (9) bounds the nodal
pressure at each node in the water network to its maximum and
minimum values.

The most challenging components to model within a water
network are the tanks and pumps. Water tanks’ dynamic op-
eration constraints are modeled in (10)—(14). The water flow
balance equation for water tanks is governed by constraint (10).
The pressure head at the tank nodes, which is driven by the water
stored in the related tanks, is modeled in (11), where S|, is the
tank’s diagonal surface parameter. Constraint (12) bounds the
volume of each tank to its minimum and maximum capacities.
The difference between the charging and discharging water flow
in tanks is formulated in (13). Pump electricity consumption
is limited to its minimum and maximum capacities in (14).
The controlled increase in water pump pressure is modeled in
constraint (15). The electricity consumption for water pumps is
formulated in (16). Note, a() and z( in constraints (14) and
(15) are the pump performance parameters.

3) Linearization Technique: Constraints (1)—(16) represent
the complete hydraulic constraints for water networks, and ap-
pear in the form of nonlinear programming (NLP) constraints.
The nonlinear constraints are presented in (7), (15), and (16).
Solving an NLP model can be time-intensive and complex in
a large scale water network, which may not result in a feasi-
ble solution. In order to guarantee a feasible set of solutions
for the optimization problem, a piece-wise linearization tech-
nique [29], [31] is applied to the presented nonlinear constraints.
In so doing, water flow rate through pipes ¢f and pumps ¢/
are divided into several breakpoints, i.e., (qu,qE, .. .,(j}) and

(qu , qA]; Sy q%}). In other words, ¢; axis is divided over the range
of the function to segments using ¢ = 1,2,3,..., ] sampling
coordinates (breakpoints) (ff, qu, ey qu,. The breakpoints ((ff, (f})
and (¢}, ¢7;) are set at the extremes (i.e., at the maximum and
minimum values for ¢f and ¢7). Similarly, pump speed W, is
divided into several breakpoints, i.e., (W, Wy, . . ., W), Where
(w1, whr) coincide with the minimum and maximum values of
Wi. A continuous variable for each breakpoint Xy, € [0, 1]
is introduced to approximate the univariate function in (7).
Let Y%, be a binary variable for each pipe € corresponding
to the ith interval (i.e., q},qlﬂl). Similarly, bivariate func-
tions for pump p in (15) and (16) are approximated using
the triangle technique of the piece-wise linearization. Contin-
uous variable X7, , € [0,1] for each (u,m) is introduced.
The binary variables are accordingly associated with the up-
per triangle Ay, PP (uw = 1,..,Usm = 2,.., M) and the lower

triangle h=""?(y, = 2,...U;m = 1,.., M — 1). The nonlinear

w,m,t
constraints (7), (15), and (16) are substituted by the following
linear constraints:

I-1
Z th =1
i=1

Xiy <Y+ Y5

Ve, Vt (17)

Vi=2,...,1— 1YVt (18)

I
d X =1 Ve, Vt (19)
=1
Xie <Yiq, VeVt (20)
Xf, <Y, Ve, Vit 1)
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. through the following constraints:
Z X546 Ve, Vi (22)
P
awd
, pprt=%"or? Vit
€ __ € €l e p=1
Ahf = Zl X5, AR (gf) VeVt (23) 31
U M de,t _ Pb7t + Ptpa’wd Vb, Vit
Z Z Xu m,t =1 vpa vt (24) (32)
u=1m=1
m < <
(hatheti? + o) = 1 Vp, Yt (25)
u=1m=1 on - am
" ; ; Py = Wk, Wt
qu) m,t — hupvg@ei?t + huﬂflerrg t + hupgfrtp F (34)
Lower, Lower, Lower,
h,uo“;er"?t huo,::lf_r,'_zlj + huo,'\:,lertp V’U/7 Vm7 Vp, Vit (26) o P]?ax < Pk + < Pmax Vk, V¢
U M (35)
uz:l ; Xu ,m, tqu vp» Vt (27) P;nin S Pg,t S P;nax vg7 Vt
(36)
3 PRI V@8 S Pt Y P Y P =Y Puy Y
u=1m=1 geNG wew ke L deD;
U M (37)
A=Y AR W )
=l el The incidence matrix © is introduced in constraint (31) to map
U oM the dimension of P’ to the power system buses. Constraint
PP = Z Z PP (q:ﬁ’ 7w29n )XP Vp, Yt (30) (32) sums the total elect.ri.city demand'for power and wa?er
== B networks together. Electricity consumption at each load point
is bounded in (33). Constraint (34) sets the power flow in each
. . ) . transmission line. The power flow in each transmission line
The pressure head difference in water pipes hj (i.e., Ahi = s bounded to the minimum and maximum capacity limits in

hy, + — hi 1) in (7) is approximated by constraints (17)—(23).
Constraint (17) enforces only one binary variable Y}, to take
a nonzero value. Constraints (18)—(21) imply that only values
other than zero are chosen for a pair of consecutive positive con-
tinuous variables X, and X, ;. Constraint (22) can uniquely
represent any given point for the water flow rate through pipes
q;» as it is the linear combination of two successive breakpoints
weighted by the associated variables X ,. Constraint (23) en-
sures that the pressure difference for each pipe Ahg is properly
chosen for the accurate computation of the approximated values.

Water flow through pumps, pressure head difference, and
the electricity consumption by water pumps in (15) and (16)
are approximated by constraints (24)—(30). The weights of the
convex combination for the selected triangle is introduced in
(24). Constraint (25) ensures that only one triangle is used
for the convex combination. Constraint (26) enforces that only
nonzero values of X 5 m,¢ can be associated with the three
vertices of the triangle. Constraints (27) and (28) represent the
linear combinations of any values for ¢¥ and W;, weighted
by the continuous variables X, , ;, respectively. The bivariate
nonlinear functions for the increase in pressure difference in each
water pump AhY (i.e., Ahy =h} ., —h} ) and the power
consumption of pumps P/ are approximated in (29) and (30),
respectively.

4) PaWs Integration Constraints: Power system’s DC optimal

power flow mechanism is integrated with the water network

(35), where the positive/negative value of Py ; indicates the
direction of the power flow on transmission lines. The output
power of the system generating units is limited to the minimum
and maximum capacity limits in (36). System power balance
constraint is enforced in (37).

The complete deterministic problem formulation (DPF) in
the form of an MILP optimization model is presented in the
following, which considers the integrated operation of power
and water networks utilizing wind resources:

DPF : min (1)

subject to (2) — (6), (8) —

(14), (17) — (37).

[ll. PROPOSED PROBLEM FORMULATION WITH JPCs

The deterministic MILP model ignores the uncertainties in
wind energy as well as water demand forecasts; i.e., it assumes
a perfect knowledge of the forecasted wind power and water
demand, which results in suboptimal solutions. A JPC problem
formulation is suggested that can effectively capture such un-
certainties in both networks.

A. JPC Formulation

The proposed problem formulation with JPCs, i.e., joint prob-
abilistic constrained problem formulation (JPC-PF), is presented
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in the following:
JPC — PF : min (1)
subjectto (3) — (6), (8) — (14), (17) — (36)

R; — D} = Mg, —GAE,=0 vt (38)
Z Py i+ Z . — Zpk,tz Z Py ¢ Vb, Vit
geNG weW kel deD;
(39)
p < p, Vw, Vi
P > K (40)

Dl < D v, i

where (38) and (39) represent the water flow balance and nodal
power balance constraints, respectively, considering the stochas-
ticity of wind power p¥ and water demand realizations D!. The
JPC (40) enforces wind power and water demand realizations
to be always equal to or less than the forecasted values with a
predefined reliability level . Note that each random variable is
associated with a discrete probability distribution at each time
interval. The notation « is set by the PaWS operators based on
the preferred and allowable violation level in the system. That is,
the higher the desired reliability level is, the more conservative
the solution is and thus the lower the number of the violated
scenarios will be. Note that the random variables are not present
in the objective function, as we do not intend to minimize wind
power or water demand.

B. Solution Methodology: A Boolean Approach

In this section, boolean reformulation method is suggested to
solve the introduced model with JPCs. The boolean reformu-
lation method [32]-[34] effectively tackles the computational
challenges of solving the stochastic problem with JPCs. The
boolean approach constructs a set of recombinations, binariza-
tion, and reformulation. The boolean framework is succinctly
described in Fig. 2, which can operate in three successive stages:
1) initialization; 2) s-sufficiency; 3) binarization process. In
the initialization stage, all possible realizations of the random
variables are defined and the cumulative distribution function
of each realization is obtained. Next, in the x-sufficiency pro-
cess, the sufficient/insufficient cut points associated with « are
obtained. Eventually, in the binarization process, the binary
variable vectors of § are defined based on the realization of
random variables and the value of cut points obtained in the
previous step. The newly introduced binary variables will then
be used in the reformulation equations.

Note that F’ denotes the cumulative distribution function of the
random variable £. The set €2, describing the set of all possible
realizations w” of the random variable & with dimension J, is
divided into two decoupled sets of x-sufficient, i.e., 27, and
k-insufficient, i.e., {27, such that any recombination £ belongs
to either O or Q. It should be noted that QT N Q~ = (). The
notation f3;; reflects the 7th binary associated with each element
&j. c;j denotes the ith component of ;. Moreover, g(k) gets
the value 1 if the realization k belongs to k-sufficient, i.e.,
QT, and gets 0, otherwise. Notation C*¢ reflects the sufficient

Stage I: Initialization

1- Define Q denotes all potential realizations k € Q
Jofy]: PE < 0f) = Flb)
3PE < ob) = F@h).jed

I
i

Stage II: X-Sufficiency Concept

k .k
2-0" = [0f,...

Yes No
PE <o) >«k?

l

| QF — K-Sufficiency |

l

| Q- — K-Insufficiency |

l

Stage III: Binarization Process | ,,,,,,,,,,,,,,,,,

Binary projection Qp of Q is realized
Qp =QfuQ;

Mapping R¥' — {0, 1}" of »* into an n-binary vector; ¢
k _ gk k k k
ﬁ = [ ERRERY 10 ERRRRY ¢ LR n/j""]

!

k - : ; .
B;; is defined with respect to a cut point ¢;; :

ek
gk = 1, 1fa)j 2 cij
Y 0, otherwise

(ﬂlf,...,ﬂnf‘j),je]
ﬁ{;gﬁjﬁi, jEJ, keQifi <i

1

[, ifkeQy
s® = {o, ifk € Q;
1

A sufficient equivalent set of cut points is introduced

j: €=U C.where C; = {0 1k € QF).

Fig. 2. Overall implementation procedure of the boolean algorithm.

equivalent set of cut points where it accepts any k-sufficient
realization on any component j. In summary, the probability
distributions represent the feasibility of the JPCs with partially
defined boolean functions (pdBf) and the binary images of the
recombinations allow for modeling the feasible area of (40) with
a pdBf from which, a system of mixed-integer inequalities can
be extracted to represent exactly the feasible region of the JPCs.
Allrandom variables considered here have a discrete distribution
function, which is one of the advantages of using the boolean
reformulation approach. In other words, the applied boolean
approach does not require a continuous probability distribution
function for the forecasted random variables. Instead, the ran-
dom variables can be represented with a discrete distribution
function. Any random values can be defined in a specified range
of forecasts for both water demand and wind generation. The
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proposed JPC-PF is here reformulated to an equivalent MILP
model. The solution of the proposed reformulation concurrently
allows for: 1) the generation of minimal conditions for the JPCs
(40) to hold; 2) the reformulation and exact solution of the for-
mulated stochastic problem. The proposed MILP reformulation
of the original problem JPC-PF is illustrated as follows:

REF — JPC : min (1)
s.t. (3) —(6),(8) — (14), (17) — (36), (38) — (39)

Py > ciu Y, Vit (41)
j=1
ne
Di >yl VIVt (42)
j=1
[ B
SO B < T - 1 VE € Qp  (43)
teT j=1
SOSN8, <7 -1 VE € O (44)
teT j=1
> u =1 vt (45)
j=1
> ul=1 vt (46)
j=1
uje,uy € {0, 1} Vi=1,...,n,Vt. (47)

Constraints (41)—(47) represent the mixed-integer linear equiv-
alent reformulation of constraint (40) where the uncertainty of
wind generation units and water demand are taken into account
using JPCs formulation. Constraints (41) and (42) represent the
realization of wind generation units p* and water demand D!
at each time period ¢ based on the cut points found in the refor-
mulation process, i.e., ¢j; and c;t, as well as newly introduced
binary variables, i.e.,u;; and u;t used in the reformulation. The
binarization equations are represented in constraints (43) and
(44). Constraints (45), (46), and (47) ensure only one binary
variable associated with wind generation units uj; and water
demand u;, get a nonzero value. The notation |T'| refers to the
cardinality of the set 7', p}* and D! are |T'|-dimensional random
vectors € and £'; © and €)' are, respectively, the sets of possible
realizations & € Q and &’ € Q' of the |T'|-dimensional random
vector £ and ¢’ with cumulative distribution function F" and F”,
respectively. The notation 3;; and B}t refer to the jth binary
attribute associated with component &; and &}, respectively. Also,
cj¢ and c;t denote the jth cut point associated with component &;
and ¢y, respectively. Note that u; and u;, are decision variables
corresponding to 3;; and f3,, recpectively.

V. NUMERICAL RESULTS

A. System Descriptions, Data, and Assumptions

The proposed formulation for the integrated operation opti-
mization of PaWS considering the uncertainties in wind and

water demand forecasts is implemented on a modified IEEE 57-
bus test system connected to a water network. The water network
consists of 15 nodes and is connected to a load point in power
grid [13]. The water system includes one reservoir, 11 pipelines,
three pumps, and two tanks. Water demand junctions are located
at nodes 3, 11, and 15 of the water network. Tanks are set to be
empty at the initial time. To further demonstrate the efficiency
and scalability of the proposed model, the proposed framework
is applied to a larger-scale network with additional number of
water networks, i.e., five water networks, each consisting of
15 nodes supplied by the IEEE 118-bus power test system. All
data for the studied PaWS and the schematic diagram of both
systems are provided in an electronic appendix available in [35].
All simulations are performed in a mathematical programming
language (AMPL) environment [36] and MATLAB, using a PC
with an Intel Xeon E5-2620 v2 processor, 16 GB of memory,
and a 64-b operating system. CPLEX solver is used to simulate
and solve the reformulated MILP model.

B. IEEE 57-Bus Test System Connected to a
Water Network

1) Case Studies and Results: In order to illustrate the per-
formance of the proposed optimization model, the following
four different cases are studied.

1) Case I represents the traditional setting for the opera-
tion of PaWS (benchmark scenario), where PaWS are
operated independently. In this case, the water system
operator’s goal is to minimize the purchase cost of water
in the network.

2) Case II illustrates the performance of the proposed in-
tegrated PaWS operation under the variability of water
demand only.

3) Case III represents the optimization model of PaWS
considering the uncertainty in wind generation units only.

4) Case IV demonstrates the cooptimized operation of PaWS
capturing the prevailing uncertainties in both networks,
i.e., wind power and water demand forecasts, modeled
with the proposed formulation with JPCs and solved with
the boolean technique suggested in Section III. A wind
farm with a total installed capacity of 250 MW is located
at node 38 of the power network.

A summary of the scheduled day-ahead optimization results in
all cases are tabulated in Table I. In Case I, the total operation cost
is reported to be $55 165.8 with a total of 31 506.9 m?*/h water
purchased from the reservoir. The total electricity required to
pump the water through the network is found to be 173.37 MW.
The operation cost of the proposed integrated model for PaWS
is reduced in Case II to $47 497.1 with a total of 109.30 MW
energy consumed by water network and 30 920.62 m?/h of
purchased water over 24 h. The operational cost for Case III,
where only wind uncertainty is taken into account, is reported at
$47084.71 with atotal of 111.89 MW energy consumed by water
pumps. The reservoir in Case III supplies the water network with
31506.51m?/h of water. Case IV results in a total operation cost
of $47 608.93 when the proposed uncertainty modeling approach
is applied. The amount of water purchased from the reservoir
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TABLE |
SUMMARY OF THE OPTIMIZATION RESULTS FOR THE DAY-AHEAD OPERATION SCHEDULES IN PAWS: IEEE 57-BUs TEST SYSTEM
Case # Operation Pump electricity Purchased Number Number of scenarios Wind Computational
cost ($) consumption (MW) water (m3 h) of variables ‘Wind Water demand penetration (%) time (sec)
Case I 55 165.88 173.37 31 506.9 15984 1 1 15.3 100.937
Case 1T 47 497.1 109.30 30 920.62 16 038 1 24,000 15.3 173.23
Case Il 47 084.71 111.89 31506.51 16 043 24,000 1 13.87 109.60
Case IV 47 608.93 108.33 30919.87 16 097 24,000 24,000 13.8 208.8
14
EBCase [ OCase IV 1300 SN Case =Casell

—~Case II —~Case 11

Pump Electricity Consumption (MWh)

1234567 8 91011121314 151617 18 19 20 21 22 23 24
Time (hour)

Fig. 3. Pump electricity consumption in different test cases: |IEEE
57-bus test system.

in Case IV is found 30 919.87 m?/h and the total electricity
consumed by the water network is obtained in this case equal to
108.33 MW. The operation cost in Case IV, when the proposed
stochastic formulation with JPCs is applied, is lower than that in
Case I (benchmark scenario). Wind supplies 13.8% of the total
electricity demand in Case IV and 13.87% in Case III, compared
to 15.3% in Cases I and II. This is because the wind forecast
at each time period is assumed with one mean-value scenario
in Cases I and II, while a total number of 1000 scenarios are
considered for wind forecast at each time period (a total of 24 000
scenarios for 24 time periods) in Cases III and IV. As expected,
one can observe that the stochastic approach results in more
accurate solutions as it captures different scenarios. Moreover,
while the purchased water is observed almost the same in all
studied test cases, the pump usage in the water network is more
efficient in Case IV compared to the traditional approach in Case
I. To further clarify, the scheduled electricity demand for water
pumps in all cases is illustrated in Fig. 3; one can notice that
during off-peak hours, water pumps in Case I consume higher
amount of energy compared to the proposed Cases II-IV. The
scheduled flow rates for storage tanks in all cases is presented in
Fig. 4, where it can be seen that the utilization of water tanks is
optimal in Case IV, when the operation of the water network is
cooptimized with that of the power network, taking into account
the uncertainties in both systems. In Fig. 4, water tanks are
charged during off-peak hours (positive value) and discharge
to supply the water demand (negative value) during peak hours
in order to save the energy consumption by electric pumps.
In summary, the critical components of the water systems,
i.e., pumps and tanks, are employed more efficiently when the
proposed approach in Case IV is implemented.

&3 Case 11T

800 - -CaselV

300

-200

-700

Total Tanks Flow Rate (m"3/h)

-1200

1 23456 7 8 910111213 141516 17 18 19 20 21 22 23 24
Time (hour)

Fig. 4. Total flow rate schedules for water tanks: IEEE 57-bus test

system.

2) Computational Efficiency: In the proposed model, the ran-
dom variables &; and &, refer to the real wind power and
water demand forecasts (p;”’f, Di’f), respectively. Each random
variable is associated with one single time period; hence, & is
a random vector with a 24 x 1 dimension. A total number of
24 000 scenarios (1,000 per hour) for the wind power forecast
and 24 000 scenarios (1,000 per hour) for the water demand
forecast during the entire 24-h scheduling horizon are generated
and the confidence level, k, is set at 90%. The k is set to be
90% as it gives the operators pretty good flexibility in allowing
for violating scenarios. The higher the x, e.g., greater than
90%, results in a more conservative solution and may not be
practical. The lower the x, on the other hand, results in a less
accurate result, while the flexibility can be higher. Thus, 90%
is a good tradeoff for system operators to accommodate the
violated scenarios in the PaWS. Fig. 5(a) and (b), respectively,
demonstrate the upper and lower bounds for the forecasted
values of the uncertainty sources in PaWS where the scheduled
wind power and water demand are marked with a solid line.
One can see that the realizations of wind and water obtained
by the optimization process are always within the range of the
forecasts at each time slot. The computational time needed to
solve the reformulated stochastic problem using the CPLEX
solver is 208.8 s in Case IV, while it is reported at 173.23 s and
109.60 s in Cases II and III, respectively. One can notice that
while the total number of scenarios to capture both wind power
and water demand forecast uncertainties in Case IV is 48 000
(i.e., 24 000 each), the total number of new binary variables
for problem reformulation is 96 in which 90 combinations are
k-insufficient and 6 combinations are r-sufficient. Note that
the total number of variables in Case IV, when uncertainties
in both networks are taken into account, is 16 097 throughout
the optimization process. Therefore, the boolean reformulation
technique suggested to solve the proposed JPCs permits a very
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Fig. 5. Forecasted and scheduled wind power and water demand:
IEEE 57-bus test system.

fast solution of the stochastic optimization model in which the
random variables are represented by an unprecedentedly large
number of scenarios with discrete distribution functions.

C. IEEE 118-Bus Test System Supplying Multiple Water
Networks

1) Case Studies and Results: The proposed formulation is
applied to a larger-scale test system to further study its efficiency
and scalability. A modified IEEE 118-bus power test system
connected to three water networks is used in this study. Each
water network consists of 15 nodes (i.e., a total of 45 nodes)
connected to the power system at buses 39, 74, and 102. There
are three wind generation units located at buses 8, 33, and 75.
The enforced reliability level & is set at 90%.

The operation cost of the proposed interlinked model of PaWS
is reported at $107 968.58. The total electricity required to
pump the water through the three water networks is found to
be 344.63 MW, with a total of 92 753.75 m? /h water purchased
from the reservoirs. To further illustrate the performance on a
large-scale system, the scheduled electricity demand for water
pumps as well as the hourly purchased water from reservoirs in
all three water networks are illustrated in Fig. 6. Water tanks’
performance in all three water networks are demonstrated in
Fig. 7. The computational time required to solve the reformu-
lated model is found at 316.41 s. In summary, the operational
results of the proposed PaW S under the presence of stochasticity
in both networks reveal that the proposed framework is scalable

25 12000

SPump Electricity Demand —Purchased Water

20 10000

8000

6000

2

4000

Purchased Water (m3/h)

2000

Pump Electricity Consumption (MWh)

iz

-
)

Fig. 6.  Total pump electricity consumption and purchased water in all
three networks: IEEE 118-bus test system.
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Fig. 7. Total flow rate schedules for water tanks in all three water
networks: IEEE 118-bus test system.

TABLE Il
PAWS PERFORMANCE ANALYSIS UNDER DIFFERENT CASE STUDIES: IEEE
118-BUS TEST SYSTEM

Case # Operation Nurqber Computational
cost ($) of variables time (sec)
Case | 135715.76 21871 432.1
Case 11 151 564.1 21720 413.93
Case IIT 149 818.7 22424 489.35
Case IV 151 649.07 26 040 951.1

and computationally efficient when applied to a large-scale
PaWsS system.

2) Performance Comparison With the State-of-the-Art: In
order to demonstrate the performance of the proposed frame-
work compared to other techniques used in the literature, four
different cases are investigated in this section using a modified
IEEE 118-bus test system connected to five water networks. The
water networks are connected to the power system at buses 1,
27, 39, 74, and 102; three wind generation units are located in
buses 8, 33, and 75 (see electronic appendix [35]). Case I models
the stochasticity of wind units and water demand in PaWS$S
using the proposed model with JPC with a predefined reliability
level k at 90%. Case II studies the stochasticity in PaWS using
the proposed model with JPC with a higher reliability level,
i.e., k at 95%. Case III models the stochasticity of wind units
and water demand in PaWS using IPCs, which enforce the
probability function in (40), defined in the manuscript, to be
satisfied individually and at each time period, with a predefined
reliability level x set to 90%. Case IV employs a traditional
scenario approach for tackling the variability of wind units and
water demand.

Table IT demonstrates the performance of the day-ahead oper-
ation optimization model for PaWS in different case studies. In
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Case I, where « is set at 90% using the proposed model with JPC,
the operational cost is found at $135 715.76. A total of 21 871
variables are reported in Case I, and the computational time
needed to solve the reformulated stochastic problem using the
CPLEX solver is 432.1 s. The operational cost in Case II, where
the reliability level is set at 95%, has increased to $151564.1.
The total number of variables in Case II is found at 21 720 and
the computational time at 413.93 s. When the model with IPC
is employed in Case III with a predefined reliability level of
90%, the total operation cost is reported at $149 818.7. The total
number of variables required to solve the model with [PC in Case
IIT is found at 22 424, with a solving time reported at 489.35 s.
For the scenario-based approach in Case IV, the total operation
cost is found to be $151649.07. The number of variables used
to solve the stochastic model in Case IV is reported at 26 040,
and the time required to solve the model is reported at 951.1 s.

It can be observed from Case I and Case Il that higher « results
in a more conservative solution and a higher operational cost,
as the forecast accuracy for wind generation units and water
demand are set at a higher probability, i.e., 95%. Comparing the
proposed model with JPC in Case I and the models with IPC in
Case III, where the violation level is set at 90% in both cases,
one can conclude that the proposed framework results in a less
operational cost and lower computational time. Not only is the
computational time higher in Case III, but also the number of
variables required to solve the problem is higher. The model with
IPC applies the violation level 90% at each hour, which results
in a 10% violation at each hour, while the proposed JPC enforces
the 90% « for all time periods (i.e.,t = 1..T) and allows only 10%
of scenarios to be violated in all time periods. Comparing the
proposed framework in Case I with the scenario-based approach
in Case IV, it can be observed that modeling the uncertainty
using the scenario approach is time consuming. In summary,
employing the proposed methodology to model the uncertainties
in PaWS results in less computational complexity and reduces
the cost of operating the interconnected networks.

V. CONCLUSION

Different from the state-of-the-art models, this article pro-
posed a comprehensive day-ahead optimization framework for
the coordinated operation under uncertainty of systems in a
water-energy nexus under uncertainty. DC optimal power flow
constraints were efficiently integrated with the complete water
network constraints. The stochasticity in wind power and water
demand forecasts was captured through a stochastic formulation
with JPCs. A computationally-efficient boolean methodology
was used to reformulate and solve the stochastic problem with
JPCs. The proposed formulation was applied to a 15-node water
network connected to a modified IEEE 57-bus test system. To
further demonstrate the efficiency and scalability of the pro-
posed model on large-scale test systems, the proposed frame-
work was applied to a second case study, i.e., various water
networks, each consisting of 15 nodes, supplied by the IEEE
118-bus power test system. The simulation results revealed that
the proposed framework for cooptimization of interdependent
power and water infrastructures results in energy and cost-saving

under uncertainty compared to the traditional setting where both
networks operate independently. The simulation results showed
that the reformulation approach used in this article allows for a
computationally efficient solution of the stochastic optimization
model.

Future research may include expanding the proposed JPC
model to capture uncertainties in electrical loads in power
systems. Furthermore, practical implementation requirements
of the proposed framework considering hardware components
could be further researched. Finally, another scope of research
may investigate the operation stability and reliability of the
interlinked PaWS.
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