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Abstract—The widespread deployment of smart hetero-
geneous technologies and the growing complexity in our
modern society calls for effective coordination of the in-
terdependent lifeline networks. In particular, operation co-
ordination of electric power and water infrastructures is
urgently needed as the water system is one of the most
energy-intensive networks, an interruption in which may
quickly evolve into a dramatic societal concern. This paper
develops a novel analytic for uncertainty-aware day-ahead
operation optimization of the interconnected power and
water systems (PaWS). Joint probabilistic constraint (JPC)
programming is employed to capture the uncertainties in
wind resources and water demand forecasts. The proposed
integrated stochastic model is presented as a non-linear
non-convex optimization problem, where the non-linear hy-
draulic constraints in the water network are linearized using
piece-wise linearization technique, and the non-convexity is
efficiently tackled with a solution methodology to convert
the proposed model with JPCs to a tractable mixed-integer
linear programming (MILP) formulation that can be quickly
solved to optimality. The suggested framework is applied to
a 15-node commercial-scale water network jointly operated
with a power transmission system using a modified IEEE
57-bus test system. The numerical results demonstrate the
of the proposed stochastic framework, resulting in cost
reduction (13% on average when compared to the tradi-
tional setting) and energy saving of the integrated model
under different realizations of uncertain renewable energy
sources (RESs) and water demand scenarios. Additionally,
the scalability of the proposed model is tested on a mod-
ified IEEE 118-bus test system connected to five water
networks.

Index Terms—Interdependent networks, joint probabilis-
tic constraints (JPCs), power and water systems (PaWS),
water distribution system, water-energy nexus (WEN).
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NOMENCLATURE

Sets

b ∈ B Set of electric system buses.

g ∈ NG Set of power generating units.

k ∈ L Set of power transmission lines.

w ∈ W Set of wind turbines.

Parameters

M Arc-Node A×N incidence matrix.

C Reservoir-Node R×N incidence matrix.

K Pump-Arc P ×A incidence matrix.

G Tank-Node T × N incidence matrix.

Θ Bus-Pump B × P incidence matrix.

Pw,t Expected wind power forecast of wind farm w at

time t (MW).

Pb,t Electricity demand at bus b at time t (MW).

Pmax
db , Pmin

db Maximum/minimum PaWS electricity demand at

bus b at time t (MW).

Pmax
k Maximum flow limit of transmission line k.

Pmax
g , Pmin

g Maximum/minimum capacity limit of generating

unit g (MW).

dt Vector of water demand (m3/sec) at time t.

ĥ Reservoirs’ geographical height (m).

ˆqε(.),
ˆqp(.) Linearized flow rate for pipe ε and pump p.

V max, V min Maximum/minimum volume of water tanks.

∆Emax/min Maximum/minimum of the difference in the water

flow rate to water tanks.

hmax, hmin Maximum/minimum nodal pressure heads.

P p,max/min Maximum/minimum power consumption of wa-

ter pump p at each bus b (MW).

c0,t Fixed cost coefficients of generating unit g at time

t ($).

cg,t linear cost coefficients of generating unit g at time

t ($/MW).

cs,t Vector of reservoirs’ water price at time t.
cp,t Electricity price of pump p at time t ($/MW).

qmax/min Maximum/minimum water flow rate though the

water network.

M Water network arc-node incidence matrix.

Variables and Functions

Rs
t Vector of water inflow rate from reservoir s at

time t.
qt Water flow rate at time t.
ht Pressure heads loss for node n at time t.
Sign(.) Sign function.
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∆Et The difference in water tanks’ inflow/outflow rate

at time t.
T in
t Vector of water inflow to tanks at time t.

T out
t Vector of water outflow to tanks at time t.

Vt Volume of stored water in tanks at time t.
Wt Pumps’ speed at time t.
P p
t Power consumption for pump p at time t.

P p,wd Vector of water electricity consumption wd for

pump p at time t.
Xε

i,t Continuous decision variable for the sampling

coordinate i associated with the linearization of

pipe ε at time t.
Xp

u,m,t Continuous decision variable for the sampling

coordinatesu andm associated with the lineariza-

tion of pump p at time t.
pwt Scheduled wind power at time t.
Dl

t Scheduled water demand at time t (m3/sec).
Pg,t Output power of generating unit g at time t.
Pk,t Power flow on transmission line k at time t.
Pdb,t Total PaWS electricity demand at bus b at time t

(MW).

θ.,t Voltage angle difference between bus n and m at

time t.
Kqt Water flow rate through pump at time t.
a(.), z(.) Pump performance parameters.

Random Variables

pw,f
t Wind power forecast at time t.

Dl,f
t Water demand forecast at time t (m3/sec).

Binary Variables

Y ε
i,t Binary variable for pressure head breakpoint i of

water pipe ε at time t.
hUpper,p
u,m,t Binary variable for the upper left triangle as-

sociated with the linearization of pump p at

time t.
hLower,p
u,m,t Binary variable for the lower left triangle asso-

ciated with the linearization of pump p at time

t.

I. INTRODUCTION

P
OWER and water networks (PaWS) are among the critical

lifeline infrastructures due to their pivotal roles in back-

boning our modern society and human life. Water pumps receive

a remarkable portion of the total electricity needed to run the

water system infrastructure: Around 4% of the total electricity

usage in the USA is exhausted by electric pumps in water net-

works [1]. As the water networks undergo rapid electrification

due to the sharp increase in the national population, it calls for

improvements in PaWS energy and cost efficiency. Traditionally,

PaWS have been independently planned as decoupled systems,

while the two networks are operated interdependently in real-

world applications [2]. Power systems are in need of water

for refining fuels and generating electricity; on the other hand,

electricity is needed for the daily operation of water systems. The

interdependency in PaWS is further highlighted in the case of

limited availability of resources in either system. For instance,

if a shortage in cooling water for conventional steam power

plants is realized, the water system may not be supplied with

the needed energy to pump the water through the network; this

could, in turn, result in a cascading failure in both systems. Such

lack of coordination was experienced during the hurricane Maria

in Puerto Rico [3], where the storm damaged around 90% of the

state’s electrical system, and large areas were not supplied with

water for a long time due to the severance of the hurricane and the

lack of coordination between different interconnected sectors,

i.e., power and water operators, which resulted in a longer re-

covery time [4], [5]. This closely-intertwined ecosystem of water

and power infrastructures is commonly known as water-energy

nexus (WEN) [6].

A literature review on the role of WEN in the optimization of

water distribution system is presented in [7]. WEN is analyzed

in [8] to investigate the effect of PaWS interdependence on

different economic sectors. An approach for the optimal dispatch

of PaWS is presented in [9], considering the impacts of battery

storage facilities. The authors in reference [10] studies the im-

pacts of power and water economic dispatch on the supply side

of the WEN (e.g., hydroelectric and thermal desalination plants).

A mathematical codispatch model for the optimal network flows

in PaWS is developed in [11]. The authors in reference [12] pre-

sented a robust optimization formulation for daily hydro-thermal

operation scheduling taking only the water network constraints

into account. Energy flexibility through coordination of PaWS

is introduced in [13]. The authors in references [14]–[16] in-

troduced a methodology to assess the infrastructural and opera-

tional resilience of PaWS under critical conditions (e.g., limited

water and/or energy availability). Another scope of research in

this area focuses on the optimal demand response and regulation

markets for water distribution systems [17], [18].

The aforementioned studies did not effectively capture the

critical role of renewable energy sources (RESs), e.g., wind

power, in the operation of interconnected PaWS, taking into

account the complete model for both power and water systems.

Nevertheless, PaWS is facing growing challenges due to the

uncertainty in both networks. PaWS operators experience a

high level of uncertain RESs, and an increased level of cus-

tomer demand. Few studies have been conducted to optimize

the utilization of RESs in PaWS. A framework for utilizing

water pumps and tanks to receive the needed energy for their

operation from RESs is proposed in [19]. A cooptimization

model for PaWS considering the availability of solar energy is

suggested in [20] and [21]. Neither the RESs stochasticity nor the

uncertainty in water demand forecast has been well addressed

in the literature.

A scenario approach is used in [22] to model the variability

of water demand forecasts, while the complete set of water

network hydraulic constraints and the RES uncertainty were

neglected. Multiobjective optimization for PaWS operation un-

der the uncertainty in river inflows is introduced in [23]. A

dynamic multiobjective framework for the operation of WEN

in off-grid islands is presented in [24]. The authors in refer-

ence [25] models a multiobjective framework for planning WEN
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Fig. 1. Overview of the proposed methodology for integrated PaWS.

at regional scales. The robust operation of WEN against the

variability of wind generation units is studied in [26]. The uncer-

tainty in PaWS demand at the distribution level is studied in [27].

A two-stage distributionally robust optimization approach is

pursued in [28] to model the uncertainty of wind energy sources

in WEN, including power, gas, and water systems. However, a

complete integration of the PaWS that effectively captures the

prevailing stochasticities in both networks need to be further

researched.

Different from the conventional practice where the PaWS

operation is approached either independently or coordinated

through an iterative exchange of status information between

both networks, this article bridges the gap in the literature to

optimize the operation of interlinked water and power systems

under uncertainty. We propose a novel approach for capturing the

uncertainties in both networks (i.e., in RESs and water demand)

using a joint probabilistic constrained (JPC) formulation. In

particular, the proposed model with JPCs enables the opera-

tion of PaWS where the entire set of uncertain constraints are

enforced to be satisfied with a predefined reliability level. The

suggested stochastic formulation with JPCs appears in form

of a nonlinear nonconvex optimization model. The proposed

formulation is then linearized, convexified, and reformulated

through a boolean programming approach into an equivalent

mixed-integer linear programming (MILP) formulation to cope

with the computational complexity. The proposed reformulation

allows for a very fast solution of the stochastic optimization

model in which the random variables are represented by a

large number of scenarios. Fig. 1 illustrates a big picture of

the proposed stochastic framework for integrated operation of

the interdependent PaWS under uncertainty. Wind and water

demand forecast datasets are collected using historical data for

scenario generation. The PaWS operator then uses these data as

the input for the PaWS cooptimization engine. The stochasticity

of wind power and water demand realizations are captured

through the proposed optimization model with JPCs which is

then reformulated to a MILP model that ensures the solutions

are globally optimal.

The main contributions of this article are as follows.

1) The article proposes an uncertainty-aware mechanism for

the operation optimization of the RES-integrated PaWS.

Effectively capturing the prevailing uncertainties in RESs

and water demand, we introduce new models with JPCs

that enforce the entire set of uncertain constraints to be

satisfied with a predefined reliability level. The suggested

model provides a set of globally optimal solutions with

less conservativeness and more flexibility compared to the

classical models with individual probabilistic constraint

(IPC).

2) A boolean approach is applied to reformulate the pro-

posed stochastic models with JPCs into an equivalent

MILP formulation. The employed boolean reformulation

requires fewer newly-introduced integer variables, which

enhances the computational efficiency of the suggested

framework.

The rest of this article is organized as follows. Section II

introduces a deterministic model of the coordination framework

for PaWS operation utilizing wind units. The proposed formu-

lation with JPCs and the suggested reformulation technique are

presented in Section III. Numerical case studies and simulation

results on a modified IEEE 57-bus test system integrated with a

15-node water network are demonstrated in Section IV. Finally,

Section V concludes this article.

II. DETERMINISTIC PROBLEM FORMULATION

In this section, a deterministic formulation for the integrated

operation optimization of PaWS is presented. The compo-

nents of the water network (e.g., reservoirs, pipes, pumps, and

tanks) are mathematically modeled based on a directed graph

G = (N ,A), i.e., a set of nodes connected together by pipes

directed from one node to another; where N represents the set

of nodes with water sources s ∈ S (i.e., reservoirs or tanks) and

demand junctions l ∈ L, i.e.,N = {S ∪ L}. Pipelines ε ∈ ε and

pumps p ∈ P are reflected by set A ∈ A, i.e., A = {P ∪ ε}.

Positive and negative values for the water flow rate q defines the

direction of each arc [29].

1) Objective Function: The objective function of the proposed

optimization model is presented as follows:

min

NT
∑

t=1

NG
∑

g=1

S
∑

s=1

P
∑

p=1

(

c0,t + cg,tPg,t + cs,tR
s
t + cp,tP

p
t

)

.

(1)

The objective function aims to minimize the total operation cost

of PaWS over the entire time period NT , and on a system with

NG number of generating units, S number of reservoirs, and
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P number of water pumps. The first two terms in the objective

function are the fixed and linear costs of the power generating

units. The third term represents the cost incurred by purchasing

water from reservoirs. The last term reflects the cost of electricity

needed to operate the water pumps. The objective function of the

integrated PaWS model is subject to the following set of system

and operation constraints.

2) Water Flow Operational Constraints: Water demand is

delivered to end users from the reservoirs and tanks through

a network of pipes and pumps. The day-ahead water flow con-

straints are modeled as follows:

Rs
t − dt −M−1qt − G∆Et = 0 ∀t (2)

∆Et = T in
t − T out

t ∀t (3)

− qmax ≤ qt ≤ qmax ∀t (4)

0 ≤ Kqt ≤ qmax ∀t (5)

Rs
t ≥ 0 ∀t (6)

−Mht = rp | qt |
1.852 Sign(qt) ∀t (7)

Cht − ĥ = 0 ∀t (8)

hmin ≤ ht ≤ hmax ∀t (9)

Vt+1 = Vt +∆Et ∀t (10)

Vt = SaGht ∀t (11)

V min ≤ Vt ≤ V max ∀t (12)

∆Emin ≤ ∆Et ≤ ∆Emax ∀t (13)

P p,min ≤ P p
t ≤ P p,max ∀t (14)

KMht = W 2
t

(

a1 − a2

(

Kqt
Wt

)a3
)

∀t (15)

P p
t = W 3

t

(

z1 − z2

(

Kqt
Wt

))

∀t. (16)

Water flow balance equation is modeled in (2). The difference

between the input and output water flow of the tanks, ∆Et,

is modeled in (3). The water flow through pipes is limited

in (4), where the positive/negative value of qt indicates the

direction of the water flow rate. Water flow through pumps

is bounded in constraint (5). Constraint (6) ensures that only

positive values can be taken for water inflow rates at reservoir

nodes.

The nodal pressure head loss constraint for water pipes is

modeled in (7)–(9). The pressure head loss in water pipes is

modeled in (7) by the Hazen–Williams formula [30], where

the coefficient rp depends only on the water flow. Note,

the Hazen–Williams formula is a quantitative term used to

describe the pressure loss that occurs in water pipes due to

friction. The pressure head of the water reservoirs is fixed by

its geographical heights in (8). Constraint (9) bounds the nodal

pressure at each node in the water network to its maximum and

minimum values.

The most challenging components to model within a water

network are the tanks and pumps. Water tanks’ dynamic op-

eration constraints are modeled in (10)–(14). The water flow

balance equation for water tanks is governed by constraint (10).

The pressure head at the tank nodes, which is driven by the water

stored in the related tanks, is modeled in (11), where Sa is the

tank’s diagonal surface parameter. Constraint (12) bounds the

volume of each tank to its minimum and maximum capacities.

The difference between the charging and discharging water flow

in tanks is formulated in (13). Pump electricity consumption

is limited to its minimum and maximum capacities in (14).

The controlled increase in water pump pressure is modeled in

constraint (15). The electricity consumption for water pumps is

formulated in (16). Note, a(.) and z(.) in constraints (14) and

(15) are the pump performance parameters.

3) Linearization Technique: Constraints (1)–(16) represent

the complete hydraulic constraints for water networks, and ap-

pear in the form of nonlinear programming (NLP) constraints.

The nonlinear constraints are presented in (7), (15), and (16).

Solving an NLP model can be time-intensive and complex in

a large scale water network, which may not result in a feasi-

ble solution. In order to guarantee a feasible set of solutions

for the optimization problem, a piece-wise linearization tech-

nique [29], [31] is applied to the presented nonlinear constraints.

In so doing, water flow rate through pipes qεt and pumps qpt
are divided into several breakpoints, i.e., (q̂ε1, q̂

ε
2, . . ., q̂

ε
I ) and

(q̂p1 , q̂
p
2 , . . ., q̂

p
U ). In other words, qεt axis is divided over the range

of the function to segments using i = 1, 2, 3, . . ., I sampling

coordinates (breakpoints) q̂ε1, q̂
ε
2, . . ., q̂

ε
I . The breakpoints (q̂ε1, q̂

ε
I )

and (q̂p1 , q̂
p
U ) are set at the extremes (i.e., at the maximum and

minimum values for qεt and qpt ). Similarly, pump speed Wt is

divided into several breakpoints, i.e., (ŵ1, ŵ2, . . ., ŵM ), where

(ŵ1, ŵM ) coincide with the minimum and maximum values of

Wt. A continuous variable for each breakpoint Xε
i,t ∈ [0, 1]

is introduced to approximate the univariate function in (7).

Let Y ε
i,t be a binary variable for each pipe ε corresponding

to the ith interval (i.e., q̂εi , ˆqεi+1). Similarly, bivariate func-

tions for pump p in (15) and (16) are approximated using

the triangle technique of the piece-wise linearization. Contin-

uous variable Xp
u,m,t ∈ [0, 1] for each (u,m) is introduced.

The binary variables are accordingly associated with the up-

per triangle hUpper,p
u,m,t (u = 1, .., U ;m = 2, ..,M) and the lower

triangle hLower,p
u,m,t (u = 2, .., U ;m = 1, ..,M − 1). The nonlinear

constraints (7), (15), and (16) are substituted by the following

linear constraints:

I−1
∑

i=1

Y ε
i,t = 1 ∀ε, ∀t (17)

Xε
i,t ≤ Y ε

i−1,t + Y ε
i,t ∀i = 2, . . ., I − 1, ∀ε, ∀t (18)

I
∑

i=1

Xε
i,t = 1 ∀ε, ∀t (19)

Xε
I,t ≤ Y ε

I−1,t ∀ε, ∀t (20)

Xε
1,t ≤ Y ε

1,t ∀ε, ∀t (21)
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qεt =

I
∑

i=1

Xε
i,tq̂

ε
i ∀ε, ∀t (22)

∆hε
t =

I
∑

i=1

Xε
i,t∆hε

t(q̂
ε
i ) ∀ε, ∀t (23)

U
∑

u=1

M
∑

m=1

Xp
u,m,t = 1 ∀p, ∀t (24)

U
∑

u=1

M
∑

m=1

(hUpper,p
u,m,t + hLower,p

u,m,t ) = 1 ∀p,∀t (25)

Xp
u,m,t ≤ hUpper,p

u,m−1,t + hUpper,p
u+1,m,t + hUpper,p

u,m,t

+ hLower,p
u−1,m,t + hLower,p

u,m+1,t + hLower,p
u,m,t ∀u, ∀m, ∀p, ∀t (26)

qpt =

U
∑

u=1

M
∑

m=1

Xp
u,m,tq̂

p
u ∀p, ∀t (27)

Wt =

U
∑

u=1

M
∑

m=1

Xp
u,m,tŵ

p
m ∀p, ∀t (28)

∆hp
t =

U
∑

u=1

M
∑

m=1

∆hp
t (q̂

p
u, ŵ

p
m)Xp

u,m,t ∀p, ∀t (29)

P p
t =

U
∑

u=1

M
∑

m=1

P p
t (q̂

p
u, ŵ

p
m)Xp

u,m,t ∀p,∀t. (30)

The pressure head difference in water pipes hε
t (i.e., ∆hε

t =
hε
n,t − hε

n+1,t) in (7) is approximated by constraints (17)–(23).

Constraint (17) enforces only one binary variable Y ε
i,t to take

a nonzero value. Constraints (18)–(21) imply that only values

other than zero are chosen for a pair of consecutive positive con-

tinuous variables Xε
i,t and Xε

i+1,t. Constraint (22) can uniquely

represent any given point for the water flow rate through pipes

qεt , as it is the linear combination of two successive breakpoints

weighted by the associated variables Xε
i,t. Constraint (23) en-

sures that the pressure difference for each pipe ∆hε
t is properly

chosen for the accurate computation of the approximated values.

Water flow through pumps, pressure head difference, and

the electricity consumption by water pumps in (15) and (16)

are approximated by constraints (24)–(30). The weights of the

convex combination for the selected triangle is introduced in

(24). Constraint (25) ensures that only one triangle is used

for the convex combination. Constraint (26) enforces that only

nonzero values of Xp
u,m,t can be associated with the three

vertices of the triangle. Constraints (27) and (28) represent the

linear combinations of any values for qpt and Wt, weighted

by the continuous variables Xp
u,m,t, respectively. The bivariate

nonlinear functions for the increase in pressure difference in each

water pump ∆hp
t (i.e., ∆hp

t = hp
n+1,t − hp

n,t) and the power

consumption of pumps P p
t are approximated in (29) and (30),

respectively.

4) PaWS Integration Constraints: Power system’s DC optimal

power flow mechanism is integrated with the water network

through the following constraints:

P p,wd
t =

P
∑

p=1

ΘP p
t ∀t

(31)

Pdb,t = Pb,t + P p,wd
t ∀b, ∀t

(32)

Pmin
db ≤ Pdb,t ≤ Pmax

db ∀b, ∀t
(33)

Pk,t =
θn,t − θm,t

xk
∀k,∀t

(34)

− Pmax
k ≤ Pk,t ≤ Pmax

k ∀k,∀t
(35)

Pmin
g ≤ Pg,t ≤ Pmax

g ∀g, ∀t

(36)

∑

g∈NG

Pg,t +
∑

w∈W

Pw,t −
∑

k∈ L

Pk,t =
∑

d∈Di

Pdb,t ∀t.

(37)

The incidence matrix Θ is introduced in constraint (31) to map

the dimension of P p
t to the power system buses. Constraint

(32) sums the total electricity demand for power and water

networks together. Electricity consumption at each load point

is bounded in (33). Constraint (34) sets the power flow in each

transmission line. The power flow in each transmission line

is bounded to the minimum and maximum capacity limits in

(35), where the positive/negative value of Pk,t indicates the

direction of the power flow on transmission lines. The output

power of the system generating units is limited to the minimum

and maximum capacity limits in (36). System power balance

constraint is enforced in (37).

The complete deterministic problem formulation (DPF) in

the form of an MILP optimization model is presented in the

following, which considers the integrated operation of power

and water networks utilizing wind resources:

DPF : min (1)

subject to (2)− (6), (8)− (14), (17)− (37).

III. PROPOSED PROBLEM FORMULATION WITH JPCS

The deterministic MILP model ignores the uncertainties in

wind energy as well as water demand forecasts; i.e., it assumes

a perfect knowledge of the forecasted wind power and water

demand, which results in suboptimal solutions. A JPC problem

formulation is suggested that can effectively capture such un-

certainties in both networks.

A. JPC Formulation

The proposed problem formulation with JPCs, i.e., joint prob-

abilistic constrained problem formulation (JPC-PF), is presented
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in the following:

JPC−PF : min (1)

subject to (3)− (6), (8)− (14), (17)− (36)

Rs
t −Dl

t −M−1qt − G∆Et=0 ∀t (38)

∑

g∈NG

Pg,t +
∑

w∈W

pwt −
∑

k∈L

Pk,t=
∑

d∈Di

Pdb,t ∀b, ∀t

(39)

P

⎛

⎝

pwt ≤ pw,f
t , ∀w, ∀t

Dl
t ≤ Dl,f

t , ∀l, ∀t

⎞

⎠≥ κ (40)

where (38) and (39) represent the water flow balance and nodal

power balance constraints, respectively, considering the stochas-

ticity of wind power pwt and water demand realizations Dl
t. The

JPC (40) enforces wind power and water demand realizations

to be always equal to or less than the forecasted values with a

predefined reliability level κ. Note that each random variable is

associated with a discrete probability distribution at each time

interval. The notation κ is set by the PaWS operators based on

the preferred and allowable violation level in the system. That is,

the higher the desired reliability level is, the more conservative

the solution is and thus the lower the number of the violated

scenarios will be. Note that the random variables are not present

in the objective function, as we do not intend to minimize wind

power or water demand.

B. Solution Methodology: A Boolean Approach

In this section, boolean reformulation method is suggested to

solve the introduced model with JPCs. The boolean reformu-

lation method [32]–[34] effectively tackles the computational

challenges of solving the stochastic problem with JPCs. The

boolean approach constructs a set of recombinations, binariza-

tion, and reformulation. The boolean framework is succinctly

described in Fig. 2, which can operate in three successive stages:

1) initialization; 2) κ-sufficiency; 3) binarization process. In

the initialization stage, all possible realizations of the random

variables are defined and the cumulative distribution function

of each realization is obtained. Next, in the κ-sufficiency pro-

cess, the sufficient/insufficient cut points associated with κ are

obtained. Eventually, in the binarization process, the binary

variable vectors of β are defined based on the realization of

random variables and the value of cut points obtained in the

previous step. The newly introduced binary variables will then

be used in the reformulation equations.

Note thatF denotes the cumulative distribution function of the

random variable ξ. The set Ω, describing the set of all possible

realizations ωk of the random variable ξ with dimension J , is

divided into two decoupled sets of κ-sufficient, i.e., Ω+, and

κ-insufficient, i.e., Ω−, such that any recombination k belongs

to either Ω+ or Ω−. It should be noted that Ω+ ∩ Ω− = ∅. The

notation βij reflects the ith binary associated with each element

ξj . cij denotes the ith component of ξj . Moreover, g(k) gets

the value 1 if the realization k belongs to κ-sufficient, i.e.,

Ω+, and gets 0, otherwise. Notation Ce reflects the sufficient

Fig. 2. Overall implementation procedure of the boolean algorithm.

equivalent set of cut points where it accepts any k-sufficient

realization on any component j. In summary, the probability

distributions represent the feasibility of the JPCs with partially

defined boolean functions (pdBf) and the binary images of the

recombinations allow for modeling the feasible area of (40) with

a pdBf from which, a system of mixed-integer inequalities can

be extracted to represent exactly the feasible region of the JPCs.

All random variables considered here have a discrete distribution

function, which is one of the advantages of using the boolean

reformulation approach. In other words, the applied boolean

approach does not require a continuous probability distribution

function for the forecasted random variables. Instead, the ran-

dom variables can be represented with a discrete distribution

function. Any random values can be defined in a specified range

of forecasts for both water demand and wind generation. The
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proposed JPC-PF is here reformulated to an equivalent MILP

model. The solution of the proposed reformulation concurrently

allows for: 1) the generation of minimal conditions for the JPCs

(40) to hold; 2) the reformulation and exact solution of the for-

mulated stochastic problem. The proposed MILP reformulation

of the original problem JPC-PF is illustrated as follows:

REF− JPC : min (1)

s.t. (3)− (6), (8)− (14), (17)− (36), (38)− (39)

pwt ≥
nt
∑

j=1

cjtujt ∀w,∀t (41)

Dl
t ≥

nt
∑

j=1

c′jtu
′
jt ∀l, ∀t (42)

∑

t∈T

nt
∑

j=1

βk
jtujt ≤ |T | − 1 ∀k ∈ Ω̄−

B (43)

∑

t∈T

nt
∑

j=1

β′k′

jt u
′
jt ≤ |T | − 1 ∀k′ ∈ Ω̄′−

B (44)

nt
∑

j=1

ujt = 1 ∀t (45)

nt
∑

j=1

u′
jt = 1 ∀t (46)

ujt, u
′
jt ∈ {0, 1} ∀j = 1, . . ., nt, ∀t. (47)

Constraints (41)–(47) represent the mixed-integer linear equiv-

alent reformulation of constraint (40) where the uncertainty of

wind generation units and water demand are taken into account

using JPCs formulation. Constraints (41) and (42) represent the

realization of wind generation units pwt and water demand Dl
t

at each time period t based on the cut points found in the refor-

mulation process, i.e., cjt and c′jt, as well as newly introduced

binary variables, i.e.,ujt and u′
jt used in the reformulation. The

binarization equations are represented in constraints (43) and

(44). Constraints (45), (46), and (47) ensure only one binary

variable associated with wind generation units ujt and water

demand u′
jt get a nonzero value. The notation |T | refers to the

cardinality of the set T , pwt and Dl
t are |T |-dimensional random

vectors ξ and ξ′; Ω and Ω′ are, respectively, the sets of possible

realizations k ∈ Ω and k′ ∈ Ω′ of the |T |-dimensional random

vector ξ and ξ′ with cumulative distribution function F and F ′,

respectively. The notation βjt and β′
jt refer to the jth binary

attribute associated with component ξt and ξ′t, respectively. Also,

cjt and c′jt denote the jth cut point associated with component ξt
and ξ′t, respectively. Note that ujt and u′

jt are decision variables

corresponding to βjt and β′
jt, recpectively.

IV. NUMERICAL RESULTS

A. System Descriptions, Data, and Assumptions

The proposed formulation for the integrated operation opti-

mization of PaWS considering the uncertainties in wind and

water demand forecasts is implemented on a modified IEEE 57-

bus test system connected to a water network. The water network

consists of 15 nodes and is connected to a load point in power

grid [13]. The water system includes one reservoir, 11 pipelines,

three pumps, and two tanks. Water demand junctions are located

at nodes 3, 11, and 15 of the water network. Tanks are set to be

empty at the initial time. To further demonstrate the efficiency

and scalability of the proposed model, the proposed framework

is applied to a larger-scale network with additional number of

water networks, i.e., five water networks, each consisting of

15 nodes supplied by the IEEE 118-bus power test system. All

data for the studied PaWS and the schematic diagram of both

systems are provided in an electronic appendix available in [35].

All simulations are performed in a mathematical programming

language (AMPL) environment [36] and MATLAB, using a PC

with an Intel Xeon E5-2620 v2 processor, 16 GB of memory,

and a 64-b operating system. CPLEX solver is used to simulate

and solve the reformulated MILP model.

B. IEEE 57-Bus Test System Connected to a
Water Network

1) Case Studies and Results: In order to illustrate the per-

formance of the proposed optimization model, the following

four different cases are studied.

1) Case I represents the traditional setting for the opera-

tion of PaWS (benchmark scenario), where PaWS are

operated independently. In this case, the water system

operator’s goal is to minimize the purchase cost of water

in the network.

2) Case II illustrates the performance of the proposed in-

tegrated PaWS operation under the variability of water

demand only.

3) Case III represents the optimization model of PaWS

considering the uncertainty in wind generation units only.

4) Case IV demonstrates the cooptimized operation of PaWS

capturing the prevailing uncertainties in both networks,

i.e., wind power and water demand forecasts, modeled

with the proposed formulation with JPCs and solved with

the boolean technique suggested in Section III. A wind

farm with a total installed capacity of 250 MW is located

at node 38 of the power network.

A summary of the scheduled day-ahead optimization results in

all cases are tabulated in Table I. In Case I, the total operation cost

is reported to be $55 165.8 with a total of 31 506.9 m3/h water

purchased from the reservoir. The total electricity required to

pump the water through the network is found to be 173.37 MW.

The operation cost of the proposed integrated model for PaWS

is reduced in Case II to $47 497.1 with a total of 109.30 MW

energy consumed by water network and 30 920.62 m3/h of

purchased water over 24 h. The operational cost for Case III,

where only wind uncertainty is taken into account, is reported at

$47084.71 with a total of 111.89 MW energy consumed by water

pumps. The reservoir in Case III supplies the water network with

31 506.51m3/h of water. Case IV results in a total operation cost

of$47 608.93 when the proposed uncertainty modeling approach

is applied. The amount of water purchased from the reservoir
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TABLE I
SUMMARY OF THE OPTIMIZATION RESULTS FOR THE DAY-AHEAD OPERATION SCHEDULES IN PAWS: IEEE 57-BUS TEST SYSTEM

Fig. 3. Pump electricity consumption in different test cases: IEEE
57-bus test system.

in Case IV is found 30 919.87 m3/h and the total electricity

consumed by the water network is obtained in this case equal to

108.33 MW. The operation cost in Case IV, when the proposed

stochastic formulation with JPCs is applied, is lower than that in

Case I (benchmark scenario). Wind supplies 13.8% of the total

electricity demand in Case IV and 13.87% in Case III, compared

to 15.3% in Cases I and II. This is because the wind forecast

at each time period is assumed with one mean-value scenario

in Cases I and II, while a total number of 1000 scenarios are

considered for wind forecast at each time period (a total of 24 000

scenarios for 24 time periods) in Cases III and IV. As expected,

one can observe that the stochastic approach results in more

accurate solutions as it captures different scenarios. Moreover,

while the purchased water is observed almost the same in all

studied test cases, the pump usage in the water network is more

efficient in Case IV compared to the traditional approach in Case

I. To further clarify, the scheduled electricity demand for water

pumps in all cases is illustrated in Fig. 3; one can notice that

during off-peak hours, water pumps in Case I consume higher

amount of energy compared to the proposed Cases II-IV. The

scheduled flow rates for storage tanks in all cases is presented in

Fig. 4, where it can be seen that the utilization of water tanks is

optimal in Case IV, when the operation of the water network is

cooptimized with that of the power network, taking into account

the uncertainties in both systems. In Fig. 4, water tanks are

charged during off-peak hours (positive value) and discharge

to supply the water demand (negative value) during peak hours

in order to save the energy consumption by electric pumps.

In summary, the critical components of the water systems,

i.e., pumps and tanks, are employed more efficiently when the

proposed approach in Case IV is implemented.

Fig. 4. Total flow rate schedules for water tanks: IEEE 57-bus test
system.

2) Computational Efficiency: In the proposed model, the ran-

dom variables ξt and ξ′t refer to the real wind power and

water demand forecasts (pw,f
t , Dl,f

t ), respectively. Each random

variable is associated with one single time period; hence, ξ is

a random vector with a 24 × 1 dimension. A total number of

24 000 scenarios (1,000 per hour) for the wind power forecast

and 24 000 scenarios (1,000 per hour) for the water demand

forecast during the entire 24-h scheduling horizon are generated

and the confidence level, κ, is set at 90%. The κ is set to be

90% as it gives the operators pretty good flexibility in allowing

for violating scenarios. The higher the κ, e.g., greater than

90%, results in a more conservative solution and may not be

practical. The lower the κ, on the other hand, results in a less

accurate result, while the flexibility can be higher. Thus, 90%

is a good tradeoff for system operators to accommodate the

violated scenarios in the PaWS. Fig. 5(a) and (b), respectively,

demonstrate the upper and lower bounds for the forecasted

values of the uncertainty sources in PaWS where the scheduled

wind power and water demand are marked with a solid line.

One can see that the realizations of wind and water obtained

by the optimization process are always within the range of the

forecasts at each time slot. The computational time needed to

solve the reformulated stochastic problem using the CPLEX

solver is 208.8 s in Case IV, while it is reported at 173.23 s and

109.60 s in Cases II and III, respectively. One can notice that

while the total number of scenarios to capture both wind power

and water demand forecast uncertainties in Case IV is 48 000

(i.e., 24 000 each), the total number of new binary variables

for problem reformulation is 96 in which 90 combinations are

κ-insufficient and 6 combinations are κ-sufficient. Note that

the total number of variables in Case IV, when uncertainties

in both networks are taken into account, is 16 097 throughout

the optimization process. Therefore, the boolean reformulation

technique suggested to solve the proposed JPCs permits a very
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Fig. 5. Forecasted and scheduled wind power and water demand:
IEEE 57-bus test system.

fast solution of the stochastic optimization model in which the

random variables are represented by an unprecedentedly large

number of scenarios with discrete distribution functions.

C. IEEE 118-Bus Test System Supplying Multiple Water
Networks

1) Case Studies and Results: The proposed formulation is

applied to a larger-scale test system to further study its efficiency

and scalability. A modified IEEE 118-bus power test system

connected to three water networks is used in this study. Each

water network consists of 15 nodes (i.e., a total of 45 nodes)

connected to the power system at buses 39, 74, and 102. There

are three wind generation units located at buses 8, 33, and 75.

The enforced reliability level κ is set at 90%.

The operation cost of the proposed interlinked model of PaWS

is reported at $107 968.58. The total electricity required to

pump the water through the three water networks is found to

be 344.63 MW, with a total of 92 753.75 m3/h water purchased

from the reservoirs. To further illustrate the performance on a

large-scale system, the scheduled electricity demand for water

pumps as well as the hourly purchased water from reservoirs in

all three water networks are illustrated in Fig. 6. Water tanks’

performance in all three water networks are demonstrated in

Fig. 7. The computational time required to solve the reformu-

lated model is found at 316.41 s. In summary, the operational

results of the proposed PaWS under the presence of stochasticity

in both networks reveal that the proposed framework is scalable

Fig. 6. Total pump electricity consumption and purchased water in all
three networks: IEEE 118-bus test system.

Fig. 7. Total flow rate schedules for water tanks in all three water
networks: IEEE 118-bus test system.

TABLE II
PAWS PERFORMANCE ANALYSIS UNDER DIFFERENT CASE STUDIES: IEEE

118-BUS TEST SYSTEM

and computationally efficient when applied to a large-scale

PaWS system.

2) Performance Comparison With the State-of-the-Art: In

order to demonstrate the performance of the proposed frame-

work compared to other techniques used in the literature, four

different cases are investigated in this section using a modified

IEEE 118-bus test system connected to five water networks. The

water networks are connected to the power system at buses 1,

27, 39, 74, and 102; three wind generation units are located in

buses 8, 33, and 75 (see electronic appendix [35]). Case I models

the stochasticity of wind units and water demand in PaWS

using the proposed model with JPC with a predefined reliability

level κ at 90%. Case II studies the stochasticity in PaWS using

the proposed model with JPC with a higher reliability level,

i.e., κ at 95%. Case III models the stochasticity of wind units

and water demand in PaWS using IPCs, which enforce the

probability function in (40), defined in the manuscript, to be

satisfied individually and at each time period, with a predefined

reliability level κ set to 90%. Case IV employs a traditional

scenario approach for tackling the variability of wind units and

water demand.

Table II demonstrates the performance of the day-ahead oper-

ation optimization model for PaWS in different case studies. In
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Case I, whereκ is set at 90% using the proposed model with JPC,

the operational cost is found at $135 715.76. A total of 21 871

variables are reported in Case I, and the computational time

needed to solve the reformulated stochastic problem using the

CPLEX solver is 432.1 s. The operational cost in Case II, where

the reliability level is set at 95%, has increased to $151564.1.

The total number of variables in Case II is found at 21 720 and

the computational time at 413.93 s. When the model with IPC

is employed in Case III with a predefined reliability level of

90%, the total operation cost is reported at $149 818.7. The total

number of variables required to solve the model with IPC in Case

III is found at 22 424, with a solving time reported at 489.35 s.

For the scenario-based approach in Case IV, the total operation

cost is found to be $151649.07. The number of variables used

to solve the stochastic model in Case IV is reported at 26 040,

and the time required to solve the model is reported at 951.1 s.

It can be observed from Case I and Case II that higherκ results

in a more conservative solution and a higher operational cost,

as the forecast accuracy for wind generation units and water

demand are set at a higher probability, i.e., 95%. Comparing the

proposed model with JPC in Case I and the models with IPC in

Case III, where the violation level is set at 90% in both cases,

one can conclude that the proposed framework results in a less

operational cost and lower computational time. Not only is the

computational time higher in Case III, but also the number of

variables required to solve the problem is higher. The model with

IPC applies the violation level 90% at each hour, which results

in a 10% violation at each hour, while the proposed JPC enforces

the 90%κ for all time periods (i.e., t= 1..T) and allows only 10%

of scenarios to be violated in all time periods. Comparing the

proposed framework in Case I with the scenario-based approach

in Case IV, it can be observed that modeling the uncertainty

using the scenario approach is time consuming. In summary,

employing the proposed methodology to model the uncertainties

in PaWS results in less computational complexity and reduces

the cost of operating the interconnected networks.

V. CONCLUSION

Different from the state-of-the-art models, this article pro-

posed a comprehensive day-ahead optimization framework for

the coordinated operation under uncertainty of systems in a

water-energy nexus under uncertainty. DC optimal power flow

constraints were efficiently integrated with the complete water

network constraints. The stochasticity in wind power and water

demand forecasts was captured through a stochastic formulation

with JPCs. A computationally-efficient boolean methodology

was used to reformulate and solve the stochastic problem with

JPCs. The proposed formulation was applied to a 15-node water

network connected to a modified IEEE 57-bus test system. To

further demonstrate the efficiency and scalability of the pro-

posed model on large-scale test systems, the proposed frame-

work was applied to a second case study, i.e., various water

networks, each consisting of 15 nodes, supplied by the IEEE

118-bus power test system. The simulation results revealed that

the proposed framework for cooptimization of interdependent

power and water infrastructures results in energy and cost-saving

under uncertainty compared to the traditional setting where both

networks operate independently. The simulation results showed

that the reformulation approach used in this article allows for a

computationally efficient solution of the stochastic optimization

model.

Future research may include expanding the proposed JPC

model to capture uncertainties in electrical loads in power

systems. Furthermore, practical implementation requirements

of the proposed framework considering hardware components

could be further researched. Finally, another scope of research

may investigate the operation stability and reliability of the

interlinked PaWS.
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