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The well-known secretary problem in sequential analysis and optimal stopping theory 
asks one to maximize the probability of finding the optimal candidate in a sequentially 
examined list under the constraint that accept/reject decisions are made in real-time. The 
problem has received significant interest in the mathematics community and is related to 
practical questions arising in online search, data streaming, daily purchase modeling and 
multi-arm bandit mechanisms. A version of the problem is the so-called postdoc problem,
for which the question of interest is to devise a strategy that identifies the second-best 
candidate with highest possible probability of success.
We study the postdoc problem in its combinatorial form. In this setting, a permutation π of 
length N is sampled according to some distribution over the symmetric group SN and the 
elements of π are revealed one-by-one from left to right so that at each step, one can only 
determine the relative orders of the elements revealed so far. At each step, one must decide 
to either accept or reject the currently presented element and cannot recall the decision 
in the future. The question of interest is to find the optimal strategy for selecting the 
position of the second-largest value. We solve the postdoc problem for the untraditional 
setting where the candidates are not presented uniformly at random but rather according 
to permutations drawn from the Mallows distribution. The Mallows distribution assigns to 
each permutation π ∈ SN a weight θ c(π), where the function c represents the Kendall τ
distance between π and the identity permutation (i.e., the number of inversions in π ). 
To identify the optimal stopping criteria for the significantly more challenging postdoc 
problem, we adopt a combinatorial methodology that includes new proof techniques and 
novel methodological extensions compared to the analysis first introduced in the setting of 
the secretary problem. The optimal strategies depend on the parameter θ of the Mallows 
distribution and can be determined exactly by solving well-defined recurrence relations.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The secretary problem was introduced by Cayley, but the first formal description was given by Gardner [10,11] in 1960. 
In its most well-known form, the question reads as follows: N individuals can be ranked from best to worst according to 
their qualifications, without ties. They apply for a “secretary” position, and are interviewed one by one, in random order. 
When the ith candidate appears, we can only compare or rank her/him relative to the i − 1 previously seen individuals. At 
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the time of the ith interview, we can hire the person presented or continue with the interview process by rejecting the 
current candidate. Once a rejection is made, the decision cannot be recalled. We must select one of the N individuals. What 
selection strategy (i.e., stopping rule) maximizes the probability of selecting the best (highest ranked) candidate?

The first published solution was given by Lindley [15] using direct algebraic methods while Dynkin [7] considered the 
process as a Markov chain and solved the problem in a different way. The solution turns out to be surprisingly elegant and 
simple: reject the first N/e candidates, where e is the base of the natural logarithm, and then select the first candidate that 
outranks all previously seen candidates.1 This strategy ensures a probability of successfully identifying the best candidate 
with probability 1/e, when N → ∞.

Both the problem formulation and solution have several practical drawbacks. If the selection policy that rejects more 
than 1/3 of the candidate without regards to their qualifications is publicly known, it is hard to incentivize candidates to 
appear for the interview. Furthermore, the actual number of candidates appearing for an interview is usually random, with 
an unknown distribution. The candidates may also be presented to the evaluator in a nonuniform order (e.g. Jones [13]) and 
multiple selections or queries may be allowed (e.g. Liu, Milenkovic, and Moustakides [16]).

Despite these issues, the secretary problem has attracted significant interest in the theoretical computer science and ma-
chine learning community, as modifications of the problem allow for more realistic interview settings (e.g. Szajowski [20]). 
The prophet problem, closely related to the secretary problem but involving probabilistic models has received significant 
attention as illustrated in the work by Esfandiari, Hajiaghayi, Liaghat, and Monemizadeh [8] and Rubinstein [19] (and see 
references therein as well). The classical paper of Kleinberg [14] introduced a variation of the original problem in which 
the algorithm is allowed to choose a fixed-sized subset of candidates, and the goal is to maximize their sum (provided that 
the best candidates have the highest values). The work also tied this problem to online auction analysis. The interested 
reader is also referred to the work by Babaioff, Immorlica, Kempe, and Kleinberg [1]. A stochastic version of the secretary 
problem with payoff values was introduced by Bearden [4] and used to model how traders make their selling decisions. 
The more recent work of Zhao, Hu, Rahimi, and King [22] demonstrated that the Groupon data describing the behavior of 
users in daily deal websites can be formulated in terms of the secretary problem. The work of Jones [12,13], Fowlkes and 
Jones [9], and Crews, Jones, Myers, Taalman, Urbanski, and Wilson [6] departed from the standard assumption that can-
didates are interviewed uniformly at random and proposed using the Mallows model [17] instead. This modeling strategy 
is of significant practical interest as candidates are usually not interviewed blindly but based on prior reviews of their re-
sumes, side-information provided by other institutions or other evaluation approaches. The readers are referred to the paper 
of Busa-Fekete, Fotakis, Szörényi, and Zampetakis [5] (and the references therein) for more details regarding the Mallows 
model and its extensions. Note that the work of Busa-Fekete, Fotakis, Szörényi, and Zampetakis [5] introduces the Mal-
lows Block Model, a general modeling framework that may be viewed as an “interpolation” of the single parameter Mallows 
Model and the m parameter Mallows model. The block model is used to determine tight bounds on the sample complexity 
for learning the Mallows and Generalized Mallows distributions, for any number of blocks.

Another extension of the secretary problem is in terms of identifying the ath-best candidate, where a ≥ 2. The case 
a = 2, for which the goal is to identify the second-best candidate, is known as the postdoc problem, and appears to have 
been introduced by Dynkin in the 1980s and was further studied by Bayón, Ayuso, Grau, Oller-Marcén, and Ruiz [2,3]. A 
rationale for choosing to find and hire the second best candidate is that the best candidate may be interviewed for multiple 
jobs and may not accept the given offer. An optimal selection strategy similar to the one derived for the secretary problem 
was first proposed by Rose [18] and independently analyzed by Vanderbei [21] using Hamilton-Jacobi-Bellman equations. 
An optimal strategy involves an exploration stage after which the first left-to-right second-best candidate (i.e., second-best 
ranked when comparing with all appeared candidates) is selected for an offer. This strategy succeeds in finding the second-
best candidate with probability 1/4, given that N → ∞.

Here, we present the first study of the postdoc problem in the (exponential) Mallows model, parametrized by θ > 0.

Theorem 1.1. When θ > 1 and N → ∞, the optimal strategy is to reject the first j = k(θ) candidates, where k(θ) is a function of θ
that does not depend on N, and then select the next left-to-right second-best candidate thereafter.

Remark 1.2. This coincides with the optimal strategy derived in Vanderbei [21] for which θ = 1 and rankings are drawn 
uniformly at random. For a detailed analysis of the strategy and the precise parameter values, the readers are referred to 
Section 3.3 Case 1 and Section 4.1. We revisit this theorem in Section 4.1, in which it is referred to as Theorem 4.11.

Theorem 1.3. When 0 < θ < 1
2 , the optimal strategy for N → ∞ is to reject all but the last two candidates and then accept the next 

left-to-right best candidate; if no selection is made before the last position then one has to accept the candidate at the last position.

Remark 1.4. For a detailed analysis of the strategy and the precise parameter values, the readers are referred to Section 3.3
Case 3.1 and Section 4.2. We revisit this theorem in Section 4.2 where it is referred to as Theorem 4.17. The case when 
θ = 1

2 is analyzed in Remark 3.8 and Section 3.3 Case 3.2.

1 The initial rejection stage is referred to the exploration stage of stage of the process.
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The most interesting optimal strategies arise for 1/2 < θ < 1.

Theorem 1.5. For 1/2 < θ < 1, under certain constraints to be made formal in the subsequent exposition, the optimal strategy is to 
reject the first k1(θ) candidates and then accept the next left-to-right maximum, or reject the first k2(θ) ≥ k1(θ) candidates and then 
accept the next left-to-right second-maximum, whichever comes first.

Remark 1.6. For a detailed analysis of the strategy and the precise parameter values, the readers are referred to Section 3.3
Case 3.3 and Section 4.3.

The maximum probabilities of winning using the optimal strategy for θ > 0 are presented in Table 2 and Fig. 7 at the end 
of Section 4. Fig. 7 shows that the maximum probability of winning reaches its minimum for θ = 1 (the probability equals 
0.25) and it converges to 1 as θ → 0 or θ → ∞. This is because of the fact that when θ → 0, the permutation [12 · · · N] has 
the largest probability to be observed and we know that in this case we need to select the second to the last candidate; 
furthermore, when θ → ∞, the permutation [N N − 1 · · · 1] has the largest probability to be observed and we hence need to 
select the second candidate.

Although some of our proofs build upon the techniques described in Jones [13], most of the results require new com-
binatorial ideas and strategies that are significantly more complicated than their secretary problem counterparts. Moreover, 
our result implies as a special case a combinatorial proof of the classical postdoc problem (θ = 1) which differs from the 
one presented in Rose [18] and Vanderbei [21].

The paper is organized as follows. Section 2 introduces the relevant concepts, terminology and models used throughout 
the paper. This section also contains a number of technical lemmas that help in establishing our main results pertaining 
to the optimal selection strategies described in Section 3. An in-depth analysis of the exploration phase length and the 
probability of success for the postdoc selection process under the Mallows distribution is presented in Section 4. Simulation 
results for exploration phase lengths versus θ , the parameter of the Mallows distribution, are listed at the end of Section 4.

2. Preliminaries

We assume that the sample space is the set of all permutations of N elements, i.e. the symmetric group S N ; the under-
lying σ -algebra equals the power set of SN . The best candidate is indexed by N , the second-best candidate by N − 1, . . .
while the worst candidate is indexed by 1. We use both the term postdoc and second-best candidate to refer to the element 
indexed by N −1. It is assumed that the committee can accurately compare the candidates presented, but not the candidates 
unseen at the given point of the decision making process.

Unlike standard approaches for the postdoc problem, we assume that the candidates are presented according to a permu-
tation (order) dictated by the Mallows distribution Mθ , parametrized by a real number θ > 0. The probability of presenting 
a permutation π ∈ SN to the postdoc hiring committee equals

f (π) = θ c(π)∑
π∈S N

θ c(π)
,

where c : SN →N is a permutation statistic equal to the smallest number of adjacent transpositions needed to transform π
into the identity permutation [12 . . . N] (or equivalently, equal to the number of pairwise element inversions). This inversion 
count is known under the name Kendall distance between the permutation π and the identity permutation [12 . . . N]).2
Note that the notation for a permutation in square bracket form should not be confused with the notation for a set [a, b] =
{a,a + 1, . . . ,b}, b ≥ a, and the meaning will be clear from the context.

For a given permutation π ∈ SN drawn according to the Mallows model, we say that a strategy wins the game if it cor-
rectly identifies the second-best candidate when presented with π . The next definitions are based on the work of Jones [13].

Definition 2.1. Given a π ∈ SN , the k(th) prefix of π , denoted by π |k , is a permutation in Sk that represents the relabeling
of the first k elements of π according to their relative order, from smallest to largest. A proper prefix of π is a prefix of π
with length < |π |. For example, for π = [165243] ∈ S6 and k = 4, we have π |4 = [1432].

Definition 2.2. A strike set is a list of prefixes of possibly different lengths that immediately trigger an acceptance decision 
for the last candidate observed. In other words, a strike set A ⊂ ∪N

i=1 Si corresponds to a collection of permutations B ⊂ SN

such that for each σ ∈ A with |σ | = k we include in B all permutations τ such that the k(th) prefix of τ equals σ ; when 
the permutation τ ∈ SN is presented, we choose to accept the k(th) position of τ since we see σ when there are exactly 
k candidates that have already been observed. Note that any strategy can be represented by a strike set. During the game, 

2 The Kendall distance is more frequently referred to as the Kendall τ distance. Since we make frequent use of the symbol τ to denote permutations and 
their prefixes we use the name Kendall instead of Kendall τ .
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if the prefix we have seen so far is not in the strike set which describes the winning strategy, then we reject the current 
candidate and continue.

Definition 2.3. Let σ ∈ ∪N
i=1 Si and assume that the length of the permutation equals |σ | = k. We say that a π ∈ S N is 

σ -prefixed if π |k = σ . For example, π = [165243] ∈ S6 is σ = [1432]-prefixed. Given that π is σ -prefixed, we say that π is 
σ -winnable if accepting the prefix σ , i.e. if accepting the |σ |th candidate when σ is encountered identifies the second-best 
candidate (i.e., wins the game) with interview ordering π . More precisely, for σ = [σ1σ2 . . . σk], we have that π is σ -winnable 
if π is σ -prefixed and πk = N − 1.

Strike sets are key to determining the optimal strategy and the largest possible probability of winning the game, as 
described in Theorem 2.13. Two other important concepts in our analysis are three conditional probabilities of winning 
the game based on the type of prefix encountered, defined below, and the notion of a prefix equivariant statistic (which 
includes the Kendall statistic).

Definition 2.4. We say a prefix σ is eligible if either a) it ends in a left-to-right maxima (Type I); or b) it ends in a left-to-
right second maxima (Type II) or c) it has length N .

Definition 2.5. A strike set is valid if it

1) Consists of prefixes that are eligible, and
2) It has no pair of elements such that one contains the other as prefix (i.e., the strike set is minimal), and
3) Every permutation π ∈ SN contains some element of the strike set as a prefix (i.e., one can always make a selection).

An optimal strategy for identifying the global second-best candidate is represented by a valid strike set.

Definition 2.6. Let σ be a permutation of length k ≤ N . We define the standard denominator S D(σ ) of σ according to

S D(σ ) =
∑

σ -prefixed π∈S N

θ c(π).

Throughout the remainder of the paper we also use 
⊕

for the operator defined as a
b

⊕ c
d = a+c

b+d . Using the standard 
denominator with the 

⊕
operator allows for simplifying all pertinent explanations as one can only focus on the numerators 

of fractions. When a probability is written as a fraction, we view the numerator as “the cardinality of an event” and the 
denominator as “the cardinality of the sample space” and thus we do not cancel out their greatest common divisor to 
simplify the expression until the final stages of the proof.

Definition 2.7. For a prefix σ of length k such that 1 ≤ k ≤ N , define

Q (σ ) = P [win the game with the strategy accepting σ | π is σ -prefixed],
Q o(σ ) = P [win with the best strategy available after rejecting σ | π is σ -prefixed], (1)

Q̄ (σ ) = P [win with the best strategy available after rejectingσ |k−1 | π is σ -prefixed].

Based on the previous definitions, it is clear that

Q (σ ) =

∑
σ -winnable π∈S N

θ c(π)

S D(σ )
and Q̄ (σ ) = max(Q (σ ), Q o(σ )). (2)

Intuitively, the probability Q measures the chance of winning by accepting the current candidate while Q o measures 
the best chance to win by selecting a future candidate.

Definition 2.8. For each σ ∈ S�−1, where � ≤ N , we define σ j , 1 ≤ j ≤ �, to be the σ -prefixed permutation of length � such 
that its last position has value j after relabeling according to the first � − 1 positions of σ . For example, for σ = [123], a 
permutation of length 3, we have σ1 = [2341], σ2 = [1342], σ3 = [1243] and σ4 = [1234].

Next, let 1 ≤ |σ | = k ≤ N − 1. Then Q o(σ ) represents a fraction with denominator S D(σ ) and numerator equal to the 
sum of θ c(π) over all σ -prefixed permutations π such that the second-best candidate (indexed by N − 1) in π can be 
selected using an optimal strategy after rejecting the |σ |th candidate. Thus,
42
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Q o(σ ) = Q̄ (σ1)
⊕

. . .
⊕

Q̄ (σk+1) and S D(σ ) =
k+1∑
j=1

S D(σ j). (3)

Definition 2.9. We call a prefix σ positive if Q (σ ) ≥ Q o(σ ) and negative otherwise. In words, a prefix σ of length k is 
positive if the probability of winning by accepting σk is greater than or equal to the probability of winning after deciding 
to reject σk . We call a prefix σ strictly positive if Q (σ ) > Q o(σ ).

Proposition 2.10. Let τ be any permutation of length at most N. The probabilities Q o(τ ), Q (τ ), and Q̄ (τ ) can be pre-calculated 
using a sequential procedure.

Proof. We first observe that the prefixes of length N are positive, which serves as a base case for induction on the length 
of a prefix. More precisely, for a permutation τ of length N , if τ (N) = N − 1 then Q (τ ) = Q̄ (τ ) = 1 and Q o(τ ) = 0; if 
τ (N) ≤ N − 2 or τ (N) = N then Q (τ ) = Q o(τ ) = Q̄ (τ ) = 0.

Assume that the probabilities Q , Q o, Q̄ for permutations of length longer than k, 1 ≤ k ≤ N − 1, are already known. We 
show that Q o(τ ), Q (τ ), and Q̄ (τ ) can be pre-calculated, where now τ is a permutation of length k. By (2), we know the 

value of Q (τ ); the probability Q o(τ ) can be obtained from Q o(τ ) =
k+1⊕
j=1

Q̄ (τ j), since each τ j has length larger than that of 

τ ; the Q̄ (ω) probabilities can be determined from Q̄ (τ ) = max{Q (τ ), Q o(τ )}. �
Note that this it is not the most efficient way for computing the probabilities. Lemma 2.22 describes another way of 

computing the probabilities Q , Q o of Type I and Type II permutations of length k, using the probabilities Q , Q o, Q̄ of Type 
I and Type II permutations of length k + 1. The probabilities Q equal to 0 for prefixes that are neither Type I nor Type 
II. Moreover, we describe an optimal strategy in Section 3 and show in Section 4 how to find the maximum probability of 
winning through our optimal strategy using well-defined recurrence relations.

Recall that by (2), Q (σ ) can be written as a fraction with denominator S D(σ ) and the numerator equal to the sum of 
θ c(π) over all π that are σ -winnable. Next, we show in Proposition 2.11 that Q o(σ ) can be expressed in a similar manner.

Proposition 2.11. Let σ be a permutation of length � − 1 with � ≤ N. There is a collection of σ -prefixed permutations Aσ such that 
each μ ∈ Aσ is of length larger than |σ | and positive, and

Q o(σ ) =
⊕

μ∈Aσ

Q (μ).

Moreover, the above expression is equivalent to

Q o(σ ) · S D(σ ) =
∑

μ∈Aσ

Q (μ) · S D(μ) and S D(σ ) =
∑

μ∈Aσ

S D(μ). (4)

Proof. By (3), we know that Q o(σ ) = Q̄ (σ1) 
⊕

Q̄ (σ2) 
⊕

. . .
⊕

Q̄ (σ�) holds. We now describe an algorithm that establishes 
the proof of the proposition.

Initialization step: Let Aσ = ∅ and B = {σ1, . . . , σ�}.
We repeat the Main step below until the process terminates.

Main step: Check if B = ∅. If true, then stop and return the set Aσ ; if not, then do the following: Pick a φ ∈ B , say of length 
q with |σ | < q ≤ N , check if φ is both eligible and Q (φ) ≥ Q o(φ) holds. If true, then set Aσ = Aσ ∪ φ and B = B − φ; 

if not, then do not update Aσ and let B = B ∪
q+1⋃
j=1

φ j .

Since the permutations of length N are positive, the algorithm will terminate. The Main step of the algorithm will 
produce a set Aσ of positive eligible permutations that are also minimal. At the end of the process, B is an empty set. To 
see this, we make the following two observations.

Observation (i): There is no pair of elements α, β ∈ Aσ such that α is a prefix of β , i.e., Aσ contains minimal prefixes only, 
since otherwise the forest T o(α) will not be processed by the algorithm and it will be impossible for β to be selected for 
inclusion in Aσ .

Observation (ii): Since we choose a prefix only if it is positive and eligible, every prefix in Aσ is positive and eligible.
Therefore, we can write Aσ = {μ1, . . . , μr} where each of the μ ∈ Aσ has length larger than |σ |. Furthermore, by the 

Main step of the algorithm,
43
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Fig. 1. A prefix tree for the game of second-best choice with four candidates.

Q o(σ ) = Q (μ1)
⊕

Q (μ2)
⊕

· · ·
⊕

Q (μr). (5)

Moreover, by (5), Q o(σ ) can be expressed as a fraction where the numerator is the sum of θ c(π) over all σ -prefixed per-
mutations π whose best candidate can be captured by an optimal strategy after rejecting the |σ |th candidate, i.e., the 
collection of μ1-winnable, μ2-winnable, . . ., μr -winnable permutations in SN . The denominator is the standard denomina-
tor, i.e., 

∑
σ -prefixed π∈SN

θ c(π) . �

In Lemma 2.20 and 2.21, we show that the probabilities Q , Q o of a prefix σ only depend on its length and the relative 
order of the last position in σ . In Lemma 2.22, we describe the relations between the probabilities Q , Q o of a few relevant 
prefixes of consecutive lengths, which are used to derive Theorem 2.23 and 2.24 and describe the winning strategy for any 
prefix equivariant statistic.

Definition 2.12. Let T̄ (σ ) be the subtree rooted at σ , i.e., the tree comprising σ and its children and let T o(σ ) = T̄ (σ ) − σ
be the subforest obtained by deleting σ from the graph T̄ (σ ).

Since the set of all prefixes 
N⋃

i=1
Si also represents all possible positions in the game, we follow the approach suggested 

in [13] for the secretary problem and make use of prefix trees which naturally capture relations between all prefixes of a 

permutation. A prefix tree for the game of second-best choice with N candidates is a partially ordered set defined on 
N⋃

i=1
Si , 

where α < β if and only if α is a prefix of β (see Fig. 1 for a prefix tree that represents the game with four candidates).
The following theorem establishes that there exists a valid strike set such that its corresponding strategy is optimal. The 

algorithm described in the proof also suggests a way to compute the optimal probability of winning the postdoc game. Note 
that the optimal strategy may not be unique (when Q (σ ) = Q o(σ ) we can either choose to include σ into the strike set 
or not include σ into the strike set; these choices may lead to different strike sets/strategies that share the same largest 
probability of winning).

Theorem 2.13. The maximum probability of correctly identifying the second-best candidate equals

⊕
σ∈A

Q (σ ) =
∑
σ∈A

Q (σ ) · S D(σ )∑
σ∈A

S D(σ )
=

∑
σ∈A

Q (σ ) · S D(σ )∑
π∈S N

θ c(π)
,

where A is a valid strike set with all elements positive.

Proof. The maximum probability of winning equals Q̄ ([1]), where [1] is a permutation of length 1. By Proposition 2.11, the 
theorem holds true. �

Note that for a given valid strike set A, its corresponding strategy is to accept the candidate if the permutation (prefix) 
up to that point belongs to A. In the other direction, given a strategy, one can easily determine the corresponding strike set.

Remark 2.14. In order to identify a strategy that maximizes the probability of winning, we can actually choose to either 
include a permutation σ in the set A described in Theorem 2.13 or exclude it when Q (σ ) = Q o(σ ). This is also the reason 
why an optimal strategy may not be unique.

Example 2.15. We execute the steps of the algorithm described in Proposition 2.11 to find an optimal strategy and maximum 
probability of winning, i.e., Q̄ ([1]), when N = 4 and θ = 1. We write the probabilities (Q (σ ), Q o(σ )) for each prefix 
44
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Fig. 2. A prefix tree, the Q , and Q o probabilities for the game of second-best choice with four candidates; for example, the pair of numbers ( 6
24 , 8

24 ) under 
permutation [1] stand for Q ([1]) = 6

24 and Q o([1]) = 8
24 . The boxed permutations and the circled permutations are two different strike sets (representing 

two different optimal strategies), both of which attain the largest probability of winning.

σ ∈
4⋃

i=1
Si (See Fig. 2); the probabilities Q (σ ) and Q o(σ ) can be computed using Proposition 2.10. The probability of 

winning is Q̄ ([1]) = 8
24 which is obtained for the strike set A = {[12], [213], [312], [4213]} (boxed in Fig. 2). The strategy is: 

pick the first left-to-right maximum after position 1 or the first left-to-right second-maximum after position 2, whichever 
comes first; if no decisions are made before the last position, accept the corresponding candidate. Observe that there is more 
than one optimum strategy when θ = 1; this is because when Q (σ ) = Q o(σ ) we may choose to include or not to include σ
into the strike set; these choices result in different strike sets/optimal strategies for all cases considered; another optimum 
strategy is to reject the first two candidates and then accept the first second-maximum thereafter; the corresponding strike 
set is circled in Fig. 2.

1. We first compare Q ([1]) with Q o([1]). Since Q o([1]) = 8
24 > 6

24 = Q ([1]), let A = ∅ and B = {[12], [21]}.
2. Since Q ([12]) = 4

12 ≥ 4
12 = Q o([12]), we have A = {[12]} and B = {[21]}. Next we compare Q ([21]) with Q o([21]) and 

obtain A = {[12]} and B = {[213], [312], [321]}.
3. We compare the prefixes in B . At the end of Step 3 we obtain A = {[12], [213], [312]} and B = {[3214], [4213], [4312],

[4321]}.
4. We once more compare the prefixes in B . The final lists are A = {[12], [213], [312], [4213], [3214], [4312], [4321]} and 

B = ∅.

Definition 2.16. Let σ = [12 · · ·k] and let gτ be a permutation operator that rearranges the elements in the permutation σ
to produce another permutation τ of length k. We extend the action of this operator to T̄ (σ ), say π ∈ T̄ (σ ), by similarly 
permuting the first k entries and fixing the last m − k entries of π , where m is the length of π ∈ T̄ (σ ).

Note that the operator gτ is a bijection from T̄ (σ ) to T̄ (τ ).

Example 2.17. Let N = 6, τ = [132], and π = [245361]. Clearly, π is [123]-prefixed and gτ · π = [254361].

Definition 2.18. A statistic c is prefix equivariant if it satisfies c(π) − c(gτ · π) = c(12 · · ·k) − c(τ ) for all prefixes τ and all 
π ∈ T̄ ([12 · · ·k]), where k is the length of τ .

Intuitively, the condition c(π) − c(gτ ·π) = c([12 · · ·k]) − c(τ ) requires the statistic c to have the property that permuting 
the first k entries does not create or remove any structure that is counted by the statistic c, and which lies beyond entry k. 
The condition ensures many useful properties for the probabilities Q , Q o, Q̄ , including invariance under local changes (say, 
permuting the elements in a prefix). Prefix equivalence will be used intensively in the proofs of the theorems and lemmas 
to follow in this section. Before proceeding with the description of the more complicated results, we prove in Lemma 2.19
that the Kendall statistic is prefix equivariant.

Lemma 2.19. The Kendall statistic is prefix equivariant.

Proof. Note that the Kendall statistic counts the number of inversions in a permutation π . Permuting the first k entries 
will not influence any inversion involving elements in positions in {k + 1, . . . , N} and an inversion between an entry at a 
position at most k and another entry in a position following k remains an inversion as the relative order of the two sets of 
elements is unchanged. �

In Lemma 2.20, we prove that the probabilities Q of permutations only depend on the length of the permutations and 
the value seen at their last position; see Fig. 2 for an example.
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Lemma 2.20. Let c be a prefix equivariant statistic (including the Kendall statistic).

1) For all prefixes τ of length k, the Q probabilities are preserved under the restricted bijection gτ : T o([12 · · ·k]) → T o(τ ).
2) If τ is Type I eligible, then Q ([12 · · ·k]) = Q (τ ).
3) If τ is Type II eligible, then Q ([12 · · · (k − 2)k(k − 1)]) = Q (τ ).

Proof. 1) Let τ be a prefix of length k and let σ ∈ T o([12 · · ·k]) be of length m. Then, since c(π) − c(gτ ·π) = c([12 · · ·k]) −
c(τ ) for all π ∈ T o([12 · · ·k]), we have

Q (gτ · σ) =
∑

gτ ·σ -winnable π∈S N
θ c(π)∑

gτ ·σ -prefixed π∈S N
θ c(π)

=
∑

σ -winnable π∈S N
θ c(gτ ·π)∑

σ -prefixed π∈S N
θ c(gτ ·π)

=
∑

σ -winnable π∈S N
θ c(π)∑

σ -prefixed π∈S N
θ c(π)

· θ c(τ )−c([12···k])

θ c(τ )−c([12···k]) = Q (σ ).

(6)

2) Let τ be a Type I eligible prefix of the same length as σ . Applying 1) of this theorem to [12 · · · (k − 1)] and the prefix 
τ |k−1 of τ produces the claimed result.

3) Let τ be a Type II eligible prefix of the same length as σ . Applying 1) of this theorem to [12 · · · (k − 1)] and the prefix 
τ |k−1 of τ produces the claimed result. �

In Lemma 2.21, we prove that the probabilities Q o only depend on the length of the underlying permutations and do 
not depend on the value at the last position; see Fig. 2 for an example.

Lemma 2.21. The following claims hold true for a prefix τ of length k (in Claim 1), 2) and 3)).

1) For σ ∈ T o([12 · · ·k]), the probabilities Q o(σ ) are preserved by gτ ;
2) For σ ∈ T o([12 · · ·k]), the probabilities Q̄ (σ ) are preserved by gτ ;
3) One has

Q o([12 · · ·k]) = Q o(τ );
If τ is of Type I, then

Q̄ ([12 · · · (k − 1)k]) = Q̄ (τ );
If τ is of Type II, then

Q̄ ([12 · · · (k − 2)k(k − 1)]) = Q̄ (τ ).

4) If σ1 and σ2 are permutations with the same length, then Q o(σ1) = Q o(σ2) and their Q , Q̄ probabilities are equal, provided that 
they agree in the last position.

Proof. The proofs of the claims in the lemma follow from straightforward algebraic manipulations.
1) If σ has length N then Q o(σ ) = 0 = Q o(gτ · σ) since every permutation of length N has the Q o probability equal to 

0. Thus, we may assume that σ has length less than N . We prove the statement by induction on the length of σ . Assume 
the statement works for all σ ′ ∈ T o([12 · · ·k]) of length at least m + 1, where k + 1 ≤ m ≤ N − 1 and we will show the 
statement for σ of length m.

By Proposition 2.11, we know the probability Q o(σ ) is a 
⊕

-sum of Q probabilities, say

Q o(σ ) = Q (r1)
⊕

Q (r2)
⊕

· · ·
⊕

Q (rn),

for some prefixes ri of length at least |σ | + 1 =: m + 1. For each α ∈ T o(σ ), we know by induction hypothesis that Q o(α) =
Q o(gτ · α). By Lemma 2.20, we know Q (α) = Q (gτ · α) as well. Thus, for the algorithm described in Proposition 2.11, if 
we process σ and end up obtaining the set A = {r1, . . . , rn} then when we process gτ · σ we will end up obtaining the set 
A = {gτ · r1, . . . , gτ · rn}.

Therefore,

Q o(gτ · σ) = Q (gτ · r1)
⊕

Q (gτ · r2)
⊕

· · ·
⊕

Q (gτ · rn)

= θ c(τ )−c([12···k])

θ c(τ )−c([12···k]) · Q (r1)
⊕ θ c(τ )−c([12···k])

θ c(τ )−c([12···k]) · Q (r2)
⊕

· · ·
⊕ θ c(τ )−c([12···k])

θ c(τ )−c([12···k]) · Q (rn) = Q o(σ ).

(7)

2) The result follows from 1), Lemma 2.20, and Q̄ (σ ) = max(Q o(σ ), Q (σ )).
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3) Let κi be [12 · · ·k]-prefixed and of length k + 1 such that the last position has relative value i, where 1 ≤ i ≤ k + 1. 
Similarly, let τi be τ -prefixed and of length k + 1 such that the last position has relative value i, where 1 ≤ i ≤ k + 1. By 2), 
Q̄ (κi) = Q̄ (τi), for 1 ≤ i ≤ k + 1. Therefore,

Q o([12 · · ·k]) =
k+1⊕
i=1

Q̄ (κi) =
k+1⊕
i=1

Q̄ (τi) = Q o(τ ).

This establishes the correctness of the first part of the claim.
From Q̄ (σ ) = max(Q o(σ ), Q (σ )), Lemma 2.20, and the first part of Statement 3), we know the second and third part of 

3) holds true as well.
4) Q o(σ1) = Q o(σ2) follows from 3). Now, assume that |σ1| = |σ2| = q and that the last position of σ1 and σ2 takes 

the value x, where 1 ≤ x ≤ q. Let q′ = q − 1 and let σ ∈ T o([12 · · ·q′]) be such that |σ | = q and that the last position 
of σ equals x. Applying 1) of Lemma 2.20 to the q′th prefix of σ , σ1, σ2, we obtain Q (σ1) = Q (σ ) = Q (σ2) and thus 
Q̄ (σ1) = Q̄ (σ2). �

For the prefixes α = [12 · · · (k − 1)] and β = [12 · · · (k − 3)(k − 1)(k − 2)], recall by Definition 2.8 we have

αk = [12 · · ·k], α1 = [2 · · ·k1], αi = [1 · · · (i − 1)(i + 1) · · ·ki],
βk = [12 · · · (k − 3)(k − 1)(k − 2)k], βk−1 = [12 · · · (k − 3)k(k − 2)(k − 1)],
βk−2 = [12 · · · (k − 3)k(k − 1)(k − 2)],
β1 = [2 · · ·k1], βi = [1 · · · (i − 1)(i + 1) · · · (k − 2)k(k − 1)i].

With a slight abuse of notation that leads to simplified expressions for probabilities of interest, we henceforth let 
Q (σ ), Q o(σ ), and Q̄ (σ ) each stand for the numerators in their corresponding definitions, where the denominator is self-
understood to be 

∑
σ -prefixed π∈SN

θ c(π) and henceforth referred to as the standard denominator. In subsequent proofs confined 

to this section, we omit the denominator whenever it agrees for all quantities of interest.
In (8) and (9) of the lemma to follow, we express the probabilities Q o and Q of a Type I prefix (α) of length k − 1 via 

the probabilities Q o, Q , and Q̄ of a Type I prefix αk of length k and a Type II prefix αk−1 of length k. Similarly, we express 
the probabilities Q o and Q of a Type II prefix (β) of length k − 1 via the probabilities Q o, Q , and Q̄ of a Type I prefix αk
of length k and a Type II prefix αk−1 of length k.

Lemma 2.22. We have

Q o(α) = Q̄ (αk) + Q̄ (αk−1) + Q o(αk) ·
k−2∑
i=1

θ c(αi)−c(αk), (8)

Q (α) = Q (αk) ·
k−1∑
i=1

θ c(αi)−c(αk) + θ c(αk)−c(αk−1) · Q (αk−1), (9)

Q o(β) = Q̄ (αk) · θ c(βk)−c(αk) + Q̄ (αk−1) · θ c(βk−1)−c(αk−1) + Q o(αk−1) ·
k−2∑
i=1

θ c(βi)−c(αk−1), (10)

and

Q (β) = Q (αk−1) ·
k−2∑
i=1

θ c(βi)−c(αk−1). (11)

Proof. There are k children of α in the prefix tree, namely α1, . . . , αk , and k children of σ ′′ in the prefix tree, namely 
β1, . . . , βk . The prefixes αk and αk−1 are eligible so Q̄ αk and Q̄ αk−1 are the optimal probabilities for the subtrees rooted at 
αk and αk−1, respectively. The subtrees under each of the other k − 2 children of σ ′ are isomorphic to the subtree under αk
via the bijection gαi . A π ∈ SN in T o(αk) wins if and only if gαi · π , which is in T o(αi), wins the game. Moreover, for each 
π ∈ SN that wins under Q o(αk), we have θ c(gαi ·π) = θ c(π) · θ c(αi)−c(αk) since c is a prefix equivariant statistic.

As it is impossible for α1, . . . , αk−2 to win, for (8) we have:

Q o(α) = Q̄ (α1) + . . . + Q̄ (αk) = Q o(α1) + . . . + Q o(αk−2) + Q̄ (αk−1) + Q̄ (αk)

= Q̄ (αk) + Q̄ (αk−1) + Q o(αk) ·
k−2∑
i=1

θ c(αi)−c(αk).
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For (9), note that a α-winnable permutation can be αi -prefixed, 1 ≤ i ≤ k. A αi-prefixed σ ′-winnable permutation, where 
1 ≤ i ≤ k −1, can arise by applying gαi , i = 1, . . . , k −1, to a αk-winnable permutation π (in words, g−1

αi
·π , where g−1

αi
is the 

inverse action of gαi ); this has an effect of placing the value N − 1 (originally at position k of a αk-winnable permutation) 
into position k − 1. Moreover, a α-winnable permutation can also be a αk-prefixed permutation, which has N at position k
and N −1 at position k −1; it can arise from a αk−1-winnable permutation which has N −1 at position k (and so must have 
N at position k − 1) by applying g−1

αk−1
, the inverse action of gαk−1 , to convert the prefix αk−1 into the prefix αk . Therefore,

Q (α) = Q (αk) ·
k−1∑
i=1

θ c(αi)−c(αk) + θ c(αk)−c(αk−1) · Q (αk−1).

For (10), similarly to the analysis performed for (8), we have

Q o(β) = Q̄ (βk) + Q̄ (βk−1) + Q o(βk−2) + . . . + Q o(β1) = Q̄ (βk) + Q̄ (βk−1) + Q o(αk−1) ·
k−2∑
i=1

θ c(βi)−c(αk−1)

= Q̄ (αk) · θ c(βk)−c(αk) + Q̄ (αk−1) · θ c(βk−1)−c(αk−1) + Q o(αk−1) ·
k−2∑
i=1

θ c(βi)−c(αk−1).

For (11), similarly to the analysis for (9) and based on the fact that we know that no βk- and βk−1-prefixed permutation 
can be β-winnable (as the value in the (k − 1)th position is already smaller than the value in two positions, i.e., (k − 2) and 
k) we have

Q (β) = Q (αk−1) ·
k−2∑
i=1

θ c(βi)−c(αk−1).

This completes the proof. �
Theorem 2.23. For any Type II prefixes σ and τ with |σ | = |τ | − 1 = k − 1, we have that if τ is negative then σ is negative.

Proof. Let σ̂ = [1 · · · (k − 3)(k − 1)(k − 2)] and τ̂ = [1 · · · (k − 2)k(k − 1)]. Suppose that τ̂ is negative so that Q o(τ̂ ) > Q (τ̂ ). 
Then by Lemma 2.22 we have

Q o(σ̂ ) = Q̄ (αk) · θ c(βk)−c(αk) + Q̄ (αk−1) · θ c(βk−1)−c(αk−1) + Q o(αk−1) ·
k−2∑
i=1

θ c(βi)−c(αk−1)

≥ Q̄ (αk) · θ c(βk)−c(αk) + Q o(αk−1) ·
k−1∑
i=1

θ c(βi)−c(αk−1) > Q̄ (αk) · θ c(βk)−c(αk) + Q (αk−1) ·
k−1∑
i=1

θ c(βi)−c(αk−1)

≥ Q (σ̂ ).

The same conclusion is valid for every pair of Type II prefixes σ and τ with |σ | = |τ | − 1 = k − 1 since

Q o(σ ) = Q o(σ̂ ) · θ c(σ )−c(σ̂ ) > Q (σ̂ ) · θ c(σ )−c(σ̂ ) = Q (σ ). �
Theorem 2.24. Let σ and τ be Type I prefixes with |σ | = |τ | − 1 = k − 1. Let Q o(αk−1) ≥ Q (αk−1), where αk−1 is a Type II prefix of 
length k. Then if τ is negative then σ is negative.

Proof. Let σ̃ = [1 · · · (k − 1)] and τ̃ = [1 · · ·k]. Suppose that τ̃ is negative so that Q o(τ̃ ) > Q (τ̃ ). Then by Lemma 2.22 we 
have

Q o(σ̃ ) − Q (σ̃ )

= Q̄ (αk) + Q̄ (αk−1) + Q o(αk) ·
k−2∑
i=1

θ c(αi)−c(αk) − Q (αk) ·
k−1∑
i=1

θ c(αi)−c(αk) − Q (αk−1) · θ c(αk)−c(αk−1)

= Q̄ (αk) + Q̄ (αk−1) − Q (αk) · θ c(αk−1)−c(αk) − Q (αk−1) · θ c(αk)−c(αk−1) + (Q o(αk) − Q (αk)) ·
k−2∑
i=1

θ c(αi)−c(αk)

> Q̄ (αk) + Q̄ (αk−1) − Q (αk) · θ c(αk−1)−c(αk) − Q (αk−1) · θ c(αk)−c(αk−1) > Q̄ (αk) − Q (αk−1) · θ c(αk)−c(αk−1),
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where the last inequality holds since

Q̄ (αk−1) ≥ Q o(αk−1) = Q o(αk) · θ c(αk−1)−c(αk) > Q (αk) · θ c(αk−1)−c(αk).

Since Q o(αk−1) ≥ Q (αk−1), we have

Q̄ (αk) − Q (αk−1) · θ c(αk)−c(αk−1) ≥ Q o(αk) − Q (αk−1) · θ c(αk)−c(αk−1)

≥ (Q o(αk−1) − Q (αk−1)) · θ c(αk)−c(αk−1) ≥ 0.

The same conclusion holds for every pair of Type I prefixes σ and τ with |σ | = |τ | − 1 = k − 1 since Q o(σ ) = Q o(σ̃ ) ·
θ c(σ )−c(σ̃ ) > Q (σ̃ ) · θ c(σ )−c(σ̃ ) = Q (σ ). �
3. Winning strategies under the Mallows model

Henceforth, we use k �→ ∞ to denote that there exists a constant C > 0 such that k ≤ C . We simplify our notation as 
follows: Q o

i (k) will henceforth denote the numerator of the probability Q over the standard denominator, for type i prefixes 
of length k, where i ∈ [2]. Similarly, Q o

i (k) will denote the numerator of the probability Q o over the standard denominator 
for type i prefixes of length k, where i ∈ [2]. Using this notation in Lemma 2.22 we have

Q o
1 (k − 1) = Q o(σ ′), Q 1(k − 1) = Q (σ ′), Q o

2 (k − 1) = Q o(σ ′′), Q 2(k − 1) = Q (σ ′′).

Since c(τ ′
k) = 0, c(τ ′

i ) = k − i, and c(τ ′′
i ) = k + 1 − i, the results of Lemma 2.22 reduce to

Q o
1 (k − 1) = Q̄ 1(k) + Q̄ 2(k) + Q o

1 (k) · (θk−1 + θk−2 + . . . + θ2), (12)

Q 1(k − 1) = Q 1(k) · (θk−1 + θk−2 + . . . + θ) + 1

θ
· Q 2(k), (13)

Q o
2 (k − 1) = Q̄ 1(k) · θ + Q̄ 2(k) · θ + Q o

2 (k) · (θk−1 + θk−2 + . . . + θ2), (14)

Q 2(k − 1) = Q 2(k) · (θk−1 + θk−2 + . . . + θ2), (15)

where Q o
i (N) = 0 = Q 1(N), Q 2(N) = θ , Q o

2 (k) = θ · Q o
1 (k), and every value taken by Q , Q o , Q̄ is nonnegative. In this 

section, we will assume by default that θ �= 1 unless stated otherwise.

Definition 3.1. Let P N (θ) (henceforth written as P N to avoid notational clutter) be the polynomial in θ equal to 1 + θ + θ2 +
· · · + θ N−1. Furthermore, let (P N)! be the polynomial in θ equal to (P N )! = P N P N−1 · · · P1.

Claim 3.2. One has

Q 2(k) = θ2N−2k+1 · (P N−2)!
(Pk−2)! .

Proof. The proof is postponed to Appendix A. �
Claim 3.3. One has

Q 1(k) = θ N−k−1 · P N−k · (P N−2)!
(Pk−1)! , where Q 1(N) = 0.

Proof. The proof is postponed to Appendix A. �
Using Claim 3.2 and 3.3 we arrive at

Q 2(k)/Q 1(k) = θ N−k+2 · Pk−1

P N−k
= θ N−k+2 · θk−1 − 1

θ N−k − 1
= θ2 · θk−1 − 1

1 − 1/θ N−k
. (16)

Since we are interested in asymptotic strategies, we assume throughout this section that N → ∞. Our main results 
are derived in subsections 3.1 and 3.2; these are followed by a discussion of general optimal strategies (without specific 
thresholds) in Subsection 3.3. The precise optimal strategies (with specific thresholds) and the optimal probabilities are 
presented in Section 4.
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3.1. The Case θ > 1 (and θ = 1)

Theorem 3.4. Let 2 ≤ k < N. If Q o
1 (k) > Q 1(k), then Q o

1 (k − 1) > Q 1(k − 1).

Proof. Let f (k) := Q̄ 1(k) + Q̄ 2(k) − θ · Q 1(k) − 1
θ

· Q 2(k).

Case A (k → ∞). Since 1 −1/θ ≤ 1 −1/θ N−k < 1, it holds that (16) → ∞. Moreover, since Q o
1 (k) > Q 1(k), θ > 1 is a constant, 

(16) → ∞, and (12) and (13) hold true, we have

Q o
1 (k − 1) − Q 1(k − 1) = f (k) + (Q o

1 (k) − Q 1(k)) · (θ2 + . . . + θk−1) > f (k)

≥ (1 − θ) · Q 1(k) + (1 − 1/θ) · Q 2(k) ≥ 0;
the second inequality holds since Q̄ 1(k) ≥ Q 1(k) and Q̄ 2(k) ≥ Q 2(k).

Case B (k �→ ∞). Then (16) → θ2 · (θk−1 − 1), and by θ > 1 and k ≥ 2 we have

θ · (θk−1 − 1) > 1. (17)

Case B.1. Q 2(k) ≤ θ · Q 1(k). Since Q o
1 (k) > Q 1(k), we have Q o

2 (k) = θ · Q o
1 (k) > θ · Q 1(k). Thus

Q o
1 (k − 1) − Q 1(k − 1) = f (k) + (Q o

1 (k) − Q 1(k)) · (θ2 + . . . + θk−1) > f (k)

≥ Q 1(k) + Q o
2 (k) − θ · Q 1(k) − 1

θ
· Q 2(k)

> Q 1(k) + θ · Q 1(k) − θ · Q 1(k) − 1

θ
· Q 2(k) = Q 1(k) − 1

θ
· Q 2(k) ≥ 0;

the second inequality holds since Q̄ 1(k) ≥ Q 1(k) and Q̄ 2(k) ≥ Q o
2 (k), while the third and fourth inequality follow from the 

first line of Case B.1.

Case B.2. Q 2(k) > θ · Q 1(k). Therefore, by Q 2(k)/Q 1(k) → θ2 · (θk−1 − 1), and from (17) and θ > 1,

Q o
1 (k − 1) − Q 1(k − 1) > f (k) ≥ Q 1(k) + Q 2(k) − θ · Q 1(k) − 1

θ
· Q 2(k)

= Q 1(k) + (θk−1 − 1) · θ2 · Q 1(k) − θ · Q 1(k) − θ · (θk−1 − 1) · Q 1(k)

= (1 + θk+1 − θ2 − θk) · Q 1(k) = (θk − θ − 1) · (θ − 1) · Q 1(k) > 0. �
Remark 3.5. For θ = 1, by taking the difference of (12) and (13), we have

Q o
1 (k − 1) − Q 1(k − 1) = Q̄ 1(k) − Q 1(k) + Q̄ 2(k) − Q 2(k) + (Q o

1 (k) − Q 1(k)) · (k − 2).

Since Q 1(N) = Q o
1 (N) = 0 and Q 2(N) = θ > 0 = Q o

2 (N), Q o
1 (k) − Q 1(k) remains zero until the inequality Q 2(k) < Q o

2 (k)

starts to hold. More precisely, by Theorem 2.24, if k2 is the largest index such that Q 2(k2) < Q o
2 (k2), then the largest index 

k1 such that Q 1(k1) < Q o
1 (k1) equals k2 − 1.

3.2. The case θ < 1

3.2.1. The subcase 0 < θ < 1/2
Since the Type II prefixes of length at most N −1 are negative, we only need to consider Type I prefixes. By Theorem 2.24, 

there exists a threshold k1 for negative Type I prefixes and positive Type I prefixes.

3.2.2. The subcase 1/2 < θ < 1

Theorem 3.6. Let σ and τ be Type I prefixes with |σ | = |τ | − 1 = k − 1. Let N − k → ∞. Then if τ is negative then σ is negative.

Proof. Let N → ∞ and f (k) := Q̄ 1(k) + Q̄ 2(k) − θ · Q 1(k) − 1
θ

· Q 2(k). By Claim 3.2 and Claim 3.3,

Q 1(k) = 1
2

· 1
N−k

· P N−k = 1
2

· 1
N−k

· 1 − θ N−k

k−1
→ ∞. (18)
Q 2(k) θ θ Pk−1 θ θ 1 − θ
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Moreover, since τ is Type I negative, one has Q o
1 (k) > Q 1(k); by noting that 1/2 < θ < 1 is a constant, that Q̄ 1(k) ≥ Q 1(k), 

Q̄ 2(k) ≥ Q 2(k), and from (18), we obtain

Q o
1 (k − 1) − Q 1(k − 1) = f (k) + (Q o

1 (k) − Q 1(k)) · (θ2 + . . . + θk−1)

> f (k) ≥ (1 − θ) · Q 1(k) + (1 − 1/θ) · Q 2(k) > 0. �
Theorem 3.7. Let σ ′ and σ ′′ be a Type I prefix and a Type II prefix of length k, respectively. Let 1/2 < θ < 1 and N − k �→ ∞. For 
k < N, if σ ′′ is (strictly) positive then σ ′ is (strictly) positive.

Proof. The proof is postponed to Appendix A. �
Since Q 2(N) = θ > 0 = Q o

2 (N), Type II prefixes of length N are strictly positive. By Theorem 2.23, there is a threshold 
k2(θ) such that all Type II prefixes of length at most k2(θ) are negative and all Type II prefixes of length at least k2(θ) + 1
are positive. By Theorem 3.6, 3.7, and 2.24, we know that there is another threshold k1(θ) ≤ k2(θ) such that all Type I 
prefixes of length at most k1(θ) are negative and all Type I prefixes of length at least k1(θ) + 1 are positive.

Remark 3.8. We separately discuss the case θ = 1
2 . By (12), (13), (14), and (15), and for N → ∞, the standard numerators 

satisfy

Q o
1 (N) = 0, Q 1(N) = 0, Q o

2 (N) = 0, Q 2(N) = 1/2;
Q o

1 (N − 1) = 1/2, Q 1(N − 1) = 1, Q o
2 (N − 1) = 1/4, Q 2(N − 1) = 1/4;

Q o
1 (N − 2) = 3/2, Q 1(N − 2) = 3/2, Q o

2 (N − 2) = 3/4, Q 2(N − 2) = 1/8;
Q o

1 (N − 3) = 3, Q 1(N − 3) = 7/4, Q o
2 (N − 3) = 3/2, Q 2(N − 3) = 1/16.

Therefore, by Theorem 2.23 we know that Type II prefixes of length at most N −2 are negative; that we can be indifferent 
(i.e., either reject or accept) to Type II prefixes of length N − 1; that Type II prefixes of length N are strictly positive; that 
by Theorem 2.24 we know that Type I prefixes of length at most N − 3 are negative; that we can be indifferent (i.e., either 
reject or accept) to Type I prefixes of length N − 2; that Type I prefixes of length N − 1 are strictly positive; and that we 
can be indifferent to Type I prefixes of length N .

3.3. Optimal strategies

Let π ′ = [12 · · · (N − 1)] and π ′′ = [12 · · · (N − 3)(N − 1)(N − 2)]. Recall by Definition 2.8, we can define π ′
i and π ′′

i , 
where 1 ≤ i ≤ N . Furthermore, unlike in Section 2 and previous subsections in Section 3, we now use Q , Q o, Q̄ to denote 
the original probabilities, and not only their numerators corresponding to the standard denominator. We describe an optimal 
strategy for each θ > 0 and N → ∞.

Next, note that c(π ′
N ) = 0, c(π ′

N−1) = 1, c(π ′
i ) = N − i for i ∈ {1, . . . , N − 2}.

We compare

Q (π ′) = θ c(π ′
N )

θ c(π ′
1) + θ c(π ′

2) + . . . + θ c(π ′
N )

= 1

θ N−1 + θ N−2 + . . . + 1
(19)

and

Q o(π ′) = θ c(π ′
N−1)

θ c(π ′
1) + θ c(π ′

2) + . . . + θ c(π ′
N )

= θ

θ N−1 + θ N−2 + . . . + 1
, (20)

as well as

Q (π ′′) = θ c(π ′′
1 ) + θ c(π ′′

2 ) + . . . + θ c(π ′′
N−2)

θ c(π ′′
1 ) + θ c(π ′′

2 ) + . . . + θ c(π ′′
N )

= θ N + θ N−1 + . . . + θ3

θ N + θ N−1 + . . . + θ3 + θ2 + θ
(21)

and

Q o(π ′′) = θ c(π ′′
N−1)

θ c(π ′′
1 ) + θ c(π ′′

2 ) + . . . + θ c(π ′′
N )

= θ2

θ N + θ N−1 + . . . + θ3 + θ2 + θ
. (22)

Results from subsections 3.1 and 3.2 allow us to determine the winning strategies based on the probabilities Q o(π ′), 
Q (π ′), Q o(π ′′), and Q (π ′′). Note that the results in Theorems 2.24, 2.23, 3.4, 3.6, and 3.7 still hold for the probabilities 
Q o , Q , as the prefixes are of the same length and the standard denominator is positive.
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Case 1 (θ > 1). By (19), (20), (21), and (22), we have that Q (π ′) < Q o(π ′) and Q (π ′′) > Q o(π ′′). All the Type I prefixes of 
length at most N − 1 are negative by Theorem 3.4 and furthermore Q (π ′

N ) = Q o(π ′
N ) = 0. Thus, we only need to consider 

Type II prefixes. By Theorem 2.23, the goal is to solve for k2(θ) such that all the Type II prefixes of length ≤ k2(θ) are 
negative, and all the Type II prefixes of length greater than k2 are positive. Thus, the optimal strategy in this case is to 
reject the first k2 candidates (where 0 ≤ k2 ≤ N − 1) and then accept the next left-to-right second-maximum thereafter. The 
precise parameter values are described in Section 4.1.

Case 2 (θ = 1). By (19), (20), (21), and (22), we have Q (π ′) = Q o(π ′) and Q (π ′′) > Q o(π ′′). By Remark 3.5 and Theo-
rem 2.24, we need to determine a k1 and a k2, such that k1 = k2 −1. The optimal strategy is to reject the first k1 candidates, 
then be indifferent (either accept or reject) to any left-to-right maximum thereafter, and reject the k1 + 1th candidate if it 
is not a left-to-right maximum and then accept the next left-to-right second-maximum. The precise parameter values are 
described in Remark 4.12 at the end of Section 4.1.

Case 3 (0 < θ < 1). By (19) and (20), we have Q (π ′) > Q o(π ′). By (21) and (22), we only need to compare the numerators 
of Q (π ′′) and Q o(π ′′), i.e., θ N + θ N−1 + . . . + θ3 and θ2.

Case 3.1 (0 < θ < 1
2 ). Then Q (π ′′) < Q o(π ′′) and Q (π ′

N−1) > Q o(π ′
N−1). By Theorem 2.23, all Type II prefixes of length at 

most N − 1 are negative (even though Type II prefixes of length N are positive). The best strategy is to only consider Type 
I prefixes and accept the last candidate no matter what, i.e., the best strategy is to reject the first k1 candidates and then 
accept the next left-to-right maximum. If no selection is made before the last candidate, the latter is accepted. The precise 
parameter settings are stated Section 4.2.

Case 3.2 (θ = 1
2 ). By Remark 3.8, the optimal strategy is to 1) reject all but the last three candidates; 2) if the third-last 

candidate is a left-to-right maximum, we can either accept or reject him/her; otherwise we reject this candidate; 3) if the 
second-last candidate is a left-to-right maximum, then we accept him/her. Or, if the second-last candidate is a left-to-right 
second-maximum, then we can either decide to accept or reject; otherwise we reject this candidate; 4) if the last candidate 
is a left-to-right second-maximum, we accept him/her; otherwise we can either accept or reject the candidate.

Case 3.3 ( 1
2 < θ < 1). When N → ∞ we have Q (π ′′) > Q o(π ′′). By Theorem 2.23, there is a 0 ≤ k2(θ) ≤ N − 2 such that 

every Type II prefix of length at most k2(θ) is negative and every Type II prefix of length longer than k2(θ) is positive. We 
then have two cases to consider. We show that Case 3.3.1 is impossible and then focus on Case 3.3.2.

Case 3.3.1 (N − k2 �→ ∞). Since all Type II prefixes with length � such that N −� �→ ∞ are positive, we know by Theorem 3.7
that every Type I prefix of length � with N − � �→ ∞ is also positive. Suppose now that N − � → ∞. By Theorem 3.6, there 
exists a k1(θ) ≥ 0 with N − k1(θ) → ∞ such that every Type I prefix of length at most k1(θ) is negative and every Type 
I prefix of length longer than k1(θ) is positive. In this case, the optimal strategy is a (k1, k2)-strategy, where k1 ≤ k2, or 
a (k2, k1)-strategy, where k2 ≤ k1. In other words, for a fixed 1

2 < θ < 1, there exists a pair of numbers k1, k2 such that 
the optimal strategy under the assumption for this case is either (1) reject the first k1 candidates and then accept the 
next left-to-right maximum thereafter or reject the first k2 ≥ k1 candidates and then accept the next left-to-right second-
maximum thereafter, whichever appears first; or, (2) reject the first k2 candidates and then accept the next left-to-right 
second-maximum thereafter or reject the first k1 ≥ k2 candidates and then accept the next left-to-right maximum thereafter, 
whichever appears first. However, we show in Section 4.3 that the optimal strategy among all (k1, k2)-strategies and (k2, k1)-
strategies always arises when N − k1(θ) �→ ∞ and N − k2(θ) �→ ∞, which implies that Case 3.3.1 is impossible.

Case 3.3.2 (N − k2 → ∞). Then by Theorem 3.7, every Type I prefix of length longer than k2(θ) is positive. Furthermore, by 
Theorem 2.24, since every Type II prefix of length at most k2(θ) is negative, we conclude that there exists a 0 ≤ k1(θ) ≤
k2(θ) ≤ N − 2 such that every Type I prefix of length at most k1(θ) is negative and every Type I prefix of length larger 
than k1(θ) is positive. Therefore, the optimal strategy is the (k1(θ), k2(θ))-strategy, i.e., we reject the first k1(θ) candidates 
and then accept the next left-to-right maximum thereafter or reject the first k2(θ) ≥ k1(θ) candidates and then accept 
the next left-to-right second-maximum thereafter, whichever appears first. The precise parameter settings are described in 
Section 4.3.

4. Precise parameter settings for the Mallows model

The following result is well-known and also proved in [13].

Lemma 4.1 (Lemma 6.2 in [13], [17]). We have

(P N )! =
∑

θ#inversions in π .
π∈S N
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For the set [1, n + m], an ordered 2-partition of the values into two parts �1 and �2 with |�1| = n and |�2| = m is a 
partition where all values in �1 are “ahead” of all values of �2, while the internal order of �1 and �2 is irrelevant. We 
define

B(n,m) :=
∑

All �1,�2 ordered partition of [n+m]
θ#crossing inversions of (�1,�2),

where a crossing inversion with respect to (�1, �2) is an inversion of the form (a, b) where a ∈ �1 and b ∈ �2.

Lemma 4.2. The numbers B(n, m) satisfy

B(n,m) = B(n − 1,m) · θm + B(n,m − 1), (23)

and

B(n,m) = B(n − 1,m) + B(n,m − 1) · θn, (24)

with the initial conditions set as B(0, x) = 1 and B(x, 0) = 1.

Proof. To establish the first recurrence relation, we need to consider two separate cases according to the value n + m.

Case 1 (n + m ∈ �1). Then we delete n + m from �1 and arrive at a partition of n + m − 1 elements into subsets of size 
n − 1 and m. The value n + m contributes θm to each partition �1, �2. Thus, it overall contributes θm · B(n − 1, m) to the 
term B(n, m).

Case 2 (n + m ∈ �2). Then we delete n + m from �2 and arrive at a partition of n + m − 1 elements into subsets of size n
and m − 1. The value n + m does not feature in the multiplier and the contribution to B(n, m) is B(n, m − 1).

Similarly, we can consider in which part the element 1 lies in and obtain the second recurrence relation. The initial 
conditions are obvious since one part is empty. �

When θ = 1, we have

B(n,m) = B(n − 1,m) + B(n,m − 1).

A straightforward induction argument can be used to prove that

B(n,m) =
(

n + m

n

)
.

It turns out one can also solve the above recurrence relations even when θ �= 1.

Lemma 4.3. For θ �= 1, n, m ≥ 1,

B(n,m) = (1 − θn+m) · (1 − θn+m−1) · · · (1 − θn+1)

(1 − θm) · (1 − θm−1) · · · (1 − θ)
,

and B(n, 0) = B(0, m) = 1.

Proof. We subtract from both sides in (23) θm· (24) to obtain

(1 − θm) · B(n,m) = (1 − θn+m) · B(n,m − 1).

Since we know that B(n, 1) = 1−θn+1

1−θ
the claimed result follows. �

Note that

B(n,m) = Pn+m · . . . · Pn+2 · Pn+1 =:
(

Pn+m
)

.

Pm · . . . · P2 · P1 Pn
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4.1. Precise results for Case 1 (and Case 2) from Section 3.3

In Section 4.1, we use the term k-pickable permutation to describe a permutation which results in a pick using the 
strategy that rejects the first k candidates and then accepts the next left-to-right second-maximum; we also use the term 
non-k-pickable permutation to refer to a permutation which is not k-pickable.

Define P−1 = P0 = 0 and (0)! = 1. Let

T2(N,k) :=
∑

non-k-pickable permutation π∈S N

θ#inversions in π .

Lemma 4.4. For N ≥ k + 1 and k ≥ 1,

T2(N,k) = θ2N−2k · Pk · Pk−1 · (P N−2)! +
N∑

i=k+1

θ2N−2i · B(i − 2, N − i) · T2(i − 1,k) · (P N−i)!,

where T2(k, k) = (Pk)!, since no permutation in Sk is k-pickable.

Proof. We have to consider two cases depending on the value N . For this purpose, let π ∈ S N .

Case 1. N is at a position within [1, k]. Then π is not k-pickable if and only if the value N − 1 is also at a position in [1, k]. 
The remaining values form an arbitrary permutation. Thus, this case contributes

θ2N−2k · Pk · Pk−1 · (P N−2)! = (θ N−1 + . . . + θ N−k) · (θ N−2 + . . . + θ N−k) · (P N−2)!
to T2(N, k).

Case 2. N is at a position within i ∈ [k + 1, N]. Then N − 1 must be located before position i and the positions [1, i − 1]
must form a non-k-pickable permutation. Thus, the contribution of this case to T2(N, k) may be computed as follows. The 
value N − 1 gives a factor of θ N−i for inversions with values in positions [i + 1, N], while the remaining values in positions 
[1, i − 1] and [i + 1, N] form a partition �1, �2 of the values [1, N − 2] and thus contribute a factor of B(i − 2, N − i) to 
this case. The values in positions [1, i − 1] form a non-k-pickable permutation and thus contribute T2(i − 1, k). There is no 
restriction on the values positioned in [i + 1, N] and these contribute (P N−i)!. Moreover, the value N contributes θ N−i . In 
conclusion, the total contribution from this case (for k + 1 ≤ i ≤ N) equals

N∑
i=k+1

θ N−i · B(i − 2, N − i) · T2(i − 1,k) · (P N−i)! · θ N−i . �

Remark 4.5. When k = 0, we have T2(2, 0) = T2(1, 0) = 1 and

T2(N,0) =
N∑

i=2

θ2(N−i) · (P N−2)!
(Pi−2)! · T2(i − 1,0).

We can solve the recurrence relation in Lemma 4.4 in closed form.

Lemma 4.6. We have T2(k, k) = (Pk)!. For N ≥ k + 1 and k ≥ 1,

T2(N,k) = (Pk)! · (1 + θ2 · Pk−1) · (1 + θ2 · Pk) · . . . · (1 + θ2 · P N−2). (25)

Proof. We know from Lemma 4.4 that T2(k, k) = (Pk)!. We assume the argument is valid for at most N − 1, and then prove 
it for N .

Again, by Lemma 4.4, we know

T2(N,k) = θ2N−2k · Pk · Pk−1 · (P N−2)! +
N∑

i=k+1

θ2N−2i · B(i − 2, N − i) · T2(i − 1,k) · (P N−i)!

= θ2N−2k · Pk · Pk−1 · (P N−2)! + θ2N−2k−2 · (P N−2)!
(Pk−1)! · (Pk)! + θ2N−2k−4 · (P N−2)!

(Pk)! · (Pk)! · (1 + θ2 Pk−1)

+ . . . + θ2 · (P N−2)!
(P N−3)! · (Pk)! · (1 + θ2 Pk−1)(1 + θ2 Pk) · · · (1 + θ2 P N−4)

+ (Pk)! · (1 + θ2 Pk−1)(1 + θ2 Pk) · · · (1 + θ2 P N−3).
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Note that if we add the terms one-by-one, then the first j terms we arrive at are

θ2N−2k−2( j−1) · (P N−2)!
(Pk−3+ j)! · (Pk)! · (1 + Pk−1 · θ2) · · · (1 + Pk−3+ j · θ2).

Hence, we obtain

(Pk)! · (1 + Pk−1 · θ2)(1 + Pk · θ2) · · · (1 + P N−2 · θ2). �
Remark 4.7. For k = 0 and N ≥ 3, we can solve by Remark 4.5 that

T2(N,0) = (1 + θ2)(1 + θ2 · P2) · · · (1 + θ2 · P N−2),

which agrees with the formula obtained by plugging in k = 0 to (25).

Next, we introduce the notion of a k-winnable permutation, corresponding to a permutation such that the global second-
best candidate (N − 1) can be identified using the positional strategy that rejects the first k candidates and accepts the next 
left-to-right second-maximum thereafter.

To this end, we define

W2(N,k) =
∑

k-winnable π∈S N

θ#inversions in π .

Theorem 4.8. One has

W2(N,k) = θ2 · P N−2 · W2(N − 1,k) + θ · T2(N − 1,k),

with the initial condition W2(k + 1, k) = θ · (Pk)!.

Proof. If the last position has the value N , then the permutation cannot be k-winnable as the value N − 1 is never going to 
be picked as a left-to-right second-maximum. Thus, we have two possible scenarios for a k-winnable permutation π ∈ S N .

Case 1. The last position contains one of the values i = 1, 2, . . . , N − 2. Then it contributes N − i to the inversion count and 
we may view the remaining values as some k-winnable π̃ ∈ SN−1. These contribute W2(N −1, k) · (θ N−1 +θ N−2 +· · ·+θ2) =
θ2 · P N−2 · W2(N − 1, k) to W2(N, k).

Case 2. The last position is N − 1. Then the first N − 1 positions form a non-k-pickable permutation. The value N − 1 at the 
position N contributes θ .

The initial condition holds because when there are in total k + 1 positions then the (k + 1)th position must be k and the 
elements in positions [1, k] can represent any permutation in Sk . �
Theorem 4.9. For k ≥ 1, we have

W2(N,k) = θ · T2(N,k) − θ2N−2k+1 · (P N−2)! · Pk · Pk−1

= θ · (Pk)! · {(1 + θ2 · P N−2)(1 + θ2 · P N−3) · · · (1 + θ2 · Pk) · (1 + θ2 · Pk−1) − θ2N−2k · P N−2 · P N−3 · · · Pk−1}.

Proof. By Theorem 4.8, we have the recurrence relation for

W2(N,k) (relation 1), W2(N − 1,k) (relation 2), . . . , W2(k + 2,k) (relation N − k − 1).

Then, we multiply relation 1 with 1, relation 2 with θ2 · P N−2, relation j with θ2 j−2 · P N−2 · P N−3 · · · P N− j , j ∈ {3, . . . , N −
k − 1}. Then we add those equations and use the initial condition W2(k + 1, k) = θ · (Pk)! to obtain the desired formula. �
Remark 4.10. For k = 0, we have

W2(N,0) = θ · T2(N,0).

Since the strategy of rejecting no candidate in the beginning and then accepting the next left-to-right second-maximum is 
the same as rejecting the first candidate and then accepting the next left-to-right second-maximum, the case when k = 0 is 
going to be included in the case when k = 1.
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Fig. 3. Probability of winning using the optimal strategy for a Mallows distribution with θ > 1.

Table 1
Maximum probabilities and optimal strategies for θ > 1.

θ Reject first k max probability θ k max probability

1.01 69 0.25154698 1.6 2 0.33261548
1.02 35 0.25304761 1.7 2 0.33832874
1.03 24 0.25456399 1.8 2 0.34018156
1.04 18 0.25609089 1.9 1 0.34138762
1.05 15 0.25746213 2 1 0.36219565
1.06 12 0.25906545 3 1 0.51401101
1.07 11 0.26037841 4 1 0.6075226
1.08 9 0.26193451 5 1 0.67111688
1.09 8 0.26332955 6 1 0.71712202
1.10 8 0.26468079 7 1 0.75191395
1.2 4 0.27951623 8 1 0.77912838
1.3 3 0.29385177 9 1 0.80098779
1.4 2 0.30199267 10 1 0.81892569
1.5 2 0.32134993

Theorem 4.11. When θ > 1 and N → ∞, the optimal strategy is to reject the first j = k(θ) candidates, where k(θ) is a function of θ
that does not depend on N, and then select the next left-to-right second-maximum thereafter.

Numerical results for k(θ) are provided after the proof.

Proof. By simplifying the result of Theorem 4.9, we have

W2(N,k)

(P N)! = θ · (1 − θ(θ − 1)

θ N − 1
)(1 − θ(θ − 1)

θ N−1 − 1
) · · · (1 − θ(θ − 1)

θk+1 − 1
) − θ2N−2k+1 · (θk − 1)(θk−1 − 1)

(θ N − 1)(θ N−1 − 1)
.

Case 1. k → ∞, N → ∞. Then, since θ > 1, both the first and second term converge to θ . Thus the limit is 0.

Case 2. k �→ ∞, N → ∞. Then, the second term converges to θ · (1 − 1
θk )(1 − 1

θk−1 ). The first term converges since 
∞∏

j=k+1
(1 −

θ(θ−1)

θ j−1
) converges if and only if 

∞∑
j=k+1

1
θ j−1

converges; the latter converges because of the integral test. Thus, the optimal 

asymptotic probability will occur for some fixed k(θ). �
Although the infinite product always converges, finding an explicit formula for the probability is hard. Thus, we instead 

provide some numerical results in Table 1.
Fig. 3 and Table 1 show the optimal success probabilities for various values of θ > 1. The maximum winning probability 

converges to 0.25 as θ → 1+, which matches the well known result for the optimal probability 0.25 when θ = 1.
Note that k = 1 is optimal for θ ≥ 1.892 (approximately), k = 2 is optimal for 1.385 ≤ θ ≤ 1.891 (approximately), and 

k = 3 is optimal for 1.247 ≤ θ ≤ 1.384 (approximately).
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Fig. 4. Probability of winning for θ > 1 when we use the strategy of rejecting the first k candidates and then accepting the next second-maximum thereafter, 
where k = 1, 2 and 3.

The winning probability is increasing and converging to 1 as θ increases, when k = 1 is the optimal; the winning 
probability is maximized at (θ, p) = (1.81, 0.340203) when k = 2 is optimal; the winning probability is maximized at 
(θ, p) = (1.37, 0.298144) when k = 3 is optimal (See Fig. 4).

Intuitively, we have that the Mallows distribution becomes highly concentrated around the permutation [N(N − 1) . . . 21]
when θ increases, and thus rejecting the first candidate and accepting the next left-to-right second-maximum will capture 
the value (N − 1) most of the times (the probability tends to 1 as θ → ∞). However, for k = 2 and k = 3, since the 
distribution concentrates around the permutation [N(N − 1) . . . 21] as θ → ∞, rejecting the first two or three candidates, 
respectively, and then accepting the next left-to-right second-maximum is increasingly unlikely to capture the value N − 1.

Remark 4.12. When θ = 1, for k ≥ 1 we have by Theorem 4.9

W2(N,k)

N! = k

N
− k(k − 1)

N(N − 1)
= k(N − k)

N(N − 1)
and = 1/N for k = 0.

Therefore, the maximum probability of winning is N2

4N(N−1)
→ 1/4 and is realized at k = N/2. The optimal strategy is to 1) 

reject the first N
2 − 1 candidates; 2) accept or reject the N

2 th candidate if it is a left-to-right maximum; reject this candidate 
otherwise; 3) for a candidate j > N/2 we either accept him/her if the candidate is a left-to-right second-maximum; or, we 
accept or reject the candidate if he/she is a left-to-right maximum; otherwise, we reject the candidate.

4.2. Precise result for Case 3.1 (and Case 3.2)

Unlike in the previous section, in Section 4.2 we use the term k-pickable permutation for a permutation that corresponds 
to a strategy that rejects the first k candidates and then accepts the next left-to-right maximum and results in one pick. We 
also use the term non-k-pickable permutation to describe a permutation which is not k-pickable.

Let

T1(N,k) :=
∑

non-k-pickable permutation π∈S N

θ#inversions in π .

Lemma 4.13. We have T1(N, 0) = 0 and for k ≥ 1,

T1(N,k) = (θ N−1 + . . . + θ N−k) · (P N−1)!.

Proof. Let π ∈ SN be non-k-pickable. If the value N is positioned in [k + 1, N], then we must have one pick. Thus, the value 
N is positioned in [1, k] and the other positions can be viewed as an arbitrary permutation. If the value N is at position 
i ∈ [1, k], it contributes θ N−i , and the remaining terms contribute (P N−1)!. �

In this subsection, by a k-winnable permutation we mean a permutation such that the global second-best candidate 
(N − 1) can be identified using the positional strategy that rejects the first k candidates and accepts the next left-to-right 
maximum thereafter. We define

W ∗
1 (N,k) =

∑
k-winnable π∈S N

θ#inversions in π .

Remark 4.14. When k = 0, the strategy is to accept the first candidate. Thus, we win if and only if the value N − 1 appears 
first. Since the value N − 1 contributes θ N−2 to W ∗

1 (N, k) and the remaining positions can be viewed as an arbitrary 
permutation in SN−1, the probability of winning is
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W ∗
1 (N,0)

(P N)! = θ N−2(P N−1)!
(P N)! = (1 − θ) · θ N−2

1 − θ N
→ 0 as N → ∞.

Theorem 4.15. For k ≥ 1,

W ∗
1 (N,k) = θ2 · P N−2 · W ∗

1 (N − 1,k) +
N−1∑

i=k+1

θ N−i−1 · T1(i − 1,k) · B(i − 1, N − i − 1) · (P N−i−1)!,

with initial condition W ∗
1 (k + 1, k) = 0 and W ∗

1 (k + 2, k) = (Pk)!.

Proof. If the value in the last position is N − 1, then the permutation cannot be k-winnable as (N appears before N − 1
and the value N − 1 is never going to be picked as a left-to-right maximum). Thus, we have to consider two cases for a 
k-winnable permutation π ∈ SN .

Case 1. The last position in π is one of the values i = 1, 2, . . . , N − 2. This contributes N − i to the inversion count and we 
may view the remaining entries as some k-winnable π̃ ∈ SN−1. These contribute W ∗

1 (N − 1, k) · (θ N−1 + θ N−2 + . . . + θ2) =
θ2 · P N−2 · W ∗

1 (N − 1, k) to W ∗
1 (N, k).

Case 2. The entry in the last position of π is N . The value N − 1 must therefore be in positions [k + 1, N − 1], say i. Then, 
the entries in positions [1, i − 1] form a non-k-pickable permutation and there are no restrictions on the values in positions 
[i + 1, N − 1]. Therefore, when N − 1 is at position i ∈ [k + 1, N − 1], T1(i − 1, k) counts inversions in positions [1, i − 1], 
B(i − 1, N − i − 1) counts the inversion in between, (P N−i−1)! counts the inversions for positions [i + 1, N − 1], and θ N−i−1

counts the inversions created by the value N − 1 and values at positions in [i + 1, N − 1].
When there are k + 1 values, it is impossible to win using the strategy that rejects the first k positions and accepts the 

next left-to-right maximum. When there are k + 2 values, the only case when we can win by rejecting the first k positions 
and accepting the next left-to-right maximum is when the value in the (k + 1)th position is N − 1 = k + 1 and the value in 
the kth position is N = k + 2, while the remaining positions capture an arbitrary permutation in Sk . �

The above recurrence relation can be solved for and the closed form expression is presented in the result below.

Theorem 4.16. For N ≥ k + 2,

W ∗
1 (N,k) = (P N−2)! · θ N−k−2 · (1 − θ N−k−1

1 − θ
+ 1 − θ N−k−2

1 − θ

1 − θk

1 − θk+1
+ 1 − θ N−k−3

1 − θ

1 − θk

1 − θk+2
+ . . .

+ 1 − θ2

1 − θ

1 − θk

1 − θ N−3
+ 1 − θ

1 − θ

1 − θk

1 − θ N−2
),

and W ∗
1 (k + 1, k) = 0 and W ∗

1 (k + 2, k) = (Pk)!.

Proof. We first evaluate the sum in the recurrence relation of Theorem 4.15. We have

f (N) :=
N−1∑

i=k+1

θ N−i−1 · T1(i − 1,k) · B(i − 1, N − i − 1) · (P N−i−1)! =
N−1∑

i=k+1

θ N−i−1 · T1(i − 1,k) · (P N−2)!
(Pi−1)!

= θ N−k−2 · (Pk)! · (P N−2)!
(Pk)! + θ N−k−3 · θ Pk · (Pk)! · (P N−2)!

(Pk+1)! + θ N−k−4 · θ2 · Pk · (Pk+1)! · (P N−2)!
(Pk+2)! + . . .

+ θ N−k−2 · Pk · (P N−3)! · (P N−2)!
(P N−2)! = θ N−k−2 · (P N−2)! · (1 + Pk

Pk+1
+ Pk

Pk+2
+ . . . + Pk

P N−2
).

Similarly to what was done in the proof in Theorem 4.9, we can obtain the stated result after some simplification. �
The game winning probability of our strategy is then W ∗

1 (N, k) plus the probability that no selection was made before 
the last position and N − 1 appears at the last position, which is

W1(N,k) = W ∗
1 (N,k) + θ · T1(N − 1,k), where k ≤ N − 1.

Theorem 4.17. When 0 < θ < 1
2 , the optimal strategy as N tends to infinity is to reject all but the last two candidates and then 

accept the next left-to-right maximum and if no selection is made before the last position then accept the last position. The maximum 
probability of winning is (1 − θ)(1 − θ + θ2) (See Fig. 5).

Proof. The proof is postponed to Appendix A. �
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Fig. 5. Probability of winning using the optimal strategy for a Mallows distribution with 0 < θ ≤ 1
2 .

4.3. Precise result for Case 3.3

By Case 3.3 described in Section 3.3, we know that the optimal strategy is a (k1, k2)-strategy or a (k2, k1)-strategy such 
that 0 ≤ k1, k2 ≤ N − 2. We show in this subsection that N − k1 �→ ∞ and N − k2 �→ ∞ for both strategies. By Theorem 3.7, 
we know k1 ≤ k2 and thus only Case 3.3.2 in Section 3.3 can occur.

We call a permutation π ∈ SN (k1, k2)-winnable if it results in a win using the (k1, k2)-strategy, i.e., by rejecting the first 
k1 candidates then accept the next left-to-right maximum thereafter or rejecting the first k2 candidates then accept the 
next left-to-right second-maximum thereafter, whichever appears first. Let W1(N, k1, k2) stand for∑

(k1,k2)−winnable permutations π∈S N

θ#inversions in π .

Throughout this section, we call a permutation π ∈ SN (k1, k2)-pickable if it results in one selection using the (k1, k2)-
strategy.

Let T1(N, k1, k2) stand for∑
non-(k1,k2)−pickable permutations π∈S N

θ#inversions in π .

Recall that we know T1(N, 0) = 0 and for k1 ≥ 1, N ≥ k1,

T1(N,k1) = (θ N−1 + . . . + θ N−k1) · (P N−1)! = θ N−k1 · Pk1 · (P N−1)!.

Lemma 4.18. For N ≥ k2 ,

T1(N,k1,k2) = θ2N−k1−k2 · Pk1 · Pk2−1 · (P N−2)!.

Proof. Let π ∈ SN be non-(k1, k2)-pickable. Then the value N must be positioned in [1, k1] and the value N − 1 must be 
positioned in [1, k2]. There are no restrictions on the other values. Thus, we have

T1(N,k1,k2) = (θ N−1 + . . . + θ N−k1) · (θ N−2 + θ N−3 + . . . + θ N−k2) · (P N−2)!
= θ2N−k1−k2 · Pk1 · Pk2−1 · (P N−2)!. �

Theorem 4.19. For k1 ≤ k2 ≤ N − 2,

W1(N,k1,k2) = θ2 · P N−2 · W1(N − 1,k1,k2) + θ · T1(N − 1,k1,k2)

+
k2+1∑

i=k1+1

θ N−i−1 · T1(i − 1,k1) · B(i − 1, N − i − 1) · (P N−i−1)!

+
N−1∑

θ N−i−1 · T1(i − 1,k1,k2) · B(i − 1, N − i − 1) · (P N−i−1)!.

i=k2+2
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Proof. The proof is postponed to Appendix A. �
We can solve the recurrence relation in Theorem 4.19 as described in the result to follow.

Theorem 4.20. For k1 ≤ k2 ≤ N − 3,

W1(N,k1,k2) = θ N−k1−2 · Pk1 · (P N−2)! · (θ N−k2+1 + θ N−k2+1 · Pk2−1 ·
N−2∑
i=k2

1

Pi

+
k2∑

i=k1

P N−i−1

Pi
+ θ · Pk2−1 ·

N−3∑
i=k2

θ i−k2 · P N−i−2

Pi · Pi+1
).

Moreover, when N = k2 + 1 we have

W1(k2 + 1,k1,k2) = (Pk2−1)! · Pk1 · θk2−k1−1 · (θ2 +
k2−1∑

k1

Pk2−i

P i
); and when N = k2 + 2

W1(k2 + 2,k1,k2) = θ N−k1−2 · Pk1 · (P N−2)! ·
⎛
⎝θ N−k2+1 + θ N−k2+1 · Pk2−1

Pk2

+
k2∑

i=k1

P N−i−1

Pi

⎞
⎠ .

Proof. The proof is postponed to Appendix A. �
We did not consider the case when k1 = 0 since it means that we are using a strategy that accepts the first candidate. 

The probability of winning with this strategy equals

θ N−2 · (P N−1)!
(P N)! = θ N−2 · (1 − θ)

1 − θ N
→ 0 as N → ∞,

1

2
< θ < 1.

Theorem 4.21. For 1
2 < θ < 1, 1 ≤ k1 ≤ k2 ≤ N − 2, and N → ∞, the optimal (k1, k2)-strategy is to have k1 = k1(θ) and k2 = k2(θ)

for some functions k1(θ) and k2(θ) such that N − k1(θ) �→ ∞ and N − k2(θ) �→ ∞ (Numerical results are presented after the proof).
Define x := N − k1 �→ ∞ and y := N − k2 �→ ∞. The probability of winning equals

f (x, y) := θ x−2 · (1 − θ) · (θ y+1 + θ y+1 · (y − 1) + (x − y + 1 − θ y−1 · 1 − θ x−y+1

1 − θ
)

+ θ · (1 − θ y−2

1 − θ
− θ y−2 · (y − 2))).

Proof. The proof is postponed to Appendix A. �
We define the (k2, k1)-strategy with k2 ≤ k1 ≤ N − 2 to be the strategy that rejects the first k2 candidates then accepts 

the next left-to-right second-maximum thereafter or rejects the first k1 candidates and then accepts the next left-to-right 
maximum thereafter, whichever appears first.

We can also similarly define a (k2, k1)-pickable permutation π ∈ SN , T2(N, k2, k1), and W2(N, k2, k1). By arguments 
similar to those used in Lemma 4.18, Theorem 4.19, 4.20, and 4.21, we can prove Theorem 4.22. The proof is postponed to 
Appendix A.

Theorem 4.22. For 1
2 < θ < 1, N → ∞, the optimal (k2, k1)-strategy is to have k1 = k1(θ) and k2 = k2(θ) for some functions k1(θ)

and k2(θ) such that N − k1(θ) �→ ∞ and N − k2(θ) �→ ∞.

By Theorem 3.7, every Type I prefix of length longer than k2(θ) is positive. Therefore, we have k1(θ) ≤ k2(θ) and conclude 
that the optimal strategy is the (k1(θ), k2(θ))-strategy, i.e., we reject the first k1(θ) candidates and then accept the next 
left-to-right maximum thereafter or reject the first k2(θ) ≥ k1(θ) candidates and then accept the next left-to-right second-
maximum thereafter, whichever appears first.

Since for f (x, y) as defined in Theorem 4.21 we have that x and y must both be integers, and since f (x, y) → 0 as x →
∞ and y → ∞, we can pick a large number (say, 100) as an upper bound for x and y; and, for each θ ∈ {0.51, 0.52, . . . , 0.99}
use brute force search to find the maximum of f (x, y) subject to the constraint 1 ≤ y ≤ x ≤ 100. (The number 100 is large 
enough as we also ran computer simulations to find the maximum of f (x, y) subject to 1 ≤ y ≤ x without restricting 
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Fig. 6. Probability of winning using the optimal strategy for a Mallows distribution with 1
2 < θ < 1.

Table 2
Maximum winning probabilities and optimal strategies for 1

2 < θ < 1.

θ x = N − k1 y = N − k2 f (x, y) θ x = N − k1 y = N − k2 f (x, y)

0.51 3 2 0.37365098 0.76 4 3 0.30035513
0.52 3 2 0.37210767 0.77 4 3 0.29758801
0.53 3 2 0.37037533 0.78 5 3 0.29534636
0.54 3 2 0.36845868 0.79 5 3 0.29278142
0.55 3 2 0.36636187 0.80 5 3 0.28950528
0.56 3 2 0.36408852 0.81 5 4 0.28636405
0.57 3 2 0.36164162 0.82 5 4 0.28475072
0.58 3 2 0.35902353 0.83 6 4 0.28323769
0.59 3 2 0.35623597 0.84 6 4 0.2807399
0.60 3 2 0.35328 0.85 6 5 0.27723561
0.61 3 2 0.35015597 0.86 7 5 0.27631243
0.62 3 2 0.34686351 0.87 7 5 0.27407495
0.63 3 2 0.34340152 0.88 8 6 0.27172552
0.64 3 2 0.33976812 0.89 8 6 0.26989821
0.65 3 2 0.33596062 0.90 9 7 0.26791563
0.66 3 2 0.33197556 0.91 10 8 0.26567038
0.67 3 2 0.32780861 0.92 11 9 0.26372892
0.68 3 2 0.32345457 0.93 12 10 0.26203596
0.69 4 2 0.31915211 0.94 14 11 0.2601134
0.70 4 2 0.316491 0.95 17 14 0.25839363
0.71 4 2 0.31340159 0.96 21 17 0.25663997
0.72 4 2 0.30987746 0.97 27 23 0.25492095
0.73 4 3 0.30605788 0.98 39 35 0.25320664
0.74 4 3 0.30456693 0.99 76 69 0.25158519
0.75 4 3 0.30267334

ourselves to integer values of x and y; it turns out that the x, y which realize the maximum of f (x, y) obtained with 
integer constraints are floors or ceilings of the x, y that maximize f (x, y) without the integer constraints.)

The optimal strategy is a (k1, k2)-strategy for some k1 ≤ k2 such that both N − k1 and N − k2 �→ ∞ (See Fig. 6 and 
Table 2). Note that as x → ∞, y → ∞, we have that the probability of winning → 0.25 as θ → 1, which matches the 
well-known result for θ = 1 and also the (same and more detailed) result by our approach presented in Remark 4.12.

The results of our analysis are summarized in Fig. 7, depicting the maximum probability of winning versus the value of 
θ > 0.

Remark 4.23. An interesting open question is to find the optimal strategy for identifying the kth-best candidate when can-
didates are presented according to the Mallows distribution. We believe that the problem may be addressed using similar 
proof techniques.
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Fig. 7. Probability of winning using the optimal strategy for a Mallows distribution with θ > 0.
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Appendix A

Proof of Claim 3.2. Since (15) can be written as

Q 2(k − 1) = Q 2(k) · θ2 · Pk−2 and we know that Q 2(N) = θ,

we can solve the recurrence relation (details are omitted) to obtain the claimed formula. �
Proof of Claim 3.3. By Claim 3.2 and (13) it holds

Q 1(k − 1) = Q 1(k) · θ · Pk−1 + 1

θ
· Q 2(k).

Solving the recurrence (details are omitted) proves the claim. �
Proof of Theorem 3.7. Since N − k �→ ∞, we know that k → ∞ and (12), (13), (14), (15) become

Q o
1 (k − 1) = Q̄ 1(k) + Q̄ 2(k) + Q o

1 (k) · θ2

1 − θ
, (26)

Q 1(k − 1) = Q 1(k) · θ

1 − θ
+ 1

θ
· Q 2(k), (27)

Q o
2 (k − 1) = Q̄ 1(k) · θ + Q̄ 2(k) · θ + Q o

2 (k) · θ2

1 − θ
, (28)

Q 2(k − 1) = Q 2(k) · θ2

1 − θ
, (29)

respectively. When N − k = 0, Q 2(N) = θ > 0 = Q o
2 (N) and Q 1(N) = 0 ≥ 0 = Q o

1 (N).
We prove the Theorem by induction. We first examine the base case N − k = 1, for which

Q 2(N − 1) = θ N + . . . + θ3 > θ2 = Q o
2 (N − 1)

since 1
2 < θ < 1 and Q 1(N − 1) = θ0 = 1 > θ = Q o

1 (N − 1).

Now we assume the argument applies for k̂ ≥ N − ( j − 1) and prove it for k′ = N − j. By the induction hypothesis, we 
have Q 2(k′) = Q 2(N − j) > (≥) Q o(N − j) = Q o(k′).
2 2
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Claim A.1. Under the assumptions 1) j = N − k′ �→ ∞, 2) for all N − 1 ≥ k̂ ≥ N − ( j − 1), Q 2(k̂) > (≥) Q o
2 (k̂) and Q 1(k̂) > (≥)

Q o
1 (k̂), and 3) Q 2(N − j) > (≥) Q o

2 (N − j), we have

Q o
1 (N − j) = j · θ2 j−1

(1 − θ) j−1
+ θ2 j−4 · P1 + . . . + θ j−2 · P j−1

(1 − θ) j−2
and Q o

2 (N − j) = θ · Q o
1 (N − j).

Proof. By the assumptions of the claim, (26) and (28) reduce to

Q o
1 (k − 1) = Q 1(k) + Q 2(k) + Q o

1 (k) · θ2

1 − θ
, (30)

Q o
2 (k − 1) = Q 1(k) · θ + Q 2(k) · θ + Q o

2 (k) · θ2

1 − θ
, (31)

and we can solve the recurrence using the formulas for Q 1 and Q 2 provided in Claim 3.2 and Claim 3.3 with the additional 
conditions that N → ∞ and N − k �→ ∞, and some simple algebra (which we omitted). �

Under the assumption Q 2(N − j) > (≥) Q o
2 (N − j), we define h1( j) as

h1( j) := ( j + 1) · θ j+2 − j · θ j+1 − ( j − 1) · θ j + j · θ j−1 − 1 (32)

so that h1( j) > (≥) 0. We want to show that Q 1(N − j) > (≥) Q o
1 (N − j), which is equivalent to h2( j) > (≥) 0 with

h2( j) := j · θ j+2 − ( j + 1) · θ j+1 − ( j − 1) · θ j + j · θ j−1 + θ − 1. (33)

To complete the proof, we need to establish Claim A.2.

Claim A.2. For any given 1
2 < θ < 1, both equalities h1( j) = 0 and h2( j) = 0 (with h1( j), h2( j) defined in (32) and (33)) have exactly 

one real positive root, which we write as j1(θ) and j2(θ); the inequalities h1( j) > (≥) 0 and h2( j) > (≥) 0 hold for 0 < j < (≤) j1(θ)

and 0 < j < (≤) j2(θ), respectively. Moreover, we always have j2(θ) > j1(θ).

Proof. We first show that both equations have exactly one root. The root of (32) may be viewed as the intersection of 
f1( j) = j · (θ3 − θ2 − θ + 1) + θ3 + θ and f2( j) = ( 1

θ
) j−1. The function f1 is linear in j, with positive slope θ3 − θ2 − θ + 1 =

(θ − 1)2 · (θ + 1) and positive intersection value θ3 + θ (at j = 0); The function f2 is an exponential function with base 
1/θ > 1 and intersection value θ < θ3 +θ (at j = 0). Therefore, f1 and f2 only have one real positive intersection and h1 > 0
for 0 < j < j1(θ) (by graphing).

Similarly, the root of (33) may be viewed as the intersection of g1( j) = j · (θ3 − θ2 − θ +1) + θ − θ2 and g2( j) = (θ − θ2) ·
( 1

θ
) j . Their intersection at j = 0 are both equal to θ − θ2 and the slope for g1 at j = 0 is θ3 − θ2 − θ + 1 = (θ − 1)2 · (θ + 1), 

which is always larger than the slope of g2 at j = 0, i.e., − ln θ ·(θ −θ2) for 1
2 < θ < 1. The proof is omitted, as it follows from 

simple calculus. Therefore, g1 and g2 only have one real positive intersection and h2 > 0 for 0 < j < j2(θ) (by graphing).
We next show that h2( j1(θ)) > 0 for every 1

2 < θ < 1. Setting h1 = 0, and plugging j1(θ) into h2 shows that h2( j1(θ)) > 0
is equivalent to

1 − θ j1(θ) − θ j1(θ)+1 > 0, for all 1/2 < θ < 1. (34)

Let h3( j) = 1 − θ j − θ j+1. The function h3 has exactly one positive real root j3(θ) = − ln (1+θ)
ln θ

and h3(0) = −θ < 0 when 
1
2 < θ < 1. If we can show that j3(θ) > j1(θ) for all 1/2 < θ < 1 then (34) is true; equivalently, if we can show that 
h1( j3(θ)) > 0, then our claim follows.

To prove this, we show that

h1( j3(θ)) = ( j3(θ) + 1) · θ3 − j3(θ) · θ2 − ( j3(θ) − 1) · θ + j3(θ) − θ − θ2

θ(1 + θ)

= (θ − 1) · ( j3(θ) · θ2 + θ2 − j3(θ))

θ(1 + θ)
> 0,

i.e. j3(θ) · θ2 + θ2 − j3(θ) < 0, which is equivalent to showing that j3(θ) = − ln (1+θ)
ln θ

> θ2

1−θ2 . We omit the proof of the fact 
that

− ln (1 + θ)

ln θ
>

θ2

1 − θ2
, when 1/2 < θ < 1;

simple calculus or computer verification can be used to verify that this fact is true. �
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Proof of Theorem 4.17. From Theorem 4.15 and by simplifying the previous expressions, we arrive at

W1(N,k)

(P N)! = θ N−k−2 · (1 − θ)2

(1 − θ N)(1 − θ N−1)
· (1 − θ N−k−1

1 − θ
+ 1 − θ N−k−2

1 − θ

1 − θk

1 − θk+1
+ 1 − θ N−k−3

1 − θ

1 − θk

1 − θk+2
+ . . .

+ 1 − θ2

1 − θ

1 − θk

1 − θ N−3
+ 1 − θ

1 − θ

1 − θk

1 − θ N−2
) + θ N−k · (1 − θ)(1 − θk)

(1 − θ N)(1 − θ N−1)
.

Let N → ∞ and consider the following two cases.

Case 1. N −k → ∞. Since θ < 1
2 , θ N−k−2 → 0 exponentially, (1−θ)2

(1−θ N )(1−θ N−1)
→ (1 − θ)2 ≤ 1, and each term in the sum within 

the parentheses is bounded above by 2; thus, the sum under parentheses is bounded by 2(N −k −1), and (1 −θ)(1 −θk) ≤ 2. 
Hence, W1(N,k)

(P N )! → 0.

Case 2. N − k �→ ∞. Then we must have k → ∞. If N − k = 1 then W ∗
1 (N,k)

(P N )! is zero since the strategy “reject all but the last 
candidate and then pick the next left-to-right maximum” only makes a selection when N appears in the last position, and 
this selection results in a loss; thus, if N −k = 1 the best strategy is to simply just accept the last candidate and in this case 
the probability of winning is

θ · (P N−1)!
(P N)! = θ · 1 − θ

1 − θ N
→ θ(1 − θ) as N → ∞.

For N − k ≥ 2,

W ∗
1 (N,k)

(P N)! → θ N−k−2 · (1 − θ)2 · (1 − θ N−k−1

1 − θ
+ 1 − θ N−k−2

1 − θ
+ . . . + 1 − θ2

1 − θ
+ 1 − θ

1 − θ
) + θ N−k · (1 − θ)

= θ N−k−2 · (1 − θ) · (N − k − 1 − θ · 1 − θ N−k−1

1 − θ
) + θ N−k · (1 − θ)

x:=N−k= θ x−2 · ((x − 1)(1 − θ) − θ · (1 − θ x−1)) + θ x · (1 − θ).

Since when N − k = 2, the probability converges to (1 − θ)2 + θ2(1 − θ) > θ(1 − θ) when 0 < θ < 1
2 . Thus, we only need 

to consider the cases when N − k ≥ 2. Let

f (x, θ) := θ x−2 · ((x − 1)(1 − θ) − θ · (1 − θ x−1)) + θ x · (1 − θ).

Claim A.3. For x ≥ 3 and fixed 0 < θ < 1
2 , we have

f (x + 1, θ) − f (x, θ) < 0.

Proof. Since 0 < θ < 1
2 and x ≥ 3,

f (x + 1, θ) − f (x, θ) = x(1 − θ)θ x−1 − θ x + θ2x − (x − 1)(1 − θ)θ x−2 + θ x−1 − θ2x−2 + (θ x+1 − θ x)(1 − θ)

= θ x−2 · (1 − θ) · (−x(1 − θ) + (1 + θ) − (1 + θ) · θ x) + (θ x+1 − θ x)(1 − θ)

< θ x−2 · (1 − θ) · ((1 + θ) − x(1 − θ)) + (θ x+1 − θ x)(1 − θ)

≤ θ x−2 · (1 − θ) · ((1 + θ) − 3(1 − θ)) + (θ x+1 − θ x)(1 − θ)

= θ x−2 · (1 − θ) · (4θ − 2) + (θ x+1 − θ x)(1 − θ) < 0. �
Thus we only need to compare f (2, θ) and f (3, θ). It turns out that

f (2, θ) − f (3, θ) = (1 − θ + θ2)(1 − θ) − (2θ − θ2)(1 − θ) = (1 − 2θ)(1 − θ)2 > 0,

for all 0 < θ < 1
2 . Therefore, the optimal strategy is to reject all but the last two candidates and then accept the next left-

to-right maximum; if no selection is made before the last position then the only option is to accept the last position. The 
maximum probability of winning is (1 − θ)(1 − θ + θ2) (See Fig. 5). �
Proof of Theorem 4.19. We need to consider three cases depending on the value in the last position.
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Case 1. The last position has a value i ∈ {1, 2, . . . , N − 2}. These contribute θ N−i to the sum. The positions in [1, N − 1] may 
be viewed as a (k1, k2)-winnable permutation in SN−1. Thus, together, these contribute (θ N−1 + θ N−2 + . . . + θ2) · W1(N −
1, k1, k2) to the expression of interest.

Case 2. The last position is occupied by the value N − 1. This contributes θ to the sum. The elements at positions [1, N − 1]
must form a non-(k1, k2)-pickable permutation, with a contribution of T1(N − 1, k1, k2).

Case 3. The last position is occupied by the value N . Then the value N − 1 is at a position i ∈ [k1 + 1, N − 1]. The positions 
[1, i − 1] form a non-(k1, k2)-pickable permutation if i ≥ k2 + 2, which contributes T1(i − 1, k1, k2) to the expression of 
interest; and, a non-k1-pickable permutation if k1 + 1 ≤ i ≤ k2 + 1, which contributes T1(i − 1, k1) in this case. Furthermore, 
B(i − 1, N − i − 1) counts the inversions in-between. There are no restrictions on the positions in [i + 1, N − 1] and these 
contribute (P N−i−1)! . The value N − 1 at position i contributes θ N−i−1. �
Proof of Theorem 4.20. For N = k2 + 1, the only differences between the sets of (k1, k2)-winnable and k1-winnable permu-
tations are those permutations with value k2 (which equals N − 1 in this case) at position k2 + 1 (which equals N in this 
case) and the value k2 + 1 (which equals N in this case) at a position in [1, k1]. Thus, we have

W1(k2 + 1,k1,k2) = W1(k2 + 1,k1) + (θk2 + . . . + θk2+1−k1) · (Pk2−1)!.
Similarly to what we did for the proof of Theorem 4.16 we can solve for the case when N ≥ k2 + 2. This completes the 

proof. �
Proof of Theorem 4.21. Let N → ∞. Then

W1(N,k1,k2)

(P N)! = θ N−k1−2 · Pk1

P N−1 · P N
· (θ N−k2+1 + θ N−k2+1 · Pk2−1 ·

N−2∑
i=k2

1

Pi

+
k2∑

i=k1

P N−i−1

Pi
+ θ · Pk2−1 ·

N−3∑
i=k2

θ i−k2 · P N−i−2

Pi · Pi+1
) → θ N−k1−2 · (1 − θk1) · (1 − θ)·

(
θ N−k2+1 + θ N−k2+1 · (1 − θk2−1

1 − θk2
+ . . . + 1 − θk2−1

1 − θ N−2 ) + (
1 − θ N−k1−1

1 − θk1
+ . . . + 1 − θ N−k2−1

1 − θk2

)

+θ · (1 − θk2−1) ·
(

1 · (1 − θ N−k2−2)

(1 − θk2) · (1 − θk2+1)
+ θ · (1 − θ N−k2−3)

(1 − θk2+1) · (1 − θk2+2)
+ . . . + θ N−k2−3 · (1 − θ)

(1 − θ N−3) · (1 − θ N−2)
)

)
. (35)

Case 1. N − k1 → ∞. Since 1
2 < θ < 1, θ N−k1−2 → 0 exponentially. We hence have (35) is upper-bounded by

θ N−k1−2 · (1 + 1 · (N − k2 − 1)) + k2 − k1 + 1

1 − θ
+ N − k2 − 2

(1 − θ)2
) → 0.

Case 2. N − k1 �→ ∞. Then N − k2 �→ ∞, k1 → ∞, and k2 → ∞.
Let x = N − k1 and y = N − k2. Then (35) converges to

f (x, y) = θ x−2 · (1 − θ) · (θ y+1 + θ y+1 · (y − 1) + (x − y + 1 − θ y−1 · 1 − θ x−y+1

1 − θ
)

+ θ · (1 − θ y−2

1 − θ
− θ y−2 · (y − 2))). �

The Proof of Theorem 4.22. We call a permutation π ∈ SN (k2, k1)-winnable if it results in a win using the (k2, k1)-strategy. 
Let W2(N, k2, k1) denote∑

(k2,k1)−winnable permutations π∈S N

θ#inversions in π .

Throughout this subsection, we call a permutation π ∈ SN (k2, k1)-pickable if it results in at least one selection using 
the (k2, k1)-strategy. Let T2(N, k2, k1) denote∑

non−(k2,k1)−pickable permutations π∈S N

θ#inversions in π .
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Recall that by Lemma 4.6 and Remark 4.7 we have T2(k, k) = (Pk)! and when N ≥ k + 1 and k ≥ 0,

T2(N,k) = (Pk)! · (1 + θ2 · Pk−1) · (1 + θ2 · Pk) · . . . · (1 + θ2 · P N−2). (36)

Lemma A.4. For N ≥ k1 ,

T2(N,k2,k1) = θ2N−2k1 · (P N−2)!
(Pk1−2)! · T2(k1,k2).

Proof. Let π ∈ SN be non-(k2, k1)-pickable. Then the value N must be in [1, k1] since otherwise it would be picked as a 
left-to-right maximum if no selection was made before. The value N − 1 must also be in [1, k1] since otherwise it would be 
picked as a left-to-right second-maximum if no selection was made before.

The positions [1, k1] form a non-k2-pickable permutation and thus positions [1, k1] contribute T2(k1, k2) = (Pk)! · (1 +
θ2 · Pk−1) · (1 + θ2 · Pk) · . . . · (1 + θ2 · Pk1−2). Furthermore, each of the values N and N − 1 contribute θ N−k1 for the inversions 
involving positions [k1 + 1, N]. There are no restrictions for positions in [k1 + 1, N], and thus they contribute (P N−k1 )!. 
Moreover, B(k1 − 2, N − k1) counts the in-between inversions. Thus, together we have

T2(N,k2,k1) = θ2N−2k1 · T2(k1,k2) · B(k1 − 2, N − k1) · (P N−k1)! = θ2N−2k1 · (P N−2)!
(Pk1−2)! · T2(k1,k2). �

Lemma A.5. For k2 ≤ k1 ≤ N − 2,

W2(N,k2,k1) = θ2 · P N−2 · W2(N − 1,k2,k1) + θ · T2(N − 1,k2,k1)

+
N−1∑

i=k1+1

θ N−i−1 · T2(i − 1,k2,k1) · B(i − 1, N − i − 1) · [N − i − 1]!.

Proof. We have to address three cases depending on the value of the last position.

Case 1. The last position has values i ∈ {1, 2, . . . , N − 2}. They contribute θ N−i and the positions in [1, N − 1] can be viewed 
as a (k2, k1)-winnable permutation in SN−1. Thus, together, these contribute (θ N−1 + θ N−2 + . . . + θ2) · W2(N − 1, k2, k1).

Case 2. The last position is the value N − 1. The value N − 1 at the last position contributes θ . Then the positions [1, N − 1]
must form a non-(k2, k1)-pickable permutation. It contributes T2(N − 1, k2, k1).

Case 3. The last position has the value N . Then the value N − 1 is at some position i ∈ [k1 + 1, N − 1] since it must be 
picked as a left-to-right maximum. The positions [1, i − 1] form a non-(k2, k1)-pickable permutation and it contributes 
T2(i − 1, k2, k1). We also have B(i − 1, N − i − 1) counting the inversions between positions [1, i − 1] and [i + 1, N − 1]. 
There are no restrictions on positions in [i + 1, N − 1] and thus they contribute (P N−i−1)!. The value N − 1 at position i
contributes θ N−i−1 with respect to the positions [i + 1, N − 1]. �

It turns out that we can solve the recurrence relation in Lemma A.5. Recall that for k ≥ 1, we have

W2(N,k) = θ · T2(N,k) − θ2N−2k+1 · (P N−2)! · Pk · Pk−1

= θ · (Pk)! · {(1 + θ2 · P N−2)(1 + θ2 · P N−3) · · · (1 + θ2 · Pk) · (1 + θ2 · Pk−1) − θ2N−2k · P N−2 · P N−3 · · · Pk−1}.
For k = 0, we have

W2(N,0) = θ · T2(N,0).

Lemma A.6. For k2 ≤ k1 ≤ N − 3,

W2(N,k2,k1) = (θ2N−2k1+1 · (P N−2)!
(Pk1−2)! + θ2N−2k1−1 · (P N−2)!

(Pk1−2)! ·
N−2∑

i=k1−1

1

Pi

+θ N−k1−2 · (P N−2)!
(Pk1−2)! ·

N−3∑
i=k1−1

θ i−k1+1 · (1 + θ + . . . + θ N−i−3)

Pi · Pi+1
) · T2(k1,k2) − θ2N−2k2+1 · (P N−2)! · Pk2 · Pk2−1.
66



X. Liu and O. Milenkovic Theoretical Computer Science 929 (2022) 39–68
Moreover, when N = k1 + 1,

W2(k1 + 1,k2,k1) = θ · (1 + θ2 · Pk1−1) · T2(k1,k2) − θ2k1−2k2+3 · (Pk1−1)! · Pk2 · Pk2−1; and when N = k1 + 2,

W2(k1 + 2,k2,k1) = (1 + θ3 · Pk1−1 + θ3 · Pk1 + θ5 · Pk1 · Pk1−1) · T (k1,k2) − θ2k1−2k2+5 · (Pk1)! · Pk2 · Pk2−1.

Proof. For N = k1 + 1, (k2, k1)-winnable permutations are the same as k2-winnable permutations. Thus,

W2(k1 + 1,k2,k1) = W2(k1 + 1,k2) = θ · (1 + θ2 · Pk1−1) · T2(k1,k2) − θ2k1−2k2+3 · (Pk1−1)! · Pk2 · Pk2−1.

Similarly to Theorem 4.16, we can solve for the case when N ≥ k1 +2 by invoking the recurrence relation in Theorem A.5. 
We omit the tedious simplification process. �

We are now ready to complete the proof of Theorem 4.22: Let N → ∞. By (36) and note that 1 + θ2 · Pk = Pk+2 − θ ,

W2(N,k2,k1)

(P N)! = T2(k1,k2)

(Pk1−2)! · (1 − θ)2

(1 − θ N) · (1 − θ N−1)
· (θ2N−2k1+1 + θ2N−2k1−1 · (1 − θ) ·

N−2∑
i=k1−1

1

1 − θ i

+ θ N−k1−2 ·
N−3∑

i=k1−1

(θ i−k1+1 − θ N−k1−1)(1 − θ)

(1 − θ i)(1 − θ i+1)
) − θ2N−2k2+1 · (1 − θk2)(1 − θk2−1)

(1 − θ N)(1 − θ N−1)

→ (1 − θ(1 − θ)

1 − θk2+1
) · · · (1 − θ(1 − θ)

1 − θk1−2
) · (1 − θk1−1 − θ + θ2) · (1 − θk1 − θ + θ2) · (θ2N−2k1+1

+ θ2N−2k1−1 · (1 − θ) ·
N−2∑

i=k1−1

1

1 − θ i

+ θ N−k1−2 ·
N−3∑

i=k1−1

(θ i−k1+1 − θ N−k1−1)(1 − θ)

(1 − θ i)(1 − θ i+1)
) − θ2N−2k2+1 · (1 − θk2) · (1 − θk2−1). (37)

When 1
2 < θ < 1,

(1 − θ(1 − θ)

1 − θk2+1
) · · · (1 − θ(1 − θ)

1 − θk1−2
) · (1 − θk1−1 − θ + θ2) · (1 − θk1 − θ + θ2) ≤ 4. (38)

Case 1. N − k1 → ∞. Then N − k2 → ∞. By (38), 1
2 < θ < 1, θ N−k1 and θ N−k2 → 0 exponentially, we have (37) → 0.

Case 2. N − k1 �→ ∞. Then k1 → ∞. We have to consider two subcases depending on whether N − k2 → ∞.

Case 2.1. N −k2 → ∞. Then k1 −k2 → ∞ and θ2N−2k2+1 · (1 −θk2 ) · (1 −θk2−1) → 0 exponentially. Again, we have to consider 
two subcases depending on whether k2 → ∞.

Case 2.1.1. k2 → ∞. Then since 0.75 < 1 − θ + θ2 < 1 when 1
2 < θ < 1,

(1 − θ(1 − θ)

1 − θk2+1
) · · · (1 − θ(1 − θ)

1 − θk1−2
) · (1 − θk1−1 − θ + θ2) · (1 − θk1 − θ + θ2) → (1 − θ + θ2)k1−k2 → 0

exponentially. Thus, we have (37) → 0.

Case 2.1.2. k2 �→ ∞. Then since (1 − θ(1−θ)

1−θk1−2 ) → 1 − θ + θ2, where 0.75 < 1 − θ + θ2 < 1, we have

(1 − θ(1 − θ)

1 − θk2+1
) · · · (1 − θ(1 − θ)

1 − θk1−2
) ≤ (1 − θ(1 − θ)

1 − θk1−2
)k1−k2−2 → 0 and thus (37) → 0.

Case 2.2. N − k2 �→ ∞. Then k2 → ∞ and

(37) → (1 − θ + θ2)k1−k2 · (θ2N−2k1+1 + θ2N−2k1−1 · (1 − θ) · (N − k1)

+ θ N−k1−2 · (1 − θ N−k1−1 − (N − k1 − 1) · θ N−k1−1 · (1 − θ)) − θ2N−2k2+1.
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Let x = N − k1, y = N − k2, and

(37) → (1 − θ + θ2)y−x · (θ2x+1 + θ2x−1 · (1 − θ) · x + θ x−2 · (1 − θ x−1 − (x − 1) · θ x−1 · (1 − θ))) − θ2y+1

=: g(x, y).

The maximum value of g(x, y) is positive and thus the optimal (k2, k1)-strategy must satisfy N − k1 �→ ∞ and N − k2 �→
∞. �
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