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Abstract—This paper proposes the extrinsic information trans-
fer (EXIT) method for the analysis of belief propagation in
community detection on random graphs, specifically under the
degree correlated stochastic block model. Belief propagation in
community detection has been studied under density evolution;
this work for the first time brings EXIT analysis to community
detection on random graphs, which has certain advantages that
are well documented in the parallel context of error control
coding. We show using simulations that in the case of equally-
sized communities, when the probability of connectivity in the
communities are different, there is only one intersection point,
hence belief propagation is optimal. When the probability of
connectivity in the communities are the same, we show that
belief propagation is equivalent to random guessing and the
curves intersect at the trivial zero-zero point. For the roughly
equal-sized communities, we show that there is always only one
intersection point, suggesting that belief propagation is optimal.
Finally, for the communities with disparate size, we show that
there are multiple intersection points, hence belief propagation
is likely to be sub-optimal.

Index Terms—Community detection, Stochastic block model,
Belief Propagation, Exit charts.

[. INTRODUCTION

The problem of learning community structures in random
graphs has been intensely studied in various fields: statis-
tics [1], [2], computer science [3], [4] and theoretical statistical
physics [5]. In these problems, a collection of vertices are
divided into several communities or clusters and then a random
graph is drawn in a way that is dependent on the community
assignment. The goal is to recover the underlying communities
from the observation of the graph. The problem of detect-
ing communities has many applications: finding like-minded
people in social networks [6], improving recommendation
systems [7], detecting protein complexes [8].

Several models are now being studied for random graphs
that exhibit a community structure; a survey can be found
in [9]. In this paper, we are interested in the binary degree cor-
related stochastic block model, which assumes that n vertices
are partitioned into two communities with edge probability
2 in the first community, = in the second community and
% between the two communities. If a # ¢, the vertex degrees
are stochastically correlated with the community structure, and
hence, the name of degree correlated stochastic block model.
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Different recovery regimes have been studied depending on
the scaling behavior of the parameters a, b and ¢ with n. We
present here two:

o Weak recovery: if the average degree is ©(1), the result-
ing graph will have at least a constant fraction of isolated
nodes, and hence one can only hope to find communities
that are positively correlated with the true one. In the
binary symmetric stochastic block model with a = ¢, it
was proved 1;21 [10] that weak recovery is possible if and
only if =0 > 2.

o Exact recovery: it is possible to recover all the com-
munities (up to a global flip) with high probability, if
the average degree is 2(logn). For results about exact
recovery phase transitions, see [11], [12].

Recently, a different question of what is the minimum
fraction of misclassified vertices on average was addressed
in [13] under the binary degree correlated stochastic block
model. Specifically, consider the following regime:

a=b+vVbu, c=b+Vbu, b=nD (1)

for fixed constants 1 and v. Under this regime, the authors
showed that for the case of equally sized communities and
1 # v, the minimum fraction of misclassified on average is
Q(v/v*), where Q(x) is the Q-function of the standard normal,
v* is the unique fixed point of v = % + % E[tanh(v+
VvZ))], and Z is standard normal. They also showed that this
minimum value can be attained by a local algorithm, namely
belief propagation.

Density evolution, however, is complex and does not easily
offer a great deal of insight into the operation of message
passing algorithms, e.g. belief propagation [14]. This is due to
the fact that calculating and tracking the densities in general
can be complicated. An alternative approach is to track the
mutual information at each iteration. This is done via extrinsic
information transfer (EXIT) charts. Not only EXIT charts
provide reduction in complexity, but also is more insightful.
In fact, by observing the EXIT chart, one can predict: whether
the decoder will fail or not, approximation of the number
of iterations needed to decode, approximation of the error
probability. Moreover, EXIT charts have the advantage of the
information theoretic interpretation [14].

Based on the above observations, in this paper we propose
EXIT analysis of the degree correlated stochastic block model.
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To the extent of our knowledge, this is the first time EXIT
charts are used in the context of community detection under
the stochastic block model. To show the effectiveness of the
approximations done using EXIT charts, we corroborate the
results of [13], where we show through simulations that:

« For the case of equal sized (balanced) communities and
1 # v, there is only one intersection point in the EXIT
chart and that the curves are concave, and hence belief
propagation is optimal. We also show that as the differ-
ence between p and v increases, the intersection point
approaches the maximum of the mutual information, i.e.
fraction of misclassified nodes decreases. Moreover, we
calculate an approximation of the fraction of misclassified
nodes from the EXIT charts, and show that it is a
good approximation by comparing it to the exact values
calculated in [13].

o For the case of balanced communities and y = v,
we show that the local belief propagation will always
fail, since the EXIT chart will have the trivial (0,0)
intersection point. However, we show from the figures
the phase transition threshold for the weak recovery case,
where we show that if ;1 = v > 2, there is always another
intersection point other than the (0,0) point, which can
not be achieved via a local algorithm, though.

« For the roughly balanced case, we show that local belief
propagation can still be optimal, i.e. only one intersection
point. On the other hand, if the communities are signifi-
cantly unbalanced, local belief propagation can be strictly
sub-optimal, i.e. multiple intersection points.

The paper is organized as follows: In section II, the system
model is presented. In section III, the belief propagation algo-
rithm introduced in [13] is reviewed and the EXIT analysis are
presented. The simulation results are presented in section IV.
Finally, we conclude in section V.

II. SYSTEM MODEL

In this paper, we consider the binary degree correlated
stochastic block model. We have n nodes partitioned into
two communities. Each node is assigned independently to
the first community with probability p € (0,1) and to the
second community with probability 1— p. After the assignment
of nodes, each two nodes are connected independently with
probability % if the two nodes are assigned to the first
community, with probability = if they are assigned to the
second community, and % if they are assigned to different
communities.

We denote the observed graph by G = (V,E), and the
vector of nodes’ assignment by x, where x; = 1 if node ¢
belongs to the first community and x; = —1 if it belongs
to the second community, for i € {1,--- ,n}. The goal is to
recover the node assignment x from the observation of G.
Finally, we assume that p is fixed and that a, b and ¢ follow
regime (1). Note that since we are working in regime (1), exact
recovery is not possible [13], and hence, one could ask what
is the minimum fraction of misclassified vertices on average.

III. EXIT CHART ANALYSIS

Before we begin characterizing the mutual information, we
need to briefly review Algorithm 1 presented in [13]. This
algorithm is a local iterative belief propagation algorithm,
where after t iterations, the belief of node 7 € G is defined as:

gt o+ A =p)) = (pat (1
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where N (i) is the set of neighbors of node i, F(z) =
1 log(ﬁglﬁf) and R’ ~L are the messages transmitted
from node j to node i in the (t 1)-th iteration and are defined

as:

Rt~ 1 (pb+ (A =p)e)—(pa+(1-p
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After t iterations, each node i uses its belief R! to estimate
its community assignment £! using:
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where ¢ = % log 72-. Note that R! is not the exact log-
likelihood ratlo of node i. However, the authors proved that
in regime (1), the observed graph is locally tree-like [10].
Thus, the community detection problem can be replaced by
the reconstruction problem on trees, for which belief prop-
agation is known to be optimal, i.e. achieves the maximum
likelihood performance [13]. Then, the authors used density
evolution [15] to analyze the performance of belief propaga-
tion on trees, where they showed that conditioned on the label
of node x; = =1, the belief at iteration t follows a normal
distribution with mean +v! and variance v?, where:

o' = 0 + AE[tanh(v' ! + Vui=1Z + ¢)] ®)

—v)? 1-2p)v?
:O’gzﬂ(#s) 4+ ¢ 4,0

where Z ~ N(0,1), »°
\ = p(#;—V)Q_
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Based on the above results, we introduce EXIT analysis for
the degree correlated stochastic block model. To exploit EXIT
charts, we calculate the mutual information between the label
x; and the belief R! as follows:

(s, R}) = H(x:) — H(i| R;)
—(y—v")?
o o ot (1—ple2
=Hp)—p | 7log L4+ —F——)dy
(P) — logs( , )
o == vf>2 2
e 20t pe v
—(1- ————logy(1 + ——)d
=0 | R )
(6)

where the last equation follows from the fact that x; ~
Bern(p) and that conditioned on z; = =41, R! is ~



N(£v!,v"). Note that for a fixed value of p, I(xz;, R}) is
function of v* only. Hence, we will denote it by J(v!).

For a given node i, at iteration t, it receives the beliefs of
all nodes j € N(i) calculated at iteration (t-1). We define
the input information to node i from node j as I;;,. Then,
node i computes the new information it has at iteration t. We
define this information as I,,;. Note that both I;, and I,
can be calculated using( 6) as J(v'~!) and J(v?), respectively.
Since J(v?) is monotonically increasing in vt [16], J(v?) is
reversible. Thus, v* = J~1(I(z;, RY)). Moreover, since v*~!
and v! are related by (5), we can define the relation between
I;, and I,,; for node i as:

Tyt = J(0 + AE[tanh(J Y (I;,) + /T2 (Iin) Z + 0)] (7)

Note that there is a fundamental difference between using
EXIT charts in our context of community detection in stochas-
tic block models and the context of coding theory. In coding
theory, lets take Low Density Parity Checlk (LDPC) Codes as
an example, there is a variable node i connected to a check
node j. What variable node ¢ actually receives from a check
node j is how much the check node believes the value of the
variable node is one or zero (assuming binary transmission).
Thus, the input log-likelihood ratio received by variable node
i is actually calculated conditioned on the value of the variable
node i. In our context, the case is different. Each node i
receives the belief of node j. However, the belief of node j
is calculated conditioned on the value of node j, not the value
of node i. Hence, in our case, for a node i at iteration t, we
define I;;, = I(z;, Ré-_l), and I,y = I(z;, R!). Note that one
can define I, = I(z;, Rtfl), which can be easily calculated
based on the facts that Rj_l, conditioned on the label of node
x; = +1, follows a normal distribution with mean +v*~! and
variance v'~! and that z; ~ 2 x Bern(, ) — 1(2 *
Bern(m) — 1) conditioned on x; = 1(—1). However,
since R;‘l is calculated at node j conditional on z;, not x;, it
is more intuitive to use ;, = I(z;, Rj-_l). In other words, by
using I, = I(x;, R;‘l), each point on the curve of the EXIT
chart reflects how much the information the belief of node j
carries about its value x; affects the information belief of node
i carries about its value x;. Another important difference is that
in coding theory, the intersection point (H(p), H(p)) always
exists on the exit chart. This is because in coding theory, both
the incoming and outgoing beliefs are calculated with respect
to the same node. Thus, if one belief reaches its maximum
of H(p), the other will reach its maximum too, since both
of them are beliefs about the value of the same node. In
our case, the incoming and outgoing beliefs are calculated
with respect to different nodes. Hence, we do not expect the
EXIT chart curves to intersect at (H(p), H(p)). This is also
expected, since exact recovery of all nodes in regime (1) is
not possible [13], and hence, the maximum of the mutual
information can’t be attained.

To compute J and J~!, we apply curve fitting using the
Levenberg Marquardt algorithm [17] to obtain:

H(p)(aj1v® +by1v? + cp1v), 0<v<w

J(’U) ~ H(/))(l _ eaJ,2U3+bJ,2’U2+CJ,2’U+dJ2)’ vy < v < vy
1, V> U
3)
TN ~ H(p)(ayaI? +byi I + o1 V), 0<I<I
—ay,2log[by2(H(p) — I)] — ¢y 21, I <I<H(p)
©)

where all the variables in the last two equations will be
defined in the simulations based on the value of p.
IV. SIMULATION RESULTS

In this section we use EXIT chart to characterize the
performance of the belief propagation algorithm for different
values of p, u, and v.

A. p=0.5

In this case (and the case of p = 0.3), we use the following
values for the parameters of equations (8) and (9):

ayy = 0.1405, by, = —0.3458, c¢j1 = 0.7206,
v1 =03, ayz=00032, byy=—0.5541,
cja=—0.1620, dj,=0.0472, vy = 10,

apa = 1.5657, by1 =1.1958, ¢, = 0.0403,
=04, a,5=1831, b,y =09484,

Co2 = 0.6196

(10

Figure 1 shows the EXIT curves at p = 0.5 for two cases:
= 3,v=2and g = 5,v = 2. From the figure, we can
conclude the following:

o The EXIT chart is symmetric. This is expected since the
exchange of beliefs is symmetric between the nodes. In
other words, if we reverse the role of nodes i and j, the
curves will not change.

o For both cases, the maximum point of the input and
output mutual information (1, 1) is not met. As discussed
before, this was expected, since for node i, the incoming
belief to it and the outgoing beliefs from it, are calculated
with respect to different nodes. Besides, in regime (1)
exact recovery is not possible anyway, and hence, the
mutual information can not reach its maximum.

o For both cases, from the figure we can see that I,,; as
a function of I;,, is concave. Furthermore, there is only
one intersection point between the two curves showing
the relation between I;,, I,,: and between I,,:, Iin,
respectively. This result suggests that the local belief
propagation algorithm is optimal in such case [13].

« From the figure, we can see that as the difference between
1 and v increases, the intersection point approaches the
maximum of the mutual information, which is one in this
case. This makes sense, since as the difference increases,
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Fig. 1. EXIT Chart at p=0.5 fortwo cases: p =3, v =2and p = 5,v =
2

(1) | Exact Approximation

(3,2) | 0.1805 | 0.1787

(5,2) | 0.0345 | 0.0346

(7.2) | 00053 | 0.0054
TABLET

COMPARISON BETWEEN THE EXACT AND THE APPROXIMATED USING
EXIT CHARTS FRACTION OF MISCLASSIFIED NODES.

the two communities become statistically more different,
and hence, the recovery becomes easier.

« Finally, from the figure we calculate an approximation
of the fraction of misclassified nodes. To do so, we use
the result proved in [13] that the minimum fraction of
misclassified nodes is given by Q(v/v*), where v* is
defned in section I. We approximate v* by J~1(I*),
where I* is the intersection point of the EXIT chart.
Table T shows the approximation for several values of
p and v, where it can be seen that EXIT chart provide
a good approximation of the performance of the belief
propagation algorithm.

Figure 2 shows the EXIT curves at p = 0.5 for two cases:
p=2,v=2and g = 3,vr = 3. From the figure. we can
conclude the following:

o For both cases, the local belief propagation algorithm will
fail, since it will get stuck at the (0, 0) intersection point.
Hence, belief propagation can not do better than random
guessing, since in such case the fraction of misclassified
nodes will be Q(0) = 0.5.

« Although, in both cases the belief propagation algorithm
fails, in the case where p = » = 3, there is another
intersection point. This corroborates the weak recovery
threshold proved in [10], which states that when p =
0.5, aéud a = ¢, weak recovery is possible if and only if
(&;?) > 2. Note again, that this intersection point can
not be achieved via the local belief propagation algorithm.
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Fig. 2. EXIT Chart at p = 0.5 for two cases: p =2, v =2and p =3, v =
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Fig. 3. EXIT Chart at p=0.3 for two cases: gy =5, v =3 and p =2, v =
2

B. p=1023

Figure 3 shows the EXIT curves at p = 0.3 for two cases:
p=2,v=2and p =5 v = 3. From the figure, we can
conclude that unlike the p = 0.5 case, here for both cases,
when g = v and when p # v, there is only one intersection
point. Since from the figure, the curves are concave, this
suggests that the belief propagation algorithm is still optimal,
hence corroborating the conjecture in [13]. that for p > 0.2,
belief propagation algorithm is still optimal.

C p=001

In this case, we use the following values for the parameters
of equations (8) and (9):

a_;,l = —0.0224, b_],j = —0.0025,
v1=0.3, ass=—1.4022¢— 05,

CJ‘I]_ = 0.3531,
bya = —0.5834,
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Fig. 4. EXIT Chart at p = 0.01 for p = 50,v = 0.8.

cro = 02637, d;o=—0.0846, v, =10,

ay,1 = 420.9558, b, = 432.5107, ¢,1 = 0.00361,

Iy =0.005, a,5=18795 b, =11.8123,

cy2 = —5.2027

an

Figure 4 shows the EXIT curves at p = 0.01 for p =
50, = 0.8. From the figure, we can conclude that in
such case, the belief propagation algorithm can be strictly
suboptimal, since the curves are no longer concave and there
are multiple intersection points.

V. CONCLUSION

In this paper, EXIT chart analysis is provided for the
community detection problem under the degree correlated
stochastic block model. More precisely, we use EXIT charts
to analyze the performance of a belief propagation algorithm
introduced in the literature. We show through simulations that
the approximations done using EXIT charts matches some of
the results and conjectures in the literature. We show that in
the case of equally-sized communities, when the probability of
connectivity in the communities are different, there is only one
intersection point, hence belief propagation is optimal. When
the probability of conmnectivity in the communities are the
same, we show that belief propagation is equivalent to random
guessing and the curves intersect at the trivial zero-zero point.

For the roughly equally sized communities, we show that
there is always only one intersection point, suggesting that
belief propagation is still optimal. Finally, for the significantly
unequally-sized communities, we show that there are multiple
intersection points, hence, belief propagation can be strictly
sub-optimal. We believe this is the first time EXIT charts
are introduced in such context and this could lead to further
connections between the problem of community detection in
random graphs and tools, like EXIT charts, that are extensively
used in coding theory.
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