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Abstract—We study the randomness required at the inputs
of a multiple access channel in order to produce a desired,
approximately i.i.d., output distribution, subject to cooperation
in one of the following forms: (i) a common message, (ii)
conferencing, (iii) feedback and (iv) generalized feedback. For
the cases (i)-(iii), we characterize the channel resolvability via
matching inner and outer bounds, and for generalized feedback
we provide two inner bounds representing the role of decoding
and randomness extraction, which can also be combined. One of
the main contributions of this work is to show that resolvability
rates of the multiple access channel are not improved with
feedback, unlike the multiple access channel capacity which is
improved by feedback.

I. INTRODUCTION

The optimal amount of randomness at the input of a noisy
channel required to approximate a distribution at the output
is called channel resolvability; channel resolvability was first
characterized in [1] building upon the work of [2] on the
characterization of common information of two dependent
random variables. While normalized Kullback-Leibler (KL)
divergence was originally considered as a measure of approx-
imation in [2], simplified proofs have later been developed for
total variation [3] and non-normalized KL approximation [4].

Channel resolvability provides a powerful and general
framework for solving various problems in information theory,
including strong secrecy [5]–[8], covert communication [9],
source coding [10], rate distortion theory [11] and coordina-
tion [3].

Channel resolvability in a multiple access channel (MAC)
with non-cooperating encoders was studied in [12]–[15]. The
role of user cooperation in enhancing channel resolvability
was studied in [16] under perfect cooperation conditions, i.e.,
one user has access to the other user’s transmitted signal
noiselessly through cribbing as described by [17]. The role of
cooperation in the presence of noisy communication in a multi-
user setting, the relay channel, was studied in [18]. The work
thus far on resolvability of cooperative multiple access channel
has concentrated on various forms of one-sided cooperation.
The key feature of the present work is that it studies distinct
forms of cooperation that are two-sided, as well as their impact
on the resolvability of multiple access channel.
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We study here the channel resolvability of the multiple
access channel with various two-sided cooperating strategies,
namely: (i) a common message, (ii) conferencing, (iii) feed-
back and (iv) generalized feedback. For the MAC with a com-
mon message, the MAC with conferencing and the MAC with
feedback, we exactly characterize the channel resolvability via
tight inner and outer bounds. For the MAC with feedback, one
of the highlights of the present paper is a converse that shows
feedback does not improve the resolvability of MAC. It is well
known that feedback does improve the MAC capacity, thus
MAC capacity and resolvability react differently to feedback.

We also show that tools previously developed in [16]
and [18] can be generalized to prove resolvability results for
the MAC with generalized feedback. We offer two achievable
resolvability regions. The essence of the achievability proofs is
carefully applying block-Markov encoding to handle the strict
causality imposed by the channel feedback; randomness is
appropriately recycled to break the dependence across blocks
created by the encoding scheme. Furthermore, we harness the
randomness that stems from the channel noise independent
of the channel input [19] via a random binning argument
to introduce fresh randomness at the encoders and assist in
the approximation of the output distribution. Special cases of
the derived resolvability region of the MAC with generalized
feedback include the resolvability regions of the relay channel,
the MAC with non-cooperating encoders and the MAC with
strictly-causal cribbing.

The paper is organized as follows. Section II establishes
the notation, Section III highlights the cooperation strategies
and presents the achievable rate results for common messages,
conferencing, and generalized feedback. Section IV provides
the converse for MAC with feedback. Since this converse
is tight against the results of [13], no new achievable rate
is needed for MAC with feedback. Section V concludes the
paper.

II. NOTATION

Random variables are represented by upper case letters
and their realizations by the corresponding lower case letters.
Superscripts denote the length of a sequence of symbols and
subscripts denote the position of a symbol in a sequence. Calli-
graphic letters represent sets. PX and PXY denote probability
distributions on X and X × Y , respectively.
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Fig. 1. The discrete memoryless MAC with common message.

For two distributions P and Q on the same finite alphabet
X , D(P‖Q) is the Kullback-Leibler (KL) divergence between
P and Q defined by D(P‖Q) ,

∑
x P (x) log

P (x)
Q(x) . For

a vector Xn with independent and identically distributed
(i.i.d.) components {Xi}ni=1, distributed according to PX(x),
we denote the product distribution of Xn by P⊗nX (xn) ,∏n

i=1 PX(xi). log denotes the base 2 logarithm.

III. COOPERATION STRATEGIES

A. MAC with a Common Message

The discrete memoryless MAC with a common mes-
sage (Fig. 1) consists of finite input alphabets X1 and
X2, and finite output alphabet Z with a channel transi-
tion probability WZ|X1,X2

. For a joint distribution PX1,X2

on X1 × X2, the output is distributed according to
QZ(z) =

∑
x1,x2

PX1,X2
(x1, x2)WZ|X1,X2

(z|x1, x2). A
(2nR0 , 2nR1 , 2nR2 , n) channel resolvability code consists of
two encoders f1 and f2 operating on uniformaly distributed
inputs M0 ∈ J1, 2nR0K, M1 ∈ J1, 2nR1K and M2 ∈ J1, 2nR2K.
The encoding functions are defined as follows:

f1 :M0 ×M1 → Xn
1 , (1)

f2 :M0 ×M2 → Xn
2 . (2)

Definition 1. A rate tuple (R0, R1, R2) is achievable for
the discrete memoryless MAC with a common message
(X1 × X2,WZ|X1,X2

,Z) if there exists a sequence of
(2nR0 , 2nR1 , 2nR2 , n) codes with increasing block length such
that limn→∞ D(PZn ||Q⊗nZ ) = 0. The MAC resolvability
region is the closure of the set of achievable rate tuples
(R0, R1, R2).

Theorem 1. The resolvability region for the discrete-
memoryless MAC with a common message is the set of rate
tuples (R0, R1, R2) such that

R0 > I(U ;Z), (3)
R0 +R1 > I(U,X1;Z), (4)
R0 +R2 > I(U,X2;Z), (5)

R0 +R1 +R2 > I(X1, X2;Z), (6)
for some joint distribution PU,X1,X2,Z ,
PUPX1|UPX2|UWZ|X1,X2

with marginal QZ .

Proof. The proof is omitted for brevity.

Remark 1. The resolvability of the MAC with non-cooperating
encoders [13] can be retrieved from Theorem 1 by setting
R0 = 0.
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Fig. 2. The discrete memoryless MAC with conferencing.

Remark 2. The resolvability of the MAC with degraded
message sets [16], [20] can be retrieved from Theorem 1 by
setting R1 = 0, R0 = R1 and U = X1.

B. MAC with Conferencing

The discrete memoryless MAC with conferencing (Fig. 2)
as introduced by Willems [21] consists of finite input al-
phabets X1 and X2, and finite output alphabet Z with a
channel transition probability WZ|X1,X2

. For a joint distribu-
tion PX1,X2

on X1 × X2, the output is distributed according
to QZ(z) =

∑
x1,x2

PX1,X2
(x1, x2)WZ|X1,X2

(z|x1, x2). A
conference consists of K subsequent pairs of communica-
tions between the two encoders. A (2nR1 , 2nR2 , n) channel
resolvability code consists of two encoders f1 and f2 oper-
ating on uniformly distributed inputs M1 ∈ J1, 2nR1K and
M2 ∈ J1, 2nR2K and K conferencing functions g1k and g2k
for k ∈ J1,KK defined as follows:

g1k :M1 × Vk−1
2 → V1k, for k ∈ J1,KK, (7)

g2k :M2 × Vk−1
1 → V2k, for k ∈ J1,KK, (8)

f1 :M1 × VK
2 → Xn

1 , (9)

f2 :M2 × VK
1 → Xn

2 . (10)
The amount of information exchanged during conferencing is
bounded by the capacities C12 and C21 of the communication
links between the encoders. C12 is the capacity of the link
used by Encoder 1 to communicate to Encoder 2 and C21 is
the capacity of the reverse link so that

K∑
k=1

log |V1k| 6 nC12, (11)

K∑
k=1

log |V2k| 6 nC21. (12)

Definition 2. A rate pair (R1, R2) is achievable
for the discrete memoryless MAC with conferencing
(X1 × X2,WZ|X1,X2

,Z) if there exists a sequence of
(2nR1 , 2nR2 , n) codes with increasing block length such that
limn→∞ D(PZn ||Q⊗nZ ) = 0. The MAC resolvability region is
the closure of the set of achievable rate pairs (R1, R2).

Theorem 2. The resolvability region for the discrete-
memoryless MAC with conferencing is the set of rate pairs
(R1, R2) such that

C12 + C21 > I(U ;Z), (13)
R1 > I(U,X1;Z)− C21, (14)



R2 > I(U,X2;Z)− C12, (15)
R1 +R2 > I(X1, X2;Z), (16)

for some joint distribution PU,X1,X2,Z ,
PUPX1|UPX2|UWZ|X1,X2

with marginal QZ .

Proof. We only provide a sketch of the proof. The idea
behind the achievability proof is to convert this cooperation
scheme into a setting that corresponds to a MAC with common
message where the resolvability rates in (3)-(6) are achievable.
Let us define the following rates

R̃0 = C12 + C21, (17)

R̃1 = R1 − C12, (18)

R̃2 = R2 − C21. (19)
i.e., we defined the common message as the randomness
exchanged via conferencing. Combining (3)-(6) and (17)-(19)
yields the desired region.

Remark 3. The resolvability of the MAC with non-cooperating
encoders [13] can be retrieved from Theorem 1 by setting
C12 = C21 = 0.

C. MAC with Feedback
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Fig. 3. The discrete memoryless MAC with feedback.

The discrete memoryless MAC with feedback (Fig. 3)
consists of finite input alphabets X1 and X2, and
finite output alphabet Z with a channel transition
probability WZ|X1,X2

. For a joint distribution PX1,X2

on X1 × X2, the output is distributed according to
QZ(z) =

∑
x1,x2

PX1,X2
(x1, x2)WZ|X1,X2

(z|x1, x2). A
(2nR1 , 2nR2 , n) channel resolvability code consists of two
encoders f1 and f2 operating on uniformly distributed inputs
M1 ∈ J1, 2nR1K and M2 ∈ J1, 2nR2K. The encoding functions
are defined as follows:

f1i :M1 ×Zi−1 → X1i, (20)

f2i :M2 ×Zi−1 → X2i. (21)

Definition 3. A rate pair (R1, R2) is achievable for the dis-
crete memoryless MAC with feedback (X1×X2,WZ|X1,X2

,Z)
if there exists a sequence of (2nR1 , 2nR2 , n) codes with in-
creasing block length such that limn→∞ D(PZn ||Q⊗nZ ) = 0.
The MAC resolvability region is the closure of the set of
achievable rate pairs (R1, R2).
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Fig. 4. The discrete memoryless MAC with generalized feedback.

Theorem 3. The resolvability of the MAC with feedback is
the set of rate pairs (R1, R2) such that:

R1 > I(X1;Z|U),

R2 > I(X2;Z|U),

R1 +R2 > I(X1, X2;Z|U),

for some joint distribution PU,X1,X2,Z ,
PUPX1|UPX2|UWZ|X1,X2

with marginal QZ .

Proof. See Section IV.

We provide a converse proof and show that feedback does
not improve the resolvability of the MAC.

D. MAC with Generalized Feedback

The discrete memoryless MAC with generalized feedback
(Fig. 4) consists of finite input alphabets X1 and X2, and
finite output alphabets Z1, Z2 and Z with a channel transition
probability WZ1,Z2,Z|X1,X2

. For a joint distribution PX1,X2

on X1×X2, the output Z is distributed according to QZ(z) =∑
x1,x2,z1,z2

PX1,X2
(x1, x2)WZ1,Z2,Z|X1,X2

(z1, z2, z|x1, x2).
A (2nR1 , 2nR2 , n) channel resolvability code consists of two
encoders f1 and f2 operating on uniformly distributed inputs
M1 ∈ J1, 2nR1K and M2 ∈ J1, 2nR2K. The encoding functions
are defined as follows:

f1i :M1 ×Zi−1
1 → X1i, (22)

f2i :M2 ×Zi−1
2 → X2i. (23)

Definition 4. A rate pair (R1, R2) is achievable for the
discrete memoryless MAC with generalized feedback (X1 ×
X2,WZ1,Z2,Z|X1,X2

,Z1 ×Z2 ×Z) if there exists a sequence
of (2nR1 , 2nR2 , n) codes with increasing block length such that
limn→∞ D(PZn ||Q⊗nZ ) = 0. The MAC resolvability region is
the closure of the set of achievable rate pairs (R1, R2).

We present two achievable resolvability rate regions. In
the first coding scheme, we use a block-Markov encoding
that handles the causality constraint imposed by the feedback
channel through careful randomness recycling to break the
dependence across blocks. In the second coding scheme, a
block-Markov encoding is also used. Furthermore, we harness
the randomness that stems from the channel noise.

Proposition 1. For the discrete memoryless MAC
channel with generalized feedback, the following



region is achievable via decode-and-forward if
there exists a joint distribution PU,X1,X2,Z1,Z2,Z =
PUPX1|UPX2|UWZ1,Z2,Z|X1,X2

with marginal QZ satisfying
I(X1;Z1|X2, U) + I(X2;Z2|X1, U) > I(X1, X2;Z) for
which:

R1 > I(X1, X2;Z)− I(X2;Z1|X1, U),

R2 > I(X1, X2;Z)− I(X1;Z2|X2, U),

R1 +R2 > I(X1, X2;Z).

Proof. We only provide a sketch of the proof. This achievable
bound on the channel resolvability is constructed by allowing
the two encoders to cooperate over multiple blocks. Each
encoder recovers the other’s message over a secure channel,
i.e., the two encoders exchange information in such a way
so that the output Z is oblivious to it. This is accomplished
through two mechanisms: first, the feedback outputs Z1 and Z2

are different from the output Z, which creates a virtual wiretap
channel allowing the feedback to carry information that is
not accessible to Z. Second, the resolution of information
available at each encoder is better than the output, because
each encoder knows its own transmission and can somewhat
clean up the feedback to get access to the communication from
the other user.

It is interesting to note that this second mechanism was
not helpful in the case of simple output feedback, also called
Shannon feedback, since it was shown that feedback does
not improve the resolvability rate. In the case of generalized
feedback, conditioning on each encoder’s own message, while
decoding the feedback, seems to improve the resolvability
rates.

The information exchanged during each time block is used
in the next block to coordinate transmissions by the two
users to facilitate obfuscation at Z. In the achievability proof,
the security of the exchange of messages (mentioned in the
previous paragraph) is used to demonstrate, via a chaining
argument, the breaking of the dependence across blocks.

Remark 4. The achievable resolvability of the relay channel
via decode-and-forward [18] can be retrieved from Proposi-
tion 1 by setting R2 = 0, U = X2 and Z1 = constant.

Remark 5. The achievable resolvability of the MAC with
strictly-causal cribbing can be retrieved from Proposition 1
by setting Z1 = X2 and Z2 = X1.

Proposition 2. For the discrete memoryless MAC channel
with generalized feedback, the following region is achievable
via randomness extraction if there exists a joint distribution
PX1,X2,Z1,Z2,Z = PX1PX2WZ1,Z2,Z|X1,X2

with marginal QZ

for which:
R1 > I(X1;Z)−H(Z1|X1, Z),

R2 > I(X2;Z)−H(Z2|X2, Z),

R1 +R2 > I(X1, X2;Z)−H(Z1, Z2|X1, X2, Z).

Proof. We only provide a sketch of the proof. We divide the
transmission into multiple blocks. In every block, each encoder
independently generates randomness that stems from channel
noise via a random binning argument. This fresh randomness
is re-injected into the channel in the next block to assist in the
approximation of output distribution.

Remark 6. Proposition 2 shows a third way in which gener-
alized feedback improves the resolvability rate of MAC, and
that is in providing fresh randomness to the inputs that are
independent of each other and of Z. Our understanding of
this mechanism is refined and focused via the earlier result
that Shannon feedback does not improve the resolvability rate:
we therefore conclude that only the fresh randomness that is
independent of Z is useful in improving resolvability rates.
This insight is not obvious because this recycled randomness
is used only in the following time block and is re-processed
through the channel.

Remark 7. The achievable resolvability of the relay channel
via randomness extraction [18] can be retrieved from Propo-
sition 2 by setting R2 = 0 and Z1 = constant.

Remark 8. The achievable resolvability of the MAC channel
can be retrieved from Proposition 2 by setting Z1 = Z2 =
constant.

IV. CONVERSE PROOF OF THE MAC WITH FEEDBACK

By assumption,
ε > D(PZn ||Q⊗nZ )

= D(PZ1...Zn
||Q⊗nZ )

=
n∑

i=1

D(PZi|Zi−1 ||QZ |PZi−1) (24)

=
n∑

i=1

D(PZi
||QZ) +

n∑
i=1

I(Zi;Z
i−1) (25)

nR1 = H(M1) (26)
> I(M1;Z

n) (27)

=
∑
i

I(M1;Zi|Zi−1) (28)

(a)
=
∑
i

I(M1, X1i;Zi|Zi−1) (29)

>
∑
i

I(X1i;Zi|Zi−1) (30)

=
∑
i

I(Zi−1, X1i;Zi)−
∑
i

I(Zi−1;Zi) (31)

(b)

>
∑
i

I(Ui, X1i;Zi)− ε (32)

=
∑
i

D(PUi,X1i,Zi ||PUi,X1iPZi)− ε (33)

=
∑
i

D(PUi,X1i,Zi
||PUi,X1i

QZi
)−

∑
i

D(PZi
||QZi

)− ε

(34)



(c)

>
∑
i

D(PUi,X1i,Zi
||PUi,X1i

QZi
)− ε′ (35)

(d)

> nD
(∑

i PPUi,X1i,Zi

n

∣∣∣∣∣∣∣∣∑i PUi,X1i

n
QZi

)
− ε′ (36)

= nD(P̃U,X1,Z ||P̃U,X1QZ)− ε′ (37)
(e)

> nD(P̃U,X1,Z ||P̃U,X1
P̃Z)− ε′ (38)

= nI(Ũ , X̃1; Z̃)− ε′ (39)

> nI(X̃1; Z̃|Ũ)− ε′ (40)
where
(a) follows by the definition of the encoding function;
(b) follows since

∑
i I(Z

i−1;Zi) 6 D(PZn ||Q⊗nZ ) 6 ε and
by setting Ui , Zi−1;

(c) follows since
∑

i D(PZi ||QZi) 6 ε;
(d) follows by Jensen’s inequality and convexity of D(·||·);
(e) follows since D(P̃U,X1,Z ||P̃U,X1

QZ) =
D(P̃U,X1,Z ||P̃U,X1

P̃Z) + D(P̃Z ||QZ).
Similarly we obtain,

nR2 > nI(X̃2; Z̃|Ũ)− ε′ (41)
and
n(R1 +R2) = H(M1,M2) (42)
> I(M1,M2;Z

n) (43)

=
∑
i

I(M1,M2;Zi|Zi−1) (44)

(a)
=
∑
i

I(M1, X1i,M2, X2i;Zi|Zi−1) (45)

>
∑
i

I(X1i, X2i;Zi|Zi−1) (46)

=
∑
i

I(Zi−1, X1i, X2i;Zi)−
∑
i

I(Zi−1;Zi) (47)

(b)

>
∑
i

I(Ui, X1i, X2i;Zi)− ε (48)

(c)

> nI(X̃1, X̃2; Z̃|Ũ)− ε′ (49)
where
(a) follows by the definition of the encoding function;
(b) follows since

∑
i I(Z

i−1;Zi) 6 D(PZn ||Q⊗nZ ) 6 ε and
by setting Ui , Zi−1;

(c) follows by repeating steps similar to (33)-(40).
The proof that PU,X1,X2,Z = PUPX1|UPX2|UWZ|X1,X2

has
been omitted for brevity.

V. CONCLUSION

We studied the impact of two-sided cooperation on the
resolvability of the MAC. The main insight of this paper is that
feedback does not improve resolvability of the MAC, which
we show by providing a converse that is tight against the
results of [13]. On the other hand, resolvability is improved in
the cases of MAC with a common message, MAC with confer-
encing and MAC with generalized feedback. Two achievable
resolvability rates are developed for the MAC with generalized

feedback. The roles of decoding and randomness extraction are
investigated separately. The first inner bound is constructed
by using decode-and-forward strategy, where each encoder
decodes the other encoder’s message. The second inner bound
is constructed by a randomness extraction mechanism which
can be motivated by a case when each encoder’s observation
is very noisy, allowing cooperation without decoding.
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