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1 Introduction

During the last several years our understanding of four-dimensional N = 2 superconformal
field theories (SCFTs) has been greatly enhanced, particularly in the case in which these
theories can be constructed by compactifying the six-dimensional (2, 0) theory of type g on
a punctured Riemann surface Σ [1]. These SCFTs often come in continuously connected
families, forming a “conformal manifold”. The geometry of this conformal manifold can be
understood as arising from the geometry of the Riemann surface Σ. Of particularly interest
are subloci of this manifold where Σ degenerates. In this case we sometimes have a weakly
coupled Lagrangian description of the SCFT, but more often we end up with a collection
of basic building blocks, given by three-punctured spheres, connected by a weak gauging
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of subgroups of their flavour groups.1 The different degeneration limits of Σ are known as
the different duality frames for the theory, and we say that the theories arising in these
degeneration limits are dual to each other. We refer the reader to the nice reviews [3, 4]
for a detailed explanation of these facts.

A particularly important case is the one where all three punctures are “full” punctures.
The resulting SCFTs are known as the T [g] theories. Except in the g = A1 case, the T [g]
theories are intrinsically strongly coupled N = 2 SCFTs. Other types of punctures can
be obtained by Higgsing fields in the T [g] theory, an operation known in the literature as
“(partial) closing” of punctures. In addition, for our discussion it is important to introduce
“twisted” punctures. Such punctures have the property that there is a monodromy around
them acting as an outer automorphism of the (2, 0) theory. In configurations with three
punctures we have the possibility of twisting two of the punctures. The resulting twisted
theories were analysed in detail in [2, 5, 6] and play an important role below.

Remarkably, much of the knowledge gained in the last few years about these N = 2
SCFTs has been obtained without requiring any knowledge of a Lagrangian description, or
perhaps more accurately, despite the fact that no Lagrangian is known. This situation has
recently started to change. An important development was the construction — initiated
by Maruyoshi and Song [7–9] and then further extended by a number of authors [10–13] —
of N = 1 preserving renormalization group flows connecting N = 2 SCFTs. If the starting
theory is Lagrangian, then this provides a Lagrangian theory in the universality class of
the N = 2 SCFTs at the end of the flow.

A second approach constructs N = 1 Lagrangians by probing the N = 1 preserving
conformal manifold of the N = 2 SCFTs. These deformations of the N = 2 theory typically
break the symmetry group of the target SCFT to a lower rank subgroup, but the resulting
Lagrangians are still useful. There are some powerful constraints that any Lagrangian
theory in the same conformal manifold should obey, and exploration of such constraints
have led to the construction of Lagrangians for a number of important N = 2 (and even
N = 3) SCFTs [14–17].

In this paper we introduce a third class of constructions, which take advantage of a
number of recent results in the context of duality for N = 1 SCFTs [18, 19]. We will
review these results in detail below.2 These results apply to the class of N = 1 SCFTs
that arise from isolated orientifolds of D3 branes probing isolated toric singularities. This
is a large class of theories, and all have non-trivial conformal manifolds: the value of the
string coupling provides an exactly marginal parameter, and in some exceptional low-rank3

cases some additional marginal deformations might exist. As in [18, 19], we will focus on
the directions in the conformal manifold associated to the ambient string coupling, which
persist for arbitrary rank (for sufficiently high rank the conformal manifold for this class of

1At least in most cases. In some rare cases one needs to refine this picture, see [2] for the detailed
analysis of one such instance.

2See also [20, 21] for earlier work on the class of string configurations we study in this paper, and [22–25]
for recent work on N = 1 dualities arising from orientifolded toric singularities.

3By rank we mean the number of mobile D3 branes probing the singularity, as measured by the F5 flux
at infinity.
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theories has complex dimension one, and is parametrised by the ambient string coupling).
The physics at the cusps of the conformal manifold is very reminiscent of that appearing in
N = 2 class-S theories: there is a class of isolated N = 1 SCFTs, denoted by TOk in [19],
and the generic duality frame can be described in terms of a set of TOk theories coupled
via weak gauging of diagonal subgroups of their flavour symmetry groups.

Rather surprisingly, the situation regarding Lagrangian descriptions is much more
developed in the N = 1 case than in the N = 2 case: there are known Lagrangians for
all TOk SCFTs. These Lagrangians are obtained by a rather natural operation in the
string theory description, which we call deconfinement, as it generalizes the familiar notion
of deconfinement of free antisymmetric tensors in the context of Seiberg duality [26–29].
We will review that operation below. Additionally, in some cases providing a Lagrangian
description of the full theory, not only the TOk sectors, requires brane bending: a (natural)
deformation of overlapping branes in the system so that gauge couplings of some branes
in the brane tiling become finite. An example of brane bending is given in figure 4c below.
Using these two operations one can provide N = 1 Lagrangians for any N = 1 SCFT in
the class described above.

These developments raise a very natural question: what are the analogues of brane
bending and deconfinement in the N = 2 setting? The answer is not straightforward, as
N = 2 theories do not fall in the class of theories analysed in [18, 19], and in fact we
will not provide a complete answer in this paper. However, we make a small step in this
direction by using our knowledge of the N = 1 setting to derive Lagrangians, in a fairly
systematic way, for a number of interesting N = 2 SCFTs.

The basic argument goes as follows. Recall that the dualities in [18, 19] describe
what happens to the field theory as we crank up the ambient string coupling, and switch
descriptions to a new weakly coupled duality frame. The effect in the field theory is a
deformation by an exactly marginal operator, moving us from one cusp in the conformal
manifold to another.

We will combine this operation with partial resolution of the singularity. In particular,
we will study partial resolutions of the form4,5

ρ : (C2/Z2n × C) + (C2/Z2n × C)→ Y 2n,0 , (1.1)

where the left hand side denotes a Calabi-Yau threefold that is smooth except at two points,
each locally of the form C2/Z2n × C. The toric description of the partial resolution is (in
the n = 2 case)

−→ (1.2)

4Here ρ is the “blow-down” map from the partially resolved space to the more singular one.
5We emphasise that this is a special case of a much more general construction. However, even the special

case n = 1 (which we focus on in the present paper) will yield very interesting and nontrivial results.
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We are interested in what happens to the IR fixed point of the theory on branes
probing the singularity under this operation. In order to encode this we introduce the
notation T φ[X], to represent the CFT describing the IR fixed point of the theory of D3
branes probing the singular point in X, with additional data, such as possible orientifold
planes and fluxes denoted generically by φ. In this notation, there is an induced map on
the space of 4d CFTs, coming from turning on a baryonic vev (encoding the size of the
exceptional cycle in the partial resolution) and integrating out massive modes

ρ∗(T φ[Y 2n,0]) = T α[C2/Z2n × C] + T β [C2/Z2n × C] (1.3)

where now addition on the right hand side means that we have two decoupled SCFTs.
From the point of view of the string construction it is natural to expect that the

effect of this operation in the field theory commutes with the duality, in the sense that the
following diagram is commutative:

T φ[Y 2n,0] T α[C2/Z2n × C] + T β [C2/Z2n × C]

T S(φ)[Y 2n,0] T S(α)[C2/Z2n × C] + T S(β)[C2/Z2n × C]

ρ∗

S S

ρ∗

(1.4)

where we have denoted by S the action on the background data induced by taking the string
coupling to infinity, so that we move to a different cusp in the conformal manifold. The
assumption that (1.4) is commutative allows us to understand the behaviour of S-duality
on T α[C2/Z2n × C] from the behavior of S-duality on T φ[Y 2n,0], which was understood
in [18, 19], and the behaviour of ρ∗, which is reasonably well understood in the case of
ordinary dimer models — see for instance [30] for a systematic approach.

For the sake of presentation, it will be convenient to introduce forgetful maps ρ∗L and
ρ∗R that focus on each of the resulting SCFTs as follows

ρ∗L(T φ[Y 2n]) = T α[C2/Z2n × C] (1.5)

and similarly ρ∗R = ρ∗ − ρ∗L. It is natural to conjecture that if (1.4) is commutative then
the reduced version

T φ[Y 2n,0] T α[C2/Z2n × C]

T S(φ)[Y 2n,0] T S(α)[C2/Z2n × C]

ρ∗L

S S

ρ∗L

(1.6)

is also commutative, and similarly for ρ∗R. This will be our fundamental assumption in the
rest of the paper.

Choosing α, β and φ judiciously we can arrange for T α[C2/Z2n×C] to preserve N = 2
supersymmetry, thereby connecting the results of [18, 19] to the large literature on N = 2
dualities beginning with [1].

In this paper we initiate this program, by focusing exclusively on the simplest case,
n = 1. The resulting singularity is known as the complex Calabi-Yau cone over F0 = P1×P1,
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or the real Calabi-Yau cone over Y 2,0, and can alternatively be described as a Z2 orbifold
of the conifold. By following the logic above, we will be able to systematically construct
Lagrangians for all the R2,k theories, with k even or odd. An important case that we
will study in detail is k = 3, where R2,3 is the rank one E6 Minahan-Nemeschansky
theory [31], also known as the T [A2] or more simply T3 theory in the context of class S.
It is also interesting to consider k = 2, which engineers the Argyres-Wittig theory with
global symmetry algebra usp(4)⊕ u(1).

We have organised this paper as follows. We start in section 2 by providing a short
review of the main results that we will need from [18, 19]. Our main results are presented
in section 3, where we derive N = 1 Lagrangians for the R2,k N = 2 SCFTs using the
strategy sketched above, and perform some standard checks. We proceed to further test
these Lagrangian descriptions in a number of ways: the Higgs branch structure of the
theories is studied in section 4, the Coulomb branch in section 5, and the result of turning
on mass deformations is described in section 6. In all cases we find perfect agreement
with the expectations from previous N = 2 results, whenever these exist. We finish by
listing some conclusions and further directions in section 7. The appendix collects explicit
expressions for the R2,2k superconformal indices for k = 1, 2, 3.

2 Review

2.1 Deconfinement for isolated N = 1 orientifold SCFTs

We will now briefly review some of the results in [18–21], placing particular emphasis on
those that are particularly important for our discussion. We will not include derivations of
the results, we refer the interested reader to the original works for proofs.

Consider a toric6 Calabi-Yau threefold X, which we assume to be a cone with an
isolated singularity at the origin. All toric Calabi-Yau threefolds can be described by
providing a two-dimensional lattice polytope known as the toric diagram; those having
isolated singularities have the additional property that the edges of the toric diagram
do not hit any intermediate lattice points. We will consider IIB string theory on this
background, in the presence of an orientifold action preserving the toric nature of the
space. Such orientifold actions were classified in [19], they can be characterized by a choice
of even sublattice for the toric Z2 lattice. For simplicity, we will restrict to cases where
the orientifold action leaves only the isolated singularity at the origin fixed. In terms of
the toric diagram this requires that none of the external vertices of the toric diagram are
contained in the even sublattice defining the orientifold action, see figure 1 for examples.

We now place N D3 branes at the singular point of the geometry. For the moment
we do not include an orientifold involution. This leads to an interacting N = 1 SCFT
in four dimensions with a marginal deformation which we can identify with the value of
the IIB axio-dilaton.7 The axio-dilaton τ = C0 + i/gs of IIB takes values in the upper

6We refer the reader unfamiliar with toric geometry to the excellent book [32]. A briefer introduction
summarizing all the ideas that we will need can be found in [19].

7It is possible to have additional marginal deformations, but these will play no role in our discussion.
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Figure 1. Examples of toric diagrams with choice of even sublattice. The first and third graphs
describe cases where some vertices of the toric diagam lie within the chosen even sublattice. Such
examples will not be considered in the present work.

(a) Conformal manifold. (b) Duality phases for the O3 theory.

Figure 2. a The upper half place, conformally mapped to a disk. We have lightly shaded a
copy of the fundamental region for SL(2,Z). Every other point in the disk can be mapped to this
region by a SL(2,Z) transformation. The blue/purple regions correspond to regions where weakly
coupled descriptions exist in some duality frame. b Partition of the conformal manifold of the
N = 4 so(2N + 1) theory into regions where at weak coupling the valid description is in terms of a
so(2N + 1) algebra (pink) or usp(2N) (blue/purple). [Figures reproduced from [20].]

half-plane, but values related by modular transformations g ∈ SL(2,Z) define the same
physical theory:

τ → g(τ) = aτ + b

cτ + d
, g =

a b
c d

 , a, b, c, d ∈ Z , ad− bc = 1 . (2.1)

Because both the geometric background and the D3 branes map to themselves under
SL(2,Z), this implies that the N = 1 SCFTs on N D3 branes with coupling τ is equivalent
to that same theory with coupling g(τ). We have a weakly coupled Lagrangian description
of the N = 1 SCFT at those points related by an SL(2,Z) transformation to τ = i∞. We
will refer to such points in the conformal manifold as “cusps”. This situation is illustrated
in figure 2a, in which we map the upper half plane to a disk, shading the cusps in purple.

This discussion needs to be modified once we introduce orientifold planes. While the
D3s, and by extension the F5 flux created by the D3 branes, are SL(2,Z) invariant, the H3
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and F3 fluxes sourced by the orientifold transform as a SL(2,Z) doublet. Introducing the
notation F3 := (F3, H3), we have:

g(F3) =

a b
c d

F3

H3

 =

aF3 + bH3

cF3 + dH3

 . (2.2)

So we have additional data to keep track in determining the physics at the cusps: the
precise CFT at the singularity depends on the pair (τ,F3) subject to the relation

(τ,F3) ∼ (g(τ), g(F3)) . (2.3)

Note in particular that the physics at different cusps can depend quite strongly on the
value of F3. As a simple example, consider the case of N D3 branes probing an O3 plane
in flat space. As discussed in [33] in this case F3 takes values in Z2 ⊕ Z2 (we will explain
and expand on this statement momentarily), so there are four possibilities for F3. Assume
that on a given cusp, in a duality frame where gs � 1, we have a flux F3. Then it was
argued in [33] that the dynamics at this cusp is described by weakly coupled N = 4 SYM
with gauge algebra g, with8

F3 g

(0, 0) so(2N)
(1, 0) so(2N + 1)
(0, 1) usp(2N)
(1, 1) usp(2N)

(2.4)

Consider for instance the case that in one duality frame we have gs � 1 and F3 = (1, 0),
and let us take C0 = 0 for simplicity of exposition. This corresponds to a N = 4 SYM
theory with gauge algebra so(2N + 1) and coupling g2

so(2N+1) = gs (in general the mapping
is C0 + i/gs = θ

2π + i/g2
YM). By (2.3), and from the dictionary between flux and gauge

algebra in [33], this is equivalent to having an N = 4 theory with gauge algebra usp(2N)
with gauge coupling g2

usp(2N) = g−1
s . This is in agreement with the standard prediction

from Montonen-Olive duality [34, 35].
An alternative way of thinking about this duality is that if we fix the flux at one cusp,

then every other cusp is decorated with a flux assignment, which gives rise to potentially
different perturbative descriptions at different cusps. In the example above, this means that
we can interpolate between the weakly coupled so(2N + 1) and usp(2N) N = 4 theories by
moving in the conformal manifold. This is illustrated in figure 2b, where we have split the
conformal manifold according to whether the weakly coupled description valid in each re-
gion has algebra so(2N+1) or usp(2N). We will refer to the different decorated cusps of the
conformal manifold as the duality phases of the theory, and we will say that two such phases
are related by an SL(2,Z) transformation g if the corresponding couplings are related by g.

8The cases F3 = (0, 1) and F3 = (1, 1) are related by τ → τ + 1, which induces a shift of the θ angle in
the field theory, so they give rise to the same perturbative behaviour.
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2.2 Phases of CC(F0)

The picture that we have discussed so far generalises in a beautiful way to a certain class
of N = 1 SCFTs, namely those arising from D3 branes probing an isolated toric singularity
in the presence on a toric orientifold whose only fixed point is at the singularity of the
geometry.

Consider a toric Calabi-Yau cone X6, with base X5. We assume that the only singu-
larity of X6 is at the base of the cone. We will quotient by an orientifold action (−1)FLΩσ,
where σ : X6 → X6 leaves only the origin invariant. This implies that it acts on X5 freely.
We additionally demand that σ preserves the toric structure of X6, or in other words that
X6/σ is still toric (although it will not be Calabi-Yau any more). Our working example
will be the Calabi-Yau cone over F0 = P1 × P1, which we denote by CC(F0). The toric
diagram of this geometry is

(2.5)

This Calabi-Yau threefold is a real cone over (S3 × S2)/Z2.
In order to classify the SCFTs at the cusps, we first need to classify the possible

orientifolds that we can put on the singularity: this involves fixing the geometric actions σ
and the choices of discrete F3 flux. We then need to be able to describe the SCFT at the
singularity for any such choices of σ and F3. This program was completed in [19], building
on previous work in [18, 20, 21]. In what follows we will review the results in [19], we refer
the reader to that paper for derivations and a more detailed discussion.

As a first step, the choices of σ keeping X6/σ toric can be classified by choosing an even
sublattice of the Z2 lattice on which the toric diagram is defined. There are four choices for
the origin of such an even sublattice, although in some cases — such as the F0 case of interest
to us — various choices might be related by symmetries of the toric diagram, leading to
equivalent physics. The resulting orientifold action will have a compact fixed locus iff none
of the external vertices of the toric diagram is contained in the chosen even sublattice.
Consider for instance the case of X6 = CC(F0). In this case there are two inequivalent
choices of σ keeping the orientifold locus isolated, shown in figure 3. It is convenient to
refer to the resulting involutions according to the dimension of the fixed locus in the fully
resolved geometry. In one case we obtain an O7 plane wrapping the exceptional F0, while
in the other case we obtain four O3 planes. Accordingly, we refer to the two involutions
as “O7” and “O3”, respectively. The involution that leads to N = 2 theories after partial
resolution is the O3 one, so henceforth we will focus exclusively on this one.

The next step is to classify the F3 fluxes that one can turn on the orientifolded geom-
etry. More precisely, we want to classify the flux as measured at infinity. The manifold at
infinity, ignoring the 4d spacetime part, has topology X5, and F3 transforms as a doublet
of SL(2,Z), so the flux at infinity is classified by elements of the cohomology with local coef-
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(a) O3 involution. (b) O7 involution.

Figure 3. Two choices of even sublattices for Z2. As explained in [19], these correspond to the
two choices of toric involutions of CC(F0) with compact orientifold locus, up to equivalences. We
have named the two involutions according to the kind of orientifold planes that arise when blowing
up the singularity.

ficients9 H3(X5; (Z⊕Z)ρ), with ρ the action of SL(2,Z) on the coefficient system. We refer
the reader to [41] for the definition of cohomology with local coefficients, and [33, 42] for ap-
plications of this formalism in the perturbative and non-perturbative settings. In our case
ρ = (−1)FLΩ =

(
−1 0
0 −1

)
, so elements of F3 are classified by H3(X5; Z̃⊕ Z̃) = H3(X5; Z̃)⊕

H3(X5; Z̃). Each summand is the group of degree-three cohomology classes with local Z
coefficients [41], twisted on the non-trivial Z2 cycle of X5. A more down-to-earth summary
of all this, at least in our specific case, is to say that due to the orientifold action the NSNS
and RR fluxes pick up a minus sign as we go around the non-contractible cycle in X5/σ.

For an isolated toric singularity with n external vertices, and an isolated toric orien-
tifold action, we have [19]

H3(X5; Z̃) = Z2 ⊕ . . .⊕ Z2︸ ︷︷ ︸
n−3 times

. (2.6)

For X6 = CC(F0) we have n = 4 external vertices in the toric diagram (2.5), so

H3(X5; Z̃) = Z2 ⊕ Z2 (2.7)

which implies that there are 16 possible values for the flux F3 classifying the orientifold
type at the singularity (four for F3 times four for H3), and therefore 16 possible different
flux decorations for a given cusp. Some of these flux choices are related by shifts of C0,
and therefore lead to the same perturbative description.

We will give the detailed dictionary between F3 flux and field theory below, but for
the moment let us simply state that there are three types of theories appearing at the
cusps, which we will call phases I, II and III. (There is also a phase ĨI related to phase II.

9We will use cohomology to classify fluxes. A more precise characterisation, at least in the perturbative
setting of interest to us, would involve K-theory [36]. See [37–39] for work classifying orientifolds from
this perspective. Alternatively, we could work in F-theory, and classify those fluxes that preserve Poincaré
invariance in 4d, see for instance [40].
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qSO

qUSp

(a) Phase I. (b) Phases II and ĨI. (c) Phase III.

Figure 4. Theories arising at the cusps of the conformal manifold for the CC(F0) theory modded
out by the O3 action, for different choices of flux. Due to the high degree of symmetry of CC(F0)
some of the flux choices lead to isomorphic choices, which we have denoted as phases II and ĨI in
this figure. [Figures reproduced from [19].]

The F3 fluxes giving rise to these two phases are related by symmetries of the singularity,
so phases II and ĨI are isomorphic as field theories. We will for the most part ignore ĨI in
what follows.) These three phases are best understood in the language of brane tilings, as
in figure 4. We write the perhaps more familiar quiver description of these theories below.

2.3 Brane tiling constructions

Let us briefly describe how to obtain (and interpret) the brane tilings in figure 4, referring
the reader to [43–45] for the original works on brane tilings and their orientifolds, to [46] for
a review and [19] for a more detailed analysis in the particular case that concerns us here.
A brane tiling is a tiling of the torus by D5 branes (the white regions) and bound states
of one D5 with ±1 NS5 branes (the grey and orange regions). These two kinds of regions
are separated by 1-cycles, which encode where NS5 branes end on the tiling. The winding
numbers of these cycles on the T 2 reproduce the slopes of the external legs in the (p, q)-web
diagram for the toric singularity. For our F0 example, this means that we have four NS5
branes ending on 1-cycles on the T 2, with winding numbers (1, 1), (1,−1), (−1, 1), and
(−1,−1). In the absence of orientifolds, regions of the T 2 covered by D5 branes lead to SU
gauge factors, intersections of two NS5 branes lead to bifundamental matter between the
D5s touching the intersection, and D5-NS5 bound states lead to superpotential couplings.

We are interested in orientifolded configurations, where the orientifold leaves four
points fixed on the T 2. These points are O5 planes intersecting the torus, and the sign
annotation of the tiling indicates the type of orientifold plane we are dealing with. The
orientifold projection acts on the gauge theory in a natural way: if two SU factors are
exchanged by the orientifold action then a diagonal combination survives, while if a SU
face is invariant then it is projected down to SO or USp depending on the orientifold sign.
Similarly for matter content: two bifundamental multiplets exchanged by the orientifold
action lead to a single chiral multiplet in the orientifolded theory, while a bifundamental
mapped to itself leads to a symmetric or antisymmetric representation, depending on the
sign of the orientifold action.

– 10 –



J
H
E
P
0
3
(
2
0
2
2
)
1
4
0

USp(N − 2)

SO(N + 2)

A1[φ1]

A2
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Sp O

Sp O

W = εijAiBj

(a) Phase I.

SU(N) SU(N)A1

A2

B1

B2

Xi

W = Tr(A1X1X2B1 +A2X1X2B2)

(b) Phases II and ĨI.

SU(N) SU(N)Aii

Ai(i+1)

Bi

Ci

W =
∑

ij Tr(AijBiCj)

(c) Phase III.

Figure 5. Quiver gauge theories arising from the brane tilings in figure 4. [Figures reproduced
from [19].]

In order to obtain a configuration consistent under the orientifold action, it must be the
case that the NS5 branes map to themselves under the orientifold action (up to orientation).
This implies that each NS5 brane should pass through two fixed points. Up to isomorphism,
and after some “brane bending”, this leads to the three phases in figure 4. The bending
of branes accounts for the fact that if we draw the NS5s using straight lines on the T 2

then in phases I and III we would have overlapping NS5 branes, which leads to strongly
coupled physics. In phase III bending the branes in a way compatible with the orientifold
projection is a simple way of obtaining a Lagrangian theory in the same universality class as
the theory being engineered by the string construction. Phase I has the further peculiarity
that, even after bending the overlapping NS5 branes so they do not overlap any longer,
we still have four NS5 branes intersecting at a point. This can also be resolved by a more
advanced form of brane bending (which we refer to as “deconfinement”), described below.

Applying these rules, we read off the quiver theory associated to each brane tiling, with
the results shown in figure 5. Let us start with phase II, which is the most conventional
one. The quiver is shown in figure 5b, and more explicitly we have a field content

SU(N) SU(N) U(1)B U(1)X U(1)Y U(1)R
X1

1
N 1 0 1

2

X2
1
N −1 0 1

2

B1 1 − 1
N 0 −1− 2

N
1
2

B2 1 − 1
N 0 1− 2

N
1
2

A1 1 − 1
N 0 1 + 2

N
1
2

A2 1 − 1
N 0 −1 + 2

N
1
2

(2.8a)

and superpotential

W = Tr(A1X1X2B1 +A2X1X2B2) . (2.8b)

We emphasize that the Lagrangian just described is not conformal. Instead, we are inter-
ested in the infrared superconformal fixed point to which this Lagrangian flows.

In fact, the Lagrangian is not even asymptotically free, due to the nonrenormalizable
superpotential. There are two ways to view this deficiency: on the one hand, as described
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in [20] we can view the Lagrangian as an effective field theory with a UV cutoff set by the
nonrenormalizable couplings and an IR dynamical scale. By an analysis similar to [20] using
the methods of [47], one can easily check that one combination of the couplings (related
to gs) is neutral under all the spurious flavor symmetries, and thus not renormalized at
any order, suggesting that there is a fixed line in the infrared. Moreover, this “exactly
dimensionless” coupling sets the hierarchy between the UV cutoff and the IR dynamical
scale, with this hierarchy becoming exponentially large for gs � 1. Near this “cusp”, our
ignorance of the (stringy) UV physics becomes unimportant, and the infrared SCFT is
accurately described by the IR dynamics of the effective field theory.

An alternate and perhaps more sophisticated viewpoint is described in [19]. We view
the effective Lagrangian as a recipe for reaching the desired infrared fixed line via a series of
flows beginning at a free UV fixed point, as follows. Starting with the free theory obtained
by turning off all the couplings, we produce a series of flows by turning the couplings on
one by one, only selecting relevant (or marginally relevant) couplings at each step of the
process. After each flow, the dimensions of the remaining couplings will change, but there
is always a relevant operator until the last step,10 when the only coupling remaining to be
switched on is exactly marginal (see [48]). The fixed point so reached is the “cusp” itself,
whereas turning on this last coupling (now parameterizing an exactly marginal operator)
moves us out along the fixed line away from the cusp, see figure 6.

Phase III is slightly more subtle, in that the string construction involves overlapping
NS5 branes, give rise to strongly coupled sectors. Thus, there is no perturbative effective
field theory description even arbitrarily close to the cusp. However, this is easily avoided by
some straightforward brane bending which leads to the Lagrangian description in figure 5c,
with field content

SU(N) SU(N) U(1)B U(1)X U(1)Y U(1)R
B1

1
N 1 0 1

2

B2
1
N −1 0 1

2

C1 − 1
N 0 −1 1

2

C2 − 1
N 0 1 1

2

A11 1 0 −1 1 1
A22 1 0 1 −1 1
A12 1 0 −1 −1 1
A21 1 0 1 1 1

(2.9a)

and superpotential

W =
∑
ij

Tr(AijBiCj) . (2.9b)

10One way to see this is to note that the exactly dimensionless coupling combination referenced above
involves all the individual couplings, and vanishes when any of them vanish. This combination remains
neutral under the spurious flavor symmetries at each step, and thus remains exactly dimensionless (in the
absence of accidental symmetries). Therefore, it is the product of couplings whose dimensions add to zero,
and so at least one of these couplings is relevant (positive dimension) or else they are all exactly marginal.
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× ×

T̂A T̂B

T UV
A T UV

B

T IR
A T IR

B

A

B

LEFT L̃EFT

τ

Figure 6. A schematic picture of S-duality in N = 1 theories. Beginning with a free UV theory
T UVA , we turn on a sequence of relevant operators, producing a sequence of RG flows through
intermediate CFTs T̂A until we reach an IR CFT T IRA with one or more exactly marginal operators.
These operators parameterize a fixed line on which T IRA is a special point (typically with enhanced
global symmetries) that we call a “cusp”. The fixed line can be reached directly by turning on all
these operators simultaneously in the UV, but as some are dangerously irrelevant, the resulting
EFT flow LEFT is typically not UV complete (except when the cusp is a free theory). S-duality
occurs when multiple cusps lie on the same fixed line, or when non-trivial paths along the fixed line
return to the same cusp (self-duality).

Note that, due to the brane bending, this Lagrangian does not describe the correct stringy
physics at any finite energy scale. However, we expect it to flow to the same infrared fixed
point as the correct string theory, i.e., the deformations introduced by the brane bending
are irrelevant in the infrared. This is guaranteed if the brane bending preserves all the flavor
symmetries and if the infrared theory lacks flavor-singlet relevant operators. Indeed, the
relevant, supersymmetry-preserving deformations of an N = 1 SCFTs are superpotential
operators carrying U(1)R charge 2/3 ≤ r < 2, hence the associated couplings are charged
and the deformation breaks some of the flavor symmetries of the IR CFT. Thus, assuming
no accidental abelian symmetries appear in the infrared (which can mix with U(1)R), none
of these relevant deformations can induced by the brane bending, and we should reach the
same infrared fixed point as the strongly coupled theory we started with.

These expectations are supported by very non-trivial checks, detailed in [19], due to
the S-dualities relating different cusps on the conformal manifold, which are dynamically
very nontrivial, but which follow a pattern that can be predicted by a simple analysis of
torsion fluxes in the AdS dual, generalizing [33].
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A
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SU(N)SU(N)′

A

B
C ′

C

SU(N)SU(N)′

Figure 7. Antisymmetric tensor deconfinement as seen from the brane tiling point of view. On
the left hand side we have two NS5 branes, A and B, intersecting on top of an orientifold plane (the
star), giving rise to an antisymmetric representation of the SU(N) flavour symmetry group, which
here comes from the white wedge on the left/right (we denote by SU(N)′ its orientifold image).
The deconfined description [27–29] arises from recombining the NS5 branes in a way that avoids
the orientifold plane. 5-brane charge conservation requires the appearance of a D5 wrapping the
disk bounded by the two new NS5 branes C and C ′, leading to an extra (confining) USp factor.
[Figure reproduced from [18] with modifications.]

2.4 Deconfinement and quad CFTs

Phase I is much less familiar, even though (as argued in [19]) phases of this type turn out to
be far more generic than the simpler cases considered above. As in phase III, the effective
field theory arising from the string theory configuration does not admit a weakly coupled
description at any energy scale, even arbitrarily close to the cusp. Rather, the physics
is given by a weak gauging of diagonal subgroups of the symmetry group of strongly
interacting SCFTs (heuristically, a “gluing of SCFTs” by weakly coupled sectors), very
reminiscent of what happens in N = 2 cases [1, 49]. In fact, we will see momentarily that
resolutions of the singularity connect the SCFTs that arise in the N = 1 case with those
appearing in the N = 2 case, as one might have guessed. Crucially, all of the N = 1 SCFTs
arising at the cusps can be obtained via a series of flows from a Lagrangian description,
i.e., there are known non-conformal N = 1 Lagrangian theories in the same universality
class as the N = 1 SCFTs arising at the cusps in the string configuration. This is the key
point that makes many of the results in this paper possible.

The following construction explains why these theories exist. Recall that an intersec-
tion of two NS5 branes on top of an orientifold plane leads to two-index representations of
the flavour SU(N) symmetry group, as sketched on the left half of figure 7. We will only
need to discuss the case of two-index antisymmetric representations. The strongly coupled
SCFTs mentioned above are precisely those arising from 2k > 2 NS5 branes intersecting
atop an orientifold fixed point in the brane tiling. (Heuristically, the isolated SCFTs appear-
ing at the cusps are interacting generalisations of the free antisymmetric chiral multiplet.)

In order to give Lagrangian descriptions of these SCFTs, we will reformulate the old
idea of deconfinement [27–29] in the brane context. In these papers, the authors constructed
confining N = 1 theories that lead in the IR to a free chiral N = 1 multiplet in the two-
index antisymmetric representation of a SU(N) flavour group. In the context of brane
tilings, these deconfined descriptions for the antisymmetric can be understood as coming
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Figure 8. Deconfinement in the case of four NS5 brane intersecting on top of an orientifold point.
Recombining two NS5s branes so that they avoid the intersection gives us a Lagrangian theory in the
same universality class as the original theory. In this case we have kept two branes intersecting over
the orientifold fixed point, leading to an antisymmetric chiral multiplet. It is possible to deconfine
this multiplet if desired. [Figure reproduced from [18] with modifications.]

from a “bending” of the brane system: while there is no motion in moduli space that moves
the branes out of the fixed point, we can (at a cost in energy) recombine the brane system
in a way that avoids the NS5 branes passing through the orientifold fixed point, as shown in
figure 7. A careful analysis of the resulting brane system [18, 19] shows that it reproduces
the deconfined description provided by [28, 29].11 But crucially, the same brane bending
operation can be applied in the k > 1 cases. We show the k = 2 example in figure 8. The
Lagrangian theories that we write, although somewhat fearsome when written in quiver
form, can be read off straightforwardly from this deconfined brane description.

The specific N = 1 SCFTs arising in the CC(F0) case involve four NS5s intersecting
over a fixed point. The resulting theories were denoted qφSO(M) and qΦ

USp(M) in [18, 19].
We will now briefly review their properties to the extent needed for this paper. We refer
to the original works for a more in-depth discussion.

The qUSp theories. This family of theories is parametrised by a positive integer M
and a parity φ = ±1. We denote an element of this family by qφUSp(M). The symmetry
group of the SCFTs is USp(2M) × SU(M + 4) × U(1)2 × U(1)R. Crucially, there are
known Lagrangian theories in the qφUSp(M) universality class. We denote these Lagrangian
theories by QAUSp(M,F ) and QBUSp(M,G), where F and G are positive integers such that
φ = (−1)F = (−1)G+M and shifting F or G by even numbers leads to theories in the same
universality class. The quiver and charge table for QAUSp(M,F ) are shown in figure 9a
and table 1, respectively. Note that although we only show SU(M) × U(1)X ⊂ USp(2M)
explicitly,12 it is easy to see that the full symmetry group is indeed USp(2M). Our reason

11The deconfinement bubble, when seen from the point of view of the brane tiling, is one of the “geomet-
rically inconsistent” tilings of [50, 51]. We hasten to emphasize that thanks to the orientifold projection,
and despite the name “inconsistent” (which we will avoid), the configurations that we construct via this
method are perfectly cromulent.

12To be precise, the global form of this subgroup is U(M) = SU(M)×U(1)X
ZM

. In what follows, we will not
track the global form of the global symmetry group for simplicity.
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SU(M)

SU(F )T

Z

Y

P

Q

A1

A2

W = A1A2Z + PQY + TQ2Z

(a) Quiver and superpotential for QAUSp.

SU(M + G)

T̃

Z̃

Ỹ

P̃
Q̃

Ã1

Ã2

Φ1

Φ2

SU(M + 4)

SU(M)

SU(G)

W = Ã1Ã2Z̃ + P̃ Q̃Ỹ + T̃ Q̃2Z̃ + Φ1Ã1Ỹ + Φ2Ã2Ỹ

(b) Quiver and superpotential for QBUSp.

Figure 9. Two Lagrangian descriptions of qφUSp(M), with φ = (−1)F = (−1)G+M . [Figures
reproduced from [19] with modifications.]

SU(M+F ) SU(M) SU(M+4) SU(F ) U(1)B U(1)X U(1)Y U(1)R
A1 1 1 − 1

M+F 1 M+4
2(M+F ) 1− M+4

4(M+F )

A2 1 1 − 1
M+F −1 M+4

2(M+F ) 1− M+4
4(M+F )

Y 1 1 1
M+F 0 1− M+4

2(M+F )
M+4

4(M+F )

Z 1 1 1 2
M+F 0 −M+4

M+F
M+4

2(M+F )

P 1 1 1
F 0 −1+ M+4

2F 2+ M−4
4F

Q 1 1 − 1
M+F−

1
F 0 −M+4

2F + M+4
2(M+F ) −

M−4
4F −

M+4
4(M+F )

T 1 1 1 2
F 0 M+4

F 2+ M−4
2F

Table 1. The charge table for QAUSp. The a-maximized R-charge is U(1)sc
R = U(1)R + yMU(1)Y +(

M+4
4 y2

M − 1
3
)
U(1)B where yM is the middle root of 9(M +4)y3

M +9My2
M −3(3M +4)yM −M = 0,

varying between y0 = 0 and y∞ ' −0.1018.

for writing SU(M) × U(1)X is that this is the subgroup that is readily apparent in the
brane tiling construction.

A peculiarity of this deconfined description is that there is a field Q with negative a-
maximized R-charge.13 This is a more extreme case of the common phenomenon (already
appearing in the conifold theory [52], for instance) in which fields in a Lagrangian have
R-charges below the unitarity bound. As is well known, this is a not a problem in the
familiar cases: it is perfectly fine for Q to have negative R-charge, since it is not gauge
invariant. It is only operators in the SCFT that need to have R-charges above the unitarity
bound, but these operators are built out of gauge invariant combinations of fundamental

13Specifically, Q has negative a-maximized R-charge for M ≥ 6 when F = 1, M ≥ 4 when F = 2, M ≥ 3
for F = 3, 4, 5 and M ≥ 2 for larger F .
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Figure 10. “Deconfinement duality” as seen from the brane tiling, which relates QAUSp(M,F )
to QBUSp(M,G) with the constraint φ = (−1)F = (−1)G+M . [Figure reproduced from [18] with
modifications.]

fields, and in many cases (such as the conifold) it is easy to see that the gauge invariant
operators do have R-charges above the unitarity bound.

In the theories at hand there is a second phenomenon at play: as explained in [18,
19], the SU(F ) symmetry is “trivial,” i.e., nothing is charged under this symmetry in
the infrared. This can be shown by deconfining the antisymmetric tensor field Z in the
QAUSp(M,F ) Lagrangian, then switching to the Seiberg dual description of the SU(M +F )
gauge group and reconfining the deconfined USp gauge group (which happens to have
the right number of flavors to be s-confining), as illustrated in brane tiling description in
figure 10. This results in the QBUSp(M,G) Lagrangian, shown in figure 9b and table 2, where
the SU(G) flavor symmetry was introduced upon deconfinement and the SU(F ) becomes
manifestly trivial upon reconfinement. The same process can be run in reverse, which
brings us back to the QAUSp(M,F ′) Lagrangian, now with an a priori different F ′ 6= F . The
only constraint is that F +G+M is even (since USp(n) is defined for even n), so the parity
φ = (−1)F = (−1)G+M = (−1)F ′ remains unchanged. Since different UV descriptions of
the same infrared fixed point have different SU(F ) or SU(G) symmetries, we conclude that
these symmetries must be trivial.

Triviality implies that gauge invariant operators charged under SU(F ) or SU(G) must
disappear in the infrared. This removes many operators that would otherwise violate
the unitarity bound. More generally, to the extent that we have been able to check, all
operators appearing to violate the unitarity bound are lifted in the infrared, whether by
this mechanism or due to other quantum effects. In many cases, this can be seen by
choosing a convenient dual description in which the quantum effects in question become
obvious, tree-level properties. Alternately, one can express the SCI in terms of a different
R-symmetry (not the a-maximized, superconformal one) under which all the fundamental
chiral superfields have charge 0 < r′ < 2. Computing the SCI order-by-order in this
alternate basis, it is straightfoward to check that all the problematic operators cancel from
the index, up to the order computed.

Looking ahead, this subtlety will affect our Lagrangian description of the R2,2n+1
theories with n > 1. So while this is a complication one should keep in mind in these cases
(particularly when expanding the SCI), we believe that it is a purely technical one. In
practice we often deal with this subtlety by computing the index in a modified basis, as
described above, which is sufficient to check many dualities in great detail.
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SU(M+G) SU(M) SU(M+4) SU(G) U(1)B U(1)X U(1)Y U(1)R
Ã1 1 1 − 1

M+G −1 − M+4
2(M+G) 1− M+4

4(M+G)

Ã2 1 1 − 1
M+G 1 − M+4

2(M+G) 1− M+4
4(M+G)

Ỹ 1 1 1
M+G 0 −1+ M+4

2(M+G)
M+4

4(M+G)

Z̃ 1 1 1 2
M+G 0 M+4

M+G
M+4

2(M+G)

P̃ 1 1 1
G 0 1−M+4

2G 2+ M−4
4G

Q̃ 1 1 − 1
M+G−

1
G 0 M+4

2G −
M+4

2(M+G) −
M−4
4G −

M+4
4(M+G)

T̃ 1 1 1 2
G 0 −M+4

G 2+ M−4
2G

Φ1 1 1 0 1 1 1
Φ2 1 1 0 −1 1 1

Table 2. The charge table for QBUSp. Note that this can be obtained from table 1 by charge
conjugating U(1)X , U(1)Y and the non-abelian groups, replacing F with G and adding the mesons
Φ1 = A1Y and Φ2 = A2Y .

SU(M) SU(M + 4)(−1)FΦ1

(−1)FΦ2

Sp O

(a) Notation for qUSp.

SU(M) SU(M + 4)Φ1 (−1)F

Φ̃2 (−1)F+M

Sp O

(b) Notation for qSO.

Figure 11. Abstract quiver notation for qUSp and qSO. The dashed lines indicate the mesons
Φ1 and Φ2 (qUSp) or Φ̃2 (qSO), and the attached labels are their associated parities. The shaded
half of the diamond distinguishes between qUSp and qSO. [Figures reproduced from [19] with
modifications.]

In order to keep track of the SCFTs in a concise way, and also to emphasize the fact
that these sectors correspond to strongly coupled SCFTs even near the cusps, we introduce
the “abstract quiver” notation in figure 11a. The dashed lines correspond to the mesons
Φ1 = A1Y and Φ2 = A2Y , which are elementary fields in QBUSp. We also indicate the
parity φ = (−1)F in the diagram (redundantly, next to each meson line, for reasons to be
explained below).

In addition to the mesons Φ1,2, which combine into the bifundamental ( , ) represen-
tation of USp(2M) × SU(M + 4), the qUSp theory contains baryons Ak,Sk, which can be
expressed in terms of the QAUSp fields as follows:14

Ak = Ak1A
M−k
2 QF , 0 ≤ k ≤M ,

Sk = Z
F+k−4

2 RM+4−k , 0 ≤ k ≤M + 4 , (−1)k = (−1)F .
(2.10)

Note that the baryons Ak combine into the (irreducible) M -index antisymmetric tensor
representation of USp(2M).

14For simplicity we show the case F > 2. For F = 1 (F = 2) we have S1 = P (S0 = T ).
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Φ̃2

SU(M + 4)

SU(M)

SU(F )

W = A1A2Z + PQY + TQ2Z + Φ̃2A2Y

(a) Quiver and superpotential for QASO.

SU(M + G)

T̃

Z̃

Ỹ

P̃

Q̃

Ã1

Ã2

Φ1

SU(M + 4)

SU(M)

SU(G)

W = Ã1Ã2Z̃ + P̃ Q̃Ỹ + T̃ Q̃2Z̃ + Φ1Ã1Ỹ

(b) Quiver and superpotential for QBSO.

Figure 12. The two deconfined quivers for qSO. [Figures reproduced from [19] with modifications.]

The qSO theories. A second family of theories that arise in the same context are the
qφSO(M) theories. These theories have global symmetry group SU(M) × Spin(2M + 8) ×
U(1)2 × U(1)R. Lagrangian theories in the qφSO(M) universality class are also known, as
shown in figure 12 and table 3, but unfortunately these Lagrangians do not preserve the full
symmetry group of the theory, only a full-rank subgroup SU(M)× SU(M + 4) × U(1)3 ×
U(1)R, where SU(M + 4) × U(1)Y enhances to Spin(2M + 8) in the infrared under the
standard embedding U(n) ⊂ SO(2n).15

As before, there are two families of Lagrangians: QASO(M,F ) and QBSO(M,G), re-
lated by a deconfinement duality analogous to figure 10 for (−1)F = (−1)G+M . However,
unlike before the Lagrangians QASO(M,F ) and QBSO(M,G) are isomorphic after relabeling
Ã1 → A2, Ã2 → A1, Φ1 → Φ̃2, charge conjugating the gauge group and SU(M+4)×U(1)Y ,
and identifying SU(G) with the charge conjugate of SU(F ). For odd M , combining the de-
confinement duality and this isomorphism, we conclude that the two parities of F generate
isomorphic CFTs. In fact, a more general class of deconfinement dualities shows that this
remains true for even M [18], hence q+

SO(M) ∼= q−SO(M), unlike q+
USp(M) 6∼= q−USp(M).

Note that the isomorphism between q+
SO(M) and q−SO(M) involves the Z2 “parity”

outer automorphism of Spin(2M + 8). For instance, the baryonic operators Sk of the
qφSO(M) CFT (see (2.10)) combine into a Weyl spinor representation of Spin(2M + 8)
whose chirality is determined by the flavor parity φ. For this reason, it is important to
track F parity when the qSO(M) CFT is coupled to other sectors by a (partial) gauging
of Spin(2M + 8) or by superpotential couplings to qSO(M) operators, as the Z2 outer
automorphism acts nontrivially on these couplings.

In particular, when qSO(M) is embedded in a larger brane tiling, typically only SU(M+
4)×U(1) ⊂ Spin(2M+8) remains unbroken, and we need to specify which precise subgroup

15As with the qUSp theory, we are being somewhat imprecise about the global form of this manifest global
symmetry group. In this case, the embedding U(n) ⊆ SO(2n) lifts to Ũ(n) ⊆ Spin(2n) where Ũ(n) is a
certain double-cover of U(n), e.g., Ũ(2k) = SU(2k)×U(1)

Zk
.
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SU(M+F ) SU(M) SU(M+4) SU(F ) U(1)B U(1)X U(1)Y U(1)R
A1 1 1 − 1

M+F 1 M+4
2(M+F ) 1− M+4

4(M+F )

A2 1 1 − 1
M+F −1 M+4

2(M+F ) 1− M+4
4(M+F )

Y 1 1 1
M+F 0 1− M+4

2(M+F )
M+4

4(M+F )

Z 1 1 1 2
M+F 0 −M+4

M+F
M+4

2(M+F )

P 1 1 1
F 0 −1+ M+4

2F 2+ M−4
4F

Q 1 1 − 1
M+F−

1
F 0 −M+4

2F + M+4
2(M+F ) −

M−4
4F −

M+4
4(M+F )

T 1 1 1 2
F 0 M+4

F 2+ M−4
2F

Φ̃2 1 1 0 1 −1 1

Table 3. The charge table for QASO, which can be obtained from table 1 by adding the elementary
meson Φ̃2 (flipping Φ2 = A2Y ). (Similarly, the charge table for QBUSp can be obtained from table 2
by removing the elementary meson Φ2.) Doing so breaks USp(2M) → SU(M)× U(1)X , but leads
to the accidental enhancement SU(M + 4)×U(1)Y → SO(2M + 8) at the infrared fixed point. The
a-maximized R-charge is U(1)sc

R = U(1)R + xMU(1)X −
(
M
4 x

2
M + 1

3
)
U(1)B where xM is the middle

root of 9Mx3
M + 9(M + 4)x2

M − 3(3M + 8)xM − (M + 4) = 0, varying between x0 ' −0.1381 and
x∞ ' −0.1018.

this is. We do so as follows: consider the mesons Φ1 = A1Y and Φ̃2 = Ã2Ỹ , which are
composites in QASO and QBSO, respectively, and elementary fields in the other phase. We
attach to each of these mesons a parity given by the F parity of the phase in which this
meson is composite (this choice of convention allows us to use the same prescription for the
qUSp case). That is, we assign parity (−1)F to Φ1 and (−1)G to Φ̃2. The two parities are
related by (−1)M , so for any fixed M either parity can be specified (we will often specify
both). Specifying these parities in figure 11b tells us which precise SU(M + 4) × U(1)
subgroup of Spin(2M + 8) is realized in the brane tiling.

Finally, we discuss certain “partially flipped” versions of the qSO theory that will
appear in our construction of the R2,k theory for odd k. To simplify the discussion, we
adopt an abstract quiver notation that makes the full Spin(2M + 8) symmetry manifest,
as shown in figure 13. Next, we decompose Spin(2M + 8)→ Spin(2M + 8−P )× Spin(P ),
whereupon the meson Φ in the ( , ) representation of SU(M)×Spin(2M +8) decomposes
into mesons Ψ and ΨP in the ( , ,1) and ( ,1, ) representations of SU(M)×Spin(2M +
8− P ) × Spin(P ), respectively. Next, we flip the meson ΨP to obtain a meson Ψ̃P in the
( ,1, ) representation of SU(M)× Spin(2M + 8− P )× Spin(P ).

The entire process is illustrated in figure 14. In this way, we obtain a closely related
CFT with an SU(M) × Spin(2M + 8 − P ) × Spin(P ) × U(1)2 × U(1)R symmetry. As we
will see in section 3.2, gauging part of the global symmetry of this theory (for P = 2 and
even M = k − 1) generates a flow to the R2,k (odd k) CFT plus a free chiral multiplet.

A similar partial flipping can applied to the qUSp theory, but as we will not make use
of it in the present paper, the details are left as an exercise for the interested reader.
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SU(M) SU(M + 4)Φ1 (−1)F

Φ̃2 (−1)F+M

Sp O

SU(M) SO(2M + 8)

Ψ
Sp O

Figure 13. Comparison of different abstract quiver notations for the qSO CFT. In the right-hand
diagram the enhanced Spin(2M + 8) symmetry is manifest.

SU(M)

SO(2M + 8 − P )

SO(P )

Ψ

ΨP

Sp O

Meson Flipped

∼=

SU(M)

SO(2M + 8 − P )

SO(P )

Ψ

ΨP

Ψ̃P

W = ΨP Ψ̃P

Sp O

SU(M)

SO(2M + 8 − P )

SO(P )

Ψ

Ψ̃P

Sp O

Figure 14. Partially flipping the qSO CFT in the language of the abstract quiver.

2.5 Flux assignments and duality

The map between fluxes at infinity and the choice of phase goes as follows. Choose a basis
of H3(X5; Z̃) = Z2⊕Z2 given by two elements 〈a〉 and 〈b〉.16 Then we can parametrise the
NSNS flux in this basis by H3 = α 〈a〉+β 〈b〉. In terms of this basis, we have the following
dictionary between phases and H3 flux:

Phase: I II ĨI III
H3 torsion (00) (10) (01) (11)

(2.11)

Note that while the (10) and (01) choices of flux are different, they are related by symmetries
of the geometry, and thus lead to isomorphic physics at the cusp.

This prescription covers the NSNS half of the dictionary between flux and physics at
the cusp. Coming back to the case of O3 planes in flat space, this would be analogous to
explaining that non-trivial NSNS torsion takes us from so to usp in the N = 4 theory. As in
that case, the choice of RR torsion is somewhat more subtle, and has to do with the ranks
of the gauge factors. The RR torsion can also be parametrised as F3 = αF 〈a〉 + βF 〈b〉.
Recall that a shift of C0 by 1 unit acts as F3 → F3 + H3, so for a given nonzero choice
of H3 there will be multiple assignments of F3 that lead to the same perturbative physics.

16These basis elements are associated to any two neighbouring non-compact divisors in the toric diagram
for CC(F0). We refer to [19] for details of this construction.
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For instance, for phase II, with H3 = 〈a〉, it is only the choice of βF that can have an effect
on the field theory. And indeed, for phase II one finds [19]

II : βF ≡ N mod 2 , (2.12)

where N refers to the rank in figure 5b. Similarly for phase III

III : αF + βF ≡ N mod 2 (2.13)

with N as in figure 5c. Finally, in the case of phase I in figure 5a we have two parities
affecting the physics at the cusp. Let us denote φ1 = (−1)F1 and φ2 = (−1)F2 . Then

I : βF ≡ F1 mod 2 (2.14)
αF ≡ F2 mod 2 . (2.15)

With this dictionary between fluxes and parities in hand we can now read the duality
multiplets. We have defined N in figure 5 so that if the discrete flux agrees between two
phases with the same choice of N , then the theories are in fact dual, so in what follows we
will only specify the parities. In order to keep track of this, we denote phase I with parities
φ1 and φ2 as Iφ1φ2 , and we write IIφ and IIIφ for phases II and III with φ := (−1)N .

Consider for example I++. According to our discussion above, we have H3 = F3 = 0, so
this phase is expected to be a SL(2,Z) singlet. That is, all cusps in the conformal manifold
induced by changing the IIB axio-dilaton have the same effective description. This is no
longer true for I+−. This phase has H3 = 0 and F3 = 〈a〉. Acting with the S generator
of SL(2,Z) we obtain H3 = 〈a〉 and F3 = 0, which corresponds to II+. So in this case we
have a non-trivial duality between the ordinary cusp of type II (with N even) and a more
exotic theory of type I, involving the qUSp and qSO theories discussed above.

Other cases can be worked out similarly. For instance, I−+ is dual to ĨI+ and I−− is dual
to III+. Perhaps more interestingly, the conformal manifold of the II− theory involves cusps
of type ĨI− and III−, as one can readily verify. Since due to the very symmetric form of F0
phases II and ĨI are isomorphic, we can think of this case as a duality between III− and II−.

3 N = 1 Lagrangians for the R2,k SCFTs

In the previous section we have reviewed which kind of theories appear in the cusps of
the conformal manifold of the CC(F0) SCFTs for different choices of discrete fluxes, and in
particular we have given Lagrangians for all of them. We have also explained how all of
these theories are related by S-duality. Coming back to the diagram (1.6), this provides all
of the information that we need on the left-hand side of the diagram. Next, by Higgsing
these theories we will obtain N = 1 Lagrangians flowing to the N = 2 theories that appear
on the right-hand side of this diagram.

First, we will need to know the relation between the N = 2 and N = 1 symmetry
groups. The following material is standard, so we will be brief. A longer discussion can
be found in [3, 4, 53], for instance. Consider an N = 2 SCFT with symmetry group G.
What we mean by this is that the SCFT has symmetry group G and an R-symmetry group
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SU(2)R × U(1)N=2
r . The N = 2 theory will have Coulomb and Higgs branches, which we

explore by turning on operators neutral under SU(2)R and U(1)N=2
r respectively.

The N = 2 theory can be viewed as a N = 1 SCFT, with an R-symmetry U(1)R, and
an additional global symmetry U(1) R(so, from the N = 1 point of view, our theory has
non-R global symmetry G×U(1) R). The N = 1 generators can be written in terms of the
N = 2 generators as

U(1)R = 2
3U(1)N=2

R + 1
3U(1)N=2

r ,

U(1) R= U(1)N=2
R −U(1)N=2

r

(3.1)

where we have chosen a Cartan generator U(1)N=2
R of SU(2)R. Our conventions for U(1)N=2

R

are that the U(1)N=2
R charge is twice the spin (so, for instance, the spin-1/2 representation

of SU(2)R has QN=2
R = ±1). Equivalently, we can write the N = 2 generators in terms of

the N = 1 generators as

U(1)N=2
R = U(1)R + 1

3U(1) R

U(1)N=2
r = U(1)R −

2
3U(1) R.

(3.2)

After establishing R charge relations between the N = 2 and N = 1 symmetry groups,
we now consider the effect on the field theory of partially resolving the CC(F0) singularity to
two copies of C2/Z2×C. We choose to start by studying the effect of the partial resolution
on phase III, for reasons that will become clear momentarily. By using the general methods
of [30] (or simply by trial and error) it is easy to conclude that turning on a vev for C1
proportional to the identity triggers the relevant partial resolution in the geometry, where
we are using the nomenclature in the charge table (2.9a). We will refer to giving such a
vev in a more gauge-invariant way as giving a vev to “CN1 ”, which is a shorthand for the
gauge invariant baryon det(C1).

This vev spontaneously breaks one linear combination of the four U(1) symmetries of
the parent theory, and Higgses the SU(N) × SU(N) gauge group to the diagonal SU(N).
After Higgsing, C2 decomposes in Adj ⊕ 1 and B1,2 into two copies of ⊕ , where the
superpotential (2.9b) gives the antisymmetric part of B1 and the symmetric part of B2 a
mass with A11 and A21, respectively. After integrating out the massive fields and dropping
the decoupled chiral field v controlling the vev, an accidental U(1)z symmetry emerges in
the infrared. Putting all the pieces together, relabeling the fields, and choosing a new basis
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for the U(1) symmetries that will be convenient later, we obtain:

SU(N) U(1)x U(1)z U(1) RU(1)R

Φ Adj 0 0 −2 2
3

S 1
2 −

1
2N

1
N 1 2

3

Sb
1

2N −
1
2 − 1

N 1 2
3

A − 1
2N −

1
2

1
N 1 2

3

Ab
1

2N + 1
2 − 1

N 1 2
3

φ 1 0 0 −2 2
3

(3.3a)

with superpotential

W = Tr(AΦAb +AφAb + SΦSb + SφSb) . (3.3b)

This is the N = 1 description of the N = 2 theory with quiver (in N = 2 notation)

SU(N)
(3.4)

coupled to a gauge singlet chiral multiplet φ.
To understand the appearance of this “extra” chiral field φ, note that the previously-

isolated singularity blows up into a P1 line of singularities following the partial resolution.
Thus, we naturally interpret φ as the center of mass mode for the D3 brane stack mov-
ing along the P1. In the decompactification limit P1 → C, N = 2 SUSY is restored,
and φ should be paired with a massless photon to complete an N = 2 vector multiplet.
Specifically, as dictated by φ’s superpotential interactions in (3.3b), the massless photon
in question gauges the global symmetry U(1)z in (3.3a). Since D-branes naturally engi-
neer U(N) gauge theories rather than SU(N) gauge theories, the appearance of this extra
photon is not a surprise.17 However, as its interactions make it infrared free, this photon
(along with φ) will decouple from the infrared CFT.

Thus, in order to focus on the interacting sector of the resulting N = 2 SCFT, we
omit this extra U(1) and also remove its N = 2 superpartner by adding a new singlet field
φ with opposite global charges and modifying the superpotential to

W = Tr(AΦAb +AφAb + SΦSb + SφSb) + φφ . (3.5)

Following, e.g., [54], we refer to this operation (which can be applied to any gauge invariant
operator φ) as “flipping φ”. In this case, flipping φ gives it a mass, and after integrating it
out we obtain the manifestly N = 2 theory with quiver (3.4).

17Likewise, this is the result if we write the UV theory in (2.9b) as U(N) × U(N) gauge theory —
reinstating the U(1) factors that we have ignored until now — with the caveat that one of these U(1)s is
anomalous and so the associated photon gets a Green-Schwarz mass. Indeed, the “accidental” symmetry
U(1)z can be viewed as arising from this anomalous U(1).
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Figure 15. Class S description of the R2,k theories.

Our general strategy now allows us to give a Lagrangian description of the strongly
coupled limit of this theory. Before doing that, we will briefly review what is known about
this case in the class S context. As it turns out, the strong coupling behaviour depends on
whether N is even or odd — in agreement with our observation above that the duals of III+

and III− are rather different: the former is dual is to I−− while the latter is dual to II−.
The odd N case was studied from the class S perspective in [55]. Setting N = k + 1

(where k is even), we have that the strongly coupled dual of (3.4) is given by R2,k ←↩
USp(k), where R2,k is defined to be the SCFT arising from putting the six dimensional
Ak (2, 0) theory on a sphere with three punctures. Two of these punctures are full twisted
punctures, and the other is a minimal untwisted puncture, see figure 15. We use the
notation T ←↩ G to indicate that we weakly gauge a subgroup G of the global symmetry
group of the SCFT T . TheR2,k SCFT for k even has global symmetry group USp(2k)×U(1)
and central charges

24a = 1 + 19
2 k + 7

2k
2 , (3.6a)

12c = 1 + 5k + 2k2 . (3.6b)

The USp(2k) global symmetry has level kUSp(2k) = k+ 2. Additionally, it has a Witten (or
“global”) anomaly [56, 57]. The Argyres-Wittig theory [58] arises in the case N = 3, or
equivalently k = 2.

The even N case was studied from the class S perspective in §3.5.4 of [59]. Again
setting N = k+ 1, the S-dual is expected to be R2,k ←↩ SO(k+ 2), where the R2,k CFT for
odd k has global symmetry Spin(2k + 4)×U(1) with level kSpin(2k+4) = 2k.

To be precise, the S-dual depends on the global structure of the gauge group in the
original quiver (3.4). Since N is even, there is a Z2 subgroup of the ZN center of SU(N)
under which two-index tensor reps are neutral, so we can choose the gauge group to be either
SU(N), (SU(N)/Z2)+ or (SU(N)/Z2)−, where in the latter cases the subscript indicates
the absence (+) or presence (−) of a discrete theta angle [60, 61]. In each case, there is a
Z2 one-form symmetry [62], which is either electric, magnetic, or dyonic, respectively.
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SU(N) (SU(N)/Z2)+ (SU(N)/Z2)−

R2,k ←↩ SO(N + 1)+

y

x x x

←→

←
→

←
→

←
→S S S

T

T

T

T

T

T

T

T

R2,k ←↩ Spin(N + 1) R2,k ←↩ SO(N + 1)−

Figure 16. Duality orbits of the quiver (3.4) for N = 4m+ 2 (N > 2).

SU(N) (SU(N)/Z2)+ (SU(N)/Z2)−

R2,k ←↩ SO(N + 1)+

y y y

x x x

←
→

←
→

←
→S S S

T T T

R2,k ←↩ Spin(N + 1)

T

T

T

T

T

T

R2,k ←↩ SO(N + 1)−

Figure 17. Duality orbits of the quiver (3.4) for N = 4m.

Thus, the S-dual should have a Z2 one-form symmetry as well. This is the case, because
the gauged subgroup is embedded as SO(k+ 2) ⊂ SU(k+ 2) ⊂ Spin(2k+ 4), implying that
there are no SO(k + 2) spinors in the spectrum. Thus, we can gauge either Spin(k + 2),
SO(k + 2)+ or SO(k + 2)− where the subscript again indicates presence or absence of a
discrete theta angle, and there is once again an electric, magnetic, or dyonic Z2 one-form
symmetry in each case, respectively. Examining the class S description, we conclude that
electric and magnetic lines are exchanged by the duality as usual, which implies to the
duality orbits shown in figures 16 and 17 (see [61] for the action of T in each case).

For future reference, the central charges of the R2,k CFT with odd k are [63]

24a = −4 + 9
2k + 7

2k
2 , (3.7a)

12c = −1 + 3k + 2k2 . (3.7b)

The case N = 4 gives rise to R2,3, which is the E6 Minahan-Nemeschansky theory [59], or
equivalently the T3 theory arising from putting the A2 (2, 0) theory on a sphere with three
(untwisted) full punctures.

3.1 Even k

We now reproduce these results from a UV N = 1 Lagrangian, constructed according to
the general procedure outlined in the introduction. We start with the even k (i.e., odd N)
case, as it is somewhat simpler.
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vev

Figure 18. Effect of the Higgsing on the brane tiling for phase II.

The starting point is to identify the operator in phase II dual to CN1 . This can be
done, e.g., by matching the U(1)4 charges of the gauge-invariant chiral operators in the
dual descriptions. Referring to (2.8a), (2.9a), we see that

U(1)B U(1)X U(1)Y U(1)R[
CN1

]
III −1 0 −N N

2[
BN−1

1 B2
]
II −1 0 −N N

2

(3.8)

so the phase II dual of CN1 is BN−1
1 B2, where we again use a condensed notation to refer to

the gauge invariant baryonic operator built out of N − 1 copies of B1 and one B2. Turning
on this vev triggers an RG flow, and after integrating out the massive states we end up
with an accidental U(1) in the infrared, just like in phase III. After relabeling the fields
and choosing an appropriate basis for the U(1) symmetries, we obtain18

SU(N) USp(N − 1) U(1)x U(1)z U(1) R U(1)R

Y1 ¯ 1 0 1 1
N 1− 1

3N

Y2 ¯ 1 0 −1 1
N 1− 1

3N

A1 1 0 0 −2(N+1)
N

2
3N + 2

3

A2 1 0 0 − 2
N

2
3N

X1 ¯ 1
2 0 N+1

N
2
3 −

1
3N

X2 ¯ −1
2 0 N+1

N
2
3 −

1
3N

S 1 0 0 −2 2
3

(3.9a)

with superpotential

W = Tr(A1X1X2 +A2SX1X2 +A2Y1Y2) . (3.9b)

As shown in figure 18, the Higgsing can also be understood from the point of view
of the brane tiling. Turning on the vev for BN−1

1 B2 induces a recombination of two of
18Although we have not indicated it explicitly, there is naturally an extra “SO(1)” gauge factor under

which the Yi fields are charged.
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the NS5 branes. The recombined system of branes will relax to a configuration with
two NS5 branes on top of each other, leading to a strongly coupled SCFT. As usual, we
obtain a Lagrangian for this SCFT by bending the recombined branes slightly, yielding
the Lagrangian description in (3.9). Based on the known class S results above, we expect
that the strongly coupled sector in the brane tiling is the R2,N−1 theory. As an additional
piece of evidence in favour of this idea, note that the weakly-coupled part of the tiling has
a gauge group USp(N − 1), in agreement with the class S prediction.

This will indeed be the case, but we need to take care of one technical point first: in
order to obtain the N = 2 quiver theory (3.4) from partial resolution of phase III, we had
to flip the singlet φ. Thus, to obtain the S-dual of theory from partial resolution of phase II,
we must flip the operator dual to φ. As before, this operator can be identified by matching
its U(1)4 charges with φ, whose charges are shown in (3.3a). Comparing with (3.9), we
identify the gauge-invariant operator AN2 as the dual of φ. The flipped theory is therefore:

SU(N) USp(N − 1) U(1)x U(1)z U(1) R U(1)R

Y1 ¯ 1 0 1 1
N 1− 1

3N

Y2 ¯ 1 0 −1 1
N 1− 1

3N

A1 1 0 0 −2(N+1)
N

2
3N + 2

3

A2 1 0 0 − 2
N

2
3N

X1 ¯ 1
2 0 N+1

N
2
3 −

1
3N

X2 ¯ −1
2 0 N+1

N
2
3 −

1
3N

S 1 0 0 −2 2
3

φ 1 1 0 0 2 4
3

(3.10a)

with superpotential

W = Tr(A1X1X2 +A2X1SX2 +A2Y1Y2) + φ̄AN2 . (3.10b)

Putting together the results of our analysis with the previous class S analysis, we con-
clude that this Lagrangian theory is in the same universality class as R2,N−1 ←↩ USp(N−1)
for odd N . To isolate R2,N−1 itself, we set the USp(N − 1) gauge coupling to zero and
remove the associated vector multiplets from the theory. In fact, the N = 2 adjoint vector
multiplet of USp(N − 1) includes the chiral field S in addition to the N = 1 adjoint vec-
tor multiplet, so to preserve N = 2 supersymmetry in the infrared, we also decouple and
remove S.

In terms of the brane tiling, this corresponds to decompactifying in the horizontal di-
rection, focusing in on the strongly coupled sector as depicted in figure 19. This sends the
gauge and superpotential couplings associated to the USp(N − 1) vector multiplet to zero
as the corresponding branes become infinitely large. Likewise, the vector multiplet com-
ponents themselves either become non-normalizable or are pushed off to infinity, freezing
these modes out of the theory.
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Figure 19. Sending the gauge coupling of the USp(N − 1) factor to 0. In terms of the brane tiling
this amounts to stretching the torus horizontally so it becomes an infinite cylinder, or equivalently
focusing on the region close to the SU factor.

The resulting Lagrangian theory has matter content

SU(N) USp(2(N − 1)) U(1)z U(1) R U(1)R

Y1 ¯ 1 1 1
N 1− 1

3N

Y2 ¯ 1 −1 1
N 1− 1

3N

A1 1 0 −2(N+1)
N

2(N+1)
3N

A2 1 0 − 2
N

2
3N

X ¯ 0 1
N + 1 2

3 −
1

3N

φ 1 1 0 2 4
3

(3.11a)

with superpotential

W = Tr(A1X
2 +A2Y1Y2) + φAN2 . (3.11b)

Note that decompactifying the brane tiling in this way manifestly enhances USp(N −1)→
SU(N−1) due to the disappearance of the O5 plane generating the orientifold projection in
question. However, the resulting Lagrangian accidentally acquires an even larger symmetry
USp(2(N − 1)) ⊃ SU(N − 1)×U(1)x, which we have made manifest in table above.

We therefore conclude that the N = 1 Lagrangian theory (3.11) flows to the N = 2
R2,N−1 SCFT. We now present a number of simple but stringent tests that support this
conclusion.

First, note that the manifest symmetry group of the Lagrangian description matches
with the symmetry group of the R2,N−1 theory for k even: we find a USp(2(N−1))×U(1)z
symmetry group which we identify with the flavour group of the N = 2 SCFT, and an
additional U(1) R× U(1)R which we identify with the manifest N = 1 subgroup of the
SU(2)R ×U(1)N=2

r R-symmetry of the N = 2 SCFT.
Second, note that the USp(2(N − 1)) global symmetry has a Witten anomaly [56],

coming from the X fields, which give an odd number of chiral multiplets in the fundamental
of USp(2(N − 1)). This agrees with the result in [57]. The a and c central charges are also
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straightforward to compute using [64, 65]

a = 3
32(3 Tr U(1)3

R − Tr U(1)R) , c = 1
32(9 Tr U(1)3

R − 5 Tr U(1)R) . (3.12)

where U(1)R is the R-symmetry appearing in the superconformal algebra, which can be
determined by a-maximisation [66]. The U(1)R given above already maximizes a, so the
calculation is straightforward, and we obtain

Tr U(1)3
R = 1

27(11k2 + 35k − 2) , Tr U(1)R = −1
3(k2 + k + 2) . (3.13)

Substituting into (3.12) we recover (3.6) as expected. Finally, we find a mixed anomaly

Tr(USp(2k)2U(1)R) = −1
3(k + 2) (3.14)

which is −1
3 times the level of the USp(2k) flavour current of the R2,k theory, as expected.19

Written in the N = 2 basis, the complete set of non-vanishing anomaly coefficients are:

USp(2k)3 1 mod 2

USp(2k)2U(1)r −(k + 2)

U(1)2
zU(1)r −2

U(1)3
r −(k2 + k + 2)

SU(2)2
RU(1)r

1
2(k2 + 3k)

U(1)r −(k2 + k + 2)

(3.15)

Besides the checks of the conformal and mixed anomalies in (3.13) and (3.14), we are not
aware of a computation of the other anomaly coefficients. These are therefore a prediction
of our deconfined description.

As a final check, we will focus on the rank one Argyres-Wittig theory with symmetry
USp(4)×U(1) [58], which is the case N = 3, i.e., the R2,2 theory (k = N −1 = 2). Expres-
sions for the Hall-Littlewood index [67–70] of this theory were given explicitly in [55]. This
index is an specialization of the full superconformal index, obtained as follows. Consider the
usual variables for the superconformal index p = tx and q = t/x, and denote the chemical
potential for the U(1) Rsymmetry ν. Define τ := ν(pq)

1
3 . The Hall-Littlewood index is then

IHL(τ) := I(p, q, τ)
∣∣
p=q=0 (3.16)

where for simplicity we have turned off all chemical potentials for non-R symmetries. It is
straightforward to compute this quantity from our quiver description using the techniques
in [69]. We obtain

IHL(τ) = 1+11τ2+10τ3+60τ4+80τ5+253τ6+350τ7+855τ8+1180τ9+2406τ10+. . . (3.17)
19See, e.g., (A.4) of [53]. Note that we normalize the generators of USp(2k) so that Tr USp(2k)2U(1)R = 1

for a fermion in the fundamental of USp(2) with charge 1 under U(1)R, which leads to a factor of 2 difference
with the conventions in that paper.
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This ought to be compared with the exact form of the index, which was found in [55]:

IHL(τ) = 1 + 2τ + 8τ2 + 20τ3 + 41τ4 + 62τ5 + 87τ6 + 96τ7 + 87τ8 + · · ·+ τ14

(1− τ)8(1 + τ)6(1 + τ + τ2)4 (3.18)

where the omitted terms in the numerator are palindromic (that is, the coefficient of τ7−m

is the same as that of τ7+m). A Taylor expansion of this expression around τ = 0 repro-
duces (3.17).

3.2 Odd k

We now repeat the same reasoning for even N = k + 1. The dual phase to III+ is I−−.
Phase I has the additional complication that it involves the strongly coupled qSO and qUSp
sectors. These can be deconfined, as reviewed in section 2.2, leading to a Lagrangian theory
in the same universality class with matter content

SU(N−1) SU(N−1) SO(N+2) USp(N−2) U(1)B U(1)X U(1)Y U(1)R
A1 1 1 1

2(N−1) 1 N+2
2(N−1)

4−3N
4−4N

A2 1 1 1
2(N−1) −1 N+2

2(N−1)
4−3N
4−4N

Y 1 1 1
2−2N 0 N−4

2(N−1)
N

4(N−1)

Z 1 1 1 1
1−N 0 N+2

1−N
N

2(N−1)

P 1 1 1 −1
2 0 N

2
N
4

Q 1 1 1 N
2(N−1) 0 − (N−2)(N+2)

2(N−1)
N2−8N+8

4−4N

A′1 1 1 1
2−2N

N+2
2(N−1) −1 4−3N

4−4N

A′2 1 1 1
2−2N

N+2
2(N−1) 1 4−3N

4−4N

Y ′ 1 1 1
2(N−1)

N−4
2(N−1) 0 N

4(N−1)

Z ′ 1 1 1 1
N−1

N+2
1−N 0 N

2(N−1)

P ′ 1 1 1 1
2

N
2 0 N

4

Q′ 1 1 1 N
2−2N −

(N−2)(N+2)
2(N−1) 0 N2−8N+8

4−4N

Φ 1 1 0 −1 −1 1
(3.19a)

and superpotential

W = Tr(A1Y Φ+A2Y1A
′
1Y
′+A1A2Z+PQY+A′1A′2Z ′+P ′Q′Y ′+A′2Y ′Φ). (3.19b)

Now that we have this explicit Lagrangian description of phase I the analysis proceeds
along the same lines as in the case of odd N . As a first step, by matching U(1)4 charges
we determine the phase I operator dual to CN1 to be Y 2ZN−2. Tracking what happens
to (3.19) when we turn on Y 2ZN−2 can be done systematically, but the computation is
quite technically involved. It will be helpful to understand first the effect of the vev on
the brane tiling, as a guide to the behaviour of the field theory. Let us focus on the effect
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−→
Deconfined
description
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Y 2ZN−2
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qSO

Figure 20. Deconfined description of qUSp part of phase I. We have kept qSO confined in the tiling
for clarity; deconfining it leads to an additional SU(N−1) gauge factor that we have written explic-
itly in (3.19). Turning on a vev for Y 2ZN−2 leads to recombination of the green and red NS5 branes.

in the qUSp sector, which we show partially deconfined in figure 20. In this picture, the
Higgsing corresponds to a recombination of branes.

In terms of the field theory, after integrating out the fields that become massive after
Higgsing, we obtain (after some relabeling):

SU(N − 1) USp(N − 2) SO(N + 1) USp(N − 2) U(1)x U(1)z U(1) R U(1)R
Φ1 1 1 1 −1 2 1 1
Y 1 1 0 0 1 0
P 1 1 1 0 0 N 0
Q 1 1 1 0 0 −N − 1 2
A′1 1 1 N+2

2(N−1) − 1
N−1

N−2
2−2N

N−2
2(N−1)

A′2 1 1 N+2
2(N−1) − 1

N−1 1 + N
2(N−1)

N−2
2(N−1)

Y ′ 1 1 N−4
2(N−1)

1
N−1

N
2−2N

N
2(N−1)

Y ′1 1 1 1 N−4
2(N−1) −2 + 1

N−1
N

2−2N
N

2(N−1)

Z′ 1 1 1 −N+2
N−1

2
N−1 − N

N−1
N
N−1

P ′ 1 1 1 N
2 −1 −N2

N
2

P ′1 1 1 1 1 N
2 1 −N2

N
2

Q′ 1 1 1 (N−2)(N+2)
2(1−N) 1− 1

N−1
N2

2(N−1) − (N−2)2

2(N−1)

Φ 1 1 −1 0 −1 1
(3.20a)

with the superpotential

W = Tr(PQY+P ′Q′Y ′+Φ1A
′
1Y
′

1+P ′1Q′Y ′1+A′1Y ′(Y )2Φ+A′2Y ′Φ+A′1A′2Z ′) (3.20b)

which agrees with the results of the brane tiling operation described above.
This is a fairly imposing theory, but looking at the brane tiling gives a clue about

what to do next. As can be seen in figure 20, after the branes passing through the O5−

orientifold fixed point within the qUSp sector recombine and move away, we are left with a
central “deconfinement bubble” which will tend to reconfine, as in figure 21. This suggests
to that the USp(N − 2) gauge group factor in the second column of (3.20) should confine,
and indeed this factor is s-confining [27], resulting in composite mesons MY 2 = Y 2 and
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Figure 21. Reconfining the result of Higgsing the deconfined qUSp sector.

MY Q = Y Q interacting via a superpotential. The latter meson gets a mass with P , setting
the confining superpotential to zero.

Finally, we flip the operator dual to φ, which is A′N−2
1 Q′ as is straightforward to check.

We thereby obtain a Lagrangian in the same universality class as the strongly-coupled S-
dual of (3.4), given by

SU(N − 1) SO(N + 1) USp(N − 2) U(1)x U(1)z U(1) R U(1)R
M 1 1 0 0 −2 2

3

A1 1 N+2
2(N−1)

−1
N−1

N−2
2(N−1)

N−2
3(N−1)

A2 1 N+2
2(N−1)

−1
N−1

N
2−2N − 1 4−3N

3−3N

Y 1 N−4
2(N−1)

1
N−1

N
2(N−1)

N
3(N−1)

Y1 1 1 N−4
2(N−1)

1
N−1 − 2 N

2(N−1)
N

3(N−1)

Z 1 1 N+2
1−N

2
N−1

N
N−1

2N
3(N−1)

P 1 1 N
2 −1 N

2
N
3

P1 1 1 1 N
2 1 N

2
N
3

Q 1 1 (N−2)(N+2)
2(1−N)

N−2
N−1

N2

2−2N
N2−6N+6

3−3N

Φ 1 −1 0 1 2
3

Φ1 1 1 −1 2 −1 4
3

φ 1 1 1 0 0 2 4
3

(3.21a)

with superpotential

W = Tr(A1A2Z +A2Y Φ +A1YMΦ +A1Y1Φ1 + PQY + P1QY1) +AN−2
1 Qφ , (3.21b)

where we relabeledMY 2 −→M and suppressed the primes for simplicity.
As discussed above, we expect this theory to flow to R2,N−1 ←↩ SO(N + 1) per [59].

Therefore, we can isolate R2,N−1 by ungauging SO(N+1) (in the N = 2 sense), which also
removes the chiral superpartnerM. Equivalently, in terms of the brane tiling we focus in
on the strongly coupled sector as in figure 22. After redefining U(1)y = −(U(1)x+ 1

2U(1)z)
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Figure 22. Sending the gauge coupling of the SO(N+1) factor to 0. Note that we shifted figure 21
horizontally by half a period before cutting open the torus into a cylinder, in order to focus on the
strongly coupled sector.

for later convenience, we obtain the following N = 1 Lagrangian theory, which is expected
to flow to the R2,N−1 theory for even N :

SU(N − 1) USp(N − 2) SU(N + 1) U(1)y U(1)z U(1) R U(1)R
A1 1 N+1

2−2N − 1
N−1

N−2
2(N−1)

N−2
3(N−1)

A2 1 N+1
2−2N − 1

N−1
N

2−2N − 1 3N−4
3(N−1)

Y 1 − N−3
2(N−1)

1
N−1

N
2(N−1)

N
3(N−1)

Y1 1 1 N+1
2(N−1)

1
N−1 − 2 N

2(N−1)
N

3(N−1)

Z 1 1 N+1
N−1

2
N−1

N
N−1

2N
3(N−1)

P 1 1 −N−1
2 −1 N

2
N
3

P1 1 1 1 −1
2(N + 1) 1 N

2
N
3

Q 1 1 −N2+N+2
2−2N

N−2
N−1

N2

2−2N
N2−6N+6

3−3N

Φ 1 1 0 1 2
3

Φ1 1 1 0 2 −1 4
3

φ 1 1 1 0 0 2 4
3

(3.22a)

with superpotential

W = Tr(A1A2Z +A2Y Φ +A1Y1Φ1 + PQY + P1QY1) +AN−2
1 Qφ . (3.22b)

Along the lines of [18], one can argue that SU(N + 1) × U(1)y enhances accidentally to
Spin(2N + 2) in the infrared, in agreement with the expected Spin(2N + 2)× U(1) flavor
symmetry of the R2,N−1 (even N) CFT. It is hard to imagine that one could have guessed
this N = 1 Lagrangian without the aid of the brane construction!20

20A different class of N = 1 Lagrangians expected to flow to the R2,N−1 (N even) CFTs and preserving
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Figure 23. The abstract quiver for a partial gauging of a qSO CFT that is expected to generate
a flow to the R2,N−1 (even N) CFT plus a decoupled chiral multiplet. The oppositely directed
arrows on the meson lines Ψ, Ψ̃ indicate that the qSO CFT is partially flipped, see figure 14.

The end result can be re-expressed more simply as a partial gauging of one of the quad
CFTs discussed in section 2.4. In particular, consider the “partially flipped” qSO CFT
shown in figure 14, with flavor symmetry SU(N−2)×Spin(2N+2)×Spin(2)×U(1)2×U(1)R
(setting M = N − 2, P = 2). We claim that gauging SU(N − 2) ←↩ USp(N − 2) (with
N = 1 vector multiplets) generates a flow whose endpoint is the R2,N−1 (even N) CFT plus
a decoupled free chiral multiplet. Indeed, substituting the deconfined decription of the qSO
theory given in section 2.4, identifying Spin(2) ∼= U(1)z, choosing an appropriate basis for
the remaining U(1)s (after omitting the one with a mixed USp(N −2)2U(1) anomaly), and
flipping the appropriate free baryon (either AN−2 and A0, depending on which deconfined
description we choose, see (2.10)), we recover (3.22).

The abstract quiver for this description of R2,N−1 (even N) is shown in figure 23. Note
that in principle we could have obtained this description directly by Higgsing the abstract
quiver in figure 5a; we did this calculation using the deconfined Lagrangian description
only because Lagrangian methods are far more familiar. Moreover, note that the abstract
quiver 23 displays the full flavor symmetry of the R2,N−1 CFT, lacking only the nonabelian
R-symmetry enhancement to U(1)N=2

R −→ SU(2)R that is never visible in N = 1 language.
The embedding of the U(1) symmetries within the qSO description can likewise be

described by the abstract charge table

USp(N − 2) SO(2N + 2) SO(2)z U(1) RU(1)R
qSO ∗ ∗ ∗ N

2
N−6

12

Ψ 1 1 2/3
Ψ̃ 1 −1 4/3
φ 1 1 1 2 4/3

(3.23a)

a different subgroup of the full R2,N−1 symmetry group were proposed in [63]. Unlike here, the manifest
symmetry group in [63] has a lower rank (by one) than the full R2,N−1 symmetry group, U(1) Rbeing absent
from the UV theory. If our proposal and that of [63] are both correct then they should lie in the same
universality class. However, we have so far been unable to relate them using known Seiberg dualities, a task
made more difficult by the mismatch in the manifest symmetries. We leave this as an interesting question
for future research.
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with superpotential

W = Aφ . (3.23b)

Here the second and third lines of the table indicate the charges21 of the qSO mesons Ψ
and Ψ̃ and the first line indicates the admixture of the baryonic symmetry U(1)B of the
quad CFT, following the conventions of [19]. In the notation of (2.10), the baryon A is
either AN−2 or A0 depending on which deconfined description we pick, the right one being
fixed by the U(1) charges.

Let us provide some evidence that this Lagrangian theory and its partially-gauged-qSO
cousin are in the same universality class as the R2,N−1 theory. The global symmetry of the
R2,N−1 theory is Spin(2N + 2) × U(1) times SU(2)R × U(1)N=2

r . The N = 1 description
will break the R-symmetry factor to U(1) R× U(1)R, so ideally we would like to have an
N = 1 description with global symmetry group Spin(2N+2)×U(1)×U(1) R×U(1)R. This
is precisely the manifest symmetry of the abstract quiver shown in figure 23, although in
our explicit Lagrangian description (3.22) only a maximal subgroup SU(N + 1)× U(1) of
Spin(2N + 2) (of equal rank) is manifest.

We next compare the central charges. We have, setting N = k + 1 as above,

Tr U(1)3
R = 1

27(11k2 + 9k − 28)

Tr U(1)R = −1
3(k2 + 3k + 4) .

(3.24)

When substituted into (3.12) these values lead to the expected a and c central charges
given in (3.7). Similarly, we find

Tr Spin(2k + 4)2U(1)R = −1
3(2k) (3.25)

in agreement with the expected central charge for the flavour symmetry (up to the same
factor of −1

3 we found in the even k case). As before, the complete list of non vanishing
anomalies in the N = 2 basis is given by:

Spin(2k + 4)2U(1)r −2k

U(1)2
zU(1)r −8

U(1)3
r −(k2 + 3k + 4)

SU(2)2
RU(1)r

1
2(k2 + k − 2)

U(1)r −(k2 + 3k + 4)

(3.26)

These anomalies match the ones computed in [63] (for the anomaly computation Spin(2k+
4) ' SO(2k+ 4)). Note, however, that the ones involving Spin(2k+ 4) differ by a factor of

21Note that although ∼= for USp(N − 2) (the representation is pseudoreal), we list opposite choices
for Ψ and Ψ̃ as a reminder of the partial flipping.
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2 with respect to the conventions in that paper, due to the different normalization of the
Spin(2k + 4) generators, see the discussion in footnote 19.

Finally, we can compute the superconformal index and compare with known results.
We will do it for R2,3, which is a well studied example, as it is the rank one E6 Minahan-
Nemeschansky (also known as T3). In this case we have the following matter content:

SU(3) SU(2) SU(5) U(1)y U(1)z U(1) RU(1)R
A1 1 −5

6 −1
3

1
3

2
9

A2 1 −5
6 −1

3 −5
3

8
9

Y 1 −1
6

1
3

2
3

4
9

Y1 1 1 5
6 −5

3
2
3

4
9

Z 1 1 5
3

2
3

4
3

8
9

P 1 1 −3
2 −1 2 4

3

P1 1 1 1 −5
2 1 2 4

3

Q 1 1 5
3

2
3 −8

3
2
9

Φ 1 1 0 1 2
3

Φ1 1 1 0 2 −1 4
3

φ 1 1 1 0 0 2 4
3

(3.27a)

with superpotential

W = Tr(A1A2Z +A2Y Φ +A1Y1Φ1 + PQY + P1QY1) +A2
1Qφ . (3.27b)

With this field content at hand it is easy to compute the superconformal index (using
the prescription in [69]) to a fairly high order and compare it with known results [71]. We
find for the first few orders, in the conventions of [18],

1 + R2t4/3
[
1 +X0,1,0,0,0 + zX0,0,0,1,0 + X0,0,0,0,1

z

]
+ t2

[ 1
R6
−
(

2 +X0,1,0,0,0 + zX0,0,0,1,0 + X0,0,0,0,1
z

)]
− t7/3J1

[ 1
R4
− R2

(
2 +X0,1,0,0,0 + zX0,0,0,1,0 + X0,0,0,0,1

z

)]
+ . . .

(3.28)

where we have grouped the SU(5) × U(1)y characters into Spin(10) characters Xa,b,c,d,e,
denoted by z the U(1)z chemical potential, and by Rthe U(1) Rchemical potential. This
index agrees perfectly with the index computed in [71],22 if we embed Spin(10)×U(1)z →
E6. We have verified that the agreement persists to at least the order t11/3, but the resulting
expressions are a bit too unwieldy to display here.

Finally, let us briefly note that the theory in (3.27) has no 1-form symmetries (i.e.,
the gauge group is simply connected and the spectrum is complete). This matches the

22This index was given an alternative N = 1 Lagrangian interpretation in [72].
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expected answer [73], which can also be deduced from a BPS quiver analysis along the
lines of [74] and the general class-S analysis in [75].

4 Higgs branch deformations

We have constructed candidate Lagrangian descriptions for the R2,k theories, for all k.
So far, our evidence for the validity of these descriptions is that the global symmetries,
central charges and superconformal indices match between our N = 1 theories and the
ones expected for the R2,k theories (whenever those are known).

In the rest of this paper we will provide further evidence for these proposals by red-
eriving known results about the moduli space and deformations of these theories. We start
in this section by studying what happens as we move on the Higgs branch.

4.1 Dimension of the Higgs branch for R2,k

The quaternionic dimension of the Higgs branch of N = 2 theories is dimH(H) = 24(c −
a) [76]. The values of a and c for the R2,k theories were given in (3.6) and (3.7) above,
from which we obtain23

dimH(H) = 1 + k(k + 1)
2

(4.1)

in the even k case and

dimH(H) = 1 + (k + 1)(k + 2)
2

(4.2)

in the odd k case. We now reproduce these formulae from our N = 1 Lagrangian descrip-
tions.

The computation is simpler for even k, so we discuss this case first. The UV Lagrangian
constructed in section 3.1 is shown in (3.11). We turn on a vev for the baryonic Higgs branch
operator XN−1Y1, which completely Higgses the gauge group. Note that the A1 F-term
forces the X vevs to span an isotropic subspace of USp(2N − 2), breaking USp(2N − 2)→
U(N − 1). In particular, the field X in the SU(N)×USp(2N − 2) irrep ( , ) decomposes
into two fields X1 and X2 in SU(N) × U(N − 1) irreps ( , ) and ( , ), respectively.
Choosing the vev to be in the component XN−1

1 Y1 for definiteness, the end result is

U(N − 1)′ U(1)′ RU(1)′R
A2 2 4

3

X2 0 0
φ 1 2 4

3

v 1 0 0

(4.3)

23This formula assumes that on a generic point on a Higgs branch the IR theory is a theory of free hypers.
This is something that is indeed true for our N = 1 theory, and true for R2,k for rank up to two [77], but
we are not aware of a computation showing that it is true for k > 2, which would be a prediction of our
analysis. We thank the referee for highlighting this assumption.
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with vanishing superpotential, where the primes indicate that we have mixed the (center
of) the indicated symmetry groups with U(1)z from (3.11) (under which XN−1Y1 carries
unit charge) to isolate the subgroups preserved by the vev.24 Thus, we obtain

dimH(H) = 1
2

(
1 + 1 + 1

2N(N − 1) + 1
2N(N − 1)

)
= 1 + 1

2N(N − 1) (4.4)

free hypermultiplets, in agreement with (4.1) for N = k + 1.

Next, we consider the odd k case, for which the UV Lagrangian theory is shown
in (3.22). Turning on a vev for the gauge-singlet Higgs branch operator P1 breaks one linear
combination of the U(1) global symmetries and gives a mass to Q and Y1.25 Integrating
these out, we obtain

SU(N − 1) USp(N − 2) SU(N + 1) U(1)′y U(1)′ R U(1)′R
A1 1 1+N

1−N 1 2
3

A2 1 1+N
1−N −1 4

3

Y 1 2
−1+N 0 0

Z 1 1 2(1+N)
−1+N 0 0

P 1 1 −N N 2N
3

Φ 1 1 1 2
3

Φ1 1 1 1 +N −1−N −2
3(N − 2)

φ 1 1 1 0 2 4
3

v 1 1 1 0 0 0

(4.5a)

with superpotential

W = Tr
(
A1A2Z +A2ΦY + 1

v
A1PY Φ1

)
. (4.5b)

Here we explicitly include P1 — now denoted by v as a reminder that it has a vev — in our
set of light fields since we are interested in counting flat directions in the IR. To further
simplify the result, we deconfine the antisymmetric tensor field Z and Seiberg dualize

24While these symmetries are further enhanced in the IR, this is not very important in the present
argument.

25Note that since it has nonzero U(1)y charge, P1 sits inside a nontrivial (spinor) representation of
Spin(2N + 2), and the vev will break Spin(2N + 2)→ SU(N + 1)×U(1)y. This fact is obscured in the UV
Lagrangian, where only the subgroup SU(N + 1)×U(1)y was manifest to begin with.

– 39 –



J
H
E
P
0
3
(
2
0
2
2
)
1
4
0

SU(N − 1) to obtain

SU(N − 2) USp(N − 2) USp(N − 4) SU(N + 1) U(1)′y U(1)′ R U(1)′R
Ã1 1 1 0 −1 4

3

Ã2 1 1 0 1 2
3

Ỹ 1 1 1 0 0

H̃z 1 1 0 0 0

P̃z 1 1 1 −(1 +N) 0 2

MA1Y 1 1 −1 1 2
3

MY Pz 1 1 1 N 0 0

P 1 1 1 −N N 2N
3

Φ1 1 1 1 1 +N −(1 +N) 2(2−N)
3

φ 1 1 1 1 0 2 4
3

v 1 1 1 1 0 0 0
(4.6a)

with superpotential

W = Tr
(
Ã1Ã2H̃z

2 + 1
v

Φ1MA1Y P +MA1Y Ã1Ỹ + P̃zỸMY Pz

)
. (4.6b)

Here the fields with tildes on top are the Seiberg dual quarks andMA1Y ,MY Pz are two of
the composite mesons, whereas the remaining mesons acquire masses via the superpotential
and have been integrated out.26

Since the USp(N − 4) gauge factor now has N − 2 flavors, it confines with a quantum-
deformed moduli space [27], forcing the composite M

H̃zH̃z
(in the irrep of SU(N − 2))

to get a vev. This Higgses SU(N − 2) to USp(N − 2) as well as giving a mass to Ã1 and
Ã2, but breaks no global symmetries (since H̃z is already neutral). After Higgsing and

26Note that H̃z and P̃z are the Seiberg dual quarks of fields Hz and Pz arising from deconfining Z;
likewiseMY Pz is a composite involving one of these fields.
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integrating out the massive matter, we are left with

USp(N − 2) USp(N − 2) SU(N + 1) U(1)y U(1)′ R U(1)′R
Ỹ 1 1 0 0
P̃z 1 1 −(1 +N) 0 2
MA1Y 1 −1 1 2

3

MY Pz 1 1 N 0 0
P 1 1 −N N 2N

3

Φ1 1 1 1 +N −(1 +N) 2(2−N)
3

φ 1 1 1 0 2 4
3

v 1 1 1 0 0 0

(4.7a)

with superpotential

W = Tr
(
P̃zMY Pz Ỹ + 1

v
Φ1MA1Y P

)
. (4.7b)

Now both USp(N − 2) gauge group factors are s-confining. After confinement, the super-
potential (4.7b) gives masses to a number of the fields.

The end result is

SU(N + 1) U(1)y U(1)′ RU(1)′R
(Ỹ )2 2 0 0

(MA1Y )2 −2 2 4
3

φ 1 0 2 4
3

v 1 0 0 0

(4.8)

with vanishing superpotential, where (Ỹ )2 and (MA1Y )2 denote two of the composite
mesons resulting from s-confinement. This is a free theory (note the similarity to (4.3)), so
we can now trivially compute the dimension of the Higgs branch by counting the number
of free hypermultiplets:

dimH(H) = 1
2

(
1 + 1 + 1

2N(N + 1) + 1
2N(N + 1)

)
= 1 + 1

2N(N + 1) (4.9)

in agreement with (4.2) since N = k + 1.

4.2 (A1, D4) Argyres-Douglas from partially closing R2,2 punctures

As a further check of the Higgs branch for R2,even, we verify the proposal in [78] that there
is a Higgsing of the R2,2 theory leading to the (A1, D4) Argyres-Douglas theory.27

In the class-S description (see the left hand side of figure 24), R2,2 comes from an A2
theory on a sphere with an untwisted puncture and two twisted punctures. An SU(2) ×

27There are a number of other properties of the R2,2 theory that we could compare to the results in §3.2
of [78]. We leave these checks to the interested reader.
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{2,1} Puncture, {1,1} Punctures

USp(4)× U(1) Flavor Symmetry

Higgsing R2,2

Partially closed puncture

SU(3) Flavor Symmetry

Figure 24. The class S description of Higgsing R2,2 to the (A1, D4) Argyres-Douglas theory.

SU(2) symmetry enhancing to USp(4) is associated with the twisted punctures, and U(1)
is associated with the untwisted puncture. It was argued in [78] that partially closing
one of the twisted punctures, as in the right hand side of figure 24, we get the (A1, D4)
Argyres-Douglas theory and one decoupled hypermultiplet.

Specializing (3.11) to the case N = 3, the Lagrangian whose infrared fixed is expected
to be R2,2 has the matter content

SU(3) USp(4) U(1)z U(1) RU(1)R
Y1 1 1 1

3
8
9

Y2 1 −1 1
3

8
9

A1 1 0 −8
3

8
9

A2 1 0 −2
3

2
9

X 0 4
3

5
9

φ̄ 1 1 0 2 4
3

(4.10a)

and superpotential:

W = Tr(A2Y1Y2 +A1XX) + φ̄A3
2 (4.10b)

Partially closing a puncture corresponds to turning on a nilpotent vev for the moment map
operator of the flavour symmetry associated to the puncture. Moment maps have spin one
under the N = 2 SU(2)R symmetry and are neutral under the N = 2 U(1)N=2

r symmetry.
Thus per (3.1) they have U(1) R×U(1)R charges (2, 4/3). It is straightforward to show that
the only chiral operators of this form in (4.10) are A2X

2 and φ; since these transform in
the adjoint representations of USp(4) and U(1)z, respectively, they are the moment maps
in question. In particular, in terms of the manifest SU(2)1 × SU(2)2 flavor symmetries of
the twisted punctures, X decomposes into X1 and X2 in the SU(2)1 × SU(2)2 irreps ( ,1)
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and (1, ) respectively. Thus, to partially close the second twisted puncture, we give a
nilpotent vev to the SU(2)2 moment map A2X

2
2 .

In the special case of su(2), there is a unique non-trivial nilpotent orbit. For instance,
upon decomposing the matter content in terms of a maximal torus U(1)2 ⊂ SU(2)2

SU(3) SU(2)1 U(1)2 U(1)z U(1) RU(1)R
Y1 1 0 1 1

3
8
9

Y2 1 0 −1 1
3

8
9

A1 1 0 0 −8
3

8
9

A2 1 0 0 −2
3

2
9

X1 0 0 4
3

5
9

X2a 1 1 0 4
3

5
9

X2b 1 −1 0 4
3

5
9

φ 1 1 0 0 2 4
3

(4.11)

the operators A2X
2
2a and A2X

2
2b both sit on the nontrivial nilpotent orbit. Giving a vev

(denoted by v) to A2X
2
2b Higgses SU(3) down to SU(2), and the superpotential gives masses

to several fields. Integrating out the massive matter results in a Lagrangian field content

SU(2) SU(2)1 U(1)z U(1) RU(1)R
Y1 1 1 1

2
5
6

Y2 1 −1 1
2

5
6

A1 1 1 0 −3 1
A2 1 0 −1 1

3

X11 0 3
2

1
2

X12 1 0 1 2
3

X2a 1 1 0 2 4
3

φ̄ 1 1 0 2 4
3

v 1 1 0 0 0

(4.12a)

with superpotential:

W = Tr(Y1Y2A2 +A1X
2
11) + vφ̄A2

2 . (4.12b)

Since X12 is decoupled, we identify it with the expected free hyper. Likewise, we identify
the decoupled chiral field X2a as the N = 2 partner of the flat direction v.
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Removing these fields, we end up with the Lagrangian

SU(2) SU(2)1 U(1)z U(1) RU(1)R
Y1 1 1 1

2
5
6

Y2 1 −1 1
2

5
6

A1 1 1 0 −3 1
A2 1 0 −1 1

3

X1 0 3
2

1
2

φ̄ 1 1 0 2 4
3

(4.13a)

with superpotential:

W = Tr(Y1Y2A2 +A1X
2
1 ) + φ̄A2

2 . (4.13b)

This is in perfect agreement with the matter content of Lagrangian description of the
(A1, D4) theory proposed in [9] up to a change of basis for the flavor symmetries.28

At this point we can appeal to the convincing arguments of [9] that the theory with
matter content (4.13a) flows to the (A1, D4) theory. Nevertheless, for the convenience of the
reader, we collect here the results of some simple checks that can be performed on (4.13).
First, it is straightforward to compute the central charges

(a, c) =
( 7

12 ,
2
3

)
(4.14)

which agree with the expected values for the (A1, D4) theory. Likewise, the superconformal
index of the theory is straightforward to compute (as in [9])

1 + t

R3
+ t4/3

(
R2X1,1 −

J1
R

)
+ Rt5/3 + t2

(
−1−X1,1 + J1

R3
+ 1

R6

)
+ t7/3

(
R2J1(1 +X1,1)− 1 + J2

R
− J1

R4

)
+ t8/3

(
R4X2,2 + RJ1 + 2

R2

)
+ t3

(
−J1(2 +X1,1) + −1 + J2

R3
+ J1

R6
+ 1

R9

)
+ . . . .

(4.15)

where the result organizes into complete SU(3) ⊃ SU(2)1 ×U(1)z characters Xm,n, consis-
tent with the expected accidental enhancement SU(2)1 ×U(1)z → SU(3) in the infrared.

5 Coulomb branch deformations

We now examine the Coulomb branch of our proposed Lagrangians and compare with
what is known about the Coulomb branch of the R2,k theories. As the Coulomb branch is
parameterized by operators that are neutral under SU(2)R and all flavour symmetries, from
the N = 1 point of view Coulomb branch operators satisfy U(1) R= −3U(1)R (see (3.1))
and are neutral under the other flavour symmetries. After classifying such operators below
in both even and odd k cases, we consider the effect of giving them vevs.

28Note that the decoupled Coulomb branch operator A2
2 is not explicitly flipped in [9] as is done here,

accounting for the absence of φ from their table. Although the superpotential (4.13b) was not given in [9],
it can in principle be inferred from the matter content and symmetries.
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5.1 Even k Coulomb branch

The Lagrangian (3.11) expected to flow to the R2,k theory for even k is reproduced below
for convenience:

SU(N) USp(2(N − 1)) U(1)z U(1) R U(1)R
Y1 ¯ 1 1 1

N 1− 1
3N

Y2 ¯ 1 −1 1
N 1− 1

3N

A1 1 0 −2(N+1)
N

2(N+1)
3N

A2 1 0 − 2
N

2
3N

X ¯ 0 1
N + 1 2

3 −
1

3N

φ 1 1 0 2 4
3

(3.11a (bis))

with superpotential

W = Tr(A1XX +A2Y1Y2) + φAN2 . (3.11b (bis))

Since all the chiral fields have non-negative charge under U(1)N=2
R = U(1)R + 1

3U(1) R,
only those with vanishing charge, i.e., A1 and A2, can appear in Coulomb branch operators.
Thus, the complete set of Coulomb branch operators is given by the SU(N) baryons Op =
A2p

1 A
N−2p
2 for p = 1, . . . , k/2 (the decoupled baryon O0 = AN2 having been set to zero by

the φ F-term). These operators have conformal dimension

∆Op = 3
2QU(1)R [Op] = 2p+ 1 (5.1)

so we find a set of Coulomb branch operators with dimensions 3, 5, . . . , k + 1, as ex-
pected [55].

Giving a vev to a single such operator Op will break SU(N)→ USp(2p)× SO(N − 2p)
and initiate a flow. After integrating out massive matter in the IR this leads to two decou-
pled sectors. The first one is manifestly N = 2 supersymmetric, having matter content

SO(N − 2p) USp(2N − 2) U(1)N=2
R

A1 1 0
X 1

(5.2a)

and superpotential

W = Tr(A1X
2) . (5.2b)

This is an N = 2 SO(N − 2p) gauge theory with N − 1 hypermultiplets in the represen-
tation. (This theory is infrared free for all p).
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The second factor has matter content

USp(2p) SO(2) U(1)N=2
R

Y 1
A2 1 0
φ̄ 1 1 2
v 1 1 0

(5.3a)

and superpotential

W = vφ̄A2p
2 + Tr(A2Y

2) , (5.3b)

where v is the chiral superfield with a vev.
This theory would be manifestly N = 2 supersymmetric, were it not for the vφA2p

2
superpotential term. To understand the effect of this extra term, consider the case p = 1.
Without the vφA2p

2 superpotential term, we obtain a manifestly N = 2 supersymmetric
SU(2) gauge theory with Nf = 1 flavor, together with a free hypermultiplet made out of
v and φ. The exact Coulomb branch solution to the interacting part of this theory is well
known [79, 80]: at low energies the theory flows to an N = 2 Maxwell theory, except at
three points on the Coulomb branch where additional magnetic / dyonic hypermultiplets
become massless. These three points are symmetrically distributed around the origin. In
particular, there is no extra hypermultiplet at the origin of the Coulomb branch. Turning
the vφ̄A2

2 coupling back on gives a mass to the Coulomb branch operator A2
2 of the SU(2)

theory, together with φ, so the Coulomb branch of the SU(2) theory is lifted. We end up
with a free N = 2 U(1) vector multiplet made of the N = 1 U(1) vector multiplet and v.

Thus, in N = 2 language, upon giving the dimension-three Coulomb branch operator
O1 = A2

1A
N−2
2 a vev, the R2,k (even k) theory flows to an SO(N − 2) gauge theory with

N − 1 = k hypers in the representation together with a pure-glue U(1) gauge theory.
Note that since τ = eπi/3 at the origin of the Coulomb branch of the Nf = 1 SU(2) Seiberg-
Witten theory [80], the U(1) holomorphic gauge coupling is frozen at this value along this
portion of the Coulomb branch.29

We expect that a similar analysis will yield an explicitly N = 2 description of (5.3)
for all p, but we not attempt it here.

5.2 Odd k Coulomb branch

The odd k case behaves very similarly, but the technical analysis is fairly cumbersome, so
we will be very brief, and just describe the results. Recall from (3.22) the matter content
for this theory. We can identify a set of Coulomb branch operators of the form

Op := AN−2−2p
1 A2p

2 Q (5.4)
29In fact, this is required for the discrete symmetries to match between the UV and IR. A careful analysis

of (5.3) reveals the presence of an additional Z2p+1 discrete symmetry. For p = 1, the only way that
this Z3 symmetry can act on the low-energy effective theory is as an electromagnetic duality symmetry
Z3 ⊂ SL(2,Z), which is broken unless τ = eπi/3.
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with p = 1, . . . , (k − 1)/2 and

∆Op = 2p+ 1 . (5.5)

That is, we have a set of Coulomb branch operators of dimensions 3, 5, . . . , k, which is
again the expected answer [81].

Turning on a vev for Op we again flow in the infrared to two decoupled sectors. The
first is manifestly N = 2, with matter content

USp(N − 2− 2p) SO(2N + 2) U(1)N=2
R

B 1 0
Y 1

(5.6a)

and superpotential

W = Tr(BY 2) . (5.6b)

The second sector is precisely as in the even k case:

USp(2p) SO(2) U(1)N=2
R

X 1
A 1 0
φ̄ 1 1 2
v 1 1 0

(5.7a)

with superpotential

W = vφ̄A2p + Tr(AX2) . (5.7b)

As before, this theory flows to an N = 2 pure-glue U(1) gauge theory with τ = eπi/3 when
p = 1. We leave an analysis of the case p > 1 to future work.

As a non-trivial consistency check, consider R2,3, for which the only Coulomb branch
operator is O1. Putting N = 4 and p = 1, we find that the sector (5.6) disappears
whereas (5.7) becomes the N = 2 pure-glue U(1) theory with τ = eπi/3, as argued above.
As R2,3 is the E6 Minahan-Nemeschansky theory [31], this is the expected result.

6 Mass deformation

Finally, let us comment briefly on the effect of turning on mass deformations, and how to
see that they reproduce the expected results in a simple but interesting example: the mass
deformation of the rank one E6 Minahan-Nemeschansky theory to N = 2 SU(2) with 5
flavours. This deformation is natural from the point of view of the F-theory realisation of
the Minahan-Nemeschansky theories: what we are doing is taking one of the C 7-branes
on the A5BC2 E6 stack to infinity, leaving A5BC, namely an eight dimensional SO(10)
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theory.30 The worldvolume theory for a D3 probe on this stack is precisely SU(2) with five
flavours.

We are therefore interested in identifying a relevant gauge invariant operator leaving
a SO(10) subgroup of the flavour symmetry unbroken. A quick look to (3.27) suggests a
natural candidate: φ. Adding the mass deformation term mφ to the superpotential (3.27b)
leads to

WE6-deform = A1A2Z +A2Y Φ +A1Y1Φ1 + PQY + P1QY1 + (A2
1Q+m)φ , (6.1)

which will force the SU(3) baryon A2
1Q to get a vev. This breaks SU(3)× SU(2)→ SU(2)

(embedded as the diagonal subgroup of SU(2)×SU(2) ⊂ SU(3)×SU(2)). After integrating
out the resulting massive fields, we obtain the matter content

SU(2) SU(5) U(1)y U(1)N=2
R

S 1 0 0

A −1 1

B 1 1

(6.2a)

with superpotential

W = Tr(BSA) , (6.2b)

which is indeed the N = 2 SU(2) theory with five flavours.31

Although this theory is infrared free, we can reach more interesting theories by further
mass deformation. First, giving a mass to a single hypermultiplet yields the supercon-
formal SU(2) theory with four flavors. From there, it is possible to reach (A1, D4) by a
further mass deformation [9], as well as the (A1, A3) and (A1, A2) theories [8]. As these
mass deformations are thoroughly explored in existing literature, we will not discuss them
any further here.

7 Conclusions and further directions

In this paper we have introduced a new approach for systematically constructing N = 1
Lagrangians for the R2,k N = 2 SCFTs. These Lagrangians pass a multitude of very
nontrivial checks: symmetries, anomalies, central charges and superconformal indices all
match with the expected N = 2 fixed points in the IR, and various properties of their
moduli spaces and mass deformations all agree with the expected results.

The appearance of the R2,k theories is ultimately due to the fact that our parent
N = 1 theory is the complex cone over F0. The methods developed in [19] are nevertheless
much more general, so a natural question is which other N = 2 theories can be reached
by applying the same methods to other classes of singularities. A natural class of spaces

30We refer the reader unfamiliar with the relevant F-theory constructions to [82] for background and
notation.

31Note that the flavor symmetry is actually SO(10). Here we only display the SU(5) × U(1)y subgroup
that was manifest in the UV Lagrangian we started with.
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to consider is the Calabi-Yau cones over Y 2n,0 [83–87], which generalises the n = 1 case
studied here.

Along similar lines, it would be interesting to drop some of the assumptions in [19],
for example by allowing for the presence of flavour branes and non-compact orientifolds.
This is again likely to lead to new N = 1 Lagrangians for interesting N = 2 theories.

More generally, we would like to develop a more direct method of deriving our results.
Our approach is certainly roundabout: we are using N = 1 dualities to understand N = 2
dualities! This is very surprising, and contrary to the usual expectation that having more
supersymmetry makes analysis of duality simpler. While the fundamental new ideas in our
analysis of “brane bending” and “deconfinement” — introduced in [18, 19] to understanding
interacting N = 1 SCFTs — require us to deviate from purely N = 2 supersymmetric
language, there is no obvious reason why they cannot be applied more directly to the
class-S construction. Understanding whether this is possible — and if so how to do so
systematically — is a natural challenge raised by our results.
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A Superconformal index for R2,2k

We compute the superconformal index for R2,2k from the matter content given in (3.11a)
with N = 2k + 1. We are using conventions for the fugacities t and Jn similar to [18]. We
display only a small number of terms in the index and computations to different ranks and
higher order in t can be done using the computer program of [18].

Index for R2,2.

1 + R2t4/3
(
1 +X2,0

)
+ t5/3X1,0

R2
+ t2

(
− 2−X2,0 + 1

R6
+ R3

(
X0,1
z

+ zX0,1

)
− J1X1,0

)

+ t7/3
(
− J1 +X1,0

R4
− R2

(
−X1,0 − J1(2 +X2,0)

))
+ t8/3

(
R

(
−X0,1

z
− zX0,1

)

+ 2 + 2J1X1,0
R2

+ R4(1 +X0,2 +X2,0 +X4,0)
)

+ t3
(
J1
R6

+ R3
(
J1X0,1
z

+ zJ1X0,1

)

− (2 + J2)X1,0 − J1(3 +X2,0) +X3,0

)
+ t10/3

(
−1
z − z
R

+ −1− J2 − J1X1,0 +X2,0
R4

+ R5
(
X0,1 +X2,1

z
+ z(X0,1 +X2,1)

)
+ R2

(
−1−X0,2 + J1X1,0

− 4X2,0 + J2(2 +X2,0)−X2,1 − J1X3,0 −X4,0
))

+ . . .
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Index for R2,4.

1 + t4/3 R2
(
1 +X2,0,0,0

)
+ t2

(
−2−X2,0,0,0 + 1

R6

)
+ t7/3

(
−J1 −X1,0,0,0

R4
+ R2J1(2 +X2,0,0,0)

)
+ t8/3

(2− J1X1,0,0,0
R2

+ R4(1 +X0,2,0,0 +X2,0,0,0 +X4,0,0,0)
)

+ t3
(
X0,0,1,0 + J1 −X1,0,0,0

R6
+X1,0,0,0 − J1(3 +X2,0,0,0)

)
+ t10/3

( 1
R10 + R5

(
X0,0,0,1
z

+ zX0,0,0,1

)
+ −1− J2 + 2J1X1,0,0,0 +X2,0,0,0

R4

+ R2
(
−1− J1X0,0,1,0 −X0,2,0,0 − 4X2,0,0,0 + J2(2 +X2,0,0,0)

)
− R2

(
X2,1,0,0 −X4,0,0,0

))
+ . . .

Index for R2,6.

1 + R2t4/3
(
1 +X2,0,0,0,0,0

)
+ t2

(
−2−X2,0,0,0,0,0 + 1

R6

)
+ t7/3

(
−J1

R4
+ R2J1(2 +X2,0,0,0,0,0)

)
+ t8/3

( 2
R2

+ R4(1 +X0,2,0,0,0,0 +X2,0,0,0,0,0 +X4,0,0,0,0,0)
)

+ t3
(
J1 +X1,0,0,0,0,0

R6
− J1(3 +X2,0,0,0,0,0)

)
+ . . .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[2] O. Chacaltana, J. Distler and Y. Tachikawa, Gaiotto duality for the twisted A2N−1 series,
JHEP 05 (2015) 075 [arXiv:1212.3952] [INSPIRE].

[3] Y. Tachikawa, N = 2 supersymmetric dynamics for pedestrians Lect. Notes Phys. 890 (2013)
1 [arXiv:1312.2684] [INSPIRE].

[4] Y. Tachikawa, A review of the TN theory and its cousins, PTEP 2015 (2015) 11B102
[arXiv:1504.01481] [INSPIRE].

[5] Y. Tachikawa, Six-dimensional D(N) theory and four-dimensional SO-USp quivers, JHEP
07 (2009) 067 [arXiv:0905.4074] [INSPIRE].

[6] Y. Tachikawa, N = 2 S-duality via outer-automorphism twists, J. Phys. A 44 (2011) 182001
[arXiv:1009.0339] [INSPIRE].

[7] K. Maruyoshi and J. Song, Enhancement of supersymmetry via renormalization group flow
and the superconformal index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632]
[INSPIRE].

– 50 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.2715
https://doi.org/10.1007/JHEP05(2015)075
https://arxiv.org/abs/1212.3952
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.3952
https://doi.org/10.1007/978-3-319-08822-8
https://doi.org/10.1007/978-3-319-08822-8
https://arxiv.org/abs/1312.2684
https://inspirehep.net/search?p=find+doi%20%2210.1007%2F978-3-319-08822-8%22
https://doi.org/10.1093/ptep/ptv098
https://arxiv.org/abs/1504.01481
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.01481
https://doi.org/10.1088/1126-6708/2009/07/067
https://doi.org/10.1088/1126-6708/2009/07/067
https://arxiv.org/abs/0905.4074
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.4074
https://doi.org/10.1088/1751-8113/44/18/182001
https://arxiv.org/abs/1009.0339
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.0339
https://doi.org/10.1103/PhysRevLett.118.151602
https://arxiv.org/abs/1606.05632
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.05632


J
H
E
P
0
3
(
2
0
2
2
)
1
4
0

[8] K. Maruyoshi and J. Song, N = 1 deformations and RG flows of N = 2 SCFTs, JHEP 02
(2017) 075 [arXiv:1607.04281] [INSPIRE].

[9] P. Agarwal, K. Maruyoshi and J. Song, N = 1 deformations and RG flows of N = 2 SCFTs.
Part II. Non-principal deformations, JHEP 12 (2016) 103 [Addendum ibid. 04 (2017) 113]
[arXiv:1610.05311] [INSPIRE].

[10] P. Agarwal, A. Sciarappa and J. Song, N = 1 Lagrangians for generalized Argyres-Douglas
theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].

[11] S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP
10 (2017) 106 [arXiv:1707.05113] [INSPIRE].

[12] S. Giacomelli, RG flows with supersymmetry enhancement and geometric engineering, JHEP
06 (2018) 156 [arXiv:1710.06469] [INSPIRE].

[13] F. Carta and A. Mininno, No go for a flow, JHEP 05 (2020) 108 [arXiv:2002.07816]
[INSPIRE].

[14] S.S. Razamat and G. Zafrir, N = 1 conformal dualities, JHEP 09 (2019) 046
[arXiv:1906.05088] [INSPIRE].

[15] S.S. Razamat and G. Zafrir, N = 1 conformal duals of gauged En MN models, JHEP 06
(2020) 176 [arXiv:2003.01843] [INSPIRE].

[16] S.S. Razamat, E. Sabag and G. Zafrir, Weakly coupled conformal manifolds in 4d, JHEP 06
(2020) 179 [arXiv:2004.07097] [INSPIRE].

[17] G. Zafrir, An N = 1 Lagrangian for an N = 3 SCFT, JHEP 01 (2021) 062
[arXiv:2007.14955] [INSPIRE].

[18] I. García-Etxebarria and B. Heidenreich, Strongly coupled phases of N = 1 S-duality, JHEP
09 (2015) 032 [arXiv:1506.03090] [INSPIRE].

[19] I. García-Etxebarria and B. Heidenreich, S-duality in N = 1 orientifold SCFTs, Fortsch.
Phys. 65 (2017) 1700013 [arXiv:1612.00853] [INSPIRE].

[20] I. García-Etxebarria, B. Heidenreich and T. Wrase, New N = 1 dualities from orientifold
transitions. Part I. Field theory, JHEP 10 (2013) 007 [arXiv:1210.7799] [INSPIRE].

[21] I. García-Etxebarria, B. Heidenreich and T. Wrase, New N = 1 dualities from orientifold
transitions. Part II. String theory, JHEP 10 (2013) 006 [arXiv:1307.1701] [INSPIRE].

[22] M. Bianchi, D. Bufalini, S. Mancani and F. Riccioni, Mass deformations of unoriented quiver
theories, JHEP 07 (2020) 015 [arXiv:2003.09620] [INSPIRE].

[23] A. Antinucci, S. Mancani and F. Riccioni, Infrared duality in unoriented pseudo del Pezzo,
Phys. Lett. B 811 (2020) 135902 [arXiv:2007.14749] [INSPIRE].

[24] A. Antinucci, M. Bianchi, S. Mancani and F. Riccioni, Suspended fixed points, Nucl. Phys. B
976 (2022) 115695 [arXiv:2105.06195] [INSPIRE].

[25] A. Amariti, M. Fazzi, S. Rota and A. Segati, Conformal S-dualities from O-planes, JHEP 01
(2022) 116 [arXiv:2108.05397] [INSPIRE].

[26] N. Seiberg, Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl.
Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

– 51 –

https://doi.org/10.1007/JHEP02(2017)075
https://doi.org/10.1007/JHEP02(2017)075
https://arxiv.org/abs/1607.04281
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.04281
https://doi.org/10.1007/JHEP12(2016)103
https://arxiv.org/abs/1610.05311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.05311
https://doi.org/10.1007/JHEP10(2017)211
https://arxiv.org/abs/1707.04751
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.04751
https://doi.org/10.1007/JHEP10(2017)106
https://doi.org/10.1007/JHEP10(2017)106
https://arxiv.org/abs/1707.05113
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.05113
https://doi.org/10.1007/JHEP06(2018)156
https://doi.org/10.1007/JHEP06(2018)156
https://arxiv.org/abs/1710.06469
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.06469
https://doi.org/10.1007/JHEP05(2020)108
https://arxiv.org/abs/2002.07816
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.07816
https://doi.org/10.1007/JHEP09(2019)046
https://arxiv.org/abs/1906.05088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.05088
https://doi.org/10.1007/JHEP06(2020)176
https://doi.org/10.1007/JHEP06(2020)176
https://arxiv.org/abs/2003.01843
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.01843
https://doi.org/10.1007/JHEP06(2020)179
https://doi.org/10.1007/JHEP06(2020)179
https://arxiv.org/abs/2004.07097
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07097
https://doi.org/10.1007/JHEP01(2021)062
https://arxiv.org/abs/2007.14955
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.14955
https://doi.org/10.1007/JHEP09(2015)032
https://doi.org/10.1007/JHEP09(2015)032
https://arxiv.org/abs/1506.03090
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.03090
https://doi.org/10.1002/prop.201700013
https://doi.org/10.1002/prop.201700013
https://arxiv.org/abs/1612.00853
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00853
https://doi.org/10.1007/JHEP10(2013)007
https://arxiv.org/abs/1210.7799
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.7799
https://doi.org/10.1007/JHEP10(2013)006
https://arxiv.org/abs/1307.1701
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.1701
https://doi.org/10.1007/JHEP07(2020)015
https://arxiv.org/abs/2003.09620
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.09620
https://doi.org/10.1016/j.physletb.2020.135902
https://arxiv.org/abs/2007.14749
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB811%2C135902%22
https://doi.org/10.1016/j.nuclphysb.2022.115695
https://doi.org/10.1016/j.nuclphysb.2022.115695
https://arxiv.org/abs/2105.06195
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.06195
https://doi.org/10.1007/JHEP01(2022)116
https://doi.org/10.1007/JHEP01(2022)116
https://arxiv.org/abs/2108.05397
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.05397
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(94)00023-8
https://arxiv.org/abs/hep-th/9411149
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9411149


J
H
E
P
0
3
(
2
0
2
2
)
1
4
0

[27] K.A. Intriligator and P. Pouliot, Exact superpotentials, quantum vacua and duality in
supersymmetric SP(Nc) gauge theories, Phys. Lett. B 353 (1995) 471 [hep-th/9505006]
[INSPIRE].

[28] M. Berkooz, The dual of supersymmetric SU(2k) with an antisymmetric tensor and
composite dualities, Nucl. Phys. B 452 (1995) 513 [hep-th/9505067] [INSPIRE].

[29] P. Pouliot, Duality in SUSY SU(N) with an antisymmetric tensor, Phys. Lett. B 367 (1996)
151 [hep-th/9510148] [INSPIRE].

[30] I. García-Etxebarria, F. Saad and A.M. Uranga, Quiver gauge theories at resolved and
deformed singularities using dimers, JHEP 06 (2006) 055 [hep-th/0603108] [INSPIRE].

[31] J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E6 global
symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].

[32] D.A. Cox, J.B. Little and H.K. Schenck, Toric resolutions and toric singularities, in
Graduate studies in mathematics 124, American Mathematical Society, Providence, RI,
U.S.A. (2011), p. 513.

[33] E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006
[hep-th/9805112] [INSPIRE].

[34] P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B
125 (1977) 1 [INSPIRE].

[35] C. Montonen and D.I. Olive, Magnetic monopoles as gauge particles?, Phys. Lett. B 72
(1977) 117 [INSPIRE].

[36] G.W. Moore and E. Witten, Selfduality, Ramond-Ramond fields, and k-theory, JHEP 05
(2000) 032 [hep-th/9912279] [INSPIRE].

[37] O. Bergman, E.G. Gimon and S. Sugimoto, Orientifolds, RR torsion, and k-theory, JHEP
05 (2001) 047 [hep-th/0103183] [INSPIRE].

[38] H. Garcia-Compean and O. Loaiza-Brito, Branes and fluxes in orientifolds and k-theory,
Nucl. Phys. B 694 (2004) 405 [hep-th/0206183] [INSPIRE].

[39] O. Loaiza-Brito, D instantons, Atiyah-Hirzebruch spectral sequence and SL(2, Z) duality of
N = 4 SYM, Nucl. Phys. B 680 (2004) 271 [hep-th/0311028] [INSPIRE].

[40] F. Denef, Les Houches lectures on constructing string vacua, Les Houches 87 (2008) 483
[arXiv:0803.1194] [INSPIRE].

[41] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, U.K. (2002).

[42] O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP 06
(2016) 044 [arXiv:1602.08638] [INSPIRE].

[43] S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver
gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

[44] B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and
quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].

[45] S. Franco, A. Hanany, D. Krefl, J. Park, A.M. Uranga and D. Vegh, Dimers and orientifolds,
JHEP 09 (2007) 075 [arXiv:0707.0298] [INSPIRE].

[46] M. Yamazaki, Brane tilings and their applications, Fortsch. Phys. 56 (2008) 555
[arXiv:0803.4474] [INSPIRE].

– 52 –

https://doi.org/10.1016/0370-2693(95)00618-U
https://arxiv.org/abs/hep-th/9505006
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9505006
https://doi.org/10.1016/0550-3213(95)00400-M
https://arxiv.org/abs/hep-th/9505067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9505067
https://doi.org/10.1016/0370-2693(95)01427-6
https://doi.org/10.1016/0370-2693(95)01427-6
https://arxiv.org/abs/hep-th/9510148
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9510148
https://doi.org/10.1088/1126-6708/2006/06/055
https://arxiv.org/abs/hep-th/0603108
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603108
https://doi.org/10.1016/S0550-3213(96)00552-4
https://arxiv.org/abs/hep-th/9608047
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9608047
https://doi.org/10.1090/gsm/124/11
https://doi.org/10.1088/1126-6708/1998/07/006
https://arxiv.org/abs/hep-th/9805112
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9805112
https://doi.org/10.1016/0550-3213(77)90221-8
https://doi.org/10.1016/0550-3213(77)90221-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB125%2C1%22
https://doi.org/10.1016/0370-2693(77)90076-4
https://doi.org/10.1016/0370-2693(77)90076-4
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB72%2C117%22
https://doi.org/10.1088/1126-6708/2000/05/032
https://doi.org/10.1088/1126-6708/2000/05/032
https://arxiv.org/abs/hep-th/9912279
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9912279
https://doi.org/10.1088/1126-6708/2001/05/047
https://doi.org/10.1088/1126-6708/2001/05/047
https://arxiv.org/abs/hep-th/0103183
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0103183
https://doi.org/10.1016/j.nuclphysb.2004.06.015
https://arxiv.org/abs/hep-th/0206183
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0206183
https://doi.org/10.1016/j.nuclphysb.2003.12.029
https://arxiv.org/abs/hep-th/0311028
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0311028
https://arxiv.org/abs/0803.1194
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.1194
https://doi.org/10.1007/JHEP06(2016)044
https://doi.org/10.1007/JHEP06(2016)044
https://arxiv.org/abs/1602.08638
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.08638
https://doi.org/10.1088/1126-6708/2006/01/096
https://arxiv.org/abs/hep-th/0504110
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0504110
https://doi.org/10.4310/ATMP.2008.v12.n3.a2
https://arxiv.org/abs/hep-th/0511287
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0511287
https://doi.org/10.1088/1126-6708/2007/09/075
https://arxiv.org/abs/0707.0298
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.0298
https://doi.org/10.1002/prop.200810536
https://arxiv.org/abs/0803.4474
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.4474


J
H
E
P
0
3
(
2
0
2
2
)
1
4
0

[47] R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional
N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121]
[INSPIRE].

[48] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal
deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].

[49] P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12
(2007) 088 [arXiv:0711.0054] [INSPIRE].

[50] N. Broomhead, Dimer models and Calabi-Yau algebras, Ph.D. thesis, Bath U., Bath, U.K.
(2008) [arXiv:0901.4662] [INSPIRE].

[51] A. Hanany, C.P. Herzog and D. Vegh, Brane tilings and exceptional collections, JHEP 07
(2006) 001 [hep-th/0602041] [INSPIRE].

[52] I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau
singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

[53] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP
01 (2010) 088 [arXiv:0909.1327] [INSPIRE].

[54] D. Gaiotto and S.S. Razamat, N = 1 theories of class Sk, JHEP 07 (2015) 073
[arXiv:1503.05159] [INSPIRE].

[55] O. Chacaltana, J. Distler and A. Trimm, A family of 4D N = 2 interacting SCFTs from the
twisted A2N series, arXiv:1412.8129 [INSPIRE].

[56] E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].

[57] Y. Tachikawa, Y. Wang and G. Zafrir, Comments on the twisted punctures of Aeven class S
theory, JHEP 06 (2018) 163 [arXiv:1804.09143] [INSPIRE].

[58] P.C. Argyres and J.R. Wittig, Infinite coupling duals of N = 2 gauge theories and new rank
1 superconformal field theories, JHEP 01 (2008) 074 [arXiv:0712.2028] [INSPIRE].

[59] O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of
6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930]
[INSPIRE].

[60] D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, Adv. Theor. Math. Phys. 17
(2013) 241 [arXiv:1006.0146] [INSPIRE].

[61] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional
gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

[62] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP
02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[63] G. Zafrir, An N = 1 Lagrangian for the rank 1 E6 superconformal theory, JHEP 12 (2020)
098 [arXiv:1912.09348] [INSPIRE].

[64] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for
central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543
[hep-th/9708042] [INSPIRE].

[65] D. Anselmi, J. Erlich, D.Z. Freedman and A.A. Johansen, Positivity constraints on anomalies
in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [INSPIRE].

– 53 –

https://doi.org/10.1016/0550-3213(95)00261-P
https://arxiv.org/abs/hep-th/9503121
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9503121
https://doi.org/10.1007/JHEP06(2010)106
https://arxiv.org/abs/1005.3546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.3546
https://doi.org/10.1088/1126-6708/2007/12/088
https://doi.org/10.1088/1126-6708/2007/12/088
https://arxiv.org/abs/0711.0054
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0711.0054
https://people.bath.ac.uk/masgks/Theses/broomhead.pdf
https://arxiv.org/abs/0901.4662
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.4662
https://doi.org/10.1088/1126-6708/2006/07/001
https://doi.org/10.1088/1126-6708/2006/07/001
https://arxiv.org/abs/hep-th/0602041
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0602041
https://doi.org/10.1016/S0550-3213(98)00654-3
https://arxiv.org/abs/hep-th/9807080
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9807080
https://doi.org/10.1007/JHEP01(2010)088
https://doi.org/10.1007/JHEP01(2010)088
https://arxiv.org/abs/0909.1327
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0909.1327
https://doi.org/10.1007/JHEP07(2015)073
https://arxiv.org/abs/1503.05159
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.05159
https://arxiv.org/abs/1412.8129
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.8129
https://doi.org/10.1016/0370-2693(82)90728-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB117%2C324%22
https://doi.org/10.1007/JHEP06(2018)163
https://arxiv.org/abs/1804.09143
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09143
https://doi.org/10.1088/1126-6708/2008/01/074
https://arxiv.org/abs/0712.2028
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.2028
https://doi.org/10.1142/S0217751X1340006X
https://arxiv.org/abs/1203.2930
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.2930
https://doi.org/10.4310/ATMP.2013.v17.n2.a1
https://doi.org/10.4310/ATMP.2013.v17.n2.a1
https://arxiv.org/abs/1006.0146
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.0146
https://doi.org/10.1007/JHEP08(2013)115
https://arxiv.org/abs/1305.0318
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.0318
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.5148
https://doi.org/10.1007/JHEP12(2020)098
https://doi.org/10.1007/JHEP12(2020)098
https://arxiv.org/abs/1912.09348
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09348
https://doi.org/10.1016/S0550-3213(98)00278-8
https://arxiv.org/abs/hep-th/9708042
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9708042
https://doi.org/10.1103/PhysRevD.57.7570
https://arxiv.org/abs/hep-th/9711035
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711035


J
H
E
P
0
3
(
2
0
2
2
)
1
4
0

[66] K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl.
Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

[67] C. Romelsberger, Counting chiral primaries in N = 1, d = 4 superconformal field theories,
Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

[68] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super
conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[69] C. Romelsberger, Calculating the superconformal index and Seiberg duality,
arXiv:0707.3702 [INSPIRE].

[70] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald
polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].

[71] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The superconformal index of the E6 SCFT,
JHEP 08 (2010) 107 [arXiv:1003.4244] [INSPIRE].

[72] A. Gadde, S.S. Razamat and B. Willett, “Lagrangian” for a non-Lagrangian field theory with
N = 2 supersymmetry, Phys. Rev. Lett. 115 (2015) 171604 [arXiv:1505.05834] [INSPIRE].

[73] Y. Tachikawa, On the 6d origin of discrete additional data of 4d gauge theories, JHEP 05
(2014) 020 [arXiv:1309.0697] [INSPIRE].

[74] M. Del Zotto, I. García Etxebarria and S.S. Hosseini, Higher form symmetries of
Argyres-Douglas theories, JHEP 10 (2020) 056 [arXiv:2007.15603] [INSPIRE].

[75] L. Bhardwaj, M. Hubner and S. Schäfer-Nameki, 1-form symmetries of 4d N = 2 class S
theories, SciPost Phys. 11 (2021) 096 [arXiv:2102.01693] [INSPIRE].

[76] D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch,
Commun. Math. Phys. 294 (2010) 389 [arXiv:0810.4541] [INSPIRE].

[77] M. Martone, Testing our understanding of SCFTs: a catalogue of rank-2 N = 2 theories in
four dimensions, arXiv:2102.02443 [INSPIRE].

[78] C. Beem and W. Peelaers, Argyres-Douglas theories in class S without irregularity,
arXiv:2005.12282 [INSPIRE].

[79] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and
confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19
[Erratum ibid. 430 (1994) 485] [hep-th/9407087] [INSPIRE].

[80] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2
supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

[81] O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099
[arXiv:1008.5203] [INSPIRE].

[82] O. DeWolfe and B. Zwiebach, String junctions for arbitrary Lie algebra representations,
Nucl. Phys. B 541 (1999) 509 [hep-th/9804210] [INSPIRE].

[83] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5 solutions of
M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].

[84] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S2 × S3,
Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002] [INSPIRE].

– 54 –

https://doi.org/10.1016/S0550-3213(03)00459-0
https://doi.org/10.1016/S0550-3213(03)00459-0
https://arxiv.org/abs/hep-th/0304128
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0304128
https://doi.org/10.1016/j.nuclphysb.2006.03.037
https://arxiv.org/abs/hep-th/0510060
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0510060
https://doi.org/10.1007/s00220-007-0258-7
https://arxiv.org/abs/hep-th/0510251
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0510251
https://arxiv.org/abs/0707.3702
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.3702
https://doi.org/10.1007/s00220-012-1607-8
https://arxiv.org/abs/1110.3740
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.3740
https://doi.org/10.1007/JHEP08(2010)107
https://arxiv.org/abs/1003.4244
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.4244
https://doi.org/10.1103/PhysRevLett.115.171604
https://arxiv.org/abs/1505.05834
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.05834
https://doi.org/10.1007/JHEP05(2014)020
https://doi.org/10.1007/JHEP05(2014)020
https://arxiv.org/abs/1309.0697
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.0697
https://doi.org/10.1007/JHEP10(2020)056
https://arxiv.org/abs/2007.15603
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.15603
https://doi.org/10.21468/SciPostPhys.11.5.096
https://arxiv.org/abs/2102.01693
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.01693
https://doi.org/10.1007/s00220-009-0938-6
https://arxiv.org/abs/0810.4541
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0810.4541
https://arxiv.org/abs/2102.02443
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.02443
https://arxiv.org/abs/2005.12282
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12282
https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9407087
https://doi.org/10.1016/0550-3213(94)90214-3
https://arxiv.org/abs/hep-th/9408099
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9408099
https://doi.org/10.1007/JHEP11(2010)099
https://arxiv.org/abs/1008.5203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.5203
https://doi.org/10.1016/S0550-3213(98)00743-3
https://arxiv.org/abs/hep-th/9804210
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9804210
https://doi.org/10.1088/0264-9381/21/18/005
https://arxiv.org/abs/hep-th/0402153
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0402153
https://doi.org/10.4310/ATMP.2004.v8.n4.a3
https://arxiv.org/abs/hep-th/0403002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0403002


J
H
E
P
0
3
(
2
0
2
2
)
1
4
0

[85] J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A new infinite class of
Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2004) 987 [hep-th/0403038]
[INSPIRE].

[86] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS backgrounds in
string and M-theory, IRMA Lect. Math. Theor. Phys. 8 (2005) 217 [hep-th/0411194]
[INSPIRE].

[87] D. Martelli and J. Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite
class of AdS/CFT duals, Commun. Math. Phys. 262 (2006) 51 [hep-th/0411238] [INSPIRE].

– 55 –

https://doi.org/10.4310/ATMP.2004.v8.n6.a3
https://arxiv.org/abs/hep-th/0403038
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0403038
https://arxiv.org/abs/hep-th/0411194
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0411194
https://doi.org/10.1007/s00220-005-1425-3
https://arxiv.org/abs/hep-th/0411238
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0411238

	Introduction
	Review
	Deconfinement for isolated N=1 orientifold SCFTs
	Phases of C(C)(F(0))
	Brane tiling constructions
	Deconfinement and quad CFTs
	Flux assignments and duality

	N=1 Lagrangians for the R(2,k) SCFTs
	Even k
	Odd k

	Higgs branch deformations
	Dimension of the Higgs branch for R(2,k)
	(A(1),D(4)) Argyres-Douglas from partially closing R(2,2) punctures

	Coulomb branch deformations
	Even k Coulomb branch
	Odd k Coulomb branch

	Mass deformation
	Conclusions and further directions
	Superconformal index for R(2,2k)

