

Pluronic F68 - capped SiO₂ nanoparticles are compatible with the wheat rhizosphere

Anthony Cartwright¹, Anne Anderson¹, David Britt^{1,†}

Utah State University, Department of Biological Engineering¹

Utah State University, Logan Utah 84322 USA

Corresponding Author[†]

Volume7

Issue16-17

Page327-332

Special Issue SI

DOI10.1557/s43580-022-00266-7

Published MAY 2022

Indexed2022-04-07

Document Type: Article

Abstract

Pluronic F68 was not phytotoxic to wheat (*Triticum aestivum*); a root-applied dose at 14 d enhanced shoot mass and length for 36 d - harvested plants. Root applications of fluorescein - labelled F68 enhanced fluorescence of nuclei in epidermal cells in the root's elongation zone and root hairs. SiO₂ NPs are other possible delivery vehicles for plant beneficial compounds. Fluorescent aggregates from rhodamine - SiO₂ NPs formed on root but not shoot surfaces. These core NPs, when capped with silica containing fluorescein labelled F68, showed emissions under Fourier Resonance Energy Transfer spectral analyses from rhodamine and fluorescein. Their application to roots caused trichomes on shoots to fluoresce from both dyes suggesting root to shoot NP-transfer. Fluorescent aggregates also occur in patches on the surfaces of sand grains present in the rhizosheath. These results suggest that root applications of composite NPs could act as delivery vehicles to boost plant growth.

Key words: F68, SiO₂ NPs, wheat, fluorescence

Impact Statement

Plant productivity must be increased for food security as the world's population rises. Novel strategies to deliver compounds beneficial for plant production include nanoparticles (NPs) as delivery vehicles. This paper addresses plant responses to composite NPs formulated with Pluronic F68 and SiO₂ NPs. Already established is the beneficial value of the SiO₂ NPs as a source of Si and positive effects on plant growth of F68, as confirmed in this paper for wheat. Such composites also could carry other plant beneficial products. The composites were derived by deposition of new surface layers of silica containing F68 to be deposited around SiO₂ cores. The composite NPs became associated with wheat root surfaces as well as sand grains associated with the roots. The finding that trichomes in the shoots of wheat exposed through the roots to fluorescently labelled F68 – SiO₂ NPs become enhanced in fluorescence suggest uptake and transfer through the vasculature can occur of intact NPs. These findings indicate that the NPs become located in the plant at sites appropriate for delivery of beneficial products to improve plant vigor.

Introduction

Agriculture is facing challenges in provision of foods for the increasing global population. Supply of plant boosting materials, such as growth promoters, protectants against stress, pesticides and nutrients in nano-sized particles is actively pursued. The triblock copolymer, Pluronic F68 (F68), could be valuable] because it stabilizes nanoparticles (NPs) [1] and is regarded as safe (GRAS) by the FDA [2]. Pluronic F68 has low toxicity to plants [3] and aquatic life [4], important because of likely transportation from soil applications in run off. At field applied concentrations (0.01-1% w/v), positive effects from F68 include stabilizing membrane structure [5,6], protecting rice against freezing temperatures [7,8], increasing growth in citrus [9,10] enhancing plant regeneration [11,12], as well as heightening intake and transfer of oxygen to the plant [13,14]. In this paper we first examined phytotoxicity in wheat (*Triticum aestivum*). Applications with SiO₂ NPs were pursued because these NPs are beneficial to plants [15,16]. Nanoparticles labelled with rhodamine in the SiO₂ core and with fluorescein conjugated to F68 within newly deposited silica capping layers were generated to follow the fate of the NPs in wheat tissues and on sand particles in the growth matrix.

Materials and Methods

Generation and characterization of novel capped NPs with fluorescently labelled SiO₂ NPs and F68

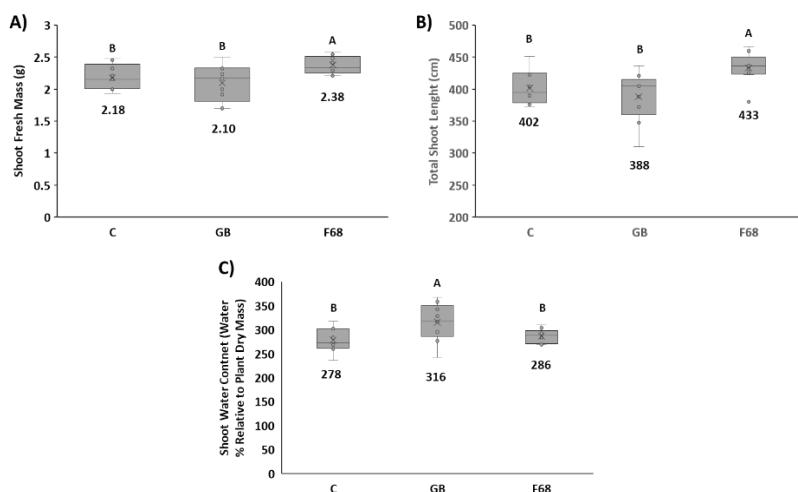
Solid fumed silica SiO₂ NPs, Aerosil 200 NPs (Evonik Industries) were labelled with rhodamine B (rho) by soaking in aqueous 10⁻⁶ M rhodamine for 24 h following methods by Hartlen et al. [17]. The labelled rho - SiO₂ particles retained from filtering through 0.45 µm Whatman filter paper were rinsed with double distilled water (dd H₂O) until the filtrate had no rhodamine fluorescence. The rho - SiO₂ NPs were stored in the dark as a dry powder. F68 was labelled with fluorescein by the procedures of Rapoport et al. [18] using carboxy-2'7'-dichlorofluorescein (CDC-fluorescein. The reaction mixture was dialyzed (Spectra/Por ® 1 Dialysis Membrane, MWCO: 6-8 kD, Spectrum Labs) against extensive changes of dd H₂O and the fluorescein F68 (fF68) solution was stored protected from light. Passage of a suspension of fF68 micelles through a PD-10 column; showed all fluorescein in the effluent to be associated with the F68 micelles.

Capping of rho - SiO₂ NPs with new silica layers, with or without F68, followed procedures of Wang et al. replacing F127 with F68 [19]. In brief, rho - SiO₂ NPs (80 mg) suspended in 4 mL dd H₂O were mixed with L-arginine (18 mg) dissolved in 10 mL dd H₂O. Some particles were only coated with extra silica, termed srho-SiO₂ NPs. For coating with F68, F68 (146 mg) containing 10% m/m fF68 was added to generate fF68-rho - SiO₂ NPs. Mixtures were heated to 60 °C and 0.9 mL tetraethyl orthosilicate (TEOS) added with stirring to cap the seed particles for 24 h. After cooling to room temperature, particles were pelleted by centrifugation for 45 min at 20,000 g before their suspension in dd H₂O. This process was repeated twice more until there was no fluorescence of the supernatants as measured using a Synergy 4 Fluorometer (BioTek Instruments). The NPs were characterized by FRET analysis using the same instrument. The stock suspensions of capped SiO₂ NPs (~20.78 mg/mL SiO₂) were stored in the dark at room temperature.

Zeta potential analysis was performed with a calibrated Brookhaven Instrument Zeta Plus for suspensions of the novel NPs in dd H₂O. Hydrodynamic radii were measured using a DynaPro Nanostar dynamic light scattering (DLS) instrument (Wyatt Instruments) with bovine serum albumen as the standard. Capped and uncapped NPs were imaged using a Nanoscope III Bioscope (Digital Instruments, Inc.) atomic force microscope (AFM) in tapping mode using a TAP300AL-G tip (Budget Sensors).

Fluorescence was observed with a Nikon microscope fitted with relevant filters for excitation at 484 nm (CDC-fluorescein) and 560-580 nm (rhodamine B)

Plant studies


Wheat was grown in sterilized sand in a growth chamber using the procedure of Potter et al. [20]. Five nonsterilized wheat seeds, cultivar Juniper from a 2020 harvest, were planted per pot and three replicate pots per treatment were prepared for three separate trials. Water was added to maintain wetted pot mass of 135 g above pot dry mass. Pots had $\frac{1}{2}$ strength Hoagland's nutrient solution added at 7, 14, 21 and 28 d to supply complete mineral nutrition. At 14 d treatments of F68 (0.4 mg /pot) or a natural osmolyte, glycine betaine (GB, 90 mg/pot), were added dissolved in the nutrient solution. The control plants only received Hoagland's solution. At 36 d, shoot lengths were measured from the top of the coleoptile to the tip and excised at this point to measure fresh mass. Tissue was oven-dried at 60 °C for 48 h. Data was analyzed statistically using "SAS on Demand for Academics for MS Windows" [21].

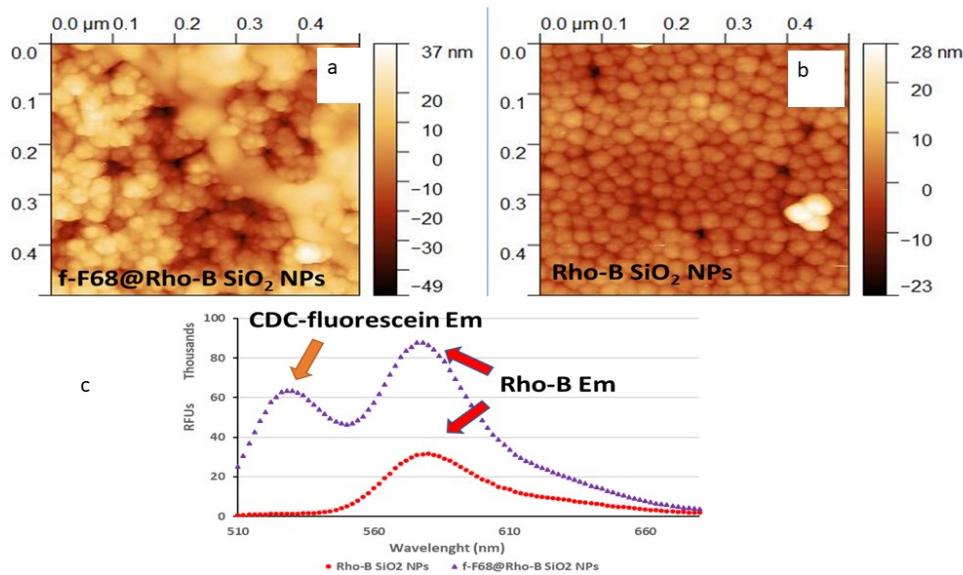
The presence of fF68, srho-SiO₂ NPs or fF68-rho-SiO₂ NPs in tissues and sand grains used younger plants from wheat grown in wetted sand with these amendments for 7 d. Control plants were raised without any additions. Fluorescent microscopy of sand grains associated with the harvested root, or the surfaces of roots and shoots was conducted.

Results and Discussion

F68 is not phytotoxic but increases shoot fresh mass growth in young wheat seedlings

Application of F68 at 14 d to wheat growing in a sand matrix confirmed the low phytotoxicity of F68. The F68 increased the fresh mass (Fig. 1 A) and lengths (Fig. 1 B) of shoots for 36 d-old watered plants by 9-10%. Increases in shoot mass and length was not observed with GB applications although GB, but not the Pluronic, increased shoot water content (Fig. 1 C). These finding suggest that growth improvement with F68 involved mechanisms independent of cell water content.

Figure 1. Effects on wheat of adding one dose at 14 d of F68 or glycine betaine compared with no additions, control (C), for plants harvested at 36 d. Data are means of three independent studies, each with three replicates/treatment where each replicate is a pot containing five wheat seeds. The letters above each data box show statistical variance at $p = 0.05$ for treatments versus control.


Characterization of F68 - coated SiO₂ NPs

Coating of the SiO₂ NPs with silica, with or without fF68, altered charge, shape and size (Table 1, Fig. 2). Hydrodynamic radii increased for srho-SiO₂ NPs from 12 to 27 nm with retention of spherical shapes (Fig 2). With fF68 in the new silica layers diameter increased, and particles were deformed spheres and showed more aggregation (Fig. 2a versus 2b). The surface potential was less negative when for NPs capped with fF68.

FRET analyses (Fig. 2c) for fF68-rho SiO₂ NPs showed the emission maxima of fluorescein (max 530 nm) from F68 and rhodamine B (max 578 nm) from the core NPs. Electron donation from f-F68 enmeshed in capping layers, increased intensity of rhodamine emission, 35,000 relative fluorescence units (RFUs) to 90,000 (Fig. 2 c). This signal enhancement did not occur with mixes of free dyes in solution. These analyses confirmed that seed SiO₂ NPs could be capped with fresh silica layers containing fF68 while allowing the rhodamine B label to remain detectable.

Table 1. Size and surface potential of seed SiO₂ NPs, srho - SiO₂ NPs, and fF68 – rho - SiO₂ NPs'.

NP Type	Size (nm)	Zeta Potential (mV)
Seed SiO ₂	12.0 ±2	-47.5
srho - SiO ₂	27.0±5	-45.9
fF680 - rho- SiO ₂	55.6±17	-32.1

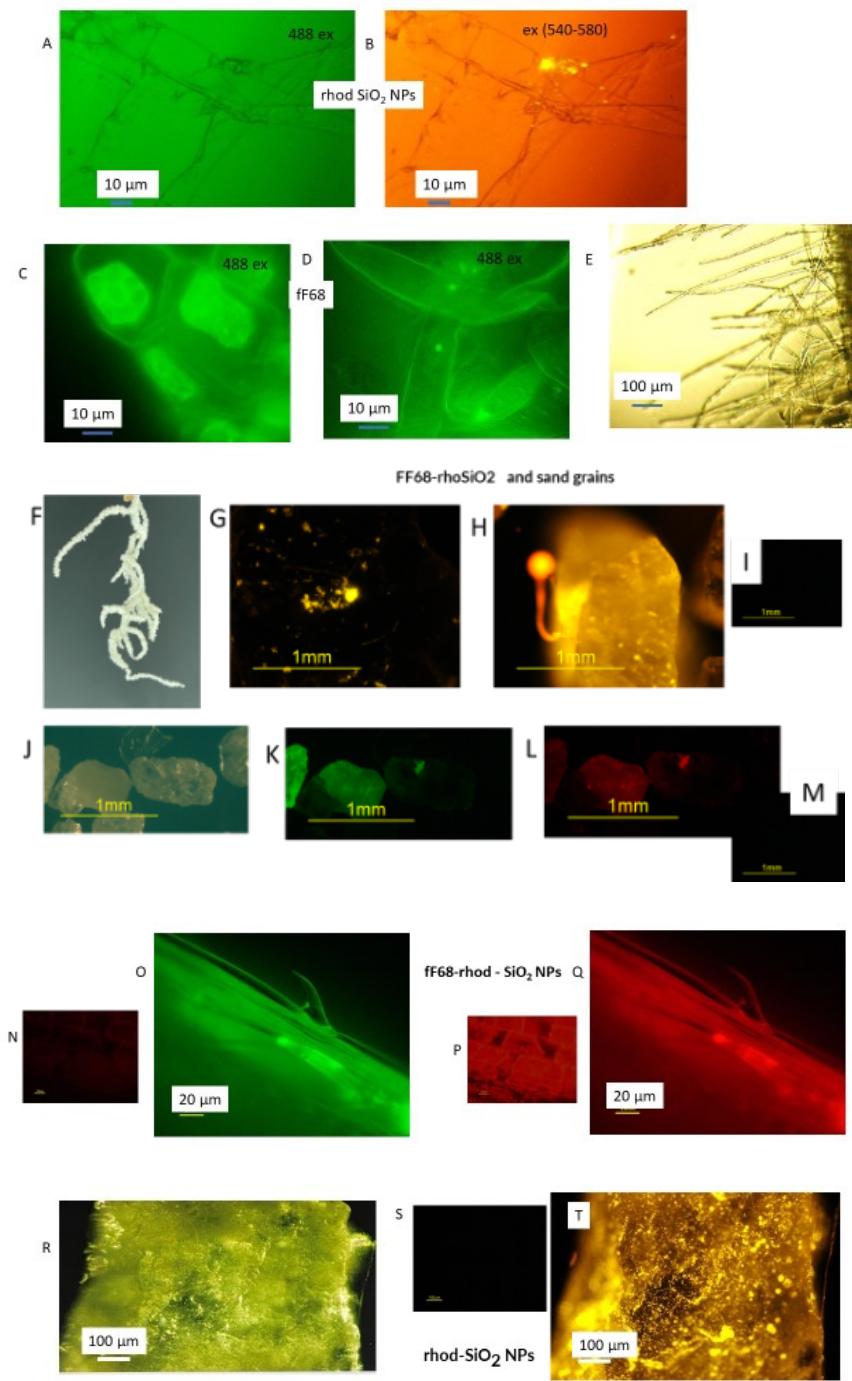


Figure 2. AFM images of a) fF68 - rho-SiO₂ NPs versus b) srho - SiO₂ NPs. The bars provided indicate particle height (nm). Image (c) shows the FRET spectra from ff68 -rho-SiO₂ NPs versus the silica capped srho - SiO₂ NPs.

Interaction of F68 and SiO₂ NPs in wheat and the rhizosphere

The interactions of fF68, with and without SiO₂ NPs, with plant tissues were explored by fluorescence microscopy of 7 d-old wheat (Fig. 3). The root hairs formed in a zone above the root cap, are important in root absorption. Trapping of srho - SiO₂ NPs by root hairs (Fig. 3 A and B) occurred. Sorption of free fF68 enhanced fluorescence in nuclei of root epidermal cells (Fig. 3 C) and root hairs (Fig. 3 D); Fig. 3 E is the bright field image of root hairs of a control root. Fig. 3 F shows the wheat root enwrapped in particles of sand to form the structure called a rhizosheath; root hairs and root- and microbiome - secreted products in the rhizosphere allow rhizosheath formation. Figs. 3 G through M illustrate that ff68-rho - SiO₂ NPs were deposited on rhizosheath sand grain surfaces. Fig. 3 H demonstrated that the ff68- rho - SiO₂ NPs bound and became internalized by fungi colonizing the sand grain. The inoculum likely was from the array of microbes, including fungi present on the seeds. Thus, microbial colonies could aid in trapping the labelled NPs. Images J-M confirmed patches of labelled NPs on sand grain surfaces with both fluorescein- (K) and for rhodamine- (L) fluorescences visible.

Images N-T compare fluorescence from surfaces of shoot and root for wheat grown with ff68-rho - SiO₂ NPs. Images N-O show enhanced fluorescence for both dyes in the leaf epidermal structure, the trichome. Trichomes labelling may indicate internalization and transportation of the NPs; trichomes are known sites for silicification. Shoot surface deposits of srho - SiO₂ NPs were not present in contrast to the many patches observed on the root surface when excited for rhodamine fluorescence shown in image Q. Image R shows a brightfield image of the roots surface.

Legend for Fig. 3

Images A and B of collapsed root hairs from 7 d-old wheat seedling roots grown with srho - SiO₂ NPs show agglomerated NPs as black masses with 488 nm excitation whereas excitation at 540-580 nm revealed bright rhodamine fluorescence. Images C and D are from plants exposed to soluble fF68 with enhanced fluorescence of large nuclei of root surface cells in the elongation zone as well as in the root hairs. E is a brightfield image of the root hairs.

Image F shows the rhizosheath formed on the wheat root and image G is from a rhizosheath - sand grain showing fluorescence expected from bound aggregates of fF68- rho – SiO₂ NPs. Image H showed fluorescence from a fungal colonist (mycelium and spore) on another sand grain. Image I is a rhizosheath sand grain from wheat grown without NPs viewed with rhodamine excitation. Images J, K and L are the same sample imaged under brightfield (J) and with excitation for fluorescein (K) and rhodamine (L) fluorescence. No fluorescence exists for rhizosheath sand grains grown without NPs.

Images N through T are surface views for shoots (N - O) and roots (P - T). Images N and P from control plants grown without NP lack the fluorescence seen when fF68-rho - SiO₂ NPs were present. These NPs resulted in fluorescence from both fluorescein (O) and rhodamine (Q) for a leaf surface trichome. No surface labelling was observed for the shoots (Q) in contrast to bright fluorescent sites on root surfaces, T, from growth with s-rho - SiO₂ NPs.

Conclusions

Pluronic F68 promoted wheat growth under watered conditions and this finding stimulated production of fluorescently - labelled SiO₂ NPs coated with F68. Capping with F68 in newly added silica layers increased NP diameter, reduced the negative surface charge and deformed the spherical shape. Use of the labelled SiO₂ NPs led to novel findings of interactions with wheat. Patches of labelled NPs with and without F68 were detected on the root surface, root hairs and sand grains associated with the surface in the rhizosheath. Because a fungal colonist on the sand grain was labelled, microbial colonization on root and sand surfaces may function in trapping NPs. Exposure of root to fF68 in solution revealed fluorescein accumulations for root epidermal cell nuclei including the root hairs. Transport through the xylem to the shoots may explain both rhodamine and fluorescein signals for trichomes on the leaf surface for plants grown with fF68-rho - SiO₂ NPs. These finding show that such NPs could function as delivery vehicles to plant tissues when supplied through the root.

Acknowledgements

This research was funded by USDA-NIFA, 2016-08771 and NSF-CBET, 1705874. Anthony Cartwright gratefully acknowledges support through the USU PDRF Program.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflict of Interests

The authors have no conflicts of interest.

References

- 1) Elbert, D. L., & Hubbell, J. A. (1998). Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. *Chemistry & Biology*, 5(3), 177-183.
- 2) U.S. Food and Drug Administration (2021). *Inactive Ingredient Search for Approved Drug Products*. Retrieved from <https://www.accessdata.fda.gov/scripts/cder/iig/>
- 3) King, A. T., Davey, M. R., Mulligan, B. J., & Lowe, K. C. (1990). Effects of Pluronic F-68 on plant cells in suspension culture. *Biotechnology Letters*, 12(1), 29-32. <https://doi.org/10.1007/BF01028488>
- 4) Hering, I., Eilebrecht, E., Parnham, M. J., Günday-Türeli, N., Tuereli, A. E., Weiler, M., ... & Wacker, M. G. (2020). Evaluation of potential environmental toxicity of polymeric nanomaterials and surfactants. *Environmental toxicology and pharmacology*, 76, 103353. <https://doi.org/10.1016/j.etap.2020.103353>
- 5) Catalan-Figueroa, J., García, M. A., Contreras, P., Boisset, C. B., Gonzalez, P. M., Fiedler, J. L., ... & Morales, J. O. (2020). Poloxamer 188-Coated Ammonium Methacrylate Copolymer Nanocarriers Enhance Loperamide Permeability across Pgp-Expressing Epithelia. *Molecular Pharmaceutics*, 18(2), 743-750. <https://doi.org/10.1021/acs.molpharmaceut.0c00623>
- 6) Hua, J., Erickson, L. E., Yiin, T. Y., & Glasgow, L. A. (1993). A review of the effects of shear and interfacial phenomena on cell viability. *Critical Reviews in Biotechnology*, 13(4), 305-328. <https://doi.org/10.3109/07388559309075700>
- 7) Lowe, K. C., Anthony, P., Davey, M. R., & Power, J. B. (2001). Beneficial effects of Pluronic F-68 and artificial oxygen carriers on the post-thaw recovery of cryopreserved plant cells. *Artificial Cells, Blood Substitutes, and Biotechnology*, 29(4), 297-316.
- 8) Kok, A. D. X., Yusoff, N. F. M., Sekeli, R., Wee, C. Y., Lamasudin, D. U., Ong-Abdullah, J., & Lai, K. S. (2021). Pluronic F-68 Improves Callus Proliferation of Recalcitrant Rice Cultivar via Enhanced Carbon and Nitrogen Metabolism and Nutrients Uptake. *Frontiers in plant science*, 12.
- 9) Gill, M. I. S., Cancino, G. O., Anthony, P., Davey, M. R., Power, J. B., & Lowe, K. C. (2003). Pluronic F-68 Enhanced Shoot Regeneration in Micropropagated Citrus Rootstock and Passiflora Species. *Acta Biotechnologica*, 23(4), 349-358. <https://doi.org/10.1002/abio.200390045>
- 10) Kumar, V., Laouar, L., Davey, M. R., Mulligan, B. J., & Lowe, K. C. (1992). Pluronic F-68 stimulates growth of *Solanum dulcamara* in culture. *Journal of Experimental Botany*, 43(4), 487-493.
- 11) Dashti, S., Habashi, A. A., Azghandi, A. V., Abdollahi, H., Chamani, M., & Dashti, S. (2012). Effects of Pluronic F-68 on regeneration and rooting of two pear cultivars (*Pyrus communis* cvs Dar Gazi and Bartlett). *Int Res J App Basic Sci*, 3, 190-196.
- 12) Gao, Y., Jia, J., Cong, J., Ma, Y., Feng, H., & Zhang, Y. (2020). Non-ionic surfactants improved microspore embryogenesis and plant regeneration of recalcitrant purple flowering stalk (*Brassica campestris* ssp. *chinensis* var. *purpurea* Bailey). *In Vitro Cellular & Developmental Biology-Plant*, 56(2), 207-214.
- 13) Anthony, P., Davey, M. R., Power, J. B., Washington, C., & Lowe, K. C. (1994). Synergistic enhancement of protoplast growth by oxygenated perfluorocarbon and Pluronic F-68. *Plant Cell Reports*, 13(5), 251-255. <https://doi.org/10.1007/BF00233314>
- 14) Lowe, K. C., Anthony, P., Power, J. B., & Davey, M. R. (2003). Novel approaches for regulating gas supply to plant systems in vitro: application and benefits of artificial gas carriers. *In Vitro Cellular & Developmental Biology-Plant*, 39(6), 557-566. <https://doi.org/10.1079/IVP2003469>

- 15) Coskun, D., Britto, D. T., Huynh, W. Q., & Kronzucker, H. J. (2016). The role of silicon in higher plants under salinity and drought stress. *Frontiers in Plant Science*, 7, 1072. <https://doi.org/10.3389/fpls.2016.01072>
- 16) Currie, H. A., & Perry, C. C. (2007). Silica in plants: biological, biochemical and chemical studies. *Annals of Botany*, 100(7), 1383-1389. <https://doi.org/10.1093/aob/mcm247>
- 17) Hartlen, K. D., Athanasopoulos, A. P., & Kitaev, V. (2008). Facile preparation of highly monodisperse small silica spheres (15 to > 200 nm) suitable for colloidal templating and formation of ordered arrays. *Langmuir*, 24(5), 1714-1720. <https://doi.org/10.1021/la7025285>
- 18) Rapoport, N., Marin, A., Luo, Y., Prestwich, G. D., & Muniruzzaman, M. D. (2002). Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: Effect on the intracellular drug localization. *Journal of Pharmaceutical Sciences*, 91(1), 157-170.
- 19) Wang, J., Sugawara-Narutaki, A., Shimojima, A., Osada, M., Ma, R., & Okubo, T. (2015). Dendritic silica nanoparticles synthesized by a block copolymer-directed seed-regrowth approach. *Langmuir*, 31(5), 1610-1614.
- 20) Potter, M., Deakin, J., Cartwright, A., Hortin, J., Sparks, D., Anderson, A. J., ... & Britt, D. W. (2021). Absence of Nanoparticle-Induced Drought Tolerance in Nutrient Sufficient Wheat Seedlings. *Environmental Science & Technology*. <https://doi.org/10.1021/acs.est.1c00453>
- 21) SAS Institute Inc. 2014. SAS® OnDemand for Academics: *User's Guide*. Cary, NC: SAS Institute Inc.