SkinnerDB: Regret-bounded Query Evaluation
via Reinforcement Learning

IMMANUEL TRUMMER, JUNXIONG WANG, ZIYUN WEI, DEEPAK MARAM,
SAMUEL MOSELEY, SAEHAN JO, JOSEPH ANTONAKAKIS, and
ANKUSH RAYABHARI, Cornell University

SkinnerDB uses reinforcement learning for reliable join ordering, exploiting an adaptive processing engine
with specialized join algorithms and data structures. It maintains no data statistics and uses no cost or car-
dinality models. Also, it uses no training workloads nor does it try to link the current query to seemingly
similar queries in the past. Instead, it uses reinforcement learning to learn optimal join orders from scratch
during the execution of the current query. To that purpose, it divides the execution of a query into many small
time slices. Different join orders are tried in different time slices. SkinnerDB merges result tuples generated
according to different join orders until a complete query result is obtained. By measuring execution progress
per time slice, it identifies promising join orders as execution proceeds.

Along with SkinnerDB, we introduce a new quality criterion for query execution strategies. We upper-
bound expected execution cost regret, i.e., the expected amount of execution cost wasted due to sub-optimal
join order choices. SkinnerDB features multiple execution strategies that are optimized for that criterion.
Some of them can be executed on top of existing database systems. For maximal performance, we introduce a
customized execution engine, facilitating fast join order switching via specialized multi-way join algorithms
and tuple representations.

We experimentally compare SkinnerDB’s performance against various baselines, including MonetDB, Post-
gres, and adaptive processing methods. We consider various benchmarks, including the join order benchmark,
TPC-H, and JCC-H, as well as benchmark variants with user-defined functions. Overall, the overheads of re-
liable join ordering are negligible compared to the performance impact of the occasional, catastrophic join
order choice.

CCS Concepts: « Information systems — Query optimization; Query planning; Join algorithms;
Additional Key Words and Phrases: Query optimization, reinforcement learning, adaptive processing

ACM Reference format:

Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel Moseley, Sachan Jo, Joseph An-
tonakakis, and Ankush Rayabhari. 2021. SkinnerDB: Regret-bounded Query Evaluation via Reinforcement
Learning. ACM Trans. Database Syst. 46, 3, Article 9 (September 2021), 45 pages.
https://doi.org/10.1145/3464389

Authors’ address: 1. Trummer,]J. Wang, Z. Wei, D. Maram, S. Moseley, S. Jo, J. Antonakakis, and A. Rayabhari,
Cornell University, Gates Hall, 107 Hoyd Rd, Ithaca, NY 14853, USA; emails: {itrummer, jw2544, zw555, sm2686, sjm352,
$j683, jma353, ar2354}@cornell.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
0362-5915/2021/09-ART9
https://doi.org/10.1145/3464389

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

https://doi.org/10.1145/3464389
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3464389

9:2 I. Trummer et al.

1 INTRODUCTION

“The consequences of an act affect the probability of its occurring again.” — B.F. Skinner.

Estimating execution cost of plan candidates is perhaps the primary challenge in query opti-
mization [36]. Query optimizers predict cost based on coarse-grained data statistics and under
simplifying assumptions (e.g., independent predicates). If estimates are wrong, then query opti-
mizers may pick plans whose execution cost is sub-optimal by orders of magnitude. We present
SkinnerDB,! a novel database system designed from the ground up for reliable query optimization.

SkinnerDB maintains no data statistics and uses no simplifying cost and cardinality models.
Instead, SkinnerDB learns (near-)optimal left-deep query plans from scratch and on the fly,
i.e., during the execution of a given query. This distinguishes SkinnerDB from several other
recent projects that apply learning in the context of query optimization [32, 38]: Instead of
learning from past query executions to optimize the next query (“inter-query learning”), we learn
from the current query execution to optimize the remaining execution of the current query
(“intra-query learning”). Hence, SkinnerDB does not suffer from any kind of generalization error
across queries (even seemingly small changes to a query can change the optimal join order
significantly).

SkinnerDB partitions the execution of a query into many, very small time slices (e.g., tens of
thousands of slices per second). Execution proceeds according to different join orders in differ-
ent time slices. We focus on in-memory data processing where random data accesses, caused by
join order switching, have moderate overheads. Result tuples produced in different time slices are
merged until a complete result is obtained. After each time slice, execution progress is measured,
which informs us on the quality of the current join order. At the beginning of each time slice, we
choose the join order that currently seems most interesting. In that choice, we balance the need for
exploitation (i.e., trying join orders that worked well in the past) and exploration (i.e., trying join
orders about which little is known). We use the UCT algorithm [31] to optimally balance between
those two goals.

Along with SkinnerDB, we introduce a new quality criterion for query evaluation methods.
Traditional query optimization [47] guarantees optimal plans according to a cost model that is
based on simplifying assumptions about query and data. This optimality criterion becomes less
useful if there is a disconnect between estimated and actual cost. Instead, our goal is to at least
bound the expected distance between actual execution cost and actual cost of an optimal plan (with
a focus on join ordering decisions). Under some simplifying assumptions, this becomes possible in
the context of an adaptive processing strategy, allowing us to update query plans based on runtime
observations. Table 1 illustrates the differences between those two quality criteria.

Our criterion is motivated by formal regret bounds provided by many reinforcement learning
methods. They bound the expected distance between reward obtained by an evaluated algorithm
and optimal reward [31]. Here, the optimal reward is obtained by a fixed policy with optimal ex-
pected reward. In our scenario, this corresponds to a fixed join order choice that works best for
all data in average. Hence, we calculate regret in the following by comparing our adaptive join
order selection against an optimal static join order (i.e., the more traditional approach to query op-
timization and execution). Traditional query optimization guarantees optimal plans, provided that
complete information (e.g., on predicate selectivity and predicate correlations) is a priori available.
We assume that no a priori information is available at the beginning of query execution. Our sce-
nario, therefore, matches the one considered in reinforcement learning. This motivates us to apply

IThe source code of SkinnerDB is available online at https://github.com/cornelldbgroup/skinnerdb (the main version pre-
sented in Section 6) and https://github.com/itrummer/SkinnerPG (the variants presented in Section 5).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

https://github.com/cornelldbgroup/skinnerdb
https://github.com/itrummer/SkinnerPG

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:3

Table 1. Comparing Different Quality Criteria in Query Optimization
and Their Context

Criterion Metric Guarantee = Bound Type Processing
Traditional Cost Model Optimal Hard Bound Non-adaptive
Regret Bounds Cost Near-optimal In Expectation Adaptive

a similar quality criterion. The adaptive processing strategies used in SkinnerDB are optimized for
that criterion. We analyze regret bounds for SkinnerDB in Section 7.

SkinnerDB comes in multiple variants. Skinner-G sits on top of a generic SQL processing engine.
Using optimizer hints (or equivalent mechanisms), we force the underlying engine to execute spe-
cific join orders on data batches. We use timeouts to limit the impact of bad join orders (which can
be significant, as intermediate results can be large even for small base table batches). Of course,
the optimal timeout per batch is initially unknown. Hence, we iterate over different timeouts, care-
fully balancing execution time dedicated to different timeouts while learning optimal join orders.
Skinner-H is similar to Skinner-G in that it uses an existing database management system as exe-
cution engine. However, instead of learning new plans from scratch, it partitions execution time
between learned plans and plans proposed by the original optimizer.

Both Skinner-G and Skinner-H rely on a generic execution engine. However, existing systems
are not optimized for switching between different join orders during execution with a very high
frequency. Skinner-C exploits a customized execution engine that is tailored to the requirements
of regret-bounded query evaluation. It features a multi-way join strategy that keeps intermediate
results minimal, thereby allowing quick suspend and resume for a given join order. Further, it
allows to share execution progress between different join orders and to measure progress per time
slice at a very fine granularity (which is important to quickly obtain quality estimates for join
orders).

SkinnerDB pays for reliable join ordering with overheads for learning and join order switch-
ing. In our experiments with various baselines and benchmarks, we study under which circum-
stances the benefits outweigh the drawbacks. When considering accumulated execution time on
benchmarks where optimization is difficult, it turns out that SkinnerDB can beat even highly
performance-optimized systems for analytical processing with a traditional optimizer. While per-
tuple processing overheads are significantly lower for the latter, SkinnerDB minimizes the total
number of tuples processed via better join orders.

We summarize our original scientific contributions:

e We introduce a new quality criterion for query evaluation strategies that compares expected
and optimal execution cost.

e We propose several adaptive execution strategies based on reinforcement learning.

e We formally prove correctness and regret bounds for those execution strategies.

e We experimentally compare those strategies, implemented in SkinnerDB, against various
baselines.

The remainder of this article is organized as follows: We discuss related work in Section 2. In
particular, we summarize differences to a prior conference version of this article. We describe the
primary components of SkinnerDB in Section 3. In Sections 4 to 6, we describe our query evalua-
tion strategies based on reinforcement learning. In Section 7, we analyze those strategies formally,
we prove correctness and performance properties. In Section 8, we compare our approaches exper-
imentally against a diverse set of baselines. We describe the SkinnerDB implementation in more
detail in the online appendix.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:4 I. Trummer et al.

2 RELATED WORK

This article is an extended version of our prior conference publication [52]. The prior publication
was extended in the following ways: First, it features various new experimental results that did
not appear in the prior version. Most importantly, over the past six months, we have created a new
and more mature version of SkinnerDB entirely from scratch. Our goal was to streamline code and
to incorporate standard techniques such as runtime code generation and data compression. We be-
lieve that doing so was necessary to distinguish intrinsic overheads, due to the particularities of
intra-query learning, from avoidable ones (thereby gaining a better understanding of the potential
of the proposed approach). The resulting SkinnerDB version is approximately two times faster
than the original, showing that intra-query learning is more powerful than our initial results im-
plied. This article contains the first experimental evaluation of that new version. Besides that, we
use new benchmarks (e.g., JCC-H with and without skew, IMDB benchmark variants on large data
and with user-defined functions), compare against new baselines (e.g., TelegraphCQ and newer
versions of MonetDB and PostgreSQL), and present results for new types of experiments (e.g., a
detailed breakdown of execution time into different phases executed by SkinnerDB, test of robust-
ness towards semantically equivalent query rewrites). Also, we compare different reinforcement
learning algorithms for intra-query learning against the original UCT algorithm. Besides new ex-
periments, we have also extended the proposed approach. In particular, we describe new reward
functions (see Sections 6.5 and 6.6) and “fast backtracking,” an extension to our join algorithm (see
Section 6.9). Both extensions are crucial to achieve optimal performance (see Section 8.3).

Our approach connects to prior work collecting information on predicate selectivity by evalu-
ating them on data samples [9, 10, 26, 27, 29, 35, 39, 57]. We compare in our experiments against a
recently proposed representative [57]. Most prior approaches rely on a traditional optimizer to se-
lect interesting intermediate results to sample. They suffer if the original optimizer generates bad
plans. The same applies to approaches for interleaved query execution and optimization [1, 5, 7]
that repair initial plans at runtime if cardinality estimates turn out to be wrong. Robust query op-
timization [3, 4, 6, 14] assumes that predicate selectivity is known within narrow intervals, which
is often not the case [21]. Prior work [19, 20] on query optimization without selectivity estimation
is based on simplifying assumptions (e.g., independent predicates) that are often violated.

There has been significant interest in applying machine learning techniques for query opti-
mization and database tuning. In the context of query optimization, machine learning has been
applied at multiple levels. Some prior work has focused on leveraging machine learning to esti-
mate processing cost of query plans or workflows [2, 18, 23, 34, 44, 50]. Often, incorrect cardi-
nality estimates are the root reason for sub-optimal plan choices. Hence, a popular line of work
focuses on learning to predict predicate selectivity or cardinality of intermediate results via ma-
chine learning [1, 2, 28, 30, 34, 42, 43, 49, 56]. The latter work can be applied within traditional
query optimization methods. Other recent work uses machine learning directly to make planning
choices [32, 37, 38, 58]. All of the aforementioned approaches learn from past queries for the op-
timization of future queries. To be effective, new queries must be similar to prior queries and this
similarity must be recognizable. Instead, we learn during the execution of a query.

Other recent work [33, 59] connects to SkinnerDB by the use of reinforcement learning for
database tuning. Here, the focus is however on setting system configuration parameters, rather
than on join ordering decisions.

Adaptive processing strategies have been explored in prior work [5, 15, 16, 45, 46, 53, 55]. Our
work uses reinforcement learning and is therefore most related to prior work using reinforcement
learning in the context of Eddies [53]. We compare against this approach in our experiments. Ed-
dies do not provide formal guarantees on the relationship between expected execution time and

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:5

Join Processor

Learning Join
Pre- Optimi
Query = - ptimizer Executor
Processor T ¢

Post- Reward E Progress
Result €= Processor < [Calculator} Tracker J

Fig. 1. Primary components of SkinnerDB.

the optimum. They never discard intermediate results, even if joining them with the remaining
tables creates disproportional overheads. Eddies support bushy query plans in contrast to our ap-
proach. Bushy plans can in principle decrease execution cost compared to the best left-deep plan.
However, optimal left-deep plans typically achieve reasonable performance [25]. Also, as we show
in our experiments, reliably identifying near-optimal left-deep plans can be better than selecting
bushy query plans via non-robust optimization.

Our work relates to prior work on filter ordering with regret bounds [12]. Join ordering intro-
duces however new challenges, compared to filter ordering. In particular, applying more filters can
only decrease the size of intermediate results. The relative overhead of a bad filter order, compared
to the optimum, therefore grows linearly in the number of filters. The overhead of bad join orders,
compared to the optimum, can grow exponentially in the query size. This motivates mechanisms
that bound join overheads for single data batches, as well as mechanisms to save progress for
partially processed data batches.

For Skinner-C, we introduce a multi-way join algorithms for optimal performance in our sce-
nario. In that, our work connects to prior work on worst-case optimal join processing (which also
relies on specialized multi-way join algorithms). Worst-case optimal join algorithms [41, 54] bound
cost as a function of worst-case query result size. We bound expected execution cost as a function
of cost for processing an optimal join order. Further, prior work on worst-case optimal joins fo-
cuses on conjunctive queries, while we support a broader class of queries, including queries with
user-defined function predicates. Our approach applies to SQL with standard semantics, while
systems for worst-case optimal evaluation typically assume set semantics [54].

3 SYSTEM OVERVIEW

Figure 1 shows the primary components of SkinnerDB. This high-level outline applies to all of the
SkinnerDB variants.

The pre-processor is invoked first for each query. Here, we filter base tables via unary predicates.
Also, depending on the SkinnerDB variant, we partition the remaining tuples into batches or hash
them (to support joins with equality predicates).

Join execution proceeds in small time slices. The join processor consists of several sub-
components. The learning optimizer selects a join order to try next at the beginning of each time
slice. It uses statistics on the quality of join orders that were collected during the current query ex-
ecution. Selected join orders are forwarded to the join executor. This component executes the join
order until a small timeout is reached. We add result tuples into a result set, checking for duplicate
results generated by different join orders. The join executor can be either a generic SQL processor
or, for maximal performance, a specialized execution engine. The same join order may get selected
repeatedly. The progress tracker keeps track of which input data has been processed already. For
Skinner-C, it even tracks execution state for each join order tried so far and merges progress across
join orders. At the start of each time slice, we consult the progress tracker to restore the latest state
stored for the current join order. At the end of it, we backup progress achieved during the current

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:6 I. Trummer et al.

time slice. The reward calculator calculates a reward value based on progress achieved during the
current time slice. This reward is a measure for how quickly execution proceeds using the chosen
join order. It is used as input by the optimizer to determine the most interesting join order to try
in the next time slice.

Finally, we invoke the post-processor, using the join result tuples as input. Post-processing in-
volves grouping, aggregation, and sorting. In the next section, we describe the algorithms executed
within SkinnerDB.

4 JOIN ORDER LEARNING

In Section 4.1, we describe a popular reinforcement learning algorithm. In Section 4.2, we show
how this algorithm can be applied for intra-query join order learning.

4.1 Background on UCT

Our method for learning optimal join orders is based on the UCT algorithm [31]. This is an
algorithm from the area of reinforcement learning. It assumes the following scenario: We repeat-
edly make choices that result in rewards. Each choice is associated with reward probabilities that
we can learn over time. Our goal is to maximize the sum of obtained rewards. To achieve that goal,
it can be beneficial to make choices that resulted in large rewards in the past (“exploitation”) or
choices about which we have little information (“exploration”) to inform future choices. The UCT
algorithm balances between exploration and exploitation in a principled manner that results in
probabilistic guarantees. More precisely, assuming that rewards are drawn from the interval [0, 1],
the UCT algorithm guarantees that the expected regret (i.e., the difference between the sum of
obtained rewards to the sum of rewards for optimal choices) is in O(log(n)) where n designates
the number of choices made [31].

We specifically select the UCT algorithm for several reasons. First, UCT has been applied success-
fully to problems with very large search spaces (e.g., planning Go moves [24]). This is important,
since the search space for join ordering grows quickly in the query size. Second, UCT provides
formal guarantees on cumulative regret (i.e., accumulated regret over all choices made). Other al-
gorithms from the area of reinforcement learning [22] focus for instance on minimizing simple
regret (i.e., quality of the final choice). The latter would be more appropriate when separating
planning from execution. Our goal is to interleave planning and execution, making the first metric
more appropriate. Third, the formal guarantees of UCT do not depend on any instance-specific
parameter settings [17], distinguishing it from other reinforcement learning algorithms.

We assume that the space of choices can be represented as a search tree. In each round, the UCT
algorithm makes a series of decisions that can be represented as a path from the tree root to a leaf.
Those decisions result in a reward from the interval [0, 1], calculated by an arbitrary, randomized
function specific to the leaf node (or as a sum of rewards associated with each path step). Typically,
the UCT algorithm is applied in scenarios where materializing the entire tree (in memory) is pro-
hibitively expensive. Instead, the UCT algorithm expands a partial search tree gradually towards
promising parts of the search space. The UCT variant used in our system expands the materialized
search tree by at most one node per round (adding the first node on the current path that is outside
the currently materialized tree).

Materializing search tree nodes allows to associate statistics with each node. The UCT algo-
rithm maintains two counters per node: the number of times the node was visited and the average
reward that was obtained for paths crossing through that node. If counters are available for all rel-
evant nodes, then the UCT algorithm selects at each step the child node ¢ maximizing the formula

re +w- (/log(vy)/ve, where r. is the average reward for ¢, v, and v, are the number of visits for

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:7

| ReaS [| R=T | [SwR | [SwT | [T=R]| | Tws |

! !

[Roa S T| [Ra TS| [SmR™T|[STwR|[TeRmS| TSR]

Fig. 2. We model join order choices for a query as an episodic Markov Decision Process. Actions (arrows)
correspond to table choices and states (rectangles) to join order prefixes. A selected join order is executed
on one data batch (Skinner-G and Skinner-H) or for one time slice (Skinner-C). Reward is calculated based
on execution progress and associated with the final state (transition marked with thick red line).

child and parent node, and w a weight factor. In this formula, the first term represents exploita-
tion while the second term represents exploration. Their sum represents the upper bound of a
confidence bound on the reward achievable by passing through the corresponding node (hence
the name of the algorithm: UCT for Upper Confidence bounds applied to Trees). Setting w = V2 is
sufficient to obtain bounds on expected regret. It can however be beneficial to try different values
to optimize performance for specific domains [17].

4.2 Learning Optimal Join Orders

Our search space is the space of join orders. Optionally, we can exclude join orders that introduce
Cartesian product joins without need [25] (however, we do not use this heuristic for our experi-
ments). To apply the UCT algorithm for join ordering, we need to represent the search space as
a tree. We assume that each tree node represents one decision with regards to the next table in
the join order. Tree edges represent the choice of one specific table. The tree root represents the
choice of the first table in the join order. All query tables can be chosen, since no table has been
selected previously. Hence, the root node will have m child nodes where m is the number of tables
to join. Nodes in the next layer of the tree (directly below the root) represent the choice of a second
table. We cannot select the same table twice in the same join order. Hence, each of the latter nodes
will have at most m — 1 child nodes associated with remaining choices. The number of choices
depends on the structure of the join graph. If at least one of the remaining tables is connected to
the first table via join predicates, then only such tables will be considered. If none of the remain-
ing tables is connected, then all remaining tables become eligible (since a Cartesian product join
cannot be avoided given the initial choice). In total, the search tree will have m levels. Each leaf
node is associated with a completely specified join order.

We generally divide the execution of a query into small time slices in which different join orders
are tried. For each time slice, the UCT algorithm selects a path through the aforementioned tree,
thereby selecting the join order to try next. As discussed previously, only part of the tree will be
“materialized” (i.e., we keep nodes with node-specific counters in main memory). When selecting
a path (i.e., a join order), UCT exploits counters in materialized nodes wherever available to select
the next path step. Otherwise, the next step is selected randomly. After a join order has been
selected, this join order is executed during the current time slice. Results from different time slices
are merged (while removing overlapping results). We stop once a complete query result is obtained.

Our goal is to translate the aforementioned formal guarantees of UCT, bounding the distance be-
tween expected and optimal reward (i.e., the regret), into guarantees on query evaluation speed. To
achieve that goal, we must link the reward function to query evaluation progress. The approaches

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:8 I. Trummer et al.

for combined join order learning and execution, presented in the following subsections, define
the reward function in different ways. They all have, however, the property that higher rewards
correlate with better join orders. After executing the selected join order for a bounded amount
of time, we measure evaluation progress and calculate a corresponding reward value. The UCT
algorithm updates counters (average reward and number of visits) in all materialized tree nodes
on the previously selected path.

Conceptually, we model join order optimization as an episodic Markov Decision Process
(MDP). We describe an MDP by a tuple (S, A, T, R), where S is a set of states and A a set
of actions. 7 : S X A — § is a deterministic transition function and R a stochastic reward func-
tion. Here, R(s) is the probability distribution over rewards obtained when arriving in state s (via
an arbitrary action). Multiple, slightly different formalisms are used to describe MDPs throughout
the literature. Here, we restrict the one used for instance by Silver [48] to deterministic transitions
and stochastic rewards that depend only on the target state after a transition.

For a query joining m relations Ry to R,,, states correspond to permutations of table subsets, i.e.,
S = {Perm(R)|R € {Ry,...,R;;}} where Perm(R) denotes the set of permutations of elements from
R.In this definition, we assume that all Cartesian product joins are considered. Actions correspond
to query tables, i.e., A = {Ry, ..., Ry). The transition function appends the table, represented by
action a, to a partial join order j without a: 7 (j,a) = j o a. Each MDP episode starts with an
empty join order and ends with a fully specified join order (after a number of transitions that
is equal to the number of joined tables). The reward function assigns a constant reward of zero
to all states except for final states (i.e., R(j) = 0 if |j| < m where m is the number of tables
and || the length of a join order). For a transition leading to an end state (i.e., a fully specified
join order), we calculate reward based on how well the join order fares when used for execution
during the current episode. The precise reward function for Skinner-G and Skinner-H is discussed
in Section 5.3. For Skinner-C, we propose two alternatives in Sections 6.5 and 6.6. The reward of a
join order is modeled as stochastic in our model, as selecting (and executing) the same join order in
different episodes can yield different rewards (e.g., due to inhomogeneous data). The optimal (fixed)
join order is the one with highest expected reward. Our goal is to converge to that join order. The
UCT algorithm associates MDP states with tree nodes and converges to leaf nodes with highest
expected reward [31]. Figure 2 illustrates the MDP associated with a query joining three tables.

The following algorithms use the UCT algorithm as a sub-function. More precisely, we use two
UCT-related commands in the following pseudo-code: UcTCrHOICE(T) and REWARDUPDATE(T, j,).
The first one returns the join order chosen by the UCT algorithm when applied to search tree
T (some of the following processing strategies maintain multiple UCT search trees for the same
query). The second function updates tree T by registering reward r for join order j. Sometimes, we
will pass a reward function instead of a constant for » (with the semantics that the reward resulting
from an evaluation of that function is registered).

5 INTRA-QUERY LEARNING WITH GENERIC EXECUTION ENGINES

We show how we can learn optimal join orders when treating the execution engine as a black box
with an SQL interface. This approach can be used on top of existing DBMS without changing a
single line of their code. While we describe the following algorithms only for SPJ queries, it is
straight-forward to add sorting, grouping, or aggregate calculations in a post-processing step (we
do so in our actual implementation). Nested queries can be treated via decomposition [40].

5.1 Basic Approach

Our goal is to apply reinforcement learning for join order optimization within the execution of
a single query. Hence, we must divide query execution into small episodes, allowing us to try

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:9

different join orders in different episodes. Also, we want to obtain an unbiased estimate of join
order quality after each episode (thereby informing join order choices for the remaining episodes).
Next, we outline a basic query evaluation strategy that satisfies those desiderate under simplifying
assumptions (see our online appendix for implementation details).

To simplify the following explanations, we assume that cost follows approximately the Coy;
cost metric [11]. This metric estimates execution cost of a join order by summing up intermediate
join result sizes. Despite its simplicity, this metric has been shown, via theoretical [11] analysis,
to correlate well with more sophisticated cost models. Also, empirical analysis shows that inaccu-
racies introduced by such simple cost models are typically dwarfed by the impact of inaccurate
cardinality estimates [25].

Now, for a fixed join order, assume that we reduce the size of the left-most table. In expectation,
the sizes of all intermediate results reduce proportionally. Hence, expected cost, according to the
Cour cost metric, reduces proportionally as well. This insight motivates the following strategy: In
each episode, we select a join order via reinforcement learning. When executing this order, we
replace the left-most table by a batch of tuples from that table. Besides the left-most table, we use
the original tables for all other positions in the join order. Under the C,,; cost metric, we can scale
up execution cost for one batch (of the left-most table) to obtain an unbiased estimate for execution
cost on the full table. For instance, if a table batch contains one-tenth of the full table’s tuples, then
we multiply per-batch execution cost by factor 10 to obtain the estimate. We can exploit such
estimates for a reward signal, steering the learning algorithm towards good join orders.

Executing a join order on parts of the input data produces parts of the result. More precisely,
we produce all result tuples referencing tuples in the current batch from the left-most table. We
collect partial results from different episodes and combine them to form a complete join result. If
all batches of a table have been processed (during episodes where that table appeared as left-most
table), then we have collected a complete join result. In that case, query evaluation stops and the
union of partial results is returned to the user. Note that we can discard batches for which result
tuples have been collected, thereby avoiding redundant work.

This basic approach comes with a problem. The cost of good and bad join orders often differs
by multiple orders of magnitude [25]. Hence, the cost of executing a bad join order for one single
episode may easily dominate total execution costs. Therefore, to protect ourselves from bad join
orders, we must limit execution time per episode via timeouts.

5.2 Choosing Per-batch Timeouts

This leads however to a new problem: What timeout should we choose per batch in each iteration?
Ideally, we would select as timeout the time required by an optimal join order. Of course, we neither
know an optimal join order nor its optimal processing time for a new query. Using a timeout that
is lower than the optimum prevents us from processing an entire batch before the timeout. On the
other side, choosing a timeout that is too high leads to unnecessary overheads when processing
sub-optimal join orders.

The choice of a good timeout is therefore crucial while we cannot know the best timeout a priori.
The solution lies in an iterative scheme that tries different timeouts in different iterations. We
carefully balance allocated execution time over different timeouts, avoiding to use higher timeouts
unless lower ones have been tried sufficiently often. More precisely, we will present a timeout
scheme that ensures that the total execution time allocated per timeout does not differ by more
than factor two across different timeouts. Figure 3 gives an intuition for the corresponding timeout
scheme (numbers indicate the iteration in which the corresponding timeout is chosen). We use
timeouts that are powers of two (we also call the exponent the Level of the timeout). We always
choose the highest timeout for the next iteration such that the accumulated execution time for

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:10 I. Trummer et al.

7

3 6
1‘12‘14‘15

Time Units

Timeout Level

)
‘IS‘I‘)IH]

Fig. 3. lllustration of time budget allocation scheme: We do not know the optimal time per batch and iterate
over different timeouts, allocating higher budgets less frequently.

S 1 T1 I S 1 I Tl
52 T Sz T
S3 T3 S3 T
S4 T Sy Ty
Ss T5 S5 I5
(a) Having selected join order R > S > T in (b) Having selected join order S > T > R in
the first episode, Skinner-G joins the first the second episode, Skinner-G joins the first
batch of R with all tuples in S and T, batch of S with unprocessed tuples in S and T
succeeding within the per-episode time limit. (excluding Ry, processed in episode 1).

Fig. 4. lllustrating first (a) and second (b) episode of Skinner-G for an example query with three tables (R, S,
and T). The red rectangles, surrounding the tables, highlight tuples joined in the corresponding episode.

that timeout does not exceed time allocated to any lower timeout. Having fixed a timeout for
each iteration, we assign a reward of one for a fixed join order if the input was processed entirely.
We assign a reward of zero otherwise. Alternatively, we could use a reward metric that considers
execution time for successfully processed batches (assigning higher rewards for lower time). We
opt for the simpler metric, as time is already indirectly integrated via the timeout.

5.3 Pure Reinforcement Learning Algorithm

Algorithm 1 presents pseudo-code matching the verbal description. First, tuples are filtered using
unary predicates and the remaining tuples are partitioned into b batches per table (we omit pseudo-
code for pre-processing). We use function DBMS to invoke the underlying DBMS for processing
one batch with a timeout. The function accumulates partial results in a result relation if processing
finishes before the timeout and returns true in that case. Vector o; stores for each table an offset,
indicating how many of its batches were completely processed (it is implicitly initialized to one
for each table). As we process batches in a fixed order, o only stores one scalar offset for each table.
Variable n; stores for each timeout level [how much execution time was dedicated to it so far (it
is implicitly initialized to zero and updated in each invocation of function NEXTTIMEOUT).

Example 5.1. Figure 4 illustrates processing of an example query with three tables for the first
two episodes. In the first episode, the UCT algorithm selects join order R = S > T. Hence,
Algorithm 1 tries to join the first batch of table R with all tuples in the other two tables. We assume
that it succeeds within the time limit (collecting a reward of one and making a selection of this
join order in future episodes more likely). The join result tuples are added to the result set. In the
second episode, Skinner-G selects join order S b T > R. Hence, Algorithm 1 joins the first batch
of S with the remaining, unprocessed tuples from the other tables (which excludes the first batch
of R, Ry, which was already processed before).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:11

ALGORITHM 1: Regret-bounded query evaluation using a generic execution engine

1: // Returns timeout for processing next batch,

2: // based on times n given to each timeout before.
3. function NEXTTIMEOUT(n)

4: // Choose timeout level

5: L « max{L|V]l < L:n; > ny + 2L}

6: // Update total time given to level

7: np < np + 2L

8: // Return timeout for chosen level

9: return 2¢
10: end function

11: // Process SPJ query q using existing DBMS and
12: // by dividing each table into b batches.

13: procedure SKINNERG(q = Ry > - -+ X Ry, b)

14: // Apply unary predicates and partitioning

15: {R,...,R%} «PREPROCESSINGG(q, b)

16: // Until we processed all batches of one table
17: while 7i : 0; > b do

18: // Select timeout using pyramid scheme

19: t «NEeXTTIMEOUT(n)

20: // Select join order via UCT algorithm

21: Jj «UctCHOICE(T})

22: // Process one batch until timeout

2 suc ~DBMS(R? b4 RO -+ va RO 1)
24: // Was entire batch processed successfully?
25: if suc then

26: // Mark current batch as processed

27: 0j1 < 0j1 +1

28: // Store maximal reward in search tree
29: REWARDUPDATE(T}, j, 1)

30: else

31: // Store minimal reward in search tree
32: REwWARDUPDATE(T}, j, 0)

33: end if

34: end while

35: end procedure

5.4 Algorithmic Variants

Algorithm 1 discards processed tuple batches in any table. Alternatively, we can use unprocessed
batches in the left-most table in join order, while using original tables for all other join order posi-
tions. This may lead to redundant work (for re-generating join result tuples) but reduces overheads
for discarding processed tuples. Additional bookkeeping is required to avoid passing on redundant
result tuples to the next phase; e.g., we can separate result tuples based on the left-most table of
the join order used for generating them. Once all batches have been processed for one specific
table, we pass on the associated result tuple collection (and discard others).

Algorithm 1 maintains different UCT trees T; for each timeout ¢ (implicitly initialized as a sin-
gle root node representing no joined tables). This allows us to learn optimal join orders for each

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:12 I. Trummer et al.

(1 (2 3) 4

I I [I [
Time

N

Fig. 5. The hybrid approach alternates with increasing timeouts between executing plans proposed by the
traditional optimizer (red) and learned plans (blue).

specific timeout separately. Alternatively, we can use one single UCT tree for all timeouts. Even if
we record rewards for different timeouts in the same tree, we can still converge to an optimal join
order. Smaller timeouts are tried more frequently. Hence, join orders using less processing time
per batch receive higher average rewards.

As a variant of Algorithm 1, we can alternate between batched and non-batched executions.
Executing join orders on small data batches yields information on their quality. We can also ex-
ecute those join orders on larger batches or on the original data. Executing join orders on larger
data batches is often more efficient, as it amortizes startup overheads. Of course, we cannot know
at which point the UCT algorithm has converged to a near-optimal join order. Hence, we alter-
nate between batched execution (good for quickly collecting information on join order quality)
and non-batched execution (good for exploiting the most promising join orders). For non-batched
execution, we use the join order that was used most frequently for processing batches. If time al-
located for non-batched execution remains proportional to time spent in batched execution, then
execution overheads can only increase by a constant factor. The tradeoffs between batched and
non-batched execution are the following: By increasing time dedicated to non-batched execution,
we reduce overheads due to plan switching. On the other side, we reduce the number of iterations
for reinforcement learning steps (one batch is tried in each iteration). This means that we may
spend time executing highly sub-optimal plans via non-batched execution. Which tradeoft is op-
timal depends on properties of the underlying execution engine as well as query properties. For
queries that are more difficult to optimize, allowing more iterations for learning can be beneficial.
On the other side, if the overheads of starting new query plans are higher, then reducing the num-
ber of iterations for batched execution may be preferable. For our experiments, we empirically
choose the tradeoff that works best for our system and benchmark.

5.5 Hybrid Algorithm

If queries are easy to optimize via traditional query optimization, then the Skinner-G approach
adds unnecessary overheads for learning and join order switching. We present a hybrid algorithm
that combines reinforcement learning with a traditional query optimizer. Instead of using an ex-
isting DBMS only as an execution engine, we additionally try benefiting from its query optimizer
whenever possible. We do not provide pseudo-code for the hybrid algorithm, as it is quick to ex-
plain. We iteratively execute the query using the plan chosen by the traditional query optimizer,
using a timeout of 2” where i is the number of invocations (for the same input query) and time
is measured according to some atomic units (e.g., several tens of milliseconds). In between two
traditional optimizer invocations, we execute the learning-based algorithm described in the last
subsection. We execute it for the same amount of time as the traditional optimizer. We save the
state of the UCT search trees between different invocations of the learning approach. Optionally,
if a table batch was processed by the latter, then we can remove the corresponding tuples before
invoking the traditional optimizer. Figure 5 illustrates the hybrid approach. As shown in Section 7,
the hybrid approach bounds expected regret (compared to the optimal plan) and guarantees a
constant factor overhead compared to the original optimizer.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:13

6 INTRA-QUERY LEARNING WITH CUSTOMIZED EXECUTION ENGINE

We present our main variant: Skinner-C. Skinner-C uses intra-query learning and features an ex-
ecution engine that is specialized, in terms of operators and data structures, to this scenario.

6.1 Customizing Execution Engines for Intra-query Learning

Most execution engines are designed for a traditional approach to query evaluation. They assume
that a single join order is executed for a given query (after being generated by the optimizer).
Learning optimal join orders while executing a query leads to unique requirements on the exe-
cution engine. First, we execute many different join orders for the same query, each one only for
a short amount of time. Second, we may even execute the same join order multiple times with
many interruptions (during which we try different join orders). This specific scenario leads to
(at least) three desirable performance properties for the execution engine. First, the execution en-
gine should minimize overheads when switching join orders. Second, the engine should preserve
progress achieved for a given join order even if execution is interrupted. Finally, the engine should
allow to share achieved progress, to the maximal extent possible, between different join orders as
well. The generic approach realizes the latter point only to a limited extend (by discarding batches
processed completely by any join order from consideration by other join orders).

The key towards achieving the first two desiderata (i.e., minimal overhead when switching join
orders or interrupting execution) is a mechanism that backs up execution state as completely as
possible. Also, restoring prior state when switching join order must be very efficient. By “state,”
we mean the sum of all intermediate results and changes to auxiliary data structures that were
achieved during a partial query evaluation for one specific join order. We must keep execution
state as small as possible to back it up and to restore it efficiently.

6.2 Representing Execution State

Two key ideas enable us to keep execution state small. First, we represent tuples in intermediate
results concisely as vectors of tuple indices (each index pointing to one tuple in a base table).
Second, we use a multi-way join strategy limiting the number of intermediate result tuples to at
most one at any point in time (we may however store multiple final result tuples). Next, we discuss
both ideas in detail.

Traditional execution engines for SPJ queries produce intermediate results that consist of actual
tuples (potentially containing many columns with elevated byte sizes). To reduce the size of the
execution state, we materialize tuples only on demand. Each tuple, be it a result tuple or a tuple
in an intermediate result, is the result of a join between single tuples in a subset of base tables.
Hence, whenever possible, we describe tuples simply by an array of tuple indices (whose length is
bounded by the number of tables in the input query). We materialize partial tuples (i.e., only the
required columns) temporarily to check whether they satisfy applicable predicates or immediately
before returning results to the user. To do that efficiently, we assume a column store architecture
(allowing quick access to selected columns) and a main-memory resident dataset (reducing the
penalty of random data access).

6.3 Multi-way Join Algorithm

Most traditional execution engines for SPJ queries process join orders by a sequence of binary join
operations. This can generate large intermediate results that would become part of the execution
state. We avoid that by a multi-way join strategy whose intermediate result size is restricted to at
most one tuple. We describe this strategy first for queries with generic predicates. Later, we discuss
an extension for queries with equality join predicates based on hashing.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:14 I. Trummer et al.

Ry ""1"',> S1 a h RN --1--> S g 4
R, ’ 5 S 4//5,5 T, R, 21 | S, 3,”7)
Ry SolTs Ko ST h | PR STS K T
Ra TS | R 7S | N &
Rs S5 R Rs AN S A n

(a) Depth-first multi-way join strategy: we increase (b) Depth-first multi-way join strategy exploiting

the join order index once the first tuple satisfying all indices on join columns: using indices, the algorithm

applicable predicates is found, we decrease it once all ~ skips tuples that do not satisfy binary equality join
tuples in the current table were considered. predicates.

Fig. 6. Comparison of simple (left) and refined (right) variant of depth-first multi-way join algorithm.

Intuitively, our multi-way join strategy can be understood as a depth-first search for result tuples.
Considering input tables in one specific join order, we fix one tuple in a predecessor table before
considering tuples in the successor table. We start with the first tuple in the first table (in join order).
Next, we select the first tuple in the second table and verify whether all applicable predicates are
satisfied. If that is the case, then we proceed to considering tuples in the third table. If not, then we
consider the next tuple in the second table. Once all tuples in the second table have been considered
for a fixed tuple in the first table, we “backtrack” and advance the tuple indices for the first table
by one. Execution ends once all tuples in the first table have been considered.

Example 6.1. Figure 6(a) illustrates the process for a three-table join. Having fixed a tuple in the
left-most table (at the left, we start with the first tuple), the join order index is increased. Next, we
find the first tuple in the second table satisfying the join condition with the current tuple in the
first table. Having found such a tuple, we increase the join order index again. Now, we iterate over
tuples in the third table, adding each tuple combination satisfying all applicable conditions to the
result. After all tuples in the last table have been considered, we decrease the join order index and
consider the next tuple in the second table.

Algorithm 2 implements that approach. Function CONTINUEJOIN realizes the execution strategy
described before. For a fixed amount of processing time (we use the number of outer while loop
iterations as a proxy in our implementation) or until all input data is processed, it either increases
“depth” (i.e., join order index i) to complete a partial tuple, satisfying all applicable predicates,
further, or it advances tuples indices using Function NExTTuPLE. The latter function increases
the tuple indices for the current join order index or backtracks if the table cardinality is exceeded.
Note that the same result tuple might be added multiple times in invocations of the execution
engine for different join orders. However, we add tuple index vectors into a result set, avoiding
duplicate entries (of course, two different tuple index vectors can represent two result tuples with
the same values in each column).

6.4 Learning with Custom Join Operator

We discuss the main function (SKINNERC) learning optimal join orders using a customized execu-
tion engine (see Algorithm 3). The most apparent difference to the version from Section 5 is the
lack of a dynamic timeout scheme. Instead, we use the same timeout for each invocation of the
execution engine.

This becomes possible, since progress made when executing a specific join order is never lost.
By minimizing the size of the execution state, we have enabled an efficient backup and restore
mechanism (encapsulated by functions BACKUPSTATE and RESTORESTATE whose pseudo-code we
omit) that operates only on a small vector of indices. The number of stored vectors is furthermore

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:15

ALGORITHM 2: Multi-way join algorithm supporting fast join order switching

1: // Advance tuple index in state s for table at position i
2: // in join order j for query g, considering tuple offsets o.
3: function NEXTTUPLE(q = Ry ™ - -+ M Ry, j, 0,8, i)

4 // Advance tuple index for join order position

5 Sj; =85, +1

6 // While index exceeds relation cardinality
7: while s;, > |R;,| and i > 0 do

8 Sji < 9j;

9: ie—i—-1

10: Sj; < Sj; +1

11: end while

12: return (s, i)

13: end function

14: // Execute join order j for query q starting from

15: // tuple indices s with tuple offsets 0. Add results

16: // to R until time budget b is depleted.

17: function CONTINUEJOIN(q = Ry ™ -+ X Ry, j,0,b,5,R)

18: i « 1// Initialize join order index

19: while processing time < b and i > 0 do

20: t < MATERIALIZE(R}, [sj,] X - - X R;,[s;,])

21 if ¢ satisfies all newly applicable predicates then
22: if i = m then // Is result tuple completed?
23: R « R U {s}// Add indices to result set
24: (s, i) « NEXTTUPLE(q, j, 0,5, i)

25: else// Tuple is incomplete

26: ie—i+1

27: end if

28: else// Tuple violates predicates

29: (s, i)y « NExTTUPLE(q, J,0,S, i)

30: end if

31: end while

32: // Join order position 0 indicates termination

33: return (i < 1)

34: end function

proportional to the size of the UCT tree. The fact that we do not lose partial results due to
inappropriate timeouts anymore has huge impact from the theoretical perspective (see Section 7)
as well as for performance in practice (see Section 8). Learning overheads are lower than before,
since we only maintain a single UCT search tree accumulating knowledge from all executions.

6.5 Output Reward

In Section 5, we used a binary reward function based on whether the current batch was processed.
We do not process data batch-wise anymore and must therefore change the reward function.

Our general goal is to make reward proportional to query evaluation progress. The UCT al-
gorithm guarantees to achieve near-optimal reward. For a properly chosen reward function,
this translates into near-optimal evaluation progress per time unit. We present multiple reward

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:16 I. Trummer et al.

ALGORITHM 3: Regret-bounded query evaluation using a customized execution engine

1: // Regret-bounded evaluation of SPJ query ¢,
2: // length of time slices is restricted by b.

3: function SKINNERC(q = Ry ™ - -+ X Ry, b)
4 // Apply unary predicates and hashing

5 q < PREPROCESSINGC(q)

6: R < 0 // Initialize result indices

7 finished « false // Initialize termination flag

8 while —finished do

9: // Choose join order via UCT algorithm

10: Jj < UctCuoicg(T)

11: // Restore execution state for this join order
12: $ < RESTORESTATE(], 0, S); Sprior < §

13: // Execute join order during time budget

14: finished « CONTINUEJOIN(q, j, 0, b, s, R)

15: // Update UCT tree via progress-based rewards
16: REWARDUPDATE(T, j, REWARD(S — Sprior»)
17: // Backup execution state for join order

18: (0,S) « BACKUPSTATE(], s, 0, S)

19: end while

20: return [MATERIALIZE(R;[s1] X Rz[s2] .. .)|s € R]

21: end function

functions in the following. Besides using any single one of them, we can also combine them via a
weighted sum. We compare different alternatives in our experimental evaluation (Section 8.3).

Query evaluation terminates once the entire query result is produced. Equivalently, we can say
that query evaluation terminates once all input is processed. We present two reward functions that
are based on those two complementary perspectives.

The first reward function is based on the frequency at which result tuples are generated. We
count the number of join result tuples generated in each invocation of Algorithm 2 (Function
CoNTINUEJOIN, result tuples are added in Line 23). The regret bounds proven for the UCT
algorithm [31] apply to reward functions with values from the interval [0, 1]. We scale rewards
to this interval as follows: As discussed before, we use the number of iterations of the while loop
in Function CONTINUEJOIN as a proxy for execution time. The per-invocation budget for the join
algorithm b therefore restricts the number of loop iterations. At most one join result tuple is
generated in each iteration. Hence, the maximal number of join result tuples per join invocation
is b. We obtain a reward between zero and one by dividing the number of result tuples generated
in a single invocation by b.

Figure 7 illustrates the principle of the output reward function and why it is helpful. We compare
two join orders (left and right plot) processing the same query. We illustrate the number of result
tuples generated per episode on the y axis (which is proportional to output reward) and the episode
on the x axis. As can be seen from the figure, the number of tuples generated per episode varies
for both join orders (e.g., due to inhomogeneous data). However, the second join order (right plot)
finishes processing after only 5 episodes, while the first join order needs 10. Both join orders
process the same query and must ultimately generate the same number of result tuples. As the
second join order finishes faster, the average number of result tuples per episode must be higher.
From the perspective of the UCT optimizer, the per-episode reward distribution associated with the

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:17

Tuples/Episode for Join Order 1 Tuples/Episode for Join Order 2
» 10 [T T] T]
2
E* st = |
HH
0 |
0 5 10 10

Episodes Episodes

Fig. 7. The output reward metric calculates reward proportional to the number of join result tuples generated
per episode. Comparing two join orders processing the same query, the total number of tuples (area under
the curve) must be equal. However, as the query result is non-empty and since the second join order executes
faster (solid red line marks termination), its average reward per episode (dashed line in blue) is higher.

second join order therefore has a higher mean. This makes it more likely that the UCT optimizer
converges to that join order, thereby maximizing performance.

6.6 Input Reward

Using the output reward function and assuming a sufficiently large join result, SkinnerDB will
converge to join orders that produce more result tuples per time unit (in average). As all join orders
produce the same number of tuples in total, we thereby converge to faster join orders. However,
this approach assumes a sufficiently large join result. It becomes problematic for extremely small
result sizes. In the most extreme case, the query result is empty. In that case, all join orders have a
constant reward of zero. Then, the aforementioned reward function will not allow us to distinguish
more from less-efficient join orders.

Unlike the size of the join result, the sizes of all input tables are known before join execution
starts. We can exploit this for a reward function that is based on the amount of input processed
(rather than the amount of output generated).

We can adopt the following perspective on the join phase: Conceptually, we decide for each tuple
in the Cartesian product between all joined tables whether it is part of the join result. Of course,
our join algorithm does not consider each Cartesian product tuple explicitly (which would lead
to prohibitive overheads). Instead, it implicitly excludes tuple groups that are guaranteed not to
satisfy some join predicates. For instance, given a currently selected tuple in the first table (in join
order), assume we cannot find a matching tuple in the second table. Then, all Cartesian product
tuples using the current tuple in the first table are implicitly excluded. No tuple in that group can
be part of the join result.

Intuitively, the input reward function measures the number of Cartesian product tuples (im-
plicitly) considered per time unit. Independently from the join order, all Cartesian product tuples
need to be considered to finish query processing. Hence, the join order considering most Cartesian
product tuples per time unit (in average, over the entire query evaluation) is also the fastest one.

Our multi-way join algorithm advances from one tuple to the next in the ith table in join order
after considering all input tuple combinations that use the currently selected tuples in the first i
tables (i.e., it adds all associated result tuples to the result set). We prove that property formally
in Section 7.1. Due to that property, we can efficiently calculate the percentage of the Cartesian
product space considered during an episode by comparing the indices of selected tuples before and
after the episode.

Denote by §; the delta between initial and final tuple index for the ith table in join order, com-
paring the state before and after an episode. Furthermore, denote by c; the cardinality of the ith

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:18 I. Trummer et al.

(BR| S Ty
R, Sz T,
Rs X S3 X T3
R, S4 Ty
Rs & Ts

Fig. 8. The input reward function is based on the percentage of the space of Cartesian product tuples that
has been considered per episode. When advancing by three tuples in the second table (for a fixed tuple in
the first), we process a fraction of (1/5) - (3/5) of the Cartesian product space. All join orders must ultimately
search 100% of the Cartesian product space, giving faster join orders a higher average reward per episode.

table in join order. We calculate input reward for that episode using the formula

Z i/ nci s

1<i<m 1<k<i

where m denotes the number of tables. Note that §; may be negative if we reset and select the
first tuple in a table (during backtracking). Nevertheless, the reward must always be non-negative,
since we reset tuples only if advancing tuples for prior tables in join order (which have higher
weight in the reward formula). The following example illustrates reward calculations:

Example 6.2. We reconsider the join invocation described in the previous example (Example 6.1
and Figure 6(a)). We assume an invocation budget of 10 steps. Here, as shown in Figure 6(a), we
are joining three tables with five tuples each. The Cartesian product therefore has 5° = 125 tuples.
During the invocation represented in the figure, the tuple in the first table does not change. Hence,
no reward is counted for the first table in join order alone. In contrast, we advance by three tuples
in the second table (the fourth tuple is not yet completely processed after 10 steps). We implicitly
considered 60% of tuples in the second table for one fixed tuple in the first table. Hence, the reward
is (1/5) - (3/5) = 0.024. For the third table, there is no change in tuples considered (as for the next
tuple in the second table, we must start by considering the first tuple in the third table again).
Hence, the total reward in this invocation is 0.024. Figure 8 illustrates the example, marking with
blue boxes the part of the Cartesian product space that was covered.

For both reward functions, the per-invocation reward is not constant. Already due to inhomo-
geneous data, the per-invocation reward will vary even for a fixed join order. We can model the
per-invocation reward for each join order as a probability distribution over reward values. The
aforementioned reward metrics guarantee that the reward distributions with highest mean belong
to the fastest join orders. As the UCT algorithm converges to actions with highest expected re-
ward [31], we converge to optimal join orders. A more formal explanation is given in Section 7.

6.7 Sharing Progress between Join Orders

We have not yet discussed how our approach satisfies the third desiderata (sharing as much
progress as possible among different join orders) mentioned at the beginning. We use, in fact,
several techniques to share progress between different join orders (those techniques are encapsu-
lated in Function RESTORESTATE). Both of them exploit the fact that the multi-way join algorithm
advances to the next tuple in a table, only after generating all results with the currently selected
tuples up to that table. We prove that property in Section 7.1. Next, we discuss the two mechanisms
by which progress is shared.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:19

Selected Tuples (ST) 51 L
for Join Order ST ST > Sy T ST
Rra ST wU Ss ST > T
Tuples Selected for B-FF AFF 5 S A-FF > AFF 5 T
Order RS> U T
Before (B-FF) and AFE 52 B-FF I
After (A-FF) Fast Forward B-FF 3 53 B-FF » T

Fig. 9. We fast-forward the execution of join order R =« S > U > T (lower part) by integrating evaluation
progress made for join order R > S > T »a U (upper part).

First, we use again offset counters to exclude for each table tuples that have been joined with
all other tuples already (vector o in the pseudo-code, which is implicitly initialized to one). In
contrast to the version from Section 5, offsets are not defined at the granularity of data batches but
at the granularity of single tuples. This allows for a more fine-grained sharing of progress between
different join orders than before.

Second, we share progress between all join orders with the same prefix. Whenever we restore
state for a given join order, we compare execution progress between the current join order and all
other orders with the same prefix (iterating over all possible prefix lengths). Comparing execution
states s and s’ for two join orders j and j* with the same prefix of length k (i.e., the first k tables
are identical), the first order is “ahead” of the second if there is a join order position p < k such
that s;, > s; fori < pands;, > s]fp + 1. In that case, we can “fast-forward” execution of the
second join order, skipping result tuples that were already generated via the first join order. We
do so by executing j’ from a merged state s”” where SJI,/ = s, fori <p, sj’.;: = sy —1,and sj’l’ = oy, for
i > p (since we can only share progress for the common prefix). Progress for different join orders
is stored in the data structure represented as S in Algorithm 3, and Function RESTORESTATE takes
care of fast-forwarding (selecting the most advanced execution state among all alternatives).

Example 6.3. Figure 9 illustrates progress sharing for a query joining four tables. We consider
two join orders, R > S > T > U (upper part) and R < S = U 1 T (lower part). We can share
progress between them as they have a common prefix. ST marks the last selected tuple combination
for the upper order. To reach this combination, all result tuples joining R; with others (if any)
must have been generated. B-FF marks the last selected tuple combination for the lower order. If
resuming execution with this combination, then we might generate redundant result tuples using
Ry (currently selected). Instead, we “fast-forward” when resuming execution for the lower order,
thereby integrating progress achieved via the upper order. The selected tuple combination, after
fast-forwarding, is marked up as A-FF. It skips any remaining join results that use tuple R;.

6.8 Joins with Binary Equality Predicates

So far, we described the algorithm for queries with generic predicates. Our actual implementation
uses an extended version supporting equality join predicates via hashing. If equality join predicates
are present, then we create hash indices for all columns subject to equality predicates during pre-
processing. Of course, creating hash indices to support all possible join orders creates overheads.
However, those overheads are typically small, as only tuples satisfying all unary predicates are
hashed. For tables without unary predicates, we can exploit previously created indices (on key
and foreign key columns) if available. We analyze pre-processing overheads, with and without
previously created indices, in Section 8.3.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:20 I. Trummer et al.

ALGORITHM 4: Improved function for selecting the next tuple to examine, exploiting indices on
equi-join columns

—_

// Use index to propose next tuple in relation r, after tuple t, satisfying equi-join predicate
// between column ¢; in relation r; and column ¢, in r, with fixed tuple t; in ;.
function NEXTMATCH((r.c1, I'2.C2), 1, £2)
// Retrieve join column value of current tuple in first relation
val «AccessCOLUMN(ry.cq,)
// Retrieve index on join column of current table
idx «GETINDEX(ry.cs)
// Query index for next matching tuple after ¢,
return NEXTINDEXED(idx, val, t;)
end function

RS A S o 4

—_
=4

11: // Propose index of next interesting tuple in ith table of join order j,
12: // starting from currently selected tuples specified in s for query q.
13: function ADVANCE(q = Ry X - -+ X Ry, J, 8, 1)

14: // Advance at least by one tuple

15: ne«es; +1

16: // Tterate over binary equi-join predicates connecting current to prior tables
17: for (ry.c1,rp.c2) € q.binEquiPreds : r, = j; AJi’ <i:jy =r; do

18: n « max(n,NEXTMATCH((r;.c1, 72.€2), Sy Sr,))

19: end for

20: return n

21: end function

22: // Advance tuple index in state s for table at position i
23: // in join order j for query g, considering tuple offsets o.
24: function NEXTTUPLE(q = Ry ™ - -+ X Ry, j, 0,8, 1)

25: /! Advance tuple index for join order position
26: sj, <~ADVANCE(q, J, s, i)

27: // While index exceeds relation cardinality

28: while s;, > |R;,| and i > 0 do

29: Sj; < 0j;

30: le—i-1

31: sj, «<—ADVANCE(q, j, s, 1)

32: end while

33: return (s, i)

34: end function

Algorithm 4 extends the function for selecting the next tuple combination to analyze (it replaces
the NExTTuPLE function in Algrithm 2). In contrast to the generic version, it treats binary equi-
join predicates separately. Instead of advancing the tuple index by one each time, it exploits indices
on join columns to skip tuples that cannot satisfy some equi-join predicates. Function ADVANCE
exploits all applicable indices to propose a tuple index for the current table that may satisfy all
applicable predicates.

Function ADVANCE first identifies all binary equi-join predicates (provided by q.binEquiPreds)
that are relevant. A predicate is relevant if two conditions are satisfied. First, the predicate must
refer to the current table for which we seek to propose the next interesting tuple. Second, the

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:21

predicate must connect the current table to one of the prior tables in join order. For such predicates,
we find the next tuple in the current table, matching the currently selected tuple in the prior table.
Function NEXTMATCH finds the next matching tuple according to one specific equi-join predicate.
It first retrieves the value in the join column for the tuple in the prior table. Then, it uses the index
on the join column of the current table to retrieve the next matching tuple. Function NEXTINDEXED
returns the cardinality of the current table plus one if no matching tuple exists. Function ADVANCE
simply takes the maximum over the tuple indices proposed for each predicate.

The resulting tuple is not guaranteed to satisfy all equi-join predicates. Finding such a tuple
(or concluding that none exists) may require intersecting multiple indices. Our goal is to try out
join orders only for short periods of time. We want to avoid operations with potentially high
time overheads. Hence, we only skip tuples that we can exclude with one single index access per
predicate. The main loop of the join algorithm (Algorithm 2) will verify whether the resulting
tuples satisfy all predicates indeed.

Figure 6(b) illustrates the principle for a query with binary equality join predicates, joining three
tables (join order from left to right in the figure). Instead of considering each consecutive tuple in
a table (compare to Figure 6(a)), we use indices on the join columns. Those indices are generated
during the pre-processing phase of query evaluation on tuples satisfying all unary predicates of a
query. Given currently selected tuples in prior tables in join order, we exploit the index (or indices)
to retrieve positions of matching tuples in the current table. As illustrated in the figure, this means
that less tuple combinations are considered and less predicates are evaluated.

6.9 Fast Backtracking

After considering all tuples in the current table, Algorithms 2 and 4 decrement the join index by
one, thereby focusing on the previous table in join order. Implicitly, we assume that changing the
selected tuple in the previous table may lead to new join result tuples. However, there are scenarios
in which we can exclude that possibility.

Consider a join predicate, connecting the current table to a prior table in join order. Assume that
we cannot find any matching tuple in the current table (excluding tuples before the table offset).
In that case, no result tuples can be produced unless we select a different tuple in the prior table.

Algorithm 5 exploits this reasoning via a technique we call “Fast Backtracking.” A call to Func-
tion FAsTBAcCK precedes the call to Function NEXTTUPLE in Line 29 of Algorithm 2. This means the
function is called only if the tuple selected in the current table does not satisfy some predicates.

Algorithm 5 first checks whether the tuple index in the current table is at or before the offset.
If so, then this indicates that no prior tuples in the current table needs to be considered (i.e., even
if those prior tuples satisfy all applicable predicates, they have already been included in the join
result). Next, the algorithm iterates over all binary equi-join predicates on the current table. For
predicates connecting the current to prior tables, Algorithm 5 uses Function NExTMATcH (defined
in Algorithm 4) to obtain the next matching tuple in the current table. A tuple index larger than
the current table cardinality indicates no matching tuples.

If no matching tuples exists according to at least one predicate, then no matching tuples exist in
the current table, given the selected tuples for previous tables in join order. The algorithm maps
each such predicate to the index of the connected, previous table in join order. Variable back,
representing the target index for fast backtracking, is set to the index of the first such table (in
join order). For the selected tuple in that first table, no matching tuple exists in the current table.
Hence, calling the NExTTUPLE function cannot lead to result tuples unless it changes the tuple in
the first table. Instead, we can immediately reset the tuples (i.e., select the first relevant tuple in
each table) for all tables between the first and current table in join order. At the same time, we
reset the join index to the first table. The new join index and tuple states are returned.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:22 I. Trummer et al.

ALGORITHM 5: Use fast backtracking to focus directly on the first table in join order where a
change in tuple selections can lead to new result tuples

1: // Backtrack from position i in join order j for query q to first interesting
2: // table in join order, resetting tuple states s and considering offsets o.

3: function FASTBACK(q = Ry 4 -+ ™ R, j, 0,8, 1)

4: // No prior tuples in current table satisfy all predicates?

5 if s;, < 0;, then

6 // Initialize target for backtracking

7 back « i

8 // Iterate over equi-join predicates connected to current table
9 for (ry.cy,rp.c2) € q.binEquiPreds : r, = j; do

10: // Get index of connected table

11: i"ef{l,...,m}st jy=n

12: // Connected table appears before current one in join order?
13: if i’ < i then

14: // No matching tuple according to this predicate?

15: if NEXTMATCH((r1.C1,72.C2), Sry» Sry)= |Rj,| + 1 then

16: back <« min(back,i’)

17: end if

18: end if

19: end for

20: // Reset tuples between current join index and backtracking target
21: for x < back +1,...,ido

22: Sje < 0j,

23: end for

24: i « back // Reset join index

25: end if

26: return (s, i)

27: end function

We deliberately decided against several possible extensions of the algorithm. First, we restrict
ourselves to cases in which we recognize quickly that no matching tuples exist in the current table.
For instance, we do not consider cases in which matching tuples exist according to single predicates
but not according to a combination of predicates. We could identify such cases by intersecting
multiple indices during a single invocation of FAsTBACK. Alternatively, we could keep track of the
number of matching tuples in the current table and maintain state that persists across invocations.
Both possibilities lead to additional time or space overheads. We opted for a relatively simple
version. Second, we restrict fast backtracking to binary equi-join predicates. Currently, we use
indices only to evaluate such predicates. Hence, the chances to recognize a lack of matching tuples
quickly is best for those predicates.

Figure 10 illustrates fast backtracking. We join four tables (from left to right). Join predicates
(in green) connect the first with the third, and the second with the fourth table. For the currently
selected tuples in the first and second table, we cannot find any tuple in the third table satisfying
all applicable join predicates (otherwise, the join algorithm would advance to the fourth table after
having found a satisfying tuple in the third). The previous join version (see Figure 6(b)) would now
backtrack to the second table in join order and select the next tuple there. However, changing the
selected tuple in the second table cannot enable us to find matching tuples in the third table (since

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:23

1 1
"'1"? S1 5 a4 :

e/ 1

LS, LT |

2, Y '

R A I

54 \5") T4 :

[]

55 e T5 -

Fig. 10. Fast backtracking when joining four tables from left to right. Solid lines indicate connecting join
predicates. Instead of returning to the second table after step 5, we jump directly to the first (as selecting a
different tuple in the second table alone cannot yield join result tuples).

no join predicate connects the second to the third table). To find matching tuples in the third table
(a pre-condition to generating join result tuples), we must change the selected tuple in the first.
Fast backtracking exploits that fact and directly backtracks to the first (instead of the second) table
in join order. Thereby, we skip steps for considering alternative tuples for the second table and
trying to find matching tuples in the third.

7 FORMAL ANALYSIS

We prove correctness (see Section 7.1), introduce assumptions and notations for our regret analysis
(see Section 7.2), and calculate regret bounds (see Section 7.3).

7.1 Correctness

Next, we prove correctness (i.e., that each algorithm produces a correct query result). We start by
analyzing Skinner-G.

LeEMmMA 7.1. Skinner-G produces each join result tuple at least once.

Proor. We conduct a proof by contradiction. Assume a row r in the correct join result is not
generated by Algorithm 1. Algorithm 1 terminates once it finds a first table for which the offset
exceeds the number of batches per table (condition o; > b in Line 17). Let i* be the table satisfying
the termination condition. Result row r joins tuples from base tables. Denote by b* the batch
containing the tuple from table i* that r was formed from. Offsets are generally increased in steps
of one. If the offset for table i* exceeds the number of batches, then we must have had 0;+ = b* in
a prior iteration and o;+ was incremented afterwards. Offsets are incremented only if the current
batch was successfully processed (Line 27). In that case, all result rows that can be formed from
tuples in the current batch have been added to the join result. This applies to r, which is therefore
generated by Algorithm 1, leading to a contradiction. O

LEMMA 7.2. Skinner-G produces no incorrect duplicates in the join result.

Proor. We conduct a proof by contradiction. Assume a row r was generated too often by
Algorithm 1. We only join one batch with the remaining tables in each iteration. This operation
cannot lead to incorrect duplicates (assuming that the underlying execution engines works cor-
rectly). Hence, if there are incorrect duplicates, then we must have generated the same tuple twice
across different iterations. Consider the first of those two iterations. Denote by i* the left-most
table of the join order used in that iteration and by b* the batch in the left-most table. We assume
that this iteration changed the join result (by inserting the duplicate), which implies that the batch
was successfully processed. But in that case, the offset 0;+ was increased from b* to b* + 1. For all
of the following iterations, we consider only batches starting from b* + 1 for table i* (see Line 23).
Hence, we cannot regenerate the same tuple, leading to a contradiction. O

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:24 I. Trummer et al.

COROLLARY 7.3. Skinner-G produces the correct query result.
Proor. This is directly implied by the combination of Lemmas 7.1 and 7.2. O

Skinner-H is based on Skinner-G. As shown next, correctness of Skinner-H follows from the
correctness of Skinner-G.

THEOREM 7.4. Skinner-H produces the correct query result.

Proor. Skinner-H terminates for one out of two reasons. Either the plan proposed by the tradi-
tional optimizer finishes. Assuming that the traditional optimizer and execution engine are work-
ing correctly, the generated result must be correct. Alternatively, Skinner-H may terminate if intra-
query learning finishes. During intra-query learning phases, Skinner-H works like Skinner-G. We
have shown that Skinner-G produces a correct join result (see Corollary 7.3). Hence, Skinner-H
produces a correct result in the second scenario as well. O

Next, we prove correctness of Skinner-C. We start by analyzing the specialized, multi-way join
algorithm that is used by Skinner-C. The following proofs apply to Algorithm 2, as well as to the
refined version (Algorithm 4).

THEOREM 7.5. Not considering progress sharing, the multi-way join algorithm used by Skinner-C
advances to the next tuple in the xth table in join order not before generating all result tuples with the
currently selected tuples in tables one to x in join order.

Proor. Assume that x is equal to the number of tables (induction start), i.e., we consider the
last table in join order. For each tuple selected in the last table, the algorithm verifies whether all
join predicates are satisfied. If so, then it adds the tuple into the result set. The theorem holds in all
cases. Now, assuming the theorem holds starting from some x (with x > 1), we prove that it holds
for x — 1 as well (induction step). The tuple in table x — 1 is changed in three scenarios. First, it may
be changed during backtracking (Line 7) if the tuple index exceeds the table cardinality. Then, the
tuple index does not represent an actual tuple and the theorem is trivially satisfied. Second, it may
be changed after we determine that the currently selected tuples in tables one to i violate a join
predicate. Then, no result tuples can be formed with the currently selected tuples and the theorem
holds again. Third, it may get changed after i was increased and decreased again. Algorithm 2 starts
with the first and considers all tuples in table x after i increases to x. Exploiting the inductional
assumption, we know that Algorithm 2 advances to the next tuple in the xth table only after adding
all result tuples that use the currently selected tuples in tables one to x. Hence, after decreasing i to
x — 1 again, we have added all result tuples with the currently selected tuples in tables one to x — 1.
Compared to Algorithm 2, Algorithm 4 only differs by skipping tuples that do not satisfy binary
equality join predicates (by exploiting join indices). Hence, the proof generalizes to that algorithm
as well. Finally, note that we restore the last selected tuples when resuming execution for a specific
join order (unless progress sharing is considered). Therefore, join interruptions without progress
sharing (see next) do not influence correctness. O

The multiway join algorithm may skip tuples due to progress sharing. Next, we prove that the
progress-sharing mechanism does not prevent Skinner-C from producing a complete result.

THEOREM 7.6. Tuples skipped by Skinner-C due to progress sharing are not required for a complete
Jjoin result.

Proor. Skinner-C shares evaluation progress across join orders via two related, but slightly
different, mechanisms. First, we share progress via offsets. For each table, the offset is the number
of tuples for which all associated join result tuples were already generated. We increase the offset

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:25

for the left-most table in join order whenever the multiway join algorithm advances to the next
tuple in that table. According to Theorem 7.5, all result tuples that use the currently selected tuple
in the first table have been generated before advancing. Hence, we can skip the offset tuples during
processing, independently of the join order.

Second, we share progress across join orders with the same prefix. Assume we update the cur-
rently selected tuples of a join order j; by exploiting progress achieved by join order j,, assume
both orders have the same tables until position x. When resuming join order j;, we select the same
tuples as j, before position x, the prior tuple at position x, and the first tuple in each table after
that. As both orders are equal up to position x, they consider the same tuple combinations for the
associated tables in the same order. According to Theorem 7.5, before advancing to the current
tuple in table x, all join result tuples that can be formed from prior tuples in that table were gen-
erated. Hence, the current join result may only lack tuples that can be formed using the currently
selected tuple in the xth table. We make sure that all of them are considered by resetting tuples
in all of the following tables to the first tuple (potentially skipping tuples in the offset, which is
correct as shown before). O

THEOREM 7.7. Skinner-C produces the correct query result.

Proor. Executing different join orders in isolation, the multiway join algorithm used by Skinner-
C generates each join result tuple at least once (according to Theorem 7.5). Furthermore, merging
progress across join orders does not lead to missed result tuples according to Theorem 7.6. Finally,
note that Skinner-C inserts all result tuples into a result set (variable R in Algorithm 2). More
precisely, this set stores each result tuple as a vector, indicating for each base table the index
of the selected tuple in it. So, if two join orders form the same result tuple (i.e., using the same
combination of base table tuples), then only one of them remains in the result set. This is due to
the set semantics of variable R (R is implemented as a hash set of tuple index vectors in the system).
Hence, each join result tuple is produced at least once and duplicates are eliminated. O

7.2 Regret Model and Assumptions

Expected regret measures the quality of a reinforcement learning algorithm. Regret is typically
defined as the distance between reward of the studied algorithm and reward of an optimal pol-
icy. We model join order selection for a query as an episodic MDP with stochastic rewards (see
Section 4.2). Hence, an optimal policy is a fixed action sequence with maximal expected reward [31].
In our scenario, a fixed optimal policy corresponds to a fixed join order. We generally link reward
to evaluation progress per episode (e.g., successfully processed data batches for Skinner-G or pro-
duced join result tuples for Skinner-C). The join order with maximal expected reward per episode
is therefore the one that works best when averaging over all data; e.g., assuming a non-empty
join result, the join order producing most result tuples per time slice in average finishes first (com-
paring alternative join orders for the same query). When referring to an “optimal execution” in
the following, we mean an optimizer that selects the same optimal join order for SkinnerDB in
each episode. We calculate regret by comparing expected time of the optimal execution to the one
achieved by the SkinnerDB optimizer. Intuitively, given SkinnerDB’s execution time for a query,
we ask which part of it was wasted, in expectation, due to not selecting a fixed, optimal join order.

We denote execution time by n and optimal time by n*. Skinner-G and Skinner-H choose timeout
levels (represented by the y axis in Figure 3) that we denote by /. We use the subscript notation
(e.g., nj) to denote accumulated execution time spent with a specific timeout level. We study regret
for fixed query properties (e.g., the number of joined tables, m, or the optimal reward per time slice,
r*) for growing amounts of input data (i.e., table size) and execution time. In particular, we assume
that execution time, in relation to query size, is large enough to make the impact of transitory

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:26 I. Trummer et al.

regret negligible [13]. We focus on regret of the join phase, as pre-processing overheads are linear
in data and query size (while post-processing overheads are polynomial in query and join result
size). We assume that time slices are chosen large enough to make overheads related to learning
and join order switching negligible. Specifically for Skinner-G and Skinner-H, we assume that the
optimal timeout per time slice applies to all batches. To simplify the analysis, we study slightly
simplified versions of the algorithms from Section 4. In particular, we assume that offsets are only
applied to exclude tuples for the left-most table in the current join order. All progress is shared
between join orders having the same left-most table. For Skinner-C, we assume that the simpler
reward function (progress in left-most table only) is used. We base our analysis on the properties
of the UCT variant proposed by Kocsis and Szepesvari [31].

Our analysis focuses on join orders executed in SkinnerDB. The optimal join order may gener-
ally differ across database systems, depending on available operators or indices. This means that
the optimal join order for SkinnerDB is not necessarily optimal for other systems. Also, our ap-
proach focuses on join ordering alone, Skinner-G and Skinner-H rely on the traditional optimizer
to select operators and indices (while Skinner-C uses one single join operator). However, e.g., if
execution time can be approximated by a cost metric that is not influenced by operator choices,
data access paths, and batch-wise execution (e.g., the Coy; cost metric, which sums intermediate
result cardinality [11]), then the optimal order of SkinnerDB is optimal in general.

7.3 Regret Bounds

Before analyzing Skinner-G, we first prove several properties of the pyramid timeout scheme in-
troduced in Section 5.

LEMMA 7.8. The number of timeout levels used by Skinner-G is upper-bounded by log(n).

Proor. We add a new timeout level L, whenever the equation n; > ny + 2L is satisfied for all
0 < I < L for the first time. As n; is generally a sum over powers of two (2'), and as n; = 0 before
L is used for the first time, the latter condition can be tightened to 2L = n;forall 0 < I < L. Hence,
we add a new timeout whenever the total execution time so far can be represented as L - 2 for
L e N. Assuming that n is large, specifically n > 1, the number of levels grows faster if adding
levels whenever execution time can be represented as 2L for L € N. In that case, the number of

levels can be bounded by log(n) (using the binary logarithm). O

LEMMA 7.9. The total amount of execution time allocated to different (already used) timeout levels
cannot differ by more than factor two.

Proor. Assume the allocated time differs by more than factor two between two timeout levels,
ie,3l,ly s ny > 2-ny, (and ny, ny, # 0). Consider the situation in which this happens for the first
time. Since Vi : n; > n;;1, we must have ny > 2 - ny where L is the largest timeout level used so far.
This was not the case previously, so we either selected timeout level 0 or a new timeout level L in
the last step. If we selected a new timeout level L, then it was n; > ny + 2L for all 0 < I < L, which
can be tightened to Y0 < I < L : n; = 2% (exploiting that n; = 0 previously and that timeouts are
powers of two). Hence, selecting a new timeout cannot increase the maximal ratio of time per level.
Assume now that timeout level 0 was selected. Denote by §; = n; — n;1; for i < L the difference in
allocated execution time between consecutive levels before the last selection. It is §; < 2/, since n;
is increased in steps of size 2! and strictly smaller than 2! (otherwise, level i + 1 or a higher one
would have been selected). It was ng — np = Yg<i<r 8; < Yo<i<r 2! < 2L. On the other side, it was
np > 2L (as np # 0 and, since ny is increased in steps of 2L, After ny is increased by one, it is still
ng < 2 - nr. The initial assumption leads always to a contradiction. O

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:27

We are now ready to provide worst-case bounds on the expected regret when evaluating queries
via Skinner-G.

THEOREM 7.10. Expected execution time regret of Skinner-G is upper-bounded by (1 — 1/(log(n) -
m-4)) - n+ O(log(n)).

Proor. Total execution time n is the sum over execution time components n; that we spent
using timeout level [, i.e., we have n = }g<;<; n; where L + 1 is the number of timeout levels
used. It is L + 1 < log(n) due to Lemma 7.8 and Vl;,l, € L : n;, > n;,/2 due to Lemma 7.9.
Hence, for any specific timeout level [, we have n; > n/(2 - log(n)). Denote by [* the smallest
timeout, tried by the pyramid timeout scheme, which allows to process an entire batch using
the optimal join order. It is n;- > n/(2 - log(n)). We also have n;- = nj-; + nj- o where nj 4
designates time spent executing join orders with timeout level [* that resulted in reward 1, n;- g
designates time for executions with reward 0. UCT guarantees that expected regret grows as the
logarithm in the number of rounds (which, for a fixed timeout level, is proportional to execution
time). Hence, n;- o € O(log(n;+)) and ny- 1 > n» — O(log(n;-)). Denote by b the number of batches
per table. The optimal algorithm executes b batches with timeout [* and the optimal join order.
Skinner can execute at most m - b —m + 1 € O(m - b) batches for timeout [* before no batches
are left for at least one table, terminating execution. Since [* is the smallest timeout greater than
the optimal time per batch, the time per batch consumed by Skinner-G exceeds the optimal time
per batch at most by factor 2. Hence, denoting by n* time for an optimal execution, it is n* >
ny+1/(2 - m), therefore n* > (n;» — O(log(n)))/(2 - m) > ny-/(2 - m) — O(log(n)) (since m is fixed),
which implies n* > n/(4 - m - log(n)) — O(log(n)). Hence, the regret n — n* is upper-bounded by
(1-1/(4-m-log(n))) - n+ O(log(n)). O

Next, we analyze regret of Skinner-H.

THEOREM 7.11. Expected execution time regret of Skinner-H is upper-bounded by (1 — 1/(log(n) -
m-12)) - n + O(log(n)).

Proor. Denote by np and ny time dedicated to executing the fixed optimal plan or learned
plans, respectively. Assuming pessimistically that optimizer plan executions consume all dedicated
time without terminating, it is no = X o<;<r. 2! for a suitable L € N at any point. Also, we have
np > Yo<i<r 2! as time is divided between the two approaches. Itis ny /n > (2L —1)/(25+! + 2L - 2),
which converges to 1/3 as n grows. We obtain the postulated bound from Theorem 7.10 by dividing
the “useful” (non-regret) part of execution time by factor three. O

The following theorem is relevant if traditional query optimization works well (and learning
creates overheads):

THEOREM 7.12. The maximal execution time regret of Skinner-H compared to traditional query
execution isn - 4/5.

Proor. Denote by n* execution time of the plan produced by the traditional optimizer. Hence,
Skinner-H terminates at the latest once the timeout for the traditional approach reaches at most
2 - n* (since the timeout doubles after each iteration). The accumulated execution time of all prior
invocations of the traditional optimizer is upper-bounded by 2 - n* as well. At the same time, the
time dedicated to learning is upper-bounded by 2 - n*. Hence, the total regret (i.e., added time
compared to n*) is upper-bounded by n - 4/5. O

Finally, we analyze expected regret of Skinner-C. Among the two reward metrics presented in
Sections 6.5 and 6.6, we consider the input-based metric. We cannot give regret bounds for the

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:28 I. Trummer et al.

output-based metric in general, as join results may be empty. If so, then the output metric is not
helpful.

THEOREM 7.13. Expected execution time regret of Skinner-C is upper-bounded by (1 — 1/m) - n +
O(log(n)).

Proor. Regret is the difference between optimal execution time, n*, and actual time, n. It is
n—n* = n-(1-n"/n). Denote by R the total reward achieved by Skinner-C during query execution
and by r the average reward per time slice. It is n = R/r. Denote by r* the optimal expected reward
per time slice. Reward is calculated as the relative tuple index delta in the left-most table (i.e., tuple
index delta in left-most table divided by table cardinality). Using a fixed join order with optimal
expected reward terminates once the accumulated reward reaches one. Hence, we obtain n* = 1/r".
We can rewrite regretasn—n* =n-(1—(1/r")/(R/r)) = n- (1—r/(R-r")). The difference between
expected reward and optimal reward is bounded as r* — r € O(log(n)/n) [31]. Substituting r by
r* — (r* —r), we can upper-bound regret by n - (1 — 1/R) + O(log(n)). Denote by R; < R rewards
accumulated over time slices in which join orders starting with table ¢ € T were selected. Skinner-
C terminates whenever R, = 1 for any t € T. Hence, we obtain R < mand n- (1—1/m) + O(log(n))
as upper bound on expected regret.]

Instead of the (additive) difference between expected and execution time of an optimal fixed
order, we can also consider the ratio.

THEOREM 7.14. The ratio of expected to optimal execution time for Skinner-C is upper-bounded
and that bound converges to m as n grows.

ProoOF. Let a = n—n" be additive regret, i.e., the difference between actual and optimal execution
time. It is n* = n—aand, asa < (1 — 1/m) - n + O(log(n)) due to Theorem 7.13, it is n* >
n—(1-1/m)-n—-0(og(n)) = n/m—0O(logn) = n-(1/m— O(log(n))/n). Optimal execution time
is therefore lower-bounded by a term that converges to n/m as n grows. Then, the ratio n/n* is
upper-bounded by m.]

8 EXPERIMENTAL EVALUATION

We describe our experimental setup in Section 8.1. Section 8.2 reports performance measurements
for SkinnerDB and other systems on various benchmarks. Section 8.3 analyzes in more detail which
SkinnerDB features contribute to its performance. Section 8.4 reports additional statistics with
regards to the runtime of different execution phases. In Section 8.5, we evaluate several alterna-
tive reinforcement learning algorithms in terms of their performance and robustness to changing
scenarios. Section 8.6 analyzes the performance tradeoffs when executing SkinnerDB on top of
traditional execution engines. Finally, we summarize our findings in Section 8.7.

8.1 Experimental Setup

The following experiments focus on the performance of SkinnerDB. Unless noted otherwise, the
term “SkinnerDB” designates our main variant, Skinner-C.

We use a budget of b = 500 steps per time slice and set the exploration weight w to 1075
By default, we use a reward function that combines input and output reward with weights 0.5,
respectively. We parallelize the pre-processing phase and exploit hash indices on key and foreign
key columns. Our join optimizer considers the full space of join orders, including Cartesian product
joins. We restrict the amount of heap space to 16 GB (—Xmx = 16¢) and select the concurrent mark
sweep garbage collector (+UseConcMarkSweepGCSkinner jar).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:29

For Skinner-G and Skinner-H, we set the exploration factor to w = V2 and use the single tree
variant (see Section 5.3). We use Postgres as underlying execution engine and partition into 10,000
batches per table (if tables have less than 10,000 rows, some batches are empty). We use a base
timeout of 20 milliseconds per batch and ramp up timeouts by a factor of two. We switch from
batched to non-batched execution after 500 UCT samples. For Skinner-H, we execute the plan
proposed by the original optimizer with a timeout of initially five seconds.

Besides SkinnerDB, we use Postgres (version 10.10), MonetDB (MonetDB Database Server
v11.35.9, Nov2019-SP1), and TelegraphCQ,? a Postgres-based implementation of Eddies, as base-
lines. We compared SkinnerDB against older versions of Postgres and MonetDB in our prior
work [52].

Our goal was to select benchmarks that cover the full range from particularly easy to particu-
larly hard to optimize. We focus on query optimization challenges that relate to cost estimation.
Hence, we judge benchmarks based on how difficult it is to estimate plan cost before execution. For
TPC-H [51], queries contain standard SQL predicates, and data is synthetically generated with uni-
form distribution. This makes TPC-H an easy benchmark from the optimizer’s point of view. The
IMDB join order benchmark [25] operates on real data with realistic amounts of skew. This bench-
mark has been designed to be more realistic in terms of optimizer challenges. We consider multiple
variants. IMDB-S designates in the following the queries of the original benchmark, applied to the
May 2013 version of the IMDB database (prior work evaluates Postgres on this version [25]). IMDB-
L uses the same queries but applies them to an extended version of the same data: the last publicly
available version from December 2017.> We consider IMDB-S and IMDB-L as moderately difficult
from the optimizer’s perspective.

Finally, we consider multiple benchmarks that make optimization hard. First, we consider a
variant of IMDB that replaces unary predicates in queries by semantically equivalent, user-defined
functions. We use the same data as for IMDB-L for this benchmark, hence the name IMDB-L-UDF.
Here, query optimization becomes hard, since predicates must be treated as black boxes by the
optimizer. This makes the benchmark representative for cases where selectivity estimation is hard
not because of data skew but of predicate properties. Also, we consider the JCC-H benchmark [8].
This benchmark uses the same query templates as TPC-H but operates on artificially generated,
highly skewed data. This benchmark is representative for cases where query optimization becomes
hard, not due to predicate properties but due to data skew.

For TPC-H and JCC-H, we generate data with scaling factor one (i.e., the database has a size of
around 1 GB). For IMDB-S, the data size is around 4 GB, and it is around 7 GB for IMDB-L and
IMDB-L-UDF. For TPC-H and JCC-H, we report results for 19 out of the 22 queries. The remaining
three queries are not yet supported by our newest SkinnerDB version due to lack of support for
outer joins (TPC-H Query 13), views (Query 15), and string manipulation functions (substring
function in Query 22). None of those limitations is fundamental, and we plan to add support in
coming SkinnerDB versions. We use a timeout of five minutes per benchmark and baseline.

Unless noted otherwise, the runtimes reported for SkinnerDB assume that indices on (primary
and foreign) key columns were created before runtime. SkinnerDB may create additional indices
on filtered tables at runtime. This index creation time is counted towards its runtime. MonetDB
automatically creates indices on key and foreign key columns.* Postgres automatically creates
indices on primary key columns. We additionally created indices on foreign key columns for TPC-
H and JCC-H (for the IMDB benchmarks, foreign key indices were shown to make optimization

Zhttp://telegraph.cs.berkeley.edu/telegraphcq/v0.2/.
3ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata/.
*https://www.monetdb.org/Documentation/SQLReference/PerformanceOptimization/PerformanceTips.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

http://telegraph.cs.berkeley.edu/telegraphcq/v0.2/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata/
https://www.monetdb.org/Documentation/SQLReference/PerformanceOptimization/PerformanceTips

9:30 I. Trummer et al.

i ..

IMDB-S TPC-H

100 BB New Version of SkinnerDB

I§ Old Version of SkinnerDB

T T T
Ll

10

Time (s)
TTTTTT
Lol

Fig. 11. Comparison between SIGMOD 2019 version of SkinnerDB and re-implementation: We observe sig-
nificant speedups over multiple benchmarks.

harder for the Postgres optimizer [25]). Unless noted otherwise, as recommended [25], we disable
Postgres’ nested loop joins for the IMDB benchmarks.

The following experiments were executed on two servers with similar properties. The first
server is a Dell PowerEdge R640 server with two Intel Xeon 2.3 GHz CPUs with 24 cores, 256 GB
of RAM, and 1 TB of disk space. Server 2 is a Dell T640 machine with 384 GB of main memory,
10 TB of hard disk, and two Intel Xeon 2.3 GHz CPUs with 32 physical cores total. Both servers
run Ubuntu 11.8 and the OpenJDK 64-Bit Server JVM. Unless noted otherwise, the following ex-
periments were executed on Server 2.

8.2 Performance Comparisons

In this subsection, we evaluate the following hypotheses:
HypoTtHEsIs 1. Our re-implementation of SkinnerDB outperforms the original [52].

HypoTHESIS 2. SkinnerDB can select better join orders than traditional optimizers (according to
the Coy metric) if cardinality estimation is difficult.

HypoTHESIS 3. SkinnerDB can perform better than processing engines with traditional optimizers
for benchmarks where query optimization is difficult.

HyproTHESIS 4. The performance of SkinnerDB is more robust to query rewritings than standard
query optimization.

First, we compare our new SkinnerDB version against the original implementation [52]. We
compare both systems on the hardware (Server 1) that was used for the original experiments.
Figure 11 compares runtimes (in seconds) on the IMDB and TPC-H benchmark. In this and the
following plots showing averages, we report 90% confidence bounds as error bars, derived from
three runs. For TPC-H, and only for this comparison, we restrict ourselves to the queries on which
the old SkinnerDB version was evaluated on (Queries 2, 3, 5, 7, 8, 9, 10, 11, 18, 21). The new Skin-
nerDB version was rewritten from scratch. It is complementary to the prior version in multiple
ways. For instance, the old version only has an interpreter for evaluating SQL expression, while
the new version exclusively uses a byte code compiler. Also, the old version operates only on raw
strings, while the new version encodes strings using a dictionary. The complementary nature of
the two implementations makes it hard to trace back performance differences to specific features.
However, in aggregate, the new SkinnerDB version is about twice as fast for both benchmarks.
At the same time, it consumes significantly less main memory than the prior version (e.g., 16 GB
versus 38 GB for the database of the join order benchmark with indices). Those results generally
demonstrate that a significant part of the performance gap, separating SkinnerDB from other sys-
tems in our previous experiments [52], is due to a non-optimized implementation (and not intrinsic
to the particularities of intra-query learning). This verifies Hypothesis 1. We use the new version
for the following experiments.

Next, we compare the new SkinnerDB version against several baselines. Figure 12 reports run-
times on various benchmarks. Compared to our prior evaluation [52], we have upgraded not only

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:31

| | | | |

L

|

100

L

Time (s)

TTTIT T T 1T T 17

10

Ll

S 5 $ >
& Sl N & &
S /\é\ @ %,\/ & &F
@Q (fb Cfb
¢ ¥

’ B SkinnerDB B8 MonetDB 0 Postgres 10 TelegraphCQ ‘

Fig. 12. Total runtime for different benchmarks and systems, the red line marks the timeout.

SkinnerDB but also the MonetDB and Postgres baselines. The difference is significant. Postgres
introduced parallel operators in version 9.6 and is significantly faster at processing query plans
on our multi-core machine. MonetDB chooses better join orders for two queries of the join order
benchmark, which together accounted for a large part of total runtime in our previous experiments.

Overall, MonetDB performs best (among all compared systems) for benchmarks where query
optimization is relatively easy. This applies in particular to the TPC-H benchmark (and the non-
skewed JCC-H version). Here, the synthetically generated data is uniform and predicates (mostly
equality and inequality predicates) are rather easy to analyze. This renders cardinality estimation
(and therefore execution cost estimation) more reliable. On the other side, SkinnerDB excels for
benchmarks where query optimization is difficult. This applies to the JCC-H benchmark as well
as to the IMDB-L-UDF. JCC-H is very challenging for traditional query optimizers due to data
skew. IMDB-L-UDF is difficult, as query predicates (user-defined function predicates) are difficult
to analyze, even if fairly accurate data statistics are available. In both cases, SkinnerDB, which does
not rely on data statistics or cardinality models, benefits (validating Hypothesis 3).

We analyzed the query plans generated by different approaches to explain the observed per-
formance differences. The C,,; cost metric [11] evaluates join orders in terms of the sizes of in-
termediate results they generate. For a given join order, we simply sum up the cardinality of all
intermediate results. Query execution time is a function of both, the quality of selected plans and
the quality of the execution engine processing them. The C,,; cost metric, however, allows us to
separate impact of optimization from the impact of the execution engine.

Figure 13 compares the performance of MonetDB and SkinnerDB, according to execution time
and the C,,,; cost metric. We use the IMDB-S benchmark. For each query, we calculate relative per-
formance by dividing the associated number of MonetDB by the one of SkinnerDB. We partition
queries based on relative performance, rounding the logarithm (with base two) to the nearest inte-
ger. In Figure 13, we report the number of queries for each partition, considering relative runtime
for the left plot and the C,,; metric in the plot on the right.

SkinnerDB produces less intermediate result tuples for 76 out of the 113 queries (for a total of
100 million result tuples over the entire benchmark, compared to 270 million result tuples for Mon-
etDB). Also, the queries where SkinnerDB has highest relative tuple count, compared to MonetDB,
are cheap to execute. SkinnerDB produces 1,441 tuples, on average, for the three queries with
maximal relative tuple count (it is 15 million tuples for MonetDB). However, MonetDB takes only
30 seconds, compared to SkinnerDB’s 67 seconds, to execute the entire benchmark. Hence, it seems

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:32 I. Trummer et al.

Count

-5 0 5 -10 0 10
log,(Relative Time) log,(Relative Cardinality)

Fig. 13. We compare execution time and intermediate result cardinality of MonetDB and SkinnerDB. We
report the number of queries in IMDB-S with specific ratios for the corresponding performance metrics
(value of MonetDB divided by the one of SkinnerDB). MonetDB is faster for most queries (see left figure),
while SkinnerDB tends to select better join orders according to the Coy; metric (see right figure).

300 F B
© 200 | ||IE Postgres Join Order
é I 1 SkinnerDB Join Order
RS 100 u
=
0

Fig. 14. Comparison of Postgres performance on IMDB-S with original join orders and with join orders
proposed by SkinnerDB.

that SkinnerDB selects better join orders (Hypothesis 2), while MonetDB is faster at executing
them. SkinnerDB uses intra-query learning to converge to optimal join orders and does not rely
on potentially inaccurate cardinality estimates. This explains why SkinnerDB selects better join or-
ders. On the other side, intra-query learning creates overheads due to learning and plan switching.
Also, SkinnerDB is implemented in Java and does not parallelize the join phase. This explains why
per-tuple processing overheads are higher for SkinnerDB. On IMDB-S, better join order selections
cannot yet outweigh higher per-tuple processing overheads. This changes for the IMDB-L-UDF
variant. Switching from standard predicates to UDF predicates does not influence the join order
selections of SkinnerDB, while it worsens the join order quality for MonetDB (cost according to
the C,yr metric increases by factor 2.5 for MonetDB when switching predicates). Here, the added
benefit of more reliable join order selections dominates overheads due to intra-query learning.
We performed an additional experiment to corroborate our assumption that SkinnerDB gener-
ates high-quality join orders. Postgres allows bypassing the original optimizer to enforce specific
join orders (for other database systems without this feature, forcing join orders would require ex-
plicitly materializing intermediate results with causes overheads). We compare the performance
of Postgres on IMDB-S with join orders proposed by the Postgres optimizer versus join orders that
SkinnerDB converges to. Figure 14 shows the results with 90% confidence intervals. Note that we
deactivated nested loop joins in both cases, as recommended by the benchmark authors for Post-
gres [25]. It turns out that Postgres performs better when using the join orders from SkinnerDB.
IMDB-L and IMDB-L-UDF execute on the same data, and the queries are semantically equiv-
alent. SkinnerDB’s performance is robust while standard optimization can suffer due to those
query rewritings (verifying Hypothesis 4). It does not necessarily take user-defined predicates
or high data skew to make optimization difficult. We performed a micro-benchmark with an
expensive query (query 16b) from the IMDB join order benchmark. We rewrote the query by
applying small transformations, without changing its semantics. We considered the first predi-
cate in that query (cn.country_code ='[us]') and added one more redundant predicate. We
tried adding an inequality predicate (cn.country_code <>'[de]') as well as a like predicate
((cn.country_code like '[us\%')). Besides that, we also tried replacing the equality condition
by an equivalent IN expression ((cn.country_code IN ('[us]'))). As shown in Figure 15, those

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:33

I8 Adding redundant inequality predicate
I8 Adding redundant LIKE predicate
00 Replacing equality by IN expression

Time (s)

SkinnerDBMonetDB

Fig. 15. Robustness of query plan choices towards small rewrites for IMDB query 16b.

%}
= B 12 50| /08 mput
2 g0 | & 100f -/ BB Output
E 20| s 50| |00 Both
0 ** 0
Fig. 16. Impact of reward function (IMDB-S).
%]
& 3001 12 288: “|[FBRandom
p 20017 £ 400 [|/ln ucr
i 100 = 200 | .
0 ** 0

Fig. 17. Impact of search strategy on IMDB-S benchmark. The values for the random algorithm are lower
bounds due to a timeout at five minutes.

rewrites influence the performance of MonetDB significantly due to different join order choices.
On the other side, the performance of SkinnerDB remains stable (except for random variations).
This is to be expected: As SkinnerDB optimizes based on observed performance alone, the query
formulation does not influence its choices.

8.3 Evaluation of SkinnerDB Features

Next, we analyze the features that contribute to SkinnerDB’s performance. In particular, we test
the following hypothesis:

HypoTHESIs 5. Reinforcement learning-based join ordering is more important for SkinnerDB’s per-
formance than other features such as indexing before runtime or parallel filtering.

We focus on the IMDB-S join order benchmark. First, we consider variations of the learning-
based optimizer. Figure 16 compares the previously proposed reward functions (we report
arithmetic average values of three runs for runtime and the number of intermediate result tuples
generated). Note that we consider the full space of join orders, including Cartesian product joins.
Clearly, the reward function has significant impact on performance. Overall, rewarding generated
result tuples works better than rewarding processed input. On the other side, we observed
sub-optimal performance for several queries with small join output cardinality (in particular for
query 10c, increasing from one to five seconds when switching from input to output reward).
Using a linear combination of the two reward metrics yields best performance.

Next, we study the impact of join order learning. We compare the UCT-based optimizer against
an approach that selects join orders randomly. Figure 17 compares both strategies in terms of
execution time and number of generated tuples. Clearly, join order learning is crucial to obtain
competitive performance. The randomized approach is not able to finish within five minutes and
generates eight times as many tuples until the timeout. This shows that join order learning is
fundamental for the performance of SkinnerDB.

We now turn to the pre-processing phase. Figure 18 reports the performance impact of indices.
We report total runtime as well as pre-processing time. As discussed in more detail next, the

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:34 I. Trummer et al.

Total Time Preprocessing Time
> 28 = 1 = 40 - gLl No Indices
£ 40| 1 g 20} _||lEKey Columns Indexed
= 28 B 1 B o [0 All Columns Indexed

Fig. 18. Impact of indexing (IMDB-S).

| | |

= 150 I8 Serial
g 100 InParallel
£ 50
=

0

No Indices Keys Indexed All Indexed

Fig. 19. Impact of parallelization on pre-processing performance for different index configurations (IMDB-S).

80 ©n
= 60| 1 2 100l || B Fast Backtracking
g 40 4 & sol || FmSlow Backtracking
e 200 1=
0 * 0

Fig. 20. Impact of fast backtracking (IMDB-S).

pre-processing phase of SkinnerDB is the only one to benefit from previously generated indices.
We consider three scenarios: either no indices are created before query execution starts, or indices
are available on key and foreign key columns, or indices are available on all columns.

Indices are exploited in two separate ways during pre-processing. First, indices can be used to
evaluate unary predicates faster. Second, having indices already available reduces overheads, as we
do not need to create them during pre-processing. The latter point requires further explanation.
SkinnerDB must be able to efficiently execute arbitrary join orders during the join phase. This
becomes only possible by creating in-memory hash indices on all join columns. Those indices
need to be created during pre-processing (i.e., at runtime) if they are not already available.

Figure 18 shows that pre-processing time decreases significantly when creating indices on key
and foreign key columns before runtime. If such indices are available for base tables, then we can
avoid creating them for tables without unary predicates. SkinnerDB will still create indices for
tables with unary predicates after filtering. However, typically, the filtered tables are significantly
smaller than base tables. Hence, index creation is much faster. Pre-processing time decreases again
if indices are available for all columns (this reduces overheads for filtering via unary predicates).
However, the effect is less pronounced than for indices on join columns.

SkinnerDB exploits parallelism only during pre-processing in the current version (we are cur-
rently working on parallelizing the multi-way join algorithm, too). SkinnerDB parallelizes the
evaluation of unary predicates as well as the creation of indices on join columns. The implementa-
tion uses Java parallel streams and is not yet highly optimized. Figure 19 reports performance gains
via parallelism (31 is the degree of parallelism), depending on the set of previously created indices.
Clearly, performance gains via parallelization are higher if fewer indices are initially available.

We introduced fast backtracking as an extension to our multi-way join algorithm. Fast back-
tracking enables us to skip tuples guaranteed not to lead to join results. It has the potential to
reduce the total number of intermediate result tuples generated and processed. Figure 20 measures
the impact of fast backtracking. The number of intermediate result tuples decreases by nearly 20%.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:35

IMDB-S TPC-H

| | | | | | | | | |
o 40 |- . - 6 *
@ Z 4 |
5] (]
E 20 1 Ll '4
g L,/ m - | B H B - |

T T T T T T T T T T

0&0 4,}060 \0\9’ q}é‘ &00 &&QO . &60 0\9’ q}é’ &QCJ

Sl 8 Sl 8
Q‘\ /\0 \ QO% Q‘\ /\0 \ QO%

Fig. 21. Time breakdown for IMDB-S and TPC-H benchmark.

Accordingly, runtime decreases by several seconds. Note that fast backtracking only influences the
join time. The relative reduction in execution time is therefore smaller than the relative reduction
in the number of tuples.

Compared to features like parallel filtering, indexing, complex reward functions, and fast
backtracking, we find that join order learning is most critical to SkinnerDB’s performance
(Hypothesis 5).

8.4 Further Analysis

We “zoom in” and analyze which query or benchmark properties influence SkinnerDB’s perfor-
mance. We also integrate new metrics, besides time and result sizes, to gain a deeper understanding
of how SkinnerDB optimizes queries. In particular, we verify the following hypotheses:

HypoTHESIS 6. Relative convergence overheads to good join orders decrease for long running
queries.

HypoTHESIS 7. The relative overhead of convergence to good join orders increases for larger queries
(measured by the number of joined tables).

Figure 21 breaks down execution time into different phases, executed by SkinnerDB for each
sub-query. SkinnerDB’s pre-processing phase consists of two steps: filtering and indexing. Filter-
ing refers to the evaluation of unary predicates as well as the creation and materialization of fil-
tered tables (projected on columns that are required for the following steps). Indexing refers to the
creation of all missing indices on join columns. The results in Figure 21 refer to the case where
indices on key and foreign key columns of base tables were created at pre-processing time. During
the join phase, we learn near-optimal join orders via the UCT algorithm and execute them via the
specialized multi-way join algorithm. At the end of the join phase, result tuples are represented as
vectors referencing tuple indices in base tables. We materialize them into corresponding tables be-
fore post-processing starts (“Join materialization”). Finally, we perform grouping and aggregation
in the post-processing phase.

For the IMDB benchmark, join processing overheads are dominant. In part, this is due to the fact
that pre-processing is parallelized while the join phase is not. During pre-processing, overheads
for applying unary predicates dominate. The post-processing overheads are negligible. The picture
changes for the TPC-H benchmark. Here, post-processing overheads account for nearly one-third
of total processing time. Queries from the TPC-H benchmark feature more complex aggregates
and require grouping (while the IMDB benchmark does not). In contrast to the IMDB benchmark,
indexing time dominates filtering during the pre-processing phase. This is to be expected, as the
IMDB benchmark features more expensive unary predicates such as LIKE expressions. The over-
heads for join result materialization are minor in both cases.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:36 I. Trummer et al.

Table 2. Comparison of Search Space for Join Ordering

IMDB-S TPC-H
Metric Average Maximum Average Maximum
UCT Nodes 211 4,779 18 64
Plans 143 1,029 6 17

Episode 0-4
Episode 5-9
Episode 10-24
Episode 25-49
Episode 50-74
Episode 75+

Fig. 22. lllustration of UCT growth over start of processing of IMDB-S query 33c: After random initial ex-
ploration, the tree is expanded towards join orders that seem most interesting. The node color indicates in
which episode the corresponding node was added.

Table 2 focuses on the join phase and reports metrics related to the search space size. Clearly, the
IMDB benchmark is more challenging from the join ordering perspective. This is to be expected,
as the IMDB queries feature more tables. Figure 22 illustrates the growth of the UCT tree over the
course of a query (here: query 33c of the IMDB-S benchmark). After random expansions in the
initial episodes, tree growth soon focuses on the area of the search space that seem interesting. In
each iteration, we expand the tree by at most one node along of the path of the join order selected
by the UCT algorithm. The targeted growth explains why the number of explored plans remains
far below the theoretical maximum (e.g., IMDB-S features multiple queries joining up to 17 tables).
A video animation, showing UCT tree growth for another IMDB-S query, is available online.’

Next, we analyze the convergence behavior of SkinnerDB. First, we analyze how average reward
and the number of explored plans evolves over a query execution. We partition queries into two
groups: short running queries, which need up to 100 episodes for execution, and long running
queries. To make different queries comparable, we scale per-episode rewards of each query and
query group to the interval [0,1]. Also, we scale the number of join orders explored so far to the
final number for each query. We divide the execution of each query into five equal parts (based
on the number of episodes) and report averages over all queries and for each execution phase
in Figure 23. The number of plans explored increases monotonically over the query execution.
Similarly, the average reward per episode tends to increase over the execution of a query. This
shows that SkinnerDB is successful at finding better join orders over time. At the same time, the
number of explored plans grows slower as execution proceeds. This shows that join order choices
converge over time. There is a clear distinction between the two query groups. For fast queries, new
plans are discovered with a similar frequency over the entire execution. At the same time, reward
is significantly below its peak for most of the execution. On the other side, for long running queries,
reward is close to its peak over the entire query execution. Also, the frequency at which new plans
are discovered keeps flattening as execution proceeds.

Shttps://youtu.be/udjzEmF2q9U.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

https://youtu.be/u4jzEmF2q9U

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:37

i) =)
% 1 = — % 1 (— T T —
s 08 18 08| .
e 0.6 - 1S 0.6 |- N
a 0.4} -1 5 | |
< < 0.4
o 0.2 I I I R - 0.2 | | |
++ 0% 25% 50% 75% 100% & 0% 25% 50% 75% 100%
Episodes (Scaled) Episodes (Scaled)
‘ —=— Fast Queries —— Long Running Queries ‘

Fig. 23. Analyzing convergence of SkinnerDB to join orders for long running and short queries of the
IMDB-S benchmark. For long running queries, reward remains close to its peak for most of the query ex-
ecution time.

10
1

T T T

—_
LRLALLLLLL AL

Time (s)

i

e

—_
TITI

©

Nr. Tables Nr. Tables

Fig. 24. Skinner-C time (left plot) and speedups, compared to MonetDB, (right plot) on IMDB-S benchmark.

Time Speedup Episodes Speedup
| | | | | | | |
3
o o
2 2 13 2
S 1p 18 1
9 9
0 0

Fast Slow Small Large Fast Slow Small Large

Fig. 25. Speedups by using final join order of prior run for each query for different query classes.

If convergence time is a significant time component, then we may see correlation between per-
formance of SkinnerDB and the number of joined tables (which determines the search space for
join ordering). Figure 24 shows runtime and performance (single queries in blue, averages with 90%
confidence intervals in red). Based on the results, there does not appear to be a strong performance
degradation with growing numbers of query tables.

Figure 25 quantifies overheads of finding good join orders for different query classes. We run
each query of the IMDB-S benchmark twice. The second run uses a fixed join order: the join
order that the first run converged to. In doing so, we quantify the performance penalty of join
order search. We measure the relative speedup of the second run compared to the first. To reduce
noise, we only consider time of the join phase when calculating speedups (as the other phases
are not influenced by the availability of a join order). We report speedups according to actual
runtime (left plot) and according to the number of episodes (right plot). We report arithmetic
average speedups (and 90% confidence intervals) obtained from three executions. We break results
down by query classes, distinguishing slow (first run takes more than 500 ms) from fast (less than
500 ms) queries and small (joining at most 10 tables) from large (joining more than 10 tables)
queries. We hypothesize (Hypothesis 6) that the value of given join orders should increase for fast
queries (where convergence time may constitute a higher percentage of total execution time). Also,
we assume the same and for large queries (Hypothesis 7), since finding good orders within a larger

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:38 I. Trummer et al.

search space may take longer. The results are consistent with Hypothesis 6, while the results are
unclear with regards to Hypothesis 7. In total, the join phase took on average 42 seconds without
fixed join order and 38 seconds with a fixed join order.

8.5 Comparison of Learning Algorithms

We conducted experiments comparing the performance of UCT against newer reinforcement learn-
ing algorithms. In particular, we verify the following hypotheses:

HypotHEss 8. Replacing UCT by more recent learning algorithms leads to further speedups.
HypoTHESIS 9. The performance of the UCT optimizer is sensitive to reward scaling.
HypoTtHEsts 10. Using parameterless learning algorithms increases robustness to reward scaling.

So far, we used the UCT algorithm to learn optimal join orders. Now, we compare against two
newer reinforcement learning algorithms: BRUE [?] and BRUEI [17]. Both algorithms belong to
the family of Monte-Carlo Tree Search methods as well. Hence, we can use the same search space
and the same reward function as for the UCT algorithm. We choose to compare against those al-
gorithms, as they improve over the formal convergence guarantees offered by the UCT algorithm.
Also, they reduce the number of tuning parameters. Next, we describe those advantages in more
detail (Domshlak and Feldman discuss the differences in full detail [17]). First, the UCT algorithm
is aimed at minimizing cumulative regret, while BRUE and BRUEI (primarily) minimize simple
regret. Simple regret focuses on the gap from expected to optimal reward in the last episode. Cu-
mulative reward focuses on the gap between expected and optimal reward sum over all episodes
instead. BRUE and BRUEI provide an exponential-rate reduction of simple regret over time (as
opposed to a polynomial rate for UCT). Second, BRUE and BRUEI are parameter-free. While the
formal guarantees of UCT apply for a default setting of the exploration weight, its empirical perfor-
mance is often dependent on tuning that parameter to a specific scenario [17]. BRUEI is a variant
of BRUE that aims at finding good solutions faster (while both algorithms offer the same conver-
gence guarantees with regards to finding the optimal solution). Both, BRUE and BRUEI, gradually
expand a search tree, similar to the UCT algorithm. They differ by the way in which the tree
is expanded (BRUEI maintains a connected tree, while BRUE starts with a forest of trees that is
gradually connected over time).

So far, we have not separated planning and execution phases. This is appropriate for the UCT
algorithm, which is aimed at minimizing cumulative regret. It will carefully balance the overheads
of choosing a potentially suboptimal join order in the current iteration versus the information
gain (which may lead to speedups in future iterations). BRUE and BRUEI are aimed at minimizing
simple regret. They will explore the search space more aggressively, disregarding overheads in
the current iteration if more information can be gained. To use them effectively, we must separate
execution and optimization again. We therefore alternate between sampling for optimization and
executing the maximum reward join order for a fixed number of steps. We use the same (depth-
first) join algorithm for both phases and share progress among all phases.

The exploration weight determines the balance between exploration and exploitation for the
UCT algorithm. It balances a term that depends on reward values with one that does not. Hence,
intuitively, the optimal setting for the exploration weight may depend on the reward distribution.
That distribution depends in turn on properties of queries and data. For all experiments presented
so far, we use the same setting for the exploration factor. This shows that there are settings that
work well across a variety of queries and benchmarks. On the other side, there may be extreme
cases in which the default setting stops working. BRUE and BRUEI do not use any parameters.
Their performance should not depend on the reward distribution at all.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:39

UCT Unscaled UCT Re-Scaled UCT Unscaled UCT Re-Scaled
| | | | | | | | | | | |
- 80 [301 7 8ol]
g 200 1 60| 20 |- 1oer 8
- 1oa0f i | - i
g 10 20 | 10 20 |- 1
0 7= 0 e s 0 T T T
-10-5 0 5 10 -2 0 2 -10-5 0 5 10 -2 0 2

log,(Relative Time) log,(Relative Time) log,(Rel. Cardinality) log,(Rel. Cardinality)

Fig. 26. We compare query execution time and intermediate result cardinality with and without reward
scaling for IMDB-S (we report the number of queries for which the performance ratio falls into specific bins).
Without rescaling the exploration factor, UCT suffers from higher execution times (see left) and produces
more tuples (see right). After rescaling the exploration factor for lower rewards, runtimes and result sizes are
comparable to the corresponding metrics before reward scaling.

BRUE BRUE BRUEI BRUEI!
! ! ! ! ! L ! L ! ! !
. 80l] 28 100 80 F =
S 60 - . 60 |- i
5 40| 1 40 50 - 1 40 .
O 20 120 20 - B
07— 0 0 p——F—— 07—
-10-5 0 5 10 -2 0 2 -10-5 0 5 10 -2 0 2

log,(Relative Time) log,(Rel. Cardinality) log,(Relative Time) log,(Rel. Cardinality)

Fig. 27. We compare performance of BRUE (left) and BRUEI (right) before and after reward scaling (we
report the number of queries where the ratio between performance before and after scaling falls into certain
bins). In terms of execution time and in terms of intermediate result sizes, the performance remains stable.

In the following, we study two questions. First, do BRUE or BRUEI translate their improved
convergence guarantees into better empirical performance? Second, are BRUE and BRUEI more
robust towards drastic changes of the reward distribution? We answer them using two benchmarks.
First, we use IMDB-S in its original configuration. Second, we use IMDB-S but scale down all
rewards by factor 1071 (i.e., by 15 orders of magnitude). This simulates an extreme change of data
or query properties. For instance, it corresponds to an extreme change in the number of join result
tuples produced (which our reward function is in part based upon). Besides BRUE and BRUEI, we
use the UCT algorithm in two variants. First, we use UCT with the default exploration factor (107°).
Second, we use UCT with an exploration factor of 1072 (scaled down proportionally to the reward
scaling).

We analyze robustness of different algorithms to reward scaling. Figure 26 shows results with re-
gards to robustness of the UCT algorithm. We consider the IMDB-S benchmark and scale down all
rewards by a factor of R = 10™1%. We consider the UCT algorithm in two different configurations.
For the first configuration (“UCT Unscaled” in Figure 26), we use the original UCT exploration
factor of W = 107>, For the second configuration (“UCT Re-Scaled” in Figure 26), we scale down
the exploration factor to W = 1072° (proportional to reward scaling). For all queries, we divide exe-
cution time or intermediate result cardinality values (i.e., cost according to the C,,,; metric, shown
in the right plot) before and after reward scaling. We partition queries based on the logarithm of
that ratio and report the number of queries per partition in Figure 26. Clearly, extreme scaling
of reward values affects the performance of the UCT algorithm (validating Hypothesis 9). On the
other side, performance returns back to normal once the exploration factor is scaled down as well.

Figure 27 shows results for BRUE and BRUEI. Again, we compare the performance before and
after reward scaling. We report relative per-query performance, i.e., the ratio of performance after

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:40 I. Trummer et al.

= 316
£ 100
& 316 -

10° 1103 107 107 107®
Reward Scaling Factor

Fig. 28. Sensitivity of UCT algorithm to different reward scales.

and before reward scaling (performance by BRUE and BRUEI). Again, we partition queries based
on the logarithm of the corresponding ratios and report the number of queries per bin. Here, there
are no parameters that relate to the reward distribution. Hence, we only report results for one
configuration. Clearly, scaling down rewards has significantly less performance impact than before
(verifying Hypothesis 10).

When selecting join orders, the UCT algorithm maximizes the sum of exploration and exploita-
tion terms. If reward is scaled down extremely, then exploration dominates. The choices made
by the UCT algorithm start to resemble the ones made by random sampling. On the other side,
scaling down the exploration term accordingly reverses the effect. For BRUE and BRUEI, scaling
reward values has essentially no effect. The decisions made by both algorithms do not depend on
absolute reward values. Instead, both algorithms rank actions based on reward averages. Scaling
down reward values does not change that ranking.

So far, we have considered an extreme case by scaling down rewards by 15 orders of magni-
tude. Next, we consider scaling steps in between to identify the point at which performance is
significantly affected. Figure 28 reports UCT join time (for the IMDB-S benchmark) when scaling
reward by the factor specified in the upper row (we report the arithmetic average of three runs,
together with 90% confidence intervals). The performance remains relatively stable (overheads of
below 30%) when scaling rewards from 10°> down to 1073, Hence, there is a range of reward val-
ues encompassing at least six orders of magnitude in which the default parameter setting works
reasonably well. Performance decreases significantly starting from a reward scaling of factor 107",

In summary, we find that extreme reward scaling may increase join time on IMDB-S from 41
seconds (left-most bar in Figure 28) to 384 seconds (right-most bar in Figure 28) for the UCT algo-
rithm. BRUE and BRUEI are not sensitive to such changes. This confirms Hypothesis 10. On the
other side, their absolute runtimes are inferior to a reasonably tuned UCT algorithm (204 seconds
for BRUE and 224 seconds for BRUEI). This invalidates Hypothesis 8. Also, the same parameter
settings for UCT work well across a relatively broad range of scenarios (see Figure 28). Overall,
UCT remains our method of choice for typical cases.

8.6 Learning with Generic Execution Engines

So far, we focused on our main variant, Skinner-C, that uses a tailored execution engine. Next, we
instantiate intra-query learning on top of a traditional execution engine (Skinner-G and Skinner-
H). We use Postgres as execution engine and test, in particular, the following hypotheses:

HyproTHESIS 11. Skinner-G can outperform untuned systems in special cases.

HypoTHESIs 12. Combining traditional optimization with reinforcement learning (Skinner-H) can
improve performance, compared to pure learning.

HypoTHESIs 13. The specialized execution engine used by Skinner-C improves performance signif-
icantly, compared to execution on top of generic engines (Skinner-G and Skinner-H).

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:41

PG Untuned Skinner-G Skinner-H
| | | 40 - | | | < 30k | | | |
S 40 | 4 301 120 8
=0 13f 20
O 10 4 10 i
0 T T T - 0 T T T SRS T T T]
-10 -5 0 5 10 =10 -5 0 5 10 =10 -5 0 5 10
log,(Relative Time) log,(Relative Time) log,(Relative Time)

Fig. 29. We compare performance of different approaches on IMDB-S against performance of a manually
tuned Postgres installation. Compared to an untuned installation, using Skinner-G or Skinner-H reduces the
number of outlier queries where execution time is significantly above the fine-tuned version.

Table 3. Performance of SkinnerDB on Postgres with
a Timeout of Five Minutes per Query

System Time (s) # Timeouts
Postgres - No Tuning 6,493 16
SkinnerG(PG) 2,049 1
SkinnerH(PG) 1,539 0
Postgres with Tuning 297 0

We use the IMDB (IMDB-S) benchmark for our comparisons. We evaluate Skinner-G and
Skinner-H against the original Postgres system. The authors of the IMDB benchmark noticed that
Postgres performs better when manually disabling nested loop joins [25]. The reason are unre-
liable cardinality estimates motivating plans with nested loop joins (that turn out to be highly
suboptimal). Disabling this operator is straightforward. However, tracing back performance prob-
lems to this tuning option is difficult. It requires intimate knowledge of the query optimizer and
processing engine as well as manual analysis of query plans. Many lay users would be incapable
of identifying the right tuning knob for optimal performance. This is why we evaluate Postgres in
two modes: with and without manual tuning (i.e., with and without nested loop joins).

In Figure 29, we use the performance of Postgres with tuning as baseline. For each query, we
analyze relative execution time by comparison to that baseline. We use a per-query timeout of five
minutes. For Postgres without tuning, Skinner-G, and Skinner-H, we partition queries based on rel-
ative performance (more precisely, we use the rounded logarithm with base two for partitioning).
Table 3 summarizes runtimes and timeouts. The following trends become apparent: First, with the
default settings, the Postgres optimizer chooses highly sub-optimal query plans for a few queries.
This corroborates prior results. Second, Postgres outperforms both SkinnerDB variants with an op-
timal configuration. On the other side, both SkinnerDB variants are able to improve performance
compared to the Postgres out-of-box configuration (validating Hypothesis 11). Finally, both Skin-
nerDB variants executing on top of Postgres are significantly slower than our main variant, using
a specialized execution engine (verifying Hypothesis 13).

Execution engines such as Postgres are not optimized for fast join order switching. This shows
clearly when comparing the performance of Skinner-G and Skinner-H against Postgres (tuned)
as well as Skinner-C. On the other side, Skinner-G and Skinner-H are able to improve perfor-
mance in pathological cases where the optimizer chooses highly sub-optimal plans. Note that the
performance problems of Postgres are mostly due to the selection of sub-optimal join operators.
Neither Skinner-G nor Skinner-H directly control the selection of join operators. However, sub-
optimal operator choices translate into bad performance for corresponding join orders. While the

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

9:42 I. Trummer et al.

SkinnerDB variants cannot influence operator choices, they can select join orders for which the
original optimizer selects good operators. Skinner-H performs slightly better than Skinner-G
(validating Hypothesis 12). This is due to the fact that Skinner-H avoids overheads by batch-wise
processing if the original optimizer produces plans that finish quickly enough (before learning is
invoked).

Skinner-G performs several pre-processing steps in which it creates indices on join columns
and clusters data according to the batch ID column (see online appendix for details). Also, our
current implementation materializes join results and performs post-processing on the materialized
data. We performed one last experiment in which we replaced Skinner-G’s join order learning
component by the Postgres optimizer without hand-tuning (i.e., we invoke the original Postgres
optimizer on tables resulting from Skinner-G’s pre-processing phase to generate the join result
required for Skinner-G’s post-processing stage). We measured a runtime of 19,816 seconds with
48 timeouts. Clearly, the overheads required for enabling intra-query learning on generic execution
engines are significant. They do not pay off if combined with standard query optimization.

In summary, while Skinner-G and Skinner-H can help in extreme cases for runtime optimization,
we believe that they may be most useful as offline analysis tools. They can be used to uncover
alternative join orders for queries with performance problems.

8.7 Summary

We can roughly classify the benchmarks we used into easy (TPC-H, JCC-H without skew), moder-
ately difficult (IMDB-S, IMDB-L), and very difficult (IMDB-L-UDF, JCC-H with skew) cases from
the optimizer perspective. SkinnerDB pays for overheads due to learning and join order switch-
ing in cases where query optimization is easy. Here, systems such as MonetDB are preferable.
However, SkinnerDB never performed more than four times worse than the best system across
all benchmarks. This is remarkable, especially given that we have not yet fully parallelized our
processing engine (i.e., the join phase is sequential). For benchmarks where optimization is hard,
SkinnerDB proves to be the most reliable alternative.

9 CONCLUSION AND OUTLOOK

We introduce SkinnerDB, a database system that uses reinforcement learning to find near-optimal
join orders. Under simplifying assumptions, we show that expected performance regret, compared
to optimal join order choices for SkinnerDB, is bounded (“regret-bounded query evaluation”). In
our experiments, we find the following: First, regret-bounded query evaluation leads to robust
performance even for difficult queries, given enough data to process. Second, performance gains
by robust join ordering can outweigh learning overheads for benchmarks where optimization is
difficult. Third, to realize the full potential of our approach, an (in-query) learning-based optimizer
must be paired with a specialized execution engine.

We see multiple avenues for future work. First, the join algorithms presented in this article
are sequential. To leverage emerging many-core hardware architectures, we must extend them
to leverage parallelism. Second, we are investigating methods to combine inter- with intra-query
learning. For instance, we could use knowledge gained from previous queries as initial priors in
intra-query learning. A simple variant could select join orders according to a metric that combines
UCT upper confidence values with a quality estimate based on past queries. As query execution
time increases, we can decrease weight of the component that is not based on the current query.
Ideally, this enables us to find optimal join orders for long running queries. For short running
queries, it may help to find a reasonable join order faster. Finally, we plan to explore options for
finding optimal join orders for data subsets, rather than the entire dataset as a whole.

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:43

REFERENCES

(1]
(2]

[3

=

[10

[t

(1]
(12]
(13]
[14]
[15]
[16]

(17]

A. Aboulnaga, P. Haas, M. Kandil, S. Lightstone, G. Lohman, V. Markl, I. Popivanov, and V. Raman. 2004. Automated
statistics collection in DB2 UDB. In PVLDB. 1169-1180. DOI : https://doi.org/10.1145/1066157.1066293

Mert Akdere and Ugur Cetintemel. 2011. Learning-based query performance modeling and predection. In ICDE. 390
401. DOI : ftp://ftp.cs.brown.edu/pub/techreports/11/cs11-01.pdf

Khaled Hamed Alyoubi. 2016. Database Query Optimisation Based on Measures of Regret. Ph.D. Dissertation. Birkbeck
University of London.

Khaled H. Alyoubi, Sven Helmer, and Peter T. Wood. 2015. Ordering selection operators under partial ignorance. In
CIKM. 1521-1530. DOI : https://doi.org/10.1145/2806416.2806446

Ron Avnur and J. M. Hellerstein. 2000. Eddies: Continuously adaptive query processing. In SIGMOD. 261-272.
DOI:https://doi.org/10.1145/342009.335420

Brian Babcock and S. Chaudhuri. 2005. Towards a robust query optimizer: A principled and practical approach. In
SIGMOD. 119-130. Retrieved from http://dl.acm.org/citation.cfm?id=1066172.

Shivnath Babu, Pedro Bizarro, and David DeWitt. 2005. Proactive re-optimization. In SIGMOD. 107-118. DOI : https:
//doi.org/10.1145/1066157.1066171

Peter Boncz, Angelos Christos Anatiotis, and Steffen Klabe. 2018. JCC-H: Adding join crossing correlations with skew
to TPC-H. LNCS 10661 (2018), 103-119. DOI : https://doi.org/10.1007/978-3-319-72401-0_8

Nicolas Bruno and Surajit Chaudhuri. 2002. Exploiting statistics on query expressions for optimization. In SIGMOD.
263-274. DOI : https://doi.org/10.1145/564720.564722

Surajit Chaudhuri and Vivek Narasayya. 2001. Automating statistics management for query optimizers. In ICDE. 7-20.
DOI :https://doi.org/10.1109/69.908978

Sophie Cluet and Guido Moerkotte. 1995. On the complexity of generating optimal left-deep processing trees with
cross products. In ICDT. 54-67. DOI : http://link.springer.com/chapter/10.1007/3-540-58907-4{_}6 .

Anne Condon, Amol Deshpande, Lisa Hellerstein, and Ning Wu. 2009. Algorithms for distributional and adversarial
pipelined filter ordering problems. ACM Trans. Algor. 5, 2 (2009), 1-34. DOI : https://doi.org/10.1145/1497290.1497300

Pierre-Arnaud Coquelin and Rémi Munos. 2007. Bandit algorithms for tree search. In Uncertainty in Artificial Intelli-
gence. AUAI Press, 67-74. arXiv:arXiv:cs/0703062v1.

D. Harish, Pooja N. Darera, and Jayant R. Haritsa. 2008. Identifying robust plans through plan diagram reduction.
PVLDB 1, 1 (2008), 1124-1140. Retrieved from http://dl.acm.org/citation.cfm?id=1453976.

Amol Deshpande. 2004. An initial study of overheads of eddies. SIGMOD Rec. 33, 1 (2004), 44-49. DOI : https://doi.org/
10.1145/974121.974129

Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2006. Adaptive query processing. Found. Trends Datab. 1,
1 (2006), 1-140. DOT : https://doi.org/10.1561/1900000001

Carmel Domshlak and Zohar Feldman. 2013. To UCT, or not to UCT? In SoCS. 1-8. DOI: http://www.aaai.org/ocs/
index.php/SOCS/SOCS13/paper/view/7268

[18] Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal. 2011. Performance prediction for concurrent

(19]
[20]

[21]
[22]

(23]

(24

flan)

(25]
[26]

(27]

database workloads. In SIGMOD. 337-348. DOI : https://doi.org/10.1145/1989323.1989359

Anshuman Dutt. 2014. QUEST: An exploratory approach to robust query processing. PVLDB 7, 13 (2014), 5-8.
Anshuman Dutt and Jayant Haritsa. 2014. Plan bouquets: Query processing without selectivity estimation. In SIGMOD.
1039-1050. DOI : https://doi.org/10.1145/2588555.2588566

Amr El-Helw, Thab F. Ilyas, and Calisto Zuzarte. 2009. StatAdvisor: Recommending statistical views. PVLDB 2, 2 (2009),
1306-1317. DOI : hitp://www.vldb.org/pvldb/2/v1db09-525 pdf

Zohar Feldman and Carmel Domshlak. 2014. Simple regret optimization in online planning for Markov decision pro-
cesses. J. Artif. Intell. Res. 51 (2014), 165-205. DOI : https://doi.org/10.1613/jair.4432

Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L. Wiener, Armando Fox, Michael Jordan, and David
Patterson. 2009. Predicting multiple metrics for queries—Better decisions enabled by machine learning. In ICDE. 592~
603.

Sylvain Gelly, L. Kocsis, and Marc Schoenauer. 2012. The grand challenge of computer go: Monte Carlo tree search
and extensions. Commun. ACM 3 (2012), 106-113. DOI : http://dl.acm.org/citation.cfm?id=2093574

Andrey Gubichev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How good are query optimizers, really?
PVLDB 9, 3 (2015), 204-215.

P. J. Haas and A. N. Swami. 2011. Sampling-based selectivity estimation for joins using augmented frequent value
statistics. In ICDE. 522-531. DOI : https://doi.org/10.1109/ICDE.1995.380361

Peter J. Haas and Arun N. Swami. 1992. Sequential sampling procedures for query size estimation. SIGMOD Rec. 21, 2
(1992), 341-350. DOI : https://doi.org/10.1145/141484.130335

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

https://doi.org/10.1145/1066157.1066293
ftp://ftp.cs.brown.edu/pub/techreports/11/cs11-01.pdf
https://doi.org/10.1145/2806416.2806446
https://doi.org/10.1145/342009.335420
http://dl.acm.org/citation.cfm?id=1066172
https://doi.org/10.1145/1066157.1066171
https://doi.org/10.1007/978-3-319-72401-0_8
https://doi.org/10.1145/564720.564722
https://doi.org/10.1109/69.908978
http://link.springer.com/chapter/10.1007/3-540-58907-4{_}6
https://doi.org/10.1145/1497290.1497300
http://arxiv.org/abs/arXiv:cs/0703062v1.
http://dl.acm.org/citation.cfm?id=1453976
https://doi.org/10.1145/974121.974129
https://doi.org/10.1561/1900000001
http://www.aaai.org/ocs/index.php/SOCS/SOCS13/paper/view/7268
https://doi.org/10.1145/1989323.1989359
https://doi.org/10.1145/2588555.2588566
http://www.vldb.org/pvldb/2/vldb09-525.pdf
https://doi.org/10.1613/jair.4432
http://dl.acm.org/citation.cfm?id=2093574
https://doi.org/10.1109/ICDE.1995.380361
https://doi.org/10.1145/141484.130335

9:44 I. Trummer et al.

[28] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten Binnig. 2019.
DeepDB: Learn from data, not from queries! PVLDB 13, 7 (2019), 992-1005. DOI : https://doi.org/10.14778/3384345.
3384349

[29] Konstantinos Karanasos, Andrey Balmin, Marcel Kutsch, Fatma Ozcan, Vuk Ercegovac, Chunyang Xia, and Jesse
Jackson. 2014. Dynamically optimizing queries over large scale data platforms. In SIGMOD. 943-954. DOI : https://doi.
org/10.1145/2588555.2610531

[30] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons Kemper. 2018. Learned cardinalities:
Estimating correlated joins with deep learning. In CIDR. Retrieved from http://arxiv.org/abs/1809.00677.

[31] Levente Kocsis and C. Szepesvari. 2006. Bandit based monte-carlo planning. In ECML. 282-293. DOI: http://www.
springerlink.com/index/D232253353517276.pdf

[32] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Stoica. 2018. Learning to optimize join
queries with deep reinforcement learning. Retrieved from http://arxiv.org/abs/1808.03196.

[33] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2018. QTune: A queryaware database tuning system with deep
reinforcement learning. PVLDB 12, 12 (2018), 2118-2130. DOI : https://doi.org/10.14778/3352063.3352129

[34] Jiexing Li, Arnd Christian Konig, Vivek R. Narasayya, and Surajit Chaudhuri. 2012. Robust estimation of resource
consumption for SQL queries using statistical techniques. PVLDB 5, 11 (2012), 1555-1566. Retrieved from http://dl.
acm.org/citation.cfm?id=2350229.2350269.

[35] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. 1990. Practical selectivity estimation through adap-
tive sampling. In SIGMOD. 1-11. DOI : https://doi.org/10.1145/93605.93611

[36] Guy Lohman. 2014. Is query optimization a “solved” problem? SIGMOD Blog (2014). https://wp.sigmod.org/?p=1075

[37] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil,
and Nesime Tatbul. 2018. Neo: A learned query optimizer. PVLDB 12, 11 (2018), 1705-1718. DOI : https://doi.org/10.
14778/3342263.3342644

[38] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement learning for join order enumeration. In aiDM. 3.
Retrieved from arXiv:arXiv:1803.00055v2.

[39] Thomas Neumann and Cesar Galindo-Legaria. 2013. Taking the edge off cardinality estimation errors using incremen-
tal execution. In BTW. 73-92.

[40] Thomas Neumann and Alfons Kemper. 2015. Unnesting arbitrary queries. In BTW. 383-402. DOI : http://www.btw-
2015.de/res/proceedings/Hauptband/Wiss/Neumann-Unnesting{ }Arbitrary{ }Querie.pdf.

[41] Hung Q. Ngo, Ely Porat, and Christopher Ré. 2012. Worst-case optimal join algorithms. In PODS. 37-48.

[42] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi. 2019. An empirical analysis of deep
learning for cardinality estimation. Retrieved from http://arxiv.org/abs/1905.06425.

[43] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2020. QuickSel: Quick selectivity learning with mixture models.
In SIGMOD. 1017-1033. DOI: https://doi.org/10.1145/3318464.3389727

[44] Adrian Daniel Popescu, Andrey Balmin, Vuk Ercegovac, and Anastasia Ailamaki. 2013. PREDIcT: Towards predicting
the runtime of large scale iterative analytics. PVLDB 6, 14 (2013), 1678-1689. DOI : https://doi.org/10.14778/2556549.
2556553

[45] LiQuanzhong, Shao Minglong, Volker Markl, Kevin Beyer, Latha Colby, and Guy Lohman. 2007. Adaptively reordering
joins during query execution. In ICDE. 26-35. DOI : https://doi.org/10.1109/ICDE.2007.367848

[46] Vijayshankar Raman, A. Deshpande, and J. M. Hellerstein. 2003. Using state modules for adaptive query processing.
In ICDE. 353-364. DOI : https://doi.org/10.1109/ICDE.2003.1260805

[47] P. G. G. Selinger, M. M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. 1979. Access path selection in a
relational database management system. In SIGMOD. 23-34. DOI : http://dl.acm.org/citation.cfm?id=582095.582099

[48] David Silver. 2009. Reinforcement Learning and Simulation-based Search in Computer Go. Ph.D. Dissertation. University
of Alberta.

[49] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO - DB2’s LEarning optimizer. In PVLDB.
VLDB, 19-28. http://www.vldb.org/conf/2001/P019.pdf.

[50] Ji Sun and Guoliang Li. 2020. An end-to-end learning-based cost estimator. In VLDBJ, Vol. 13. 307-319. DOI : https:
//doi.org/10.14778/3368289.3368296

[51] TPC. 2013. TPC-H Benchmark. Retrieved from http://www.tpc.org/tpch/.

[52] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan Jo, and Joseph Antonakakis. 2019.
SkinnerDB: Regret-bounded query evaluation via reinforcement learning. In SIGMOD. 1039-1050.

[53] Kostas Tzoumas, Timos Sellis, and Christian S. Jensen. 2008. A Reinforcement Learning Approach for Adaptive Query
Processing. Technical Report. Aalborg University.

[54] Todd L. Veldhuizen. 2012. Leapfrog Triejoin: A worst-case optimal join algorithm.

[55] Stratis D. Viglas, Jeffrey F. Naughton, and Josef Burger. 2003. Maximizing the output rate of multi-way join queries
over streaming information sources. In PVLDB. 285-296. Retrieved from http://dl.acm.org/citation.cfm?id=1315451.
1315477

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1145/2588555.2610531
http://arxiv.org/abs/1809.00677
http://www.springerlink.com/index/D232253353517276.pdf
http://arxiv.org/abs/1808.03196
https://doi.org/10.14778/3352063.3352129
http://dl.acm.org/citation.cfm?id=2350229.2350269
https://doi.org/10.1145/93605.93611
https://wp.sigmod.org/?p=1075
https://doi.org/10.14778/3342263.3342644
http://arxiv.org/abs/arXiv:1803.00055v2
http://www.btw-2015.de/res/proceedings/Hauptband/Wiss/Neumann-Unnesting{_}Arbitrary{_}Querie.pdf
http://arxiv.org/abs/1905.06425
https://doi.org/10.1145/3318464.3389727
https://doi.org/10.14778/2556549.2556553
https://doi.org/10.1109/ICDE.2007.367848
https://doi.org/10.1109/ICDE.2003.1260805
http://dl.acm.org/citation.cfm?id=582095.582099
http://www.vldb.org/conf/2001/P019.pdf
https://doi.org/10.14778/3368289.3368296
http://www.tpc.org/tpch/
http://dl.acm.org/citation.cfm?id=1315451.1315477

SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning 9:45

[56] Lucas Woltmann, Claudio Hartmann, Maik Thiele, and Dirk Habich. 2019. Cardinality estimation with local deep
learning models. In Proceedings of the Second International Workshop on Exploiting Artificial Intelligence Techniques for
Data Management (aiDM). 1-8.

[57] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-based query re-optimization. In SIGMOD. 1721~
1736. DOI : http://arxiv.org/abs/1601.05748

[58] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement learning with tree-LSTM for join order
selection. In ICDE. 1297-1308. DOI : https://doi.org/10.1109/ICDE48307.2020.00116

[59] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu,
Minwei Ran, and Zekang Li. 2019. An end-to-end automatic cloud database tuning system using deep reinforcement
learning. In SIGMOD. 415-432. DOI : https://doi.org/10.1145/3299869.3300085

Received April 2020; revised February 2021; accepted May 2021

ACM Transactions on Database Systems, Vol. 46, No. 3, Article 9. Publication date: September 2021.

http://arxiv.org/abs/1601.05748
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1145/3299869.3300085

