UDO: Universal Database Optimization
using Reinforcement Learning

Junxiong Wang
Cornell University
Ithaca, NY, USA
junxiong@cs.cornell.edu

ABSTRACT

UDO is a versatile tool for offline tuning of database systems for
specific workloads. UDO can consider a variety of tuning choices,
reaching from picking transaction code variants over index selec-
tions up to database system parameter tuning. UDO uses reinforce-
ment learning to converge to near-optimal configurations, creating
and evaluating different configurations via actual query executions
(instead of relying on simplifying cost models). To cater to different
parameter types, UDO distinguishes heavy parameters (which are
expensive to change, e.g. physical design parameters) from light pa-
rameters. Specifically for optimizing heavy parameters, UDO uses
reinforcement learning algorithms that allow delaying the point
at which the reward feedback becomes available. This gives us the
freedom to optimize the point in time and the order in which dif-
ferent configurations are created and evaluated (by benchmarking
a workload sample). UDO uses a cost-based planner to minimize
reconfiguration overheads. For instance, it aims to amortize the
creation of expensive data structures by consecutively evaluating
configurations using them. We evaluate UDO on Postgres as well
as MySQL and on TPC-H as well as TPC-C, optimizing a variety of
light and heavy parameters concurrently.

PVLDB Reference Format:

Junxiong Wang, Immanuel Trummer, and Debabrota Basu. UDO: Universal
Database Optimization using Reinforcement Learning. PVLDB, 14(13): 3402
- 3414, 2021.

doi:10.14778/3484224.3484236

1 INTRODUCTION

We introduce UDO, the Universal Database Optimizer. UDO is an
offline tuning tool that optimizes various kinds of tuning choices
(e.g., physical design decisions as well as settings for database sys-
tem configuration parameters), given an example workload and a
tuning time limit. UDO does not rely on simplifying cost models to
assess the quality of tuning options. Also, it does not require any
kind of training data upfront. Instead, it relies only on feedback
obtained via sample runs, after creating a tuning configuration to
evaluate. This makes the optimization process expensive but avoids
sub-optimal choices due to erroneous cost estimates, which are
otherwise common [8].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 13 ISSN 2150-8097.
doi:10.14778/3484224.3484236

Immanuel Trummer
Cornell University
Ithaca, NY, USA
itrummer@cornell.edu

3402

Debabrota Basu
Scool, Inria Lille- Nord Europe
Lille, France
debabrota.basu@inria.fr

Given the tradeoff realized by UDO (i.e., high-quality, high-
overhead optimization), we see two primary use cases. First, UDO
is useful in scenarios where a configuration, obtained via expensive
optimization, can be used over extended periods. This is possible if
data and query workload properties do not change too frequently.
Also, UDO is useful as an analysis tool for other tuning approaches.
For instance, as UDO does not rely on cost or cardinality models, it
can be used to uncover weaknesses in other recommender tools that
are based on the latter. In this scenario, UDO adopts a similar role as
previously proposed methods for query optimizer testing [11, 30],
which generate guaranteed optimal plans via an expensive process
(but are specific to query plans, as opposed to other tuning choices).

UDO operates on various types of tuning parameters, which
are traditionally handled by separate tuning tools. For instance, in
our experiments, we consider optimization of transaction query
orders [35], index selections [10, 14], as well as database system
configuration parameters [37, 38]. Considering various parameter
types together can be advantageous as optimal choices for one
parameter type may depend on settings for other parameters (e.g.,
we may disable sequential scans, a configuration parameter, only
if specific indexes are created). Hereby, we use the generic term
Parameter for each tuning choice and the term Configuration
for an assignment from parameters to values. UDO handles all
parameters by a unified approach.

UDO explores the search space iteratively: selecting configura-
tions to try, creating them (e.g., creating index structures or setting
system parameters as specified by the configuration), and evaluat-
ing their performance on a workload sample. Evaluation is flexible
to incorporate multiple metrics such as throughput or latency. We
demonstrate optimization with both metrics on different database
systems (Postgres and MySQL) and standard benchmarks (TPC-C
and TPC-H). UDO uses Reinforcement Learning (RL) to determine
which configurations to try next. Improvement in performance
measurements translate into reward values that guide an RL agent
during search towards actions, i.e. configurations, that maximize
the accumulated reward, i.e. the resulting performance.

RL has been used previously for optimizing database system
configuration parameters [23, 38] in particular. The main novelty
of UDO lies in the fact that it broadens the scope of optimization
to a much larger class of parameters. This becomes particularly
challenging due to what we call Heavy Parameters (we distin-
guish them from Light Parameters in the following). For heavy
parameters, it is expensive to change the parameter value. For in-
stance, parameters that relate to index creations are expensive to
change. Creating an index, in particular a clustered index, may take
an amount of time that dominates query or transaction evaluation

time for a small workload sample. Similarly, configuration parame-
ters requiring a database server restart are relatively expensive to
change. As we show in our experiments, a naive RL approach is
limited by costs of changing heavy parameters. This incurs high
costs per iteration and slows down convergence.

UDO avoids this pitfall by giving heavy parameters special treat-
ment. UDO separates heavy parameters from light ones and uses
different reinforcement learning algorithms to optimize them. Specifi-
cally for heavy parameters, it uses an RL algorithm that can adjust
with delays until reward values for previous choices become avail-
able. We leverage such delayed feedbacks as follows. All configu-
rations selected by the RL algorithm are forwarded to a planning
component. The planning component decides, when and in which
order to create and to evaluate configurations. Depending on those
choices, we are able to amortize cost for changing heavy param-
eters over the evaluation of many similar configurations. E.g., it
allows us to create an expensive index once to evaluate multiple
similar configurations that all include the index. Alternating be-
tween configurations that use or do not use the index, requiring
multiple index creations and drops, is less efficient.

Given settings for heavy parameters, we use RL again to find
optimal settings for light parameters. Of course, optimal settings
for light parameters depend on the values for heavy parameters.
UDO takes that into account and models the optimization of light
parameters for each heavy parameter setting as a separate Markov
Decision Process (MDP), to which an RL algorithm is applied to. In
contrast to heavy parameters, we use a no-delay RL algorithm to
converge faster to near-optimal settings for light parameters.

We propose a new Monte Carlo Tree Search (MCTS) variant,
called delayed-Hierarchical Optimistic Optimization (HOO), that
can be used for optimizing both, heavy and light parameters (with
and without delays). Using this approach, we show that UDO con-
verges to near-optimal configurations.

We demonstrate via experiments that the resulting system finds
better configurations, compared to baselines, given the same amount
of optimization time. We consider multiple standard benchmarks
(TPC-H and TPC-C), multiple optimization metrics (throughput and
latency), as well as different database management systems (Post-
gres and MySQL). In summary, our original, scientific contributions
are the following.

e We introduce an approach for optimizing various database
tuning decisions using reinforcement learning. This approach
is characterized by a factorisation of heavy and light param-
eters, the use of RL algorithms accepting delayed feedback,
and a planner component that reduces re-configuration over-
heads by carefully planning evaluation orders.

e We experimentally demonstrate that UDO finds better con-
figurations than baselines, given the same amount of opti-
mization time. Our experiments cover various benchmarks
and metrics.

e We propose a new MCTS variant, delayed-HOO, that can
be used to optimize light and heavy parameters. We show
that UDO converges to near-optimal solutions, using that
approach, under moderately simplifying assumptions.

The remainder of this paper is organized as follows. First, in
Section 2, we introduce our formal problem model and terminology

3403

used throughout the paper. Then, in Section 3, we give a high-level
overview of the UDO system. We analyze UDO formally in Section 6.
In Section 4, we describe mechanisms by which UDO evaluates
batches of configurations efficiently. In Section 5, we introduce
UDQO’s learning algorithms and analyze them formally in Section 6.
Then, in Section 7, we report results of our experimental evaluation.
We discuss related work in Section 8 before concluding the paper.

2 FORMAL MODEL

We introduce our problem model and associated terminology here.

Definition 2.1. A Tuning Parameter represents an atomic deci-
sion, influencing performance of a database management system
for a specific workload. It is associated with a (discrete) Value Do-
main, representing admissible parameter values. It may be subject
to Constraints, restricting its values based on the values of other
tuning parameters.

We use the term “parameter” in a broad sense, encompassing
system configuration parameter settings as well physical design
decisions. In the following, we give examples for tuning parameters.

Example 2.2. Considering a set of candidate indices for a given
database, we associate one tuning parameter with each candidate.
Such index-related parameters have a binary value domain, rep-
resenting whether the index is created or not. Equally, we can
introduce a tuning parameter to represent the random_page_cost
configuration parameter of the Postgres system (together with a set
of values to consider). Finally, we may associate a query in a trans-
action template with a tuning parameter, representing the position
within the template at which it is evaluated (the set of admissible
positions is restricted via control flow and data dependencies).

Definition 2.3. Given fixed, ordered parameters, a Configura-
tion c is a vector, assigning a specific value to each parameter. The
Configuration Space C is the set of all possible configurations.

Our goal is to find configurations that optimize a benchmark.

Definition 2.4. A Benchmark Metric f maps a configuration
¢ € C to a real-valued performance result (i.e., f : C — R), which
represents the performance of a configuration according to a spe-
cific metric for a specific benchmark. Higher performance results
are preferable. We assume that f is stochastic (i.e., evaluating the
same configuration twice may not yield exactly the same perfor-
mance).

Our definition of f is deliberately generic, covering different
types of benchmarks and metrics. A few examples follow.

Example 2.5. In our experiments, we use the following two
benchmark metrics among others. We consider a benchmark metric
/1 that maps configurations to the average throughput, measured
over a fixed time period, when processing TPC-C transactions gen-
erated randomly according to a fixed distribution. Also, we consider
a benchmark metric f, that maps configurations to a weighted sum
between disk space d consumed (e.g., for created indexes) and run
time t of all TPC-H queries (i.e., f(¢) = —d — o - t where c is
a configuration and ¢ € R* a user-defined scaling factor). Both
benchmark metrics are implemented as a script (a black box from
UDO’s perspective) that returns a numerical performance result.

We present a system, UDO, that solves the following problem.

Definition 2.6. An instance of Universal Database Optimiza-
tion is characterized by a benchmark metric f and a configuration
space C. The goal is to find an optimal configuration c¢*, max-
imizing the stochastic benchmark metric f in expectation (i.e.,

%

¢* = argmax,.~E[f(c)]). We denote the optimal expected per-
formance (that of c*) as f™.

For iterative approaches, the problem specification may also
include a user-defined timeout for optimization. The qualification
“Universal” attest to the fact that our approach is broadly applicable,
in terms of parameter types, workloads, and performance metrics.
We map an UDO instance to multiple episodic Markov Decision
Processes, using the following definition, and solve UDO using RL.

Definition 2.7. An Episodic Markov Decision Process (MDP)
is defined by a tuple (S, A, T, R, Sp, Sg) where S is the state space,
A asetof actions, and 7 : SXA +> § a transition function linking
state-action pairs to new states. R : S — R is a reward function
mapping states to a reward value. We consider deterministic tran-
sitions but stochastic rewards. Optimization models an agent that
performs steps. In each step, the agent selects an action, receives
a reward, and transitions to the next state, based on the selected
action. Optimization is divided into episodes. In each episode, the
agent starts in state Sp € S. The episode ends once it reaches
one of the end states Sp C S. The goal is to find a policy (here: a
sequence of actions as we consider deterministic transitions) that
maximizes expected rewards per step.

We introduce two scenario-specific instances of this formalism,
associated with different parameter types.

Definition 2.8. We distinguish Heavy and Light Parameters,
based on the overheads associated with changing their values.
Heavy parameters have high reconfiguration overheads, light pa-
rameters have negligible overheads. We denote by Cpy the configu-
ration space for heavy parameters (i.e., a set of vectors representing
all possible heavy parameter settings). We denote by Cy the config-
uration space for light parameters. Hence, the entire configuration
space C can be written as C = {cgocr|cg € Ch,cr € Cp} = CyxCr,
(assuming that heavy parameters are ordered before light parame-
ters and writing vector concatenation as o).

Currently, UDO considers all parameters representing physical
data structures such as indexes as heavy (as changing such parame-
ters means creating or dropping the associated data structure). Also,
UDO considers parameters as heavy that require a database server
restart to make value changes effective. The other parameters are
considered light.

Definition 2.9. For the Heavy Parameter MDP, states corre-
spond to configurations for heavy parameters (i.e., S € Cg) and
each action changes one heavy parameter to a new value (i.e., an
action is defined as a pair (p, v) representing parameter p and new
value v). The transition function maps a configuration (i.e., state)
with a parameter value change (i.e., action) to a new configuration,
reflecting the changed value. The start state Sp € Cy represents
the default configuration (i.e., no created indices and default values

3404

(0,0,7) (0,1,?)

(1,0,2MB) —{(1,0,25MB) (0,1, 25MB) <« (0,1, 2MB)

N —

(1,0,10MB) (1,0,50MB) | {0,1,50MB)| (0,1, 10MB)

(1,0,?)

Figure 1: Extract of heavy (top) and light (bottom) parameter
MDPs for a space with two heavy and one light parameter.
Optimal states for each MDP are marked up in red.

for all system parameters). All states reachable from the start state
with a given number of actions are end states (we typically use
a threshold of four actions). The reward function R is scenario-
specific and based on the benchmark metric f. The reward for
a state representing heavy parameter configuration cy is propor-
tional to argmax, ¢, f(cgocr),ie. to the value of the benchmark
metric when combining cpy with the best possible configuration cp
for light parameters. We scale raw rewards by subtracting rewards
for the default configuration (e.g., if f measures throughput for a
specific benchmark, UDO considers the throughput improvement
compared to default settings as reward function).

The definition above uses optimal configurations for light pa-
rameters, leading to the second MDP version.

Definition 2.10. A Light Parameter MDP M ¢] is introduced
for each heavy parameter configuration cj (in practice, we limit
ourselves to configurations explored by UDO). Its states represent
configurations for light parameters, its actions represent value
changes for light parameters (analogue to the previous definition).
The start state represents default values for all light parameters
and end states are defined by a fixed number of light parameter
changes, compared to the default. The reward function Ry [cy] is
defined as Ry [cy](cr) = f(cg o cr) — fp where fp is performance
of the default configuration.

As shown above, we model optimization for light parameters as a
family of MDPs, where each MDP is associated with a specific heavy
parameter configuration. Our problem model assumes that only the
reward function (i.e., performance) depends on heavy parameters.
It is possible to extend the definition above to cover cases where
admissible values for light parameters depend on currently chosen
heavy parameters. In that case, states, transitions, and actions must
be instantiated for specific heavy parameter settings as well. The
following example illustrates the interplay between heavy and light
parameter MDPs.

Example 2.11. Figure 1 illustrates part of a two-level MDP. In the
illustrated scenario, the configuration space contains two heavy
parameters (e.g., index creation decisions) as well as one light param-
eter (e.g., the maximal amount of main memory used per operator).
Rectangles represent states in the figure and are annotated with
configuration vectors (reporting parameter in the aforementioned
order). The upper part of the figure illustrates the heavy parameter
MDP (note that the light parameter is not specified). Solid lines
mark transitions due to actions changing the configuration. Dashed

Benchmark Metric, Configuration Space, Time Budget
h
Universal Database Optimizer

(7

-)’ RL for Heavy Parameters (A)

Configuration for Heavy Parameters+Deadline

’ Pick Configurations to Evaluate (B)

Configurations for Heavy Parameters (Set)
’ Order Selected Configurations (C)

Configurations for Heavy Parameters (List)
RL for Light Parameters (D)
Result Configuration for All Parameters,

Evaluate Configuration (E)

¥
Best Configuration

Figure 2: Overview of UDO system (rectangles represent pro-
cessing steps, arrows represent data flow).

lines mark mappings between heavy parameter states and the start
state of the associated light parameter MDP. As index-related pa-
rameters are binary, the heavy parameter MDP has four states
(out of which three are shown). In total, the figure illustrates three
MDPs (the one for heavy parameters and light parameter MDPs
for two heavy configurations). Optimal states are marked up in red,
showing that the optimal settings for light parameters may depend
on the heavy parameter settings. Identifying optimal settings for
heavy parameters requires obtaining optimal, associated settings
for light parameters first.

3 SYSTEM OVERVIEW

Figure 2 shows an overview of UDO and the interplay between
its components. The input to UDO is a benchmark metric to opti-
mize, a configuration space, and an optimization time budget. The
configuration space is specified as a set of index candidates to con-
sider, a set of database system parameters with alternative values
to try, and (optionally) a set of alternative versions for each query
or transaction template. UDO considers index parameters as heavy
and the others as light. The output is the best configuration found
until the time limit.

UDO iterates until the time limit is reached!. In each iteration,
UDO first chooses a configuration of heavy parameters to explore
(Component A). UDO uses reinforcement learning for this decision,
balancing the need for exploration (analyzing configurations about
which little information is available) and exploitation (refining con-
figurations that seem to well) in a principled manner. Evaluating a
new configuration for heavy parameters can however be expensive.
It involves changing the current database configuration to the one
to evaluate, e.g. by creating indexes. Doing so becomes cheaper
if the current configuration is close to the one to evaluate. Hence,
!nstead of a fixed optimization time budget, we could use other termination criteria

as well. For instance, the algorithm could terminate once a given number of iterations
does not yield improvements above a configurable threshold.

3405

UDO tries to optimize the point in time at which heavy parameter
configurations are evaluated. UDO uses a specialized reinforcement
learning algorithm that does not expect evaluation results immedi-
ately after selecting a configuration. Instead, it allows for a certain
delay (measured as the number of iterations between selection and
evaluation result). Selected configurations for heavy parameters
are added to a buffer, associated with a deadline until which the
result must become available. Note that the learning algorithm
does not consider the current database state for deciding which
configuration to explore (doing so may prevent UDO from finding
promising configurations that are far from the current one). Instead,
it merely creates opportunities for cost reductions by other system
components.

In each iteration, UDO selects a set of heavy parameter configu-
rations to evaluate from the aforementioned buffer (Component B).
Configurations are selected if either their deadline has been reached
(in this case, there is no choice) or if their evaluation is cheaper
than usual (e.g., because they share indexes with configurations
that must be evaluated). Selected configurations are ordered for
evaluation (Component C). The goal of evaluation is to reduce re-
configuration cost by placing similar configurations consecutively.
For instance, if configurations with similar indexes are evaluated
consecutively, some index creation cost can be amortized.

Next, UDO selects values for light parameters (Component D).
The best configuration for light parameters may depend on the
heavy parameter configuration. For instance, we may want to en-
able or disable specific join algorithms (by setting parameters such
as enable_nestloop for Postgres), depending on which indexes are
available. For specific configurations of heavy parameters, UDO
learns suitable settings for light parameters via reinforcement learn-
ing. Here, reconfiguration is cheap. Hence, UDO uses a standard
reinforcement learning algorithm without delays. Light parameters
are optimized for the current heavy configuration for a fixed num-
ber of iterations of the latter learning algorithm. Note that statistics
for light parameters are saved and will be used as starting point if
the same heavy configuration is selected again. A fully specified
configuration (i.e., for light and heavy parameters) is evaluated
via the benchmark metric. This involves executing a script that
executes a sample workload and returns the performance metric to
optimize. The evaluation results are used to update the statistics of
the two learning algorithms (Components D and A).

Algorithm 1 describes the main loop, executed by UDO, in more
formal detail. Beyond benchmark metric and configuration space,
it obtains two parameters specifying hyper-parameters for the two
reinforcement learning algorithms used. These include optimization
time as well as other parameters (e.g., the maximal amount of
allowed delay) whose impact we analyze in Section 7. Users only
need to specify optimization time while defaults are available for
the other algorithm parameters (hence, Figure 2 only references
the former parameter).

Algorithm 1 first classifies parameters as heavy or light (Line 5).
We use a simple heuristic and classify parameters requiring index
creations or database server restarts as heavy, the other ones as
light. Next, Algorithm 1 iterates until optimization time runs out. It
selects interesting heavy parameter configurations to evaluate via
reinforcement learning (Line 9). It submits requests for evaluation,
setting a deadline until which the result must be available (Line 11).

Algorithm 1 UDO main function.

Algorithm 2 EVAL: Functions for evaluating configurations.

1: Input: Benchmark metric f, configuration space C, RL algorithms
Algy; and Alg; for heavy and light parameter optimization

2: Output: a suggested configuration for best performance

3: function UDO(f, C, Algy;, Alg;)

4: // Divide into heavy (Cg) and light (Cr) parameters

5 (Ch, CL) « SSA.SPLITPARAMETERS(C)

6 // Until optimization time runs out

7: fort < 1,...,Algy.Time do

8 // Select next heavy parameter configuration

9 cH,+ <RL.SELECT(Algy;, CH, cH,1-1)

10: // Submit configuration for evaluation

11: EVAL.SUBMIT(cH ¢, t + Algy.maxDelay)

12: // Receive newly evaluated light configurations
13: E «—EVAL.Receve(Alg;.f,Cr, t)

14: // Update statistics for heavy parameters

15: RL.UPDATE(Algyy, E)

16 end for

17: return best obtained configuration

18: end function

It receives evaluation results for previously submitted requests
(potentially, but not necessarily, including the one submitted in the
current iteration). The results are used to update the statistics for
learning (Line 15). Finally, the best configuration is returned.

We discuss the sub-functions related to evaluating configurations
(Functions EVAL.SuBmIT and EVAL.RECEIVE) in Section 4. In Sec-
tion 5, we discuss the learning algorithms used (Functions RL.SELECT
and RL.UPDATE).

4 EVALUATING CONFIGURATIONS

We discuss how configurations are selected and ordered for evalu-
ation. In Section 4.1, we describe the implementation of the eval-
uation functions invoked by Algorithm 1. In Section 4.2, we de-
scribe how configurations to evaluate are selected (Component B
in Figure 2). In Section 4.3, we discuss the method used to order
configurations to evaluate for minimal cost.

4.1 Evaluation Overview

The evaluation interface offers two functions, represented in Al-
gorithm 2 (and used in Algorithm 1). First, it accepts evaluation
requests (EVAL.SuBMIT), allowing to submit configurations for
evaluation, together with an evaluation deadline. Second, it allows
triggering evaluations via the EVAL RECEIVE function. Algorithm 2
maintains a global variable R (whose state persists across different
calls to the two interface functions). This variable contains pending
requests for evaluating specific configurations. Each configuration
to evaluate is only partially specified (i.e., it assigns values to a sub-
set of configuration parameters). More precisely, configurations to
evaluate only contain specific values for heavy parameters. During
evaluation, we learn suitable values for light parameters to accu-
rately assess the potential of the heavy parameter settings. Items
in R correspond to tuples, combining a heavy parameter configura-
tions with an evaluation deadline. This deadline specifies the latest
possible time (measured as the number of main loop iterations, as
per Algorithm 1) at which evaluation results must be generated.

1: // Global variable representing evaluation requests
R« 0

N}

: Input: heavy configuration cg to evaluate and time ¢
: Effect: adds new evaluation request

: procedure EVAL.SUBMIT(cf,)

R« RU {{cy,t)}

: end procedure

N U W

8: Input: RL algorithm Alg; , benchmark metric f, time ¢, and space Cr.
9: Output: evaluated configurations with reward values
10: function EVAL RecEIvE(Alg;.f, Cr, t)
11: // Choose configurations from R to evaluate now
12: N «P1ckCoNF(R, t)
13: // Remove from pending requests
14: R« R\N
15: // Prepare evaluation plan
16: P «PLANCONF(N)
17: // Collect evaluation results by executing plan
18: E—0
19: for s € P.steps do
20: // Prepare evaluation of next configurations
21: CHANGECONFIG(s.hconf)
22: // Find (near-)optimal light parameter settings
23: cr «<RL.OpTimizE(Alg;, s.hconf, Cr.f)
24: // Take performance measurements on benchmark
25: b —EvALUATE(f, s.hconf, cr)
26: // Add performance result to set
27: E «— EU {{cr, s-hconf,b)}
28: end for
29: // Return evaluation results
30: return E

31: end function

The submission function (Procedure EVAL.SuBmIT) simply adds
one more tuple to set variable R.

Calling Function EVAL.RECEIVE triggers evaluation of a subset
of pending configurations. It is up to that function itself to choose,
within certain boundaries, the set of configurations to evaluate.
The function returns the results of those evaluations. As input,
Function EVAL RECEIVE obtains a configuration parameter Alg;,
specifying the algorithm to use for optimizing light parameters
(for fixed heavy parameter values). Also, it receives the benchmark
metric f, the space of light configurations Cr, and the current time
t as input. The latter is important to decide which configurations
must be evaluated in the current invocation.

As a first step (Line 12), Function EVAL.RECEIVE determines the
set of configurations to evaluate in the current invocation. If the
time t has reached the deadline of any pending configurations, those
configurations must be included in that set. For other configurations,
the evaluator can choose to evaluate them now or to postpone
evaluation. We describe the selection mechanisms in Section 4.2.
Having selected configurations to evaluate, the algorithm removes
those configurations from the pending set R.

Having selected a set of configurations, Algorithm 2 decides how
to evaluate them. Function PLANCONF selects a plan to evaluate
the given set of configurations. Evaluating configurations in the
right order can save significant overheads, compared to a random

3406

Algorithm 3 PickConF: Methods for picking configurations to
evaluate.

1: Input: Evaluation requests R, current timestamp ¢
2: Output: Set of configurations to evaluate

3: function PiIckCONF-THRESHOLD(R, t)

4 // Was size threshold reached?

5 if |[R| > p then
6 // Return all requests
7: return R
8 else

9 return 0
10: end if

11: end function

12: // Initialize maximal cost savings for each request
13: =0

14: Input: Evaluation requests R, current timestamp ¢
15: Output: Set of configurations to evaluate

16: function PIcCKCONF-SECRETARY(R, t)

17: // Add requests whose deadline is reached

18: E « {{cy,tp) €R|tp >t}

19: // Remove requests from pending set

20: R<—R\E

21: // Iterate over requests

22: forr = {cy,tp) € Rdo

23: // Calculate re-configuration cost savings
24: s «CoSTSAVINGS(r, E)

25: // Retrieve maximal savings so far

26: m «— S(r)

27: // Should we evaluate?

28: if t— (tp —6) = 5/e As > m then
29: E—EU{r}

30: end if

31: // Update maximally possible savings
32: S(r) « max(m,s)

33: end for

34: return E

35: end function

permutation. In particular, ordering them allows to amortize re-
configuration overheads (e.g., overheads for creating an index) over
the evaluation of multiple, similar configurations. The planner func-
tion (PLANCONF) exploits this fact and aims at minimizing cost. We
describe the planning mechanism in Section 4.3 in detail.

After selecting a plan, Algorithm 2 processes the plan steps in
order (loop from Line 19 to Line 28). For each plan step s, the system
first executes re-configuration actions required to evaluate specific
heavy parameter settings (Line 21). Then, it selects a (near-)optimal
setting of light parameters, specifically for the current configuration
of heavy parameters (Line 23). Here, we invoke a reinforcement
learning algorithm described via tuning parameters Alg; . We dis-
cuss learning algorithms to implement this step in Section 5. Finally,
Algorithm 2 benchmarks the current heavy and light parameter set-
ting (Line 25) and adds the result to the set (Line 27). All evaluation
results are ultimately returned to the invoking function (Line 30).

4.2 Picking Configurations to Evaluate

We present two strategies for selecting configurations to evaluate
(invoked in Line 12 of Algorithm 2 and represented as Component B

3407

in Figure 2). Algorithm 3 shows corresponding pseudo-code. The
two functions represented in Algorithm 3 (Function P1ckCONF-
THRESHOLD or PICKCONF-SECRETARY) implement the call in Line 12
of Algorithm 2. Next, we discuss the two strategies in more detail.

The first strategy, represented by Function P1ck CONF-THRESHOLD,
is relatively simple. We select all pending evaluation requests for
processing if their number has reached a threshold. This threshold is
represented as parameter p in the pseudo-code. Before reaching the
threshold, we simply collect evaluation requests without actually
processing them (i.e., the set of selected requests is empty). By eval-
uating requests in batches, we hope to amortize re-configuration
overheads via the planning mechanisms outlined in the next sub-
section. The threshold p is a tuning parameter. It is associated with
a tradeoff. Choosing p too small reduces chances for cost amorti-
zation. Choosing p too large means that we introduce significant
delays for the RL algorithm between a configuration is selected and
evaluated. Delaying feedback may increase time spent in exploring
uninteresting parts of the search space. Note that p must be smaller
or equal to the maximal delay, allowed by the RL algorithm. In our
experiments, we typically set p to 20. Empirically, we determined
this setting to work well for many scenarios.

Our second strategy, written as Function PICKCONF-SECRETARY,
is more sophisticated and often works better in practice. It is mo-
tivated by algorithms for solving the so called “Secretary Prob-
lem” [17]. This problem models a job interview for a single position,
in which a hiring decision must be made directly after each inter-
view. This decision is hard due to uncertainty with regards to the
quality of the remaining candidates. A popular algorithm for this
problem reviews a fraction of 1/e of candidates without hiring any.
Then, it selects the first candidate better than all previously seen
candidates (or the last candidate, if no such candidate emerges). It
can be shown that this strategy makes a near-optimal choice likely.
We use an adaption of this algorithm for our problem.

In our case, candidates correspond to evaluation times for a fixed
configuration. The re-configuration cost, required to test a specific
configuration, decreases if similar configurations were evaluated
before. E.g., we do not have to create an expensive index, part of
a configuration to evaluate, if that index was created before. So,
instead of immediately evaluating a configuration, we may want
to wait until similar configurations are requested. Of course, we
cannot know precisely which configurations will be submitted for
evaluation in the future. This is akin to the uncertainty about the
quality of future job candidates.

Algorithm 3 keeps track of possible cost savings for specific
configurations. Global variable S keeps track of maximal savings
in re-configuration costs for specific configurations, over different
invocations of PIcKCONF-SECRETARY. We compare current cost
savings to the maximum seen so far to decide when to evaluate. In-
tuitively, we want to evaluate configurations in invocations, during
which we can obtain particularly high cost savings.

Function PICKCONF-SECRETARY first selects all evaluation re-
quests whose evaluation deadline has been reached (Line 18). Then,
we iterate over the remaining requests. For each request, we cal-
culate re-configuration cost savings, assuming that we evaluate
it after the configurations selected for evaluation so far. Next, we
retrieve maximal cost savings observed for this configuration so
far (Line 26). We select the configuration for evaluation if we have

observed cost savings over a sufficiently large period (condition
t — (tp — 0) = 8/e where ¢ is the maximal delay and e Euler’s num-
ber) and if current savings exceed the previous optimum (condition
s > m).

4.3 Optimizing Evaluation Order

Given a set of configurations to evaluate, we re-order them to mini-
mize evaluation overheads (invoked in Line 16 of Algorithm 2 and
represented as Component C in Figure 2). The following example
illustrates the principle.

Example 4.1. We describe configurations by vectors in which
each vector component represents a parameter value. Assume
we have to evaluate configurations (1, 1, 16MB), (0,0, 12MB), and
(0,1, 16MB). Here, the first two components indicate whether two
specific indexes are created or not, the third component repre-
sents the (configurable) amount of working memory. Assume that
the latter parameter requires a server restart with a duration of
10 seconds to take effect. For simplicity, we assume that creating
an index takes 20 seconds while dropping one is free. Evaluating
the configurations in the given order creates (pure configuration
switching) overheads of 2 - 20 + 10 + 10 + 20 + 10 = 90 seconds
(assuming that no indexes are initially created and an initial setting
of 8MB for memory). If we evaluate them in the order (0,0, 12MB),
(0,1,16MB), and (1, 1, 16 MB) instead, those overheads reduce to
10 + 10 + 20 + 20 = 60 seconds. Relative savings tend to increase
with the size of configuration batches.

We introduce the associated optimization problem formally.

Definition 4.2. An instance of Reconfiguration Cost Mini-
mization is defined by a set R = {r;} of requested (heavy parame-
ter) configurations to evaluate and a cost function C : RX R — R*
that maps a pair ry, rp of requested configurations to the cost for
switching from r; to ry (e.g., by creating indexes that appear in ry
but not in 7). A solution is a permutation IT : N - R of configura-
tions, representing evaluation order with cost }; C(II(i), II(i + 1)).
An optimal evaluation order minimizes cost.

In the current implementation, we approximate C(r1, rz) by only
considering indexes that appear in ry but not r; and summing up
the cardinality of the indexed table over all added indexes. Next,
we analyze the computational complexity of this problem (called
“reconfiguration cost minimzation” in the following).

THEOREM 4.3. Reconfiguration cost minimization is NP-hard.

Proor. Consider an instance of the Hamiltonian graph problem.
This instance is described by a graph G, the goal is to construct a
path visiting each node once. We reduce to reconfiguration cost
minimization as follows. For each node i in G, we introduce one
evaluation request r;. For each pair of nodes i and j, connected
by an edge in G, we set the reconfiguration cost C(r;, rj) to zero,
otherwise to one. Assume we find an evaluation order with a recon-
figuration cost of zero. In this case, we obtain a Hamiltonian path
in the original problem instance (visiting nodes, associated with
requests, in the order in which requests are selected for evaluation).
As each request is evaluated once, the associated graph node is
visited once. As the reconfiguration cost is zero, all visited nodes
are connected by edges. O

3408

Algorithm 4 PLANCoNF: Order configurations for evaluation.

1: Input: Evaluation requests R
2: Output: Requests in suggested evaluation order
3: function PLANCONF-GREEDY(R)

4 // Initialize list of ordered requests

5: O« []

6: // terate over all requests

7: forr € Rdo

8: // Find optimal insertion point

9: i « argmin;eg o] CR(O[i—1],0[i]) +Cr(O[i],O[i+1]))
10: // Insert current request there
11: O.insert(i,r)
12: end for
13: return O

14: end function

Hence, we must choose between efficient optimization and guar-
anteed optimal results. In the following, we present a greedy and
an exhaustive algorithm to solve this problem.

Algorithm 4 generates evaluation orders via a simple, greedy
approach. The input is a set of evaluation requests (each one ref-
erencing a configuration to evaluate). Starting from an empty list,
we expand the evaluation order gradually, by adding one more
request in each iteration. We insert each request greedily at the
position where it leads to minimal reconfiguration overheads. We
measure re-configuration overheads via function Cg(cy, c2), mea-
suring reconfiguration overheads to move from configuration c¢;
to configuration cy. Those overheads include for instance index
creation overheads for indices that appear in ¢z but not in c¢;. After
identifying the position with minimum overheads, we expand the
order accordingly.

Next, we show how to transform the problem of ordering evalu-
ations into an integer linear program. After doing so, we can use
corresponding solvers to find an optimal solution quite efficiently.
Our decision variables are binary: we introduce variables e] to
indicate whether request r is evaluated at time ¢. We introduce
variables for each request r € R to evaluate and for |R| time steps.
We evaluate one configuration at each time step, represented by
constraints of the form ., e] = 1 (for each time step t). Also, we
must evaluate each configuration once which we represent by the
constraint 3, e} = 1 (for each request r)?. The objective function is
determined by reconfiguration costs. For each pair of configuration
requests r1 and rz, we can estimate reconfiguration cost Cr(ry,r2)
by comparing the associated configurations. We introduce binary
variables of the form i:l’rz , indicating whether reconfiguration costs
for moving from r; to rp is incurred at time ¢. We introduce those
variables for each pair of configurations and for each time step. The
objective function is given as 3, ,, ,, cr(r1,72) - i:l’rz (our goal is
to minimize this function). Lastly, we need to ensure that the value
assignments for variables i;"""? and e/ are consistent. Due to the ob-
jective function, variables i;l’rz will be set to zero if possible. Hence,
we only must constrain them to one if the context requires it. We do
so by introducing constraints of the form i;l’rz > (e:1 + e;il) /2 for
each pair of requests and for each time step. The optimal solution
to this linear program describes an optimal evaluation order.

2Strictly speaking, the last constraint is redundant as we evaluate exactly one configu-
ration in each times step.

5 REINFORCEMENT LEARNING

UDO uses RL algorithms from the family of Monte Carlo Tree
Search (MCTS) [13] methods. UDO can be instantiated with differ-
ent algorithms, for optimizing light and heavy parameters respec-
tively. Our implementation supports multiple algorithms as well.
We discuss some of them in the following.

Throughout the pseudo-code presented so far, we used three sub-
functions that relate to RL: RL.SELECT, RL.UPDATE, and RL.OPTIMIZE.
Those functions were used in Algorithm 1 and 2. The implemen-
tation of those functions depends on the RL algorithm used (as
indicated by the Alg parameter). The first function, RL.SELECT, se-
lects the next action to take, based on algorithm-specific statistics.
The second function, RL.UPDATE, updates those statistics based on
feedback. Function RL.OPTIMIZE is based on the latter two functions
and invokes them repeatedly for optimization.

Next, we show how to implement those functions for one specific
RL algorithm. This algorithm follows the Hierarchical Optimistic
Optimization (HOO) [9] framework, a generalized version of the
well-known UCT algorithm [22]. We extend that algorithm with a
mechanism for accepting delayed feedback. We call this algorithm
Delayed Hierarchical Optimistic Optimization (Delayed-HOO). This
is the algorithm used for our experiments for optimizing both, heavy
and light parameters (when optimizing light parameters, we set the
allowed delay to zero). While based closely on existing components
for action selection [6] and delayed feedback management [20], the
combination of those components is novel.

First, we discuss Function RL.SELECT. If the current state is an
end state, this function returns the state representing the default
configuration. Otherwise, we use the UCB-V selection policy [6],
adapted for delayed feedback. Given the state representing the
current configuration at time ¢, ¢y, we choose the action a; leading
to configuration c;41 that maximizes the upper confidence bound:

log(ve,) N 3blog(ovc,)

Uc

1

cr+1 2 argmax fic(t) +4/2.462(1)
c c

Here, vc, and v. are the number of visits to the parent configu-
ration ¢; and child configuration c respectively. The average re-
ward obtained till time ¢ after considering delay z, i.e. f.(¢) =
Zf:T f(ci—)1(ci—r = c). Similarly, 62(t) is the empirical variance
of reward for configuration c after considering the delay 7. As a
practical alternative to the aforementioned estimates, our imple-
mentation also supports another estimate of average and variance
of reward, following the RAVE (Rapid Action Value Estimation) [15]
approach. This approach shares reward statistics for the same ac-
tion, invoked in different states, thereby obtaining quality estimates
faster. It is known to work well for particularly large search spaces.

Function RL.UPDATE updates all of the aforementioned statistics,
based on reward values received. More precisely, we update the
number of visits to state-action pair (cy, a;), present state cy41, and
sample mean and variance of accumulated rewards (j(c;, a;) and
6% (ct, ar)). Algorithm 5 shows simplified pseudo-code for Func-
tion RL.OPTIMIZE. Given a start state and a search space, this func-
tion iterates until a timeout. In each iteration, it selects actions via
Function RL.SELECT (discussed before), evaluates the performance
impact on benchmark B, and updates statistics accordingly (using

3409

Algorithm 5 RL: Monte Carlo Tree Search optimization.

1: Input: Algorithm Alg, configuration space C, state ¢y, benchmark B
2: Output: Final parameter configuration
3: function RL.OrTiMIZE(Alg, C, ¢))

4: Initialize Stat «— 0

5: fort=0,...,Alg.Time do

6: (ct+1,ar) < RL.SELECT(Alg, C, ;)

7: Evaluate the new configuration r; <— B.EVALUATE(ct+1)
8: Update Stat « Stat U {{ct, ar,cs+1,7e, 1)}

9: RL.UppATE(Alg, Stat)
10: end for

return Final parameter configuration cr
12: end function

Function RL.UPDATE). It returns the most promising configuration
found until the timeout.

6 THEORETICAL ANALYSIS

We show, under moderately simplifying assumptions, that UDO
converges to optimal configurations. UDO uses an extension of
HOO algorithm, which provides this type of guarantee (Theorem
6, [9]). However, we decompose our search space (into a space for
heavy and one for light parameters) and delay evaluation feedback
(to amortize re-configuration costs). In this section, we sketch out
our reasoning for why those changes do not prevent convergence.
We provide proofs for the following theorems online.

In doing so, we use expected regret [7] as the metric of conver-
gence. Given a time horizon T, expected regret E[Regr] is the sum
of differences between the expected performance of the optimal
configuration and the configuration achieved by the algorithm at
any time step ¢ < T. If the expected regret of an algorithm grows
sublinearly with horizon T, it means the algorithm asymptotically
converges to optimal configuration as T — oo.

THEOREM 6.1 (REGRET oF HOO (THEOREM 6, [9])). If the perfor-
mance metric f is smooth around the optimal configuration (Assump-
tion 2 in [9]) and the upper confidence bounds on performances of all
the configurations at depth h create a partition shrinking at the rate
cph with p € (0,1) (Assumption 1 in [9]), expected regret of HOO is

E[Reg] = O (Tl—ﬁ (log T)ﬁ) @

for a horizon T > 1, and 4/c-near-optimality dimension* d of f.

Typically, configuration space C is a bounded subset of R and
performance metric f : C — [a,b] C R. Here, d is of the same
order as the number of parameters P. HOO uses UCB1 [7] rather
than UCB-V [6]. For brevity of analysis, we follow the same though
the proof technique is similar for any UCB-type (Upper Confidence
Bound) algorithm.

Shttps://www.cs.cornell.edu/database/supplementary_proofs.pdf

4 c-near-optimality dimension is the smallest d > 0, such that for all ¢ > 0, the maximal
number of disjoint balls of radius ce whose centres can be accommodated in X, is
O(?) (Def. 5 in [9]). Here, £-optimal configurations X, £ {x € C[f(x) = f* —¢}.
Near-optimality dimension encodes the growth in number of balls needed to pack this
set of e-optimal configurations as ¢ increases.

6.1 Regret of Delayed-HOO

Now, we prove that using delayed-UCB1 [20] instead of UCB1
allows us to propose delayed-HOO and also achieves similar con-
vergence properties.

THEOREM 6.2 (REGRET OF DELAYED-HOO). Under the same as-
sumptions as Thm. 6.1, the expected regret of delayed-HOQO is

B[Regr] = O ((1+0)T' "7 (log T) 7) 3)
for delay T > 0, horizon T, and 4/c-near-optimality dimension d of f.

The bound in Eq. (3) is the same as Eq. (2) with an additional
factor (1 + 7), which does not change the convergence in terms of
T. For delay 7 = 0, we retrieve the regret bound of original HOO.

The expected error in estimated expected performance (or re-
ward) of any given configuration at time Tisr(T) = E[f*—f(cr)] =
%E[RegT]A Thus, the expected error €(T) in estimating the ex-
pected performance (or reward) of a configuration using delayed-
HOO converges at the rate O ((1 +7) [log T/T] 1/(d+2)), where T

is the number of times the configuration is evaluated.

6.2 Regret of UDO
As we have obtained the error bound of the delayed-HOO algorithm,

now we can derive bounds for UDO when using delayed-HOO for
heavy and light parameters with two different delays.

THEOREM 6.3 (REGRET oF UDO). If we use the delayed-HOO as
the delayed-MCTS algorithm with delays T and 0, and time-horizons
Ty, and T; for heavy and light parameters respectively, the expected
regret of UDO is upper bounded by

E[Regr] =0 ((1 + T)T;‘ﬁ(Hooz(T,)logrh)ﬁ), ()

under the assumptions of Thm. 6.1. Here, HOO(T;) = O ([log Tl/Tl]ﬁ)‘

Deviation in expected performance of the configuration returned
1

by UDO from the optimum is O ((1 +7) [HOO(T) HOO(T;,) | 7)

Here, T, and T; are the number of steps allotted for the heavy and

light parameters respectively. Deviation in expected performance
of the configuration selected by UDO vanishes as T, T} — oo.

7 EXPERIMENT EVALUATION

We describe our experimental setup (Section 7.1), compare UDO
to baselines (Section 7.2) and variants (Section 7.3), and vary the
benchmark scenario (Section 7.4).

7.1 Experimental Setup

We consider two standard benchmarks, TPC-C (with 10 warehouses
and 32 concurrent requests) and TPC-H (with scaling factor one).
We maximize throughput for TPC-C and minimize latency for TPC-
H. We automatically tune two popular database management sys-
tems, MySQL (version 5.7.29) and Postgres (version 10.15), for max-
imal performance on those benchmarks. Our parameters include
indexing choices (we consider index candidates that are referenced
in queries), DBMS configuration parameters, as well as query order
in transaction templates (for TPC-C). For TPC-C, we sample config-
uration quality by running a mix of 4% STOCK_LEVEL, 4% DELIVERY,

3410

4% ORDER_STATUS, 43% PAYMENT and 45% NEW_ORDER transactions
for five seconds. Also, we reload a fixed TPC-C snapshot every
10 iterations of UDQO’s main loop. For TPC-H, we evaluate queries.
We consider 100 tuning parameters for MySQL and 105 parameters
for Postgres. The majority of parameters (71) relate to indexing
decisions, followed by 19 parameters related to reordering (each
parameter represents the position of a query within a transaction
template [35]), and, finally, parameters representing DBMS config-
uration parameters (10 parameters for MySQL and 15 for Postgres).
For TPC-H, we consider 109 parameters for MySQL and 114 param-
eters for Postgres (99 of them are related to indexes, the other ones
represent DBMS configuration parameters).

UDO itself is implemented in Python 3, using the OpenAI gym
framework. It uses Gurobi (version 9) for cost-based planning. We
compare UDO against several baselines that apply RL for universal
database optimization without specialized treatment for heavy pa-
rameters. Those baselines use out of the box learning algorithms,
SARSA [27] and Deep Deterministic Policy Gradient (DDPG) [24],
provided by the Keras-RL framework [2] for Open AI gym. Prior
work on database tuning via reinforcement learning [23, 38] has
applied the same framework but to more narrowly defined tuning
problems. We also consider a variant of the latter (using UDO’s
UCT algorithm without evaluation delays or configuration reorder-
ing) that exploits cached configurations. Here, we create database
copies for each new heavy parameter configuration encountered
and reuse previously created configurations, if available. Our cache
uses up to 100 such slots, except for experiments with TPC-H with
scaling factor ten where we reduce the number of slots to ten due
to higher storage consumption per slot. All baselines discussed so
far can optimize the same search space as UDO. In addition, we
compare against combinations of tools that are each targeted at
specific tuning problems such as index selection, configuration pa-
rameter tuning, or query reordering. Here, we compose solutions
proposed for sub-problems by different tools, considering MySQL-
Tuner [3], PGTuner [1], and the Gaussian Process and DDPG++
algorithms [32], as implemented in the OtterTune [12] tool, for sys-
tem parameter tuning, Quro for selecting query orders [35], and
Dexter [4] and EverSQL [5] for selecting indexes. When combin-
ing tools, we first optimize transaction code, then parameters, and
finally index selections.

Note that UDO uses no prior training data but optimizes from
scratch. Hence, we only consider baselines targeted at the same
scenario (i.e., no prior training data). Unless noted otherwise, we
set UDO’s delay 7 = 10 for the heavy parameter MDP and b = 3 in
UCB-V (Eq. (1)). We allow up to eight actions (i.e., tuning parameter
changes compared to the defaults) per episode for TPC-H and up
to 13 for TPC-C (four heavy parameter changes).

All of the following experiments were executed on a server with
two Intel Xeon Gold 5218 CPUs with 2.3 GHz (32 physical cores),
384 GB of RAM, and 1 TB of hard disk.

7.2 Comparison to Baselines

Next, we compare UDO against several baselines. Figure 3 reports
experimental results for the TPC-C benchmark. Figure 4 reports
results for TPC-H. For TPC-C, we report throughput (of the best
configuration found so far) as a function of optimization time. Note

—e— UDO =— Simplified UDO
—e— DDPG —+— SARSA
X QURO+Dexter+PGTuner QURO+EverSQL+PG/MS-Tuner
QURO+Dexter+DDPG++ —e— QURO+Dexter+OT GP
- —+-- RL with Cache

% 6000 2 2 15,000
g5 5,000 =/ pe=b | Z 14500
£ 4,000 | 4* 1 5
5 , % 14,000
£ 3000/ 1 2
P S R 13,500 &
= 0 1 2 3 4 © 0 1 2 3 4

Optimization time (h) Optimization time (h)

(a) TPC-C performance as a function of (b) TPC-C performance as a function of
optimization time in MySQL. optimization time in Postgres.

Figure 3: Comparing UDO to baselines on TPC-C.

—e— UDO m— Simplified UDO
—e— DDPG —+— SARSA
X Dexter+PGTuner EverSQL+PG/MS-Tuner
Dexter+OT DDPG++ —@— Dexter+OT GP

- = - RL with Cache

~ 70 & 20
z 68 g 18
'{5‘66 = 16
5 64 5§ 14
Z 62 7 12
[=a] [=a]

60 10

0 1 2 3 4 0 1 2 3 4

Optimization time (h) Optimization time (h)

(a) TPC-H performance as a function (b) TPC-H performance as a function

of optimization time in MySQL. of optimization time in Postgres.

Figure 4: Comparing UDO to baselines on TPC-H.

that non-iterative baselines are represented as a dot while itera-
tive baselines are represented as a curve. For TPC-H, we report
execution time (for TPC-H queries) with the best configuration
as a function of optimization time. We optimize for four hours
with all baselines. Within the search space defined by our tuning
parameters, UDO finds the best configurations for all four combi-
nations of systems and baselines. Generally, the approaches based
on reinforcement learning eventually find better solutions than
the non-iterative methods. Among them, UDO performs best, fol-
lowed in most cases by the combination of DDPG++ (for parameter
tuning) and Dexter (for index selection). Configuration caching
can sometimes improve over baselines without caches. It is how-
ever not as effective as parameter separation and evaluation order
optimization, as implemented by UDO.

Digging deeper, we analyzed how different RL algorithms spend
their time during optimization. Figure 5 shows total (right) and re-
configuration time (left) as a function of the number of episodes for
three RL algorithms. Figure 6 shows the corresponding numbers for
TPC-H. Clearly, UDO iterates faster as it reduces reconfiguration
time. For instance, for MySQL running TPC-C, UDO reduces recon-
figuration time by a factor of approximately three. This means UDO

3411

—e-UDO = DDPG e SARSA ‘

. T T
< 1,000 - o = 2000 i
/ g 7 M
g b 2 -
5 500 - - | = 1,000 - =
2 /r'/ £ Y
= 4
0 ! ! — (= ! | [—
200 400 600 200 400 600
Episode Episode

(a) Reconfiguration time of different RL
algorithms for MySQL on TPC-C.

(b) Total time of different RL
algorithms for MySQL on TPC-C.

Figure 5: Time spent per episode by different RL algorithms
when optimizing MySQL for TPC-C.
|~ UDO = DDPG e SARSA |

T T T T a . ‘Y—Y—Y—Y/T
= 10,000] e % 30,000 |- /./. '
é 5,000 - = :g 10,000 |- /./-”' .

S S S — L .
200400 600 800 200 400 600 800
Episode Episode

(a) Reconfiguration time of different RL (b) Total time of different RL algorithms
algorithms for Postgres on TPC-H. for Postgres on TPC-H.

Figure 6: Time spent per episode by different RL algorithms
when optimizing Postgres for TPC-H.
« T T

—— Delay=0
®m— Delay=5
—— Delay=10
—+— Delay=15
Delay=20

Throughput (tx/s

Optimization time (h)

Figure 7: Impact of delayed feedback on UDO performance
(MySQL on TPC-C).

16,000 [\ =
= = —e— Batch
T,E: 14,000 | = . || —™— Secretary
Q
& 12,000 |- = -
\ \ s
5 10 15

Delay (Episodes)

Figure 8: Impact of evaluation time selection on UDO per-
formance (MySQL on TPC-C).

performs significantly more iterations within the same amount of
optimization time, thereby finding promising configurations faster.

7.3 Comparison of UDO Variants

Delays. UDO delays the evaluation of configurations to amortize
reconfiguration costs. Of course, there is a trade-off. While delays

—o— Greedy —m— Integer Linear Programming ‘

= 15,000 = ol

] o N

£ 10,000 |- 1% 15000 *

w g \

g 5,000 |- - F

g g 14,000 - S —e

= 0|mn—88 o] L
5 10 15 5 10 15

Delay (Episodes) Delay (Episodes)

(a) Time spent in plan optimization. (b) Time spent in reconfiguration.

Figure 9: Impact of reconfiguration planning algorithm on
UDO performance (MySQL on TPC-C).

% 6,000 || —— 2-Level UDO
=5 AsEEs = = Level UDO
= finmm _
a :’:f n 1-Leve
< 3000 - || —@— 1-Level UDO D
g /
B 4,000 | L

0 2 4

Optimization time (h)

Figure 10: Impact of search space design and search strategy
on UDO performance (MySQL on TPC-C).

decrease reconfiguration costs, they may also increase convergence
time. Figure 7 evaluates UDO with different delay parameters (we
measure delay by the maximal number of episodes between request
and evaluation). Clearly, disabling delays (Delay=0) leads to slower
convergence. Using a delay of five to ten turns out to be the optimal
setting (ten is the default setting for our experiments).

Note that the results in Figure 7 relate to the quality of the
solution, not to the overheads of optimization. Typically, the rate of
improvements slows down as optimization progresses (this effect
appears for instance in Figures 3 and 4). Hence, even small gains in
throughput in Figure 7 likely translate into significant advantages
in terms of optimization time (i.e., optimization time required by
weaker approaches to close the gap).

Picking configurations. Delays are exploited by the evaluation man-
ager to optimize time and order of evaluations. We propose two
mechanisms to choose evaluation time. The first one, rather simple,
evaluates once the batch of pending evaluation requests reaches
a certain size. The second one is more sophisticated and tries to
optimize the context in which configurations are evaluated. We
compare both methods in Figure 8. Reporting reconfiguration time
on the y-axis, we find that “Secretary-selection” works best. The
gap between the two approaches increases with the delay (a higher
delay means more choices in terms of evaluation time).

Ordering configurations. The second decision made by the evalua-
tion manager relates to the order in which requests, selected for
evaluation in a given time slot, are processed. We describe two
approaches for request ordering in Section 4.3: a simple, greedy
algorithm and an approach based on integer linear programming.
Figure 9 compares the two approaches in terms of optimization
time (left) and in terms of reconfiguration time (right), i.e. the qual-
ity of the generated solution. Clearly, the integer programming

3412

—e— UDO m— Simplified UDO
—e— DDPG —+— SARSA
X Dexter+PGTuner EverSQL+PG/MS-Tuner
Dexter+OT DDPG++ —®— Dexter+OT GP
- -x- - RL with Cache

S 550 2 1,200

(5} (5}

£ 500 £ 600

o =}

g 40 2 300 |

g 400 g 150 4
0 2 4 6 8 0 2 4 6 8

Optimization time (h) Optimization time (h)

(a) TPC-H performance as a function (b) TPC-H performance as a function of
of optimization time in MySQL. optimization time in Postgres.

Figure 11: Comparing UDO to baselines on TPC-H for SF 10.

approach finds better solutions. The gap increases as the delay
(and the number of potential orderings) increases. However, this
advantage comes at a steep price. As shown on the left hand side,
optimization time increases exponentially and becomes prohibitive
for a delay of more than ten (which corresponds to around 100 re-
quests). For our implementation, we switch to the greedy algorithm
once delays become prohibitive.

1-level vs. 2-level MDP. Finally, we compare different representations
of the search space. Figure 10 shows corresponding results. Our
main version of UDO uses a two-level representation of the search
space (separating heavy and light parameter MDPs). In a first step,
we remove the separation between the two and apply the same
RL algorithm to the 1-Level UDO MDP, introduced in Section 2.
In a second step, we additionally delay feedback by evaluating
configurations only at the end of each episode. Clearly, both of those
changes degrade performance, compared to the original version.

7.4 Scenario Variants

Scaling up. We increase the scaling factor for TPC-H from one to ten.
Figure 11 reports results for all baselines. The relative tendencies are
similar to Figure 4. However, the spread of run times across different
methods is larger. The impact of tuning decisions on performance
grows with the data size. For Postgres, at the end of optimization,
UDO achieves a 25% improvement in run time over the second-best
baseline (136 versus 181 seconds).

Multi-criteria optimization. UDO can optimize composite perfor-
mance metrics. To demonstrate this feature, we optimize a weighted
sum between execution time and disk space consumed for indexes.
Figure 12 shows run time, space for indexes, and the weighted sum
(from left to right). We compare against DDPG and SARSA (config-
ured to optimize the same objective). Compared to the baselines,
UDO generates near-optimal solutions faster and ultimately finds
the best tradeoff between disk space and run time.

Index recommendation. UDO is designed to optimize diverse pa-
rameters. Nevertheless, we can use it for more narrow problem
variants. We evaluate UDO exclusively for index recommendation
in Figure 13 (using default settings for all database system parame-
ters). We add a new baseline that exploits the query optimizer’s cost

—+ UDO = DDPG s SARSA

=
N o E

. 1,500 g 4000/ 12 1,500
g 1,000 F g

N [+

's,,'_:a‘ (%-4 2,000* .lm’(?‘ 1’000
g 500 % vee

g 2 500
2, 1%
L1 1lg

024685 02468

Opt. time (h) Opt. time (h) Opt. time (h)

Figure 12: Optimizing weighted sum of run time and disk
space for TPC-H SF 10 on Postgres.

—e— UDO m— DDPG —e— SARSA
Cost Model X Dexter

— 1,200 — 500
£ 1100 g 400
g 1,000 |- ‘é 300
2 900 Z 200
3 U
=800 2100
0 2 4 1 2 3 4

Optimization time (h) Optimization time (h)

(a) TPC-H performance as a function of (b) TPC-H performance as a function
optimization time in MySQL. of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recom-
mendation (TPC-H SF 10).

’ — @ UDO —m Dexter+OT DDPG++ —@— Dexter+OT GP ‘

= 3003 5 250

[Q

£ 250 4 E 200 "ﬁ |

= B 1 = 150 F .

5 200 _ 5 fangl

% 150 |- —a % 100 - 2 o

[aa] | | | [=a) 50 | ! - .
5 10 15 20 0 2 4 6

#Templates for training Opt. time (h)

(a) Varying number of TPC-H query
templates used for training.

(b) Performance for dynamic
workload switching every full hour.

Figure 14: Performance for non-representative training sets
and changing workloads (TPC-H SF 10, Postgres).

model: we generate all index candidates and estimate execution
costs (via “explain” commands) if subsets of indexes are visible to the
optimizer. We consider all subsets of up to three index candidates
(the number of indexes selected by UDO in the final configuration).
While not particularly efficient (the query optimizers of Postgres
and MySQL do not directly support what-if analysis), this process
identifies the index set that works best according to the optimizer’s
cost model. UDO ultimately finds better solutions than the base-
lines. However, the margins are smaller, compared to Figure 11.
UDO works best for diverse tuning parameters.

3413

Generalization. To test generalization, we train UDO and base-
lines for eight hours on a subset of TPC-H query templates. We
show performance of the final configuration for all queries in Fig-
ure 14(a). Clearly, training with fewer queries degrades performance
on the entire workload. The generalization overheads of UDO are
comparable to baselines. E.g., for UDO, performance degrades by
about 40% when considering five instead of 20 templates during
training. It is around 70% for baselines based on Dexter.

Shifting workload. In Figure 14(b), we report results for a dynamic
workload. We switch back between TPC-H query templates with
odd numbers (i.e., Q1, Q3, etc.) and templates with even numbers
every hour. Figure 14(b) reports run time for the current half of
queries as a function of optimization time. For DDPG++ and OT GP,
we use indexes proposed by Dexter for each of the two workload
parts. As the indexes proposed by Dexter lead to one problematic
query running for more than one hour, we added one more index
from the final configuration generated by UDO for the baseline
(index on the “L_PARTKEY” column of the “Lineitem” table). The
presented results therefore correspond to upper bounds on perfor-
mance for all approaches except for UDO. We see spikes for all
baselines, whenever the workload changes. The magnitude of the
spikes decreases over time, showing that all approaches converge
to a configuration that compromises between the two workload
parts. Considering aggregate run times for both workload parts,
UDO still performs about 5% better than the nearest baseline.

8 RELATED WORK

Recently, there has been significant interest in using machine learn-
ing for database tuning [18, 25, 26, 31, 34]. Our work falls into the
same, broad category as it exploits RL. Prior work typically focuses
on specific tuning choices such as system configuration parame-
ters [23, 37, 38], index selection [28, 29], or data partitioning [19, 36].
We support a broad set of tuning choices via one unified approach.

Traditionally, tuning decisions in a database system are made
based on simplifying execution cost models. This often leads to
sub-optimal choices in practice [8, 16]. UDO does not use any simpli-
fying cost model. Instead, it exclusively uses feedback obtained via
trial runs to identify promising configurations. In that, it also differs
from a significant fraction of prior work using machine learning
for database tuning [21, 37]. Many corresponding approaches rely
on a-priori training data, obtained from representative workloads.
UDO assumes no prior training data and learns (near-)optimal con-
figurations from scratch. This makes optimization expensive (in
the order of hours for our experiments) but avoids generalization
errors and the need for training data. UDO will be demonstrated at
the upcoming SIGMOD’21 conference [33].

9 CONCLUSION

We presented a system, UDO, for optimizing various tuning param-
eters by a unified approach. Our experiments show that parameter
separation and delayed learning yield significant improvements.

ACKNOWLEDGMENTS

This research project is supported by NSF grant IIS-1910830 (“Regret-
Bounded Query Evaluation via Reinforcement Learning”).

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]

[15]

[16

[17]

[18

[19]

[20

[21

[22]

2020. https://github.com/jfcoz/postgresqltuner.

2020. https://github.com/keras-rl/keras-rl.

2020. https://github.com/major/MySQLTuner-perl.

2021. https://github.com/ankane/dexter.

2021. https://www.eversql.com/.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. 2007. Tuning Bandit
Algorithms in Stochastic Environments. In Algorithmic Learning Theory, Marcus
Hutter, Rocco A. Servedio, and Eiji Takimoto (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 150-165.

P Auer, N Cesa-bianchi, and P Fischer. 2002. Finite time analysis of the multiarmed
bandit problem. Machine Learning 47, 2-3 (2002), 235-256.

Renata Borovica, Ioannis Alagiannis, and Anastasia Ailamaki. 2012. Automated
physical designers: what you see is (not) what you get. In Proceedings of the Fifth
International Workshop on Testing Database Systems. 9:1—-9:6. https://doi.org/10.
1145/2304510.2304522

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. 2011. X-
Armed Bandits. Journal of Machine Learning Research 12,5 (2011).

Surajit Chaudhuri. 2004. Index selection for databases: A hardness study and a
principled heuristic solution. KDE 16, 11 (2004), 1313-1323. http://ieeexplore.
ieee.org/xpls/abs{_}all.jsp?arnumber=1339260

Surajit Chaudhuri, V Narasayya, and Ravi Ramamurty. 2009. Exact cardinality
query optimization for optimizer testing. In VLDB. 994-1005. https://doi.org/10.
14778/1687627.1687739

CMU Database Group. 2020. https://github.com/cmu-db/ottertune.
Pierre-Arnaud Coquelin and Rémi Munos. 2007. Bandit Algorithms
for Tree Search. Arxiv preprint ¢s0703062 23, March (2007), 67-74.
arXiv:0703062v1 [arXiv:cs] http://arxiv.org/abs/cs/0703062

Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. Al meets Al: Leveraging query executions to improve
index recommendations. In SIGMOD. 1241-1258. https://doi.org/10.1145/3299869.
3324957

Sylvain Gelly and David Silver. 2007. Combining online and offline knowledge in
UCT. Proceedings of the 24th international conference on Machine learning - ICML
’07 (2007), 273-280. https://doi.org/10.1145/1273496.1273531

Andrey Gubichev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015.
How good are query optimizers, really? PVLDB 9, 3 (2015), 204-215.

Theodore P. Hill. 2009. Knowing when to stop. American Scientist 97, 2 (2009),
126-133. https://doi.org/10.1511/2009.77.126

Benjamin Hilprecht, Carsten Binnig, and Uwe R6hm. 2019. Towards learning a
partitioning advisor with deep reinforcement learning. SIGMOD (2019). https:
//doi.org/10.1145/3329859.3329876 arXiv:arXiv:1904.01279v1

Benjamin Hilprecht, Carsten Binnig, and Uwe R6hm. 2020. Learning a Partition-
ing Advisor for Cloud Databases. Proceedings of the ACM SIGMOD International
Conference on Management of Data (2020), 143-157. https://doi.org/10.1145/
3318464.3389704

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvari. 2013. Online learning under
delayed feedback. 30th International Conference on Machine Learning, ICML 2013
PART 3 (2013), 2503-2511. https://doi.org/10.14288/1.0044651 arXiv:1306.0686
Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: estimating correlated joins with deep
learning. In CIDR. arXiv:1809.00677 http://arxiv.org/abs/1809.00677

Levente Kocsis and C Szepesvari. 2006. Bandit based monte-carlo planning. In
European Conf. on Machine Learning. 282-293. http://www.springerlink.com/

3414

[23

[24

[25

IS
S

[27

[28

[29

(30]

&
=

(32

(33]

[34

[36

[37

[38

index/D232253353517276.pdf

Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2018. QTune: A QueryAware
database tuning system with deep reinforcement learning. PVLDB 12, 12 (2018),
2118-2130. https://doi.org/10.14778/3352063.3352129

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control with deep
reinforcement learning. 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings (2016). arXiv:1509.02971

Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learning
for ML Enhanced Database Systems. In SIGMOD. 175-191. https://doi.org/10.
1145/3318464.3389768

Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2020. QuickSel: Quick
Selectivity Learning with Mixture Models. In SIGMOD. 1017-1033. https://doi.
org/10.1145/3318464.3389727 arXiv:1812.10568

Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using con-
nectionist systems. Vol. 37. University of Cambridge, Department of Engineering
Cambridge, UK.

Zahra Sadri, Le Gruenwald, and Eleazar Lead. 2020. DRLindex: Deep reinforce-
ment learning index advisor for a cluster database. ACM International Conference
Proceeding Series (2020). https://doi.org/10.1145/3410566.3410603

Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The case for
automatic database administration using deep reinforcement learning. arXiv

(2018), 1-9. arXiv:1801.05643
Immanuel Trummer. 2019. Exact cardinality query optimization with bounded

execution cost. In SIGMOD. 2-17.

Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan
Jo, and Joseph Antonakakis. 2019. SkinnerDB: regret-bounded query evaluation
via reinforcement learning. In SIGMOD. 1039-1050.

Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang,
Christian Bilien, and Andrew Pavlo. 2021. An inquiry into machine learning-
based automatic configuration tuning services on real-world database manage-
ment systems. Proceedings of the VLDB Endowment 14, 7 (2021), 1241-1253.
https://doi.org/10.14778/3450980.3450992

Junxiong Wang, Immanuel Trummer, and Debabrota Basu. 2021. Demonstrating
UDO: A Unified Approach for OptimizingTransaction Code, Physical Design,
and System Parameters via Reinforcement Learning. In SIGMOD.

Lucas Woltmann, Claudio Hartmann, Maik Thiele, and Dirk Habich. 2019. Cardi-
nality estimation with local deep learning models. In aiDM.

Cong Yan and Alvin Cheung. 2016. Leveraging Lock Contention to Improve
OLTP Application Performance. In VLDBY, Vol. 9. 444-455. https://doi.org/10.
14778/2876473.2876479

Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,
Umar Farooq Minhas, Per Ake Larson, Donald Kossmann, and Rajeev Acharya.
2020. Qd-tree: Learning data layouts for big data analytics. arXiv 2 (2020),
193-208.

Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao,
Siyuan Sheng, Andrew Pavlo, and Geoffrey J Gordon. 1910. A demonstration of
the OtterTune automatic database management system tuning service. VLDB 11,
12 (1910), 1910-1913.

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
end-to-end automatic cloud database tuning system using deep reinforcement
learning. In SIGMOD. 415-432. https://doi.org/10.1145/3299869.3300085

