
UDO: Universal Database Optimization
using Reinforcement Learning

Junxiong Wang
Cornell University
Ithaca, NY, USA

junxiong@cs.cornell.edu

Immanuel Trummer
Cornell University
Ithaca, NY, USA

itrummer@cornell.edu

Debabrota Basu
Scool, Inria Lille- Nord Europe

Lille, France
debabrota.basu@inria.fr

ABSTRACT
UDO is a versatile tool for o�ine tuning of database systems for
speci�c workloads. UDO can consider a variety of tuning choices,
reaching from picking transaction code variants over index selec-
tions up to database system parameter tuning. UDO uses reinforce-
ment learning to converge to near-optimal con�gurations, creating
and evaluating di�erent con�gurations via actual query executions
(instead of relying on simplifying cost models). To cater to di�erent
parameter types, UDO distinguishes heavy parameters (which are
expensive to change, e.g. physical design parameters) from light pa-
rameters. Speci�cally for optimizing heavy parameters, UDO uses
reinforcement learning algorithms that allow delaying the point
at which the reward feedback becomes available. This gives us the
freedom to optimize the point in time and the order in which dif-
ferent con�gurations are created and evaluated (by benchmarking
a workload sample). UDO uses a cost-based planner to minimize
recon�guration overheads. For instance, it aims to amortize the
creation of expensive data structures by consecutively evaluating
con�gurations using them. We evaluate UDO on Postgres as well
as MySQL and on TPC-H as well as TPC-C, optimizing a variety of
light and heavy parameters concurrently.

PVLDB Reference Format:
Junxiong Wang, Immanuel Trummer, and Debabrota Basu. UDO: Universal
Database Optimization using Reinforcement Learning. PVLDB, 14(13): 3402
- 3414, 2021.
doi:10.14778/3484224.3484236

1 INTRODUCTION
We introduce UDO, the Universal Database Optimizer. UDO is an
o�ine tuning tool that optimizes various kinds of tuning choices
(e.g., physical design decisions as well as settings for database sys-
tem con�guration parameters), given an example workload and a
tuning time limit. UDO does not rely on simplifying cost models to
assess the quality of tuning options. Also, it does not require any
kind of training data upfront. Instead, it relies only on feedback
obtained via sample runs, after creating a tuning con�guration to
evaluate. This makes the optimization process expensive but avoids
sub-optimal choices due to erroneous cost estimates, which are
otherwise common [8].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 13 ISSN 2150-8097.
doi:10.14778/3484224.3484236

Given the tradeo� realized by UDO (i.e., high-quality, high-
overhead optimization), we see two primary use cases. First, UDO
is useful in scenarios where a con�guration, obtained via expensive
optimization, can be used over extended periods. This is possible if
data and query workload properties do not change too frequently.
Also, UDO is useful as an analysis tool for other tuning approaches.
For instance, as UDO does not rely on cost or cardinality models, it
can be used to uncover weaknesses in other recommender tools that
are based on the latter. In this scenario, UDO adopts a similar role as
previously proposed methods for query optimizer testing [11, 30],
which generate guaranteed optimal plans via an expensive process
(but are speci�c to query plans, as opposed to other tuning choices).

UDO operates on various types of tuning parameters, which
are traditionally handled by separate tuning tools. For instance, in
our experiments, we consider optimization of transaction query
orders [35], index selections [10, 14], as well as database system
con�guration parameters [37, 38]. Considering various parameter
types together can be advantageous as optimal choices for one
parameter type may depend on settings for other parameters (e.g.,
we may disable sequential scans, a con�guration parameter, only
if speci�c indexes are created). Hereby, we use the generic term
Parameter for each tuning choice and the term Con�guration
for an assignment from parameters to values. UDO handles all
parameters by a uni�ed approach.

UDO explores the search space iteratively: selecting con�gura-
tions to try, creating them (e.g., creating index structures or setting
system parameters as speci�ed by the con�guration), and evaluat-
ing their performance on a workload sample. Evaluation is �exible
to incorporate multiple metrics such as throughput or latency. We
demonstrate optimization with both metrics on di�erent database
systems (Postgres and MySQL) and standard benchmarks (TPC-C
and TPC-H). UDO uses Reinforcement Learning (RL) to determine
which con�gurations to try next. Improvement in performance
measurements translate into reward values that guide an RL agent
during search towards actions, i.e. con�gurations, that maximize
the accumulated reward, i.e. the resulting performance.

RL has been used previously for optimizing database system
con�guration parameters [23, 38] in particular. The main novelty
of UDO lies in the fact that it broadens the scope of optimization
to a much larger class of parameters. This becomes particularly
challenging due to what we call Heavy Parameters (we distin-
guish them from Light Parameters in the following). For heavy
parameters, it is expensive to change the parameter value. For in-
stance, parameters that relate to index creations are expensive to
change. Creating an index, in particular a clustered index, may take
an amount of time that dominates query or transaction evaluation

3402

time for a small workload sample. Similarly, con�guration parame-
ters requiring a database server restart are relatively expensive to
change. As we show in our experiments, a naïve RL approach is
limited by costs of changing heavy parameters. This incurs high
costs per iteration and slows down convergence.

UDO avoids this pitfall by giving heavy parameters special treat-
ment. UDO separates heavy parameters from light ones and uses
di�erent reinforcement learning algorithms to optimize them. Speci�-
cally for heavy parameters, it uses an RL algorithm that can adjust
with delays until reward values for previous choices become avail-
able. We leverage such delayed feedbacks as follows. All con�gu-
rations selected by the RL algorithm are forwarded to a planning
component. The planning component decides, when and in which
order to create and to evaluate con�gurations. Depending on those
choices, we are able to amortize cost for changing heavy param-
eters over the evaluation of many similar con�gurations. E.g., it
allows us to create an expensive index once to evaluate multiple
similar con�gurations that all include the index. Alternating be-
tween con�gurations that use or do not use the index, requiring
multiple index creations and drops, is less e�cient.

Given settings for heavy parameters, we use RL again to �nd
optimal settings for light parameters. Of course, optimal settings
for light parameters depend on the values for heavy parameters.
UDO takes that into account and models the optimization of light
parameters for each heavy parameter setting as a separate Markov
Decision Process (MDP), to which an RL algorithm is applied to. In
contrast to heavy parameters, we use a no-delay RL algorithm to
converge faster to near-optimal settings for light parameters.

We propose a new Monte Carlo Tree Search (MCTS) variant,
called delayed-Hierarchical Optimistic Optimization (HOO), that
can be used for optimizing both, heavy and light parameters (with
and without delays). Using this approach, we show that UDO con-
verges to near-optimal con�gurations.

We demonstrate via experiments that the resulting system �nds
better con�gurations, compared to baselines, given the same amount
of optimization time. We consider multiple standard benchmarks
(TPC-H and TPC-C), multiple optimization metrics (throughput and
latency), as well as di�erent database management systems (Post-
gres and MySQL). In summary, our original, scienti�c contributions
are the following.

• We introduce an approach for optimizing various database
tuning decisions using reinforcement learning. This approach
is characterized by a factorisation of heavy and light param-
eters, the use of RL algorithms accepting delayed feedback,
and a planner component that reduces re-con�guration over-
heads by carefully planning evaluation orders.

• We experimentally demonstrate that UDO �nds better con-
�gurations than baselines, given the same amount of opti-
mization time. Our experiments cover various benchmarks
and metrics.

• We propose a new MCTS variant, delayed-HOO, that can
be used to optimize light and heavy parameters. We show
that UDO converges to near-optimal solutions, using that
approach, under moderately simplifying assumptions.

The remainder of this paper is organized as follows. First, in
Section 2, we introduce our formal problem model and terminology

used throughout the paper. Then, in Section 3, we give a high-level
overview of the UDO system.We analyze UDO formally in Section 6.
In Section 4, we describe mechanisms by which UDO evaluates
batches of con�gurations e�ciently. In Section 5, we introduce
UDO’s learning algorithms and analyze them formally in Section 6.
Then, in Section 7, we report results of our experimental evaluation.
We discuss related work in Section 8 before concluding the paper.

2 FORMAL MODEL
We introduce our problem model and associated terminology here.

De�nition 2.1. A Tuning Parameter represents an atomic deci-
sion, in�uencing performance of a database management system
for a speci�c workload. It is associated with a (discrete) Value Do-
main, representing admissible parameter values. It may be subject
to Constraints, restricting its values based on the values of other
tuning parameters.

We use the term “parameter” in a broad sense, encompassing
system con�guration parameter settings as well physical design
decisions. In the following, we give examples for tuning parameters.

Example 2.2. Considering a set of candidate indices for a given
database, we associate one tuning parameter with each candidate.
Such index-related parameters have a binary value domain, rep-
resenting whether the index is created or not. Equally, we can
introduce a tuning parameter to represent the random_page_cost
con�guration parameter of the Postgres system (together with a set
of values to consider). Finally, we may associate a query in a trans-
action template with a tuning parameter, representing the position
within the template at which it is evaluated (the set of admissible
positions is restricted via control �ow and data dependencies).

De�nition 2.3. Given �xed, ordered parameters, a Con�gura-
tion 2 is a vector, assigning a speci�c value to each parameter. The
Con�guration Space ⇠ is the set of all possible con�gurations.

Our goal is to �nd con�gurations that optimize a benchmark.

De�nition 2.4. A Benchmark Metric 5 maps a con�guration
2 2 ⇠ to a real-valued performance result (i.e., 5 : ⇠ 7! R), which
represents the performance of a con�guration according to a spe-
ci�c metric for a speci�c benchmark. Higher performance results
are preferable. We assume that 5 is stochastic (i.e., evaluating the
same con�guration twice may not yield exactly the same perfor-
mance).

Our de�nition of 5 is deliberately generic, covering di�erent
types of benchmarks and metrics. A few examples follow.

Example 2.5. In our experiments, we use the following two
benchmark metrics among others. We consider a benchmark metric
51 that maps con�gurations to the average throughput, measured
over a �xed time period, when processing TPC-C transactions gen-
erated randomly according to a �xed distribution. Also, we consider
a benchmark metric 52 that maps con�gurations to a weighted sum
between disk space 3 consumed (e.g., for created indexes) and run
time C of all TPC-H queries (i.e., 5 (2) = �3 � f · C where 2 is
a con�guration and f 2 R+ a user-de�ned scaling factor). Both
benchmark metrics are implemented as a script (a black box from
UDO’s perspective) that returns a numerical performance result.

3403

We present a system, UDO, that solves the following problem.

De�nition 2.6. An instance of Universal Database Optimiza-
tion is characterized by a benchmark metric 5 and a con�guration
space ⇠ . The goal is to �nd an optimal con�guration 2⇤, max-
imizing the stochastic benchmark metric 5 in expectation (i.e.,
2⇤ = argmax22⇠ E[5 (2)]). We denote the optimal expected per-
formance (that of 2⇤) as 5 ⇤.

For iterative approaches, the problem speci�cation may also
include a user-de�ned timeout for optimization. The quali�cation
“Universal” attest to the fact that our approach is broadly applicable,
in terms of parameter types, workloads, and performance metrics.
We map an UDO instance to multiple episodic Markov Decision
Processes, using the following de�nition, and solve UDO using RL.

De�nition 2.7. An Episodic Markov Decision Process (MDP)
is de�ned by a tuple hS,A,T ,R,S⇡ ,S⇢iwhereS is the state space,
A a set of actions, and T : S⇥A 7! S a transition function linking
state-action pairs to new states. R : S 7! R is a reward function
mapping states to a reward value. We consider deterministic tran-
sitions but stochastic rewards. Optimization models an agent that
performs steps. In each step, the agent selects an action, receives
a reward, and transitions to the next state, based on the selected
action. Optimization is divided into episodes. In each episode, the
agent starts in state S⇡ 2 S. The episode ends once it reaches
one of the end states S⇢ ✓ S. The goal is to �nd a policy (here: a
sequence of actions as we consider deterministic transitions) that
maximizes expected rewards per step.

We introduce two scenario-speci�c instances of this formalism,
associated with di�erent parameter types.

De�nition 2.8. We distinguish Heavy and Light Parameters,
based on the overheads associated with changing their values.
Heavy parameters have high recon�guration overheads, light pa-
rameters have negligible overheads. We denote by ⇠� the con�gu-
ration space for heavy parameters (i.e., a set of vectors representing
all possible heavy parameter settings). We denote by ⇠! the con�g-
uration space for light parameters. Hence, the entire con�guration
space⇠ can bewritten as⇠ = {2� �2! |2� 2 ⇠� , 2! 2 ⇠!} = ⇠�⇥⇠!
(assuming that heavy parameters are ordered before light parame-
ters and writing vector concatenation as �).

Currently, UDO considers all parameters representing physical
data structures such as indexes as heavy (as changing such parame-
ters means creating or dropping the associated data structure). Also,
UDO considers parameters as heavy that require a database server
restart to make value changes e�ective. The other parameters are
considered light.

De�nition 2.9. For the Heavy Parameter MDP, states corre-
spond to con�gurations for heavy parameters (i.e., S ✓ ⇠�) and
each action changes one heavy parameter to a new value (i.e., an
action is de�ned as a pair h?, Ei representing parameter ? and new
value E). The transition function maps a con�guration (i.e., state)
with a parameter value change (i.e., action) to a new con�guration,
re�ecting the changed value. The start state S⇡ 2 ⇠� represents
the default con�guration (i.e., no created indices and default values

h0, 0, ?ih1, 0, ?i h0, 1, ?i

h1, 0, 2"⌫i

h1, 0, 10"⌫i

h1, 0, 25"⌫i

h1, 0, 50"⌫i

h0, 1, 2"⌫i

h0, 1, 10"⌫i

h0, 1, 25"⌫i

h0, 1, 50"⌫i

Figure 1: Extract of heavy (top) and light (bottom) parameter
MDPs for a space with two heavy and one light parameter.
Optimal states for each MDP are marked up in red.

for all system parameters). All states reachable from the start state
with a given number of actions are end states (we typically use
a threshold of four actions). The reward function R is scenario-
speci�c and based on the benchmark metric 5 . The reward for
a state representing heavy parameter con�guration 2� is propor-
tional to argmax2! 2⇠!

5 (2� �2!), i.e. to the value of the benchmark
metric when combining 2� with the best possible con�guration 2!
for light parameters. We scale raw rewards by subtracting rewards
for the default con�guration (e.g., if 5 measures throughput for a
speci�c benchmark, UDO considers the throughput improvement
compared to default settings as reward function).

The de�nition above uses optimal con�gurations for light pa-
rameters, leading to the second MDP version.

De�nition 2.10. ALight ParameterMDPM! [2⌘] is introduced
for each heavy parameter con�guration 2⌘ (in practice, we limit
ourselves to con�gurations explored by UDO). Its states represent
con�gurations for light parameters, its actions represent value
changes for light parameters (analogue to the previous de�nition).
The start state represents default values for all light parameters
and end states are de�ned by a �xed number of light parameter
changes, compared to the default. The reward function R! [2�] is
de�ned as R! [2�] (2!) = 5 (2� � 2!) � 5⇡ where 5⇡ is performance
of the default con�guration.

As shown above, we model optimization for light parameters as a
family of MDPs, where eachMDP is associated with a speci�c heavy
parameter con�guration. Our problem model assumes that only the
reward function (i.e., performance) depends on heavy parameters.
It is possible to extend the de�nition above to cover cases where
admissible values for light parameters depend on currently chosen
heavy parameters. In that case, states, transitions, and actions must
be instantiated for speci�c heavy parameter settings as well. The
following example illustrates the interplay between heavy and light
parameter MDPs.

Example 2.11. Figure 1 illustrates part of a two-level MDP. In the
illustrated scenario, the con�guration space contains two heavy
parameters (e.g., index creation decisions) aswell as one light param-
eter (e.g., the maximal amount of main memory used per operator).
Rectangles represent states in the �gure and are annotated with
con�guration vectors (reporting parameter in the aforementioned
order). The upper part of the �gure illustrates the heavy parameter
MDP (note that the light parameter is not speci�ed). Solid lines
mark transitions due to actions changing the con�guration. Dashed

3404

Universal Database Optimizer

Benchmark Metric, Con�guration Space, Time Budget

Best Con�guration

RL for Heavy Parameters

Pick Con�gurations to Evaluate

Order Selected Con�gurations

RL for Light Parameters

Evaluate Con�guration

Con�guration for Heavy Parameters+Deadline

Con�gurations for Heavy Parameters (Set)

Con�gurations for Heavy Parameters (List)

Con�guration for All ParametersResult

(A)

(B)

(C)

(D)

(E)

Figure 2: Overview of UDO system (rectangles represent pro-
cessing steps, arrows represent data �ow).

lines mark mappings between heavy parameter states and the start
state of the associated light parameter MDP. As index-related pa-
rameters are binary, the heavy parameter MDP has four states
(out of which three are shown). In total, the �gure illustrates three
MDPs (the one for heavy parameters and light parameter MDPs
for two heavy con�gurations). Optimal states are marked up in red,
showing that the optimal settings for light parameters may depend
on the heavy parameter settings. Identifying optimal settings for
heavy parameters requires obtaining optimal, associated settings
for light parameters �rst.

3 SYSTEM OVERVIEW
Figure 2 shows an overview of UDO and the interplay between
its components. The input to UDO is a benchmark metric to opti-
mize, a con�guration space, and an optimization time budget. The
con�guration space is speci�ed as a set of index candidates to con-
sider, a set of database system parameters with alternative values
to try, and (optionally) a set of alternative versions for each query
or transaction template. UDO considers index parameters as heavy
and the others as light. The output is the best con�guration found
until the time limit.

UDO iterates until the time limit is reached1. In each iteration,
UDO �rst chooses a con�guration of heavy parameters to explore
(Component A). UDO uses reinforcement learning for this decision,
balancing the need for exploration (analyzing con�gurations about
which little information is available) and exploitation (re�ning con-
�gurations that seem to well) in a principled manner. Evaluating a
new con�guration for heavy parameters can however be expensive.
It involves changing the current database con�guration to the one
to evaluate, e.g. by creating indexes. Doing so becomes cheaper
if the current con�guration is close to the one to evaluate. Hence,
1Instead of a �xed optimization time budget, we could use other termination criteria
as well. For instance, the algorithm could terminate once a given number of iterations
does not yield improvements above a con�gurable threshold.

UDO tries to optimize the point in time at which heavy parameter
con�gurations are evaluated. UDO uses a specialized reinforcement
learning algorithm that does not expect evaluation results immedi-
ately after selecting a con�guration. Instead, it allows for a certain
delay (measured as the number of iterations between selection and
evaluation result). Selected con�gurations for heavy parameters
are added to a bu�er, associated with a deadline until which the
result must become available. Note that the learning algorithm
does not consider the current database state for deciding which
con�guration to explore (doing so may prevent UDO from �nding
promising con�gurations that are far from the current one). Instead,
it merely creates opportunities for cost reductions by other system
components.

In each iteration, UDO selects a set of heavy parameter con�gu-
rations to evaluate from the aforementioned bu�er (Component B).
Con�gurations are selected if either their deadline has been reached
(in this case, there is no choice) or if their evaluation is cheaper
than usual (e.g., because they share indexes with con�gurations
that must be evaluated). Selected con�gurations are ordered for
evaluation (Component C). The goal of evaluation is to reduce re-
con�guration cost by placing similar con�gurations consecutively.
For instance, if con�gurations with similar indexes are evaluated
consecutively, some index creation cost can be amortized.

Next, UDO selects values for light parameters (Component D).
The best con�guration for light parameters may depend on the
heavy parameter con�guration. For instance, we may want to en-
able or disable speci�c join algorithms (by setting parameters such
as enable_nestloop for Postgres), depending on which indexes are
available. For speci�c con�gurations of heavy parameters, UDO
learns suitable settings for light parameters via reinforcement learn-
ing. Here, recon�guration is cheap. Hence, UDO uses a standard
reinforcement learning algorithm without delays. Light parameters
are optimized for the current heavy con�guration for a �xed num-
ber of iterations of the latter learning algorithm. Note that statistics
for light parameters are saved and will be used as starting point if
the same heavy con�guration is selected again. A fully speci�ed
con�guration (i.e., for light and heavy parameters) is evaluated
via the benchmark metric. This involves executing a script that
executes a sample workload and returns the performance metric to
optimize. The evaluation results are used to update the statistics of
the two learning algorithms (Components D and A).

Algorithm 1 describes the main loop, executed by UDO, in more
formal detail. Beyond benchmark metric and con�guration space,
it obtains two parameters specifying hyper-parameters for the two
reinforcement learning algorithms used. These include optimization
time as well as other parameters (e.g., the maximal amount of
allowed delay) whose impact we analyze in Section 7. Users only
need to specify optimization time while defaults are available for
the other algorithm parameters (hence, Figure 2 only references
the former parameter).

Algorithm 1 �rst classi�es parameters as heavy or light (Line 5).
We use a simple heuristic and classify parameters requiring index
creations or database server restarts as heavy, the other ones as
light. Next, Algorithm 1 iterates until optimization time runs out. It
selects interesting heavy parameter con�gurations to evaluate via
reinforcement learning (Line 9). It submits requests for evaluation,
setting a deadline until which the result must be available (Line 11).

3405

Algorithm 1 UDO main function.
1: Input: Benchmark metric 5 , con�guration space ⇠ , RL algorithms

Alg� and Alg! for heavy and light parameter optimization
2: Output: a suggested con�guration for best performance
3: function UDO(5 ,⇠,Alg� ,Alg!)
4: // Divide into heavy (⇠�) and light (⇠!) parameters
5: h⇠� ,⇠! i SSA.S����P���������(⇠)
6: // Until optimization time runs out
7: for C 1, . . . ,Alg� .)8<4 do
8: // Select next heavy parameter con�guration
9: 2� ,C RL.S�����(Alg� ,⇠� , 2� ,C�1)
10: // Submit con�guration for evaluation
11: EVAL.S�����(2� ,C , C + Alg� .<0G⇡4;0~)
12: // Receive newly evaluated light con�gurations
13: ⇢ EVAL.R������(Alg!,5 ,⇠!, C)
14: // Update statistics for heavy parameters
15: RL.U�����(Alg� ,⇢)
16: end for
17: return best obtained con�guration
18: end function

It receives evaluation results for previously submitted requests
(potentially, but not necessarily, including the one submitted in the
current iteration). The results are used to update the statistics for
learning (Line 15). Finally, the best con�guration is returned.

We discuss the sub-functions related to evaluating con�gurations
(Functions EVAL.S����� and EVAL.R������) in Section 4. In Sec-
tion 5, we discuss the learning algorithms used (FunctionsRL.S�����
and RL.U�����).

4 EVALUATING CONFIGURATIONS
We discuss how con�gurations are selected and ordered for evalu-
ation. In Section 4.1, we describe the implementation of the eval-
uation functions invoked by Algorithm 1. In Section 4.2, we de-
scribe how con�gurations to evaluate are selected (Component B
in Figure 2). In Section 4.3, we discuss the method used to order
con�gurations to evaluate for minimal cost.

4.1 Evaluation Overview
The evaluation interface o�ers two functions, represented in Al-
gorithm 2 (and used in Algorithm 1). First, it accepts evaluation
requests (EVAL.S�����), allowing to submit con�gurations for
evaluation, together with an evaluation deadline. Second, it allows
triggering evaluations via the EVAL.R������ function. Algorithm 2
maintains a global variable ' (whose state persists across di�erent
calls to the two interface functions). This variable contains pending
requests for evaluating speci�c con�gurations. Each con�guration
to evaluate is only partially speci�ed (i.e., it assigns values to a sub-
set of con�guration parameters). More precisely, con�gurations to
evaluate only contain speci�c values for heavy parameters. During
evaluation, we learn suitable values for light parameters to accu-
rately assess the potential of the heavy parameter settings. Items
in ' correspond to tuples, combining a heavy parameter con�gura-
tions with an evaluation deadline. This deadline speci�es the latest
possible time (measured as the number of main loop iterations, as
per Algorithm 1) at which evaluation results must be generated.

Algorithm 2 EVAL: Functions for evaluating con�gurations.
1: // Global variable representing evaluation requests
2: ' ;
3: Input: heavy con�guration 2� to evaluate and time C
4: E�ect: adds new evaluation request
5: procedure EVAL.S�����(2� , C)
6: ' ' [{ h2� , C i }
7: end procedure

8: Input: RL algorithm Alg! , benchmark metric 5 , time C , and space⇠!

9: Output: evaluated con�gurations with reward values
10: function EVAL.R������(Alg!,5 ,⇠!, C)
11: // Choose con�gurations from ' to evaluate now
12: # P���C���(', C)
13: // Remove from pending requests
14: ' ' \ #
15: // Prepare evaluation plan
16: % P���C���(#)
17: // Collect evaluation results by executing plan
18: ⇢ ;
19: for B 2 % .BC4?B do
20: // Prepare evaluation of next con�gurations
21: C�����C�����(B .⌘2>=5)
22: // Find (near-)optimal light parameter settings
23: 2! RL.O�������(Alg!, B .⌘2>=5 ,⇠!,5)
24: // Take performance measurements on benchmark
25: 1 E�������(5 , B .⌘2>=5 , 2!)
26: // Add performance result to set
27: ⇢ ⇢ [{ h2!, B .⌘2>=5 ,1 i }
28: end for
29: // Return evaluation results
30: return ⇢
31: end function

The submission function (Procedure EVAL.S�����) simply adds
one more tuple to set variable '.

Calling Function EVAL.R������ triggers evaluation of a subset
of pending con�gurations. It is up to that function itself to choose,
within certain boundaries, the set of con�gurations to evaluate.
The function returns the results of those evaluations. As input,
Function EVAL.R������ obtains a con�guration parameter Alg! ,
specifying the algorithm to use for optimizing light parameters
(for �xed heavy parameter values). Also, it receives the benchmark
metric 5 , the space of light con�gurations ⇠! , and the current time
C as input. The latter is important to decide which con�gurations
must be evaluated in the current invocation.

As a �rst step (Line 12), Function EVAL.R������ determines the
set of con�gurations to evaluate in the current invocation. If the
time C has reached the deadline of any pending con�gurations, those
con�gurationsmust be included in that set. For other con�gurations,
the evaluator can choose to evaluate them now or to postpone
evaluation. We describe the selection mechanisms in Section 4.2.
Having selected con�gurations to evaluate, the algorithm removes
those con�gurations from the pending set '.

Having selected a set of con�gurations, Algorithm 2 decides how
to evaluate them. Function P���C��� selects a plan to evaluate
the given set of con�gurations. Evaluating con�gurations in the
right order can save signi�cant overheads, compared to a random

3406

Algorithm 3 P���C���: Methods for picking con�gurations to
evaluate.
1: Input: Evaluation requests ', current timestamp C
2: Output: Set of con�gurations to evaluate
3: function P���C����T��������(', C)
4: // Was size threshold reached?
5: if |' | � d then
6: // Return all requests
7: return '
8: else
9: return ;
10: end if
11: end function

12: // Initialize maximal cost savings for each request
13: (= ;
14: Input: Evaluation requests ', current timestamp C
15: Output: Set of con�gurations to evaluate
16: function P���C����S��������(', C)
17: // Add requests whose deadline is reached
18: ⇢ { h2� , C⇡ i 2 ' |C⇡ � C }
19: // Remove requests from pending set
20: ' ' \ ⇢
21: // Iterate over requests
22: for A = h2� , C⇡ i 2 ' do
23: // Calculate re-con�guration cost savings
24: B C���S������(A ,⇢)
25: // Retrieve maximal savings so far
26: < ((A)
27: // Should we evaluate?
28: if C � (C⇡ � X) � X/4 ^ B >< then
29: ⇢ ⇢ [{A }
30: end if
31: // Update maximally possible savings
32: ((A) max(<, B)
33: end for
34: return ⇢
35: end function

permutation. In particular, ordering them allows to amortize re-
con�guration overheads (e.g., overheads for creating an index) over
the evaluation of multiple, similar con�gurations. The planner func-
tion (P���C���) exploits this fact and aims at minimizing cost. We
describe the planning mechanism in Section 4.3 in detail.

After selecting a plan, Algorithm 2 processes the plan steps in
order (loop from Line 19 to Line 28). For each plan step B , the system
�rst executes re-con�guration actions required to evaluate speci�c
heavy parameter settings (Line 21). Then, it selects a (near-)optimal
setting of light parameters, speci�cally for the current con�guration
of heavy parameters (Line 23). Here, we invoke a reinforcement
learning algorithm described via tuning parameters Alg! . We dis-
cuss learning algorithms to implement this step in Section 5. Finally,
Algorithm 2 benchmarks the current heavy and light parameter set-
ting (Line 25) and adds the result to the set (Line 27). All evaluation
results are ultimately returned to the invoking function (Line 30).

4.2 Picking Con�gurations to Evaluate
We present two strategies for selecting con�gurations to evaluate
(invoked in Line 12 of Algorithm 2 and represented as Component B

in Figure 2). Algorithm 3 shows corresponding pseudo-code. The
two functions represented in Algorithm 3 (Function P���C����
T�������� or P���C����S��������) implement the call in Line 12
of Algorithm 2. Next, we discuss the two strategies in more detail.

The �rst strategy, represented by Function P���C����T��������,
is relatively simple. We select all pending evaluation requests for
processing if their number has reached a threshold. This threshold is
represented as parameter d in the pseudo-code. Before reaching the
threshold, we simply collect evaluation requests without actually
processing them (i.e., the set of selected requests is empty). By eval-
uating requests in batches, we hope to amortize re-con�guration
overheads via the planning mechanisms outlined in the next sub-
section. The threshold d is a tuning parameter. It is associated with
a tradeo�. Choosing d too small reduces chances for cost amorti-
zation. Choosing d too large means that we introduce signi�cant
delays for the RL algorithm between a con�guration is selected and
evaluated. Delaying feedback may increase time spent in exploring
uninteresting parts of the search space. Note that d must be smaller
or equal to the maximal delay, allowed by the RL algorithm. In our
experiments, we typically set d to 20. Empirically, we determined
this setting to work well for many scenarios.

Our second strategy, written as Function P���C����S��������,
is more sophisticated and often works better in practice. It is mo-
tivated by algorithms for solving the so called “Secretary Prob-
lem” [17]. This problem models a job interview for a single position,
in which a hiring decision must be made directly after each inter-
view. This decision is hard due to uncertainty with regards to the
quality of the remaining candidates. A popular algorithm for this
problem reviews a fraction of 1/4 of candidates without hiring any.
Then, it selects the �rst candidate better than all previously seen
candidates (or the last candidate, if no such candidate emerges). It
can be shown that this strategy makes a near-optimal choice likely.
We use an adaption of this algorithm for our problem.

In our case, candidates correspond to evaluation times for a �xed
con�guration. The re-con�guration cost, required to test a speci�c
con�guration, decreases if similar con�gurations were evaluated
before. E.g., we do not have to create an expensive index, part of
a con�guration to evaluate, if that index was created before. So,
instead of immediately evaluating a con�guration, we may want
to wait until similar con�gurations are requested. Of course, we
cannot know precisely which con�gurations will be submitted for
evaluation in the future. This is akin to the uncertainty about the
quality of future job candidates.

Algorithm 3 keeps track of possible cost savings for speci�c
con�gurations. Global variable (keeps track of maximal savings
in re-con�guration costs for speci�c con�gurations, over di�erent
invocations of P���C����S��������. We compare current cost
savings to the maximum seen so far to decide when to evaluate. In-
tuitively, we want to evaluate con�gurations in invocations, during
which we can obtain particularly high cost savings.

Function P���C����S�������� �rst selects all evaluation re-
quests whose evaluation deadline has been reached (Line 18). Then,
we iterate over the remaining requests. For each request, we cal-
culate re-con�guration cost savings, assuming that we evaluate
it after the con�gurations selected for evaluation so far. Next, we
retrieve maximal cost savings observed for this con�guration so
far (Line 26). We select the con�guration for evaluation if we have

3407

observed cost savings over a su�ciently large period (condition
C � (C⇡ � X) � X/4 where X is the maximal delay and 4 Euler’s num-
ber) and if current savings exceed the previous optimum (condition
B > <).

4.3 Optimizing Evaluation Order
Given a set of con�gurations to evaluate, we re-order them to mini-
mize evaluation overheads (invoked in Line 16 of Algorithm 2 and
represented as Component C in Figure 2). The following example
illustrates the principle.

Example 4.1. We describe con�gurations by vectors in which
each vector component represents a parameter value. Assume
we have to evaluate con�gurations (1, 1, 16"⌫), (0, 0, 12"⌫), and
(0, 1, 16"⌫). Here, the �rst two components indicate whether two
speci�c indexes are created or not, the third component repre-
sents the (con�gurable) amount of working memory. Assume that
the latter parameter requires a server restart with a duration of
10 seconds to take e�ect. For simplicity, we assume that creating
an index takes 20 seconds while dropping one is free. Evaluating
the con�gurations in the given order creates (pure con�guration
switching) overheads of 2 · 20 + 10 + 10 + 20 + 10 = 90 seconds
(assuming that no indexes are initially created and an initial setting
of 8"⌫ for memory). If we evaluate them in the order (0, 0, 12"⌫),
(0, 1, 16"⌫), and (1, 1, 16"⌫) instead, those overheads reduce to
10 + 10 + 20 + 20 = 60 seconds. Relative savings tend to increase
with the size of con�guration batches.

We introduce the associated optimization problem formally.

De�nition 4.2. An instance of Recon�guration Cost Mini-
mization is de�ned by a set ' = {A8 } of requested (heavy parame-
ter) con�gurations to evaluate and a cost function C : ' ⇥ ' 7! R+

that maps a pair A1, A2 of requested con�gurations to the cost for
switching from A1 to A2 (e.g., by creating indexes that appear in A2
but not in A1). A solution is a permutation ⇧ : N 7! ' of con�gura-
tions, representing evaluation order with cost

Õ
8 C(⇧(8),⇧(8 + 1)).

An optimal evaluation order minimizes cost.

In the current implementation, we approximate C(A1, A2) by only
considering indexes that appear in A2 but not A1 and summing up
the cardinality of the indexed table over all added indexes. Next,
we analyze the computational complexity of this problem (called
“recon�guration cost minimzation” in the following).

T������ 4.3. Recon�guration cost minimization is NP-hard.

P����. Consider an instance of the Hamiltonian graph problem.
This instance is described by a graph ⌧ , the goal is to construct a
path visiting each node once. We reduce to recon�guration cost
minimization as follows. For each node 8 in ⌧ , we introduce one
evaluation request A8 . For each pair of nodes 8 and 9 , connected
by an edge in ⌧ , we set the recon�guration cost C(A8 , A 9) to zero,
otherwise to one. Assume we �nd an evaluation order with a recon-
�guration cost of zero. In this case, we obtain a Hamiltonian path
in the original problem instance (visiting nodes, associated with
requests, in the order in which requests are selected for evaluation).
As each request is evaluated once, the associated graph node is
visited once. As the recon�guration cost is zero, all visited nodes
are connected by edges. ⇤

Algorithm 4 P���C���: Order con�gurations for evaluation.
1: Input: Evaluation requests '
2: Output: Requests in suggested evaluation order
3: function P���C����G�����(')
4: // Initialize list of ordered requests
5: $ []
6: // Iterate over all requests
7: for A 2 ' do
8: // Find optimal insertion point
9: 8 argmin820,...,|$ |⇠' ($ [8 �1],$ [8]) +⇠' ($ [8],$ [8 +1]))
10: // Insert current request there
11: $.8=B4AC (8, A)
12: end for
13: return$
14: end function

Hence, we must choose between e�cient optimization and guar-
anteed optimal results. In the following, we present a greedy and
an exhaustive algorithm to solve this problem.

Algorithm 4 generates evaluation orders via a simple, greedy
approach. The input is a set of evaluation requests (each one ref-
erencing a con�guration to evaluate). Starting from an empty list,
we expand the evaluation order gradually, by adding one more
request in each iteration. We insert each request greedily at the
position where it leads to minimal recon�guration overheads. We
measure re-con�guration overheads via function ⇠' (21, 22), mea-
suring recon�guration overheads to move from con�guration 21
to con�guration 22. Those overheads include for instance index
creation overheads for indices that appear in 22 but not in 21. After
identifying the position with minimum overheads, we expand the
order accordingly.

Next, we show how to transform the problem of ordering evalu-
ations into an integer linear program. After doing so, we can use
corresponding solvers to �nd an optimal solution quite e�ciently.
Our decision variables are binary: we introduce variables 4AC to
indicate whether request A is evaluated at time C . We introduce
variables for each request A 2 ' to evaluate and for |' | time steps.
We evaluate one con�guration at each time step, represented by
constraints of the form

Õ
A 4

A
C = 1 (for each time step C). Also, we

must evaluate each con�guration once which we represent by the
constraint

Õ
C 4

A
C = 1 (for each request A)2. The objective function is

determined by recon�guration costs. For each pair of con�guration
requests A1 and A2, we can estimate recon�guration cost ⇠' (A1, A2)
by comparing the associated con�gurations. We introduce binary
variables of the form 8A1,A2C , indicating whether recon�guration costs
for moving from A1 to A2 is incurred at time C . We introduce those
variables for each pair of con�gurations and for each time step. The
objective function is given as

Õ
C ,A1,A2 2' (A1, A2) · 8

A1,A2
C (our goal is

to minimize this function). Lastly, we need to ensure that the value
assignments for variables 8A1,A2C and 4AC are consistent. Due to the ob-
jective function, variables 8A1,A2C will be set to zero if possible. Hence,
we only must constrain them to one if the context requires it. We do
so by introducing constraints of the form 8A1,A2C � (4A1C + 4A2C+1)/2 for
each pair of requests and for each time step. The optimal solution
to this linear program describes an optimal evaluation order.
2Strictly speaking, the last constraint is redundant as we evaluate exactly one con�gu-
ration in each times step.

3408

5 REINFORCEMENT LEARNING
UDO uses RL algorithms from the family of Monte Carlo Tree
Search (MCTS) [13] methods. UDO can be instantiated with di�er-
ent algorithms, for optimizing light and heavy parameters respec-
tively. Our implementation supports multiple algorithms as well.
We discuss some of them in the following.

Throughout the pseudo-code presented so far, we used three sub-
functions that relate to RL: RL.S�����, RL.U�����, and RL.O�������.
Those functions were used in Algorithm 1 and 2. The implemen-
tation of those functions depends on the RL algorithm used (as
indicated by the Alg parameter). The �rst function, RL.S�����, se-
lects the next action to take, based on algorithm-speci�c statistics.
The second function, RL.U�����, updates those statistics based on
feedback. Function RL.O������� is based on the latter two functions
and invokes them repeatedly for optimization.

Next, we show how to implement those functions for one speci�c
RL algorithm. This algorithm follows the Hierarchical Optimistic
Optimization (HOO) [9] framework, a generalized version of the
well-known UCT algorithm [22]. We extend that algorithm with a
mechanism for accepting delayed feedback. We call this algorithm
Delayed Hierarchical Optimistic Optimization (Delayed-HOO). This
is the algorithm used for our experiments for optimizing both, heavy
and light parameters (when optimizing light parameters, we set the
allowed delay to zero). While based closely on existing components
for action selection [6] and delayed feedback management [20], the
combination of those components is novel.

First, we discuss Function RL.S�����. If the current state is an
end state, this function returns the state representing the default
con�guration. Otherwise, we use the UCB-V selection policy [6],
adapted for delayed feedback. Given the state representing the
current con�guration at time C , 2C , we choose the action 0C leading
to con�guration 2C+1 that maximizes the upper con�dence bound:

2C+1 , argmax
2

ˆ̀2 (C) +
s
2.4f̂22 (C)

log(E2C)
E2

+ 31 log(E2C)
E2

, (1)

Here, E2C and E2 are the number of visits to the parent con�gu-
ration 2C and child con�guration 2 respectively. The average re-
ward obtained till time C after considering delay g , i.e. ˆ̀2 (C) =ÕC

8=g 5 (28�g) (28�g = 2). Similarly, f̂22 (C) is the empirical variance
of reward for con�guration 2 after considering the delay g . As a
practical alternative to the aforementioned estimates, our imple-
mentation also supports another estimate of average and variance
of reward, following the RAVE (Rapid Action Value Estimation) [15]
approach. This approach shares reward statistics for the same ac-
tion, invoked in di�erent states, thereby obtaining quality estimates
faster. It is known to work well for particularly large search spaces.

Function RL.U����� updates all of the aforementioned statistics,
based on reward values received. More precisely, we update the
number of visits to state-action pair (2C ,0C), present state 2C+1, and
sample mean and variance of accumulated rewards (ˆ̀(2C ,0C) and
f̂2 (2C ,0C)). Algorithm 5 shows simpli�ed pseudo-code for Func-
tion RL.O�������. Given a start state and a search space, this func-
tion iterates until a timeout. In each iteration, it selects actions via
Function RL.S����� (discussed before), evaluates the performance
impact on benchmark ⌫, and updates statistics accordingly (using

Algorithm 5 RL: Monte Carlo Tree Search optimization.
1: Input: Algorithm Alg, con�guration space⇠ , state 20, benchmark ⌫
2: Output: Final parameter con�guration
3: function RL.O�������(Alg,⇠, 20)
4: Initialize (C0C ;
5: for C = 0, . . . ,Alg.)8<4 do
6: h2C+1,0C i RL.S�����(Alg,⇠, 2C)
7: Evaluate the new con�guration AC B.E�������(2C+1)
8: Update (C0C (C0C [{ h2C ,0C , 2C+1, AC , C i }
9: RL.U�����(Alg,(C0C)
10: end for
11: return Final parameter con�guration 2)
12: end function

Function RL.U�����). It returns the most promising con�guration
found until the timeout.

6 THEORETICAL ANALYSIS
We show, under moderately simplifying assumptions, that UDO
converges to optimal con�gurations. UDO uses an extension of
HOO algorithm, which provides this type of guarantee (Theorem
6, [9]). However, we decompose our search space (into a space for
heavy and one for light parameters) and delay evaluation feedback
(to amortize re-con�guration costs). In this section, we sketch out
our reasoning for why those changes do not prevent convergence.
We provide proofs for the following theorems online3.

In doing so, we use expected regret [7] as the metric of conver-
gence. Given a time horizon) , expected regret E[Reg)] is the sum
of di�erences between the expected performance of the optimal
con�guration and the con�guration achieved by the algorithm at
any time step C ) . If the expected regret of an algorithm grows
sublinearly with horizon) , it means the algorithm asymptotically
converges to optimal con�guration as) ! 1.

T������ 6.1 (R����� �� HOO (T������ 6, [9])). If the perfor-
mance metric 5 is smooth around the optimal con�guration (Assump-
tion 2 in [9]) and the upper con�dence bounds on performances of all
the con�gurations at depth ⌘ create a partition shrinking at the rate
2d⌘ with d 2 (0, 1) (Assumption 1 in [9]), expected regret of HOO is

E[Reg)] = $
⇣
) 1� 1

3+2 (log)) 1
3+2

⌘
(2)

for a horizon) > 1, and 4/2-near-optimality dimension4 3 of 5 .

Typically, con�guration space ⇠ is a bounded subset of R% and
performance metric 5 : ⇠ ! [0,1] ⇢ R. Here, 3 is of the same
order as the number of parameters % . HOO uses UCB1 [7] rather
than UCB-V [6]. For brevity of analysis, we follow the same though
the proof technique is similar for any UCB-type (Upper Con�dence
Bound) algorithm.

3https://www.cs.cornell.edu/database/supplementary_proofs.pdf
42-near-optimality dimension is the smallest3 � 0, such that for all Y > 0, the maximal
number of disjoint balls of radius 2Y whose centres can be accommodated in XY is
$ (Y�3) (Def. 5 in [9]). Here, Y-optimal con�gurations XY , {G 2 ⇠ |5 (G) � 5 ⇤ � Y }.
Near-optimality dimension encodes the growth in number of balls needed to pack this
set of Y-optimal con�gurations as Y increases.

3409

6.1 Regret of Delayed-HOO
Now, we prove that using delayed-UCB1 [20] instead of UCB1
allows us to propose delayed-HOO and also achieves similar con-
vergence properties.

T������ 6.2 (R����� �� D�������HOO). Under the same as-
sumptions as Thm. 6.1, the expected regret of delayed-HOO is

E[Reg)] = $
⇣
(1 + g)) 1� 1

3+2 (log)) 1
3+2

⌘
(3)

for delay g � 0, horizon) , and 4/2-near-optimality dimension 3 of 5 .

The bound in Eq. (3) is the same as Eq. (2) with an additional
factor (1 + g), which does not change the convergence in terms of
) . For delay g = 0, we retrieve the regret bound of original HOO.

The expected error in estimated expected performance (or re-
ward) of any given con�guration at time) is A ()) = E[5 ⇤� 5̂ (2))] =
1
) E[Reg)]. Thus, the expected error n ()) in estimating the ex-
pected performance (or reward) of a con�guration using delayed-
HOO converges at the rate $

⇣
(1 + g) [log) /)]1/(3+2)

⌘
, where)

is the number of times the con�guration is evaluated.

6.2 Regret of UDO
Aswe have obtained the error bound of the delayed-HOO algorithm,
now we can derive bounds for UDO when using delayed-HOO for
heavy and light parameters with two di�erent delays.

T������ 6.3 (R����� �� UDO). If we use the delayed-HOO as
the delayed-MCTS algorithm with delays g and 0, and time-horizons
)⌘ and); for heavy and light parameters respectively, the expected
regret of UDO is upper bounded by

E[Reg)] = $

✓
(1 + g)) 1� 1

3+2
⌘

(HOO2 ();) log)⌘)
1

3+2

◆
, (4)

under the assumptions of Thm. 6.1. Here,HOO();) , $
⇣
[log);/);]

1
3+2

⌘
.

Deviation in expected performance of the con�guration returned

by UDO from the optimum is $
⇣
(1 + g)

⇥
HOO2 ();)HOO()⌘)

⇤ 1
3+2

⌘
.

Here,)⌘ and); are the number of steps allotted for the heavy and
light parameters respectively. Deviation in expected performance
of the con�guration selected by UDO vanishes as)⌘,); ! 1.

7 EXPERIMENT EVALUATION
We describe our experimental setup (Section 7.1), compare UDO
to baselines (Section 7.2) and variants (Section 7.3), and vary the
benchmark scenario (Section 7.4).

7.1 Experimental Setup
We consider two standard benchmarks, TPC-C (with 10 warehouses
and 32 concurrent requests) and TPC-H (with scaling factor one).
We maximize throughput for TPC-C and minimize latency for TPC-
H. We automatically tune two popular database management sys-
tems, MySQL (version 5.7.29) and Postgres (version 10.15), for max-
imal performance on those benchmarks. Our parameters include
indexing choices (we consider index candidates that are referenced
in queries), DBMS con�guration parameters, as well as query order
in transaction templates (for TPC-C). For TPC-C, we sample con�g-
uration quality by running a mix of 4% STOCK_LEVEL, 4% DELIVERY,

4% ORDER_STATUS, 43% PAYMENT and 45% NEW_ORDER transactions
for �ve seconds. Also, we reload a �xed TPC-C snapshot every
10 iterations of UDO’s main loop. For TPC-H, we evaluate queries.
We consider 100 tuning parameters for MySQL and 105 parameters
for Postgres. The majority of parameters (71) relate to indexing
decisions, followed by 19 parameters related to reordering (each
parameter represents the position of a query within a transaction
template [35]), and, �nally, parameters representing DBMS con�g-
uration parameters (10 parameters for MySQL and 15 for Postgres).
For TPC-H, we consider 109 parameters for MySQL and 114 param-
eters for Postgres (99 of them are related to indexes, the other ones
represent DBMS con�guration parameters).

UDO itself is implemented in Python 3, using the OpenAI gym
framework. It uses Gurobi (version 9) for cost-based planning. We
compare UDO against several baselines that apply RL for universal
database optimization without specialized treatment for heavy pa-
rameters. Those baselines use out of the box learning algorithms,
SARSA [27] and Deep Deterministic Policy Gradient (DDPG) [24],
provided by the Keras-RL framework [2] for Open AI gym. Prior
work on database tuning via reinforcement learning [23, 38] has
applied the same framework but to more narrowly de�ned tuning
problems. We also consider a variant of the latter (using UDO’s
UCT algorithm without evaluation delays or con�guration reorder-
ing) that exploits cached con�gurations. Here, we create database
copies for each new heavy parameter con�guration encountered
and reuse previously created con�gurations, if available. Our cache
uses up to 100 such slots, except for experiments with TPC-H with
scaling factor ten where we reduce the number of slots to ten due
to higher storage consumption per slot. All baselines discussed so
far can optimize the same search space as UDO. In addition, we
compare against combinations of tools that are each targeted at
speci�c tuning problems such as index selection, con�guration pa-
rameter tuning, or query reordering. Here, we compose solutions
proposed for sub-problems by di�erent tools, considering MySQL-
Tuner [3], PGTuner [1], and the Gaussian Process and DDPG++
algorithms [32], as implemented in the OtterTune [12] tool, for sys-
tem parameter tuning, Quro for selecting query orders [35], and
Dexter [4] and EverSQL [5] for selecting indexes. When combin-
ing tools, we �rst optimize transaction code, then parameters, and
�nally index selections.

Note that UDO uses no prior training data but optimizes from
scratch. Hence, we only consider baselines targeted at the same
scenario (i.e., no prior training data). Unless noted otherwise, we
set UDO’s delay g = 10 for the heavy parameter MDP and 1 = 3 in
UCB-V (Eq. (1)). We allow up to eight actions (i.e., tuning parameter
changes compared to the defaults) per episode for TPC-H and up
to 13 for TPC-C (four heavy parameter changes).

All of the following experiments were executed on a server with
two Intel Xeon Gold 5218 CPUs with 2.3 GHz (32 physical cores),
384 GB of RAM, and 1 TB of hard disk.

7.2 Comparison to Baselines
Next, we compare UDO against several baselines. Figure 3 reports
experimental results for the TPC-C benchmark. Figure 4 reports
results for TPC-H. For TPC-C, we report throughput (of the best
con�guration found so far) as a function of optimization time. Note

3410

UDO Simpli�ed UDO
DDPG SARSA
QURO+Dexter+PGTuner QURO+EverSQL+PG/MS-Tuner
QURO+Dexter+DDPG++ QURO+Dexter+OT GP
RL with Cache

0 1 2 3 4

3,000
4,000
5,000
6,000

Optimization time (h)

Th
ro
ug

hp
ut

(tx
/s
)

(a) TPC-C performance as a function of
optimization time in MySQL.

0 1 2 3 4
13,500

14,000

14,500

15,000

Optimization time (h)

Th
ro
ug

hp
ut

(tx
/s
)

(b) TPC-C performance as a function of
optimization time in Postgres.

Figure 3: Comparing UDO to baselines on TPC-C.

UDO Simpli�ed UDO
DDPG SARSA
Dexter+PGTuner EverSQL+PG/MS-Tuner
Dexter+OT DDPG++ Dexter+OT GP
RL with Cache

0 1 2 3 4
60
62
64
66
68
70

Optimization time (h)

Be
st
ru
n
tim

e(
s)

(a) TPC-H performance as a function
of optimization time in MySQL.

0 1 2 3 4
10
12
14
16
18
20

Optimization time (h)

Be
st
ru
n
tim

e
(s
)

(b) TPC-H performance as a function
of optimization time in Postgres.

Figure 4: Comparing UDO to baselines on TPC-H.

that non-iterative baselines are represented as a dot while itera-
tive baselines are represented as a curve. For TPC-H, we report
execution time (for TPC-H queries) with the best con�guration
as a function of optimization time. We optimize for four hours
with all baselines. Within the search space de�ned by our tuning
parameters, UDO �nds the best con�gurations for all four combi-
nations of systems and baselines. Generally, the approaches based
on reinforcement learning eventually �nd better solutions than
the non-iterative methods. Among them, UDO performs best, fol-
lowed in most cases by the combination of DDPG++ (for parameter
tuning) and Dexter (for index selection). Con�guration caching
can sometimes improve over baselines without caches. It is how-
ever not as e�ective as parameter separation and evaluation order
optimization, as implemented by UDO.

Digging deeper, we analyzed how di�erent RL algorithms spend
their time during optimization. Figure 5 shows total (right) and re-
con�guration time (left) as a function of the number of episodes for
three RL algorithms. Figure 6 shows the corresponding numbers for
TPC-H. Clearly, UDO iterates faster as it reduces recon�guration
time. For instance, for MySQL running TPC-C, UDO reduces recon-
�guration time by a factor of approximately three. This means UDO

UDO DDPG SARSA

200 400 600
0

500

1,000

Episode

RC
tim

e
(s
)

(a) Recon�guration time of di�erent RL
algorithms for MySQL on TPC-C.

200 400 600
0

1,000

2,000

3,000

Episode

To
ta
lt
im

e
(s
)

(b) Total time of di�erent RL
algorithms for MySQL on TPC-C.

Figure 5: Time spent per episode by di�erent RL algorithms
when optimizing MySQL for TPC-C.

UDO DDPG SARSA

200 400 600 800
0

5,000

10,000

Episode
RC

tim
e
(s
)

(a) Recon�guration time of di�erent RL
algorithms for Postgres on TPC-H.

200 400 600 800
0

10,000
20,000
30,000

Episode

To
ta
lt
im

e
(s
)

(b) Total time of di�erent RL algorithms
for Postgres on TPC-H.

Figure 6: Time spent per episode by di�erent RL algorithms
when optimizing Postgres for TPC-H.

0 2 4
5,000

5,500

6,000

Optimization time (h)

Th
ro
ug

hp
ut

(tx
/s
)

Delay=0
Delay=5
Delay=10
Delay=15
Delay=20

Figure 7: Impact of delayed feedback on UDO performance
(MySQL on TPC-C).

5 10 15

12,000

14,000

16,000

Delay (Episodes)

RC
tim

e
(s
) Batch

Secretary

Figure 8: Impact of evaluation time selection on UDO per-
formance (MySQL on TPC-C).

performs signi�cantly more iterations within the same amount of
optimization time, thereby �nding promising con�gurations faster.

7.3 Comparison of UDO Variants
Delays. UDO delays the evaluation of con�gurations to amortize
recon�guration costs. Of course, there is a trade-o�. While delays

3411

Greedy Integer Linear Programming

5 10 15
0

5,000

10,000

15,000

Delay (Episodes)

Pl
an
ni
ng

tim
e
(s
)

(a) Time spent in plan optimization.

5 10 15

14,000

15,000

Delay (Episodes)
RC

tim
e
(s
)

(b) Time spent in recon�guration.

Figure 9: Impact of recon�guration planning algorithm on
UDO performance (MySQL on TPC-C).

0 2 4
4,000

5,000

6,000

Optimization time (h)

Th
ro
ug

hp
ut

(tx
/s
)

2-Level UDO
1-Level UDO
1-Level UDO D

Figure 10: Impact of search space design and search strategy
on UDO performance (MySQL on TPC-C).

decrease recon�guration costs, they may also increase convergence
time. Figure 7 evaluates UDO with di�erent delay parameters (we
measure delay by the maximal number of episodes between request
and evaluation). Clearly, disabling delays (Delay=0) leads to slower
convergence. Using a delay of �ve to ten turns out to be the optimal
setting (ten is the default setting for our experiments).

Note that the results in Figure 7 relate to the quality of the
solution, not to the overheads of optimization. Typically, the rate of
improvements slows down as optimization progresses (this e�ect
appears for instance in Figures 3 and 4). Hence, even small gains in
throughput in Figure 7 likely translate into signi�cant advantages
in terms of optimization time (i.e., optimization time required by
weaker approaches to close the gap).
Picking con�gurations. Delays are exploited by the evaluation man-
ager to optimize time and order of evaluations. We propose two
mechanisms to choose evaluation time. The �rst one, rather simple,
evaluates once the batch of pending evaluation requests reaches
a certain size. The second one is more sophisticated and tries to
optimize the context in which con�gurations are evaluated. We
compare both methods in Figure 8. Reporting recon�guration time
on the y-axis, we �nd that “Secretary-selection” works best. The
gap between the two approaches increases with the delay (a higher
delay means more choices in terms of evaluation time).
Ordering con�gurations. The second decision made by the evalua-
tion manager relates to the order in which requests, selected for
evaluation in a given time slot, are processed. We describe two
approaches for request ordering in Section 4.3: a simple, greedy
algorithm and an approach based on integer linear programming.
Figure 9 compares the two approaches in terms of optimization
time (left) and in terms of recon�guration time (right), i.e. the qual-
ity of the generated solution. Clearly, the integer programming

UDO Simpli�ed UDO
DDPG SARSA
Dexter+PGTuner EverSQL+PG/MS-Tuner
Dexter+OT DDPG++ Dexter+OT GP
RL with Cache

0 2 4 6 8
400
450
500
550

Optimization time (h)

Be
st
ru
n
tim

e(
s)

(a) TPC-H performance as a function
of optimization time in MySQL.

0 2 4 6 8
150

300

600

1,200

Optimization time (h)

Be
st
ru
n
tim

e
(s
)

(b) TPC-H performance as a function of
optimization time in Postgres.

Figure 11: Comparing UDO to baselines on TPC-H for SF 10.

approach �nds better solutions. The gap increases as the delay
(and the number of potential orderings) increases. However, this
advantage comes at a steep price. As shown on the left hand side,
optimization time increases exponentially and becomes prohibitive
for a delay of more than ten (which corresponds to around 100 re-
quests). For our implementation, we switch to the greedy algorithm
once delays become prohibitive.
1-level vs. 2-level MDP. Finally, we compare di�erent representations
of the search space. Figure 10 shows corresponding results. Our
main version of UDO uses a two-level representation of the search
space (separating heavy and light parameter MDPs). In a �rst step,
we remove the separation between the two and apply the same
RL algorithm to the 1-Level UDO MDP, introduced in Section 2.
In a second step, we additionally delay feedback by evaluating
con�gurations only at the end of each episode. Clearly, both of those
changes degrade performance, compared to the original version.

7.4 Scenario Variants
Scaling up.We increase the scaling factor for TPC-H from one to ten.
Figure 11 reports results for all baselines. The relative tendencies are
similar to Figure 4. However, the spread of run times across di�erent
methods is larger. The impact of tuning decisions on performance
grows with the data size. For Postgres, at the end of optimization,
UDO achieves a 25% improvement in run time over the second-best
baseline (136 versus 181 seconds).

Multi-criteria optimization. UDO can optimize composite perfor-
mance metrics. To demonstrate this feature, we optimize a weighted
sum between execution time and disk space consumed for indexes.
Figure 12 shows run time, space for indexes, and the weighted sum
(from left to right). We compare against DDPG and SARSA (con�g-
ured to optimize the same objective). Compared to the baselines,
UDO generates near-optimal solutions faster and ultimately �nds
the best tradeo� between disk space and run time.

Index recommendation. UDO is designed to optimize diverse pa-
rameters. Nevertheless, we can use it for more narrow problem
variants. We evaluate UDO exclusively for index recommendation
in Figure 13 (using default settings for all database system parame-
ters). We add a new baseline that exploits the query optimizer’s cost

3412

UDO DDPG SARSA

0 2 4 6 8
0

500

1,000

1,500

Opt. time (h)

Ru
nt
im

e
(s
)

0 2 4 6 8
0

2,000

4,000

Opt. time (h)

In
de
x
Sp

ac
e
(M

B)

0 2 4 6 8

500

1,000

1,500

Opt. time (h)

Ti
m
e
(s
)+

Sp
ac
e
(M

B)
/1
2

Figure 12: Optimizing weighted sum of run time and disk
space for TPC-H SF 10 on Postgres.

UDO DDPG SARSA
Cost Model Dexter

0 2 4
800
900

1,000
1,100
1,200

Optimization time (h)

Be
st
ru
n
tim

e(
s)

(a) TPC-H performance as a function of
optimization time in MySQL.

1 2 3 4
100
200
300
400
500

Optimization time (h)

Be
st
ru
n
tim

e
(s
)

(b) TPC-H performance as a function
of optimization time in Postgres.

Figure 13: Comparing UDO to baselines for index recom-
mendation (TPC-H SF 10).

UDO Dexter+OT DDPG++ Dexter+OT GP

5 10 15 20

150
200
250
300

#Templates for training

Be
st
ru
n
tim

e(
s)

(a) Varying number of TPC-H query
templates used for training.

0 2 4 6
50
100
150
200
250

Opt. time (h)

Be
st
ru
n
tim

e(
s)

(b) Performance for dynamic
workload switching every full hour.

Figure 14: Performance for non-representative training sets
and changing workloads (TPC-H SF 10, Postgres).

model: we generate all index candidates and estimate execution
costs (via “explain” commands) if subsets of indexes are visible to the
optimizer. We consider all subsets of up to three index candidates
(the number of indexes selected by UDO in the �nal con�guration).
While not particularly e�cient (the query optimizers of Postgres
and MySQL do not directly support what-if analysis), this process
identi�es the index set that works best according to the optimizer’s
cost model. UDO ultimately �nds better solutions than the base-
lines. However, the margins are smaller, compared to Figure 11.
UDO works best for diverse tuning parameters.

Generalization. To test generalization, we train UDO and base-
lines for eight hours on a subset of TPC-H query templates. We
show performance of the �nal con�guration for all queries in Fig-
ure 14(a). Clearly, trainingwith fewer queries degrades performance
on the entire workload. The generalization overheads of UDO are
comparable to baselines. E.g., for UDO, performance degrades by
about 40% when considering �ve instead of 20 templates during
training. It is around 70% for baselines based on Dexter.

Shifting workload. In Figure 14(b), we report results for a dynamic
workload. We switch back between TPC-H query templates with
odd numbers (i.e., Q1, Q3, etc.) and templates with even numbers
every hour. Figure 14(b) reports run time for the current half of
queries as a function of optimization time. For DDPG++ and OT GP,
we use indexes proposed by Dexter for each of the two workload
parts. As the indexes proposed by Dexter lead to one problematic
query running for more than one hour, we added one more index
from the �nal con�guration generated by UDO for the baseline
(index on the “L_PARTKEY” column of the “Lineitem” table). The
presented results therefore correspond to upper bounds on perfor-
mance for all approaches except for UDO. We see spikes for all
baselines, whenever the workload changes. The magnitude of the
spikes decreases over time, showing that all approaches converge
to a con�guration that compromises between the two workload
parts. Considering aggregate run times for both workload parts,
UDO still performs about 5% better than the nearest baseline.

8 RELATEDWORK
Recently, there has been signi�cant interest in using machine learn-
ing for database tuning [18, 25, 26, 31, 34]. Our work falls into the
same, broad category as it exploits RL. Prior work typically focuses
on speci�c tuning choices such as system con�guration parame-
ters [23, 37, 38], index selection [28, 29], or data partitioning [19, 36].
We support a broad set of tuning choices via one uni�ed approach.

Traditionally, tuning decisions in a database system are made
based on simplifying execution cost models. This often leads to
sub-optimal choices in practice [8, 16]. UDO does not use any simpli-
fying cost model. Instead, it exclusively uses feedback obtained via
trial runs to identify promising con�gurations. In that, it also di�ers
from a signi�cant fraction of prior work using machine learning
for database tuning [21, 37]. Many corresponding approaches rely
on a-priori training data, obtained from representative workloads.
UDO assumes no prior training data and learns (near-)optimal con-
�gurations from scratch. This makes optimization expensive (in
the order of hours for our experiments) but avoids generalization
errors and the need for training data. UDO will be demonstrated at
the upcoming SIGMOD’21 conference [33].

9 CONCLUSION
We presented a system, UDO, for optimizing various tuning param-
eters by a uni�ed approach. Our experiments show that parameter
separation and delayed learning yield signi�cant improvements.

ACKNOWLEDGMENTS
This research project is supported byNSF grant IIS-1910830 (“Regret-
Bounded Query Evaluation via Reinforcement Learning”).

3413

REFERENCES
[1] 2020. https://github.com/jfcoz/postgresqltuner.
[2] 2020. https://github.com/keras-rl/keras-rl.
[3] 2020. https://github.com/major/MySQLTuner-perl.
[4] 2021. https://github.com/ankane/dexter.
[5] 2021. https://www.eversql.com/.
[6] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. 2007. Tuning Bandit

Algorithms in Stochastic Environments. In Algorithmic Learning Theory, Marcus
Hutter, Rocco A. Servedio, and Eiji Takimoto (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 150–165.

[7] P Auer, N Cesa-bianchi, and P Fischer. 2002. Finite time analysis of themultiarmed
bandit problem. Machine Learning 47, 2-3 (2002), 235–256.

[8] Renata Borovica, Ioannis Alagiannis, and Anastasia Ailamaki. 2012. Automated
physical designers: what you see is (not) what you get. In Proceedings of the Fifth
International Workshop on Testing Database Systems. 9:1—-9:6. https://doi.org/10.
1145/2304510.2304522

[9] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. 2011. X-
Armed Bandits. Journal of Machine Learning Research 12, 5 (2011).

[10] Surajit Chaudhuri. 2004. Index selection for databases: A hardness study and a
principled heuristic solution. KDE 16, 11 (2004), 1313–1323. http://ieeexplore.
ieee.org/xpls/abs{_}all.jsp?arnumber=1339260

[11] Surajit Chaudhuri, V Narasayya, and Ravi Ramamurty. 2009. Exact cardinality
query optimization for optimizer testing. In VLDB. 994–1005. https://doi.org/10.
14778/1687627.1687739

[12] CMU Database Group. 2020. https://github.com/cmu-db/ottertune.
[13] Pierre-Arnaud Coquelin and Rémi Munos. 2007. Bandit Algorithms

for Tree Search. Arxiv preprint cs0703062 23, March (2007), 67–74.
arXiv:0703062v1 [arXiv:cs] http://arxiv.org/abs/cs/0703062

[14] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI meets AI: Leveraging query executions to improve
index recommendations. In SIGMOD. 1241–1258. https://doi.org/10.1145/3299869.
3324957

[15] Sylvain Gelly and David Silver. 2007. Combining online and o�ine knowledge in
UCT. Proceedings of the 24th international conference on Machine learning - ICML
’07 (2007), 273–280. https://doi.org/10.1145/1273496.1273531

[16] Andrey Gubichev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015.
How good are query optimizers, really? PVLDB 9, 3 (2015), 204–215.

[17] Theodore P. Hill. 2009. Knowing when to stop. American Scientist 97, 2 (2009),
126–133. https://doi.org/10.1511/2009.77.126

[18] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2019. Towards learning a
partitioning advisor with deep reinforcement learning. SIGMOD (2019). https:
//doi.org/10.1145/3329859.3329876 arXiv:arXiv:1904.01279v1

[19] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a Partition-
ing Advisor for Cloud Databases. Proceedings of the ACM SIGMOD International
Conference on Management of Data (2020), 143–157. https://doi.org/10.1145/
3318464.3389704

[20] Pooria Joulani, András György, and Csaba Szepesvari. 2013. Online learning under
delayed feedback. 30th International Conference on Machine Learning, ICML 2013
PART 3 (2013), 2503–2511. https://doi.org/10.14288/1.0044651 arXiv:1306.0686

[21] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: estimating correlated joins with deep
learning. In CIDR. arXiv:1809.00677 http://arxiv.org/abs/1809.00677

[22] Levente Kocsis and C Szepesvári. 2006. Bandit based monte-carlo planning. In
European Conf. on Machine Learning. 282–293. http://www.springerlink.com/

index/D232253353517276.pdf
[23] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2018. QTune: A QueryAware

database tuning system with deep reinforcement learning. PVLDB 12, 12 (2018),
2118–2130. https://doi.org/10.14778/3352063.3352129

[24] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and DaanWierstra. 2016. Continuous control with deep
reinforcement learning. 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings (2016). arXiv:1509.02971

[25] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learning
for ML Enhanced Database Systems. In SIGMOD. 175–191. https://doi.org/10.
1145/3318464.3389768

[26] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2020. QuickSel: Quick
Selectivity Learning with Mixture Models. In SIGMOD. 1017–1033. https://doi.
org/10.1145/3318464.3389727 arXiv:1812.10568

[27] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using con-
nectionist systems. Vol. 37. University of Cambridge, Department of Engineering
Cambridge, UK.

[28] Zahra Sadri, Le Gruenwald, and Eleazar Lead. 2020. DRLindex: Deep reinforce-
ment learning index advisor for a cluster database. ACM International Conference
Proceeding Series (2020). https://doi.org/10.1145/3410566.3410603

[29] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The case for
automatic database administration using deep reinforcement learning. arXiv
(2018), 1–9. arXiv:1801.05643

[30] Immanuel Trummer. 2019. Exact cardinality query optimization with bounded
execution cost. In SIGMOD. 2–17.

[31] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan
Jo, and Joseph Antonakakis. 2019. SkinnerDB: regret-bounded query evaluation
via reinforcement learning. In SIGMOD. 1039–1050.

[32] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang,
Christian Bilien, and Andrew Pavlo. 2021. An inquiry into machine learning-
based automatic con�guration tuning services on real-world database manage-
ment systems. Proceedings of the VLDB Endowment 14, 7 (2021), 1241–1253.
https://doi.org/10.14778/3450980.3450992

[33] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. 2021. Demonstrating
UDO: A Uni�ed Approach for OptimizingTransaction Code, Physical Design,
and System Parameters via Reinforcement Learning. In SIGMOD.

[34] Lucas Woltmann, Claudio Hartmann, Maik Thiele, and Dirk Habich. 2019. Cardi-
nality estimation with local deep learning models. In aiDM.

[35] Cong Yan and Alvin Cheung. 2016. Leveraging Lock Contention to Improve
OLTP Application Performance. In VLDBJ, Vol. 9. 444–455. https://doi.org/10.
14778/2876473.2876479

[36] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,
Umar Farooq Minhas, Per Åke Larson, Donald Kossmann, and Rajeev Acharya.
2020. Qd-tree: Learning data layouts for big data analytics. arXiv 2 (2020),
193–208.

[37] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao,
Siyuan Sheng, Andrew Pavlo, and Geo�rey J Gordon. 1910. A demonstration of
the OtterTune automatic database management system tuning service. VLDB 11,
12 (1910), 1910–1913.

[38] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
end-to-end automatic cloud database tuning system using deep reinforcement
learning. In SIGMOD. 415–432. https://doi.org/10.1145/3299869.3300085

3414

