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Needed improvements to mobile broadband
deployment require more accurate mapping
of mobile coverage, especially in rural

and tribal areas.

BY TARUN MANGLA, ESTHER SHOWALTER,
VIVEK ADARSH, KIPP JONES, MORGAN VIGIL-HAYES,
ELIZABETH BELDING, AND ELLEN ZEGURA

A Tale of Three Datasets:
Characterizing
Mobile Broadband
Access in the U.S.

AFFORDABLE, QUALITY INTERNET access is critical for full
participation in the 21% century economy, educational

system, and government.> Mobile broadband can be
achieved through commercial Long-Term Evolution
(LTE) cellular networks, which are a proven means of

expanding access!! but are often con-
centrated in urban areas—leaving eco-
nomically marginalized and sparsely
populated areas underserved.! The
U.S. Federal Communications Com-
mission (FCC) incentivizes LTE opera-
tors that serve rural areas*** and main-
tains transparency by releasing maps
from each operator showing geograph-
ic areas of coverage.’ Recently, third
parties have challenged the veracity of
these maps, claiming they over-repre-
sent true coverage and can discourage
much-needed investment.

However, most of these claims
are either mainly qualitative in na-
ture or are focused on limited areas,
where a few dedicated researchers
can collect controlled coverage mea-
surements (through wardriving, for
instance).'>?*** As dependence on
mobile broadband connectivity in-

creases, especially in the face of the
COVID-19 pandemic, mechanisms
that quantitatively validate FCC cov-
erage datasets at scale are becom-

key insights

m We compare LTE coverage data from the
FCC with a crowdsourced dataset from
Skyhook for New Mexico. While the two
coverage datasets tend to agree in urban
areas, there is significant disparity, up to
15%, in rural and tribal census blocks.

® On-ground LTE coverage measurements
collected across 120 miles of rural and
tribal New Mexico indicate that even
the crowdsourced data exhibits over-
reporting, although to a lesser degree
than the FCC data.

® The findings make a case for including
mechanisms to validate ISP-reported
FCC coverage data. While crowdsourcing
is a good alternative, targeted active
measurement campaigns are needed
in areas where existing crowdsource
datasets are sparse.
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ing acutely necessary to evaluate and
direct resources toward Internet ac-
cess deployment efforts.'>'® This is a
technology policy issue which carries
equity and fairness implications for
society as a whole.

An increasingly widespread ap-
proach to measuring coverage at scale
is through crowdsourcing, wherein
LTE network users contribute to cov-
erage measurements. The FCC has re-
cently advocated for the use of crowd-
sourcing to validate coverage data
reported by operators.® In this context,
our work employs a data-driven, em-
pirical approach, comparing coverage
from a representative crowdsourced
dataset with the FCC data. More spe-
cifically, our analysis is guided by the
following questions:

» How consistent are existing LTE
coverage datasets?

» Where and how do their coverage
estimations differ?

We specifically consider a crowd-
sourced coverage estimate from Sky-
hook, a commercial location service
provider that uses a variety of position-
ing tools to offer precise geolocation.
We selected Skyhook because it crowd-

sources cellular coverage measure-
ments from end-user applications that
subscribe to its location services. Such
incidental crowdsourcing can poten-
tially provide richer coverage data com-
pared to a voluntary form of crowd-
sourcing, where users must explicitly
commit to contributing coverage data.
Our research examines this by compar-
ing the Skyhook measurements with
those of OpenCellID, an open but vol-
untary crowdsourced dataset.?! As our
findings show, the density of the crowd-
sourced datasets varies significantly by
the methodology of data collection,
especially in rural areas. In the regions
we studied, incidental crowdsourcing
(Skyhook) gathered up to 11.1x more
cell IDs than voluntary crowdsourcing
(OpenCellID).

Using Skyhook as an extensive
crowdsourced dataset, we can quan-
tify how widely and where the crowd-
sourced coverage data differs from
the FCC data. We specifically selected
the state of New Mexico® for its mix of

a Our methodology is not specific to New Mexi-
co and can be easily extended to other regions
in the U.S.

Table 1. Summary of coverage datasets.

Dataset Points of Collection Format Methodology
FCC Polygon overlay Shapefile Operator-reported
with Form 477
Skyhook Cell signal point Csv Incidental crowdsourcing
Author-controlled measurements Cell signal point Csv Wardriving

Figure 1. LTE operators by census-block coverage based on FCC data.
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demographics, diverse geographic
landscape, and our partnership with
community stakeholders within
the state. In our research, we com-
pare coverage at the level of census
blocks,” which are further grouped
into urban, rural, and tribal® catego-
ries. We found that the FCC and Sky-
hook LTE datasets have a discrepancy
asgreatas 15%in rural census blocks,
with the FCC data claiming higher
coverage than Skyhook. A major con-
cern in interpreting this comparison
is accounting for coverage discrepan-
cies due to a lack of data points in the
crowdsourced dataset. To confirm
the availability of users to provide
data points, we checked for the pres-
ence of alternate cellular technolo-
gies—for example, 2G or 3G—within
these census blocks and observed a
significant number (up to 9% in tribal
rural areas) where such alternates are
present, evidence that users do visit
those blocks but cannot access LTE.
These results, like a recent study on
fixed broadband,' suggest a need
to incorporate mechanisms to vali-
date operator-submitted data into
the FCC’s LTE access-measurement
methodology, especially in rural and
tribal areas.

Finally, this article compares both
FCC and Skyhook coverage maps to
our own controlled coverage mea-
surements collected from a northern
section of New Mexico. Interestingly,
both FCC and Skyhook datasets re-
port higher coverage relative to our
controlled measurements, with the
former showing a higher degree (by
up to 26.7%) of over-reporting than
the latter. Understanding the causes
of these inconsistencies is impor-
tant for effectively using crowd-
sourced data to measure LTE cover-
age, especially as crowdsourcing is
increasingly viewed as preferable to
provider reports. We conclude with
recommendations for improving LTE
coverage measurements, whose im-
portance has only increased in the
COVID-19 era of remote working and
learning.

b We use the FCC methodology, wherein a cen-
sus block is considered covered if the centroid
is covered.”

¢ Tribal areas have consistently experienced the
lowest broadband coverage rates in the U.S. for
the past decade.’



Background and Datasets

This section offers an overview of the
LTE network architecture, followed
by a description of the LTE coverage
datasets compared in our analysis.
These datasets are summarized in
Table 1. Limitations associated with
each data collection methodology are
also noted.

LTE network architecture. Inter-
net access in an LTE network is avail-
able through base stations, known as
eNodeBs, which the network provider
operates. User equipment (UE), such
as smartphones, tablets, or LTE mo-
dems, connects to the eNodeB over
the radio link. The eNodeB connects
to a centralized cellular core, known
as the evolved packet core (EPC), typi-
cally via a wired link forming a middle-
mile connection. The EPC consists of
several network elements, including a
packet data network gateway (PGW),
which is the connecting node between
an end-user device and the public In-
ternet. Thus, LTE broadband access
depends on multiple factors, includ-
ing radio coverage, middle-mile ca-
pacity, and interconnection links with
other networks—transit providers and
content providers, for instance—in the
public Internet. However, the focus of
this article is to understand last-mile
LTE connectivity characterized by the
radio coverage of the eNodeB.

An eNodeB controls a single cell
site and consists of several radio trans-
ceivers or cells mounted on a raised
structure, such as a mast or a tower.
The radio cells use directional anten-
nas, with each antenna providing cov-
erage in a smaller geographical area
using one frequency band. The radio
cells can be identified through a glob-
allyunique number called a cell identi-
fier (or cell ID), which is also visible to
an end-user device in range of the cell.
The cell ID enables aggregation of con-
nectivity and signal-strength informa-
tion from multiple UEs connected to
the same cell, which can then be used
to estimate the geolocation of a cell
along with its coverage.

FCC dataset. The FCC LTE broad-
band dataset consists of coverage maps
in shapefile format that depict geospa-
tial LTE network deployment for each
cellular operator in the U.S. The FCC
uses Form 477 to compile this dataset
semi-annually from operators, and ev-

ery operator that owns cellular network
facilities must participate in this data
collection. Operators submit shape-
files containing detailed network in-
formation in the form of geo-polygons
along with the frequency band used in
the polygon and the minimum adver-
tised upload and download speeds.
The methodology used for obtaining
these polygons is proprietary to each
operator. Ultimately, the FCC publish-
es only a coverage map that represents
coverage as a binary indicator: in any
location, cellular service is either avail-
able through an operator or it is not.

Our research uses binary coverage
shapefiles, available on the FCC’s web-
site, from June 2019.¢ Figure 1 shows
New Mexico’s eight LTE network op-
erators and the percentage of the
state’s total census blocks covered by
each operator. Note: we use one of the
FCC methodologies to report mobile
broadband access, wherein a census
block is considered covered if the cen-
troid of the census block is covered.” In
this article, our analysis is limited to
the top four cellular operators due to
their significantly greater prevalence
in New Mexico; these operators are
also the top four cellular operators in
the U.S. more broadly.

Limitations. These coverage maps
are generated using predictive mod-
els that are proprietary to the opera-
tor’ and not generally reproducible.
Furthermore, the publicly available
dataset consists of binary coverage and
lacks any performance-related data.®

Skyhook dataset. Skyhook is a loca-
tion service provider that uses a variety
of positioning tools, including a data-
base of cell locations, to offer precise
geolocation to subscribed applica-
tions.* Through apps that subscribe
to Skyhook’s location services, user
devices report back network informa-
tion, which is gathered into anony-
mous logs and used to improve the
localization service. Through a data-
access agreement, we were able to
view the cell-location database, which

d At the time of this analysis, data from December
2019 was also available on the FCC website.
However, we use data from June 2019, as the
other two datasets in our analysis are collected
around this period.

e The FCC has only recently (December 2019)
begun providing speed data along with cover-
age information.
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consisted of location and coverage es-
timates as well as a list of unique cell
IDs along with the cell technology—
for example, 3G vs. LTE. The database
was originally constructed through
extensive wardriving but is now man-
aged and updated through measure-
ments gathered by devices using the
Skyhook API for localization. Device
measurements with the same cell ID
are combined to estimate cell location
and coverage in the following manner:

Cell location estimation. A grid-
based methodology similar to that
proposed by Nurmi et al.*® is used
to estimate the cell tower location.
Specifically, Skyhook divides the geo-
graphic area into 7-m squares and
groups measurements in the same
square to obtain a central measure of
the square’s signal strength. This is
done to reduce the bias due to large
numbers of measurements coming
from the same area—for instance, a
popular gathering place. A weighted
average of the signal strength is then
used to estimate the cell location.

Estimation of cell coverage radius.
Skyhook also provides an estimate of
the cell’s coverage radius using a pro-
prietary method based on path-loss
gradient.?® Path-loss gradient approxi-
mates how the wireless signal attenu-
ates as a function of the distance from
the transmitter—a radio cell, in this
case. The value of the path-loss gra-
dient depends on several factors, in-
cluding environment (foliage, build-
ings), geographic topography, and cell
signal frequency. Skyhook estimates
path-loss gradient using field observa-
tions of cell signal strength readings
along with their distributed geograph-
ic locations. Ideally, the signal attenu-
ation varies based on the direction
and distance from the cell. However,
to reduce the complexity of coverage
estimation, Skyhook’s cell coverage
estimation heuristic calculates only
one path-loss gradient for a single cell.
Path-loss gradient is then used in a set
of parameterized equations to esti-
mate the cell coverage radius. The pa-
rameters in these equations have been
determined with careful research and
testing over more than 10 years.

The cell-location database is regu-
larly updated with cell-location re-
calculation and cell-coverage radius
using the new device measurements
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Table 2. Characteristics and cell ID (CID) counts in selected counties.

County Population Density Skyhook OpenCelliD

Classification Region County Name (per square mile) CIDs (#) % Overlap CIDs (# % Overlap Common CIDs

Large Metro Western Los Angeles, CA 2,490.3 133,484 28% 39,875 92% 36,816
Central Denver, CO 4,683.0 11,061 24% 3,136 86% 2,689
Eastern Fulton, GA 1,994.0 27,809 22% 7,225 86% 6,194

Small Metro Western Imperial, CA 43.5 1,818 17% 336 93% 311
Central Dofia Ana, NM 57.1 1,870 32% 663 89% 592
Eastern Bibb, GA 613.0 1,953 21% 464 89% 413

Micropolitan Western Tehama, CA 21.7 733 17% 158 80% 126
Central Rio Arriba, NM 6.7 333 8% 30 87% 26
Eastern Pierce, GA 61.3 164 9% 21 67% 14

Figure 2. Map of author wardriving areas

in New Mexico.
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collected since the last update. For our
analysis, we used the cell-location da-
tabase last updated on June 10, 2019.

Limitations. Since database en-
tries are crowdsourced when the
device passes within range of a cell,
this dataset is more comprehensive
in population centers and highways,
where people more often occupy. If
there are too few measurements over-
all, or if measurements are primarily
sourced from the same grid section,
then the cell-location estimate can be
inaccurate.

Targeted measurement campaign.
To complement these datasets, we
performed a targeted measurement
campaign collecting coverage infor-
mation across 120 miles of Rio Arriba
County in New Mexico over a five-day
period, beginning May 28, 2019. Fig-
ure 2 shows the locations of ground
measurements, and the four descrip-
tive area labels we use for this analy-
sis. North area measurements were
taken on highways passing primarily
through national forest while pueblo
area measurements were taken from
highways within tribal jurisdiction
boundaries. In Santa Clara Pueblo,
tribal leadership permitted us to col-
lect additional measurements in
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residential zones. Finally, the Santa
Fe area consists of highway measure-
ments between the pueblos and down-
town Santa Fe. While limited in scale,
these active measurements provide an
important comparison point for cov-
erage and user experience. As already
described, we selected these areas of
New Mexico for their mix of tribal and
non-tribal demographics; tribal lands
tend to have the highest coverage over-
statements and the most limited cellu-
lar availability within the U.S.

Our measurements consist of ser-
vice-state and signal-strength read-
ings recorded on four Motorola G7
Power (XT1955-5) phones running
Android Pie (9.0.0). Service state is a
discrete variable indicating whether
the phone is connected to a cell. Mea-
surements were collected using the
Network Monitor application.'* An ex-
ternal GlobalSat BU-353-S4 GPS con-
nected to an Ubuntu Lenovo Think-
Pad laptop gathered geolocation tags
that were matched to network mea-
surements by timestamp. Each phone
was outfitted with a SIM card from
one of the top four cellular operators
in the area: Verizon, T-Mobile, AT&T,
and Sprint. The phones recorded ser-
vice state and signal strength every
10 seconds while we drove at highway
speeds (between 40 and 65 mph) in
most places and less than 10 mph in
residential areas (Santa Clara Pueblo).

Limitations. Our wardriving cam-
paign was intensive in terms of human
effort, economic cost, and time, mak-
ing it difficult to scale. The dataset
does not capture any temporal varia-
tions in coverage, as the measure-
ments were collected over a short time
span. It is possible that driving speed
or device configuration impacted the
measurements—for example, indi-
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cating no coverage when a stationary
measurement might have detected
coverage.® We have no evidence that
this occurred, but it might warrant ad-
ditional investigation.

Analysis

In this section, we evaluate Skyhook as
arepresentative crowdsourced dataset
by comparing it with a popular volun-
tary crowdsourced data from OpencCel-
1ID.?! This is followed by a comparison
of coverage across the FCC, Skyhook,
and our own wardriving measurement
data. Our comparison is guided by the
following questions: What is the de-
gree of coverage agreement across the
datasets? Where and how do their cov-
erage estimations differ?

Comparison of crowdsourced
datasets. We compare the Skyhook
dataset with a publicly available crowd-
sourced  dataset—Unwired Lab’s
OpenCellID.f The OpenCellID project
provides a publicly available dataset
of cell IDs along with their estimated
location. The dataset is derived from
crowdsourced UE signal-strength mea-
surements similar to Skyhook. How-
ever, the UE measurements in this
case come from users who voluntarily
install the OpenCellID application
on their smartphone® and manually
choose what data to upload. We dif-
ferentiate this voluntary crowdsourc-
ing method of data collection from
Skyhook’s incidental crowdsourcing
method, where users of the Skyhook
API contribute to the data by default.
We specifically compare the number of
unique LTE cells and the recency of the
measurements in both datasets. We

f The OpenCellID Project is licensed under a
Creative Commons Attribution ShareAlike 4.0
International License.



consider each of these factors to con-
tribute to the dataset’s overall density.

Methodology. While our coverage
comparison focuses on New Mexi-
co, we analyzed our selected crowd-
sourced data more broadly by con-
sidering these datasets within a set of
counties selected from three areas of
the U.S.: western (California), central
(New Mexico and Colorado), and east-
ern (Georgia), each representing vary-
ing population densities across the
country. Within each region, we con-
sidered three different kinds of coun-
ties as defined by the National Center
for Health Statistics’ 2013 Urban-Rural
Classification Guide:*® large metropoli-
tan (large), which has a population of
at least one million and a principal
city; small metropolitan (small), which
has a population of less than 250,000;
and micropolitan (micro), which has
at least one urban cluster of at least
10,000 but a total population of less
than 50,000.

This enabled us to study differ-
ences based on population density
and geographic region for the crowd-
sourced datasets. To compare these
two datasets, we selected three coun-
ties of each population category, for
a total of nine counties, which are
described in Table 2. For each county,
we show the 2018 population density
estimated from the U.S. Census Bu-
reau’s 2010 census records.” We first
count the number of unique cell IDs
that appear in both datasets for each
county. Table 2’s “% Overlap” columns
show the percentage of each dataset’s
cell IDs that also appear in the other
dataset, and the “Common CIDs” col-
umn shows the exact number of com-
mon cell IDs.

Results. Overall, Skyhook reports a
greater number of cells (from 2.8x to
11.1x more) for all counties. The dif-
ference is particularly pronounced
in micro counties, which suggests
that relying on volunteers to down-
load an application and offer network
measurements may not be the most
accurate method for assessing LTE
coverage in rural areas. Furthermore,
Skyhook includes most of the cells
that appear in OpenCellID.

We next considered how recently
each cell ID record was updated with
a new measurement. Figure 3 shows
the CDF of the latest measurement

date for cells in both datasets, where
cells are split into those located in ur-
ban and rural census blocks. Almost
60% of the cells in Skyhook were last
updated in June 2019, but the most
recent update in OpenCellID was in
February 2019. Furthermore, cells in

contributed articles

rural census blocks were updated less
recently than in OpenCellID’s urban
census blocks, while the difference is
negligible in the Skyhook dataset. This
suggests that the Skyhook dataset is
updated more regularly than Open-
CellID, thus making it more likely to

Figure 3. CDF of cell updates in Skyhook (S) and OpenCellID (0).
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Table 3. Percentage of total census blocks covered, according to FCC and Skyhook.

Total Verizon T-Mobile AT&T Sprint
Census Census
Block Type Blocks FCC Skyhook FCC Skyhook FCC Skyhook FCC Skyhook
Non-Tribal 93,680 89% 77% 94% 86% 85% 79% 39% 49%
Rural
Non-Tribal 41,872  100%  100% 100%  100% 99% 99% 96% 99%
Urban
Tribal Rural 30,588 93% 80% 92% 63% 78% 73% 27% 41%
Tribal Urban 2,469 100% 99% 95% 94% 93% 94% 75% 88%
All 168,609  93% 84% 95% 85% 88% 83% 52% 61%

Figure 4. Comparison of LTE coverage maps of New Mexico. Yellow blocks are covered in
the FCC map but not in Skyhook; purple blocks are covered in the Skyhook map but not the
FCC map. Green blocks are covered in both, and pink blocks are not covered in either map.
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represent any changes in the network
infrastructure.

Comparison of coverage. We first
compared a coverage shapefile gener-
ated from Skyhook cell locations and
estimated coverage ranges with the
FCC map for each operator.

Methodology. We considered cover-
age at the census-block level for this
comparison. In addition to reporting
coverage shapefiles, the FCC reports
coverage at a census-block level and
considers a census block as covered if
the centroid of the census block falls
within a covered region.” We generat-
ed a similar census block-level cover-
age map per operator using Skyhook’s
estimated coverage. To do so, we first
obtained the coverage shapefile for
each operator using a cell’s estimated
location and coverage radius. Then,

we used the FCC centroid methodol-
ogy to generate the Skyhook LTE cov-
erage map at the census-block level.
We used the Python GeoPandas 0.8.2
library for the associated spatial op-
erations.' To explore whether the de-
gree of agreement of the two datasets
varies across these dimensions, we
grouped census blocks into four
categories: Non-Tribal Urban, Non-
Tribal Rural, Tribal Urban, and Tribal
Rural. We referenced the U.S. Census
Bureau’s classification of urban and
rural blocks and its boundary defini-
tions of tribal jurisdiction for this cat-
egorization.” In this analysis, we con-
sidered census blocks as tribal if they
overlap with any tribal boundaries.
We varied the tribal labeling schemes,
such as classifying a census block as
tribal if the centroid of the block is

Table 4. Number of census blocks where there is coverage according to the FCC but no
coverage according to Skyhook.

Block Type Total Blocks Verizon T-Mobile AT&T Sprint
Non-Tribal Rural 93,680 14,013 9,025 8,705 1,355
Non-Tribal Urban 41,872 0 0 213 25
Tribal Rural 30,588 5,109 9,150 3,004 230
Tribal Urban 2,469 4 14 4 0

Table 5. Number of census blocks with LTE coverage according to the FCC, but only 3G

coverage according to Skyhook. The numbers in parentheses report the same data as a
percentage of total census blocks of the corresponding type.

Block Type Verizon T-Mobile AT&T Sprint
Non-Tribal Rural 528 (1%) 2,575 (3%) 5,342 (6%) 19 (<1%)
Non-Tribal Urban 0 (0%) 0 (0%) 213 (1%) 0 (0%)
Tribal Rural 2,655 (9%) 2,565 (8%) 2,166 (7%) 0 (0%)
Tribal Urban 0 (0%) 0 (0%) 4 (<1%) 0 (0%)

Table 6. Confusion matrices compare active measurement coverage with FCC and Skyhook.

Total denotes the number of active measurements in each category.

FCC Skyhook FCC Skyhook
Active Total NC C NC Cc Active Totait NC C NC C
No Coverage 266 19% 81% 32% 68% No Coverage 324 6% 94% 21% 79%
(NC) (NC)
Coverage (C) 1,440 0% 100% 5% 95% Coverage (C) 1,361 0% 100% 5% 95%

(a) Verizon (b) T-Mobile

FCC Skyhook FCC Skyhook
Active Total NC C NC Cc Active Totait NC C NC C
No Coverage 568  25% 75% 53% 48% No Coverage 231  96% 4% 99% 2%
(NC) (NC)
Coverage (C) 1,095 2% 98% 7% 93% Coverage (C) 1122 21% 79% 20% 80%

(c) AT&T (d) Sprint
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within a tribal boundary. However, the
results remained qualitatively similar
and did not impact the findings pre-
sented here.

Results: Table 3 shows the percent-
age of total census blocks covered by
each cellular operator, according to
FCC and Skyhook data, broken down
by census-block type. Among the four
operators, T-Mobile covers the great-
est number of census blocks based
on both FCC and Skyhook data, while
Sprint covers the fewest. All four cel-
lular operators have relatively higher
coverage for both tribal and non-tribal
urban census blocks. However, all op-
erators except Verizon offer their low-
est coverage in tribal rural areas. For
some operators, the differences be-
tween non-tribal rural and tribal rural
are as great as 23% (based on Skyhook
data) and 11% (based on FCC data).

The extent of LTE coverage differs
between the two datasets. For three
out of four providers, Skyhook shows
lower coverage than the FCC, particu-
larly in the rural census blocks. For
instance, FCC T-Mobile data shows
coverage in 92% of tribal rural blocks,
whereas Skyhook shows coverage in
only 63% of such blocks. For Sprint, on
the other hand, Skyhook shows more
census blocks covered than the FCC.
This could have been due to multiple
reasons, including: there are differ-
ences in the propagation models used
by Skyhook and Sprint to estimate cov-
erage, with the former’s models being
more generous than those of the lat-
ter, or Skyhook data is collected across
time, and Sprint may have discontin-
ued or temporarily disabled some of
the cells, which is challenging to de-
tect from the crowdsourced data.

Figure 4 visually compares the LTE
coverage maps from the FCC and the
Skyhook datasets for Verizon and
Sprint. We more deeply examined the
discrepancy, mapped in yellow in Fig-
ure 4a. Table 4 shows the number of
census blocks where there is coverage
according to the FCC but none accord-
ing to Skyhook for each operator. Cov-
erage claims in both tribal and non-
tribal rural census blocks disagree the
most. The number of such blocks are
particularly high for Verizon (19, 126
overall) and T-Mobile (18, 189 over-
all). There are two possible reasons
for this disagreement: either network



operators lack adequate infrastructure
in rural areas but tend to overestimate
coverage while reporting it to the FCC,
or Skyhook is missing data points
from rural census blocks, where fewer
people carry UEs. The latter case will
lead to either some LTE cells not be-
ing detected or an inaccurate charac-
terization of cell coverage due to fewer
measurements.

To understand which of these po-
tential reasons for disagreement is
more likely, we checked whether Sky-
hook shows 3G coverage for these
census blocks (where the FCC reports
LTE coverage but Skyhook does not).
If Skyhook reports 3G coverage in
these blocks, this suggests that users
may have contributed to the Skyhook
dataset in these census blocks; there-
fore, LTE coverage would have been
detected if it existed. Note: A more ac-
curate approach would have been to di-
rectly consider the location of end-us-
er measurements connected using 3G
technology and analyze whether they
fall within LTE coverage areas in the
FCC data. However, we did not have ac-
cess to these end-user measurements
due to Skyhook’s privacy policy. In-
stead, we considered the 3G coverage
maps as a reasonable approximation
for our analysis and generated a 3G
coverage map at the census-block level
for these areas in the same manner as
previously described. The number of
census blocks that show only 3G cover-
age according to Skyhook is presented
in Table 5. We observed a significant
number of census blocks where Sky-
hook detects 3G coverage, indicating
that the FCC LTE coverage claims may
be overstated in these areas. The num-
ber of such blocks is greater for tribal
rural areas (up to 9%), thus indicating
a higher mismatch of the two datasets
in tribal rural areas.

Active measurements compared to
FCC and Skyhook coverage. In this sec-
tion, we compared our own active mea-
surementswith the coverage maps from
the FCC and Skyhook described previ-
ously. We focused on the geographic re-
gion around Santa Clara Pueblo, which
lies north of Santa Fe (see Figure 2), a
region with a mix of urban, rural, and
tribal population blocks.

Methodology. We used the service-
state readings collected in our mea-
surements for this analysis (see sec-

tion called “Targeted Measurement
Campaign”). We also collected infor-
mation about the connected cell’s
technology (for example, LTE) and
the geolocation of the measurements.
This information is used to infer
whether LTE coverage exists at a loca-
tion. We consider LTE to be available
if the service state shows IN_SERVICE
to indicate an active connection and if
the associated cell is an LTE cell. We
term this the active LTE coverage. We
then compared the FCC and Skyhook
coverage with the active LTE coverage
to see if the datasets agreed. Note: We
used the coverage shapefiles for both
Skyhook and the FCC in this com-
parison instead of the census-block
centroid approach. This allowed us to
more precisely compare coverage for a
location, especially if a census block is
only partially covered.

Results. Table 6 shows the confu-
sion matrices that compare active
LTE coverage with reported cover-
age from the FCC and Skyhook maps.
Both maps show coverage at locations
where our measurements did not. In
the case of Verizon, 81% of the mea-
surements with no coverage are from
locations reported as covered by the
FCC. This over-reporting is lowest for
Sprint and highest for T-Mobile.

We also observed significant dis-
agreement (up to 79%) between Sky-
hook coverage and our measurements.
Two possibilities may explain this:
paucity in Skyhook UE signal-strength
readings available for cell location and
coverage radius estimation, or an error
in the cell propagation model, itself
possibly due to variations in environ-
mental conditions, such as the terrain.
In either case, Skyhook is more in line
with our measurements than the FCC
in reporting areas with no LTE cover-
age. For example, in the case of AT&T,
75% of our measurements with no LTE
coverage belong to areas reported as
covered by the FCC, compared to just
48% by Skyhook.

Recommendations

In this section, we discuss some of the
implications of our experience col-
lecting and analyzing coverage data
and offer recommendations and di-
rections for future work based on our
findings.

Recommendations for the FCC.

contributed articles

Our findings make a case for including
mechanisms that validate ISP-report-
ed coverage data, especially in rural
and tribal regions. Given the scale of
cellular networks, crowdsourcing cov-
erage measurements are a viable ap-
proach to validating access as opposed
to controlled measurements. Within
crowdsourcing, we suggest leveraging
incidental rather than voluntary ap-
proaches, possibly working with third-
party services that collect network
measurements as part of their service
process (as in the case of Skyhook).

In addition, crowdsourcing alone
may not be sufficient for determin-
ing coverage in some cases. Even with
the more complete datasets provided
through incidental crowdsourcing,
rural areas tended to receive signifi-
cantly fewer measurements per tower.
In such cases, mechanisms need to be
developed to precisely determine the
areas of greatest disagreement using
sparse crowdsourced datasets. Re-
sources can then be focused to target
data collection in these areas instead
of a blanket approach that measures
coverage everywhere.

Recommendations for crowd-
sourced data collection. We find
some shortcomings in the existing
crowdsourced datasets. First, exist-
ing datasets only report areas with
positive coverage—that is, areas where
coverage is observed. This makes it
difficult to distinguish areas that lack
coverage from areas for which no mea-
surements were gathered. Recording
areas that lack a usable signal can en-
able stronger conclusions from crowd-
sourced data.

Second, we note that even crowd-
sourced datasets are prone to overesti-
mation of coverage, potentially due to
cell location and coverage estimation
errors. Research efforts that effectively
use the knowledge of cellular network
design are needed for an accurate
characterization of coverage from
crowdsourced measurements. For in-
stance, existing cell location estima-
tion techniques localize cells indepen-
dently and are error-prone when there
are few end-user measurements.' In-
stead, one can use the fact that a sin-
gle physical tower in an LTE network
hosts multiple cells. Thus, algorithms
that jointly localize cells for which the
end-user measurements are in physi-
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contributed articles

cal proximity may provide higher ac-
curacy even with fewer end-user mea-
surements. Similarly, alternate data
sources can also be considered for
localizing cell infrastructure, such
as using geo-imagery data to identify
physical towers, or directly obtaining
infrastructure data from entities that
build and manage physical cell towers
(usually different from cellular ISPs).

Measuring access beyond binary
coverage. While the focus of this
work is on understanding coverage,
we recognize that a binary notion of
coverage alone does not necessarily
indicate the existence of usable LTE
connectivity. Other factors can impact
end-user experience in a “covered”
area, such as low signal strength or
poor middle-mile connectivity. Thus,
future coverage-measurement efforts
must augment coverage reports
with measurements of performance
to provide models that better align
with user experiences. Measuring
such performance metrics poses a
greater challenge because end-user
experience depends on myriad fac-
tors beyond last-mile link quality.
We believe that increasing commu-
nity awareness is the way to tackle
this problem—for example, through
workshops in public libraries or com-
munity meetings on the importance of
measuring mobile coverage.

Finally, we also note that access and
adoption are different, and there are
issues beyond access that might also
warrant measurement and consider-
ation as accountability measures for
operators. Our collection of ground
truth datasets involved five days driv-
ing through Rio Arriba County in
northern New Mexico. In preparation
for the trip, we worked to obtain SIM
cards that would enable us to access
the networks of the four major U.S. LTE
operators. This was surprisingly diffi-
cult; over the course of a month lead-
ing up to the measurement campaign,
we spent a collective 24 hours in vari-
ous operator kiosks and stores in three
states to obtain eight SIM cards (one
for each major operator). At one of
the Santa Fe stores, we encountered a
woman who had to drive an hour from
Las Vegas, NM to address some of the
issues she was having with her mobile
service operator that were preventing
her from using her data plan. While
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these anecdotal experiences mirror
the qualitative claims of coverage over-
estimation, they do introduce a new
set of issues that must be considered
to effectively reduce the barriers of In-
ternet access for rural communities.

Conclusion

In this article, we quantitatively ex-
amined the LTE coverage discrepancy
among existing datasets collected
using different methodologies. We
found that existing datasets display
the most divergence when compared
with each other in rural and tribal ar-
eas. We discussed our findings with re-
spect to theirimplications for telecom-
munications policy. We also identified
several future research directions for
the computing community, includ-
ing mechanisms to augment existing
datasets to precisely determine areas
in need of more concerted measure-
ment efforts; improved coverage-es-
timation models, especially for areas
with a lower density of crowdsourced
measurements; and accurate and scal-
able measurement of access beyond a
binary notion of coverage.
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