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Abstract

The growth rate hypothesis (GRH) posits that variation in organismal stoichiometry (C:P and
N:P ratios) is driven by growth-dependent allocation of P to ribosomal RNA. The GRH has
found broad but not uniform support in studies across diverse biota and habitats. We synthesize
information on how and why the tripartite growth-RNA-P relationship predicted by the GRH
may be uncoupled and outline paths for both theoretical and empirical work needed to broaden
the working domain of the GRH. We found strong support for growth to RNA (r>= 0.59) and
RNA-P to P (r?= 0.63) relationships across taxa, but growth to P relationships were relatively
weaker (1?=0.09). Together, the GRH was supported in ~50% of studies. Mechanisms behind
GRH uncoupling were diverse but could generally be attributed to physiological (P accumulation
in non-RNA pools, inactive ribosomes, translation elongation rates, and protein turnover rates),
ecological (limitation by resources other than P), and evolutionary (adaptation to different
nutrient supply regimes) causes. These factors should be accounted for in empirical tests of the

GRH and formalized mathematically to facilitate a predictive understanding of growth.
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Introduction

What biological mechanisms link the biochemical properties of cells to dynamical processes in
ecosystems? Seeking answers to this question has led to development of stoichiometric theory.
Building on fundamental concepts of mass balance and established elemental frameworks
(Sprengel 1828; von Liebig 1855; Lotka 1922; Redfield 1934; Reiners 1986), Ecological
Stoichiometry was first developed to explain how the balance of multiple elements shapes
ecological interactions (Sterner & Elser 2002). This approach has provided insight into how the
elemental composition (in terms of carbon (C), nitrogen (N), and phosphorus (P)) of organisms
impacts trophic dynamics and biogeochemical cycling. Biological Stoichiometry was developed
as a complementary framework to explain sources of variation in organismal C:N:P
stoichiometry in biochemical, cellular, and evolutionary terms (Elser et al. 2006; Jeyasingh et al.
2014). Combined, the emergence of this stoichiometric approach has been accelerated by
collaboration among biologists and mathematicians because principles of mass conservation
make biological processes readily approachable in mathematical terms (Loladze et al. 2000;

Andersen et al. 2004; Kuang et al. 2004; Elser et al. 2012; Peace et al. 2021).

The C:N:P composition of an organism shapes its ecological interactions across scales.
At the ecosystem scale, biomass C:N:P stoichiometry determines the elemental composition of
detritus generated from that biomass (Killingbeck 1996), the rates and ratios of nutrients recycled
by consumers (Goldman et al. 1987a; Caron et al. 1988; Elser & Urabe 1999), as well as carbon
use efficiency across scales from organisms to ecosystems (Goldman et al. 1987b; Cebrian &
Lartigue 2004; Manzoni ef al. 2018). Given the ecological importance of stoichiometric
variation, considerable effort has been expended in documenting and explaining differences in

C:N:P ratios at the organismal scale. For example, an early focus in stoichiometric plankton
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ecology was given to explain the stoichiometric contrast of Daphnia (C:N:P ~80:13:1 molar) and
calanoid copepods (~240:39:1) that was associated with food-web driven effects on ecosystem
N- vs. P-limitation (Sterner ef al. 1992). Since variation in zooplankton %P (i.e., P content
expressed as a percentage of dry mass) can be up to 10-fold higher than variability in %C and %
N (Andersen & Hessen 1991; Elser et al. 1996; Sterner & Elser 2002), an understanding of the
basis of variation and regulation of P content became an essential target of stoichiometric studies
(Sterner & Elser 2002). Towards that end, a key emphasis in Biological Stoichiometry has been
the growth rate hypothesis (GRH), which posits a tripartite association (Fig. 1) among P content
(and thus C:P and N:P stoichiometry), allocation to P-rich ribosomal RNA, and growth rate

(Elser et al. 2000).

Over 20 years after its formal introduction (Elser et al. 2000), the GRH has stimulated a
tremendous amount of research into the elemental underpinnings of growth. Here, we outline the
working domain of the GRH and its original assumptions and discuss the biological insights it
has generated. We also explore the cellular processes and environmental conditions responsible
for deviations from GRH predictions. By doing so, we seek to clarify some of the confusion that
exists around the GRH and outline important processes affecting GRH couplings that should be
taken into consideration in the future. Finally, we discuss how mathematicians and empiricists

can work together towards developing and implementing a robust and more inclusive GRH.

Development of the GRH

The GRH states that variation in organismal stoichiometry (in particular, C:P and N:P
ratios) is driven by growth-dependent P allocation to ribosomal RNA (Fig. 1). To grow,

organisms must translate C and N-rich proteins through the use of P-rich ribosomal RNA,
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meaning that growth rate is a primary trait governing organismal C:P and N:P stoichiometry.
Note that in the following we focus on variation on P content (rather than C:P or N:P per se),
given that C and N contents show more modest variation than P content (Gonzélez et al. 2017)
and thus P is the primary driver of variation in organismal C:P and N:P ratios in most, but not all,

situations.

While growth rate/RNA relationships were established in the 1950°s (Kjelgaard et al. 1958;
Schaechter ef al. 1958), Sterner and Hessen (1994) first hypothesized the linkages between
growth, RNA content, and P content in zooplankton. This idea was further developed in Elser et
al. (1996), which sought to describe how cellular biochemistry, life-history, and evolutionary
differences in growth rate explained differences in the N:P stoichiometry of organisms. These
ideas were codified in Elser et al. (2000), which extended this framework to a broader domain of
biota and identified plausible genetic mechanisms, related to ribosomal RNA gene transcription,

responsible for this tripartite coupling.

As originally set forth, the GRH was built on a set of key assumptions linked to the

central core of organismal growth - the role of P-rich ribosomes in protein synthesis.

Assumption Al: RNA-P. Growth-dependent variation in P allocation to RNA is proportionally
large enough to drive changes in organismal P content.

Assumption A2: Ribosome Allocation. The number of ribosomes in a cell controls the overall
rate of protein synthesis.

Assumption A3: Constant Translation Rate. Ribosomes translate proteins at or near their

maximum capacity.
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Assumption A4: Constant Protein Retention. A fixed fraction of synthesized protein
accumulates in the cell, contributing to growth.

The GRH was explicitly formulated to apply to biota without major storage mechanisms
of P (i.e., excluding vertebrates with P-rich bones), which could undermine A1l by weakening
relationships between organismal RNA and body P allocation (Elser et al. 2000). The GRH was
also intended to entail growth variation that is not driven by temperature. Changes in temperature
can alter growth rates; for example, high temperatures can allow enzymes and ribosomes to
operate faster (undermining A3), potentially decreasing or leaving unchanged (as opposed to
increasing) organismal N and P contents in support of translation at a given growth rate. Shortly
after it was proposed, it became clear that the GRH may not be applicable for relatively large
invertebrates (e.g., those >1 mg dry mass), as RNA contribution to total body %P is inversely
related to body size (undermining A1; Gillooly et al. 2005). While there is a clear need to
integrate all of these factors into stoichiometric theory (Cross et al. 2015), empirical work has
not yet been conducted across a wide-enough range of taxa for the development of holistic
generalized models to proceed. As a step towards this goal and bearing these assumptions in
mind, in the following we identify four mechanisms directly affecting organismal growth-
biochemical-elemental coupling and outline an integrative research framework that will advance

a predictive understanding of growth.

Fundamental mechanisms that affect the GRH

Because there is only one predominant metabolic pathway for protein anabolism (Ramakrishnan
2002) and protein synthesis is a primary driver of growth (Milo & Phillips 2015), strong
RNA/growth relationships must generally hold in protoplasmic chemistry although the

consistency of growth/P and RNA/P relationships are likely to be less reliable. Indeed, we
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propose that one or more fundamental mechanisms can weaken the tripartite associations posited
by the GRH at the organismal scale. Fig. 2A depicts these mechanisms in order of their
corresponding assumptions (A1-4); they are: non-RNA P-storage (Mechanism M1), the active
state of ribosomes (M2), translation elongation rate (M3), and protein turnover rate (M4). It is
worth noting that many other environmental factors (e.g., temperature) and intracellular
parameters (e.g., transcription) absent from this list can indirectly affect the couplings proposed
by the GRH (hereafter, GRH decoupling) by influencing one or more of these four mechanisms.
Therefore, by combining modeling approaches and empirical measurements of mechanisms M1-
M4, we can better understand the reasons why the GRH is supported or not, enabling us to better

predict growth and biomass stoichiometry under ecologically relevant conditions.

Due to the empirical difficulty of measuring mechanisms M2-M4, most of our
understanding of GRH decoupling is related to M1, the influence of non-RNA P storage. A
significant but variable proportion of cellular P can be found in RNA, meaning that non-RNA P
found in storage or structural pools can decouple growth-P-RNA relationships by reducing the
relative contribution of RNA bound P to the total P pool (Flynn ef al. 2010). Perhaps the most
well-known example of P storage is inorganic polyphosphate, which is an ancient energy-P
molecule, found in cells from microbes to humans (Kulaev & Vagabov 1983). Polyphosphate is
most notably stored in vacuolar granules in microbes where it can contribute between 3-30% of
total P (Deinema et al. 1985; Bellinger ef al. 2014), explaining at least some of the wide
variation in microbial stoichiometry recorded in the literature. Another potentially important P
pool is phospholipid-P, which can contribute up to 25% of microbial P (Van Mooy & Fredricks
2010). The primary role of phospholipid-P is that of a structural molecule forming the lipid

bilayer of cell membranes, but this P may be released for metabolic use under severe P-limitation
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(Van Mooy & Fredricks 2010). Release of P from polyphosphate or phospholipids can interfere
with GRH predictions in microbes transitioning from high- to low-P conditions as P is internally
re-allocated from storage or structural forms into metabolically active pools such as RNA with
little or no change in overall organismal P content (Martin et al. 2014; Li et al. 2019).
Accumulation of these molecules could also decouple growth/RNA relationships from P under
other forms of nutrient limitation (discussed below), especially in natural microbial assemblages

(Kornberg et al. 1999; Mullan et al. 2002).

Even in small invertebrates where the GRH would be expected to apply (i.e., organisms <
1 mg dry weight; Gillooly et al. 2005), non-RNA P pools can still obscure growth/P
relationships. For example, insects can convert organic P into to longer term storage in inorganic
P-Mg-Ca granules inside their gut Malpighian tubules (Maddrell 1971). Rivaling the P storage
capacities of vertebrates, some crustaceans use a similar organ, the hepatopancreas, to store P
reabsorbed from their Ca-P based exoskeletons before molting (Luquet & Marin 2004). Large
increases in crustacean carapace P content are observed during carapace formation (Sather
1967), as P is secreted into the inner matrix of the carapace to bind Ca. These examples highlight
the dynamic elemental interactions and multiple functions of P in storage, structure, and
metabolism in addition to those considered by the GRH. Our appreciation of the extent of non-
RNA P pools across the tree of life is far greater today than it was during the initial development
of the GRH. These new insights require that non-RNA P pools be incorporated in stoichiometric
frameworks or risk further restricting its applicability. For example, 14-35% of body P in
juvenile Daphnia can be found in the carapace (Vrede et al. 1999; He & Wang 2020), indicating
that, in addition to microbial taxa, one of the two zooplankton genera that inspired the

development of the GRH may fall on the edge of the hypothesis’ original domain.
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As the GRH is centered around P, mechanisms M1-M4 can result in findings
contradictory to the GRH under growth limitation by resources other than P (Elser ef al. 2003).
For example, in a study of N-limitation in four marine phytoplankton species, growth rate was
positively coupled to RNA content as predicted by the GRH, but RNA and P contents were
negatively related due to storage of surplus P (M1; Liefer et al. 2019). A decoupling of growth
from RNA and P contents can occur in Daphnia feeding across N-limitation gradients (Elser ef
al. 2003), with animals retaining high %P and %RNA despite reduced growth. This may be
explained by reduced translation elongation rates of abundant ribosomes under N-limitation
(M3), caused by temporary pauses in mRNA translation (known as “ribosome stalling”) due to
reduced availability of N-rich amino acids (i.e., glutamine; Li et al. 2018). Alternately, N- and C-
limitation can decouple growth rate from RNA and P in Escherichia coli through the
accumulation of inactive ribosomes (M2, ~70% of the total ribosome pool; Li ef al. 2018). An
increase in inactive ribosomes weakens GRH relationships since these ribosomes contribute to
the RNA-P pool without producing proteins (and hence new biomass). While protein turnover
rates (M4) of E. coli are similar under most forms of nutrient limitation (Nath & Koch 1971),
these rates can be much higher in the photoautotrophic bacterium Synechococcus under N- and
sulfur (S)-limitation, compared to P-stressed conditions, due to the high requirements of N and S
for constructing light-harvesting pigments (Collier & Grossman 1992). High rates of protein
turnover keep proteins from accumulating in cells, thus decoupling growth from RNA and P.
These examples suggest that systematically exploring the mechanisms that influence the GRH
under different forms of nutrient limitation across different biota will be a promising avenue of

future work.
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In addition to these four mechanisms that affect the predictions of the GRH directly by
invalidating its assumptions, the role of transcription has been a relatively neglected part of
stoichiometric theory due to the low contribution of mRNA to the total RNA pool (~ 4 % in
mammalian cells, Wu et al. 2014; ~ 8 % in bacteria, Levinthal et al. 1962). Ribosomes consist of
both protein and RNA, meaning that elemental and energetic costs of transcription and
translation could result in trade-offs in ribosome production and abundance under different forms
of resource limitation (Fig. 2 B; Weille et al. 2015; Kafti et al. 2016). For example, the high P
demands of transcription (three P atoms for each transcribed codon) can limit the transcriptional
production of new ribosomal RNA in low-P environments (Loladze & Elser 2011; Li ef al. 2018;
Loladze 2019). Similarly, translation ultimately depends on N availability (1-to-4 N atoms for
each amino acid). Since transcriptional production of RNA can conceivably be limited by slow
translation of RNA polymerase under N-limitation, a fully stoichiometric view of growth should
also consider transcription rates and the N—protein—RNA synthesis pathway (Hessen et al.

2007; Loladze & Elser 2011).

In addition to elemental limitation, weakened RNA/P relationships under energy
limitation have been demonstrated for biota across the tree of life (Rhee & Gotham 1981; Elser
et al. 2003), highlighting the need for a better integration of element-energy coupling into the
GRH. One way to advance this integration is by focusing on functions of ATP use in anabolic
chemistry. Biosynthesis is the most CNP-demanding and energy intensive process in cells
(Buttgereit & Brand 1995), meaning that even short-term fluctuations in ATP levels could alter
organismal growth-RNA-P coupling. After biosynthesis, ion pumps use the next highest amount
of energy as they work to maintain optimal electrochemical gradients across cell membranes

(Buttgereit & Brand 1995). Thus, when an element is imbalanced across the cell membrane, cells

11
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allocate ATP to ion pumps (e.g., ATPases) to mitigate the imbalance. This activity could cause a
tradeoff in ATP allocation between ion balance and transcription (26 ATP for transcription of a
codon; Bier 1999), or translation (~4 ATP per peptide bond; Milo & Phillips 2015), slowing
growth by decreasing the efficiency at which assimilated P is converted into biomass (Jeyasingh
et al. 2020). Such costs are incurred in situations of scarcity or excess of various elements. For
example, under Fe-limitation, microbes can produce siderophores in an ATP-intensive process
(~84 ATP molecules; Hutchins ef al. 1991) to bind extracellular Fe for assimilation. Note that
such physiological adjustments are rarely unidimensional, as Fe-limitation also decreases growth
efficiencies via impacts on the electron transport chain (Tortell ef al. 1996). On the other hand,
when Fe supply is too high, cells upregulate Fe-ATPases to reduce Fe and avoid intra-cellular
oxidative stress (e.g., Barafiano ef al. 2000). Overall, taking a broader perspective of growth
regulation, instead of focusing largely on P, could help to understand deviations from the

predictions of the GRH under different types of resource limitation.

How do we test the GRH?

Inter- and intra-specific tests of the GRH

Although the GRH was developed based on observations of aquatic invertebrates (Elser ef al.
1996), because of the fundamental nature of RNA’s role in driving growth it has been widely
applied to explain intra- and interspecific variation in biomass P content across diverse
organisms (Elser et al. 2003; Makino et al. 2003; Godwin & Cotner 2018). Here we explain how
empirical tests of the GRH can be distinguished based on their experimental design and discuss
limitations and potential obstacles of applying these tests. These designs fall into three general

categories of evolutionary, physiological, and ontogenic comparisons, all of which are valid tests

12



277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

of the GRH. Combinations of tests are also valid for certain organisms, but often these designs
are confounded and thus do not constitute definitive tests of the GRH, which should be kept in

mind when interpreting results.

In evolutionary tests, genotypes are compared within or across species growing under
similar environmental conditions and developmental stages. Inter-specific evolutionary tests
must consider phylogenetic context and evolutionary contingencies that have resulted in
fundamental differences in the functional capability of cellular components, including the
ribosome. For example, eukaryotic and prokaryotic ribosomes differ in their RNA-content and
especially in their protein translation rates (M3, Sterner & Elser 2002). Indeed, typical translation
rates for prokaryotic ribosomes are 17-21 amino residues per second, nearly three times higher
than rates for eukaryotic ribosomes (6-9 amino residues per second, Ross & Orlowski 1982).
Thus, direct comparisons of P and RNA contents with growth rate may differ substantially across
domains of life. An evolutionary test between eukaryotes and prokaryotes could fail based on
these fundamental differences (Figs. 3 B, E, or F). Additionally, genotypes within or among a
species may have evolved different nutrient uptake or life-history strategies affecting nutrient
allocation patterns. Since growth is a labile trait (Lande 2014) that can evolve in response
environmental conditions such as nutrient availability (Frisch et al. 2014; Lemmen ef al. 2022),
comparisons of genotypes collected from different environments may also obscure predictions of

the GRH if not taken into account.

Physiological tests are tests of a single (“clonal”) genotype grown at similar developmental
stages (e.g. juvenile Daphnia) but subjected to different experimental treatments (e.g. food
quantity, quality, temperature, etc.). In these experiments, growth rate is either manipulated

directly (e.g., using chemostats) and/or indirectly by manipulating food concentrations or diet
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stoichiometry. Because of biological and logistical considerations, many physiological tests
actually consist of comparisons of a mixed pool of sexually produced genotypes and are thus a
combination of evolutionary and physiological tests. Genotype by environment experiments of
these mixed populations are interesting for many reasons, but they are not rigorous tests of the
GRH (which by definition operates at the organismal level) because growth-RNA-P coupling of
genotypes can vary considerably (Fig. 3B). For instance, differences in the length of rDNA
intergenic spacers alter the transcription rate of ribosomal genes in eukaryotes (Weider et al.
2005a) and translation (M3), growth, and P retention rates in Daphnia across dietary P gradients
(Roy Chowdhury ef al. 2014). These genetic differences alter the relationship between RNA-P
and total body P contents (Fig. 4 B> & B”’), obscuring the relationship between P and growth
rate predicted by the GRH (Fig. 3 C). The use of clonal organisms or sexually reproducing

individuals from inbred populations can be used to guard against this type of ambiguous result.

Ontogenetic tests are ones in which organisms are grown across their developmental cycle under
similar environmental conditions. Different developmental stages of a single genotype or
individual genotypes across species are compared one to another (e.g., nauplii vs. copepodites vs.
adults; neonates vs. adults, etc.). Ontogenetic tests often involve striking changes in storage
(M1), structure, and metabolism of most elements, including P (Sorensen 2008; Ebel ef al.

2016). Not surprisingly, this can impact growth-RNA-P coupling. For example, although nutrient
contents are often coupled with growth in certain plant tissue (i.e., leaves; Rivas-Ubach et al.
2012), P-allocation and growth rates of other plant tissues may differ throughout ontogeny,
making whole organismal growth/nutrient relationships challenging both to quantify and
interpret within the context of the GRH (Jing ef al. 2017; Bhadra & Cai 2019). When P-

allocation differs in this way, a variety of patterns could be observed, such as a stronger coupling
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during juvenile stages (Fig. 3A or E), a weaker coupling at adult stages (Fig. 3C), or even no
coupling at the organismal level (Fig. 3C). Ontogenic tests are often combined with
physiological or evolutionary tests, which although not definitive tests of the GRH, can still yield
useful insights. For instance, sexually reproducing copepods, Mixodiaptomus laciniatus,
collected across field P gradients can exhibit strong GRH coupling throughout their
developmental cycle despite growth rate declines of nearly 3 orders of magnitude and a reduction
in RNA-P of 60% (Carrillo et al. 2001; Bullejos et al. 2014). Total P contents also vary similarly
in magnitude within and among individual life-stages, and while the influence of genetic and
environmental factors cannot be ruled out, %P is strongly related to biomass gain (Carrillo et al.

2001), suggesting that GRH coupling may also occur within ontogenic stages.

Metadata Analyses

Early support for the GRH first came from a synthetic study of primarily original datasets (n=9),
finding that, while growth/RNA and growth/P relationships differed considerably across the tree
of life, these relationships within taxa tended to be positive and that RNA-P largely accounted
for variation in organismal P both within and across species (Elser ef al. 2003). Considerable
support for the GRH was provided by a subsequent analyses of results from 43
stoichiometrically-explicit studies (predominantly consisting of datasets of P-limited
zooplankton), indicating that each of the tripartite couplings predicted by the GRH were
observed ~70% of the time (Hessen et al. 2013). Other studies focusing on phytoplankton found
that, while general relationships between growth rates and N:P ratios were evident (Hillebrand et
al. 2013), considerable variation in phytoplankton stoichiometry/growth relationships was
observed that could be attributed to P storage under non-P limiting conditions (Flynn et al.

2010).
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To update our understanding of GRH coupling across diverse taxa, we extended the
original synthetic work of Elser et al. (2003) with a study of primary growth, RNA content, and
P content data provided by stoichiometric researchers that were requested following a systematic
literature search of papers referencing the “growth rate hypothesis™ (see Supp. Mat. S1 for
further details). We obtained data from 26 studies, containing 118 unique datasets of a single
species or genotype and one dataset for a field-collected mixed bacterial assemblage that was
included in the original 2003 analysis. Most study organisms were aquatic (75%), but taxonomic
coverage of the database was relatively diverse including 59 species of: zooplankton (n=15
species), phytoplankton (11), aquatic invertebrates (10), terrestrial invertebrates (7), plants (8),
fungi (7), bacteria (3), and human cancer cells (1). Studies consisted mostly of manipulative
experiments involving P (9), P co-limitation by other elements/macromolecules (8), or water
stress (2). Two studies measured ontogenetic changes under nutrient-replete conditions, and five

studies of organisms collected from natural environments were also included.

Almost 20 years after the original evidence was presented by Elser et al. (2003), these
additional data generally confirm the strong positive relationships between RNA and P predicted
by the GRH. While somewhat weaker (r*= 0.63 compared to 0.78 in Elser et al. 2003), inter-
specific relationships between %RNA-P and organismal body %P have remained robust in
datasets confirming the GRH (n=20), with a slope (0.95 £ 0.03 SE) remarkably similar to the
originally reported value of 0.97 £ 0.05 SE (Fig. 5). Five out of 25 datasets (20%) did not
confirm predicted relationships between %RNA-P and %P. Nevertheless, when data from these
individual studies were analyzed together, the combined data still confirm positive cross-
taxonomic relationships predicted by the GRH (1?=0.55) with a similar slope (1.59 £ 0.22) as

reported in Elser et al. (2003; 1.37). The average percentage of total biomass P found in RNA
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was somewhat lower than previously reported (39.6 = 19.5 SD vs. 49 £ 5.0 SD in Elser ef al.
2003), yet P in RNA represented a substantial, though variable, proportion of total organismal
body %P, ranging from 10.8% to 82.3% across species. Slopes of %RNA-P to %P regressions
did not differ systematically among taxa (Supp. Mat. Fig. S1) but varied considerably for
individual species with comparable numbers of slopes less than, greater than, or
indistinguishable from one. Decoupling of P from RNA was most commonly associated with non
P-limiting conditions, occurring under C-limitation in ants (Kay e al. 2006) and bacteria (Elser
et al. 2003) and in Daphnia grown under N-limitation or nutrient-replete conditions (Elser ef al.
2003; Weider et al. 2004). Overall, these results reinforce the GRH assumption that RNA
allocation in non-vertebrates is a major factor shaping organismal body P-content, especially
under P-limited conditions.

In contrast to RNA and P, support for coupling between growth rate and P content was
mixed, as statistically significant positive relationships were only found in 52% of datasets.
Across taxa, growth was significantly (P< 0.001) but weakly (r>=0.09) related to %P both in
studies confirming the GRH (Fig. 6 A) and in non-confirmatory datasets (Supp. Mat. Fig. S2;
P<0.001, 1*=0.12). Linear increases in %P were observed in organisms growing up to 0.89 d!,
but these relationships plateaued and were insignificant above this threshold, indicating either a
saturation of %RNA-P needed to support growth or differences in RNA-P coupling in
prokaryotes at higher growth rates. Scatter around these relationships was high, and reaction
norms for individual datasets were diverse, highlighting considerable taxonomic variation in how
organismal P-use is connected to growth. Indeed, we documented six cases where growth rate
was negatively related to %P in: photoautotrophs grown across P-gradients or diluted growth

media (Canavate et al. 2017; Brandenburg et al. 2018), a slow-growing detritivorous insect
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raised across N:P gradients (Halvorson et al. 2019), a mixed bacterial assemblage experiencing
C-limitation (Makino & Cotner 2004), and two plants experiencing water stress (Niu et al. 2019;
Sun et al. 2021). As growth-RNA relationships across taxa were comparatively stronger than
those for growth rate and %P (r>=0.59; Supp. Fig. S3), our analysis indicates that growth/P
relationships are the weakest link in the GRH. This result is not entirely surprising as
stoichiometric theory has moved from considering organismal body % P to be a fixed species-
specific property to a dynamic phenotypic trait that is better characterized by taxon-specific
reaction norms (Prater ef al. 2017b; Sherman ef al. 2021). As GRH predictions were weakest
under non-P-limited conditions, we now discuss the development of stoichiometric models
designed to improve our understanding of mechanisms behind the uncoupling of growth, RNA,

and P relationships under other forms of resource limitation.

Towards next-generation stoichiometric models

The development of stoichiometric models mirrors the development of the field itself, which
initially focused on ecological dynamics before incorporating molecular processes. Thus, early
models focused on the effects of elemental imbalances between producers and consumers on
population growth (Andersen 1997; Loladze et al. 2000) rather than on cellular biochemistry and
organismal growth. These models tied producer growth to P availability, where growth
decreased with producer P:C ratios until ceasing when the producer P:C ratio reached a pre-
defined minimum, (conceptually similar to the non-ribosomal P-pool; M1). Most importantly,
food quality effects were incorporated into population dynamics theory for the first time as lower

producer P:C ratios reduced consumer growth. However, consumer stoichiometry was assumed
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to be fixed in these models, meaning that, contrary to the GRH, reduced growth did not affect

consumer P:C.

Subsequent models more directly linked consumer growth to elemental composition by
including RNA and completing the tripartite coupling of the GRH. Vrede et al. (2004) showed
that differences in protein:RNA ratios at maximum growth could explain macroevolutionary
patterns in species N:P ratios, as originally proposed by the GRH (Elser et al. 1996; but see
Seidendorf ef al. 2010). Further work demonstrated that microevolutionary and ecological
changes in consumer stoichiometric traits tied to growth/P coupling (e.g., IDNA intergenic
spacer lengths that influence RNA transcription rates; Weider ef al. 2005b; Box 1) can alter
population growth dynamics and consumer P:C stoichiometry of a species (Yamamichi et al.

2015; Dissanayake ef al. 2019). These models demonstrate changes in stoichiometric coupling

on eco-evolutionary scales, yet they do not model the underlying molecular processes connecting

growth rate to body stoichiometry.

Despite its focus on P and RNA, the growth rate limiting mechanism of the GRH is

translation, the synthesis of proteins from N-rich amino acids. This protein centric view has

traditionally been the norm in microbial growth research, with one class of ribosome models that

even treats ribosomes as self-replicating entities made entirely of protein (Koch 1988; but also

see Klumpp et al. 2013; Scott ef al. 2014). These simple models can explain linear relationships

between ribosome content and growth rate through cellular optimization of translational capacity

by differential expression of ribosomal and non-ribosomal proteins. Ribosomal P costs play no

role in these models because their formulations do not include RNA, and maximal growth rates

should occur at 100% ribosomal protein production, which is biologically impossible. To avoid

this problem of “unlimited ribosomes,” these models constrain ribosomal abundance with a
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fixed, growth-invariant “overhead” fraction of non-ribosomal proteins (Scott & Hwa 2011). A
more biologically meaningful way of incorporating ribosomal production costs into growth
models is to focus on the differential N and P demands associated with ribosomal proteins and
RNA (Kafti et al. 2016).

In order to grow, organisms must first acquire N and P from the environment to produce
ribosomal proteins and RNA. A stoichiometric model dynamically linking translation and
transcription shows that, for any given N:P supply ratio, there exists a unique
translation:transcription ratio and corresponding organismal N:P ratio associated with balanced
growth (i.e., where all major biochemical pools grow at the same rate; Loladze & Elser 2011).
This model shows that balanced microbial growth occurs at N:P supply ratios near Redfield
proportions of 16:1 (Redfield 1934), and microbial N:P ratios themselves are 16:1 under
nutrient-replete conditions due to the balance of translation and transcription. Limitation by
either element can reduce these rates (Kafti et al. 2016), altering relationships between microbial
growth rate, protein:RNA ratios, and N:P ratios. Specifically, at N:P supply ratios above 16:1
growth is P-limited leading to reduced RNA transcription rates, whereas low N:P supply ratios
reduce growth due to N-limitation of protein translation. In either case, microbial N:P ratios for
balanced growth deviate from 16:1 and instead fall between this ratio and the N:P supply ratio
(Loladze 2019). Thus, for a more complete stoichiometric understanding of growth limitation
under imbalanced resource supplies, transcription and translation should be given equal
consideration in stoichiometric growth models.

While the above models are individually capable of addressing certain GRH weakening
mechanisms (M1 and M3), further extensions to growth models provide a more comprehensive

view of stoichiometric growth physiology. Using a conceptually similar model formulation as
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Loladze and Elser (2011), Li et al. (2018) constructed a dynamical system to examine how
changes in ribosome activity (M2) and protein elongation rate (M3) under C-, N-, and P-
limitation mediate population growth rates u of E. coli. Like most growth models, u is defined as

the relative increase in protein mass, which is described by the equation

__ Rykemg

==
R, kom, is the mass of protein produced by active ribosomes, R,,,, where k,; is the peptide
chain elongation rate, m, is the average mass of amino acid, and P,, is the total protein mass in a
cell. While not originally formulated as a stoichiometrically explicit model, Phan ef al. (2021)
recently connected the Li ef al. (2018) model to the GRH by calculating bacterial N:P ratios
under each form of limitation, finding good agreement with empirical measurements. Further,
they showed that this model is capable of coherently capturing all experimental observations
under different nutrient limitation scenarios, providing a powerful framework for identifying
physiological mechanisms responsible for weakening GRH coupling under different forms of
nutrient limitation.

To include protein degradation effects (M4) in this model, the degradation rate could
easily be introduced into the rate of change of the protein pool d(P,,)/dt). Incorporating the
effects of non-RNA P-storage (M1), however, is more complex. One underlying assumption in
the growth rate expression is that the ratios of protein mass (P,,) and production (R,, k., m,) to

total biomass (F) and production of all other biomolecules (f) are constant (c) at steady state or

balanced growth. That is

— kaelma + f — kaelma + C(kaelma) — kaelm'a(1 + C) — kaelma
P,+F P, +cPB, P,(1+0¢) B,
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To account for M1, we can omit the constant ratio assumption and explicitly introduce the
dynamics of non-RNA P storage into variables f and F to study their relationship with growth
rate. These two parameters could also be used to incorporate energy costs into this framework
(Phan et al. 2021) and to form a comprehensive stoichiometric growth model by considering C
pools, including polyesters (Poblete-Castro ef al. 2012), carbohydrates (Liefer ef al. 2019), and
lipids (Wagner et al. 2015). Such C-rich molecules can represent a significant proportion (20-
80%) of total biomass under N- and/or P limitation, so their inclusion would allow stoichiometric
models to better predict C:P and C:N ratios in addition to N:P.

This model formulation can also be used to address some discontinuities between how
the GRH is conceptualized, modeled, and tested. Perhaps the greatest conceptual divide in GRH
research is that, while growth rate is most often empirically measured as the mass-specific rate of
total biomass production, it is theoretically and mathematically considered in terms of specific
protein production. These inconsistencies can be addressed by relaxing the constant ratio
assumption and expressing the active ribosomal pool and protein mass and production rates
relative to total biomass, making these estimates more comparable to empirical measurements.
Other dynamics not yet explored using this approach include the effects of transcription and
mechanisms M1-M4 on stoichiometric coupling during imbalanced growth. This knowledge is
crucial for formulating GRH-based predictions under environmentally relevant scenarios where
variation in environmental N:P supplies could alter organismal growth-RNA-P coupling and for
integrating these physiological responses into existing stoichiometric population dynamics
models.

Together, these modeling efforts have greatly increased our stoichiometric understanding

of growth, and their extension may be used to test the applicability and limits of the GRH. So,
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what would these models entail? Optimally, they should: 1) express organismal growth rates as
the translational output of the active ribosomal pool relative to total organismal biomass, 2) limit
ribosomal biogenesis by transcription/translational rates and their associated elemental and
energetic constraints, and 3) explicitly consider mechanisms M1-M4, which directly affect GRH
coupling. A comprehensive model of the GRH should be able to dynamically connect
stoichiometric nutrient availability to the macromolecular pools and physiological rates that
control organismal C:N:P ratios and growth. This model should also be flexible enough to study
GRH dynamics in eco-evolutionary, physiological, and ontogenic contexts to enable integrative

collaborative research efforts between modelers and empiricists.

Conclusions: Towards a holistic understanding of growth

When theory conflicts with sound empirical measurements, theoretical revisions are in order.
Experimental and modeling efforts over two decades suggest that this is the case for the GRH, as
it is for other aspects of stoichiometric theory. By focusing on four key mechanisms that directly
shape growth, biochemical, and stoichiometric coupling, we have provided a conceptual
framework for generating a better understanding of growth using stoichiometric principles. The
couplings posited by the GRH (and decoupling discussed herein) are established by the intense
cellular interplay among key non-substitutable resources (energy, C, N, and P) that are connected
by core metabolic processes common to all organisms — ATP generation, ribosome production,

protein synthesis, and mass/energy storage.

To develop a more robust GRH that advances the field of biological stoichiometry, a
broader range of rigorous, cross-taxon tests of the connections among growth, macromolecular

composition, and C:N:P stoichiometry are needed. The most useful, and challenging, advances
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will come from combining these more standard measurements with those of key cellular
processes of ribosome activity and protein production and turnover rates. Without this
knowledge, we lack fundamental information for formulating predictive models of growth based
on first principles that include the law of mass conservation and the central dogma of molecular
biology. To achieve this goal, closely integrated physiological, evolutionary, and ecological
experiments across model organisms that represent key functions in ecosystems and within the
framework of stoichiometric theory are necessary. We also need more studies of environmental
effects on the GRH in natural environments, especially for abundant organisms that grow well
under low elemental and energy supplies that are common in the field. Incorporation of non-
RNA P into the GRH framework could allow for the inclusion of long-exiled taxa (i.e., large
organisms and vertebrates), providing fresh insights by broadening the taxonomic scope of the
field. It could be argued that the applicability of the GRH has been limited by its predominant
focus on P; if so, the more diverse and inclusive framework presented here should ensure that the

GRH will continue to ongoing advancement in our predictive understanding of growth.
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Figure Captions

Figure 1: A schematic diagram of the Growth Rate Hypothesis (GRH). Tripartite relationships
that constitute the GRH (black arrows) are shown linking organismal %P, growth rate, and RNA
allocation, as well as potential ecological, evolutionary, and genomic drivers and consequences
of that coupling (gray). Note that a focus is placed on P content as it is most often the primary

driver of variation in organismal C:P and N:P ratios (rather than variation in %C or %N).

Figure 2. A) A schematic depiction of four mechanisms that can influence the coupling of
growth, RNA, and P proposed by the GRH. On the organismal scale, the first mechanism M1)
involves contributions from pools of non-RNA P, including storage of P in molecules such as
polyphosphates. Mechanisms M2, M3, and M4 constitute changes on the molecular scale that
individually or collectively affect the net protein production rate per ribosome. Mechanism M2)
involves change of the fraction of inactive ribosomes among all ribosomes. Mechanism M3)
entails differences in ribosome translation elongation rate, and mechanism M4) highlights
protein degradation or protein turnover rate. B) Effects of C-, N-, and P-limitation on cellular
functions. The figure shows the relationships between environmental resource supplies and
cellular functions that influence growth rate and could result in deviations from the GRH under

different types of resource limitation.

Figure 3: A conceptual depiction of scenarios that support or deviate from the GRH. Each line

depicts a relationship between organismal growth rate (i) and %P or %RNA. In each panel,

intra-specific data (individual lines) represent physiological and ontogenic responses within a
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taxon while inter-specific patterns (comparisons of different lines) depict evolutionary
differences among taxa: A) GRH supported intra- and inter-specifically, B) GRH supported
intra-specifically but not inter-specifically, C) GRH supported inter-specifically but not intra-
specifically (note that this is the current assumption of many stoichiometric models), D) GRH
contradicted intra-specifically but supported inter-specifically, E) GRH supported intra-
specifically but contradicted inter-specifically, and F) GRH contradicted both inter-specifically

and intra-specifically.

Figure 4: Theoretical relationships between organismal RNA and P. Relationships between
organismal dry mass contributed by P found in RNA (%RNA-P) and total organismal P content
(%P) of an organism are depicted using an individual line for each species, genotype, or
ontogenetic stage. A) GRH supported where all P is in the RNA pool (not physiologically
possible), B) GRH supported and RNA accounts for all variation in body %P, B’) GRH
supported but an organism is reallocating part its internal P pool to RNA, B’”) GRH supported
but an organism is increasing allocation to P in other pools in addition to RNA, C) GRH
supported but not important (i.e., growth-driven change in P is trivial), D) GRH not supported
due to shifts of stored P to RNA, D) GRH not supported because an organism is reducing its
growth rate (right to left) and accumulating excess P for diapause, and D’”) GRH not supported

due to P storage.

Figure 5. Empirical relationships between organismal %RNA-P and total body %P. Linear

regressions (dark black lines with 95% confidence intervals) across species were significant both

for individual studies (A) that confirmed the GRH and (B) those that did not confirm the GRH.
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Reaction norms for C) individual studies with slopes = to 1 D) >1, E) <1, and F) non-significant
slopes (P >0.05) are also shown. Solid reaction norm lines indicate individual experiments
confirming the GRH, and dotted lines are non-confirmatory experiments. Note that realistic

%RNA-P and %P relationships are only possible above the 1:1 line.

Figure 6. Relationships between organismal growth and body P content. Significant non-linear
relationships (P<0.001; r*= 0.09) were found between A) growth rates and %P across taxa using
a general additive model (GAM; white and black solid line with 95% confidence intervals shown
in dashed lines). Growth and %P increased linearly up to a growth threshold of 0.89 d™! (dashed
vertical line), identified from the first-derivative of the GAM. The linear portion of the curve was
also modeled separately using an ordinary linear regression in panel B (P<0.001; r*= 0.04;
slope= 0.45). Positive growth-P reaction norms for individual datasets are shown in panel C, and
a subset of responses for organisms growing < 2.0 d! are shown in panel D for clarity. Non-
significant (P >0.05) responses are depicted in panel E, and significant negative relationships

between growth and %P are shown in panel F.
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Box 1. Eco-evolutionary implications of the GRH

This box provides an introduction to the effects of altered biogeochemical cycling on eco-
evolutionary processes related to the GRH. Here we chose two traits, growth and P use
efficiency (PUE, biomass/P), to focus on as they are the most well-established in the
stoichiometric literature. We refer to the word “adaptation” throughout the box when we talk
about adjustments or changes in behavior, physiology, and structure of an organism to become
more suited to an environment (National Academies, Sciences of Engineering and Medicine

2022).

Rapid environmental change can disproportionately alter the availability of multiple
nutrients in the environment, affecting rates of organismal growth and production (Sardans et al.
2012; Pefiuelas et al. 2013). Cultural eutrophication driven by anthropogenic nutrient inputs from
agriculture, wastewater, and urban run-off continues to be a major problem, differentially
altering N:P ratios of aquatic ecosystems (Vitousek et al. 1997; Dudgeon 2019). Emission of N
and P from fossil fuel combustion and land use change affects both aquatic and terrestrial
ecosystems through atmospheric N and P deposition (Fowler et al. 2013; Steffen et al. 2015;
Scholz & Brahney 2022). This deposition can drive ecosystem shifts between N- and P-
limitation even in remote regions (Elser et al. 2009, 2010; Prater et al. 2021). Fossil fuel
combustion and changes in land use have also increased atmospheric carbon dioxide
concentrations to unprecedented levels in human history. Since atmospheric CO; equilibrates
with water, aquatic ecosystems have experienced an increase of CO: concentrations (Borges et
al. 2006; Melack 2016), which can alter the stoichiometric food quality and growth rates of

zooplankton (Urabe et al. 2003). These perturbations impose novel selection pressures that
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motivate the development of eco-evolutionary approaches to help understand and predict biotic

growth responses to altered biogeochemical cycling.

Organisms can adapt to biogeochemical changes over time through evolved differences
in growth rate and nutrient use efficiencies (Jeyasingh et al. 2009; Frisch et al. 2014; Lemmen et
al. 2022). For example, the rotifer Brachionus calyciflorus was selected for rapid growth under
high P supply and developed faster growth and higher P content, consistent with the GRH
(Lemmen et al. 2020, Preprint). However, rotifers selected for faster growth under P-limitation
were able to evolve faster growth rates while keeping their body P content the same. This
evolutionary decoupling of the GRH can perhaps be understood via insights provided by
Daphnia resurrection ecology experiments showing that genotypes adapted to low P conditions
can have higher P retention and PUE than those adapted to high P environments (Frisch et al.
2014). As genetic variation is higher for PUE than for growth and growth rate is a relatively
weak predictor of Daphnia P content (Seidendorf et al. 2010; Prater et al. 2017b), these studies
indicate that divergent growth/P relationships found throughout the literature may reflect a
situation in which it is not growth per se but multivariate trait evolution that shapes how
organisms obtain and use elements for growth (Lande & Arnold 1983; Sherman et al. 2017).
Since growth involves more than P, this could explain unexpected, correlated reductions in
minimal resource requirements and convergent evolution of biochemical/metabolic functions
under differential resource limitations (i.e., N, P, or energy) as observed in the green alga

Chlamydomonas reinhardtii (Tamminen et al. 2018; Bernhardt et al. 2020).

These evolutionary adaptations of organisms can also feedback to affect ecological
dynamics. For instance, Daphnia with higher growth rates and P-content in high P environments

(i.e., low PUE) tend to be poorer competitors under P-limitation due to genetically mediated
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tradeoffs linked to metabolic (glucose phosphate isomerase; Jeyasingh et al. 2009) and ribosomal
genes (rDNA; Weider et al. 2005). These tradeoffs could also explain differences in species
distributions across regional food quantity and P gradients in alpine and boreal lakes (Spaak et
al. 2012; Prater et al. 2017a) and may be related to habitat segregation of Daphnia species in
hybrid complexes adapted to different aquatic environments (Tessier & Woodruff 2002). Life-
history evolution might also drive ecological dynamics such as eutrophication-induced
community composition shifts from highly efficient, slow-growing, low P (i.e., high PUE) taxa
to fast-growing, less efficient, high P taxa with nutrient enrichment in streams (Gafner &
Robinson 2007; Singer & Battin 2007). However, growth and body stoichiometry of individual
species can often be poor predictors of species-specific shifts or community biomass
stoichiometry (Evans-White et al. 2009; Beck ef al. 2021), complicating long-standing

predictions of consumer-driven nutrient cycling (Sterner ef al. 1992).
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