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Simple Summary: Hormonal therapy for prostate cancer is often applied past the point of resistance, 

hence losing any future clinical value to the evolution of resistant strains. If the undesirable outcome 

of the treatment is forewarned, then clinicians can have an opportunity to adjust the treatment, which 

can result in better management of the cancer. Using a mechanistic mathematical model, we introduce 

two methods to enhance the accuracy of classical biomarkers for hormonal therapy failure. Our 

results show the value in measuring both prostate-specific antigen and androgen during hormonal 

treatment, which can potentially allow for better management of prostate cancer. 
 

 

Citation: Meade, W.; Weber, A.; Phan, 

T.; Hampston, E.; Resa, L.F.; Nagy, J.; 

Kuang, Y. High Accuracy Indicators 

of Androgen Suppression Therapy 

Failure for Prostate Cancer—A 

Modeling Study. Cancers 2022, 14, 

4033. https://doi.org/10.3390/ 

cancers14164033 

 
Academic Editor: Víctor M. Pérez- 

García 

Received: 15 July 2022 

Accepted: 18 August 2022 

Published: 20 August 2022 

 
Publisher’s Note: MDPI stays neutral 

with regard to jurisdictional claims in 

published maps and institutional affil- 

iations. 

 

Copyright: © 2022 by the authors. 

Abstract: Prostate cancer is a serious public health concern in the United States. The primary obstacle 

to effective long-term management for prostate cancer patients is the eventual development of 

treatment resistance. Due to the uniquely chaotic nature of the neoplastic genome, it is difficult 

to determine the evolution of tumor composition over the course of treatment. Hence, a drug is 

often applied continuously past the point of effectiveness, thereby losing any potential treatment 

combination with that drug permanently to resistance. If a clinician is aware of the timing of resistance 

to a particular drug, then they may have a crucial opportunity to adjust the treatment to retain the 

drug’s usefulness in a potential treatment combination or strategy. In this study, we investigate 

new methods of predicting treatment failure due to treatment resistance using a novel mechanistic 

model built on an evolutionary interpretation of Droop cell quota theory. We analyze our proposed 

methods using patient PSA and androgen data from a clinical trial of intermittent treatment with 

androgen deprivation therapy. Our results produce two indicators of treatment failure. The first 

indicator, proposed from the evolutionary nature of the cancer population, is calculated using our 

mathematical model with a predictive accuracy of 87.3% (sensitivity: 96.1%, specificity: 65%). The 

second indicator, conjectured from the implication of the first indicator, is calculated directly from 

serum androgen and PSA data with a predictive accuracy of 88.7% (sensitivity: 90.2%, specificity: 

85%). Our results demonstrate the potential and feasibility of using an evolutionary tumor dynamics 

model in combination with the appropriate data to aid in the adaptive management of prostate cancer. 

 
Keywords: mechanistic model of prostate cancer; predictive modeling; evolutionary cell quota 

framework; adaptive cancer management; dynamic indicator of treatment failure 
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1. Introduction 

Prostate cancer is the most prevalent cancer among men in the US, and therefore 

is a significant public health concern [1]. Treatment for prostate cancer has advanced 

considerably over the past several decades [2], but treatment resistance remains a significant 
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threat to every existing therapy. The high degree of heterogeneity in prostate cancer means 

that even treatments with a promising initial response can fail when the neoplasm inevitably 

evolves to become treatment-resistant [3,4]. Furthermore, applying any therapy to the point 

of failure only serves to further fortify the existing resistance. If it were possible to identify 

an incipient resistance then a clinician would have an opportunity to change treatment 

strategy to potentially reach a more favorable outcome of the overall regimen [5–7]. 

By nature, a defining characteristic of cancer is a highly unstable genome. As a result, 

the constituent cells of any neoplasm are endlessly differentiating [8–10]. Therefore, tumors 

tend not to be homogeneous collections of genetically identical cancerous cells [10]. New 

genomic variations arise continually and rapidly, and some inevitably confer traits that 

allow them to evade a previously effective therapy [10,11]. When applied to resistant cancer 

cells, treatment selects for the dominance of the resistant trait. Once the susceptible cells 

are eliminated, the tumor becomes permanently and irrevocably resistant to that treatment. 

This clonal model of resistance explains why it is undesirable to continue any therapy to 

the point of failure [10,12]. 

There is evidence that treatment resistance comes at the expense of fitness, which 

means resistant phenotypes are unlikely to become dominant in a treatment-free environ- 

ment [13]. Therefore, it has been suggested that one could exploit intercellular competition 

by adjusting the timing and intensity of treatment to effectively reduce the development 

of treatment-resistant phenotypes and thereby manage the progression of the tumor. This 

is the central idea of adaptive therapy, deeply rooted in ecological theory, but difficult to 

execute in practice [6,7,13]. 

Pretreatment, prostate cancers are androgen dependent. Androgens diffuse into 

prostate cells and bind to intracellular androgen receptors, which then activate prolif- 

eration and survival pathways in both healthy and cancerous prostate cells. For this 

reason, androgen deprivation therapy (ADT) is the standard of treatment for advanced or 

metastatic prostate cancer [14]. The therapy uses an agonist and/or antagonist of luteiniz- 

ing hormone-releasing factor combined with antiandrogen drugs to eliminate primary 

androgen production in the testes. ADT is initially effective at stopping and reversing the 

growth of the tumor, but treatment resistance inevitably arises [1,15,16]. 

The standard application of ADT involves continuously applying the treatment at 

maximum dosage to eradicate the tumor quickly (continuous androgen suppression, or 

CAS). However, due to the adverse side effects of ADT and the imminent development of 

treatment resistance, intermittent androgen suppression therapy (IAS) was theorized to 

be the better alternative. IAS is a rigid form of adaptive therapy, where ADT is applied at 

maximum dosage in intervals, cycling on and off treatment in periods of fixed duration or 

timed based on the growth of the tumor [17]. IAS has several advantages over CAS. Most 

notably, the off-treatment periods in IAS give patients a break from the adverse side effects 

of ADT, hence improving the overall quality of life for patients [18]. There was concern 

regarding the comparative effectiveness of IAS; however, meta-analyses show no statistical 

difference in time to remission between IAS and CAS [19]. 

Androgen also triggers the secretion of prostate-specific antigen (PSA), a protein 

normally found in seminal fluid. Usually, PSA is contained within the cytoplasm of 

prostatic acinar cells and the ductal epithelium. However, when the prostate becomes 

cancerous, PSA can leak into the bloodstream via disruption in the epithelial wall. PSA 

is detectable in the serum, and an elevated level of PSA is a strong indicator of prostate 

cancer presence and growth. Hence, clinicians can monitor prostate cancer progression 

using longitudinal measurements of PSA. However, the correlation between PSA levels and 

tumor volume is imperfect and can vary over time due to phenotypical and physiological 

changes in the cancer itself [20]. On the other hand, PSA measurements can be taken 

frequently and at a low cost, so they remain an indispensable tool that can be used to gain 

valuable insights into the dynamics of the tumor [17,21]. 

The development of dynamical models for prostate cancer dates back almost two 

decades [22]. Since then, there has been an array of models developed to study different 
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aspects of prostate cancer and its treatments [12,13,16,23–41]. Most of these results have 

been reviewed and synthesized previously [5,42,43]. 

In this study, we use a mathematical model to track the clonal evolution of prostate 
cancer cells. Using longitudinal measurements of androgen and PSA from a clinical trial 

for IAS, we demonstrate the potential of two new methods for predicting an imminent 

treatment failure due to the growing dominance of resistant cellular strains [17]. The first 

method depends on the mathematical model, while the second is model-free yet still based 

on the underlying theoretical implication of the first method. In this work, we classify all 

prostate cancer cell types into two broad categories: those susceptible and those resistant 

to ADT. For these two indicators of treatment resistance, or biomarkers, each has its own 

advantages, but both have the potential to be useful in clinical settings. 

2. Materials and Methods 

Our primary investigative tool is a mathematical model based on the Droop cell quota 

framework and multi-species competition theory [44–46]. We present the model in detail 

in the quick-guide box. Several important iterations of this model are included in the 

Supplementary Material. In summary, the model represents a system wherein androgen 

is produced and secreted into the blood, before diffusing into the intracellular spaces of 

cancerous cells in the prostate. The resulting cell quota of androgen, Q(t), is representative 

of the bound androgen receptors, which drive the proliferation and apoptosis of prostate 

cancer cells. In order to proliferate, cancer cells require a certain amount of bound androgen 

receptors. This minimum number of bound receptors is called the minimum cell quota, 

or q, within the Droop framework. For example, if a cell lacks sufficient bound receptors 

to support proliferation (Q(t) ≤ q), then the proliferation term becomes zero. The Droop 

functions have been used extensively to model prostate cancer [16,23–27]. 
As prostate cancer cells proliferate, they produce PSA. Previous studies considered the 

PSA production rate to be linearly dependent on the current amount of bound androgen 

receptors. To be more biologically realistic, we assume that the PSA production rate is 

proportional to the proliferation rate of cancer cells. That is, we assume if cancer cells do 

not proliferate, then they do not produce PSA. We test these two assumptions to show that 

our proposed alternative PSA production rate better captures the qualitative behaviors of 

PSA dynamics (see model formulation in supplementary material). These considerations 

for our modeling framework are highlighted in Figure 1. 

Model Quick-Guide Box 

This model is built on previous work by Kuang et al. [16,23–27]. A schematic is 

provided in Figure 1. 

The total volumes of cancer cells susceptible to treatment (Castration Susceptible or 

CS) and resistant to treatment (Castration Resistant or CR) are represented by x1 and x2, 
respectively. Hence, together dx1 and dx2 capture the rate of change of the total cancer 

dt dt 

population as it undergoes intermittent androgen suppression therapy (IAS). Our model of 

this dynamic takes the following form: 
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The maximum functions represent androgen-dependent proliferation. In the presence 

of sufficient androgen (i.e., Q > qi), proliferation and PSA production rates are positive. 

Otherwise, when androgen is below the minimum cell quota level, proliferation and PSA 
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secretion rates fall to zero. Additionally, androgen also affects the transformation rate based 

on a standard saturation. 

 

Figure 1. Schematics of model foundation and evolutionary framework. (a) Androgen (testosterone) 

enters the cancer cells. Some is converted to the potent dihydrotestosterone (DHT) with the help of 

5-α reductase. Both then bind to the androgen receptors (AR). The bound androgen receptors send 

proliferative signals for cancer to grow and produce PSA (P). PSA then leaks into the bloodstream. 

(b) The distribution of the minimum cell quota (q) prior to treatment, q profile skews toward higher 

values of q. This means most cancer cells are initially sensitive to treatment. During each treatment, 

this evolutionary landscape shifts toward a lower average q, meaning an increasing number of cells 

become less dependent on exogenous androgen. 

The density-dependent death term represents the competition between and among 

the x1 and x2 populations for other resources, including glucose and oxygen. We may 

select different competition rates d to reflect the cost of gaining resistance and account 

for evolutionary trade-offs [13,28,29]. The current model assumes, however, that even 

without treatment, the tumor is guaranteed to become treatment-resistant given sufficient 

time. This is because, for the sake of simplicity, we purposefully neglect the cost of 

resistance and the variety of potential subclones. This omission is justified because the 

modern theory of treatment, that is, “hit hard, hit fast”, results in the total destruction of 

all susceptible clones [42]. This model formulation is suited to our goal of investigating 

treatment resistance under current clinical practice. A model with an explicit competition 

rate would be required to explore adaptive therapy [13,29,41]. 
A crucial component of our modeling framework is the pair of minimum cell quota 

parameters q1 and q2 that define the threshold amounts of bound androgen receptors 

required for the proliferation of the two subclones. While we elect to model only two 
subpopulations, the classification is based on a population average, so the resistance level 

of x2 may change over time to account for evolutionary factors. In particular, we expect 
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the resistant population x2 to demonstrate a decreasing average dependence on androgen 

as the treatment continues. This means we expect to see a diminishing q2 as the model 

calibrates its value over the course of treatment (Figure 1b). This means x2 represents the 
currently dominant resistant clone. 

Under selective pressure of the treatment, cells may adapt to increase their survivability 
(i.e., mutations, genomic or epigenetic changes). The transformation term represents the 
rate at which cells adapt and become more independent of androgen over time. Previous 
modeling studies have shown that it is not necessary to include a transformation term 

from resistant to sensitive phenotypes [25]. The parameter K determines how sensitive this 

transformation rate is to the level of bound androgen receptors. 

The free androgen and the bound androgen receptors are represented by A(t) and Q(t), 
respectively. We model their dynamics as follows: 
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Production of free androgen follows a negative feedback loop where the maximum 

rate parameter is γ1 and the homeostasis androgen level is A0. Testicular production 
of androgen (primary production) is intermittently suppressed by the administration of 

ADT, which is represented by the Heaviside function u(t). The rate of adrenal androgen 
production γ2 is constant and fixed at a small percentage of the primary production γ1. 
Serum androgen concentration degrades at constant-per-capita rate δ. 

Free androgen diffuses into cells and binds to androgen receptors at a maximum rate m. 

We assume that androgen receptor binding happens instantaneously when androgen enters 

the cell. The final term in dQ is motivated by the laws of conservation, and accounts for 

intracellular androgen that is consumed by the cancer to fuel its proliferation [25]. 
In general, existing prostate cancer models are built on the assumption that the rate 

of PSA production is a linear function of the amount of tumor cells [5]. However, PSA 

production is intrinsically linked to cancer proliferation via the same transcription factor: 

bound androgen receptors (Figure 1a). We incorporate this observation into our model by 

formulating the PSA production rate as a function of cellular activity. In addition, we add a 

baseline production of PSA due to healthy prostate cells. These assumptions lead to the 

following equation for PSA dynamics: 
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One desirable consequence of connecting the cellular proliferation function to the 

PSA production rate is the explicit connection between minimum cell quotas, q1 and q2, 

and the level of PSA. As the neoplasm becomes increasingly indifferent to environmental 
androgen, resistant cancer cells should secrete PSA more freely even during active ADT. 
We hypothesize that in our model the dynamics of PSA will be sensitive to changes in the 

q1 and q2 parameters. Additionally, the model should reflect the divergence between PSA 

and androgen levels observed in later cycles of resistant patients. 

Table 1 contains a summary of model parameters and ranges, and additional informa- 
tion on the model formulation and its parameters can be found in the supplemental section. 

dt 
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Table 1. Parameter definitions and boundaries: This table describes the physiological interpretations 

of the fifteen parameters used in this model [5,26]. The range column indicates the upper and lower 

bounds within which an error-minimizing function may establish an optimal value with respect to a 

concrete set of patient data. The * in place of upper and lower bounds of A0 is because the range of 

A0 is patient specific and is set to the patient’s maximum recorded androgen data ±10. 
 

Parameter Description Range Unit 
 

M max proliferation Rate 0.001–0.09 [day]−1 

minimum cell quota for x1 to 
proliferate 

minimum cell quota for x2 to 
proliferate 

0.41–1.73 [nmol][day]−1
 

0.01–0.41 [nmole][day]−1 

d density death rate 0.001–0.30 [L]−1[day]−1 

c maximum mutation rate 0.00015–0.00015 [day]−1
 

half-saturation constant for 
mutation 

1–1 [nmole][day]−1
 

γ1 androgen production by testes 0.008–0.8 [nmol][day]−1 

androgen production rate by 
adrenal gland 
homeostasis serum androgen 
level 

0.005–0.005 [nmol][day]−1
 

 
* [nmol] 

∆ androgen degradation rate 0.03–0.15 [day]−1 

b baseline PSA production rate 0.0001–0.1 [g][nmol]−1[day]−1 

σ1 maximum PSA production rate by x10.001–1 [g][nmol]−1[L]−1[day]−1 

maximum PSA production rate 
by x2 0.001–1 [g][nmol]−1[L]−1[day]−1 

 PSA clearance rate 0.0001–0.1 [day]−1 
 

 

We fit our model to patient data from a clinical study of IAS at the Vancouver Prostate 

Centre [17]. The data contain longitudinal measurements of PSA and androgen for 71 patients 

during IAS. Also recorded is information on the ultimate result of each patient’s treatment. 

We use MATLAB 2021a to perform our simulation and analysis. In particular, we 

use MATLAB function fmincon to fit the model to patient data. To limit potential issues 

of parameter identifiability, we only estimate four key parameters [27]. To do so, we fit 
the model against segment data, one for every on or off-treatment period. The remaining 
parameters are fixed to values determined by a test run performed over the first two cycles 
of data. Additionally, we apply more weight to the discrepancy between the model simu- 
lation and PSA data as compared to androgen data (80% to 20%, respectively). Weighted 
error approaches have been shown to improve overall model fitting [26]. The supplemental 
section contains additional details regarding the data used, the method of calculating error, 
and other considerations of the model fitting. 

We present two potential biomarkers that may be used to predict the development 
of resistance to ADT. Our first predictive proposed indicator is the ratio between initial 

and final (most recent) values of q2. Selective pressure during each treatment cycle causes 

the resistant subclones to become less dependent on environmental androgen through a 

variety of mechanisms [47]. Therefore, we expect the value of q2 to decrease over sequential 

estimates. We aim to determine, using clinical data fitted to the model, if one can define a 
threshold that is correlated with an increased probability of treatment failure. 

Treatment resistance can also be recognized in the data by the divergence between 
androgen and PSA dynamics. Initially, when a patient begins androgen suppression therapy, 

the PSA and androgen behavior are qualitatively similar, rising and falling together as 
treatment is applied and removed. However, as the neoplasm becomes more castration- 

resistant, more cells survive the cycles of androgen deprivation to secrete PSA regardless 
of treatment status. The second proposed biomarker follows from these observations 
by taking the ratio of serum measurements of androgen and PSA to be an indicator of 

treatment failure. This second biomarker is related to the first in that the parameter q2 

q1 

q2 

K 

γ2 

A0 

σ2 
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is directly correlated with resistance. A low estimated q2 therefore represents a clonal 

population’s ability to proliferate even when deprived of androgen, which would be 
reflected by relatively high and low measurements of PSA and androgen, respectively. In 
essence, the second proposed biomarker is a model-free form of the first biomarker. 

In order to evaluate the predictive potential of both proposed biomarkers, we first 

sorted patients into two groups: success or failure. We defined failures as discontinuations 

due to resistance or death from prostate cancer; we classified all other outcomes as successes. 

Next, we sought to identify a correlation between the biomarker values and treatment 

success or failure. Distinct thresholds were established for each ratio that, when reached, 

signify treatment failure in the next cycle. 

We present here two sets of thresholds calculated with two different methods. The 
first method determines thresholds that maximize the accuracy of our predictions based on 
the Vancouver dataset. These are denoted as the Max thresholds. The second method uses 

MATLAB’s support vector machine function fitcsvm to generate thresholds that, while less 

accurate than the Max threshold when used with the current dataset, are potentially more 
accurate across a larger cohort of patients. The thresholds calculated by the second method 
are referred to as the SVM thresholds. We then test the robustness of these thresholds with 
cross-validation. 

3. Results 

In general, the model closely captures PSA and androgen dynamics (Figure 2). How- 

ever, its fit favors PSA data over androgen data [26]. The model fit is sufficiently reasonable 

to generate accurate predictive biomarkers. In Figure 2, we demonstrate the model’s ability 

to fit data and the subsequent implications regarding changes in the castration-sensitive 

and resistant cancer subpopulations (right column figures). After the initial treatment, the 

castration-sensitive cancer subpopulation is essentially replaced by the castrate-resistant 

cancer subpopulation. However, because we use a dynamic value for the level of resistance, 

the emergence of the castration-resistant cancer subpopulation does not signify treatment 

failure. For instance, in Figure 2b, the castration-resistant population still declines signif- 

icantly during the second treatment period, which corresponds to the second phase of 

androgen decrease (occurs between day 350 and day 700). This implies that the castration- 

resistant subpopulation’s level of resistance is still developing, and not yet sufficient for it 

to be unaffected by androgen suppression. On the other hand, during the third treated cycle 

(starting around day 800], the castration-resistant cancer subpopulation develops sufficient 

resistance to the androgen suppression therapy for it to proliferate even in the absence 

of androgen. In Figure 2a the castration-resistant population is mostly unaffected by the 

second treatment period (occurs between day 350 and the end of treatment). However, 

in this case, the cancer never develops sufficient resistance for the CR subpopulation to 

proliferate in the absence of androgen. 

Figure 3 summarizes the analytical result for the q2 ratio as a potential predictive 

biomarker. The result demonstrates that when the value of the q2 ratio exceeds either 
the SVM or Max threshold, it strongly indicates an impending treatment failure due to 

the development of resistance. The q2 Max and SVM thresholds classify the data with 

accuracies of 87.3% (sensitivity: 96.1%, specificity: 65%) and 81.7% (sensitivity: 98.0%, 
specificity: 40%), respectively. 

Figure 4 shows a summary of the analytical result for the androgen to PSA ratio as 

a potential predictive biomarker. The initial values of the androgen/PSA ratio are highly 

variable across all patients. In the early stages of treatment, there is no correlation between 

the ratio and that treatment’s ultimate outcome, which is consistent with the selection 

criteria of the patients for the clinical trial [24]. However, that is not the case if the androgen 

to PSA ratio is calculated using the mean values of the patient’s final on-treatment cycle. 

Having done this, we see that when the androgen to PSA ratio falls below the Max or 

SVM thresholds, it strongly indicates impending treatment failure due to the development 

of castration resistance. For the androgen to PSA ratio, the Max threshold is 0.19 and 
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classifies patients with 88.7% accuracy (sensitivity: 90.2%, specificity: 85.0%), while the 

SVM threshold of 0.30 classifies patients with 84.5% accuracy (sensitivity: 82.4%, specificity: 

90.0%). It is worth emphasizing that the androgen/PSA biomarker is calculated using 

only serum androgen and PSA data, and therefore does not require a mathematical model 

to estimate. 

To test the robustness of all thresholds, we used five-fold cross-validation. For the 
SVM thresholds, we used the built-in MATLAB cross-validation function. The predictive 

accuracy for the q2 ratio SVM threshold was 79%. The accuracy for the androgen/PSA 

SVM threshold was 85%. For the Max thresholds, we randomized the data, performed 
the five-fold cross-validation, and then replicated the procedure 100 times. The mean 

accuracies of the q2 ratio SVM thresholds were 87% for the training sample and 84% for the 

holdout sample. The mean accuracies for the androgen/PSA SVM thresholds were 89% for 
the training sample and 85% for the holdout sample. 

 

 

 
Figure 2. Model validation: Best-fit model solutions to the dynamics of serum androgen and PSA 

levels. Circles represent patient measurements, and the solid lines are solutions of model (model 

equation number). ‘CS’ = castration susceptible tumor cell population; ‘CR’ = castration-resistant 

population. Panel (a) was produced by a short dataset 1.5 cycles long, and panel (b) by a dataset 

2.5 cycles long. 
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Figure 3. The predictive potential of the q2 ratio: The scatterplot (a) indicates the value of the q2 ratio 

for every patient in the dataset. The ratio is between the initial and final values of the q2 parameter 

calculated by the mathematical model. Max (dotted line) and SVM (solid line) threshold values are 

shown. The confusion matrix (b) compares actual patient outcomes with outcomes predicted by q2 

ratio with respect to the thresholds. 

 
 

 

Figure 4. The predictive potential of the Androgen/PSA ratio: Scatterplot (a) shows the value of 

the androgen/PSA ratio for every patient when calculated using mean values of androgen and 

PSA from the first 200 days of treatment. Scatterplot (a) demonstrates that there is little correlation 

between the value of the ratio and treatment outcome when calculated in this manner. Scatterplot 

(b) shows the same ratio calculated using mean androgen and PSA values from the patient’s final 

on-treatment cycle, not exceeding 200 days. For the purposes of this figure, all ratio values greater 

than five are represented as five. Scatterplot (b) shows two thresholds below which values of the 

androgen/PSA ratio indicate impending treatment failure. The confusion matrix (c) compares actual 

patient outcomes to outcomes predicted by the ratio with respect to the two thresholds. 

4. Discussion 

Perhaps the most troublesome cancer characteristic, when it comes to treatment, 

is its ability to quickly adapt and evade initially effective therapies. Due to genomic 
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instability, new cellular variations are continuously appearing, competing, and going 

extinct, which leads to increasing malignancy via natural selection [6,7,10]. Therefore, in 

many cases, it is only a matter of time before tumors evolve resistance to conventional 

treatments. Treatments fail when susceptible subclones have perished and replaced by 

resistant competitors, thus removing any possibility of continued success, even as a second- 

line measure. If clinicians could detect incipient resistance in advance, it would allow 

them an opportunity to change tactics that may lead to better clinical outcomes. Such an 

ability would likely improve long-term management and individualized treatment plans 

for cancer patients [13,28,29]. 

In this study, we propose two different tools that can be used to accurately determine 

approaching castration-resistance during intermittent ADT. Other prediction tools do 

exist that assess clinical prostate cancer, including AUC measures of PSA to diagnose 

clinically significant disease [48] and the Gleason score, which has some power to measure 

prostate cancer aggressiveness and predict treatment outcome [49]. However, neither PSA 

nor Gleason score are typically used to make real-time predictions of cancer response to 

treatment. In contrast, our two proposed indicators both have high predictive accuracies of 

87–89%, and they rely on measurements of PSA and androgen, which are both relatively 

simple to obtain in real time. This observation supports their potential usefulness in the 

clinical setting and warrants further investigation. 

Both proposed biomarkers are developed from the same classical ecological theories. 
However, they are calculated differently. While the androgen to PSA ratio was motivated 
by a mathematical model, the model is not required for its implementation; it relies entirely 
on serum data that can be collected as part of the standard monitoring routine. However, 
the model-free biomarker requires consistent, regular measurements of both androgen 

and PSA serum for calibration and prediction accuracy. In contrast, the q2 ratio may be 

estimated using only longitudinal PSA data and baseline serum androgen level with the 

aid of the mathematical model. Furthermore, since q2 reflects the degree of resistance and 

may be estimated independently of androgen data, it is possible to detect approaching treat- 
ment failure during the off-treatment period prior to resuming treatment. Both proposed 
biomarkers can be used in conjunction to improve the overall accuracy. 

In our analysis, we calculate the ratios using data from the last on-treatment cycle to 
show the predictive potential of our proposed biomarkers. This leaves an important ques- 

tion unanswered: how early can these indicators predict treatment failure with sufficiently 
high accuracy? We demonstrate that the proposed biomarkers do not indicate treatment 
failure at the start of treatment and predict treatment failure with high accuracy only at 

the last cycle. Furthermore, we show that there is an increasing trend in q2 ratio over each 

treatment interval (see supplementary Figure S8). Furthermore, we show that this ratio 
tends to increase with each successive treatment interval (Supplementary Figure S8). On a 

theoretical level, this implies that as a patient is treated with IAS their ratio will increase 
until it eventually surpasses the thresholds that signify treatment failure. Thus, we can 
potentially predict the treatment’s outcome during its administration. Subsequent studies 

are needed to evaluate this possibility. 
We provide the summary statistics of PSA and androgen level for both groups in the 

Supplementary Material (Figure S9), which shows that resistant patients have a lower level 

of androgen at the end of treatment compared to the respondent group. This difference is 

the reason for the distinct androgen/PSA ratios between the two groups. We speculate that 

this is because the drugs used in this particular clinical trial affect each patient differently. In 

particular, leuprolide acetate can overstimulate the pituitary gland to produce gonadotropic 

cells carrying luteinizing hormones, which increases the production of androgen in the 

testes; however, over time, leuprolide desensitizes the pituitary gland, which ultimately 

ceases androgen production in the testes. This desensitization effect remains for some time 

after the treatment stops [16]. Thus, it is possible that, in the resistant patients, after each 

treatment cycle, the desensitization effect lasts for much longer leading to a low level of 

androgen for an extended duration. The longer duration of low androgen level prolongs 



Cancers 2022, 14, 4033 11 of 13 
 

 
 

the selective pressure, which can lead to an increased selection for the resistant cancer 

population in these patients [50]. 

5. Conclusions 

The accuracy of these two biomarkers in our analysis supports the growing trend of 

implementing mathematical models in clinical studies [5,42]. Furthermore, our analysis 

reemphasizes the importance of careful data collection during treatment. The dataset that 

we use here contains consistent longitudinal measurements of PSA and serum androgen 

for each patient over several years of treatment. However, this quantity of data is not often 

collected in practice. For these or any, biomarkers to have practical value, blood panels 

measuring serum PSA and androgen must be taken regularly and consistently. This would 

maximize the usefulness of any associated mathematical models [27]. 

We remark that even while very high/low levels of PSA and testosterone can affect 

their ratio, this qualitative observation is still consistent with our result. If the PSA level 

is high when the androgen level is high, their ratio may be higher than the threshold 

that determines treatment failure. On the other hand, if the PSA level is very high while 

the androgen level is not, then the ratio is naturally going to be smaller, which is more 

indicative of treatment failure. Finally, while PSA and androgen (but mostly PSA) are used 

as an indication of treatment failure, there would still be a requirement for confirmation by 

other means such as a radiographic scan. Our study shows the potential of using both PSA 

and androgen quantitatively for personalized treatment. 

In summary, the development of mathematical models in clinical settings can benefit 

tremendously from incorporating datasets that are specifically designed and collected for 

the validation of those models. 
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