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Abstract: Chronic hepatitis B (HBV) infection is a major cause of human suffering, and a number 

of mathematical models have examined the within-host dynamics of the disease. Most previous 

models assumed that infected hepatocytes do not proliferate; however, the effect of HBV infection on 

hepatocyte proliferation is controversial, with conflicting data showing both induction and inhibition 

of proliferation. With a family of ordinary differential equation (ODE) models, we explored the 

dynamical impact of proliferation among HBV-infected hepatocytes. Here, we show that infected 

hepatocyte proliferation in this class of models generates a threshold that divides the dynamics into 

two categories. Sufficiently compromised proliferation in infected cells produces complex dynamics 

characterized by oscillating viral loads, whereas higher proliferation generates straightforward 

dynamics that always results in chronic infection, sometimes with liver failure. A global stability 

result of the liver failure state was included as it is unique to this class of models. Finally, the model 

analysis motivated a testable biological hypothesis: Healthy hepatocytes are present in chronic HBV 

infection if and only if the proliferation of infected hepatocytes is severely impaired. 

 
Keywords: HBV; ratio-dependent transformation; logistic hepatocyte growth; origin stability; 

Hopf bifurcation 

 
 

1. Introduction 

Hepatitis B virus (HBV) is a global public health problem. It infects hepatocytes, the 

main cells found in the liver, and can lead to chronic liver disease, cirrhosis, and liver 

cancer. As of 2015, over 250 million people worldwide are chronically infected with HBV, 

with the majority of these cases in Asia, Sub-Saharan Africa, parts of the Arabian Peninsula, 

the South Pacific, tropical South America, and arctic North America, with Asia unique 

in the degree of hepatitis burden. In areas where HBV is highly endemic, the infection is 

spread primarily neonatally from infected mothers to their children, with as many as 90% 

of infants exposed to the virus developing chronic infections. Young children also remain 

susceptible to chronic infection, while fewer than 5% of exposed adults, who are otherwise 

healthy, will go on to develop chronic disease. Besides vertical transmission, HBV may be 

contracted through any blood-borne exposure, including sexual contact, needle sharing, or 

blood transfusion [1,2]. Although the global burden of viral hepatitis is in decline—in large 

part due to a nearly 100% effective vaccine, near universal screening of blood products, 

and more effective treatments—the vaccine is still not implemented widely enough, and a 

significant number of cases persist even in developed countries [3]. Treatment for chronic 

HBV can reduce the risk of developing cirrhosis and liver cancer, but generally does not 

result in a cure and often must be taken lifelong once initiated [2]. 

Despite these recent clinical advances and the disease’s global significance, its patho- 

genesis remains poorly understood. A widely accepted hypothesis suggests that HBV is 

not directly cytopathic; rather, liver inflammation and subsequent complications caused 
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by HBV are generated by immune attack on infected cells [4–6]. Considerable evidence 

supports this hypothesis [4,5,7,8], However, the extent and nature of the virus’s cytopathic- 

ity remain unresolved [9]. In particular, very little is known about how viral infection 

affects proliferation. In the experimental literature, the effect of HBV infection on hep- 

atocyte proliferation is controversial, with conflicting data showing both induction and 

inhibition of proliferation [10]. In addition, infection has been correlated with both pro- 

and anti-apoptotic effects on hepatocytes [11]. HBV X protein has severely impaired liver 

regeneration in some mouse models [11–13], but had little effect in others [14]. It is possible 

that natural variation in the HBV virus itself may explain these conflicting results [10]. 

Here, we study the dynamical implications of the proliferation of infected hepatocytes. 

Mathematical models have been applied to a wide variety of viral illnesses, and HBV 
is no exception, with scores of modeling works published in recent years (see, e.g., recent 
reviews by Goyal et al. [15] and Ciupe [16]). Previous models have mainly, though not 
exclusively, focused on chronic infections and were originally adapted from HIV models, 

including at least three state variables: healthy hepatocytes, x, infected hepatocytes, y, and 

free virions, v. The basic virus infection model (BVIM), presented by Nowak et al. [17,18], 

assumes that healthy hepatocytes are produced by some constant influx term, λ, healthy 

hepatocytes die at per-capita rate d, infected hepatocytes die at per-capita rate a, and 

infection occurs according to mass action kinetics, with coefficient β. Infectious virions are 

produced by infected hepatocytes at rate γ and die at rate µ, giving the model: 

dx 

dt 
= λ − dx − βxv, (1) 

dy 

dt 
= βxv − ay, (2) 

dv 

dt 
= γy − µv. (3) 

In this model, the immune response to infection is represented by an elevated death 

rate in infected hepatocytes, a > d, and by the destruction of free virions at rate µ. Such 

simple linear dynamics are clearly inappropriate for modeling the adaptive immune 
system’s response to acute infection, but may be a reasonable first approximation in the case 

of established, chronic infection. Extensions and variations of the BVIM model have been 
introduced to study the rich dynamics of HIV infection and treatment [19,20]. This basic 
framework has been extended and modified to study different aspects of HBV infection. 

Multiple works have modeled the immune response in at least some detail [16,21–24] and 
considered the interplay between the immune response and imposed treatments [25,26]. 
Drug treatment, with or without the immune response, can also be incorporated into this 

basic framework—e.g., [27–29]. Some drugs interfere with virion production, which can be 
simply modeled as a decreased virion production rate when treatment is on, while others 

decrease the magnitude of the infection term [28]. 
While different biological behaviors can be added in different ways, special care to 

the basic model construction and its implicit assumptions is warranted. Restricting our 

attention to chronic infection and ignoring any adaptive or evolving immune response, 

the BVIM still makes at least three basic assumptions incompatible with biology that have 

major effects on the model dynamics: 

1. Infection is a mass action process; 

2. Healthy hepatocytes are produced by a constant influx; 

3. Infected hepatocytes do not reproduce. 

As shown by Gourley et al. [30], the assumption of mass action kinetics for infection 

yields a basic reproductive number that is dependent on the homeostatic liver size, λ/d, and 

thus results in the biologically implausible prediction that an individual’s susceptibility to 
infection depends on liver mass. Replacing the mass action term with a standard incidence 
term, as in [30,31], eliminates this dependence. The standard incidence term in generic viral 
infection models also received theoretical treatment in [32,33]. Furthermore, the concept 
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of mass action kinetics is borrowed from chemical kinetics, where reaction rates increase 

in proportion to the concentration of all involved reactants [34]. As a solid organ with a 

highly stereotyped cellular architecture, the actual density of hepatocytes is not expected 

to vary appreciably between individuals or disease states, further arguing against the 

mass action formulation and for a standard incidence (or other) term better suited to the 

physical system. 

The injured liver is clearly not replenished by a constant influx of cells. Rather, liver 
regeneration is driven by widespread hepatocyte proliferation in a process that is modeled 

very well, at least heuristically, by logistic growth (see Eikenberry et al. [35] for a detailed 

justification of the logistic growth term). As shown in [35,36], replacing the constant influx 

of healthy hepatocytes with logistic growth that depends on the total liver mass (both 

healthy and infected hepatocytes) greatly affects the model dynamics. 

The analysis of Hews et al. [36] also derived two new indices, the cellular vitality index, 
R∗ , and the liver failure index, R f , that, in addition to the well-known basic reproductive 
number, R0, partition the parameter space into distinct dynamical regions. This model 
admits three potential steady states, corresponding to complete obliteration of the liver 

(x = y = v = 0), chronic liver infection (x, y, v > 0), and absence of disease (x > 0; 

y, v = 0). Interestingly, there exists a region of the parameter space where all of the 
states are unstable. In this region, hepatocyte populations (both healthy and infected) 
and viral loads exhibit sustained oscillation. Furthermore, for each of these three steady 

states, there exist parameter regimes in which the steady state is asymptotically stable. 

Ciupe et al. [22,37] also considered logistic growth for hepatocytes in the more complex 

setting of acute infection, and logistic growth has been considered in other works as 

well [38,39]; however, the precise dynamical effect of this term in these models is unclear. 

While the effects of modifying the first two assumptions to more biologically re- 

alistic alternatives have been thoroughly studied [30,31,35,36], here we make a special 

study of the dynamic implications of relaxing the assumption that infected hepatocytes 

do not reproduce. It must be noted that many HBV infection models also remove this 

assumption [16,38–43], with Dahari et al. [38], for example, suggesting that differing pro- 

liferation dynamics among healthy and infected hepatocytes could help explain varying 

patterns of viral load decays observed after treatment initiation, while Reluga et al. [39] 

applied a similar model to chronic hepatitis C viral dynamics. Goyal et al. [42] suggested 

that infected hepatocytes proliferating to produce uninfected daughter cells may be an 

important dynamic in preventing acute HBV infection, which directly affects up to 99% 

of hepatocytes, from progressing to the chronic state. Ciupe and colleagues [22,44] also 

considered the possibility that infected cells may recover from infection via a noncytolytic 

mechanism and thereafter become refractory to further infection (essentially a within-host 

“susceptible–infected–recovered” framework), with logistic growth dynamics for all hepa- 

tocyte classes, but mass action infection dynamics. Indeed, mass action infection kinetics 

remain common across those HBV models that do employ logistic growth (although, see, 

e.g., [26] for an exception), and the precise dynamical implications of logistic growth in 

both infected and uninfected hepatocytes are rarely studied. Furthermore, given the lack of 

consensus on the infection’s effect on proliferation, as a first approximation, we assumed 

that infected hepatocytes proliferate no faster than healthy hepatocytes. 

We rigorously explored how adding proliferation in infected hepatocytes, in addition 

to logistic growth in general and the standard incidence term for viral infection, affects the 

dynamics of basic chronic HBV models. The analysis of these models is not intended to 

provide evidence as to whether infected hepatocytes proliferate or not, but does yield a 

testable biological hypothesis: healthy hepatocytes are present in chronic HBV infection if 

and only if the proliferation of infected hepatocytes is severely impaired. The following 

section justifies this hypothesis. 
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dt K x(t) + y(t) 

 
 

2. Model Development and Dynamics 

We assumed that infected hepatocytes proliferate at a rate less than or equal to the rate 
of proliferation of healthy hepatocytes. As many other chronic HBV models, we omitted a 
complex immune response. Therefore, our model has a population of healthy hepatocytes, 

x(t), a population of infected hepatocytes, y(t), and a population of free virions, v(t), 

dx 
= rx(t)

(

1 − 
x(t) + y(t)

) 

− 
 βv(t)x(t) 

, (4)
 

dy 
= ρy(t)

(

1 − 
(x(t) + y(t)

) 

+ 
 βv(t)x(t)  

− ay(t), (5)
 

dt K 
dv 

x(t) + y(t) 

dt 
= γy(t) − µv(t). (6) 

A logistic growth term is also used for the proliferation of healthy and infected 
hepatocytes with r and ρ as the maximum proliferation rates and K as the carrying capacity. 

The infection rate is β; the death rate of infected hepatocytes is a; the number of free virions 
produced per infected hepatocyte is γ; the death rate of virions is µ. 

The basic reproduction number, R0, is the same as with all previous models that 

assume a standard incidence term for infection, 

R = 
βγ 

. 
aµ 

The cellular vitality index, R∗ , first introduced in Hews et al. [36], incorporates the 

rates of healthy hepatocyte proliferation, infected hepatocyte proliferation, and infected 

hepatocyte lifespan, and it roughly represents the capacity of the healthy liver to regenerate. 

For the model (4)–(6), 

R∗  = 
r − ρ + a 

.
 

a 

For clarification, R0 has the standard definition, which is the expected number of 

secondary infections per primary infection in a completely susceptible population. On the 

other hand, R∗  is the point when E∗ , the chronic infection state with a nonzero healthy 

hepatocyte population, ceases to exist given that R0 > 1. Since R∗  depends on the prolif- 

eration and death rates of hepatocytes and relates to the possible collapse of the system 

(to the extinction equilibrium), R∗  can be thought of as representing the capacity of the 

healthy liver to regenerate. From this, it can be seen that increasing either the proliferation 

or lifespan of infected hepatocytes impairs the ability of the infected liver to regenerate, 

while greater proliferation in healthy hepatocytes is beneficial. 
In the following subsections, we present two different proliferation scenarios that 

differ in the maximum proliferation rate of infected hepatocytes. In the first of these, we 

assumed that infected hepatocytes proliferate at the same rate as healthy hepatocytes. 

In the second, we assumed that hepatocytes proliferate at a non-negligible rate that is 

nevertheless lower than that of healthy hepatocytes. We assumed nonnegative initial 

conditions for both models. One can use the methods of Hews et al. [36] to show rigorously 

that solutions in both models remain bounded and nonnegative. 

2.1. Infected Hepatocytes Proliferating at the Same Rate 

We assumed that healthy and infected hepatocytes proliferate at the same rate and 

therefore set ρ = r and arrive at the first model: 
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r 

dt K x(t) + y(t) 

r rµ 

 
 

 

dx 
= rx(t)

(

1 − 
x(t) + y(t)

) 

− 
 βv(t)x(t) 

, (7)
 

dy 
= ry(t)

(

1 − 
(x(t) + y(t)

) 

+ 
 βv(t)x(t)  

− ay(t), (8)
 

dt K 
dv 

x(t) + y(t) 

dt 
= γy(t) − µv(t). (9) 

As mentioned above, the basic reproduction number is: 

R = 
βγ 

, 
aµ 

and the cellular vitality index is:  
R∗  = 

r − r + a 
= 1.

 

a 

If R0 /= 1, there are three steady states of (7)–(9): 

E0 = (0, 0, 0), Ef = (K, 0, 0), Ei = 

(

0, 
K(r − a) 

, 
γK(r − a)

)

. 

 

If R0 = 1, there are infinitely many positive steady states. Hence, in the following, 
we assumed that R0 /= 1. Let E0, Ef , and Ei be the liver failure, disease-free, and infected 
states, respectively. The liver failure state exists since, 

 

 
lim 

 βvx  
= 0. 

(x,y,v)→(0,0,0) x + y 

Notice that the infected state Ei does not allow a population of healthy hepatocytes. 

Therefore, chronic infection in this model is always characterized by complete infection 
of the liver. It should be pointed out that models using a mass action term instead of the 
standard incidence for infection do admit chronic infections that maintain a healthy cell 
population, but we rejected these models for reasons already specified [30]. 

Notice that Ei only exists in the positive cone and is therefore biologically relevant 

only when r > a. At Ei, the total number of hepatocytes is K(r−a) ; therefore, increasing 
proliferation (r) or decreasing mortality (a) rates increases equilibrium liver mass (assumed 

to be proportional to the number of hepatocytes). If the proliferation rate is greater than 

the death rate of infected hepatocytes then whether the infection becomes chronic depends 

on the reproduction rate. If R0 < 1, the liver is free of infection, and if R0 > R∗  = 1, the 
liver becomes completely infected and the hepatocyte population is reduced compared to 
the healthy liver. 

 

Proposition 1. Given the system (7)–(9), if r > a, then Ei exists and the following results hold. 
a. If R0 < 1, then E f is locally asymptotically stable and Ei is a saddle point; 

b. If R0 > 1, then E f is unstable and Ei is locally asymptotically stable. 

The proofs are omitted as they involve straightforward linearization techniques. Since 

Ei always exists when r > a and is a saddle when R0 < 1, global stability for Ef cannot be 

determined. Figure 1 shows a bifurcation diagram of a with r > a. Healthy hepatocytes 
and infected hepatocytes are plotted separately so it is clear that the number of infected 

hepatocytes and virions is an increasing function of a. 

If r < a, then the only steady states are E0 and Ef . As with traditional viral infection 

models, Ef is globally stable when R0 < 1. 
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r 

 
 

Theorem 2. If r < a and R0 < 1, E f is globally stable. 

Proof. Let (y(t), v(t)) be a solution of: 

dy(t) 

dt 
≤ ry(t) + βv(t) − ay(t), (10) 

dv(t) 

dt 
≤ γy(t) − µv(t). (11) 

Let (Y(t), V(t)) be a solution of: 

dY(t) 

dt 
= βV(t) − (a − r)Y(t), (12) 

dV(t) 

dt 
= γY(t) − µV(t). (13) 

(Y, V) = (0, 0) is the only steady state of (12) and (13) and is locally asymptotically stable 
when r < a and R0 < 1. Since (12) and (13) is a cooperative system, and therefore monotone, 

all solutions of (12) and (13) will approach (0, 0). 

Let y0 = Y0, v0 = V0; then by the comparison theorem, (y(t), v(t)) ≤ (Y(t), V(t)) for 
t > 0. Therefore, 

0 ≤ lim inf y(t) ≤ lim sup y(t) ≤ lim Y(t) = 0, 
t→∞ t→∞ t→∞ 

0 ≤ lim inf v(t) ≤ lim sup v(t) ≤ lim V(t) = 0. 
t→∞ 

Therefore, by the squeeze theorem, 

t→∞ t→∞ 

 

lim inf y(t) = lim sup y(t) = 0, 
t→∞ t→∞ 

lim inf v(t) = lim sup v(t) = 0. 
t→∞ t→∞ 

 

 
 

Since E0 and E f are the only two steady states, there can neither be a chronic stable 

state nor sustained oscillations. 

Biologically, as long as hepatocytes proliferate faster than the infected hepatocytes die, 

the liver will survive. Since the number of infected hepatocytes at Ei is K(r−a) , the greater 
the hepatocyte proliferation rate and the smaller the death rate of infected hepatocytes, the 

greater the equilibrium number of hepatocytes in the liver. This result is intuitively clear. 

According to Proposition 1(b), this model presents the following biological hypothesis: 

if healthy and infected hepatocytes proliferate at the same rate, then there will not be a 

significant population of healthy cells in the liver during chronic infection. Furthermore, 

patients would be unlikely to experience oscillations in viral load and liver mass, dynamics 

that are present in models without infected hepatocyte proliferation. 
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0 

dt K x(t) + y(t) 

 

 

Bifurcation Diagram for r > a 

1e11 

2 

 

1 

 

0 
1e11 

2 

 

1 

 

0 

1.0 

 
 

1e14 

 

0.5 

 

0.0 

0 2 4 6 8 10 12 

R0 

Figure 1. Bifurcation diagram showing, from top to bottom, equilibrium healthy hepatocyte, infected 

hepatocyte, and free virion populations as a function of R0, where R0 is varied via a. Other parameter 

values are fixed at: r = 0.3, µ = 0.693, β = 0.0014, γ = 450, K = 2 × 1011. 

2.2. Infected Hepatocytes Proliferating at a Different Rate 

Since the data are inconclusive as to the proliferation rate of infected hepatocytes, we 
next explored the dynamical implication of infected hepatocytes proliferating at a smaller 
rate than healthy hepatocytes. The only change made to (7)–(9) is that the maximum 

proliferation rate for the infected hepatocytes is changed from r to ρ, 

dx 
= rx(t)

(

1 − 
x(t) + y(t)

) 

− 
 βv(t)x(t) 

, (14)
 

dy 
= ρy(t)

(

1 − 
(x(t) + y(t)

) 

+ 
 βv(t)x(t)  

− ay(t), (15)
 

dt K 
dv 

x(t) + y(t) 

dt 
= γy(t) − µv(t), (16) 

where ρ < r. The basic reproduction number, R0, is again, 

R = 
βγ 

. 
aµ 

The cellular vitality index, R∗ , is slightly modified to account for the proliferation of 

infected hepatocytes. In particular, 

R∗  = 
a + r − ρ 

.
 

a 

In addition to the three equilibria admitted by the model (7)–(9), the system (14)–(16) 

allows an additional steady state representing chronic infection, seen in Hews et al. [36]. 

 

 
Ef E0 Ei Infected Hepatocytes 

Ef E0 Ei Free Virions 

 

 
Ef 

 

 
E0 

 
 

Ei Healthy Hepatocytes 
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r 

r 

Ei =
 

0, K(ρ−a) , γK(ρ−a)

 
, and E∗  = (x∗ , y∗ , v∗  ), where: 

(r − ρ)2 
− 

r
 0 R0 

− 

= (r − ρ)2 
(
 

) 
R0 

− 

= 
µ(r − ρ)2 

(
 ) 

R0 
− 

 
 

The entire set of equilibria therefore can include the following: E0 = (0, 0, 0), E f = (K, 0, 0), 
 

ρ ρµ 
 

x∗  Kra  
1

 ρ 
R
 ( 

R∗  
1

)

, 

y∗    Kra  
R

 
1 

( 
R∗

 

1

)

, 

v∗    Kγra  
R

 
1 

( 
R∗

 

1

)

. 
 

Notice that Ei only exists if ρ > a and E∗  only exists if 1 < R0 < R∗  and the maximum 

proliferation rate of infected hepatocytes is sufficiently small, namely: 

R0 < 
r 

. 
ρ 

Figure 2 highlights the relationship between R0 and ρ. As R0 increases into the 

biologically relevant range of 6–8, The maximum value of ρ that admits a chronic steady 
state is quite small, less than 0.1. 

 

Maximum value of ρ for existence of E * 

 
 

1.0 

 
 

0.8 

 
 

0.6 

 
 

0.4 

 
 

0.2 

 

 

2 4 6 8 10 12 

R0 

 

Figure 2. The maximum value of ρ allowing the existence of a biologically relevant chronic steady 

state in the system (14)–(16) as a function of R0 values. It is seen that as R0 becomes larger, in- 

fected hepatocyte proliferation must be increasingly impaired if a chronic infection state with a 

nonzero number of healthy hepatocytes is to exist. Note that in this example, the healthy hepatocyte 

proliferation rate is fixed at r = 1. 

In contrast to the model studies by Hews et al. [36] in which infected hepatocytes 
could not divide, the fraction of infected hepatocytes at the chronic steady state in the 

model (14)–(16) now depends on the maximum proliferation rate of hepatocytes, even 

when that rate is small. In particular, that fraction is: 

y∗   R0 − 1  
. (17)

 

 
 

Notice that: 

 
 
 lim 

x∗  + y∗  
= 

1 − ρ
 

R0 

y∗  

lim 
 R0 − 1   

1 
 1  

,
 

ρ→0 x∗  + y∗  
= 

ρ→0
 

1 − ρ
 

R0 
=  − 

R0 
which is identical to the fraction of infected hepatocytes in the model without proliferating 
infected cells [36]. Figure 3 shows the percentage of infected hepatocytes for values of ρ 

ρ 

= 

0 − 

0 − 
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i 

R0 

R0 

2 

Ei 

    
a − R 

 0  00  

 

 

that yield a chronic state. Increasing ρ increases the fraction of infected hepatocytes. When 
ρ =  r  , E∗  collides with Ei. For values of ρ >  r  , E∗  is no longer biologically relevant. 

R0 R0 

 

% of Hepatocytes that are Infected 

 

1.00 

 

0.98 

 

0.96 

 

0.94 

 
0.92 

 

0.90 

 

0.88 

 

0.86 

 

0.84 

0.00 0.05 0.10 0.15 0.20 0.25 

ρ 

Figure 3. The fraction of infected hepatocytes at equilibrium, as a function of ρ, the infected hep- 

atocyte proliferation rate. As this rate increases, more and more hepatocytes are infected, until a 

threshold is passed and the liver experiences 100% infection. When this point is crossed, there is 

also a stability switch as E∗  shifts from stable to unstable, while Ei becomes stable. Other parameter 

values are fixed at r = 1, K = 2 × 1011, β = 0.0014, γ = 200, a = 0.0693, µ = 0.693. 

In drawing the connections between (7)–(9) and (14)–(16), we start by discussing the 

dynamics if the proliferation rate of infected hepatocytes is not severely impaired. This 

implies that ρ > a and ρ >  r  . Therefore, Ei exists and E∗  does not. 

Proposition 3. If ρ > a and ρ >  r  , then E f is unstable and Ei is locally asymptotically stable. 

Proof. The Jacobian matrix of the vector field corresponding to (14)–(16) at E f is: 

J(x, y, v)|Ef =  
−r −r −β 

0 −a β 

0 γ −µ 

.

 

The eigenvalues of the matrix are given by: 

λ1 = −r, (18) 

 
 

Since: 

 

λ2,3 

1 
= − 

2 
( a + µ) ± 

1 
✓

(a + µ)2 − 4aµ(1 − R0). (19) 

r 

 
λ2,3 are positive and Ef is unstable. 

R0 > > 1, 
ρ 

The Jacobian matrix of the vector field corresponding to (14)–(16) at Ei is: 

J(x, y, v)| =  

 
r 

 

ρ 

−ρ + a + aR0 a − ρ 0 

0 γ −µ 

.

 

 
 
 
 
 
 
 
 
 
 
 

E * is stable E * does not exist 

Ei is a saddle Ei is stable 

%
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ρ 

ρ 

R0 

R0 

R0 

 
 

The eigenvalues are the following, 

λ1 = −µ, 

λ2 = −(ρ − a), 

λ3 = −a

(

R0 − 
r 

)

. 

If ρ > a and R0 > r , then λ1,2,3 < 0 and Ei is locally asymptotically stable. 

According to Proposition 3, this model presents the following biological hypothesis: 
even if healthy and infected hepatocytes do not proliferate at the same rate, if the infected 

hepatocytes proliferate at a sufficiently high rate (ρ > a and ρ >  1  r), then there will not be 

a significant population of healthy cells in the liver during chronic infection. Furthermore, 
with a sufficiently high infected hepatocyte proliferation rate, patients would be unlikely 
to experience oscillations in viral load and liver mass. 

Impairing the maximum infected hepatocyte proliferation slightly impacts the follow- 
ing conditions: ρ > a and ρ >  1  r. Although the chronic state E∗  and the infected state 

Ei are both present, Ei is always unstable and the dynamics for (14)–(16) are similar to the 
model analyzed in Hews et al. [36]. 

 

Proposition 4. For (14)–(16), if ρ <  1  r, then the following results hold. 
a. If R0 < 1, then E f is locally asymptotically stable and Ei is a saddle; 

b. If R0 > 1 then E f is unstable and Ei is a saddle. 

Since Ei exists, the global stability of E f cannot be determined. As in Hews et al. [36], 

the severity of disease is controlled by R0 and R∗ . The bifurcation diagram (Figure 4) shows 

that for realistic R0 values, there will be stable oscillations before passing through the Hopf 

bifurcation to experience liver failure. 

 

Figure 4. Bifurcation diagram showing equilibrium total hepatocyte and virion populations and 

oscillation bounds as a function of R0, for the model with r = ρ, and R0 controlled by changes in β. 

For R0 below about 8, the total hepatocyte population falls nearly linearly with R0, while sustained 

oscillations are observed for the approximate interval R0 ∈  (8, 11). A nonzero equilibrium still exists 
for R0 up to the point that R0 = R∗ , where R∗  is the cellular vitality index; beyond this, the system 

goes to the E0 extinction equilibrium. The parameter values are r = 0.8, µ = 0.693, γ = 300, and 

K = 2 × 1011. 

We prove the existence of the Hopf bifurcation point below. Due to the extensive 

computations, we assumed that ρ = 0. Figure 4 suggests that this proof is valid for small ρ 

as well. As the reproductive number crosses the bifurcation point of R0 = 1, the stability of 
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µ 

R 

R (µR +aR∗  ) 

R0 
− 

R 

0 

R0 2 
0 

R0 R0 

K (x∗  +y∗  )2 
K 

(x∗  +y∗  )2 x∗  

+y∗  

0 = µ( 

2 1 − 0 = µ 2 + 
R0 

µ( ) 
R0 

− 

= µφ + 
R0 

φ + µ 
R0 

− ( 0 − ) 

 
 

E f is transferred to E∗  as it crosses into the positive quadrant. Recall that E∗  only exists 
in the positive quadrant when 1 ≤ R0 ≤ R∗ . For the condition R0 ≤ R∗  to hold, the 
proliferation rate has to be sufficiently large; specifically, r ≥ βk−aµ . 

Theorem 5. Let φ = a2
( 

R∗  
− 1

)
(R0 − 1) + a

2 
(R0 − 1) −  ar (R0 − 1) + aµ

( 
R∗  

− 1
)
, and 

σ = −(µa
2 R0 +a3 R∗  )(R∗ −R0 )(R0 −1) . If φ > σ, then E∗  is locally asymptotically stable. 

0 0 
 

Proof. 
 
r(1 − 2x∗  +y∗  

) −  βv∗ y∗  

 

−rx∗  
+  βv∗ x∗  

− βx∗   

J(x, y, v)|Ef 
=  βv∗ y∗  

(x∗  +y∗  )2 

βv∗ x∗  

(x∗  +y∗  )2 

βx∗  

x∗  

+y∗  

. 

0 γ −µ 

The eigenvalues of J satisfy: 

 

 
where: 

 
a 

 

 

 

R∗  

2 = µ + a 
R0 

, 

λ3 + a2λ2 + a1λ + a0 = 0, 

a1 = 2a2

( 
R∗

 
1

)

(R0 − 
a2 

1) + 2 ( 0 
R0 − 1)2 

 ar 
− 

R0 
( R0 − 1) + aµ 

R∗  

R0 
− 1

)

, 

a a2 R 
1 

( 
R∗

 

1

)

. 
 

Clearly, a2 > 0 and a0 > 0 when E∗  exists. Let: 

2

( 
R∗  ) 

a2  ar ( 
R∗  ) 

 
 

where, 

φ = a R0 
− 1 (R0 − 1) + 

R2 (R0 − 1) − 
R0 

(R0 − 1) + aµ 
R0 

− 1 , 

 
a a a a a 

R∗  

a 
 

a2 R 1 

( 
R∗

 

1

)

, 

R∗  ( 
2 3 R

∗  )( R∗  ) 

= µφ + a 
R0 

φ +  µa + a 
R0 R0 

− 1 

Therefore, a2a1 > a0 when: 

(R0 − 1) > 0. (20) 

−(µa2 R0 + a3 R∗  )(R∗  − R0)(R0 − 1) 

φ > 
R0(µR0 + aR∗  ) 

= σ.
 

By the Routh–Hurwitz criteria, we determined a condition for E∗  to be locally asymp- 

totically stable. 

Theorem 6. If a < a(R0 − 1) < r, then there is a Hopf bifurcation at φ = σ. 

Proof. Let ∆ = a2a1 − a0. Then: 

∆ a 
R∗

 

( 

a2

 

a3 R
∗  )( R∗

 

1

) 

R 1 . 

− − a 

( 

0 − ) 
R0 

− 

2 − 0 − 

+ 
R0 
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µ 

R 

)( ) 

R0 

= + 
∂r ∂r ∂r 

+ 
R0 

+ 
R0 

(R0 − 1) + (R0 − 1) + 
R0 

(R0 − 1) 
R0 

− 1 

R0 
= − 

µR0 + aR∗  
R0 

− 1 (R0 − 1) − 
µR0 + aR∗  R0

 
R0 

− 1 

0 

R0 µR0(µR0 + aR∗  ) 

0 

 
 

We showed above that a2a1 = a0 when φ = σ. Therefore, there exists an r = r∗  such 
that ∆(r∗  ) = 0. Taking the partial derivative of ∆ with respect to r, we obtain: 

∂∆ ∂φ aR∗  ∂φ  φ  µa 

 
 

a2 R∗  

  

a2 ( 
R∗  ) 

 
  

 

µa µ2
 a2 

R∗  
aµR∗  φ 

= 2 
R0 

(R0 − 1) + 
R0 

+ 2 
2 (R0 − 1) + 
0 

2  
+ 

R0
 

a2 

+ 
R0 

(R0 − 1) 
R∗  

R0 
− 1 

)

. (21) 

 

When ∆ = 0, from (20), we obtain: 

 φ  µa2 
( 

R∗  ) 
 

a3 R∗  ( R∗  ) 
  

 

 

Plugging (22) into (21) yields, 
 

∂∆ µa µ2 a2 

R∗  

aµR∗
 

∂r 
|∆=0 = 2 

R0 
(R0 − 1) + 

R0 
+ 2 

2  (R0 − 1) + 2 
0 0 

µa2 ( 
R∗  ) a3 R∗  ( R∗  )

 

− 
µR0 + aR∗  

a2 

R0 
− 1 

( 
R∗  

(R0 − 1) − 
µR0 + aR∗  R0

 

) 
R0 

− 1 (R0 − 1) 

 
Notice that, 

 
a2 R∗  

 
 

 
 
a2µ 

+ 
R0 

(R0 − 1) 

 
( 

R∗  

  

R0 
− 1 

 
)  

. (23) 

 
 

a2 R∗ 2 + aµR2 

 
 

a3 R∗  a2  ( 
R∗  ) 

a2 ( 
R∗

 )( 
 µR0  

) 

− 
µR0 + aR∗  R0 

+ 
R0 

Therefore, 

(R0 − 1) R0 
− 1 = 

R0 
(R0 − 1) 

R0 
− 1 

µR0 + aR∗   
.
 

∂∆ µa µ2 a2 

R∗  
aµR∗  a2 R∗ 2 + aµR2 

|∆=0 = 2 (R0 − 1) + + 2  (R0 − 1) + 2  + aµ(R0 − 1) 2 
0

 

∂r R0 

a2 

+ 
R0 

(R0 − 1) 

R0 

R∗  

R0 
− 1 

R0 

 µR0  

µR0 + aR∗  

R0 

> 0. 

µR0(µR0 + aR∗  ) 

The two criteria (CH.1) and (CH.2) from Beretta and Kuang [45] are satisfied. Therefore, 

there is a Hopf bifurcation at φ = σ. 

According to Proposition 4(b), Theorems 5 and 6, this model presents the following 

biological hypothesis: if the infected hepatocytes proliferation rate is significantly com- 

promised, then there will be a significant population of healthy cells in the liver during 

chronic infection and patients would be likely to experience oscillations in viral load and 

liver mass. 

Further impairing the maximum proliferation rate of infected hepatocytes implies 

that ρ < a and ρ <  r  . Notice that further reducing ρ causes convergence to the model 
discussed in Hews et al. [36]. Since the existence of the Hopf bifurcation point is proven 

above, we will only evaluate the global stability result of Ef . 

Proposition 7. If ρ < a and R0 < 1, then Ef is globally stable. 

The proof for Proposition 7 is similar to that of Theorem 2, so we omit it here. These 

results show that dynamically, there is no benefit to including ρ in the model. If the rate of 

2 R0 ∗  2 

2 
0 R R0 

R R 
( 

R 

( 

, 

(R0 − 1). (22) 

− − 1 (R0 − 1) = aµ(R0 − 1) , 
µR0 + aR 
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µ 

( ) 

µ 

K 

n 

ρ 

µ 

( ) 

( ) 

dt K 1 + z(t) 

= 
(r − ρ)2 

(
 

− 
r
 0) R0 

− 

= 
1 − ρ R0 

= 
µ(1 − ρ R0) 

R0 > r + 1 R∗  and ρ < a < µ + ρ, then lim inf x, y, v = 0. 

dt 

r 

 
 

proliferating infected hepatocytes is not significantly compromised, then one can safely 

assume that ρ = r; otherwise, one can safely assume that ρ = 0. 

3. Global Stability Result for E0 

For a sufficiently virulent infection and small proliferation rate of the infected hepa- 
tocytes, the liver will completely fail. Mathematically, this situation is represented by the 

global asymptotic stability of the liver failure state, E0. This section builds towards proving 

that if R0 > r + 1 R∗  and ρ < a < µ + ρ, then E0 is globally stable. This technique is 

modified from Hews et al. [36]. The “blow-up transformation” has been used previously to 
study similar complex equilibrium [46–48]. Notice that a similar argument can be used for 

(7)–(9) to prove that if R0 > r+µ and r < a < µ + r, then E0 is globally stable. 

Since there is a singularity at the liver failure state, E0, we used a ratio dependent 

transformation to arrive at the global result. We used the transformation (x, y, v) → (x, z, w), where z = y and w = v . This results in the following system, 
x x 

dx 
= rx(t)

(

1 − 
x(t) + y(t)

) 

− 
βw(t)x(t) 

, (24)
 

dz 
= (ρ − r)z(t)

(

1 − 
x(t) + y(t)

) 

+ βw(t) − az(t), (25) 
dw 

dt 
= γz(t) − µw(t) − rw(t) 

The steady states of (24)–(26) are: 

(

1 − 
x(t)(1 + z(t)) 

K 

βw(t)2 
+ 

1 + z(t)
. (26) 

 

U0 = (0, 0, 0), Un = (0, zn, wn), Uf = (K, 0, 0), U∗  = (x∗ , z∗ , w∗ ), 

where: ∗  

R (1 + µ ) − R0 zn = 
R∗  ( a − ρ − 1) + R0 

, wn =
 

aR∗  

z , (27) 
β 

 
and: 

x∗  

 
  Kra  

1
 

µ 
 

 

ρ 
R  

( 
R∗  

µ 
 

 

1

)

,

 z
∗  

 
 R0 − 1  

,

 w
∗  

 

 

 
 γ(R0 − 1) 

.  (28)
 

 

 

Notice that U is nonnegative when ρ − a < R0 − 1 < r and U∗  is nonnegative when 
n µ µ R∗  µ 

R∗  < R0 < 1 and R0 < r . The nontrivial steady states are preserved in that Ef = Uf 

and E∗  = U∗ . E0 has been blown up into two steady states: U0 and Un. We call these the 

two trivial states. To find a global stability result for E0, we show that if R0 > r + 1 R∗  

and ρ < a < µ + ρ, all steady states of (24)–(26) are unstable and that lim inf x = 0 and 
t→∞ 

lim sup z, w = ∞. Since y = xz, v = xw, and (14)–(16) is bounded, this is enough to show if 
t→∞ 

µ 
 

Lemma 8. U0 and Un are always unstable. 

t→∞ 

 

Proof. The variational matrix of the system (24)–(26) evaluated at U0 is: 

J(x, z, w)|E0 =  

r 0 0 
−r −aR∗  β 

0 γ −(µ + r) 

.

 

Since λ1 = r > 0, U0 is always unstable. 

r 

r 

) 
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+zn R∗  

n 

2 

µ 

K 

µ 

r−ρ 
+zn 

 r wn(1 + zn) γ − β wn 1+zn 

βw2  w  

( µ 
1 + zn 

− 
(1 + zn)µ 

dt 

 
 

The variational matrix of the system (24)–(26) evaluated at Un is: 

 
r − β 1

wn 0 0  

J(x, z, w)|Un =  K zn(1 + zn) −aR 
2 

 

 
 

β . 

 
 

λ1 = r − β 1
wn  = µ

( 
R0 − 1

)
, which is negative when R0 < R∗ . On the other hand, λ 

 
2,3 

are given by the following matrix, 

 
−aR∗  β 

\
 

 

where: 

γ − 
(1+z

n 
)2 −µ − r + 2β 1 

n 

+zn 

 

tr(A) = −a − 2r − µ − zn(µ − a). 

The trace is negative when − a+µ < λ1. However, 
 

det A a

 
 R0  (µ + r)R∗

 

,
 

 

which is positive when R0 > (1 + r )R∗ . This condition and the condition for λ1 < 0 

contradict, so Un is always unstable. 

Lemma 9. If R0 > ( r + 1)R∗ , then lim sup z(t), w(t) = ∞. 
µ 

t→∞ 

Proof. Let (z(t), w(t)) be a solution of: 

dz 
= βw − az + (ρ − r)z

(

1 − 
x(1 + z)

) 

≥ βw − (a + r − ρ)z, 

dw 

dt 
= γz − µw − rw 

(

1 − 
x(1 + z) 

K 

βw2 

+ 
1 + z 

≥ γz − (µ + r)w. 

Let (Z(t), W(t)) be a solution of: 

dZ 

dt 
= βW − (a + r − ρ)Z, (29) 

dW 

dt 
= γZ − (µ + r)W. (30) 

(Z, W) = (0, 0) is the only steady state of (29) and (30) and is unstable when R0 > 

( r + 1)R∗ . Since there are no other steady states, Z, W are unbounded, and (29) and (30) 

is a cooperative, monotone system, that is lim Z(t), W(t) = ∞. Let z0 = Z0 and w0 = W0, 
t→∞ 

then by the comparison theorem, (z(t), w(t)) ≥ (Z(t), W(t)) for t > 0. Therefore, 

lim inf z(t) ≥ lim Z(t) = ∞, 

t→∞ t→∞ 

lim inf w(t) ≥ lim W(t) = ∞. 
t→∞ 

Therefore, lim inf z(t), w(t) = ∞. 
t→∞ 

t→∞ 

Theorem 10. If R0 > ( r + 1)R∗  and ρ < a < µ + ρ, then lim x(t) = 0. 
µ t→∞ 

2 −µ − r + 2β  wn  K 

) 

∗  

(1+zn ) 

A = , 

) = 
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1+z(t) 

µ+r 

µ 

( ) 

 
 

Proof. To prove that E0 is globally stable, we need it to be the only steady state in R+. 
Therefore, set ρ < a to ensure that Ei no longer exists. Since: 

dx 
= rx(t)

(

1 − 
x(t)(1 + z(t))

) 

− 
βw(t)x(t) 

< 

(

r − 
 βw(t) 

)

x(t),
 

dt 

it is sufficient to show: 

K 1 + z(t) 1 + z(t) 

lim inf 
 βw(t)  

> r. (31) 

 
Let θ(t) =  βw(t) . Then: 

dθ 

 
 
 
βdw 

t→∞  1 + z(t) 

 
 

βw(t) dz 

dt 
=

 
dt 

1 + z(t) (1 + 

dt 

z(t))2 
 

z(t) 
= [βk + (a + r − ρ)θ(t)] 

1 + z(t) 
− (µ + r)θ(t) (32) 

+ 
βw(t)x(t)

(

r + (ρ − r) 
  z(t)  

)

. (33)
 

K 

By Lemma (9), for all € > 0, ∃  t∗  s.t. ∀  t ≥ t∗ , 

z(t) 

1 + z(t) 

1 + z(t) 
> 1 − €. (34) 

Combining (32) and (34) for t ≥ t∗ , 

dθ 

dt 
> βk(1 − €) + ((a + r − ρ)(1 − €) − µ − r)θ(t) + 

> βk(1 − €) + ((a + r − ρ)(1 − €) − µ − r)θ(t). 

βw(t)x(t) 

K 
(ρ(1 − €) + r€) 

Letting Γ(€) = (a + r − ρ)(1 − €) − µ − r and solving for θ(t) yields: 

θ(t) > 
βk(1 − €) 

+ θ(t∗ )eΓ(€)(t−t
∗  ) = Θ(t). 

−Γ(€) 

Since ρ < a < µ + ρ, Γ(€) < 0. Therefore, lim Θ(t) = βk(1−€) . Since R0 > ( r + 1)R∗ , 

t→∞ 

∃  €∗  > 0 s.t. ∀  € ∈  (0, €∗ ], βk(1−€) > a + r. Therefore, 

−Γ(€) µ 

lim inf 
 βw(t)  

≥ 
βk(1 − €) 

> 
βk(1 − €) 

> a + r > r.
 

t→∞ 

Thus, (31) is satisfied. 

1 + z(t) 
 

−Γ(€) µ + r 

According to Lemma 8, Lemma 9, and Theorem 10, this model presents the following 
biological hypothesis: if there is a sufficiently virulent infection and a small proliferation 

rate of infected hepatocytes, then the liver will fail. 

Note that Theorem 3.3 only provides sufficient conditions for the collapse of the 

hepatocyte population, which can happen before R0 is larger than 1 + r R∗ , as shown 

in Figure 4. This leaves an open mathematical question for a necessary condition for the 
collapse of the hepatocyte population. 

4. Discussion 

The effectiveness of treatment may be measured by its effect on R0. Any reduction in 

R0 that fails to cross R0 = 1 from the right will not clear the infection and is a failure in this 
sense. However, it may still improve symptoms and reduce the likelihood of liver failure. 
If treatment reduces R0 < 1, then it is curative if this reduction can be maintained under 

− 
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the assumptions of the model. In the case of HBV, treatment with nucleoside analogues 

usually eventually fails. Mathematically, R0 wanders under treatment, and while it may 
fall to less than one transiently, it eventually transits unity from the left. However, as a 

practical matter, R0 need not be calculated to identify treatment failure. 

The emergence of the cellular vitality index suggests a new way to classify the dy- 

namics and plan the treatment of chronic HBV. Traditional therapies that target the virus 

affect only R0, but R∗  also determines when the liver fails. Given the limitation of the 
current standard of care, new treatment options are needed. Our model suggests that in- 
creasing healthy hepatocyte proliferation, decreasing infected hepatocyte proliferation, and 

increasing healthy and infected hepatocytes by the same factor should delay liver failure 

and promote patient survival. Since patients become resistant to all nucleoside analogues 

over time, further treatment options are needed. Our model proposes that controlling the 

proliferation rate should prolong the life of the liver. Increasing the distance between the 

cell vitality index and the reproduction number moves the Hopf bifurcation and decreases 

the likelihood of the onset of dangerous oscillations in liver damage. Specifically, the closer 

R0 to R∗ , the more likely the system will experience an oscillation or a collapse; see Figure 4. 
Thus, increasing the distance, for example by controlling the proliferation rate, can prevent 

this dangerous onset. Treatment options that control the proliferation rate of healthy and 

infected hepatocytes are not currently available and, to the best of our knowledge, are not 

currently being explored. 

These model conclusions only hold if proliferation in infected cells leads to infected 
daughter cells. However, experimental evidence suggests that hepatocyte proliferation 

may destabilize and dilute viral DNA, thus aiding in clearing infection [49], and that 

hepatocyte proliferation may be inversely associated with viral loads in experimental 

settings. Furthermore, modeling work by Goyal et al. [42] suggests hepatocyte division 

may be an important mechanism in both clearing infection and protecting the liver from 

catastrophic cell loss. It is unclear, however, the degree to which these possible protective 

properties of proliferation are at work in acute vs. chronic infection. 

The model analysis suggests that the modeling decision to include proliferating 
infected hepatocytes in an HBV model should depend on whether or not the proliferation 

rate of infected hepatocytes is severely impaired. If it is not, then including a slightly 

different proliferation rate of infected hepatocytes compared to uninfected cells adds 

needless complexity; the key dynamics will be essentially unaltered, so it is safe to assume 

that infected and uninfected cells proliferate at the same rate. On the other hand, if 

infection significantly impairs the proliferative potential of hepatocytes, then one can safely 

assume that infected cells do not proliferate; again, the dynamical behavior is insensitive to 

variations in the rate at which infected cells divide. 

The analysis presented here also suggests a testable biological prediction, namely that 

one can determine if infected hepatocytes are proliferating to an appreciable degree, and 

yielding infected daughter cells, simply by searching for uninfected cells. If all cells in 

the liver are infected (beyond the acute phase of infection), then this model proposes that 

infected cells are proliferating at a high rate and generating infected progeny. The existence 

of a significant uninfected population implies the severely impaired proliferative potential 

of infected cells. It has been observed that the fraction of hepatocytes infected in a chronic 

HBV case progresses from nearly to 100% to only a few percent [50]. This may be explained 

by a combination of gradual immune attrition of infected hepatocytes, possibly impaired 

viral replication, and weak proliferation. Mason et al. [50] recently presented evidence that 

hepatocytes refractory to infection are selected over the course of chronic infection, with 

healthy clonal populations prevalent. Thus, it is likely that a strong proliferative advantage 

for healthy over infected cells can keep infected hepatocyte populations low through both 

Darwinian mechanisms and via the intrinsic population dynamics of the disease system. 

Our minimal representation of the immune response is also a clear limitation, but by 

minimizing model dimensionality, we can more clearly elucidate the effect of comparative 

proliferation rates on the model dynamics. An essential component of the immune response, 
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at least in acute HBV infection, may be noncytotoxic curing of infected cells with subsequent 

“immunity” to re-infection, considered in modeling works by Ciupe et al. [16,37]. This 

dynamic cannot be considered in our current framework and may have further implications 

for the role of proliferation among different hepatocyte populations. 

Future work will also focus on using the model to explore the impact of treat- 

ments. Current antiviral therapies include standard interferon and PEGylated inter- 

feron therapies for short-term use and nucleoside/nucleotide analogues for long-term 

use [51–53], but there are still open questions about the optimum timing and ordering 

of the treatments [54,55]. Models that have made slightly different assumptions have fit 

their models to existing datasets showing complex virus dynamics resulting from clinical 

trials [22,27,29,37,38,41,43,56–58]. 

One should take care, however, not to push this model, and therefore the hypothesis 

just presented, too far. The BVIM has typically been applied to infections of the blood 

(e.g., malaria and HIV). However, unlike blood, the tissues of the liver are not well mixed, 

which raises legitimate questions about the validity of an ODE description. Therefore, 

an important future project is to study a spatially explicit version of this model. The 

most obvious approach would be a partial differential equation model in which the basic 

dynamical properties modeled here are coupled with terms describing virion diffusion 

through the interstitium and perhaps a form of advection representing the passage of 

virions through the hepatic vasculature. At any rate, the significance of spatial effects is an 

open question that needs to be addressed before long. 
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