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In this paper we present a series of results which show separations between the standard 
seeded model of self-assembly, Winfree’s abstract Tile Assembly Model (aTAM), and 
the “seedless” 2-Handed Assembly Model (2HAM), which incorporates the dynamics of 
hierarchical self-assembly. In particular, we focus on the problem of self-assembling various 
shapes while minimizing the sizes of tile sets, or “programs”, in each of these models in 
order to compare and contrast the models. A high-level overview of a subset of these 
results was presented in a paper by the authors in STACS 2013, but in this version we 
expand and improve the set of results related to showing separations between the two 
models according to their abilities to self-assemble various shapes. We exhibit classes 
of finite shapes that can be self-assembled more efficiently in each model. We also 
demonstrate infinite shapes that can self-assemble in one model but not in the other, as 
well as a shape which cannot self-assemble in either model.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Self-assembly is a process by which relatively simple components autonomously combine to form more complex struc-
tures. It is a process governed solely by the local interactions among components, but yet is capable of producing extremely 
complex patterns. Algorithmic self-assembly is a more specific process in which the components of a self-assembling system 
are designed so that their growth into an assembly implicitly follows a prescribed algorithm. Mathematical models such as 
the abstract Tile Assembly Model (aTAM) [1] provide a platform for the design of algorithmic self-assembling systems, and 
physical implementations via DNA-based tiles have even been realized [2–8]. Theoretical results have proven that systems 
within many models capable of algorithmic self-assembly are in fact computationally universal [9–17]. This means that for 
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any algorithm on any arbitrary input, a self-assembling system can be designed which simulates its computation. Nonethe-
less, it has also been shown that there remain structures, or shapes, that cannot self-assemble in any system of several 
models capable of algorithmic self-assembly [18–21], showing a fundamental difference between the ability to compute 
versus the ability to build structures of particular shapes.

A wide variety of models of tile-based self-assembly have been developed to explore the powers and limitations imparted 
by different dynamics and component types. Each model can be thought of as a programming language, with the definition 
of a system in a model as a program written in that language. (The assembly process is thus analogous to the execution 
of the program.) Theoretically (to gain insight into the expressive power of a model) and experimentally (to minimize the 
cost, complexity, and potential errors in physical systems), it is beneficial to compare the minimal program size required to 
form given structures across different models. This is equivalent to minimizing the number of unique types of tiles required 
to self-assemble target structures.

Perhaps two of the most widely studied theoretical models are the aTAM [1,22] and the 2-Handed Assembly Model 
(2HAM) [9]. In the aTAM, growth of an assembly begins from a specially designated seed tile1 and proceeds as tiles attach 
one at a time to the assembly containing the seed. In contrast, in the 2HAM there is no seed and growth begins when any 
two singleton tiles can combine to each other, and proceeds whenever any assembly which has already formed (including 
singleton tiles) can combine with either another singleton tile or another single assembly which has already formed. Al-
lowing growth in which two arbitrarily large assemblies can potentially combine at any step is the reason that the 2HAM 
is also known as a “hierarchical assembly model”. As a generalization of the aTAM, the 2HAM allows for a wider range of 
dynamics [23,24,20,25,26]. Given the major differences in the models, in [27] a subset of the current authors presented a 
wide array of results which sought to initiate a quantitative comparison of these two models.

In this paper we focus on, and expand, the subset of those results which compare and contrast the program-size com-
plexities, i.e. the tile complexities, of self-assembling several shapes across the two models. By considering simple and 
complex shapes, as well as finite and infinite shapes, we are able to demonstrate how different techniques, specific to the 
dynamics of each model, have the potential to allow for reduced tile complexity.

1.1. Efficiency via the blocking of growth in the aTAM

In the aTAM, due to the fact that growth must begin from a designated seed assembly and that it is possible to design 
systems which grow in a fixed sequential manner, “blocking” may be used as a tool. That is, it can be guaranteed that one 
portion of an assembly has grown before a later portion, and that later portion then grows in such a way that it “crashes” 
into the earlier portion. This allows the later-growing portion to save on tile complexity by removing the need for unique 
tile types which keep track of distance, instead allowing repetitive use of (as few as) a single tile type placed over and over 
until growth is forced to stop when a copy is eventually placed adjacent to a tile from the blocking portion. We are able to 
exhibit shapes in which such blocking gives the aTAM the advantage in tile complexity, first by just a constant factor, and 
then asymptotically (by an exponentially large amount).

1.2. Efficiency via the encoding of information in distance and shape in the 2HAM

Growth in the 2HAM is accomplished by the repeated combination of pairs of assemblies (called supertiles), with the 
smallest being singleton tiles. Either or both of the pairing supertiles can be of any arbitrary (large but finite) size. While 
different supertiles may have the same tiles and glues exposed on their perimeters, it may be the case that the shapes of 
their perimeters and/or the relative positions of sets of their exposed glues differ. If the minimum binding threshold, a.k.a. 
temperature parameter, is > 1, multiple glues on the perimeter of a supertile may be required for it to bind with another, 
and careful design may be able to ensure that although the set of perimeter glues is the same for multiple supertiles, their 
relative distances from each other uniquely distinguish to which other supertiles they are able to bind. In this way, the 
constant amount of information contained within a fixed set of glues can be implicitly combined with an arbitrary amount 
of information about the relative glue positions, allowing for the design of systems in which combinations are restricted to 
only pairs of supertiles that have grown to specifically targeted sizes and/or shapes. Additionally, even in systems with a 
minimum binding threshold of 1, it may be possible to use the shapes of the perimeters and potential geometric hindrance 
(rather than multiple glue locations) to differentiate between valid and invalid binding partners. These techniques can be 
leveraged to design 2HAM systems which are much more efficient, in terms of tile complexity, than any possible aTAM 
system. We exhibit such finite shapes, and then show how to further leverage the technique to demonstrate an infinite 
shape which cannot self-assemble in the aTAM, but which can self-assemble in the 2HAM.

1.3. Our results

We utilize those design techniques specific to the aTAM and 2HAM to demonstrate how each can provide advantages for 
self-assembling differing shapes. Specifically, our main results are the following (see Tables 1 and 2 for more details):

1 The seed is actually allowed to be an assembly consisting of multiple tiles. However, throughout this paper we will only consider systems whose seeds 
consist of a single tile in order to provide a fair basis of comparison with the 2HAM.
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Table 1
Summary of results showing separation between the aTAM and 2HAM with respect to tile complexity 
of certain classes of finite shapes. The value of a cell denotes the tile complexity. Note that some of our 
results are asymptotic while others are exact complexities. Under the “Staircases” column, M is a TM, 
with state set Q , given the empty string as input. The idea is that M can be chosen such that it runs 
for a number of steps m, which is much greater than a given value of n yet |Q | can be much smaller 
than n.

Loops Counter-with-crasher Staircases

τ = 1 τ = 2 τ = 2 τ = 2

aTAM n + 5 n + 3 O (n) 2n stair steps: �(n), O (n2)

(Theorem 3.2) (Theorem 3.2) (Theorem 3.11) (Theorem 3.13), (Theorem 3.18)

2HAM 2n + 2 ≤ n + 3 �(2n) 2�(running time of M) stair steps:
(Theorem 3.2) (Theorem 3.2) (Theorem 3.11) O (|Q |) (Theorem 3.19)

Table 2
Summary of results showing separation between the aTAM and 2HAM for some examples of infinite 
shapes. We say that T finitely self-assembles an infinite shape, say X , if every finite producible assem-
bly of T can grow into the desired target shape (the term finite self-assembly is defined formally in 
Section 2).

Infinite staircase Sierpinski triangle

Finite self-assembly Self-assembly Finite self-assembly Self-assembly

aTAM No No No No
(Theorem 4.3) (Corollary 4.7) (Thm. 3.4 of [18]) (Thm. 3.4 of [18])

2HAM Yes (τ = 2) Open No No
(Theorem 4.2) (Theorem 4.9) (Corollary 4.12)

1. There is a simple shape (a loop) that can be assembled in the aTAM at temperature τ = 1 using n + 5 unique tile types, 
but any 2HAM system in which the shape assembles at the same temperature requires 2n + 2 unique tile types, giving 
a constant factor separation in favor of the aTAM. At temperature τ = 2, the same shape can be assembled in both 
models using n + 3 tile types, erasing that advantage.

2. There is a shape (a “counter-with-crasher”) that can self-assemble in the aTAM using only O (n) tile types, but which 
requires �(2n) tile types in the 2HAM. This demonstrates an asymptotic advantage in the aTAM.

3. There is a shape (a finite “staircase”) that can be built in the 2HAM using a number of unique tile types only asymp-
totically dependent upon the size of a chosen Turing machine, but in the aTAM the same shape requires a number 
of unique tile types proportional to the running time of the chosen TM. With B B(n) as the busy beaver function, this 
allows for a tile complexity separation of B B(n), and demonstrates a (large) asymptotic advantage in the 2HAM. (Note 
that the counter-with-crasher can also be trivially modified to give a B B(n) separation advantage for the aTAM.)

4. There is an infinite shape (an infinite staircase) that can self-assemble (in a weaker sense) in the 2HAM but not in the 
aTAM.

5. There is an infinite shape (the Sierpinski triangle) that can neither self-assemble in the aTAM nor the 2HAM.2

The structure of this paper is as follows. In Section 2 we introduce notation and give definitions of the aTAM and 2HAM. 
In Section 3 we present tile complexity results related to finite shapes, and in Section 4 we present results related to infinite 
shapes. Section 5 provides a brief conclusion.

2. Preliminaries and notation

We work in the 2-dimensional discrete space Z2. Define the set U2 = {(0, 1), (1, 0), (0, −1), (−1, 0)} to be the set of all 
unit vectors in Z2. We also sometimes refer to these vectors by their cardinal directions N , E , S , W , respectively. All graphs
in this paper are undirected. A grid graph is a graph G = (V , E) in which V ⊆Z2 and every edge {�a, �b} ∈ E has the property 
that �a − �b ∈ U2.

Intuitively, a tile type t is a unit square that can be translated, but not rotated, having a well-defined “side �u” for each 
�u ∈ U2. Each side �u of t has a “glue” with “label” labelt(�u)–a string over some fixed alphabet–and “strength” strt(�u)–a 
nonnegative integer–specified by its type t . Two tiles t and t′ that are placed at the points �a and �a + �u respectively, bind
with strength strt

(�u)
if and only if 

(
labelt

(�u)
, strt

(�u)) = (
labelt′

(−�u)
, strt′

(−�u))
.

In the subsequent definitions, given two partial functions f , g , we write f (x) = g(x) if f and g are both defined and 
equal on x, or if f and g are both undefined on x.

2 Previous work in [18] gives the impossibility result for the aTAM.
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Fix a finite set T of tile types. A T -assembly, sometimes called simply an assembly when T is clear from the context, is a 
partial function α :Z2 ��� T defined on at least one input, with points �x ∈Z2 at which α(�x) is undefined interpreted to be 
empty space, so that dom α is the set of points with tiles. We write |α| to denote |dom α|, and we say α is finite if |α| is 
finite. For assemblies α and α′ , we say that α is a subassembly of α′ , and write α � α′ , if dom α ⊆ dom α′ and α(�x) = α′(�x)
for all x ∈ dom α.

Each assembly α induces a binding graph Gα , a grid graph whose vertices are the points with tiles, with an edge between 
two points if the tiles at those locations bind in α and the weight of an edge is the strength of the bond it represents. For 
τ ∈ N , an assembly is τ -stable if every cut of its binding graph has weight at least τ . That is, the assembly is stable if at 
least energy τ is required to separate it into two parts. In contrast to the model of Wang tiling [28], the nonnegativity of the 
strength function implies that glue mismatches between adjacent tiles do not prevent a tile from binding to an assembly, 
so long as sufficient binding strength is received from the (other) sides of the tile at which the glues match. The binding 
graph is merely a structure that characterizes the bonds between tiles in an assembly and not the order in which the bonds 
formed during an assembly sequence.

2.1. Informal description of the abstract tile assembly model (aTAM)

In this section we give an informal description of the aTAM which includes the necessary definitions for this paper. The 
reader is encouraged to see [22,1,18] for a formal development of the model.

In the aTAM, self-assembly begins with a seed assembly σ (typically assumed to be finite and τ -stable) and proceeds 
asynchronously and nondeterministically, with tiles adsorbing one at a time to the existing assembly in any manner that 
preserves stability at all times.

An aTAM tile assembly system (TAS) is an ordered triple T = (T , σ , τ ), where T is a finite set of tile types, σ is a seed 
assembly with finite domain, and τ is the temperature, a.k.a. minimum binding threshold. An assembly sequence in a TAS 
T = (T , σ , τ ) is a sequence �α = (αi | 0 ≤ i < k) (where k = ∞ if it is an infinite assembly sequence) of assemblies in which 
α0 = σ and each αi+1 is obtained from αi by the “τ -stable” addition of a single tile. The result of an assembly sequence �α
is the unique assembly res(�α) satisfying dom res(�α) = ⋃

0≤i<k dom αi and, for each 0 ≤ i < k, αi � res(�α).
For an assembly sequence �α in some TAS with result α and a point �x ∈ dom α, we define the notation i �α(�x) to represent 

the index in the assembly sequence �α at which the point �x has a tile placed on it.
We write A[T ] for the set of all producible assemblies of T . An assembly α is terminal, and we write α ∈ A�[T ], if no 

tile can be stably added to it. We write A�[T ] for the set of all producible terminal assemblies of T . A TAS T is directed, or 
produces a unique assembly, if it has exactly one terminal assembly i.e., |A�[T ]| = 1. The reader is cautioned that the term 
“directed” has also been used for a different, more specialized notion in self-assembly [29]. We interpret “directed” to mean 
“deterministic”, though there are multiple senses in which a TAS may be deterministic or nondeterministic.

Given a connected shape X ⊆ Z2, we say a TAS T self-assembles X if every producible, terminal assembly places tiles 
exactly on those positions in X . (Note that this notion is equivalent to strict self-assembly as defined in [18].) For an infinite 
shape X ⊆Z2, we say that T finitely self-assembles X if every finite producible assembly of T has a possible way of growing 
into an assembly that places tiles exactly on those points in X . Note that if T self-assembles shape X , then T finitely self-
assembles X (but not necessarily vice versa). Also, it is important to note the difference between directedness and (finite) 
self-assembly of a shape. If a system (finitely) self-assembles a shape, all terminal assemblies have that shape. However, the 
system may have multiple assembly sequences which lead to tiles of different types in the same location. Such a system 
would not be directed.3

2.2. Two-handed tile assembly model (2HAM)

The 2HAM [17,9,30,31,12,32] is a generalization of the aTAM in that it allows for two assemblies, both possibly consisting 
of more than one tile, to attach to each other. Since we must allow that the assemblies might require translation before 
they can bind, we define a supertile to be the set of all translations of a τ -stable assembly, and speak of the attachment of 
supertiles to each other, modeling that the assemblies attach, if possible, after appropriate translation.

Two assemblies α and β are disjoint if dom α ∩ dom β = ∅. For two assemblies α and β , define the union α ∪ β to be 
the assembly defined for all �x ∈ Z2 by (α ∪ β)(�x) = α(�x) if α(�x) is defined, and (α ∪ β)(�x) = β(�x) otherwise. Say that this 
union is disjoint if α and β are disjoint.

For assemblies α, β :Z2 ��� T and �u ∈Z2, we write α + �u to denote the assembly defined for all �x ∈Z2 by (α + �u)(�x) =
α(�x − �u), and write α � β if there exists �u such that α + �u = β; i.e., if α is a translation of β . Define the supertile of α to 
be the set α̃ = { β | α � β }. A supertile α̃ is τ -stable (or simply stable) if all of the assemblies it contains are τ -stable; 
equivalently, α̃ is stable if it contains a stable assembly, since translation preserves the property of stability. Note also that 
the notation |α̃| ≡ |α| denotes the size of the supertile (i.e., number of tiles in the supertile) and is well-defined, since 

3 A trivial example is a system of four tile types, S, A, B , and C where S is the seed, the temperature is 1, and A binds to the east of S , and both B and 
C are able to bind to the east of A. In this case, there are exactly two terminal assemblies S AB and S AC so the system is not directed. However, since all 
terminal assemblies have the shape of a 3 × 1 rectangle, the system self-assembles that shape.
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translation preserves cardinality (and note in particular that even though we define α̃ as a set, |α̃| does not denote the 
cardinality of this set, which is always considered to be ℵ0).

For two supertiles α̃ and β̃ , and temperature τ ∈ N , define the combination set Cτ
α̃,β̃

to be the set of all supertiles γ̃
such that there exist α ∈ α̃ and β ∈ β̃ such that (1) α and β are disjoint (steric protection), (2) γ ≡ α ∪ β is τ -stable, and 
(3) γ ∈ γ̃ . That is, Cτ

α̃,β̃
is the set of all τ -stable supertiles that can be obtained by attaching α̃ to β̃ stably, with |Cτ

α̃,β̃
| > 1

if there is more than one position at which β could attach stably to α.
It is common with seeded assembly to stipulate an infinite number of copies of each tile, but our definition allows for 

a finite number of tiles as well. Our definition also allows for the growth of infinite assemblies and finite assemblies to be 
captured by a single definition, similar to the definitions of [18] for seeded assembly.

Given a set of tiles T , define a state S of T to be a multiset of supertiles, or equivalently, S is a function mapping 
supertiles over T to N ∪ {∞}, indicating the multiplicity of each supertile in the state. We therefore write α̃ ∈ S if and only 
if S(α̃) > 0.

A (two-handed) tile assembly system (TAS) is an ordered triple T = (T , S, τ ), where T is a finite set of tile types, S is the 
initial state, and τ ∈ N is the temperature, a.k.a. minimum binding threshold. If not stated otherwise, we assume that the 
initial state S is defined S(α̃) = ∞ for all supertiles α̃ such that |α̃| = 1, and S(β̃) = 0 for all other supertiles β̃ . That is, S
is the state consisting of a countably infinite number of copies of each individual tile type from T , and no other supertiles. 
In such a case we write T = (T , τ ) to indicate that T uses the default initial state.

Given a TAS T = (T , S, τ ), define an assembly sequence of T to be a sequence of states �S = (Si | 0 ≤ i < k) (where k = ∞
if �S is an infinite assembly sequence), and Si+1 is constrained based on Si in the following way: There exist supertiles 
α̃, ̃β, ̃γ such that (1) γ̃ ∈ Cτ

α̃,β̃
, (2) Si+1(γ̃ ) = Si(γ̃ ) + 1,4 (3) if α̃ �= β̃ , then Si+1(α̃) = Si(α̃) − 1, Si+1(β̃) = Si(β̃) − 1, 

otherwise if α̃ = β̃ , then Si+1(α̃) = Si(α̃) − 2, and (4) Si+1(ω̃) = Si(ω̃) for all ω̃ /∈ {α̃, ̃β, ̃γ }. That is, Si+1 is obtained from 
Si by picking two supertiles from Si that can attach to each other, and attaching them, thereby decreasing the count of the 
two reactant supertiles and increasing the count of the product supertile. If S0 = S , we say that �S is nascent.

Given an assembly sequence �S = (Si | 0 ≤ i < k) of T = (T , S, τ ) and a supertile γ̃ ∈ Si for some i, define the predecessors
of γ̃ in �S to be the multiset pred�S (γ̃ ) = {α̃, ̃β} if α̃, ̃β ∈ Si−1 and α̃ and β̃ attached to create γ̃ at step i of the assembly 
sequence, and define pred�S(γ̃ ) = {γ̃ } otherwise. Define the successor of γ̃ in �S to be succ�S (γ̃ ) = α̃ if γ̃ is a predecessor of 
α̃ in �S , and define succ�S (γ̃ ) = γ̃ otherwise. A sequence of supertiles �̃α = (α̃i | 0 ≤ i < k) is a supertile assembly sequence of 
T if there is an assembly sequence �S = (Si | 0 ≤ i < k) of T such that, for all 1 ≤ i < k, succ�S (α̃i−1) = α̃i , and �̃α is nascent if 
�S is nascent.

The result of a supertile assembly sequence �̃α is the unique supertile res( �̃α) such that there exist an assembly α ∈ res( �̃α)

and, for each 0 ≤ i < k, assemblies αi ∈ α̃i such that dom α = ⋃
0≤i<k dom αi and, for each 0 ≤ i < k, αi � α. Recall that if 

α is infinite, then k = ∞. For all supertiles α̃, ̃β , we write α̃ →T β̃ (or α̃ → β̃ when T is clear from context) to denote 
that there is a supertile assembly sequence �̃α = (α̃i | 0 ≤ i < k) such that α̃0 = α̃ and res( �̃α) = β̃ . It can be shown using the 
techniques of [33] for seeded systems that for all two-handed tile assembly systems T supplying an infinite number of each 
tile type, →T is a transitive, reflexive relation on supertiles of T . We write α̃ →1

T β̃ (or α̃ →1 β̃) to denote an assembly 
sequence of length 1 from α̃ to β̃ .

A supertile α̃ is producible, and we write α̃ ∈A[T ], if it is the result of a nascent supertile assembly sequence. A supertile 
α̃ is terminal if, for all producible supertiles β̃ , Cτ

α̃,β̃
= ∅.5 Define A�[T ] ⊆ A[T ] to be the set of terminal and producible 

supertiles of T . T is directed (a.k.a., deterministic, confluent) if |A�[T ]| = 1.
Let X ⊆Z2 be a shape. We say T self-assembles X if, for each α̃ ∈ A�[T ], there exists α ∈ α̃ such that dom α = X ; i.e., 

T uniquely assembles into the shape X . For an infinite shape X ⊆ Z2, we say that T finitely self-assembles X if, for each 
finite α̃ ∈A[T ], there exists α ∈ α̃ such that dom α ⊂ X and α̃ →T α̃′ where α′ ∈ α̃′ and dom α′ = X .

3. Finite shapes

In this section, we examine classes of finite shapes that can be produced using fewer unique tile types in one self-
assembly model (either the aTAM or the 2HAM) than in the other. We first define some related notation.

Given a shape X ⊆ Z2, we denote by Kτ
aTAM(X) is the tile complexity of X in the aTAM at temperature τ ∈ N . In other 

words, Kτ
aTAM(X) = min{|T | | T self-assembles X for some T = (T , σ , τ ) where |σ | = 1}. Intuitively, Kτ

aTAM(X) is the size of 
the smallest tile set that at temperature τ produces assemblies that place tiles on–and only on–the target shape X in some 
aTAM system. Let KaTAM(X) = min

{
Kτ

aTAM(X)
∣∣τ ∈N

}
. The quantities Kτ

2HAM(X) and K2HAM(X) are defined analogously.

4 with the convention that ∞ = ∞ + 1 = ∞ − 1.
5 Note that a supertile α̃ could be non-terminal in the sense that there is a producible supertile β̃ such that Cτ

α̃,β̃
�= ∅, yet it may not be possible 

to produce α̃ and β̃ simultaneously if some tile types are given finite initial counts, implying that α̃ cannot be “grown” despite being non-terminal. If 
the count of each tile type in the initial state is ∞, then all producible supertiles are producible from any state, and the concept of terminal becomes 
synonymous with “not able to grow”, since it would always be possible to use the abundant supply of tiles to assemble β̃ alongside α̃ and then attach 
them.
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Fig. 1. A loop of size 12.

3.1. Loops

In this subsection, we study the tile complexity of simple loop shapes in the aTAM and 2HAM, defined formally as 
follows.

Definition 3.1. For any n ∈ N such that n > 2, define Ln = ({0} × {0, . . . ,n − 1}) ∪ ({2} × {0, . . . , n − 1}) ∪ {(1, 0), (1, n − 1)}. 
Intuitively, the set Ln is a “loop of size n.” See Fig. 1 for an example.

The first question that we study is: can 2HAM tile assembly systems uniquely produce loops using fewer unique tile 
types than aTAM tile assembly systems? We will prove that the answer to this question is “no”, for possible temperature 
values τ ∈ {1, 2}.

Throughout this subsection, we do not assume that the single seed tile is placed at the origin, nor do we assume that 
any tile assembly system is directed. Here is our first main theorem.

Theorem 3.2. For all n ∈N such that n > 3, the following hold.

1. K1
aTAM(Ln) = n + 5 < 2n + 2 =K1

2HAM(Ln)

2. K2
2HAM(Ln) ≤ n + 3 =K2

aTAM(Ln)

We break the claims of Theorem 3.2 into Lemmas 3.3, 3.5, 3.6, 3.7 and 3.10 in order to prove each of them.

Lemma 3.3. For all n ∈N such that n > 2, K1
aTAM(Ln) ≤ n + 5.

Proof. To see that K1
aTAM(Ln) ≤ n + 5, define the TAS Tn = (Tn, σ , 1), where Tn consists of the tile types given in Fig. 2a. It 

is easy to see that Tn uniquely produces the set Ln . Intuitively, starting from the seed ‘S’, the bottom, right side, and top 
of the loop assemble from n + 4 tile types. Then, since ‘S’ as the bottom left corner of the loop is guaranteed to already 
be in place, the left side assembles from a repeating path of ‘e’ tile types, namely n − 2 copies of ‘e’, until the downward 
growing column runs into and gets blocked by ‘S’. Further copies of ‘e’ are thus blocked from attaching, making the assembly 
(uniquely) terminal. �

Before we prove a matching lower bound, we need some additional machinery to simplify reasoning about the self-
assembly of loops.

Lemma 3.4. Let n ∈ N such that n > 2. If T = (T , σ , 1) in the aTAM self-assembles Ln, then the tiles that T places at the positions 
C = {(0, 0), (1, 0), (2, 0), (0, n − 1), (1, n − 1), (2, n − 1)} are unique for all terminal assemblies α of T . That is, for any given α ∈
A�[T ], for every �x ∈ C , 

∣∣{�y ∈ dom α | α(�y) = α(�x)}∣∣ = 1. This is also true for any 2HAM TAS T = (T , 1).

We call the sets of positions C = {(0, 0), (1, 0), (2, 0)} and {(0, n − 1), (1, n − 1), (2, n − 1)} the bottom and top caps of Ln , 
respectively. Lemma 3.4 follows by a straightforward case analysis (provided below), since the reuse of any tile type from 
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Fig. 2. Construction for K1
aTAM(Ln) ≤ n + 5.

a cap location in a different location would necessarily allow for the attachment of a tile to the reused cap tile type but 
which is outside of the intended loop shape. (Note that, as shown in Fig. 3, Lemma 3.4 does not hold at temperature τ = 2.)

Proof. Proof of Lemma 3.4:

1. For any terminal assembly α it must be the case that either (1) every pair of adjacent tiles are connected by a glue 
bond, or (2) all except one pair of adjacent tiles are connected by a glue bond. This follows immediately from the fact 
that if more than two adjacent tiles are not connected by a bond, then α isn’t τ -stable (in this case τ = 1) and thus is 
not a valid producible assembly.

2. Given the fact that there can at most be a single pair of adjacent tiles which do not have glue bonds between them, 
we will inspect all possible cases in which two tiles of the same type might be used in two distinct locations in C , and 
show that each of them can lead to an assembly sequence where a tile can be placed outside of Ln . This suffices to 
prove Lemma 3.4 since it must be the case that all terminal assemblies are of shape Ln . In each of the following cases, 
we will let �x and �y refer to the two locations in C in which a tile of the same type is being placed. Of the 6 positions 
in C , 4 of them are in corners of Ln , and 2 are in the middle of a side (the top or bottom). We will call these corner
and middle tiles, respectively. All of the remaining tiles of Ln are those in the left and right sides between the caps, and 
we will call these side tiles.
The cases are the following:
(a) Location �x is in a corner and is bound to only a single neighbor in α: Suppose that the tile in location �y is bound 

to both neighbors in α. Then, the locations of those neighbors relative to �y must be different than the relative 
locations of the neighbors of �x (since every corner is unique). Therefore, the tile in �x must have a glue exposed in a 
direction facing a location outside of Ln , and a tile of the same type which attaches to that glue from �y can attach. 
This places a tile outside of Ln , so this case cannot be. If the tile in location �y is not bound to both neighbors, then 
it must be adjacent to location �x, which means the tile in location �y is in a middle location. But a tile in a middle 
location cannot be the same type as that of a tile in a corner, since every tile in a corner is unique.

(b) Location �x is in a corner and is bound to both neighbors in α: No matter where location �y is in Ln , one of the 
glues which binds to a neighbor of �x must be exposed to a location adjacent to �y that is outside of Ln . This follows 
immediately from the fact that every corner location has a unique pair of sides with adjacent tiles, and all of those 
pairs differ from those of the middle and side tiles as well. Therefore, for whichever glue is thus exposed from the 
tile in location �y, a tile of the same type can attach as attaches to that glue from �x. This places a tile outside of Ln , 
so this case cannot be.

(c) Location �x is in a middle position and the tile placed there is bound to only a single neighbor in α: Since there can 
only be one unbound pair of neighboring tiles, the tile in location �y must be bound to both neighbors and also �y is 
a middle location (since �x is a middle location). Note that, if the tile in location �y was only bound to one neighbor, 
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then that would make it adjacent to �x and therefore in a corner, which is a possibility we previously ruled out. So, 
w.l.o.g., assume that the unbound tiles are the top middle and its neighbor to the west. There are two possibilities:

i. The seed is a left corner, in the left side, or the bottom middle: It is possible to grow directly from the seed 
to the middle bottom and place that tile, which is the same type as the tile placed at �x. Then, the top right 
corner tile that attaches to the middle top can also attach to the right of the bottom middle. However, then the 
tile which binds to the south of the top right corner tile can bind below, and that is outside of Ln , so this case 
cannot be.

ii. The seed is a right corner, in the right side, or the top middle: It is possible to grow directly from the seed to 
the middle top and place that tile. Then, the bottom left corner tile that attaches to the middle bottom can also 
attach to the left of the top middle. However, then the tile which binds to the north of the bottom left corner 
tile can bind above, and that is outside of Ln , so this case cannot be.

(d) Location �x is in a middle position and the tile placed there is bound to both neighbors in α: The previous case 
handled when the placed at one of the middle locations is bound to only a single neighbor, so here we can assume 
that the tile in �y is also in a middle location and bound to both neighbors. Additionally, at least three corner tiles 
must be attached to both neighbors (again since there can only be one pair of unbound neighbors). W.l.o.g., assume 
that the top corners are each attached to two neighbors. No matter where the seed is, it must be possible to grow 
directly from the seed to the middle bottom tile and then place it before a tile has been placed on its other side 
(recall that it was bound to two tiles). W.l.o.g., we’ll assume it’s currently unbound side is the east side. Now, the 
corner tile, which bound to the east side of the top middle in α, can bind to the bottom middle. Since it was bound 
to two tiles, it must have a glue to its south. A tile of the same type which bound to its south in α can now bind, 
but that is outside of (i.e. below) Ln , so this final case also cannot be.

Since all cases where a tile in C could be reused can result in assemblies not in the shape of Ln , no tiles in C may be 
reused. Thus, Lemma 3.4 is proved. �

The following lemma proves that n + 5 is a tight bound on K1
aT AM (Ln).

Lemma 3.5. For all n ∈N such that n > 2, K1
aTAM(Ln) ≥ n + 5.

Proof. Assume the aTAM system T = (T , σ , 1) self-assembles Ln . By Lemma 3.4, |T | ≥ 6. Let L = {0} × {1, . . . , n − 2} and 
R = {2} × {1, . . . , n − 2}. One of the following must be true of the seed:

1. The seed tile is located in a position in one of the caps, i.e. in C .
(a) If so, it must be possible to completely grow either L or R (w.l.o.g. assume R) from cap to cap without growing the 

other (otherwise growth could never get to the other cap).
(b) Then every tile type in R must be unique. Otherwise, a tile of the same type, say A, must appear in more than 

one location. Let �αA be the assembly subsequence consisting of the placement of the first tile placed after the first 
tile of type A, followed by each tile up to and including the placement of the second tile of type A. Since R can 
grow from the side of the cap containing the seed completely before L (by assumption), there exists an assembly 
sequence such that there are no tiles in place to block the growth of an assembly which grows with an arbitrary 
number of repetitions of �αA (we say �αA is pumped). That is, after the first placement of a tile of type A, �αA can 
occur, terminating in another A tile. This, and arbitrarily many subsequent occurrences allow yet another copy of �αA

to occur. Based only on the current assumptions, this results in a system which can produce an infinite assembly, 
but it may also be able to produce either an infinite number of uniquely shaped finite assemblies or an infinite 
number of uniquely shaped infinite assemblies. However, we need only note that n + 1 repetitions of �αA creates a 
subassembly which is taller than Ln and thus can never be a subassembly of Ln (regardless of whatever else may 
grow), so T is capable of making (at least one) assembly of a shape other than Ln and so doesn’t self-assemble Ln . 
Thus, every tile type in R must be unique.

2. The seed tile is in L or R (w.l.o.g. assume L). Then, one of the following must be true:
(a) R can be grown completely by starting from one cap, and thus all tile types in R are unique (following the pumping 

argument above), or
(b) Portions of R can grow from each cap. Neither portion can have a repeated tile type, or there would exist an 

assembly sequence where that portion grows from the seed before the other side grows, and the repeated portion 
could then be pumped. Additionally, neither portion can use a tile type used by the other, or it would be possible 
to grow (at least a portion of) one of the caps in the wrong location. This is because if both the upper and lower 
portions use a tile of the same type, say ta , then it must be possible for the subassembly that grows the bottom 
cap then R up to ta to grow downward from the upper placement of ta . Since the upper placement of ta is higher 
than the lower placement, this will place the bottom cap at a location which is too high. Therefore, all tile types in 
R must be unique.
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So far, we have shown that all tile types of the caps as well as those in R (w.l.o.g.) are unique, thus the tile complexity is 
≥ 6 + (n − 2) = n + 4. To prove Lemma 3.5, we must show that at least one more unique tile type is required, and therefore 
that the exact same tile types must not be used in L and R . That is, L must use at least one tile type not used by R .

Therefore, assume the opposite, i.e. L uses only tiles of one or more types found in R . Let �x be some location in L at 
which tile type t is placed and �y be some location in R at which tile type t is also placed. If it’s possible to either (1) grow 
only a direct path from the seed to �x and then to �y, or (2) grow only a direct path from the seed to �y and then to �x, then 
we will show that it would be possible to place a tile outside of Ln . Without loss of generality, assume the first. Note that 
(in either case) when a tile of type t is placed at �x it must initially bind via the input side that is opposite of the input side 
when placed at �y since growth into, then out of, the cap between �x and �y flips the direction of growth of the path. Starting 
from the seed then growing to the first placement of t at �x, it must then be possible (i.e. a valid assembly sequence) to 
grow the same path that is the reverse of that from �x to �y (since both locations have a tile of type t). This causes the path 
from the seed to �x to then turn left before getting to the next copy of t rather than right. For the entire shape Ln to have 
originally grown, it must be that either from �x there is a path into the bottom cap and to the right (part of which includes 
the seed) or from �y there is a path into the bottom cap and to the left. If the former, then growing the rest of that path 
causes there to be a left turn at the top of L and a right turn at the bottom, which makes a shape not equal to Ln . If the 
latter, then growing that portion of a path from the end of the second placement of t also causes two opposing turns, also 
making a shape other than Ln .

Therefore, the seed must be located between �x and �y in the sense that there is a direct path from the seed to �x and 
another direct path from the seed to �y, where both paths are disjoint from each other. Note that, in this case, when a tile of 
type t is placed at �x or �y, it must bind via the same input side in both cases (either from the north, or from the south). It 
must be possible to extend at least one of these paths up (or down) to a location in a cap. If neither path could be extended 
in such a way, then the assembly would not be stable. Suppose (w.l.o.g.) that it is possible to extend the path from the seed 
to �x to a location in a cap. Take this path extension and use it to extend the path from �y . Such an extension from �y is valid 
because a tile of type t is placed at both �x and �y and �x is not contained in a cap. Moreover, such an extension from �y will 
result in either (1) the placement of a tile outside of Ln , or (2) the placement of a duplicate tile type within a cap, which 
violates Lemma 3.4. �

Lemmas 3.3 and 3.5 prove the first equality of part 1 of Theorem 3.2. We now turn our attention to showing the second 
equality of part 1 of Theorem 3.2.

Lemma 3.6. For all n ∈N such that n > 2, K1
2HAM(Ln) = 2n + 2.

Proof. First, we note that a 2HAM system can be trivially designed to self-assemble Ln by creating a unique tile type for 
each of its 2n + 2 locations, and thus K1

2H AM (Ln) ≤ 2n + 2. We now show the lower bound.
Let T = (T , 1) be any 2HAM system in which Ln self-assembles, with terminal assembly α. Lemma 3.4 says that |T | ≥ 6. 

Define L = {0} × {1, . . . , n − 2} and R = {2} × {1, . . . , n − 2}. Then we have 
∣∣{α

(�x) ∣∣ �x ∈ L
}∣∣ = n − 2, i.e., every tile that α

places in L is unique within L. This is true because, if α placed the same tile type at two distinct locations in L, it would 
be possible to form an arbitrarily tall assembly consisting of copies of the repeated tile and the tiles in between (if any), 
copied arbitrarily. Such an assembly could be taller than the loop, contradicting that T self-assembles the loop. The same 
is true for R . Thus, we have |T | ≥ 6 + n − 2 = n + 4.

Now suppose that there exist points, say �a ∈ L and �b ∈ R such that α
(�a) = α

(�b
)

. Since α
(�a) = α

(�b
)

, it is possible to 
construct a new connected path of tiles by swapping portions of the assembly which attach above and below the tiles in 
�a and �b, to get an example of an assembly α′ ∈ A[T ] such that α′ cannot grow into an assembly α with dom α = Ln (the 
path will either extend too far horizontally, or will not complete the loop). Thus, we have 

∣∣{α
(�x) ∣∣ �x ∈ L ∪ R

}∣∣ = 2n − 4 and 
|T | ≥ 6 + 2n − 4 = 2n + 2. �

Lemmas 3.3 and 3.6 tell us that there exists a shape (e.g., Ln), along with a temperature value (e.g., τ = 1), such that, 
Ln can be assembled in the aTAM using fewer unique tile types than in the 2HAM. However, as we will see next, if the 
temperature is τ = 2, then there is no difference between the minimum number of unique tile types required to self-
assemble Ln in the aTAM versus the 2HAM.

Lemma 3.7. For all n ∈N such that n > 2, K2
2HAM(Ln) ≤ n + 3.

Proof. To see that K2
2HAM(Ln) ≤ n + 3, define the TAS Tn = (Tn,2), where Tn consists of the tile types given in Fig. 3a.

It is easy to see that Tn uniquely produces Ln by building a ‘U’ shape to which the ‘x’ tile may attach and close the loop 
giving Ln . �
Corollary 3.8. For all n ∈N such that n > 2, K2 (Ln) ≤ n + 3.
aTAM
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Fig. 3. Construction for K2{aTAM,2HAM}(Ln) ≤ n + 3. Note that this construction works in both the aTAM (with the ‘a’ tile as the seed) and the 2HAM at 
temperature 2.

Corollary 3.8 follows immediately by creating an aTAM system using the tile set from Fig. 3a and letting a tile of the 
label ‘a’ be the seed tile.

Lemma 3.9. For all n ∈N such that n > 2 and all τ ∈N , if the aTAM system T = (T , σ , τ ) self-assembles Ln, then the seed tile only 
appears once in any terminal assembly α of T .

Lemma 3.9 follows from a straightforward case analysis. The seed tile type must have at least one strength-2 glue (which 
we’ll call g) in order to allow any growth to proceed from it. In order for a second copy to attach somewhere it must do so 
via either a strength-2 glue, or two strength-1 glues. Two strength-1 glues are not an option because that would mean that 
there is a third side with the strength-2 glue g exposed after it attaches. This would allow a tile of whichever type bound 
to the seed to then attach to that exposed glue, and this tile would have 3 neighbors but there are no tiles in Ln with 3 
neighbors. Due to the shape of Ln , there can be at most one tile which attaches via 2 strength-1 glues (since the sides of 
the shape to either side must be complete before it attaches). Therefore, if a second copy of the seed tile type is able to 
attach, it must be able to do so via the growth of a direct path of tiles, all connected by strength-2 glues between it and 
the seed copy.

Either of two cases may occur: (1) along the path between the two copies, the output direction from the seed copy is 
the same as the input direction for the second copy (i.e. both N), or (2) the directions are different. In case (1), the two 
copies must be on opposite sides of Ln and it must be the case that another strength-2 glue, say g2, exists on the seed type 
other than the one connecting the two copies on the path (otherwise, only that path could grow, which couldn’t include all 
four sides of Ln). However, g2 must allow a path which turns a corner to grow, but by first growing the path between the 
two copies, then growing this same “corner-turning” path from both copies (from their identical copies of g2), the assembly 
can grow outside of Ln . In case (2), this means that the seed type has two strength-2 glues facing different directions. It 
must be possible for the path which grows into the second copy of the seed type to instead grow out of the seed copy. By 
growing a portion of that path as well as a portion of the path growing out of the seed copy toward the second copy, both 
until their first corners, it must be the case that the produced assembly has a side length incompatible with Ln . Therefore, 
Lemma 3.9 holds and only one copy of the seed tile type can appear.

The following lemma, along with Lemma 3.7, says that, at temperature 2, loops cannot be used as an example class of 
shapes that can be self-assembled using fewer unique tile types in the aTAM over the 2HAM.

Lemma 3.10. For all n ∈N such that n > 2, K2 (Ln) ≥ n + 3.
aTAM
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Proof. Let T = (T , σ , 2) be any aTAM TAS in which Ln self-assembles such that every glue on every t ∈ T has strength 
either 1 or 2.

The key observation (previously mentioned) is that, since τ = 2, for any α ∈A�[T ], there can be at most one point such 
that the tile placed at this point binds via two strength-1 glues (if there is more than one such point, then α would not be 
producible at all).

There are two cases to consider.
Case 1. Suppose that, for every α ∈ A�[T ], for all �x ∈ Ln , α

(�x) initially binds via one strength-2 glue (this case will 
also cover the case where the last tile to attach binds via two strength-2 glues). In this case, every glue strength of every 
tile type in T could be set to 1 and we would have a TAS T ′ = (T ′, σ , 1) in which Ln self-assembles with |T ′| = |T | and 
Lemma 3.5 says that |T | ≥ n + 5 > n + 3.

Case 2. Suppose that there exists α ∈ A�[T ], such that there is one such point �x ∈ Ln and t = α
(�x) binds 

via two strength-1 bonds. Assume, without loss of generality, that �x /∈ ({0} × {0, . . . ,n − 2}) ∪ {(1, 0), (2, 0)}. This im-
plies that 

∣∣{α (�x) | �x ∈ ({0} × {0, . . . ,n − 2}) ∪ {(1,0), (2,0)}}∣∣ = n + 1 and every tile placed at the points in the set 
({0} × {0, . . . ,n − 2}) ∪ {(1, 0), (2, 0)} initially binds non-cooperatively (i.e., via a single strength-2 glue). Furthermore, t
can only appear once in α, since it binds via two strength-1 glues, and it cannot be the seed tile type (Lemma 3.9). Thus, 
we have |T | ≥ 1 + 1 + | ({0} × {0, . . . ,n − 2}) ∪ {(1, 0), (2, 0)}| = 2 + n + 1 = n + 3 (the first “plus 1” represents the tile to 
which t binds and the second “plus 1” represents t). �

Theorem 3.2 says that there exists a class of shapes that self-assemble at temperature 1 using fewer unique tile types 
in the aTAM than in the 2HAM. This violates the intuition that the 2HAM should be able to self-assemble shapes more 
efficiently because it is a (seedless) generalization of the aTAM, but is possible because of the use of the type of blocking 
available only in the aTAM. However, the difference is not asymptotic (i.e. for both models the tile complexity is O (n)), and 
furthermore Theorem 3.2 also says that at temperature 2 the tile complexity of loops is not better for the aTAM than the 
2HAM. However, one can actually use the technique of blocking to get an asymptotic separation in tile complexity of the 
aTAM over the 2HAM, as shown by the following result.

Theorem 3.11. (Counter-with-crasher) For n ∈N , there exists a shape Xn ⊆Z2 , such that K2
2H AM (Xn) = � 

(
2n

)
and K2

aT AM (Xn) =
O (n).

Proof. Let n ∈N . Define Xn = ({0,1, . . . ,n + 1} × {
0,1, . . . ,2n

}) − ({1} × {
1,2, . . . ,2n − 1

})
. Intuitively, Xn is a (2n + 1) × n

rectangle with a vertical line of length 2n −1 removed from the middle of the second-to-left column of the rectangle, which 
we call a counter-with-crasher. The tile set that can be inferred from Fig. 4 (and which utilizes a standard binary counter tile 
set) can be used to construct an aTAM TAS with a single seed tile that uniquely produces Xn at temperature 2 and the size 
of the tile set is O (n) (it simply requires log(2n) = n tile types to represent each of the bit locations of the counter, and a 
constant additional set of tile types to perform the counting, blocking, etc.). Thus, K2

aT AM (Xn) = O (n).
Now, suppose that some 2HAM system T = (T , τ ) self-assembles Xn and |T | < 2n − 1. Suppose further that T produces 

α, and the domain of α is Xn . Then, there exist two points �p, �q ∈ {0} × {
1,2, . . . ,2n − 1

}
, such that α

(�p) = α
(�q)

. Moreover, 
all (north/south) glues between (all the tiles in between) α

(�p)
and α

(�q)
must be strength τ , which means just the sub-

assembly in α that consists of the line of all the tiles between and including �p and �q can self-assemble in T . Since 
α

(�p) = α
(�q)

, arbitrarily tall linear assemblies self-assemble in T . Thus, T produces an assembly whose shape is not Xn , 
meaning that Xn does not self-assemble in T . In order to avoid such a situation, we must have that any 2HAM TAS 
T = (T , τ ) in which Xn self-assembles satisfies |T | ≥ 2n − 1. It follows that Kτ

2H AM (Xn) = � 
(
2n

)
. �

Note that the construction for Theorem 3.11 (see Fig. 4) can be modified so that the northward growth of the assembly 
depends on the running time of a Turing machine. Making such a modification gives a tile complexity separation between 
the aTAM and 2HAM that grows asymptotically faster than any computable function, i.e. following the busy beaver function. 
(See the proof of Theorem 3.19 for details of such a modification.)

As we shall see in the next subsection, in contrast to Theorem 3.11 there exists a class of shapes that self-assemble in 
the 2HAM using asymptotically fewer unique tile types than what is required in the aTAM.

3.2. Staircases

In this subsection, we will study the tile complexity of shapes that resemble “staircases.” We will show that these shapes 
self-assemble in the 2HAM using asymptotically fewer tile types than what is required for their self-assembly in the aTAM.

Definition 3.12. For each i, k ∈ N , let Bi,k = ({0, . . . ,k − 1} × {−k, . . . ,0, . . . , i + 2}) ∪ {(−1, i + 1), (k, 0)} and define, Sn =⋃2n−1
i=0

(
Bi,n + ((n + 1)i,0)

)
. We refer to each Bi,n as the ith stair step.

Intuitively, the set Sn is a “staircase with 2n steps with each step of width n.” See Fig. 5, which depicts S4. We will use 
Sn to prove our first main result of this section, which is the following theorem.
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Fig. 4. The tile set shown here implicitly defines a temperature 2 TAS that uniquely produces a shape, called a counter-with-crasher, that requires ex-
ponentially many more tile types for unique self-assembly in the 2HAM. The tile types in the bottom row and second-to-right column are defined for 
i = 1, . . . , n − 2. Intuitively, a binary counter self-assembles northward, counting from 0 to 2n − 1 then rolling back over to 0, at which point a southward 
assembling single tile wide path of tiles is initiated, which ultimately gets blocked from further growth by the seed tile.
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Theorem 3.13. KaTAM (Sn) = �(n).

We use a counting argument to prove KaT AM (Sn) = �(n). It is interesting to note that, if one were to apply the standard, 
perhaps most obvious information-theoretic argument to prove Theorem 3.13, then one would only obtain a bound of 
� 

(
logn

log logn

)
(this is not to say that an information-theoretic proof of Theorem 3.13 does not exist).

Before we prove Theorem 3.13, we must define some notation.

Notation. For 0 ≤ i < 2n − 1, let C−
i = ((n + 1)i + n,0) and C+

i = ((n + 1)i + n, i + 2). Let Ci = {
C−

i , C+
i

}
. We refer to the 

set Ci as the ith connector (column), with C−
i and C+

i denoting the lower and upper connector points, respectively, of the 
staircase Sn . We call C−

i and C+
i siblings.

Definition 3.14. Let �α = (αi | 0 ≤ i < k) be an assembly sequence in some TAS with result α. If �x, �y ∈ dom α are such that 
i �α

(�x) < i �α
(�y)

and every path in the binding graph Gαi �α
(�y) from the seed to �y goes through �x, then we write �x ≺�α �y and 

say that �y strictly depends on �x in �α.

Intuitively, if �y strictly depends on �x in �α, then �x is a kind of “pinch-point” through which all “information” from 
the seed to �y must flow immediately prior to the placement of the tile at �y. In a cooperative (i.e. τ ≥ 2) system, a tile 
placement may require no more than one other tile. However, in the following proof(s) we will focus on locations where 
single τ -strength glues are forced to connect subassemblies and therefore serve as single-tile pinch-points.

Notation. Let 0 ≤ i < 2n − 1.

1. The height of the vertical, one-tile-wide gap of Ci is defined as gap(i) = i + 1. Note that this quantity does not count 
the points C−

i and C+
i , but rather just the number of empty spaces between them.

2. The height of the stair step that is immediately east of Ci is defined as height(i) = gap(i) + (n + 3) = i + 1 + n + 3 =
i + n + 4.

Definition 3.15. Let �α be an assembly sequence in T such that dom res(�α) = Sn . For 0 ≤ i < 2n − 1, we say that a point 
�x ∈ Ci is ambitious in �α if there exists a point �y = (p, q) ∈ Sn satisfying the following conditions:

1. (Strict dependency) �x ≺�α �y,

2. (Sufficient vertical growth) q =
⌊

gap(i)
2

⌋
, and

3. (Restricted horizontal growth) �y is located in the stair step that is immediately east of Ci if Ci contains or is east of the 
single seed tile. Otherwise, if Ci is west of the single seed tile, then �y is contained in the stair step that is immediately 
west of Ci .

In other words, an ambitious connector point (at which a connector tile is placed) is one that can, without having to wait 
for a tile to be placed at its sibling connector point, initiate the self-assembly of tiles that grow at least half way “north” (or 
“south”) toward its sibling and the vertical growth is contained in the “very next stair step”, where “very next stair step” is 
defined relative to the position of the seed tile.

Notation. Let n ∈N . For 0 ≤ i < n, we define the ith flight of connector columns of Sn to be the set Fi = ⋃2i+1−2
j=2i−1

C j .

We will now prove some technical lemmas that will be used to prove Theorem 3.13.

Lemma 3.16. Let 2 < n ∈N and assume the following conditions are true:

1. T = (T , σ , τ ) is any singly-seeded TAS in which Sn self-assembles,
2. |T | < n

2 ,
3. �α is an assembly sequence in T with result α and dom α = Sn, and
4. n0 is any positive integer satisfying 2n0 > n.

Assuming the conditions listed above, then, for every n0 ≤ i < n, there exists �x ∈Fi , such that �x is ambitious in �α.

Lemma 3.16 says that “almost” every flight of connector points contains at least one ambitious connector point, assuming 
that the tile set T is not “too big”.
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Fig. 5. The staircase S4 is shown here. The origin is denoted as the black square. The flights and connector columns are indicated.

Proof. Assume, for the sake of obtaining a contradiction, that there is some flight, say Fi∗ , for some n0 ≤ i∗ < n, that does 
not contain an ambitious connector point.

Since, for all n0 ≤ i < n, |Fi | = 2i ≥ 2n0 > n, the seed tile must be strictly east (west) of more than n
2 connector columns 

that are all contained within the flight Fi∗ . Assume, without loss of generality, that the seed is strictly west of more than n
2

connector columns that are all contained within the flight Fi∗ .
Let Ck ⊆ Fi∗ be the connector column that either contains the seed tile or is the first connector column that is east of 

the point at which the seed tile is placed. Assume, without loss of generality, that C−
k is the first point in Ck to receive a 

tile in �α.
We will now construct some new assembly sequences in T and use them to show that T must place some tile at a 

point that is not contained in Sn .
First, let �̂α be an assembly sequence in T such that �̂α behaves exactly like �α but only places tiles at locations on 

which C−
k strictly depends, until it places a tile at C−

k , at which point, �̂α behaves exactly like �α but only places tiles 
at locations that strictly depend on C−

k . Since Fi∗ does not contain an ambitious connector point, it follows that, for all 
j = k, k + 1, . . . , 2i∗+1 − 2, C−

j strictly depends on C−
k in �α and in �̂α. Moreover, since |T | < n

2 , and Fi∗ contains more than 
n
2 connector columns that are all east of the seed and the result of �α has domain Sn , �̂α must place tiles at two connector 
points, say C−

l and C−
m , with l and m satisfying k ≤ l < m < 2i∗+1 − 1 and α

(
C−

l

) = α
(
C−

m

)
.

Now, let ̂̂�α be an assembly sequence in T such that ̂̂�α behaves exactly like �̂α up until �̂α places a tile at C−
m , at which 

point, ̂̂�α repeats the subsequence of tile placements from C−
l to C−

m in �̂α indefinitely, starting at C−
m and using the same 

relative order of placement as �̂α uses. Since Fi∗ does not contain an ambitious connector point, ̂̂�α is a valid, infinite 
assembly sequence in T , contradicting the fact that Sn self-assembles in T . �
Corollary 3.17. Let 21 < n ∈N , n0 = �log(n + 2)� and assume the following conditions are true:

1. T = (T , σ , τ ) is any singly-seeded TAS in which Sn self-assembles,
2. |T | < n−n0

2·5 , and
3. �α is an assembly sequence in T with result α and dom α = Sn.

Assuming the conditions listed above are true, then there exist natural numbers 0 ≤ r < s < n −n0 and corresponding connector points 
�xr, �xs satisfying the following conditions:

1. �xr ∈Fn0+r and �xs ∈Fn0+s ,
2. α

(�xr
) = α

(�xs
)
,

3. �xr and �xs are either both east of the seed tile or both west of the seed tile,
4. �xr and �xs are ambitious in �α, and
5. r < s − 3.

Proof. First, note that |T | < n−n0
2·5 < n

2 and 2n0 = 2�log(n+2)� ≥ 2log(n+2) = n + 2 > n, whence Lemma 3.16 guarantees the 
existence of the following sequence of ambitious points in �α:

�x0 ∈ Fn0 , �x1 ∈ Fn0+1, . . . , �xn−n0−1 ∈ Fn−1
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Since |T | < n−n0
2·5 , it must be the case that, in the sequence α( �x0), α( �x1), . . . , α

(�xn−n0−1
)

of n − n0 tiles, more than n−n0(
n−n0

2·5
) =

2 · 5 tiles must be the same type. Of these (at least) 2 · 5 + 1 tiles, at least 5 must be east (west) of the seed tile. Suppose 
that these 5 tiles are placed at locations �xr ∈Fn0+r, . . . , �xs ∈Fn0+s . To complete the proof, we note that s > r + 3. �

We are now ready to prove Theorem 3.13.

Proof of Theorem 3.13. Let T = (T , σ , τ ) be any singly-seeded TAS in which Sn self-assembles, for n > 21. Assume for the 
sake of contradiction that |T | < n−�log(n+2)�

2·5 . Let �α be an assembly sequence in T whose final assembly is denoted as α, 
with domain Sn . We will show that it is always possible for �α to place some tile at a location �x /∈ Sn .

Note that the conditions in the hypothesis of Corollary 3.17 are satisfied. Therefore, let �xr and �xs be the points in Sn

given by Corollary 3.17. In what follows, we assume, without loss of generality, that �xr and �xs are lower connector points 
and they are both east of the seed tile.

Let m ∈N be the number of tiles that strictly depend on �xs in �α and define �y0, �y1, . . . , �ym−1 such that, for all 0 ≤ j < m, 
�xs ≺�α �y j and i �α

(�y0
)
< i �α

(�y1
)
< · · · < i �α

(�ym−1
)
. We will now construct a new assembly sequence �̂α in T as follows. Let �̂α

be such that �̂α behaves exactly like �α but only places tiles at locations on which �xr strictly depends, until it places a tile at 
�xr , at which point, �̂α places, for all values 0 ≤ j < m, the tile type α

(�y j
)

at �y j − (�xs − �xr
)

and in the same relative order 
according to �α.

Note that �̂α is a valid assembly sequence because:

1. For all 0 ≤ j < m, �xs ≺�α �y j ,
2. α

(�xr
) = α

(�xs
)
, and

3. immediately after �̂α places the tile α
(�xs

)
at �xr , �̂α has yet to place a tile at any location that is east of the column 

occupied by �xr . This condition holds because �̂α only places tiles at positions on which �xr strictly depends, which means 
�xr is the first location in its column to receive a tile under �̂α .

It is worthy to note that the height of the shortest stair step that is immediately east of �xs is height
(
2n0+s − 1

) = 2n0+s +
n +3 and the maximum height of the stair step that is immediately east of �xr is height

(
2n0+r+1 − 2

) = 2n0+r+1 −1 +n +3 =
2n0+r+1 + n + 2.

Since �xs is ambitious in �α, it must be the case that there exists some value 0 ≤ j < m such that �y j =
(

p,
⌊

gap
(
2n0+s−1

)
2

⌋)
, 

�y j is contained in the stair step immediately east of �xs , �y j strictly depends on xs and

q =
⌊

gap
(
2n0+s − 1

)
2

⌋
= 2n0+s−1

> 2n0+r+2 (r < s − 3)

= 2n0+r+1 + 2n0+r+1 > 2n0+r+1 + 2n0

> 2n0+r+1 + (n + 2) = height
(
2n0+r+1 − 2

)
= “the maximum height of the stair step that is immediately east of �xr”.

This means that, as �̂α tries to mimic �α, it will place at least one tile that is strictly outside-to-the-north of the stair step 
that is immediately east of �xr .

The fact that �̂α places a tile at some location �x /∈ Sn is a contradiction to the fact that T self-assembles Sn . We therefore 
conclude that, if T = (T , σ , τ ) is any TAS in which Sn self-assembles, then, for all n > 8, |T | ≥ n−�log(n+2)�

2·5 ≥ n− n
2

2·5 = �(n). �
A natural question to consider is whether or not the bound given in Theorem 3.13 is tight. In what follows, we give a 

construction for Sn in the aTAM.

Theorem 3.18. K 2
aT AM (Sn) = O (n2).

Proof. We use a square and multiple base-4 counters to build the staircase shape Sn . First, we break down the staircase 
into flights of stairs. Second, we describe the construction used for the base-4 counters. Finally, we describe the construction 
of the overall staircase shape.

Preliminaries. Since the staircase is made up of 2n width-n steps and 2n − 1 = ∑n−1
i=0 2i , we can write 2n as 1 + 1 + 2 +

4 + 8 + · · · + 2n−1. Therefore, we can divide the left-to-right sequence of steps into sub-sequences or flights of size 1, 1, 2, 4, 
8, · · · , 2n−1, respectively. So the leftmost step makes up the first flight, the second step from the left makes up the second 
flight, · · · , the last or rightmost 2n−1 steps make up the last flight.
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Fig. 6. Construction for a single step of the staircase.

Base-4 counter. Each step in Sn is built using two counters whose width is w = n
2 (approximately). Since the width 

of each counter is (about) half the width of the step but the tallest counter must be (about) as tall as 2n , we use base-4 
counters (note that 4w = (22)w = 22w = 2n).

We now describe the tile set used to build each w-wide base-4 counter. The seed row contains w distinct tiles and 
represents the starting value of the counter. In this row, as well as in all subsequent rows, we keep track of the least 
significant (i.e., rightmost) digit that is not a 3. This digit (represented by a so-called ‘increment tile’) is the one that will be 
incremented by 1 (modulo 4) in the next row. The increment tiles are the only ones with strength 2 on their north side.

Therefore, they initiate the growth of each new row. Digits to the left of the increment tile (if any) are simply copied 
(using so-called ‘copy tiles’) from the previous row. Digits to the right of the increment tile are all 3s and are reset to 0 
(using so-called ‘reset tiles’). When the increment tile reaches the value 3, the new least significant non-3 digit must be 
found (using so-called ‘find tiles’) to the left of the increment tile. Finally, when all digits are 3s, counting stops but we add 
one last, topmost row to cap the counter with glues needed for the overall construction. Note, that for all categories of tile, 
we use distinct tiles types to distinguish the leftmost and rightmost digits from the middle digits.

The number of tiles in this construction is computed as follows:

Tile type classification Number of tile types Notes

Seed row w One tile type per digit in the initial value of the counter

Increment tiles 9 Three tiles (incrementing each one of the digits 0, 1 and 2; note 
that incrementing 3 is done below using a reset tile)
each for the leftmost, middle and rightmost digits

Copy tiles 8 Four tiles (0 through 3) each for the leftmost and middle digits

Find tiles 8 Four tiles (0 through 3) each for the leftmost and middle digits

Reset tiles 2 One tile each for the middle and rightmost digits

Topmost tiles 3 One tile for the leftmost, middle and rightmost digits

Therefore, the total number of tile types for building a w-wide base-4 counter is w + 30, which is 	(n).
Staircase shape. Fig. 6 depicts the way each step is built, using one square, two base-4 counters and several types of 

filler tiles. Fig. 6(a) labels each section of the step with a letter from A to G.
In this construction, the rightmost column in each step (section G) is used to communicate to the next step, through 

both the upper and lower connectors, one bit of information, namely whether to continue the current flight or start a new 
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Fig. 7. Staircase construction for n = 5. This image depicts the pattern of the up and down-growing counters. The two initial steps are hard-coded and 
therefore do not contain counters.

flight. As a special case, in the last flight, the bit of information represents whether or not the current flight is complete or 
not.

The bulk of each step is made up of one n × n square positioned under two counters that grow in opposite directions, 
namely upward or downward. If n is odd, then each counter has width w = n−1

2 . If n is even, then one of the counters 
has width w1 = n

2 and the other has width w2 = n−2
2 . From now on, we assume that n is odd (the other case is similar). 

Since the first two flights (numbered 0 and 1) of the staircase always contain exactly one step each, we hardwire their 
construction (without using counters) with 	(n) tile types. Furthermore, we use a single, linear-size tile set to build the 
bottommost squares in all steps.

If 1 < i < n, then all steps in flight i use the same two counters. One counter grows upward (shown in light gray as 
section A in Fig. 6(a)) while the other grows downward (shown in dark gray as section B). In all steps but the last one in 
the flight, the two counters grow past each other. In other words, the west side of the upper-right tile in the up counter is 
adjacent to the east side of some leftmost tile in the down counter. In this case, section D uses filler tiles to propagate the 
fact that the next step should use the same counters (i.e., it is still part of the current flight). In contrast, in the last step of 
the flight (see Fig. 6(b)), the two counters barely touch diagonally, in which case section D uses filler tiles to propagate the 
fact that this step is the last one in the current flight. Fig. 7 shows the resulting construction for n = 5.

To summarize the construction of each step:

1. The up and down counters are built asynchronously (using 	(n) tile types) from the upper connector and lower con-
nector, respectively. Note that the down counter is hooked to the upper-left connector using a single 	(n) row of tiles 
shown in dark gray above section C (the ‘hook section’ not identified by a letter),

2. While the counters are being built, the bottommost square can grow from the lower-left tile in the up counter and the 
step’s topmost row (section F) can grow (using 	(1) tile types) from the leftmost tile in the hook section.

3. Once the counters meet, section C fills up using 	(1) tile types (in fact, exactly one tile type).
4. Similarly, once the counters meet, section D fills up using 	(1) tile types.
5. Finally, once sections D and the top row of section E are both complete, section G is built (using 	(1) tile types) starting 

from its bottommost tile.

In conclusion, each flight uses 	(n) tile types and the whole construction uses 	(n2) tile types. �
In the 2HAM, it is possible to beat the �(n) lower bound for the aTAM from Theorem 3.13. To achieve this, we self-

assemble staircase shapes using a simple Turing machine simulation (the simulation is used to specify the width of each 
stair step). In doing so, if we use a Turing machine that always halts – but perhaps not for a very long time – we get an 
asymptotic separation in tile complexity between the aTAM and 2HAM. More formally, we have the following.

Theorem 3.19. If M = (Q ,
,� = 
 ∪ {��}, δ,q0,qh) is a deterministic Turing machine and t denotes the number of steps M takes to 
halt on the empty string, then K2

2HAM

(
S3(3|Q ×�|+4|�|) + 2(t + 1)

) = O (|Q |).

Intuitively, our construction for Theorem 3.19 works as follows. We first build a square using a “standard” aTAM Turing 
machine simulation construction (very similar to the construction that Rothemund and Winfree give in Theorem 5 of [22]). 
Our Turing machine construction has the property that, to the top of the completed simulation square, tiles that represent 
either a 0 or a 1 may attach nondeterministically. This topmost row of tiles is used as a seed for a binary counter, which 
counts from the nondeterministically chosen starting value, say w , up to the next highest power of 2, minus one. The stair 
steps attach to each other in a two-handed fashion, at temperature τ = 2, via two “connector tile types” that are located at 
opposite corners of each stair step.

Proof. In our construction, all possible stair steps can be thought to self-assemble in parallel and then fully-formed stair 
steps of the right height bind together in the correct order to form the staircase.

Construction of an individual stair step has three logical phases: the tile collector gadget, simulation of M , and binary 
counter.
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Fig. 8. Input row tile types. The input row consists of a leftmost blank symbol, the start state and as many blank symbols (see Fig. 10) to the right of the 
start state to get to the rightmost edge of the tile type collector square. We assume that the input tile types attach to the top of the tile collector square.

Fig. 9. Tape head movement tile types.

Fig. 10. Copy tile types. These tile types copy the previous TM configuration up to the next row. Each copy tile “knows” whether it is to the left or right of 
the tape head.

Fig. 11. These tile types expand the tape (on the right and the left, respectively) by one blank symbol.

Simulation. The simulation tile types are given in Figs. 8–13.
Our 2HAM simulation of M essentially works the same as an aTAM simulation of M , except we assume that the input 

row, which encodes the initial configuration of M (see the tile types in Fig. 8), attaches in a cooperative fashion to the top 
of some kind of seed square. In our case, the seed square to which the input row attaches is the tile collector gadget, which 
we describe next. It is clear that the tile complexity of the simulation tile types is dominated by O (|Q |), assuming a fixed, 
constant-size 
.
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Fig. 12. Halting row tile types. The connector tile type (top row, rightmost tile type) is designed to attach to the east of the rightmost tile in the halting 
row via the ‘#’ glue label. The purpose of the connector tile type is to connect the rightmost tile in the halting row of a stairstep of height h to the leftmost 
tile in the halting row of a stairstep of height h + 1.

Fig. 13. Filler tile types. These tile types fill in the square around the TM simulation. These tile types are utilized in both the tile collector gadget and the 
simulation phase.

Tile collector gadget. We will not explicitly define each tile type in the tile collector gadget, but rather give a high-level 
overview of how it works.

At its core, the tile collector gadget is a diagonal path of tiles with notches at regular intervals to which certain classes 
of simulation tile types may attach, specifically copy, transition and halting tile types (see Figs. 10, 12 and 9). The reason 
we use a tile collector gadget in our construction is because it is possible for M to not execute all possible transitions as it 
computes, which means some simulation tile types in our construction have the potential to not be utilized. In the aTAM, 
such unutilized simulation tile types are not considered producible, since they do not bind to the seed-containing-assembly. 
However, in the seedless 2HAM, unutilized simulation tile types that were created to handle transitions that never execute 
represent terminal assemblies of size one, which obviously are not of the desired staircase shape. Therefore, in order for our 
construction to produce only terminal assemblies in the shape of the desired staircase, we must ensure that every tile type 
in our construction can grow into a terminal assembly in the shape of the desired staircase.

In our simulation construction (defined previously), there are seven classes of tile types that have the potential to not 
be used in the simulation of M . These seven classes of tile types consist of copy, transition and halting tile types (see 
Figs. 10, 12 and 9). Therefore, the tile collector gadget consists of a path of tiles with a notch for each type of transition, 
copy and halting tile. We design the tile collector gadget to ensure that each simulation tile binds to its respective notch 
via the same input sides that it would use if it were actually being utilized in the simulation of M (see the grey tiles in 
Fig. 14). The notches in the path are two tiles “deep” to account for the fact that some simulation tile types expose a north-
facing, strength-2 output glue, to which some other simulation tile type may attach, e.g., the “qc” transition tile types that 
accept the state from either the left or the right. While there are only seven logical classes of such tile types, there may, 
depending on the definition of M , be many individual tile types, whence the actual length (number of tiles in the path) of 
the tile collector gadget is 3 (3|Q × �| + 4|�|). The glues of the tiles along the path are uniquely hard-coded so that the tile 
collector gadget will correctly assemble via any order of attachment. It is important to note that the tile complexity of the 
tile collector gadget is O (|Q |), assuming a fixed, constant-size 
.

We use filler tile types (see the ‘a’ and ‘b’ tile types in Fig. 13) to fill in a square around the diagonal tile collector path. 
As the filler tiles attach, two signals are propagated (the ‘@’ symbols in Fig. 14): one of these signals is sent up the leftmost 
column and the other signal is sent right-to-left along the topmost row. When these two signals meet, they cooperate to 
place a tile (see the trio of tiles in the upper left corner of Fig. 14), to which the first input row tile type may attach (i.e., 
the leftmost tile type in Fig. 8). At this point, the initial configuration of M assembles along the top of the tile collector 
gadget, now a square, from left-to-right and the simulation tile types carry out the simulation of M . In each row of the 
simulation of M , the tape is expanded in both directions by one tape cell. As the space-time configuration history of M
assembles on top of the tile collector square, a path of tiles assembles diagonally, down and to the left, starting at the lower 
left corner of the tile collector square, using the ‘A’ and ‘B’ tile type duo from Fig. 13. See Fig. 15 for a high-level example 
of the simulation of M .
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Fig. 14. The diagonal path of the tiles that make up the tile collector gadget. Also shown is a trio of tiles (in the upper left corner) that cooperate to initiate 
the assembly of the initial configuration of the simulation of M . The seven classes of simulation tile types are represented along the collector gadget path. 
Each simulation tile binds to the tile collector gadget via the same input sides that it would use if it were actually being utilized in the simulation of M . 
In this figure, we denote glue mismatches (between simulation tile types and the tile collector gadget) with a thick black X. Note that that each class of 
simulation tile types may, depending on the definition of M , consist of several individual tile types. Therefore, the actual length (number of tiles along the 
path) of the tile collector gadget is 3 (3|Q × �| + 4|�|). Note that the collector gadget, as presented here, and therefore our construction, does not uniquely 
produce a terminal assembly, but it can be modified to do so. It is also possible to modify the collector gadget to nondeterministically self-assemble into a 
constant size assembly to which only certain subsets of simulation (super)tiles may attach. However, for each combination of simulation supertiles, there 
will be a corresponding constant size collector gadget.

Binary counter. The TM simulation phase results in a Turing machine simulation square of size W = 3 (3|Q × �| + 4|�|)+
2(t + 1). To the topmost row of the Turing machine simulation square, “binary counter initialization” tile types (see 
Fig. 16 for detailed tile type definitions) attach nondeterministically. These tile types are essentially guessing a bit string 
w ∈ {0, 1}W , which is encoded along the north-facing glues of the topmost row of the TM simulation square (see the 
north-facing glues of the tile types defined in Fig. 16).

The remaining logical groups of tile types are shown in Figs. 16, 17 and 18.
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Fig. 15. The simulation of M is carried out on top of the tile collector square gadget. In this figure, the tile collector gadget is represented by the 
empty square, along with the single-tile-wide ring of tiles that encircle it. The size of the resulting square (tile collector gadget + simulation of M) is 
3 (3|Q × �| + 4|�|) + 2(t + 1), where t is the number of steps that M takes to halt on the empty string (three in this example).

Fig. 16. These tile types assemble from right-to-left along the top of a TM simulation square. They mark the rightmost ‘0’ bit in the nondeterministically 
chosen value, say w , and also initiate a vertical (optimal, non-zig-zag) binary counter [34,9] that counts from w up to 2W − 1.

Finally, the tile types shown in Figs. 17 and 18 build the rest of the stair step directly on top of the row of binary counter 
initialization tiles (see Fig. 19).

Putting it all together. Note that, in the 2HAM, individual stair steps may assemble completely and independently of 
other stair steps. By way the binary counter initialization tile types nondeterministically attach to the topmost row of the 
Turing machine simulation square, there is a one-to-one correspondence between (heights of) stair steps that are able to 
form and strings over the set {0, 1}W . Thus, we have 2W total stair steps and, by definition, each stair step has some height 
h ∈ {

3 + W , . . . ,2W + W
}

. By the placement of the connector tile types, a stair step of height h may bind to the left side 
of another stair step if and only if the latter has height h + 1. �
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Fig. 17. These binary counter tile types implement an optimal, non-zig-zag binary counter, modified so that only special tile types are allowed to attach 
along the leftmost edge of the counter, i.e., the tile types whose north glues are prefixed with ‘*’. The purpose of the leftmost tile type in the top row is 
to connect the rightmost tile in the topmost row of a stairstep of height h to the leftmost tile in the second-from-the-topmost row of a stairstep of height 
h + 1.

Fig. 18. These tile types cap off each stair step with an additional row of tiles to which one of the connector tiles will bind.

Fig. 19. Two consecutive stair steps coming together. All glue details are omitted. The light grey area is the diagonal path of the tile collector gadget. The 
dark grey area is filled in using the ‘a’ and ‘b’ filler tiles.

Fig. 20. A blob with an infinite tail.

Theorem 3.19 says that, at temperature τ = 2, the 2HAM can be used to self-assemble certain shapes much (
muchmuchmuch

... )
more efficiently (with respect to tile complexity) than what is possible in the aTAM.
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Fig. 21. A finite portion of the infinite staircase, denoted as S∞ . The black square represents the origin.

4. Infinite shapes

In this section, we examine a class of infinite shapes and whether or not they can (finitely) self-assemble in the two 
models.

We first note that it is easy to exhibit a class of infinite shapes that self-assemble in the aTAM but do not self-assemble 
in the 2HAM. Simply take any finite shape X ⊂ Z2 and union it with a one-way infinite line to get a kind of “blob with 
an infinite tail” (see Fig. 20 for an example of such a shape). Such shapes do not self-assemble in the 2HAM via a straight-
forward pumping lemma argument on the infinite tail portion of the shape (since the assembly sequence could proceed 
infinitely without attaching to the blob). However, we note that it is easy to take any such blob+tail shape and exhibit an 
aTAM TAS in which that shape self-assembles. To see this, simply create hard-coded tile types for the finite blob portion 
(with the seed tile placed at some location in the blob) and then have a single tile type that repeats infinitely in one direc-
tion for the tail portion. This construction also testifies to the finite self-assembly of a blob+tail shape in the 2HAM. In what 
follows, we will define an infinite shape that does not (finitely) self-assemble in the aTAM but does finitely self-assemble in 
the 2HAM.

Definition 4.1. For each i ∈ N , let Bi = ({0, . . . , i + 2} × {0, . . . , i + 2}) ∪ {(i + 3, 0), (i + 3, i + 2)} and S∞ = {(−1,1)} ∪
∞⋃

i=0

(
Bi +

(
i(i + 7)

2
,0

))
. Intuitively, the set S∞ is essentially a succession of larger and larger squares that are connected 

by pairs of tiles positioned at the top right and bottom right of each square. See Fig. 21 for an example.

We now show how to finitely self-assemble infinite staircases in the 2HAM.

Theorem 4.2. The infinite staircase S∞ finitely self-assembles in the 2HAM.

Intuitively, our construction for Theorem 4.2 proceeds as follows. We first assemble horizontal lines using three tile 
types: one to start the line, one to keep it going and one to stop the line. The tile that stops the line may attach non-
deterministically at any step, whence lines of every length are able to form and any finite length line can grow into a line 
which stops (this is necessary for the system to finitely self-assemble S∞). Each line of length k ultimately grows into a 
k × k square. Connector-tiles that attach to the left and right of each square ensure that only a (k − 1) × (k − 1) square may 
attach to the left of a k × k square.

Proof. Our proof is by construction, i.e., we will describe a 2HAM TAS T = (T , 2) in which S∞ finitely self-assembles. Our 
tile set T simply consists of two logical groups of tile types, which are shown in Figs. 22a and 22b. Intuitively, T finitely 
self-assembles S∞ because if one simply assumes that the seed row tiles may only grow finite rows of tiles, then the 
construction works in essentially the same way as the construction for Theorem 3.19. See Fig. 23 for an example of two 
consecutive square stair steps coming together to bind with exactly strength 2. �

Note that S∞ does not self-assemble in T in our 2HAM TAS because the seed row tile types (see Fig. 22a) could produce 
an infinite horizontal line assembly that does not contain a tile type with a “?”. This infinite line structure would be terminal 
(in the limit) as a single, infinite row of tiles which does not grow into an assembly with shape S∞ .

It does not seem obvious whether S∞ self-assembles in the 2HAM (in some other tile assembly system than the one we 
are describing here). Next, we have the following impossibility result for S∞ in the aTAM.

Theorem 4.3. The infinite staircase S∞ does not finitely self-assemble in the aTAM.

Before we prove Theorem 4.3, we define some notation and state some useful observations.

Notation. For all i ∈ N , let C−
i =

(
(i+1)(i+8)

2 − 1,0
)

and C+
i =

(
(i+1)(i+8)

2 − 1, i + 2
)

be the lower and upper connector 

points for column i, respectively. Let Ci = {
C−, C+}

. We call C− and C+ siblings.
i i i i
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Fig. 22. The two logical groups of tile types that comprise the entirety of our tile set T .

Fig. 23. An example of two consecutive square stair steps coming together.

In our proof of Theorem 4.3, we will use the gap function as it was originally defined in Section 3.2, i.e., gap(i) = i + 1.

Definition 4.4. Let �α be an assembly sequence in an aTAM TAS T , such that, dom res(�α) = S∞ . For some i ≥ 0, we say that 
a point �x ∈ Ci is ambitious in �α if there exists a point �y = (p, q) ∈ S∞ satisfying the following conditions:

1. �x ≺�α �y,

2. q ∈
{⌊

gap(i)
2

⌋
,
⌊

gap(i)
2

⌋
+ 1

}
, and

3. p < (i+2)(i+9)
2 − 1.

In other words, an ambitious point (at which a connector tile is placed) is one that can grow at least half way “up” 
(or “down”) toward its sibling connector tile and it can do so without going through the next connector column Ci+1 . This 
definition of an ambitious point is simply an adaptation of Definition 3.15 to S∞ for the purposes of this proof.

Observation 4.5. Let �α be an assembly sequence in an aTAM TAS T , with result α, such that, dom α = S∞ . If C− =〈
C−

0 , C−
1 , . . .

〉
and C+ = 〈

C+
0 , C+

1 , . . .
〉
, then, either C− contains an infinite subsequence of points 

〈
C−

i0
, C−

i1
, . . .

〉
, such that, 

for all j ∈N , C− is ambitious in �α, or C+ contains a similarly defined infinite sequence of ambitious points in �α .
i j
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Fig. 24. Proof idea of Theorem 4.3. The black tiles represent the locations C−
r and C−

s respectively (C−
r on the left and C−

s on the right). The easternmost 
squiggly thick black line represents an ambitious placement of a tile by some assembly sequence, say �α. The westernmost squiggly thick black line 
represents another assembly sequence, say ̂�α, trying to mimic �α and, in doing so, erroneously places a tile outside of S∞ .

Note that, in Observation 4.5, if neither C− nor C+ contain an infinite subsequence of ambitious points, then S∞ cannot 
self-assemble in �α . To see this, observe that, if �α places a tile in the “middle” row of a square of S∞ , then there must be 
some ambitious point that facilitates the placement of such a tile (here, we say “middle” because we are off by one by the 
way we define gap). However, if there are only finitely many ambitious connector points, then, eventually, �α will not be 
able to place tiles in the “middle” rows of squares of S∞ , i.e., the square immediately east of Ci in S∞ , for some value of i, 
will not have tiles placed at any points with y-values of either 

⌊
gap(i)

2

⌋
or 

⌊
gap(i)

2

⌋
+ 1.

From this point on, we will assume, without loss of generality, that C− contains an infinite subsequence of ambitious 
points 

〈
C−

i0
, C−

i1
, . . .

〉
.

Observation 4.6. Let �α be an assembly sequence in an aTAM TAS T , with result α, such that, dom α = S∞ . If 
〈
C−

i0
, C−

i1
, . . .

〉
is an infinite subsequence of C− , such that, for all j ≥ 0, C−

i j
is an ambitious point in �α, then there exist indices r = i j, s =

ik ∈N satisfying the following conditions:

1. s ≥ 24,
2. the points C−

r and C−
s are east of the seed tile of T

3. α
(
C−

r

) = α
(
C−

s

)
, and

4. gap(s) > 5 (gap(r) + 3).

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Let T be an arbitrary aTAM TAS and assume, for the sake of contradiction, that T finitely self-
assembles S∞ . Then there exists an assembly sequence in T , say �α, with result α, such that dom α = S∞ . We will derive a 
contradiction by showing that there is necessarily some finite producible assembly α̂ ∈ A[T ], such that, dom α̂ − S∞ �= ∅, 
which violates finite self-assembly.

By Observation 4.5, the infinite sequence C− = 〈
C−

0 , C−
1 , . . .

〉
contains an infinite subsequence of ambitious points in �α , 

say 
〈
C−

i0
, C−

i1
, . . .

〉
. Therefore, let r, s ∈N be the indices given by Observation 4.6. By the definition of gap and the relationship 

between r and s, it follows that

gap(s) > 5 (gap(r) + 3) ⇔ r <
s − 19

5
. (4.1)

A sketch of the remainder of the proof is given in Fig. 24.
Let m ∈ N be the number of locations in the square immediately east of C−

s that strictly depend on C−
s and define 

the locations �y0, �y1, . . . , �ym−1, such that, for all 0 ≤ j < m, C−
s ≺�α �y j and i �α

(�y0
)
< i �α

(�y1
)
< · · · < i �α

(�ym−1
)
. We will now 

construct a new assembly sequence �̂α in T as follows. Let �̂α be such that �̂α behaves exactly like �α but only places tiles at 
locations on which C−

r strictly depends, until it places a tile at C−
r , at which point, �̂α places, for all 0 ≤ j < m, the tile type 

α
(�y j

)
at �y j − (�xs − �xr

)
and in the same relative order. Note that �̂α is a valid assembly sequence because:

1. each assembly of �̂α is finite (under finite self-assembly, an infinite assembly, whose domain is a strict subset of S∞ , 
could potentially be terminal),

2. for all 0 ≤ j < m, C−
s ≺�α �y j ,

3. α
(
C−

r

) = α
(
C−

s

)
, and

4. immediately after �̂α places the tile type α
(
C−

s

)
at C−

r , �̂α has yet to place a tile at any location that is east of C−
r . This 

condition holds because �̂α only places tiles at positions on which C−
r strictly depends, which means C−

r is the first 
location in its column to receive a tile under �̂α.
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Fig. 25. Discrete Sierpinski triangle, denoted S.

Since C−
s is ambitious, there must be an index l, such that, �yl is located in the square immediately east of the column 

Cs . Therefore, if �yl = (p, q), then

q ≥
⌊

gap(s)

2

⌋
=

⌊
s + 1

2

⌋
>

s + 1

2
− 1

>
2s + 5

5
(for s > 15)

= s − 19

5
+ 4 + s + 4

5
> r + 4 + s + 4

r + 4
(by (4.1) and assumingr > 0)

> r + 3 +
⌈

s + 4

r + 4

⌉
= gap(r) + 2 +

⌈
gap(s) + 3

gap(r) + 3

⌉
.

By the definition of ambitious (Definition 4.4), when placing a tile at the point �yl , �α can only grow east from C−
s by 

at most gap(s) + 3 points. Thus, the number of squares, east of the point C−
r , through which �̂α may grow is less than ⌈

gap(s)+3
gap(r)+3

⌉
. By the definition of S∞ , the height of the square that is 

⌈
gap(s)+3
gap(r)+3

⌉
squares to the east of C−

r is gap(r) + 2 +⌈
gap(s)+3
gap(r)+3

⌉
. Therefore, by the above chain of inequalities, when placing a tile at �yl = (p, q), �̂α will have no choice but to 

grow too far “up”, i.e., at least to the point (p, q), and hence out of S∞ – even if it tries to grow “east” as far as it possibly 
can and into a taller square, past C−

r , before growing “up” to place �yl . �
Corollary 4.7. The infinite staircase S∞ does not self-assemble in the aTAM.

Proof. Self-assembly implies finite self-assembly. Theorem 4.3 says that S∞ does not finitely self-assemble in the aTAM, 
therefore, it does not self-assemble in the aTAM. �

We previously showed that the infinite staircase finitely self-assembles in the 2HAM. We also mentioned that “blobs 
with infinite tails” also finitely self-assemble in the 2HAM. We now show, while perhaps not overly-surprising, that not 
every infinite shape finitely self-assembles in the 2HAM, i.e., there is an example of a shape, e.g., the discrete Sierpinski 
triangle (see Fig. 25) that does not finitely self-assemble in the 2HAM.

Definition 4.8. Let V = {(1, 0), (0, 1)} be the generator of the discrete Sierpinski triangle and define the stages S0 = {(0, 0)}, 
and for integers i > 0, Si+1 = Si ∪ (Si + 2i V ), where A + cB = { �m + c�n | �m ∈ A and �n ∈ B}. The discrete Sierpinski triangle, 
denoted as S, is defined as the infinite union S = ⋃∞

i=0 Si . A finite portion of this infinite shape is shown in Fig. 25.

Theorem 4.9. The discrete Sierpinski triangle does not finitely self-assemble in the 2HAM (at any temperature).

Before we prove Theorem 4.9, we must first develop some machinery, starting with the following observation about 
non-cooperative self-assembly in the 2HAM.

Observation 4.10. Let T = (T , 1) be any 2HAM TAS and α̃ ∈A[T ]. If α ∈ α̃, then, for any subassembly α′ � α, α̃′ ∈A[T ].
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Observation 4.10 is obvious since, by definition of a subassembly, α′ must be stable and therefore every tile must be 
bound to at least one other. Also, since any subassembly is a tree, and at τ = 1 any bond is sufficient for tiles to attach, it’s 
possible for any subassembly to grow one tile at a time.

We now define notation for certain substructures of S.

Notation. For all i ≥ 1, the ith vertical branch of S is the line 
{

2i
} × {

0, . . . ,2i − 1
}

.

The following is obvious by inspection.

Observation 4.11. For all k ≥ 1, Sk contains k − 1 vertical branches.

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. To prove Theorem 4.9, for the sake of contradiction, we assume that there exists some 2HAM TAS 
T = (T , τ ) that finitely self-assembles the discrete Sierpinski triangle S. We will derive a contradiction by showing that 
there is some finite producible supertile ˜̂α ∈ A[T ], such that, for some α̂ ∈ ˜̂α, dom α̂ − S �= ∅, assuming α̂ is translated so 
that its lower left most tile is placed at the origin. (By the definition of S, namely its particular tree structure, any producible 
super tile of T must have a well-defined lower-leftmost location in its domain.) This would violate one of the conditions of 
finite self-assembly, because ˜̂α would be an example of a finite producible supertile that cannot grow into a supertile with 
shape S.

Since the underlying grid graph of S is a tree, we may assume that T = (T , τ = 1) because all glues must be τ -strength. 
Let �̃α be a supertile assembly sequence in T with res( �̃α) = α̃ and, α ∈ α̃ where (0, 0) ∈ α, and dom α = S. Let k ≥ |T | + 2. 
Consider an assembly αk satisfying the following conditions: (1) αk � α and (2) dom αk = Sk . By Observation 4.10, α̃k ∈
A[T ], i.e., the supertile induced by αk is a producible supertile in T . Note that the tile type placed at the lower leftmost 
position of αk must have a south glue of either strength-0 or which does not match the north glue label/strength of any 
tile type in T and a west glue of either strength-0 or which doesn’t match the east glue label/strength of any tile type in T .

By Observation 4.11, and our choice of k, Sk contains at least k − 1 ≥ |T | + 2 − 1 = |T | + 1 vertical branches. Thus, there 
exist two numbers, say i and j, satisfying 1 ≤ i < j ≤ k, such that in αk the north glue of αk

(
2i,0

)
is the same as the north 

glue of αk
(
2 j,0

)
.

Define a subassembly of αk , βi , as follows: for all �x ∈ {
2i

} × {
1, . . . ,2i − 1

}
, βi

(�x) = αk
(�x), and βi is undefined at all 

other points. By Observation 4.10, β̃i ∈ A[T ]. Moreover, the north glue of βi
(
2i,2i − 1

)
has strength 0 or does not match 

the south label/strength of any other tile type in T , else a tile could attach to it, which would be outside of S.
Next, define the assembly α̂k , such that, for all �x ∈ {

0, . . . ,2k − 1
} × {0}, α̂k

(�x) = αk
(�x) and α̂k is undefined at all other 

points. By Observation 4.10, ˜̂αk ∈A[T ].
Since the south glue of βi

(
2i,1

)
is the same as the north glue of αk

(
2 j,0

)
and we have τ = 1, the translated assembly 

βi + (
2 j − 2i,0

)
can attach to α̂k via the south glue of βi

(
2i,1

)
and the north glue of αk

(
2 j,0

)
.

Let α̂ denote the assembly resulting from attaching βi + (
2 j − 2i,0

)
to α̂k in the previously described fashion, i.e., 

α̂ = α̂k ∪ (
βi + (

2 j − 2i,0
))

. Intuitively, (the shape of) α̂ is the bottom row of stage k of the Sierpinski triangle to which 
an undergrown vertical branch is attached in the wrong location (and it cannot grow taller because its north most glue 
either has strength 0 or does not match the south glue of any other tile type. Thus, ˜̂α is an example of a finite supertile, 
producible in T that cannot grow into a supertile, say α̃, where dom α̃ = S. �
Corollary 4.12. The discrete Sierpinski triangle does not self-assemble in the 2HAM.

Proof. Self-assembly implies finite self-assembly. Theorem 4.9 says that S does not finitely self-assemble in the 2HAM, 
therefore, it does not self-assemble in the 2HAM. �
5. Conclusion

In this paper, we studied the effect that hierarchical self-assembly has on reducing tile complexity of various shapes. We 
leave open the following questions:

1. We showed K2
aTAM (Sn) = �(n) (see Theorem 3.13) and K2

aTAM (Sn) = O  
(
n2

)
(see Theorem 3.18). What are tight bounds 

on K 2
aTAM (Sn)?

2. We showed that there is a finite shape that self-assembles more efficiently asymptotically in the aTAM than it does in 
the 2HAM (see Theorem 3.11). Here, the aTAM tile set makes use of blocking, where a repeating path of tiles growing 
to the south eventually crashes into a previously placed tile. Of course, the terminal assembly in this example was not 
fully connected. If the final assembly is required to be fully connected, i.e., no glue mismatches, then is there a shape 
that can be self-assembled asymptotically more efficiently in the aTAM than in the 2HAM?
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3. The infinite staircase S∞ finitely self-assembles in the 2HAM but not the aTAM. Does it self-assemble in the 2HAM?
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