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10

Abstract Organisms can adapt to an environment by taking multiple mutational paths. This11

redundancy at the genetic level, where many mutations have similar phenotypic and �tness12

e�ects, can make untangling the molecular mechanisms of complex adaptations di�cult. Here13

we use the E. coli long-term evolution experiment (LTEE) as a model to address this challenge. To14

understand how di�erent genomic changes could lead to parallel �tness gains, we characterize15

the landscape of transcriptional and translational changes across 12 replicate populations16

evolving in parallel for 50,000 generations. By quantifying absolute changes in mRNA17

abundances, we show that not only do all evolved lines have more mRNAs but that this increase18

in mRNA abundance scales with cell size. We also �nd that despite few shared mutations at the19

genetic level, clones from replicate populations in the LTEE are remarkably similar in their gene20

expression patterns at both the transcriptional and translational levels. Furthermore, we show21

that the majority of the expression changes are due to changes at the transcriptional level with22

very few translational changes. Finally, we show how mutations in transcriptional regulators lead23

to consistent and parallel changes in the expression levels of downstream genes. These results24

deepen our understanding of the molecular mechanisms underlying complex adaptations and25

provide insights into the repeatability of evolution.26

27

Introduction28

A key challenge in biology is understanding the relationships between genotype, phenotype, and29

evolutionary �tness. Comparative genomic approaches and large-scale mutation experiments30

have allowed us to map genetic changes to phenotypic changes underlying adaptation. For ex-31

ample, mutations that increase the a�nity of hemoglobin for oxygen are adaptive in high-altitude32

dwelling deer mice (Natarajan et al., 2013), and mutations to the in�uenza haemagglutinin and33

neuraminidase proteins increase viral �tness (Gong et al., 2013; Lee et al., 2018). Adaptive phe-34

notypes can also result from changes in multiple genes, such as in yeast evolving under nutrient35

limitation (Gresham et al., 2008; Lauer et al., 2018; Venkataram et al., 2016), bacterial adaptation36

during infection (Lieberman et al., 2011) or to high temperature (Tenaillon et al., 2012), and in the37

evolution of smaller body sizes in Atlantic silversides under a size-selective �shing regime (Therk-38

ildsen et al., 2019). In many cases, similar adaptive phenotypes arise from di�erent mutations to39

the same gene or regulatory region or from combinations of mutations to di�erent genes and reg-40

1 of 25

premal.shah@rutgers.edu
john.favate@rutgers.edu


ulatory regions. This redundancy, where many genotypes produce similar phenotypes, makes it41

di�cult to understand themolecularmechanisms behind adaptive phenotypes and is exacerbated42

by potential epistatic interactions among mutations. On the other hand, adaptive changes to ex-43

pression have been shown to occur during the domestication of eggplants and tomatoes (Koenig44

et al., 2013; Page et al., 2019), and in hybridization events between two weeds (Kryvokhyzha et al.,45

2019). Although not direct observations of adaptive changes to gene expression, recent compara-46

tive analyses of across-species gene expression suggest the expression levels of numerous genes47

are evolving under directional selection in vertebrates, �sh, and butter�ies (Brawand et al., 2011;48

Catalán et al., 2019; Fukushima and Pollock, 2020; Gillard et al., 2021).49

Here we use the long-term evolution experiment (LTEE) (Lenski et al., 1991) as a model to char-50

acterize themolecular changes underlying adaptation to a novel environment. In the LTEE, 12 repli-51

cate populations of E. coli have been adapting in parallel to a carbon-limited medium since 1988,52

growing over 75,000 generations thus far. As is common in lab-based evolution experiments, the53

replicate populations display similar phenotypic changes (Blount et al., 2018). Examples include54

increases in �tness (Wiser et al., 2013) and cell size (Grant et al., 2021; Philippe et al., 2009). In55

contrast, a signi�cant amount of diversity exists at the genomic level across the replicates (Tenail-56

lon et al., 2016), with some lines having orders of magnitude more mutations than others due to57

the development of mutator phenotypes (Good et al., 2017). While few mutations are shared at58

the nucleotide level, some genes are commonly mutated across evolved lines (Maddamsetti et al.,59

2017;Woods et al., 2006). Still, how most of the mutations a�ect �tness in the system is unknown.60

Researchers have hypothesized that similar gene expression patterns might contribute to the61

parallel increases in �tness in the LTEE (Fox and Lenski, 2015). An earliermicroarray-based study of62

transcriptional changes in LTEE showed parallel changes in mRNA abundances in clones from two63

evolved lines (Ara-1 and Ara+1) at 20,000 generations (Cooper et al., 2003). However, it remained64

unclear which mutations were responsible for these parallel changes and whether the remaining65

ten lines also had similar expression pro�les.66

Moreover, protein-coding mRNAs must be translated to perform their function. The majority67

of cellular biomass and energy expenditure is devoted to translation (Bernier et al., 2018), and the68

role of hierarchical regulation of gene expression in evolutionary processes has been a subject of69

debate in recent years (Albert et al., 2014;Artieri and Fraser, 2014;McManus et al., 2014). However,70

we know little of changes in gene expression at the translational levels in LTEE.71

Here, we use both RNA-seq and ribo-seq (Ingolia et al., 2009) to pro�le the landscape of tran-72

scriptional and translational changes after 22 years (50,000 generations) of evolution in the LTEE73

to answer �ve fundamental questions: (i) do evolved lines show similar transcriptomic and trans-74

latomic changes after 50,000 generations despite acquiring mostly unique sets of mutations? (ii)75

how do changes in cell size a�ect changes in absolute expression levels? (iii) do changes in gene ex-76

pression at the translational level bu�er, augment, or match changes at the transcriptional level?,77

(iv) what classes of genes or pathways are altered in the evolved lines, and �nally, (v) canwe identify78

mutations responsible for parallel changes in gene expression across replicate populations?79

Results80

We generated RNA-seq and ribo-seq datasets for single clones grown in the exponential phase81

from each of the 12 evolved lines with sequenced genomes in Tenaillon et al. (2016) (see Methods82

section M1 for speci�c clone IDs) (Figure 1A). We aligned each clone’s data to its unique genome83

and considered expression changes of 4131 transcripts from the ancestor. Due to concerns of con-84

tamination in our Ara+6 samples, we removed them from further analysis. We averaged between85

151 and 1693 deduplicated reads per transcript across the 52 libraries (Figure 1-�gure supplement86

1A, Supplementary File 1), the distributions of read counts per transcript were similar across lines,87

replicates, and sequencing methods (Figure 1-�gure supplement 1B), and correlations between bi-88

ological replicates were high (Pearson correlation coe�cient R > 0.93, Figure 1-�gure supplement89
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1C). We also veri�ed the presence of three-nucleotide periodicity in our ribo-seq datasets (Figure 1-90

�gure supplement 1D). Previous studies have shown the existence of distinct ecotypes in the Ara-291

population (Plucain et al., 2014; Rozen et al., 2009). Based on an analysis of mutations, our Ara-292

clone comes from the L ecotype (see Appendix S1). Our Ara-3 clone can utilize citrate as a carbon93

source (Cit+). Finally, we note that both ancestral and evolved lines were grown in standard LTEE94

media supplemented with additional glucose to obtain enough starting material for paired RNA-95

seq and ribo-seq samples. We discuss the potential impacts of this di�erence in the supplement96

(Appendix A2).97

Evolved lines show parallel transcriptomic changes98

Gene expression levels are similar across evolved lines99

Across the six evolved lines with non-mutator phenotypes in LTEE, we observe a modest degree100

of parallelism in genetic changes. We �nd that 22 genes share mutations in two or more evolved101

lines (Tenaillon et al., 2016). However, it remains unclear whether these parallel genetic changes102

are su�cient to explain the high degree of parallelism in �tness gains over 50,000 generations. We103

hypothesize that the evolved lines demonstrate a higher degree of parallel transcriptomic changes104

despite having unique genomes. To test this hypothesis, we compared the ancestors’ and evolved105

lines’mRNAabundances (measured in transcripts permillion, TPM).We�nd that the expression lev-106

els of most genes remain unchanged, leading to high correlations between ancestral and evolved107

strains (Spearman correlation coe�cient r > 0.95 Figure 1B). Moreover, pairwise correlations be-108

tween evolved strains were only marginally higher than the correlations between evolved strains109

and the ancestors. However, these increases were not statistically signi�cant (KS-test, p-value =110

0.28, Figure 1B). This suggests that transcriptomic changes are likely restricted to a small portion111

of the genome.112

To more formally test the hypothesis that evolved lines show parallel changes in the transcrip-113

tome, we used DESeq2 (Love et al., 2014) to identify di�erentially expressed genes (DEGs) and114

quantify expression changes between each evolved line and the ancestor (for full results, see Sup-115

plementary File 2). A gene was considered di�erentially expressed between the evolved line and116

the ancestor if it reached a statistical threshold of q-value f 0.01. We �nd that most fold-changes117

were small (Figure 1-�gure supplement 2A) and consistent with our expectations; only a small pro-118

portion of the transcriptome was signi�cantly altered (Figure 1-�gure supplement 2B). On average,119

Ì 270 genes (out of 4131) were di�erentially expressed in an evolved line across all 11 pairwise120

comparisons between each evolved line and the ancestor. In total, 2986 genes were di�erentially121

expressed, but this consisted of only 1273 unique genes, indicating that many di�erentially ex-122

pressed genes are shared across evolved lines. The expression levels of these 1273 di�erentially123

expressed genes weremore similar between evolved lines than between an evolved line and its an-124

cestor (Figure 1B). Correlations based on fold-changes for DEGs were higher than those based on125

all genes (Figure 1C). Fold-changes for the set of 1273 DEGs were generally in the same direction re-126

gardless of their statistical signi�cance (Figure 1D). Taken together, this is suggestive of parallelism127

in the evolution of gene expression across the evolved lines.128

Quantifying the degree of parallelism of di�erentially expressed genes129

To test if the number of observed parallel changes in gene expression across evolved lines dif-130

fers from the number of parallel changes expected by random chance, we estimated the proba-131

bility distribution representing the expected number of DEGs altered in the same direction given132

di�erent proportions of up and down-regulated genes in each line. This null distribution is well-133

approximated by the distribution of the Sum of Independent Non-Identical Binomial random variables134

(SINIB), which we estimated using the R package sinib (Liu and Quertermous, 2018) by parameter-135

izing the function with the number of up and downregulated DEGs from each line (Figure 1-�gure136

supplement 2C). We �nd that the number of genes with expression changes in the same direction137

is signi�cantly higher than expected by chance (KS-test, p-value Ì 0.01, Figure 1E - bottom panel).138
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For example, if DEGs were randomly distributed across all lines, we would expect three genes to139

share expression changes in �ve or more lines. Instead, 117 genes are di�erentially expressed in140

the same direction in at least �ve lines.141

Magnitude and direction of expression changes142

Given the high correlations between expression levels of di�erentially expressed genes (DEGs) be-143

tween evolved lines, it stands to reason that the correlation between fold-changes of DEGs genes144

will be higher than the correlation between fold-changes across all genes. Consistent with these145

expectations, we �nd that pairwise correlations between evolved lines of fold-changes in DEGs146

were higher than the fold-changes of all genes (Figure 1C). While the number of DEGs varies widely147

across lines (Figure 1-�gure supplement 2B), 7 out of 11 evolved lines havemore signi�cantly down-148

regulated DEGs than upregulated (Figure 1-�gure supplement 2D, binomial test, p-value < 0.05).149

Furthermore, the magnitude of fold-changes of downregulated DEGs was signi�cantly higher than150

fold-changes of upregulated DEGs in all 11 evolved lines (Figure 1-�gure supplement 2D, KS-test,151

p-value < 0.0001).152

Variation in expression changes across evolved lines153

So far, we have considered the degree of parallelism in expression level changes across the evolved154

lines. However, the evolved lines di�er not only in terms of their underlying mutations (Tenaillon155

et al., 2016) but also vary substantially at the phenotypic level. For instance, half of the evolved156

lines have developed amutator phenotype, causing them to accumulate orders ofmagnitudemore157

mutations than the non-mutator lines. Unlike the other 11 evolved lines, Ara-3 can utilize citrate158

as a carbon source (Blount et al., 2012), and Ara-2 has developed distinct, coexisting ecotypes159

Rozen et al. (2009). Wewanted to characterize how phenotypic variation across evolved linesmight160

correlate with variation in expression levels. Principal component analysis (PCA) based on all fold-161

changesmainly separates Ara-3 from the rest of the lines, whereas PC2 appears to separate at least162

some of themutators from the non-mutators (Figure 1-�gure supplement 2E). Variation in PC1 and163

PC2 seems primarily driven by deletions (Figure 1-�gure supplement 2F), coded as downregulated164

genes (log2 fold-change = -10) in this analysis. The magnitude of encoded fold-changes of the165

deleted genes did not a�ect the groupings of the PCA between log2(fold-change) -1 and -10. Given166

the unique circumstances in Ara-3 and Ara-2, it is not surprising that these lines group separately167

from the others in the PCA.168

Evolved lines are larger in cell size and carry more mRNAs169

In the previous section, we discussed how changes in relative gene expression patterns across the170

evolved lines are similar. However, all evolved lines are signi�cantly larger than their ancestors171

(Grant et al., 2021; Lenski and Mongold, 2000; Mongold and Lenski, 1996). Typically, bacterial cell172

volume depends on nutrient availability and growth rate (Chien et al., 2012; Schaechter et al., 1958;173

Taheri-Araghi et al., 2015) and the increase in cell volume in evolved lines appears to be under174

selection rather than solely due to increases in growth rate (Mongold and Lenski, 1996; Philippe175

et al., 2009). As a result of these larger sizes, the cells in evolved lines have higher biomass and176

proportionally higher nucleic acid levels than the ancestors (Turner et al., 2017). Therefore, it is177

reasonable to expect that absolute abundances of mRNA molecules per cell should also increase178

with cell volume to maintain concentrations and reaction rates (Padovan-Merhar et al., 2015). To179

get a complete picture of transcriptional changes, we also quanti�ed absolute changes in mRNA180

abundances.181

We used phase-contrast microscopy tomeasure cell shape and estimate cell volume to con�rm182

that our clones from evolved lines were larger than their ancestors (see Appendix A3). Consistent183

with earlier studies, we �nd that each evolved line is larger in volume compared to its ancestors184

(Figure 2A, Supplementary File 3). Our volume estimates are also consistent with measurements185

obtained using a Coulter counter froma recent study (Grant et al., 2021) (Figure Figure 2-�gure sup-186
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Figure 1. (A) Schematic diagram of the experimental setup. (B) Pairwise Pearsons’s correlations based on log10(TPM) (where TPM is the mean
from replicates) separated by comparisons between evolved lines or from ancestors to evolved lines. P-values indicate the results of a
Kolmogorov-Smirnov (KS) test. For di�erentially expressed genes (DESeq2 q f 0.01), evolved line were compared using the union of the
signi�cant genes from each line. When comparisons were between an evolved line and an ancestor, the signi�cant genes from that evolved line
were used. (C) Pairwise Spearman’s correlations based on fold-changes from all genes, and the union of the signi�cant genes between two
evolved lines (Di�erentially expressed). (D) Fold-changes of di�erentially expressed genes that were signi�cantly altered in at least one line.
Genes are ordered left to right in increasing mean fold-change across all evolved lines. Genes containing deletions are not assigned a
fold-change and are represented as grey spaces. Lines with a mutator phenotype are in red. (E) The upper panel shows the number of genes
(y-axis) that were both statistically signi�cant and had a fold-change in the same direction in a particular number of lines (x-axis). The bottom
panel shows the expected (dashed) and observed (solid) probability of observing a particular result. P-values are the result of a KS test between
the observed and expected distributions. (F) PCA based on all fold-changes. In this case, genes with some form of deletion (complete or indel)
are assigned a fold-change of -10 to indicate severe downregulation because they are either completely absent from the genome or not
expected to produce functional proteins.
Figure 1—�gure supplement 1. Sequencing data statistics.
Figure 1—�gure supplement 2. Magnitude and variation in mRNA fold-changes across evolved lines.
Figure 1—�gure supplement 3. Comparison of expression changes between this study and Cooper et al. (2003)
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plement 1A, Pearson correlation coe�cient R = 0.87). Next, we estimated the absolute abundances187

of transcripts per CFU by comparison to known standards in our sequencing libraries. Speci�cally,188

we added the ERCC spike-in controls (Baker et al., 2005; External RNA Controls Consortium, 2005)189

to our sequencing libraries and used a linear model to relate the number of molecules of a spike-190

in RNA added to its TPM in each sample. We �nd a linear relationship between molecules added191

and estimated TPM across all samples and replicates (Figure 2B, Figure 2-�gure supplement 2A,192

Supplementary File 5). Finally, we measured the number of cells used in the generation of each193

sequencing library by counting colony-forming units (CFU) from each culture and accounting for194

sampling at each step of the library preparation (Supplementary File 4). Note that due to various195

factors, our estimates of CFU are likely underestimates (see Appendix A3, Figure 2-�gure supple-196

ment 1C). Nonetheless, our gene-speci�c estimates of absolute abundances per CFU are highly197

similar across biological replicates (R > 0.93). Together, this allows us to measure absolute RNA198

abundance per CFU.199

We �nd that most genes have increased mRNA abundance per CFU compared to the ancestor200

(Figure 2C, Figure 2-�gure supplement 2B, Supplementary File 6) and that these di�erences were201

signi�cantly larger than the di�erences between biological replicates (Figure 2D). Furthermore, the202

increases in total mRNA abundance scale with cellular volume, with larger evolved lines having203

more molecules per typical cell volume (Figure 2E). This suggests that the evolved lines have more204

mRNA per cell than the ancestors. Such an increase may be needed to maintain reaction rates205

in the face of increasing cell volumes. Another hypothesis is that stockpiling resources like mRNA206

and ribosomes might allow evolved lines to reduce the time spent in the lag phase after transfer207

to fresh medium. Indeed, reduced lag times occur in the LTEE (Vasi et al., 1994), and simulations208

suggest that bacteria can evolve to "anticipate" the regular transfer to fresh medium in a serial209

transfer regime (van Dijk et al., 2019).210

Transcriptional changes drive translational changes211

WhilemRNAabundances are an importantmolecular phenotypepotentially linking genomic changes212

to adaptations, changes in mRNA abundances can themselves be bu�ered or augmented at other213

downstream regulatory processes such as translation (Albert et al., 2014; Artieri and Fraser, 2014;214

McManus et al., 2014). Translational regulation a�ects the rate at which an mRNA produces its215

protein product, and mRNAs vary widely in their translation e�ciencies in both eukaryotes and216

prokaryotes (Ingolia et al., 2009; Li et al., 2014; Picard et al., 2012). However, the role of changes217

in translational regulation during adaptation and speciation remains poorly understood and, at218

least in yeast, is heavily debated (Albert et al., 2014; Artieri and Fraser, 2014; McManus et al.,219

2014). Moreover, because translation occupies the majority of cellular resources (Bernier et al.,220

2018), it may be a prime target for evolution in the LTEE. To study translational changes in LTEE,221

we performed ribo-seq in the evolved lines and their ancestors (Figure 1A).222

We �nd that changes in ribosome densities are highly correlated with changes in mRNA abun-223

dances (Figure 3A, Figure 3-supplement 1A). This is somewhat surprising because changes in envi-224

ronmental conditions and small genetic perturbations usually result in large changes at the trans-225

lational level (Gerashchenko et al., 2012; Rubio et al., 2021; Woolstenhulme et al., 2015). Despite226

the high correlation between mRNA and ribosome footprint fold-changes at the genomic level,227

individual genes might have altered ribosome densities. We used Riborex to quantify changes in228

ribosome densities (Li et al., 2017). Riborex quanti�es changes in footprint densities while account-229

ing for any changes in mRNA abundances. We considered a gene signi�cantly altered if it reached230

a q-value f 0.01. Only a handful of genes have altered ribosome densities, and none are shared231

between three or more lines (Figure 3B, Supplementary File 7). This suggests that over the course232

of the LTEE, most changes happen at the transcriptional level with insu�cient evidence for signi�-233

cant changes at the translational level. We note that earlier studies have indicated that Riborex has234

limited power to detect small to moderate shifts in ribosome densities based on simulated data235

Li et al. (2017). Although comparing these simulations to our data is di�cult, it is possible that we236
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Figure 2. (A) All evolved lines are larger than the ancestral strain. Distributions of cellular volume as determined by phase-contrast microscopy
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each line is compared to the ancestor, **** p f 0.0001. Lines listed in red have mutator phenotypes. (B) Abundances of Spike-in RNA control
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added to their RNA-seq TPM (transcripts per million) in Ara+1 RNA-seq sample (see Figure 2 - �gure supplement 2 for data for all lines). (C)Most
genes have a higher absolute expression in evolved lines. Changes in the absolute number of mRNA molecules per CFU (colony forming unit) in
the 50,000th generation of Ara+1 relative to the ancestor. The values plotted are the averages between 2 replicates of the evolved lines and both
replicates from two ancestors (REL606 and REL607; see Figure 2 - �gure supplement 2 for all lines). (D) Absolute changes in mRNA abundances
of genes in evolved lines are signi�cantly larger than the variation between biological replicates (KS-test, p < .0001 in all cases). Pink distributions
indicate gene-speci�c fold-changes between biological replicates for each line (centered around 1). Purple distributions show the absolute
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molecules per CFU. Total molecules of RNA are calculated as the sum of the average number of molecules for each gene between replicates.
Figure 2—�gure supplement 1. Relationship between cellular features and cell volume.
Figure 2—�gure supplement 2. Absolute changes in mRNA abundances per CFU across all evolved lines.
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are failing to detect some of these smaller shifts in gene-speci�c ribosome-densities. Regardless,237

our results indicate a greater role for changes in factors regulatingmRNA abundances than factors238

regulating mRNA translation.239

While Riborex can �nd gene-speci�c changes in ribosome densities, ribo-seq data can also pro-240

vide codon level resolution, allowing us to perform a detailed analysis of the translation of speci�c241

codons or amino acids. We calculated genome-wide average codon-speci�c ribosome densities242

(see Methods M12, Supplementary File 8) in each of our ancestral and evolved lines and observed243

a high correlation between replicates (Pearson correlation coe�cient R > 0.98). When comparing244

codon densities from each evolved line to the ancestor (Figure 3C), we �nd that densities at stop245

codons were lower in evolved lines than in the ancestor, indicating potentially faster translation246

termination. Importantly, ribosome densities estimated from the same evolved line are not truly247

independent, violating the assumption of independence for common statistical tests. We used a248

linear mixed model to account for possible evolved line-speci�c e�ects. The linear mixed model �t249

indicates an overall decrease in the ribosome density at stop codons relative to the sense codons,250

with a mean change in ribosome density (i.e., mean log2 fold-changes between evolved and ances-251

tral lines) of -0.32 and 0.005, respectively. Note that these values represent the population-level252

�xed e�ect slope (�1 = *0.325, p < 0.05) and population-level �xed e�ect intercept (�0 = 0.005,253

p = 0.4423), respectively. The population-level �xed intercept (�0 = 0.005, p = 0.4423) indicates254

the sense codons, on average, experienced no change in ribosome densities between the evolved255

and ancestral lines (i.e., the mean log fold changes of ribosome densities was 0). In contrast, the256

population-level �xed slope (�1 = *0.325, p < 0.05) indicates that stop codons, on average, expe-257

rienced a decrease in ribosome density between the evolved and ancestral lines (i.e., the mean258

log fold change of stop codon ribosome densities was -0.325 units lower than the mean log fold259

change of sense codon). Accounting for line-speci�c e�ects, the stop codon e�ect sizes for each260

evolved line range from -0.088 to -0.657 log fold change units (relative to sense codons), indicating261

that stop codons in all evolved lines have a decreased ribosome density compared to the ancestor.262

This suggests that the translation termination rate increased across all evolved lines (relative to the263

ancestral line), but this increase was greater in some evolved lines than others. For Ara-1, the TAG264

codon shows increased density, unlike other lines. This leads to a near-zero random e�ect size for265

this line.266

Translation termination is one of the rate-limiting steps in translation and is typically much267

slower than codon elongation rates. Therefore, faster termination might increase the ribosome268

recycling rates and eventually allow faster translation initiation and protein production (Andersson269

and Kurland, 1990; Plotkin and Kudla, 2011; Shah et al., 2013). We wondered if faster termination270

was due to changes in the expression of translation termination factors. While some termination271

factors show increased expression in some lines, no single gene shows a consistent pattern across272

all lines (Figure 3D). Notably, while faster translation termination may increase ribosome recycling273

and enable faster growth, it may come at the expense of altering a key regulatory mechanism in274

translational control. As a result, it remains unclear if these regulatory changes can evolve in more275

complex environments.276

Functional characterization of di�erentially expressed genes277

Thus far, we have only considered the magnitude and source of parallelism in expression changes.278

In this section, we attempt to functionally characterize the altered genes, identify mutations that279

might be driving some of these expression changes, and determine how much higher-order enti-280

ties such as metabolic pathways are altered across the evolved lines. To identify altered functional281

categories and pathways, we use function and pathway analysis tools such as GO (Ashburner et al.,282

2000), KEGG (Kanehisa and Goto, 2000), and the BioCyc database pathway perturbation score (PPS,283

higher numbers indicate stronger alterations to a pathway) (Karp et al., 2017) to assess these fea-284

tures (see Methods M13). Because our data suggest that changes in mRNA abundances are the285

driving force of change in the system, we present results from our RNA-seq data but note that sim-286
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Figure 3. (A) Translational changes are correlated with transcriptional changes. The relationship between RNA-seq and ribo-seq fold-changes in
Ara+1 (see Figure 3-supplement 1A for all evolved lines). (B) The distribution of genes with signi�cantly altered ribosome densities (q f 0.01)
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Figure 3—�gure supplement 1. Relationship between RNAseq and Ribo-seq fold-changes in evolved lines.
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ilar results are obtained when using the ribo-seq data as well (Figure 4-�gure supplement 1 and287

2). For this section, we treat genes that experienced some form of deletion (complete or contain-288

ing indels) as downregulated (log2 fold-change = -10) because they no longer produce functional289

proteins.290

Many functional categories were altered across the lines in the KEGG analysis (Supplemen-291

tary File 9). Consistent with earlier microarray experiments (Cooper et al., 2003), we �nd that292

the �agellar assembly genes are signi�cantly downregulated in 10 out of 11 evolved lines (Figure293

4A). Consistent with increased growth rates, we also �nd many categories related to biosynthetic294

and metabolic processes involving sugars or amino acids are upregulated. The biosynthesis of nu-295

cleotide sugars appears downregulated mainly due to the deletion of many of the genes involved296

in creating sugars which eventually lead to O-antigen biosynthesis. Many of these sugars are in-297

volved in constructing the cell membrane or walls; this could be related to known changes in cell298

shape and size (Grant et al., 2021). Overall, we �nd that changes in functional categories were299

mostly similar across all evolved lines (Figure 4B).300

While KEGG pathway analysis encompasses molecular interactions and reaction networks, we301

wonderedwhich speci�cmetabolic reactionswere altered across all lines andwhich ones remained302

unchanged over 50,000 generations. Because E. coli REL606 is annotated in the Biocyc collection303

of databases, we used their metabolic mapping tool to score pathway alterations with a pathway304

perturbation score (PPS) in each of the evolved lines (seeMethodsM13 for a detailed explanation of305

the scoring). Similar to the KEGG pathway analysis, we �nd a high degree of parallelism, even at the306

level of speci�c metabolic reactions (Figure 4C, 4D, Figure 4—�gure supplement 2D). Interestingly,307

4 out of 5 most altered pathways are involved in lipopolysaccharides (LPS) biosynthesis, a major308

component of Gram-negative bacteria’s outer membrane. This suggests that the composition of309

the evolved lines’ outer membrane has signi�cantly changed in addition to changes in cell size310

and shape. Nonetheless, there is a core set of unaltered pathways, even in clones with a mutator311

phenotype. Pathways with low PPS scores, indicating low levels of alteration included D-serine312

degradation (mean RNAseq PPS = 0.13, � = 0.07), pseudouridine degradation (mean RNAseq PPS313

= 0.12, � = 0.06), and others (see Supplementary File 11 for complete PPS scores). These may314

represent pathways with activity levels that cannot be altered or whose alteration provides little to315

no �tness bene�t.316

Mutations to transcriptional regulators explain many parallel expression changes317

Given the high degree of parallelism in evolved lines at the gene expression level, we wondered318

whether some of these patterns could be explained by a parallel set of mutations at the genetic319

level. Because KEGG, PPS, and GO analyses all identi�ed metabolism and catabolism of various320

sugars to be signi�cantly altered, we looked at mutations to genes involved in these functional321

categories. Previous work has shown that depending on the generation sampled, evolved clones322

grow poorly (20,000th generation) or not at all (50,000th generation) on maltose (Leiby and Marx,323

2014). Because maltose is absent from the growth media in the LTEE, maintenance of these trans-324

porters is likely unnecessary (Pelosi et al., 2006). Additionally, at 20,000 generations, the tran-325

scriptional activator of the operon responsible for maltose metabolism, malT, was the frequent326

target of mutations that reduced its ability to act as a transcriptional factor, and the introduction327

ofmalT mutations in the ancestor had a �tness bene�t (Pelosi et al., 2006). In E. coli,malT regulates328

the transcription of several operons - malEFG (maltose ABC transporter), malK-lamB-malM (malK,329

part of maltose ABC transporter; lamB, maltose transporter; malM, conserved gene of unknown330

function,malPQ (two enzymes involved in maltose metabolism), and the genesmalZ (maltodextrin331

glucosidase) and malS (an ↵-amylase). We �nd that each of these operons was consistently and332

signi�cantly downregulated across all lines (Figure 5A). Changes to the lamB gene have also been333

shown to a�ect susceptibility to phage infection in the LTEE (Meyer et al., 2010).334

Many categories related to the molecule nicotinamide adenine dinucleotide (NAD) appeared in335

our PPS (Figure 4C) and GO results (Figure 4—�gure supplement 2A). In the LTEE, nadR, a transcrip-336
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Figure 4. (A) Parallel changes in biological processes and pathways. The top 10 KEGG pathways that were signi�cantly altered (FDR f 0.05)
based on RNA-seq data. Enrichment score represents the degree to which a pathway was up (positive) or downregulated (negative). Functional
categories are ordered by increasing mean enrichment score across the lines. Enrichment score represents the degree to which a pathway was
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Figure 4—�gure supplement 1. Parallel changes in biological processes and pathways based on Ribo-seq data
Figure 4—�gure supplement 2. GO and other functional analyses of di�erentially expressed genes
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Figure 5—�gure supplement 1. Analysis of additional pathways

tional repressor of genes involved in NAD biosynthesis, is frequently mutated, with many muta-337

tions occurring in its DNA binding domain (Ostrowski et al., 2008; Woods et al., 2006). All evolved338

clones used in this study are known to have some mutation in nadR (Tenaillon et al., 2016). Given339

the high frequency of parallel inactivating mutations in nadR, these mutations are likely adaptive340

as they might increase intracellular NAD concentrations leading to faster growth (Ostrowski et al.,341

2008; Woods et al., 2006). We �nd that genes directly under the regulation of nadR - the nadAP342

operon consisting of nadA (quinolinate synthase) and pnuC (nicotinamide riboside transporter),343

and genes - nadB (L-aspartate oxidase) and pncB (nicotinate phosphoribosyltransferase, were sig-344

ni�cantly upregulated in all lines (Figure 5B). Interestingly, four genes nadCDEK, which play various345

NAD biosynthesis roles in other pathways and are not regulated by nadR, were largely unaltered346

(Figure 4—�gure supplement 2C). Concordantly, their transcriptional regulator, nac, is rarely mu-347

tated, suggesting that there is some speci�city to how NAD levels may be increased in the cell.348

In addition to linking the e�ects of speci�c mutations on gene expression changes in maltose349

and NAD regulation, we have also identi�ed mutations that likely change the expression of genes350

involved in arginine biosynthesis, glyoxylate bypass system, and copper homeostasis (Figure 5-351

�gure supplement 1, see Appendix A4). However, several functionally-related sets of genes exist,352

such as �agellar assembly, sulfur homeostasis, and the glycine cleavage system – that have parallel353

changes in expression levels without any obvious sets of parallel mutations linking these changes354

(Figure 5-�gure supplement 1). The data generated in this study will likely prove to be a rich re-355

source for understanding the metabolic changes that occur over long periods of evolution in a356

simple environment such as in the LTEE, thereby adding a new dimension to the well-studied mu-357

tational changes and gene-expression changes described here.358
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Discussion359

Adaptation to novel environments often takes unique mutational paths even when the tempo and360

mode of adaptation are similar across populations (Cheng, 1998; Levy et al., 2015; Meyer et al.,361

2012; Tenaillon et al., 2012, 2016; Therkildsen et al., 2019). This is due, in part, to the fact that most362

genetic networks are highly redundant and that manymutations have pleiotropic e�ects. To begin363

to bridge the gap between parallel �tness gains in a system with mostly unique genetic changes,364

we wanted to study gene expression – a key link between genotype and �tness. Two key �ndings365

from our work are that (i) most of the transcriptome remains unaltered in its relative expression366

levels and (ii) genes with altered expression levels have remarkably similar changes (magnitude367

and direction of changes, pathways targeted, etc.) across all evolved lines after 50,000 generations.368

While parallel changes in expression pro�les are perhaps not surprising given the strong selection369

in a well-speci�ed environment, our work suggests that expression pro�les serve as a link between370

the disparatemutations and similar �tness gains observed in the LTEE. Although our results do not371

directly implicate these parallel changes in gene expression to improved �tness, the high degree372

of parallelism across independently evolved populations warrants further investigation into the373

�tness consequences of these changes. More importantly, this suggests an optimal expression374

pro�le in any particular media that supports maximum growth. Expression pro�le optimization375

may be a mode of adaptation with each �xed mutation bringing the expression pro�le closer to376

this optimum. Nonetheless, the speci�c mechanisms by which the evolved lines in the LTEE have377

achieved similar changes in expression remain unclear. Below, we review three key proposed378

mechanisms that eachmight contribute partly to the overall story of parallelism in gene expression379

changes in LTEE - (i) key-regulator hypothesis, (ii) chromosomal architecture and DNA supercoiling,380

and (iii) growth-rate dependent changes.381

Mechanisms driving parallel expression changes382

According to the “key regulator” hypothesis, changes to one or a few genes can regulate the activity383

of many other genes responsible for most of the expression changes. In an earlier study of expres-384

sion changes in the LTEE (Cooper et al., 2003), it was suggested that mutations to spoT observed in385

8 out of 12 lines were responsible for many of the observed expression changes. spoT is involved386

in the stringent response pathways (Traxler et al., 2008) and regulates the activity of many genes.387

However, of the two lines whose expression was surveyed, Ara+1 and Ara-1, only Ara-1 contained388

a spoT mutation. When transferred to the ancestor, the Ara-1 spoT mutation did increase �tness by389

reducing the duration of the lag phase and increasing growth rates and caused similar expression390

changes in 11 of the 59 genes found to be altered in both Ara+1 and Ara-1. This means that other391

mutations in both lines were necessary to achieve changes in the remaining genes. Like spoT, ribo-392

somal proteins and rpoD (the beta subunit of RNA polymerase) have also evolved faster than other393

genes in the LTEE (Maddamsetti et al., 2017). Mutations in these genes can have large pleiotropic394

e�ects and might contribute substantially to parallelism in observed expression changes.395

DNA supercoiling is known to play a strong role in regulating transcription (El Houdaigui et al.,396

2019). All the evolved lines have mutations in genes related to chromosomal architecture, such as397

�s, topoisomerase A and B, or other genes which contribute to parallel changes in DNA superhe-398

licity (Crozat et al., 2010). Fis was also part of the set of fast-evolving genes (Maddamsetti et al.,399

2017), suggesting that changes to chromosomal architecture are a target of selection in the sys-400

tem. Parallel mutations in genes a�ecting chromosomal architecture might also explain why we401

observe parallel expression changes in several pathways, such as sulfur homeostasis, despite the402

lack of parallel mutations in transcription factors that directly regulate them (Figure 5-supplement403

1D).404

While the above two mechanisms might be driving many parallel changes in expression levels,405

changes in the expression of some genes might simply be a consequence of faster growth. Expres-406

sion levels of many genes in bacteria scale with growth rate (Klumpp et al., 2009; Macklin et al.,407

2020) to maintain stoichiometric concentrations. As a result, simply increasing the growth rate of408
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replicate cultures of bacteria might produce similar expression pro�les. Disentangling the e�ects409

of growth rate and genetic changes on gene expression is di�cult, and therefore, we need to be410

cautious in over-interpreting the role of mutations in driving parallel expression changes.411

On the lack of observed translational changes412

Given the universality and importance of translation to life (Bernier et al., 2018), it is surprising413

that we detect few translational changes over 50,000 generations of adaptation. Bacteria possess414

polycistronic genes, where many proteins are translated from a single mRNA, typically belong to415

the same pathway or protein complex, and are translationally regulated (Li et al., 2014). Therefore,416

it is likely that any additional translational changes to genes in an operon might disrupt the stoi-417

chiometric balance of proteins in a metabolic pathway or protein complex. It is also likely that the418

dynamic range of translational changes is smaller than transcriptional changes in bacteria (Cam-419

bray et al., 2018; Li et al., 2014; Goodman et al., 2013) or that it might take much longer than the420

time scales of LTEE to observe such changes.421

Conclusions422

The LTEE remains a rich source for studies of evolution. Our work suggests that alterations to the423

global transcriptional pro�le is a mode of adaptation in the LTEE and that speci�c categories of424

genes have undergone similar expression changes across the lines. However, as described above,425

relating gene expression changes to speci�c mutations in LTEE is far from perfect. This is further426

compounded by the fact that half of the evolved lines in LTEE have a hypermutable phenotype.427

These genotypes have 100-fold higher mutational load than their non-mutator counterparts. It is428

remarkable that despite a higher mutational burden, expression patterns between mutator and429

non-mutator lines are highly correlated, suggesting that the bulk of the additional mutations are in-430

deed passenger mutations (Good et al., 2017). While our current study has focused on expression431

patterns in the exponential phase, populations in the LTEE spend a signi�cant amount of time in432

the stationary phase before serial transfer. However, it remains unclear if we would observe a sim-433

ilar level of parallelism in the stationary growth phase or how similar the expression pro�les might434

be across distinct growth phases. Finally, the analyses undertaken here have focused on single435

clones from each of the evolved lines. However, each evolved population has many distinct geno-436

types and segregating mutations. Taking a single-cell sequencing approach, while still challenging437

in bacteria (Imdahl and Saliba, 2020), should provide a better understanding of gene expression438

evolution in LTEE. Lab evolution experiments combined with high-throughput multi-level sequenc-439

ing approaches o�er a rich resource for studying the molecular mechanisms underlying complex440

adaptations and provide insights into the repeatability of evolution.441
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Methods and Materials453

M1. Bacterial cell culture, recovery, and lysis454

We used the following clones for generating RNA-seq and ribo-seq datasets: Ara-1 - 11330, Ara+1 -455

11392, Ara-2 - 11333, Ara+2 - 11342, Ara-3 - 11364, Ara+3 - 11345, Ara-4 - 11336, Ara+4 - 11348, Ara-456

5 - 11339, Ara+5 - 11367, Ara-6 - 11389, Ara+6 - 11370. Bacteria were cultured inmedium as per the457

recipe on the LTEE website (http://myxo.css.msu.edu/ecoli/dm25liquid.html) supplemented with 4458

g/L glucose instead of the typical 25mg/L. Each culture was grown in 50 mL in a shaking incubator459

at 37 C at 125 rpm until an OD600 of 0.4-0.5 was reached. This took between 1.5-4 hr, depending460

on the line. Cells were recovered via vacuum �ltration and immediately frozen in liquid nitrogen461

(LN2). Frozen pellets were stored at -80 C until lysis. A mortar and pestle were chilled to cryo-462

genic temperatures with LN2 for lysis. The pellet was ground to a powder while submerged in LN2.463

Once pulverized, 650 uL of lysis bu�er was added to each sample and ground further. Lysis bu�er464

contained the following: 20 mM Tris pH 8, 10 mM MgCl2, 100 mM NH4Cl, 5 mM CaCl2, 1 mM chlo-465

ramphenicol, 0.1% v/v sodium deoxycholate, 0.4% v/v Triton X-100, 100 U/mL DNase I, 1 uL/mL466

SUPERase-In (Thermo Fisher Scienti�c AM2694). The frozen lysate was allowed to thaw until liquid,467

then incubated for 10 min on ice to allow complete lysis. Afterward, the lysate was centrifuged at468

20,000g for 10 minutes at 4 C, and the supernatant recovered and transferred to a new tube. Each469

sample was split into two for RNA-seq and Ribo-seq libraries.470

M2. RNA-seq library preparation471

Lysate destined for RNA-seq libraries was subjected to total RNA extraction using the Trizolmethod472

(Thermo Fisher Scienti�c 15596026) as per themanufacturer’s instructions. RNAwas quanti�ed us-473

ing UV spectrophotometry. We used the ERCC RNA Spike-In Mix (Thermo Fisher Scienti�c 4456740)474

in library preparation. For RNA-seq libraries, 3 uL of a 1:100 dilution of the set 1 oligos was added475

to the �rst replicate and 4 uL to the second replicate. The spike-ins were added directly to the476

lysate destined for RNA-seq before Trizol based RNA extraction. 2 ug of RNA with ERCC controls477

were subjected to fragmentation in a bu�er containing �nal concentrations of 1 mM EDTA, 6 mM478

Na2CO3, and 44 mM NaHCO3 in a 10 uL reaction volume for 15 minutes at 95 C. 5 uL of loading479

bu�er (�nal concentrations of 32% v/v formamide, 3.3 mM EDTA, 100 ug/mL bromophenol blue)480

was added to each sample, and the resulting 15 uL mixture was separated by gel electrophoresis481

with a 15% polyacrylamide TBE-urea gel (Invitrogen EC68852BOX) at 200 V for 30 minutes. Gels482

were stained for 3 minutes with SYBR Gold (Thermo Fisher Scienti�c S11494), and the region corre-483

sponding to the 18-50 nucleotide fragments was excised. We excised this region so that we would484

have similarly sized fragments for both RNA-seq and Ribo-seq libraries. RNA was recovered from485

the extracted fragments by adding 400 uL a bu�er containing 300mM sodium acetate, 1mM EDTA,486

and .25% w/v SDS, and freezing the samples on dry ice for 30 minutes. Then, samples were incu-487

bated overnight on a shaker at 22 C. 1.5 uL of GlycoBlue (Thermo Fisher Scienti�c AM9515) was488

added as a co-precipitant, followed by 500 uL of 100% isopropanol. The samples were chilled on489

ice for 1 hour and then centrifuged for 30minutes at 20,000g at 4 C. The supernatant was removed,490

and the pellet was allowed to air dry for 10 minutes. The pellet was resuspended in 5 uL of water,491

and 1 uL was used to check RNA concentration via UV spectrophotometry.492

M3. Ribo-seq library preparation493

Lysate destined for Ribo-seq was incubated with 1500 units of micrococcal nuclease purchased494

from Roche (cataog number 10107921001) and 6 uL of SUPERase-In at 25 C for 1 hour and shaken495

at 1400 rpm. 2 uL of .5 M EGTA pH 8 was added to quench the reaction, which was then placed496

on ice. The reaction was centrifuged over a 900uL sucrose cushion (�nal concentrations of 20 mM497

Tris pH 8, 10 mMMgCl2, 100mMNH4Cl, 1 mM chloramphenicol, 2 mMDTT, .9 M sucrose, 20 U/mL498

SUPERase-In) using a Beckman Coulter TLA100 rotor at 70,000 rpm at 4 C for 2 hours in a 13 mm499

x 51 mm polycarbonate ultracentrifuge tube (Beckman Coulter 349622). The sucrose solution was500
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removed from the tube, and the pellet was resuspended in 300 uL of Trizol, mixed by vortexing,501

and RNA was extracted according to the manufacturer’s protocol. Samples were then separated502

by gel electrophoresis and puri�ed in the same manner as for RNA-seq.503

M4. Uni�ed library preparation504

Once fragments were obtained from RNA-seq and Ribo-seq samples, they could be subject to a505

uni�ed library preparation protocol as in (Chatterji et al., 2018; Gupta et al., 2019). In total, 8506

pooled libraries were prepared, with a �nal library structure of 5’ adapter - 4 random bases - in-507

sert - 5 random bases - sample barcode - 3’ adapter. The randomized bases function as UMIs for508

deduplication.509

M5. ERCC spike-in controls and modeling510

The ERCC RNA Spike-In Mix (Thermo Fisher Scienti�c 4456740) was used in library preparation. For511

RNA-seq libraries, 3 uL of a 1:100 dilution of the set 1 oligos was added to the �rst replicate and512

4 uL to the second replicate. The spike-ins were added directly to the lysate destined for RNA-seq513

before Trizol based RNA extraction. The �le "absolute_counts.Rmd" contains the code for the linear514

modeling using the ERCC data.515

M6. CFU determination516

Before recovery, 1mL of culture was extracted for CFU determination. LB agar plates were used for517

colony growth. We performed a dilution series of that 1mL culture from1:10 to 1:1e6 in increments518

of 10. 100uL of each dilutionwas spread on a plate and incubated overnight at 37C.We determined519

CFU counts manually from the most appropriate dilution for each culture, usually between 1:1e3520

and 1:1e6 dilutions.521

M7. Optical microscopy522

Liquid cultures were grown at 37C with aeration, unless otherwise indicated, in DM25 medium523

(Davis minimal broth supplemented with glucose at a concentration of 25 mg/L (Lenski et al.,524

1991)). Before each experiment, cloneswere grown in liquid cultures in DM25mediumovernight at525

37C with aeration. OD600 of the cultures were 0.1–0.3. Microscope slides were prepared with 1%526

agarose pads, and cells were imaged by microscopy. Phase-contrast microscopy was performed527

using an Olympus IX81 microscope with a 100W mercury lamp and 100x NA 1.35 objective lens.528

16-bit images were acquired with a SensiCam QE cooled charge-coupled device camera (Cooke529

Corp.) and IPLab version 3.7 software (Scanalytics) with 2 ◊ 2 binning. Analysis of the images was530

performed with ImageJ (Abràmo� et al., 2004) and the MicrobeJ plugin (Ducret et al., 2016).531

M8. Sequencing data processing532

Raw sequencing data is deposited in the GEO database under the ascension GSE164308. Code533

for all data processing and subsequent analysis can be found in a series of R markdown docu-534

ments uploaded to github (https://github.com/shahlab/LTEE_gene_expression_2). The �le titled535

"data_processing.Rmd" contains the code for processing the raw sequencing data. Brie�y, the536

following tools were used to remove adapters (cutadapt, (Martin, 2011)), deduplicate (BBtools537

dedupe.sh script), and demultiplex (FASTX-toolkit barcode splitter script) the data. Only reads of538

at least 24 nucleotides in length after trimming were retained for alignment. Transcript quanti�-539

cation for both sequencing types datasets was performed with kallisto (Bray et al., 2016). hisat2540

(Kim et al., 2019) was used to align ribo-seq data for analyzing changes at speci�c codons. For541

this analysis, alignment was performed against a custom transcriptome that padded each coding542

region with 25nt on the 3’ and 5’ ends to allow for better mapping of ribosomes at the start and543

stop codons.544
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M9. Di�erential expression analysis of gene expression545

Code for this section can be found in the �le "DEseq2.Rmd". We used DEseq2 (Love et al., 2014)546

with the "apeglm" normalization (Zhu et al., 2019) for di�erential expression. In estimating fold-547

changes, we compared the 4 replicates of the ancestors (2 each from ancestors of Ara+ and Ara-)548

to 2 replicates of each of the evolved lines. Because some genes in some lines contained indels549

or were deleted entirely, some transcripts were missing from the transcriptome fastas used to550

create indices for alignment. We added these genes back to Kallisto’s counts with estimated counts551

of 0 and assigned them fold-changes of NA. Count matrices containing identical complements of552

transcripts were used in the di�erential expression analysis for each line, such that all evolved lines553

had the same complement of genes as the ancestors.554

M9. Change in ribosomal density analysis555

We used Riborex (Li et al., 2017) to analyze changes in ribosomal density. The same countmatrices556

used for DEseq2 were used here, and comparisons were made in the same manner of 4 ancestral557

samples (2 lines, 2 replicates each) to 2 evolved clones (1 line, 2 replicates). The code for this section558

can be found in the �le "riborex.Rmd".559

M11. Linear mixed modeling for changes in ribosome density560

Code for this section can be found in “�g_3.Rmd” under the “Modeling” heading. Brie�y, we �t linear561

mixed models using the “lme” function from the R package “nlme” to test if stop codons showed a562

larger decrease in ribosome densities (relative to the ancestor) as compared to the sense codons.563

Brie�y, linear mixed models perform linear regression allowing for �xed e�ects (i.e. a population-564

level e�ect) and potential random e�ects (i.e. e�ects restricted to pre-speci�ed subpopulations of565

the data). In this case, the random e�ects correspond to evolved line-speci�c e�ects on log2 ribo-566

some density fold changes. We �t various linearmixedmodels allowing for di�erent constraints on567

the random e�ect slopes and intercepts, as well as an ordinary linear regression (i.e., no random568

e�ects across evolved lines) as the null model. Models were compared using the Akaike Informa-569

tion Criterion (AIC): the model with the lowest AIC score is generally considered the best model.570

Although we identi�ed 3 linear mixed model �ts that had similar performance based on the AIC571

score (i.e., the di�erence in AIC scores was less than 2), we chose to use the simplest model, which572

allowed for uncorrelated random e�ect intercepts and slopes. This model also happened to be573

the model with the lowest AIC score. For comparison, this model was approximately 27 AIC units574

better than the ordinary linear regression.575

M12. Codon-speci�c positioning of Ribo-seq data576

Code for this section can be found in the �le "codon_speci�c_densities.Rmd". It has been shown577

that mapping bacterial Ribo-seq reads by their 3’ ends is more accurate than 5’ mapping (Moham-578

mad et al., 2019), so we mapped the A-site position of a read by using a �xed o�set of 37nt (12nt579

o�set + 25nt addition to transcript ends). To calculate ribosome densities on a codon for a gene,580

the number of reads mapping to a codon was normalized to the total number of reads mapping to581

that gene in a replicate and line-speci�c manner. Genome-wide codon density is calculated by tak-582

ing genes with at least 100 reads mapping to them and taking the average number of normalized583

reads mapping to each codon across that set of genes as the genome-wide codon density. Three584

nucleotide periodicity is determined in the �le “3nt_periodicity.Rmd”.585

M13. Functional analysis586

We used three di�erent functional analysis methods – GO (using the R package topGO), KEGG587

(using the R package clusterpro�ler (Yu et al., 2012), and PPS (Karp et al., 2017). The code for588

each of these analyses can be found in the Rmd �les named "go.Rmd", "kegg_analysis.Rmd", and589

"manual_PPS.Rmd," respectively. PPS scores are calculated as follows: each pathway is composed590

of at least one reaction, and each reaction is completed by at least one enzyme. First, a reaction591
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perturbation score is calculated for each reaction in a pathway, de�ned as the absolute value of592

the largest fold-change of an enzyme associated with that reaction. To calculate PPS, for a pathway593

having N reactions, PPS = sqrt((⌃RPS2) / N). Additionally, a document titled “kegg_sensitivity.Rmd”594

tests the e�ects of adding deletions to our analysis.595

Description of supplementary tables596

Supplementary File 1: The �le "table_s1_read_counts.csv" contains the results of the kallisto align-597

ment for all samples. Counts in this �le were �rst rounded, and new TPMs were calculated based598

on rounded counts. This �le was generated using "data_cleaning.Rmd".599

Supplementary File 2: The �le “table_s2_fold_changes.csv” contains the results from DESeq2 for all600

samples and was generated from “DESeq2.Rmd”.601

Supplementary File 3: The �le “table_s3_cell_size.csv” contains the quanti�cations from our optical602

microscopy. This table is supplied and is not generated from the code.603

Supplementary File 4: The �le “table_s4_colony_counts.csv” contains our CFU numbers. This table604

is supplied and is not generated from the code.605

Supplementary File 5: The �le “table_s5_ercc_molecules_per_sample.csv” details the amounts of606

ERCC spike-ins added to each sample and their abundance in the sequencing libraries. This table607

is supplied and is not generated from the code.608

Supplementary File 6: The�le “table_s6_mRNAs_per_cfu.csv” contains themeasures ofmRNAabun-609

dance per CFU and is generated from “absolute_counts.Rmd”.610

Supplementary File 7: The �le “table_s7_riborex_results.csv” contains the results from riborex and611

is generated from “riborex.Rmd”612

Supplementary File 8: The �le “table_s8_genome_wide_codon_densities.csv” contains the calcu-613

lated genome-wide codon densities and is generated from “codon_speci�c_densities.Rmd”614

Supplementary File 9: The �le “table_s9_kegg_results.csv” contains the KEGG search results and is615

generated from “kegg_analysis.Rmd”616

Supplementary File 10: The �le “table_s10_go_results.csv” contains the GO search results and is617

generated from “go.Rmd”618

Supplementary File 11: The �le “table_s11_pps_scores.csv” contains the PPS calculations and is619

generated from “manual_pps.Rmd”620

Supplementary File 12: The�le “table_s12_mutations.csv” contains themutationdata for our clones621

as downloaded from https://barricklab.org/shiny/LTEE-Ecoli/. This �le is supplied and not gener-622

ated from the code or can be downloaded from the website.623

References624

Abràmo�MD, Magalhães PJ, RamSJ. Image processingwith ImageJ. Biophotonics international. 2004; 11(7):36–625

42.626

Albert FW, Muzzey D, Weissman JS, Kruglyak L. Genetic in�uences on translation in yeast. PLoS Genet. 2014627

Oct; 10(10):e1004692.628

Andersson SG, Kurland CG. Codon preferences in free-living microorganisms. Microbiol Rev. 1990 Jun;629

54(2):198–210.630

Artieri CG, Fraser HB. Evolution at two levels of gene expression in yeast. Genome Res. 2014 Mar; 24(3):411–631

421.632

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris633

MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock634

G. Gene ontology: tool for the uni�cation of biology. The Gene Ontology Consortium. Nat Genet. 2000 May;635

25(1):25–29.636

Baker SC, Bauer SR, Beyer RP, Brenton JD, Bromley B, Burrill J, Causton H, Conley MP, Elespuru R, Fero M, Foy C,637

Fuscoe J, Gao X, Gerhold DL, Gilles P, Goodsaid F, Guo X, Hackett J, Hockett RD, Ikonomi P, et al. The External638

RNA Controls Consortium: a progress report. Nat Methods. 2005 Oct; 2(10):731–734.639

18 of 25



Bernier CR, Petrov AS, Kovacs NA, Penev PI, Williams LD. Translation: The Universal Structural Core of Life. Mol640

Biol Evol. 2018 Aug; 35(8):2065–2076.641

Blount ZD, Barrick JE, Davidson CJ, Lenski RE. Genomic analysis of a key innovation in an experimental Es-642

cherichia coli population. Nature. 2012 Sep; 489(7417):513–518.643

Blount ZD, Lenski RE, Losos JB. Contingency and determinism in evolution: Replaying life’s tape. Science. 2018644

Nov; 362(6415):eaam5979.645

Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, Weier M, Liechti A, Aximu-Petri A, Kircher646

M, Albert FW, Zeller U, Khaitovich P, Grützner F, Bergmann S, Nielsen R, Pääbo S, KaessmannH. The evolution647

of gene expression levels in mammalian organs. Nature. 2011 Oct; 478(7369):343–348.648

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quanti�cation. Nat Biotechnol.649

2016 May; 34(5):525–527.650

Caldara M, Charlier D, Cunin R. The arginine regulon of Escherichia coli: whole-system transcriptome analysis651

discovers new genes and provides an integrated view of arginine regulation. Microbiology. 2006 Nov; 152(Pt652

11):3343–3354.653

Cambray G, Guimaraes JC, Arkin AP. Evaluation of 244,000 synthetic sequences reveals design principles to654

optimize translation in Escherichia coli. Nat Biotechnol. 2018 Nov; 36(10):1005–1015.655

Catalán A, Briscoe AD, Höhna S. Drift and Directional Selection Are the Evolutionary Forces Driving Gene656

Expression Divergence in Eye and Brain Tissue of Heliconius Butter�ies. Genetics. 2019 Oct; 213(2):581–594.657

Chatterji P, Hamilton KE, Liang S, Andres SF, Wijeratne HRS, Mizuno R, Simon LA, Hicks PD, Foley SW, Pitar-658

resi JR, Klein-Szanto AJ, Mah AT, Van Landeghem L, Gregory BD, Lengner CJ, Madison BB, Shah P, Rustgi AK.659

The LIN28B-IMP1 post-transcriptional regulon has opposing e�ects on oncogenic signaling in the intestine.660

Genes Dev. 2018 Aug; 32(15-16):1020–1034.661

Cheng CH. Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev. 1998 Dec; 8(6):715–720.662

Chien AC, Hill NS, Levin PA. Cell size control in bacteria. Curr Biol. 2012 May; 22(9):R340–9.663

Chonoles Imlay KR, Korshunov S, Imlay JA. Physiological Roles and Adverse E�ects of the Two Cystine Im-664

porters of Escherichia coli. J Bacteriol. 2015 Dec; 197(23):3629–3644.665

Cooper TF, Rozen DE, Lenski RE. Parallel changes in gene expression after 20,000 generations of evolution in666

Escherichia coli. Proc Natl Acad Sci U S A. 2003 Feb; 100(3):1072–1077.667

Crozat E, Winkworth C, Ga�é J, Hallin PF, Riley MA, Lenski RE, Schneider D. Parallel genetic and phenotypic668

evolution of DNA superhelicity in experimental populations of Escherichia coli. Mol Biol Evol. 2010 Sep;669

27(9):2113–2128.670

van Dijk B, Meijer J, Cuypers TD, Hogeweg P. Trusting the hand that feeds: microbes evolve to anticipate a671

serial transfer protocol as individuals or collectives. BMC Evol Biol. 2019 Nov; 19(1):201.672

Ducret A, Quardokus EM, Brun YV. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative673

analysis. Nat Microbiol. 2016 Jun; 1(7):16077.674

Edwards RJ, Sockett RE, Brook�eld JFY. A simple method for genome-wide screening for advantageous inser-675

tions of mobile DNAs in Escherichia coli. Curr Biol. 2002 May; 12(10):863–867.676

Eichhorn E, van der Ploeg JR, Leisinger T. Deletion analysis of the Escherichia coli taurine and alkanesulfonate677

transport systems. J Bacteriol. 2000 May; 182(10):2687–2695.678

El Houdaigui B, Forquet R, Hindré T, Schneider D, Nasser W, Reverchon S, Meyer S. Bacterial genome architec-679

ture shapes global transcriptional regulation by DNA supercoiling. Nucleic Acids Res. 2019 Jun; 47(11):5648–680

5657.681

External RNA Controls Consortium. Proposed methods for testing and selecting the ERCC external RNA682

controls. BMC Genomics. 2005 Nov; 6:150.683

Fox JW, Lenski RE. From Here to Eternity–The Theory and Practice of a Really Long Experiment. PLoS Biol. 2015684

Jun; 13(6):e1002185.685

19 of 25



FukushimaK, Pollock DD. Amalgamated cross-species transcriptomes reveal organ-speci�c propensity in gene686

expression evolution. Nat Commun. 2020 Sep; 11(1):4459.687

Gerashchenko MV, Lobanov AV, Gladyshev VN. Genome-wide ribosome pro�ling reveals complex transla-688

tional regulation in response to oxidative stress. Proc Natl Acad Sci U S A. 2012 Oct; 109(43):17394–17399.689

Gillard GB, Grønvold L, Røsæg LL, Holen MM, Monsen Ø, Koop BF, Rondeau EB, Gundappa MK, Mendoza J,690

Macqueen DJ, Rohlfs RV, Sandve SR, Hvidsten TR. Comparative regulomics supports pervasive selection on691

gene dosage following whole genome duplication. Genome Biol. 2021 Apr; 22(1):103.692

Gong LI, Suchard MA, Bloom JD. Stability-mediated epistasis constrains the evolution of an in�uenza protein.693

Elife. 2013 May; 2:e00631.694

Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000695

generations. Nature. 2017 Nov; 551(7678):45–50.696

Goodman DB, Church GM, Kosuri S. Causes and e�ects of N-terminal codon bias in bacterial genes. Science.697

2013; 342(6157):475–479.698

Grant NA, Abdel Magid A, Franklin J, Dufour Y, Lenski RE. Changes in Cell Size and Shape during 50,000 Gener-699

ations of Experimental Evolution with Escherichia coli. J Bacteriol. 2021 Apr; 203(10).700

Grass G, Rensing C. Genes involved in copper homeostasis in Escherichia coli. J Bacteriol. 2001 Mar;701

183(6):2145–2147.702

GreshamD, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, DunhamMJ. The repertoire703

and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet.704

2008 Dec; 4(12):e1000303.705

Gupta R, Walvekar AS, Liang S, Rashida Z, Shah P, Laxman S. A tRNAmodi�cation balances carbon and nitrogen706

metabolism by regulating phosphate homeostasis. Elife. 2019 Jul; 8.707

Imdahl F, Saliba AE. Advances and challenges in single-cell RNA-seq of microbial communities. Curr Opin708

Microbiol. 2020 Oct; 57:102–110.709

Ingle AP, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a710

review. Appl Microbiol Biotechnol. 2014 Feb; 98(3):1001–1009.711

Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in vivo of translation with712

nucleotide resolution using ribosome pro�ling. Science. 2009 Apr; 324(5924):218–223.713

Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH, Couloux A, Lee SW, Yoon SH, Cattolico L, Hur CG, Park HS,714

Ségurens B, Kim SC, Oh TK, Lenski RE, Studier FW, Daegelen P, Kim JF. Genome sequences of Escherichia coli715

B strains REL606 and BL21(DE3). J Mol Biol. 2009 Dec; 394(4):644–652.716

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 Jan; 28(1):27–717

30.718

Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, Keseler IM, Krummenacker M, Midford PE,719

OngQ, OngWK, Paley SM, Subhraveti P. The BioCyc collection ofmicrobial genomes andmetabolic pathways.720

Brief Bioinform. 2017 Aug; .721

Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD. EcoCyc: a722

comprehensive database resource for Escherichia coli. Nucleic Acids Res. 2005 Jan; 33(Database issue):D334–723

7.724

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2725

and HISAT-genotype. Nat Biotechnol. 2019 Aug; 37(8):907–915.726

Klumpp S, Zhang Z, Hwa T. Growth rate-dependent global e�ects on gene expression in bacteria. Cell. 2009727

Dec; 139(7):1366–1375.728

Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R, CovingtonMF, Devisetty729

UK, Tat AV, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylor-Teeples M, Brady SM,730

Pauly M, Weigel D, et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild731

tomato. Proc Natl Acad Sci U S A. 2013 Jul; 110(28):E2655–62.732

20 of 25



Kryvokhyzha D, Milesi P, Duan T, Orsucci M, Wright SI, Glémin S, Lascoux M. Towards the new normal: Tran-733

scriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed (Capsella734

bursa-pastoris). PLoS Genet. 2019 May; 15(5):e1008131.735

Lauer S, Avecilla G, Spealman P, Sethia G, Brandt N, Levy SF, Gresham D. Single-cell copy number variant736

detection reveals the dynamics and diversity of adaptation. PLoS Biol. 2018 Dec; 16(12):e3000069.737

Le Gac M, Plucain J, Hindré T, Lenski RE, Schneider D. Ecological and evolutionary dynamics of coexisting lin-738

eages during a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A. 2012 Jun; 109(24):9487–739

9492.740

Lee JM, Huddleston J, Doud MB, Hooper KA, Wu NC, Bedford T, Bloom JD. Deepmutational scanning of hemag-741

glutinin helps predict evolutionary fates of human H3N2 in�uenza variants. Proc Natl Acad Sci U S A. 2018742

Aug; 115(35):E8276–E8285.743

LeibyN, Marx CJ. Metabolic erosion primarily throughmutation accumulation, and not tradeo�s, drives limited744

evolution of substrate speci�city in Escherichia coli. PLoS Biol. 2014 Feb; 12(2):e1001789.745

Lenski RE, Mongold JA. Cell size, shape, and �tness in evolving populations of bacteria. In: Scaling in biology746

USA: Oxford University Press, Inc.; 2000.p. 221–235.747

Lenski RE, RoseMR, Simpson SC, Tadler SC. Long-Term Experimental Evolution in Escherichia coli. I. Adaptation748

and Divergence During 2,000 Generations. Am Nat. 1991 Dec; 138(6):1315–1341.749

Levy SF, Blundell JR, Venkataram S, Petrov DA, Fisher DS, Sherlock G. Quantitative evolutionary dynamics using750

high-resolution lineage tracking. Nature. 2015 Mar; 519(7542):181–186.751

Li GW, Burkhardt D, Gross C, Weissman JS. Quantifying absolute protein synthesis rates reveals principles752

underlying allocation of cellular resources. Cell. 2014 Apr; 157(3):624–635.753

LiW, WangW, Uren PJ, Penalva LOF, Smith AD. Riborex: fast and �exible identi�cation of di�erential translation754

from Ribo-seq data. Bioinformatics. 2017 Jun; 33(11):1735–1737.755

Lieberman TD, Michel JB, Aingaran M, Potter-Bynoe G, Roux D, Davis MR Jr, Skurnik D, Leiby N, LiPuma JJ,756

Goldberg JB, McAdam AJ, Priebe GP, Kishony R. Parallel bacterial evolution within multiple patients identi�es757

candidate pathogenicity genes. Nat Genet. 2011 Nov; 43(12):1275–1280.758

Liu B, Quertermous T. Approximating the sum of independent non-identical binomial random variables. R J.759

2018; 10(1):472.760

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with761

DESeq2. Genome Biol. 2014; 15(12):550.762

Macklin DN, Ahn-Horst TA, Choi H, Ruggero NA, Carrera J, Mason JC, Sun G, Agmon E, DeFelice MM, Maayan763

I, Lane K, Spangler RK, Gillies TE, Paull ML, Akhter S, Bray SR, Weaver DS, Keseler IM, Karp PD, Morrison JH,764

et al. Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science.765

2020 Jul; 369(6502).766

Maddamsetti R, Hatcher PJ, Green AG, Williams BL, Marks DS, Lenski RE. Core Genes Evolve Rapidly in the767

Long-Term Evolution Experiment with Escherichia coli. Genome Biol Evol. 2017 Apr; 9(4):1072–1083.768

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal.769

2011 May; 17(1):10–12.770

McManus CJ, May GE, Spealman P, Shteyman A. Ribosome pro�ling reveals post-transcriptional bu�ering of771

divergent gene expression in yeast. Genome Res. 2014 Mar; 24(3):422–430.772

Meydan S, Klepacki D, Karthikeyan S, Margus T, Thomas P, Jones JE, Khan Y, Briggs J, Dinman JD, Vázquez-773

Laslop N, Mankin AS. Programmed Ribosomal Frameshifting Generates a Copper Transporter and a Copper774

Chaperone from the Same Gene. Mol Cell. 2017 Jan; 65(2):207–219.775

Meyer JR, Agrawal AA, Quick RT, Dobias DT, Schneider D, Lenski RE. Parallel changes in host resistance to viral776

infection during 45,000 generations of relaxed selection. Evolution. 2010 Oct; 64(10):3024–3034.777

Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE. Repeatability and contingency in the evolution778

of a key innovation in phage lambda. Science. 2012 Jan; 335(6067):428–432.779

21 of 25



Mohammad F, Green R, Buskirk AR. A systematically-revised ribosome pro�ling method for bacteria reveals780

pauses at single-codon resolution. Elife. 2019 Feb; 8.781

Mongold JA, Lenski RE. Experimental rejection of a nonadaptive explanation for increased cell size in Es-782

cherichia coli. J Bacteriol. 1996 Sep; 178(17):5333–5334.783

MoranMA, Satinsky B, Gi�ord SM, Luo H, Rivers A, Chan LK, Meng J, Durham BP, Shen C, Varaljay VA, Smith CB,784

Yager PL, Hopkinson BM. Sizing up metatranscriptomics. ISME J. 2013 Feb; 7(2):237–243.785

Natarajan C, Inoguchi N, Weber RE, Fago A, Moriyama H, Storz JF. Epistasis among adaptive mutations in deer786

mouse hemoglobin. Science. 2013 Jun; 340(6138):1324–1327.787

Okamura-Ikeda K, Ohmura Y, Fujiwara K, Motokawa Y. Cloning and nucleotide sequence of the gcv operon788

encoding the Escherichia coli glycine-cleavage system. Eur J Biochem. 1993 Sep; 216(2):539–548.789

Ostrowski EA, Woods RJ, Lenski RE. The genetic basis of parallel and divergent phenotypic responses in evolv-790

ing populations of Escherichia coli. Proc Biol Sci. 2008 Feb; 275(1632):277–284.791

Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu AR, Churchman LS, Singh A, Raj792

A. Single mammalian cells compensate for di�erences in cellular volume and DNA copy number through793

independent global transcriptional mechanisms. Mol Cell. 2015 Apr; 58(2):339–352.794

Page A, Gibson J, Meyer RS, Chapman MA. Eggplant Domestication: Pervasive Gene Flow, Feralization, and795

Transcriptomic Divergence. Mol Biol Evol. 2019 Jul; 36(7):1359–1372.796

Pelosi L, Kühn L, Guetta D, Garin J, Geiselmann J, Lenski RE, Schneider D. Parallel changes in global protein797

pro�les during long-term experimental evolution in Escherichia coli. Genetics. 2006 Aug; 173(4):1851–1869.798

Philippe N, Pelosi L, Lenski RE, Schneider D. Evolution of penicillin-binding protein 2 concentration and cell799

shape during a long-term experiment with Escherichia coli. J Bacteriol. 2009 Feb; 191(3):909–921.800

Picard F, Milhem H, Loubière P, Laurent B, Cocaign-Bousquet M, Girbal L. Bacterial translational regulations:801

high diversity between all mRNAs and major role in gene expression. BMC Genomics. 2012 Oct; 13:528.802

Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev803

Genet. 2011 Jan; 12(1):32–42.804

Plucain J, Hindré T, Le Gac M, Tenaillon O, Cruveiller S, Médigue C, Leiby N, Harcombe WR, Marx CJ, Lenski RE,805

Schneider D. Epistasis and allele speci�city in the emergence of a stable polymorphism in Escherichia coli.806

Science. 2014 Mar; 343(6177):1366–1369.807

Quandt EM, Gollihar J, Blount ZD, Ellington AD, Georgiou G, Barrick JE. Fine-tuning citrate synthase �ux poten-808

tiates and re�nes metabolic innovation in the Lenski evolution experiment. Elife. 2015 Oct; 4.809

Rozen DE, Philippe N, Arjan de Visser J, Lenski RE, Schneider D. Death and cannibalism in a seasonal environ-810

ment facilitate bacterial coexistence. Ecol Lett. 2009 Jan; 12(1):34–44.811

Rubio A, Ghosh S, Mülleder M, Ralser M, Mata J. Ribosome pro�ling reveals ribosome stalling on tryptophan812

codons and ribosome queuing upon oxidative stress in �ssion yeast. Nucleic Acids Res. 2021 Jan; 49(1):383–813

399.814

SchaechterM, MaalOe O, Kjeldgaard NO. Dependency onMedium and Temperature of Cell Size and Chemical815

Composition during Balanced Growth of Salmonella typhimurium. J Gen Microbiol. 1958 Dec; 19(3):592–606.816

Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin JB. Rate-limiting steps in yeast protein translation. Cell. 2013 Jun;817

153(7):1589–1601.818

Sirko A, Zatyka M, Sadowy E, Hulanicka D. Sulfate and thiosulfate transport in Escherichia coli K-12: evidence819

for a functional overlapping of sulfate- and thiosulfate-binding proteins. J Bacteriol. 1995 Jul; 177(14):4134–820

4136.821

Soutourina OA, Bertin PN. Regulation cascade of �agellar expression in Gram-negative bacteria. FEMS Micro-822

biol Rev. 2003 Oct; 27(4):505–523.823

Suzuki H, Koyanagi T, Izuka S, Onishi A, Kumagai H. The yliA, -B, -C, and -D genes of Escherichia coli K-12 encode824

a novel glutathione importer with an ATP-binding cassette. J Bacteriol. 2005 Sep; 187(17):5861–5867.825

22 of 25



Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S. Cell-size control and826

homeostasis in bacteria. Curr Biol. 2015 Feb; 25(3):385–391.827

Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, Wu GC, Wielgoss S, Cruveiller S,828

Médigue C, Schneider D, Lenski RE. Tempo and mode of genome evolution in a 50,000-generation experi-829

ment. Nature. 2016 Aug; 536(7615):165–170.830

TenaillonO, Rodríguez-Verdugo A, Gaut RL,McDonald P, Bennett AF, Long AD, Gaut BS. Themolecular diversity831

of adaptive convergence. Science. 2012 Jan; 335(6067):457–461.832

Therkildsen NO, Wilder AP, Conover DO, Munch SB, Baumann H, Palumbi SR. Contrasting genomic shifts833

underlie parallel phenotypic evolution in response to �shing. Science. 2019 Aug; 365(6452):487–490.834

Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T. The global, ppGpp-835

mediated stringent response to amino acid starvation in Escherichia coli. MolMicrobiol. 2008 Jun; 68(5):1128–836

1148.837

Turner CB, WadeBD,Meyer JR, Sommerfeld BA, Lenski RE. Evolution of organismal stoichiometry in a long-term838

experiment with Escherichia coli. R Soc Open Sci. 2017 Jul; 4(7):170497.839

Vasi F, TravisanoM, Lenski RE. Long-Term Experimental Evolution in Escherichia coli. II. Changes in Life-History840

Traits During Adaptation to a Seasonal Environment. Am Nat. 1994 Sep; 144(3):432–456.841

Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, Geiler-Samerotte K, Hérissant L, Blundell JR, Levy SF,842

Fisher DS, Sherlock G, Petrov DA. Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-843

Driving Mutations in Yeast. Cell. 2016 Sep; 166(6):1585–1596.e22.844

Wilson RL, Steiert PS, Stau�er GV. Positive regulation of the Escherichia coli glycine cleavage enzyme system.845

J Bacteriol. 1993 Feb; 175(3):902–904.846

Wiser MJ, Ribeck N, Lenski RE. Long-Term Dynamics of Adaptation in Asexual Populations. Science. 2013 Dec;847

342(6164):1364–1367.848

Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE. Tests of parallel molecular evolution in a long-term849

experiment with Escherichia coli. Proc Natl Acad Sci U S A. 2006 Jun; 103(24):9107–9112.850

Woolstenhulme CJ, Guydosh NR, Green R, Buskirk AR. High-precision analysis of translational pausing by851

ribosome pro�ling in bacteria lacking EFP. Cell Rep. 2015 Apr; 11(1):13–21.852

Yu G, Wang LG, Han Y, He QY. clusterPro�ler: an R package for comparing biological themes among gene853

clusters. OMICS. 2012 May; 16(5):284–287.854

Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and855

preserving large di�erences. Bioinformatics. 2019 Jun; 35(12):2084–2092.856

A1. Determination of Ara-2 ecotype857

Analysis for determination of Ara-2 ecotype can be found in the �le “araM2_ecotype.Rmd”. Brie�y,858

we compared mutations in our clones to the mutations determined in Plucain et al. (2014). Our859

clone of Ara-2 does not possessmutations in the arcA or gntR genes. We also comparedmutations860

in our clone against the list of mutations unique to the S or L ecotype and found that our clone861

possesses many mutations unique to the L type but not the S type. Finally, Le Gac et al. (2012)862

found two large 35 and 41 kilobase deletions in the S lineage at 40,000 generations, neither of863

which are present in our clone at 50,000 generations.864

A2. The potential e�ects of increased sugar in the culture medium865

The LTEE media recipe uses 25 mg/L glucose. However, this low glucose environment leads to low866

cell-densities and constrains our ability to generate matched RNA-seq and ribo-seq samples with867

su�cient depth to perform genome-wide analyses from the same culture. To overcome limitations868

of cell-densities, we used 4 g/L, the amount of sugar speci�ed in the agar recipe used for solid869

growth assays on the LTEE website (http://myxo.css.msu.edu/ecoli/dmagar.html). The increased870

glucose level in our medium is expected to a�ect the �nal cell density rather than the growth rate871
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during the exponential phase. Additionally, though our experiment takes place 30,000 generations872

after the Cooper et al. (2003) study, we observe similar patterns in expression changes (Figure873

1—�gure supplement 3A). This suggests that some patterns may have reached �xation long ago874

and that bacteria may behave similarly across the two experiments. Finally, even in the case where875

the increased glucose has altered the physiology of cells in our cultures, the fact that we see parallel876

patterns of di�erential expression relative to the ancestor in each evolved line indicates that we877

are observing heritable di�erences from the ancestor.878

A3. Absolute abundances and CFU counts879

We used colony forming units (CFUs) of our cultures as a measure of cell densities to generate880

each library. However, �lamentation of cells in our cultures can bias our estimates of cell-densities881

since it remains unclear whether a colony was initiated from a single cell or a �lament. In our882

data, volume increases are best correlated with length or aspect ratio as opposed to width (Figure883

2—�gure supplement 1C). This suggests that while some volume increases are truly individual884

cells getting larger, exceptionally large cells are likely chains. In the absence of absolute changes,885

simply undercounting the number of cells would also produce the observed results. Removal of886

large, presumably �lamentous cells using the same �ltering metric as in Grant et al. (2021) (0.21 fL887

f volume f 5.66 fL, Figure 2—�gure supplement 1B) has little e�ect on our median cell volumes888

and hence does not a�ect results that use themedian volume, such as those in �gure 2E. That said,889

the amount of transcripts estimated fromour data is well over what is believed to be present inside890

a bacterium (Moran et al., 2013), so CFUs likely underrepresent the number of cells used to make891

each library. Moreover, a CFU assay only considers living cells, whereas dead cells, depending on892

their time of death relative to collection time, could also contribute to RNA abundance but not893

CFUs.894

A4. Analysis of altered pathways895

Flagellar assembly was the top category in the KEGG results, and categories relating to motility or896

�agella were frequent in the PPS and GO analyses. Flagella are used for motility and allow bacteria897

to move to new environments when necessary. Downregulation of �agellar genes is a common898

adaptation in laboratory-based evolution experiments (Edwards et al., 2002) and was a principle899

�nding in Cooper et al. (2003). We also observed downregulation of the �gBCDEFGHIJK, �gAMN, and900

�hABE operons in all but one evolved line (Figure Figure 5—�gure supplement 1A, upper panel).901

These operons contribute various proteins to the �agellar apparatus and are regulated in part902

by the transcription factors �hC and �hD, which themselves have complicated regulation dictated903

by various environmental factors (Soutourina and Bertin, 2003). �hC and �hD are downregulated904

in 3 of the evolved lines but mostly unaltered in the others. These genes are rarely mutated in905

the clones used in this study (Figure 5—�gure supplement 1A, lower panel). Because E. coli B is906

thought to be non-motile (Jeong et al., 2009), it’s likely that the downregulation of these genes is907

due to the removal of an unnecessary function and was �xed early on in the experiment. The lack908

of parallel changes in transcriptional regulators �hCD suggests that other mechanisms may play a909

part in causing the downregulation of these genes.910

Terms relating to arginine and other amino acids were common in our results. We found that911

genes related to arginine synthesis were statistically signi�cant and upregulated in many lines (Fig-912

ure 5—�gure supplement 1B). Upregulation of genes in amino acid synthesis pathways could in-913

crease intracellular amino acid amounts, allowing faster translation and leading to faster growth.914

Alternatively, the arginine synthesis pathways have many intermediate molecules which can be915

fed into other metabolic pathways, one of which could also allow faster growth. argR, which re-916

presses transcription of these genes when L-arginine is abundant (Caldara et al., 2006), frequently917

contains mutations in or around its coding sequence and is unaltered in its expression. As such,918

some of these mutations may have disabled the repressive ability of argR, leading to the increased919

expression we observe here.920
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The glyoxylate bypass system allows E. coli to utilize acetate as a carbon source. It is composed921

of the aceBAK operon and is regulated by iclR and arcAB (Okamura-Ikeda et al., 1993). Acetate is a922

metabolic by-product but can be returned to central carbonmetabolism for biosynthetic reactions923

by this system. Previous studies have shown that mutations in iclR and arcB cause derepression of924

their target genes are bene�cial in the LTEE (Quandt et al., 2015). Consistent with these results, we925

found that the aceBAK operon was upregulated in 9 of 11 evolved lines (Figure 5—�gure supple-926

ment 1C). This con�rms the hypothesis from Quandt et al. (2015) that mutations to iclR and arcB927

derepress enzymes involved in acetate metabolism.928

Sulfur is a critical component of many biological molecules, like amino acids, and participates929

in creating other structures like iron-sulfur cluster proteins. Organic sulfur is transported across930

the cell membrane by proteins from the cysPUWAM operon, which encodes for a sulfate/thiosulfate931

importer (Sirko et al., 1995), the gsiABCD operon which encodes for a glutathione importer (Suzuki932

et al., 2005), the tauABCD operon which codes for a taurine importer (Eichhorn et al., 2000), and933

tcyP, the major L-cysteine importer (Chonoles Imlay et al., 2015). We found that many of these934

genes were downregulated in many lines (Figure 5—�gure supplement 1E). The cysB gene posi-935

tively regulates these genes and was downregulated in most lines and contained few mutations.936

The sources of organic sulfur in the medium used in the LTEE are ammonium and magnesium937

sulfate, for which the cysPUWAM operon functions as the importer. The mechanism and reasons938

for alterations to these operons remain unclear. One hypothesis is that the amount of organic939

sulfur in the medium is su�cient to allow the downregulation of sulfur transport systems without940

impacting downstream pathways that require sulfur and negatively impacting growth, thus saving941

energy by not transcribing or translating them.942

Glycine plays a role in protein construction and can be a building block for other metabolic943

pathways such as one-carbonmetabolism or serine synthesis (Okamura-Ikeda et al., 1993;Wilson944

et al., 1993). We found that the gcvTHP operon, which encodes for proteins in the glycine cleavage945

system, was upregulated in many of the evolved lines. Increases in the levels of compounds in-946

volved in this set of reactions may directly increase growth rates. Though some mutations exist in947

and around transcriptional regulators of these genes, their e�ects are unclear. Whether changes948

to these genes are due to changes in their transcription factors or other changes, the upregulation949

of these genes in many lines suggests that it may be bene�cial.950

Copper and silver have antibacterial properties (Ingle et al., 2014), and bacteria have evolved951

systems to mitigate toxicity from these elements. The cusCFBA operon, regulated by the cusRS sen-952

sor kinase, codes for proteins that transport copper and silver ions out of the cell (Nies, 2003). Addi-953

tionally, the cytoplasmic copper chaperone copA, regulated by cueR (Meydan et al., 2017), and cueO954

(multicopper oxidase (Grass and Rensing, 2001)) regulate copper homeostasis in the cell. These955

genes contained deletions in 5 of our clones and were downregulated in three of the six lines956

where they remained (Figure 5—�gure supplement 1F). Overall, eight of the eleven lines surveyed957

here had defects in these systems. This suggests that these genes may be selected for removal or958

downregulation. In contrast to natural environments, the laboratory environment is likely free of959

copper and silver, rendering these systems dispensable. That said, because many of these genes960

are casualties of large deletions, it’s not obvious which genes, if any, provide a �tness bene�t in961

the system.962

25 of 25



0

500

1000

1500

2000

Ara−1 Ara−2 Ara−3 Ara−4 Ara−5 Ara−6 Ara+1 Ara+2 Ara+3 Ara+4 Ara+5 REL606 REL607

M
ea

n 
re

ad
s 

pe
r g

en
e RNA−seq 1

RNA−seq 2
Ribo−seq 1
Ribo−seq 2

A

10

1K

100K

Ara−1 Ara−2 Ara−3 Ara−4 Ara−5 Ara−6 Ara+1 Ara+2 Ara+3 Ara+4 Ara+5 REL606 REL607

R
ea

d 
co

un
ts

B

0.900

0.925

0.950

0.975

1.000

Counts TPM

R
 o

f l
og

10
(fe

at
ur

e)

RNA−seq
Ribo−seq

C

Ara+2 Ara+3 Ara+4 Ara+5 REL606 REL607 2 3 4

Ara−1 Ara−2 Ara−3 Ara−4 Ara−5 Ara−6 Ara+1

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

0.0

0.5

1.0

0.0

0.5

1.0

Period

N
or

m
al

ize
d 

si
gn

al
 s

tre
ng

th

D
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Figure 1—�gure supplement 2. (A) Distributions of all mRNA fold-changes (using DESeq2) in
each line. Lines with a mutator phenotype are in red. (B) The number of di�erentially expressed
genes (DESeq2 q f 0.01) in each line. (C) Upper panel shows the probabilities of observing a gene
that was di�erentially expressed and altered in the same direction in a given number of lines (x-
axis).The solid lines represent mean probabilities derived from randomizing the fold-changes of
genes in each line one million times and the dashed lines represent the probabilities calculated
using the SINIB method as shown in Figure 1E. P-values show the result of a KS test comparing the
randomized to the SINIB distributions. The lower panel shows the expected number of di�eren-
tially expressed genes that are shared and altered in the same direction in a given number of lines
(x-axis) based on the above probabilities. (D) Distributions of absolute fold-changes of di�eren-
tially expressed genes in each line. The number of DEGs in each evolved line is indicated. Asterisks
indicate the results of a Kolmogorov-Smirnov test comparing distributions of the magnitudes of
positive and negative fold-changes in each line NS: p > 0.05, *: p f 0.05, **: p f 0.01, ***: p f 0.001
****: p f 0.0001. (E) The list of top 10 genes contributing to variation in each principle component,
grey spaces represent deletions which were encoded as having a log2(fold * change) = *10. (F)
The genes and descriptions of genes contributing to �rst two principal components retrieved from
EcoCyc (Keseler et al., 2005).
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Figure 1—�gure supplement 3. (A) The direction and magnitude of expression changes in genes
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underlying the Cooper et al. (2003) study was generated using a microarray compared to RNAseq
data in the current study.
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Figure 2—�gure supplement 1. (A) Comparison ofmedian volumes of each evolved line from this
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Figure 2—�gure supplement 2. (A) Abundances of Spike-in RNA control oligos are correlated
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Figure 4—�gure supplement 1. (A) Parallel changes in biological processes and pathways. The
top 10 KEGG pathways that were signi�cantly altered (FDR f 0.05) based on Ribo-seq data. En-
richment score represents the degree to which a pathway was up (positive) or downregulated
(negative). Functional categories are ordered by increasing mean enrichment score across the
lines. Enrichment score represents the degree to which a pathway was up (positive) or downreg-
ulated (negative). (B) Distribution of pairwise Spearman’s correlations of enrichment scores of all
signi�cantly altered functional categories (FDR f 0.05). (C) The top 10 pathways with the highest
mean Pathway perturbation scores (PPS) calculated from Ribo-seq fold changes. Higher PPS indi-
cates larger degrees of alteration but does not indicate directionality. (D) Distribution of pairwise
Spearman’s correlations based on all PPS scores (observed) compared to 1000 sets of correlations
generated from PPS scores calculated after randomization of fold-changes (expected). The p-value
is the result of a Kolmogorov–Smirnov test. blank: p > 0.05, *: p f 0.05, **: p f 0.01, ***: p f 0.001
****: p f 0.0001.
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Figure 5—�gure supplement 1. (A-F) Mutations in transcriptional regulators lead to parallel
changes in gene expression (RNA-seq). Gene names in each category are colored based on their
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