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THRESHOLD DYNAMICS FOR COROTATIONAL WAVE MAPS

CASEY RODRIGUEZ

We study the dynamics of corotational wave maps from R1+2
→ S2 at threshold energy. It is known that

topologically trivial wave maps with energy < 8π are global and scatter to a constant map. We prove that
a corotational wave map with energy equal to 8π is globally defined and scatters in one time direction,
and in the other time direction, either the map is globally defined and scatters, or the map breaks down in
finite time and converges to a superposition of two harmonic maps. The latter behavior stands in stark
contrast to higher equivariant wave maps with threshold energy, which have been proven to be globally
defined for all time. Using techniques developed in this paper, we also construct a corotational wave map
with energy = 8π which blows up in finite time. The blow-up solution we construct provides the first
example of a minimal topologically trivial nondispersing solution to the full wave map evolution.

1. Introduction

1A. Wave maps. We study the dynamics of energy critical wave maps which are defined as follows.
Let η be the Minkowski metric on R1+2

t,x , and let N be a Riemannian manifold with metric h. A map
u : R1+2

→N is a wave map if it is a critical point of the action

A(u)= 1
2

∫
R1+2
〈∂µu, ∂µu〉h dx dt,

where we raise and lower indices using the Minkowski metric η. The associated Euler–Lagrange equations
are the wave maps equations given in local coordinates by

∂µ∂µua
+0a

bc(u) ∂
µub ∂µuc

= 0. (1-1)

Here the 0a
bc are the Christoffel symbols associated to the metric h on N. The time translational symmetry

of Minkowski space and Noether’s theorem provide a conserved energy for the evolution

E(u(t), ∂t u(t)) :=
1
2

∫
R2
|∂t u(t, x)|2h + |∇u(t, x)|2h dx = const. (1-2)

We study wave maps as solutions to the Cauchy problem (1-1) with prescribed finite-energy initial data
Eu(0)= (u0, u1), where

u0(x) ∈N , u1(x) ∈ Tu0(x)N , x ∈ R2.

Here and throughout the paper we use the notation Eu(t) to denote the pair of functions

Eu(t) := (u(t, · ), ∂t u(t, · )).
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We also assume that there exists u∞ ∈N such that

u0(x)→ u∞ as |x | →∞.

Due to the conformal symmetry of Minkowski space, we also have the following scaling symmetry: if
Eu(t) is a wave map and λ > 0, then

Euλ(t, x)= (uλ(t, x), ∂t uλ(t, x)) :=
(

u
(

t
λ
,

x
λ

)
,

1
λ
∂t u
(

t
λ
,

x
λ

))
is also a wave map. The energy is scale-invariant,

E(Euλ)= E(Eu),

and for this reason, the wave maps equations in (1+2)-dimensions are said to be energy critical. Wave
maps have been extensively studied over the past several decades, and we refer the reader to [Shatah and
Struwe 1998; Geba and Grillakis 2017] for reviews of the work that has been done.

In this work we specialize to the case N = S2 (with the usual round metric) and wave maps which
respect the rotational symmetry of the background and target. More precisely, we fix an origin in R2 and
north pole N ∈ S2. We say a map u : R1+2

→ S2 is corotational or 1-equivariant if u ◦ ρ = ρ ◦ u for
all ρ ∈ SO(2). Here ρ acts on S2 by rotation about the axis determined by N. Choosing N = (0, 0, 1)
without loss generality, we can write a corotational map as

u(t, r, θ)= (sinψ(t, r) cos θ, sinψ(t, r) sin θ, cosψ(t, r)) ∈ S2
⊂ R3, (1-3)

where (t, r, θ) are polar coordinates on R1+2, and (ψ, θ) are spherical coordinates on S2. For corotational
maps, the Cauchy problem (1-1) reduces to a single equation for the azimuth angle ψ = ψ(t, r):

∂2
t ψ − ∂

2
r ψ −

1
r
∂rψ +

sin 2ψ
2r2 = 0, Eψ(0)= (ψ0, ψ1). (1-4)

The conserved energy (1-2) is given by

E( Eψ(t))= π
∫
∞

0

(
(∂tψ(t, r))2+ (∂rψ(t, r))2+

sin2 ψ(t, r)
r2

)
r dr.

The expression for the energy implies that there exist m, n ∈ Z such that limr→0 ψ0(r) = mπ and
limr→∞ ψ0(r)= nπ. By continuity of the flow Eψ(t),

lim
r→0

ψ(t, r)= mπ, lim
r→∞

ψ(t, r)= nπ for all t.

Without loss of generality, we may assume that m = 0 and n ∈ N∪ {0}. Thus, finite-energy solutions to
(1-4) are split into disjoint classes given by

Hn :=
{
(ψ0, ψ1)

∣∣ E(ψ0, ψ1) <∞ and lim
r→0

ψ0(r)= 0, lim
r→∞

ψ0(r)= nπ
}
.

We refer to the parameter n ∈ N∪ {0} as the degree of the map, and it can be thought of as parametrizing
the minimal number of times the map ψ(t) (more precisely, u(t) given by (1-3)) wraps R2 around the
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sphere. We study those corotational initial data (ψ0, ψ1) ∈H0, i.e., those which satisfy

lim
r→0

ψ0(r)= lim
r→∞

ψ0(r)= 0.

A corotational ansatz reduces the complexity of the wave maps equations greatly and is possible in the
more general case when N is a surface of revolution. Choosing N = S2 is motivated by what is known
about stationary wave maps, or harmonic maps, in this setting. By an ODE argument, the unique (up to
scaling) nontrivial corotational harmonic map is given explicitly by

Q(r)= 2 arctan r,

with energy
E( EQ)= 4π.

We note that
lim
r→0

Q(r)= 0, lim
r→∞

Q(r)= π,

so that EQ ∈H1. In fact, it can be shown that Q minimizes the energy in H1 (see Section 2). As we will
soon discuss, these harmonic maps play a fundamental role in the long-time dynamics of wave maps with
large initial data.

We conclude this subsection by discussing k-equivariant maps, a generalization of our corotational
reduction. For k ∈ N, we say a map u : R1+2

→ S2 is k-equivariant if u ◦ ρ = ρk
◦ u for all ρ ∈ SO(2),

where SO(2) acts on the R1+2 and S2 as before. Then we may write

u(t, r, θ)= (sinψ(t, r) cos kθ, sinψ(t, r) sin kθ, cosψ(t, r)),

and the wave maps equations reduce to the single equation

∂2
t ψ − ∂

2
r ψ −

1
r
∂rψ + k2 sin 2ψ

2r2 = 0, Eψ(0)= (ψ0, ψ1). (1-5)

The conserved energy (1-2) is given by

Ek( Eψ(t))= π
∫
∞

0

(
(∂tψ(t, r))2+ (∂rψ(t, r))2+ k2 sin2 ψ(t, r)

r2

)
r dr.

As in the corotational setting, the unique (up to scaling) nontrivial k-equivariant harmonic map is given by

Qk(r)= 2 arctan(r k).

The harmonic map EQk is in H1, Ek( EQk) = 4πk and EQk minimizes the energy Ek( · ) in the class H1.
In particular, the corotational harmonic map Q = Q1 has the least energy of all nontrivial equivariant
harmonic maps.

We now turn to motivating our main results.

1B. History and motivation. Strichartz estimates suffice to prove global existence for equivariant wave
maps evolving from small degree-0 data (see Section 2), so recent work has been dedicated to understanding
the long-time dynamics of wave maps evolving from large initial data. It is here that the family of
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harmonic maps plays a fundamental role. Indeed, a classical result of [Struwe 2003] states that if a
smooth k-equivariant wave map Eψ(t) breaks down at time t = 1, say, then Eψ(t) converges to the harmonic
map EQk in a local spacetime norm. Moreover, Eψ(t, r) must concentrate energy in excess of Ek( EQk) at
the tip of the inverted light cone centered at (T+, r)= (1, 0). Thus, a k-equivariant wave map Eψ(t) with
energy less than Ek( EQk) is globally defined and smooth. The works [Krieger, Schlag, and Tataru 2008;
Rodnianski and Sterbenz 2010; Raphaël and Rodnianski 2012] constructed examples of degree-1 wave
maps that blow-up by bubbling off a harmonic map, i.e.,

Eψ(t)= EQk
λ(t)+ Eϕ(t),

with λ(t)→ 0 as t→ T+ <∞ and ϕ(t) regular up to t = T+.
As we’ve discussed, harmonic maps play a key role in singularity formation for wave maps, but in

fact they should be fundamental in describing the dynamics of arbitrary wave maps. Indeed, according
to the soliton resolution conjecture, one expects the following beautiful simplification of the dynamics:
smooth wave maps asymptotically break up into a sum of dynamically rescaled harmonic maps and a
free radiation term (a solution to the linearized equations). The problem of describing the dynamics of
corotational wave maps with energy = 2E( EQ) we address in this paper is motivated by several recent
advances made in establishing this conjecture for equivariant wave maps. We first state the following
refined threshold theorem proved in [Côte, Kenig, Lawrie, and Schlag 2015a].

Theorem 1.1 [Côte, Kenig, Lawrie, and Schlag 2015a]. For smooth initial data (ψ0, ψ1) ∈H0, with

Ek(ψ0, ψ1) < 2Ek( EQk),

there exists a unique global smooth k-equivariant wave map Eψ ∈ C(R;H0) with Eψ(0) = (ψ0, ψ1).
Moreover, Eψ(t) scatters both forward and backward in time; i.e., there exist solutions Eϕ±L to the linearized
equation

∂2
t ϕ− ∂

2
r ϕ−

1
r
∂rϕ+

k2

r2 ∂rϕ = 0 (1-6)

such that
Eψ(t)= Eϕ±L (t)+ oH0(1) as t→±∞.

The intuition for the threshold energy being 2Ek( EQk) rather than Ek( EQk) is the following. If a k-
equivariant map Eψ(t) ∈H0 wraps the plane around the sphere once, then it must also unwrap the sphere
once more in order to have degree 0. Since the minimum amount of energy needed for a k-equivariant
map to wrap the plane around the sphere once is equal to Ek( EQk), it follows that if Ek( Eψ)< 2Ek( EQk) then
ψ(t) is bounded away from the south pole (i.e., ψ(t, r) < π − ε for all t, r ). Thus, Eψ(t) cannot converge
locally to a harmonic map EQk, which by Struwe’s bubbling result implies Eψ(t) is globally regular.

A result analogous to Theorem 1.1 for the full wave map system, with no symmetry assumptions,
was established in [Lawrie and Oh 2016]. More precisely, we say initial data (u0, u1) (with target S2) is
topologically trivial if

1
4π

∫
R2

u∗0 ωS2 = 0,
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where ωS2 is the volume form on S2. It can be checked that the above condition is propagated by the
wave map evolution, and an equivariant map Eu with associated azimuth angle Eψ ∈H0 is topological trivial.
The authors obtain the following result as a consequence of the analysis from [Sterbenz and Tataru 2010].

Theorem 1.2 [Lawrie and Oh 2016]. Suppose that (u0, u1) is smooth topologically trivial finite-energy
initial data with

E(u0, u1) < 8π = 2E( EQ1).

Then there exists a unique global solution u : R1+2
→ S2 to the wave maps equations (1-1) with

Eu(0)= (u0, u1). Moreover, Eu(t) scatters to the constant map as t→±∞.

The works [Côte, Kenig, Lawrie, and Schlag 2015a; 2015b] also established soliton resolution for
corotational wave maps in H1 with energy below 3E( EQ). In this setting only one concentrating bubble is
possible, and these works showed that for any such wave map there exists a solution EϕL(t) ∈H0 to the
free equation (1-6) (the radiation) and a continuous dynamical scale λ(t) ∈ (0,∞) such that

Eψ(t)= EQλ(t)+ EϕL(t)+ oH0(1) as t→ T+.

Proving soliton resolution above 3E( EQ) is very challenging since one can conceivably have multiple
harmonic maps concentrating at different scales and interacting. However, there has been exciting recent
progress in establishing a weaker form of the conjecture. The work [Côte 2015] (for 1-equivariant maps)
and [Jia and Kenig 2017] (for all equivariant maps) established the following soliton resolution result
along a well-chosen sequence of times.

Theorem 1.3 [Côte 2015; Jia and Kenig 2017]. Let Eψ(t) ∈Hn be a smooth k-equivariant wave map on
[0, T+). Then there exists a sequence of times tn → T+, an integer J ∈ N∪ {0}, a solution EϕL(t) ∈ H0

to (1-6), sequences of scales λn, j which satisfy 0< λn,1� λn,2� · · · � λn,J and signs ι j ∈ {−1, 1} for
j ∈ {1, . . . , J }, so that

Eψ(tn)=
J∑

j=1

ι j EQk
λn, j
+ EϕL(tn)+ oH0(1) as n→∞. (1-7)

If T+<∞ then J ≥ 1, 0<λn,1�· · ·� λn,J � T+− tn , and if T+=∞ then 0<λn,1�· · ·� λn,J � tn .
The signs ι j are required to satisfy the topological constraint Eψ(t) ∈Hn , i.e.,

lim
r→∞

J∑
j=1

ι j Qk
λn, j
(r)= nπ.

We remark that [Côte, Kenig, Lawrie, and Schlag 2015a; 2015b; Côte 2015; Jia and Kenig 2017;
Jendrej and Lawrie 2018] use ideas and techniques inspired by the seminal papers on the focusing quintic
nonlinear wave equation in three space dimensions by [Duyckaerts, Kenig, and Merle 2011; 2012a; 2012b;
2013] (see also [Kenig 2015] for an account of the important techniques and ideas in these papers).

Jendrej [2019] showed it is possible for more than one bubble to form in the decomposition (1-7).
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Theorem 1.4 [Jendrej 2019]. Fix an equivariance class k>2. There exists a solution Eψ : (−∞, T+)→H0

of (1-5) such that
lim

t→−∞
‖ Eψ(t)− ( EQck |t |−2/(k−2) − EQ)‖H0 = 0,

where ck > 0 is explicit. �

A similar construction is possible when k= 2 with an explicit exponentially decaying scale as t→−∞.
By Theorem 1.1, these solutions are examples of nondispersing threshold solutions to (1-5) for k ≥ 2.

Jendrej and Lawrie [2018] classified the dynamics of k-equivariant wave maps Eψ(t) with threshold
energy Ek( Eψ(t)) = 2Ek( EQk) for k ≥ 2. Their work provided the primary motivation and roadmap for
establishing our main results. To state their results concisely, we first introduce some terminology. Let
Eψ(t) : (T−, T+)→ H0 be a k-equivariant wave map with Ek( Eψ) = 2Ek( EQk). We say that Eψ(t) is a
two-bubble in the forward time direction if there exist ι ∈ {1,−1} and continuous functions λ(t), µ(t) > 0
such that

lim
t→T+
‖(ψ(t)− ι(Qk

λ(t)− Qk
µ(t)), ψt(t))‖H0 = 0, λ(t)� µ(t) as t→ T+.

The notion of a two-bubble in the backward time direction is defined similarly.

Theorem 1.5 [Jendrej and Lawrie 2018]. Let k ≥ 2, and let Eψ : (T−, T+)→H0 be a k-equivariant wave
map such that

Ek( Eψ)= 2Ek( EQk)= 8πk.

Then T− =−∞, T+ =∞ and one the following alternatives holds:

• Eψ(t) scatters in both time directions.

• Eψ(t) scatters in one time direction and is a two-bubble in the other time direction. Moreover if Eψ(t) is a
two-bubble in the forward time direction, then there exists C =C(k) > 0, µ0> 0 such that µ(t)→µ0 and

µ0 exp(−Ct)≤ λ(t)≤ µ0 exp(−t/C) if k = 2,
µ0

C
t−2/(k−2)

≤ λ(t)≤ Cµ0t−2/(k−2) if k ≥ 3.

An analogous estimate holds if Eψ(t) is a two-bubble in the backward time direction.

1C. Main results. The two-bubble solutions given by Theorem 1.4 and the classification result Theorem 1.5
are for k-equivariant wave maps with k ≥ 2. The first main result of this paper establishes the existence
of a corotational two-bubble solution. In contrast to higher equivariant wave maps, our solution is in fact
a threshold blow-up solution.

Theorem 1.6 (Main Theorem 1). There exists a corotational wave map Eψc : (0, T+)→H0, a continuous
scale λc(t) > 0, and constant C > 0 such that

1
C

t2
≤ λc(t)|log λc(t)| ≤ Ct2

and
lim

t→0+
‖ Eψc(t)− ( EQλc(t)−

EQ)‖H0 = 0.

In particular, E( Eψc)= 8π and T− = 0.
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By Theorem 1.1, Eψc is a minimal energy nondispersing solution to (1-4). Moreover, by Theorem 1.2
the map uc : (0, T+)×R2

→ S2 given by

uc(t, r, θ)= (sinψc(t, r) cos θ, sinψc(t, r) sin θ, cosψc(t, r))

is a topologically trivial minimal energy nondispersing solution to the full wave map equations. The
existence of such a solution has been an open question up until now. The proof of Theorem 1.6 is a
byproduct of estimates we derive to prove our second main result and the general scheme for constructing
multisoliton solutions introduced in [Martel 2005; Merle 1990]. We remark that our construction does
not require as precise as an ansatz for Eψc as in those works but is closer in spirit to the two-bubble
construction for NLS in [Jendrej 2017].

Theorem 1.7 (Main Theorem 2). Let Eψ(t) : (T−, T+)→H0 be a solution to (1-4) such that

E( Eψ)= 2E( EQ)= 8π.

Then either T− =−∞ or T+ =∞. Assume that T− =−∞. Then Eψ(t) scatters in backward time, while
in forward time one of the following holds:

• T+ =∞ and Eψ(t) scatters in forward time.

• T+ <∞, Eψ(t) is a two-bubble in the forward time direction, and there exists an absolute constant
C > 0 such that the scales of the bubbles λ(t), µ(t) satisfy

lim
t→T+

µ(t)= µ0 ∈ (0,∞),
1
C
(T+− t)2 ≤

λ(t)
µ0

∣∣∣∣log
(
λ(t)
µ0

)∣∣∣∣≤ C(T+− t)2.

If we assume initially that Eψ(t) satisfies T+=∞, then Eψ(t) scatters in forward time, and one of analogous
alternatives formulated in backward time must hold.

Overall, our main results state that the dynamics of corotational wave maps at threshold energy are
very different from the those of higher equivariant wave maps at threshold energy.

We remark that by Theorem 1.7, the blow-up solution Eψc from Theorem 1.6 is global in forward
time, T+ =∞, and scatters. Thus, Eψc is a trajectory connecting asymptotically free behavior to blow-up
behavior. Theorem 1.7 also asserts that for (1-4) the collision of two bubbles produces only radiation and
is therefore inelastic. This is consistent with what is known and expected for nonintegrable dispersive
equations; see [Martel and Merle 2011a; 2011b; 2018; Jendrej and Lawrie 2018]. Our main results
are in the spirit of the classification results at threshold energy by [Duyckaerts and Merle 2008; 2009;
Jendrej and Lawrie 2018], but one may also draw parallels to the study of minimal blow-up solutions for
dispersive equations; see for example [Merle 1993; Raphaël and Szeftel 2011]. Finally, we remark that
apart from the seminal work [Duyckaerts, Kenig, and Merle 2013] which verified the soliton resolution
conjecture for the 3-dimensional radial energy critical wave equation and Theorem 1.5 due to Jendrej and
Lawrie, Theorem 1.7 is the only other result which proves soliton resolution continuously in time at an
energy level that a priori allows two solitons in the asymptotic decomposition. In fact, Theorem 1.7 shows
that solutions with two concentrating bubbles cannot occur, and any nonscattering solution must blow up
precisely one bubble while radiating a second stationary harmonic map outside the inverted light cone.
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1D. Outline. The general framework for proving Theorem 1.7 is inspired by [Jendrej and Lawrie 2018]
on higher equivariant wave maps, but due to the slow convergence to π of the corotational harmonic map
Q(r)= 2 arctan r , there are serious technical challenges not found in the higher equivariant setting that
arise. The main source of these obstacles will be elaborated on below.

A rough outline of the proof of Theorem 1.7 is as follows. By Theorem 1.3, a corotational wave map Eψ
that does not scatter forward in time must approach the space of two-bubbles along a sequence of times.
Towards a contradiction, we assume that Eψ does not approach the space of two-bubbles continuously
in time. We then split time into a sequence of intervals [am, bm] so that Eψ(t) is close to the space of
two-bubbles on [am, bm] (bad intervals), and Eψ(t) stays away from the space of two-bubbles on [bm, am+1]

(good intervals). By concentration compactness techniques, the trajectory Eψ(t) has a certain compactness
property on the union of good intervals (see Sections 2 and 4). Past experience suggests that Eψ(t)
converges to a degree-0 stationary solution to (1-4) along a sequence of times in the good intervals (see
[Duyckaerts, Kenig, and Merle 2016] for example). Since the only degree-0 stationary solution to (1-4)
is 0, we conclude Eψ = 0, a contradiction.

To prove that Eψ(t) approaches a stationary solution to (1-4), we use a virial identity for wave maps
(see Section 2) which bounds an integral of ‖∂tψ(t)‖2L2 over certain good intervals by small error terms
plus an integral of d( Eψ(t))1/2 over certain bad intervals. Here d( · ) is a measure of the distance to the
space of two-bubbles (see Section 2). The errors can be made small because Eψ is close to a two-bubble on
the bad intervals and has the compactness property on the good intervals. The time integral of d( Eψ(t))1/2

can be absorbed into the left-hand side, which shows that ‖∂tψ(t)‖2L2 converges to 0 in a certain averaged
(over the good intervals) sense. The compactness property then allows us to conclude that Eψ(t) must
approach a stationary solution. The fact that the integral of d( Eψ(t))1/2 can be absorbed into the left-hand
side is due to the following informal fact: leaving the space of two-bubbles on a bad interval causes an
appreciable amount of kinetic energy, ‖∂tψ(t)‖2L2 , to be present on the neighboring good interval (see
Proposition 3.12 and Section 4). We prove this fact by studying the interaction of corotational two-bubbles
using the modulation method (see Section 3). This is one of the main novelties of this paper.

On a time interval where a corotational wave map Eψ is close to a two-bubble, we decompose the
solution as

Eψ(t)= (Qλ(t)− Qµ(t)− g(t), ∂tψ(t)),

where the modulation parameters λ(t) and µ(t) are chosen by imposing certain orthogonality conditions
on g. The choice also ensures that d( Eψ(t)) is comparable to λ(t)/µ(t). The goal of Section 3 is to show
and control growth of the ratio λ(t)/µ(t) in the future of a time t0, where d

dt (λ(t)/µ(t))|t=t0 > 0 (see
Propositions 3.3 and 3.12). In contrast to [Jendrej and Lawrie 2018] on higher equivariant wave maps, the
function (r∂r Q)λ(t), which is the tangent vector to the curve t 7→ Qλ(t) is not in L2(R2). This function
plays a key role in the scheme since λ(t)−1

〈(r∂r Q)λ(t) | ∂tψ(t)〉L2 should heuristically be proportional
to λ′(t), so we may then differentiate it and use (1-4) to get information about λ′′(t). The fact that
r∂r Q /∈ L2 is the major obstacle in deriving the estimates, and the technique we introduce in Section 3 to
overcome this challenge is a central contribution of this work.



THRESHOLD DYNAMICS FOR COROTATIONAL WAVE MAPS 2131

We conclude our discussion of the proof of Theorem 1.7 with the following remarks. Our overall
scheme of proving Theorem 1.7 may also be summarized as showing that a threshold wave map that leaves
a small neighborhood of the space of two-bubbles can never return. This type of ejection result is similar
in appearance to those obtained by Krieger, Nakanishi and Schlag [2013; 2015] in their study of the
dynamics near the unstable ground state for the energy critical wave equation. However, the ejection of a
near two-bubble wave map is due to a purely nonlinear mechanism (the interaction of the harmonic maps).

We now briefly outline the proof of Theorem 1.6. The construction of the blow-up solution Eψc(t) is
quite short due to the results proved in Section 3. We consider initial data at time tn of the form

Eψn(tn)= (Q`(tn)− Q,−`′(tn)`(tn)−1(r∂r Q)`(tn)χn),

where χn is a cutoff that ensures E( Eψ(tn))= 8π . The function `(t) is chosen to satisfy `′(tn) > 0 and to
essentially saturate the bounds on the modulation parameters in Proposition 3.3. Let Eψn(t) denote the
solution to (1-4) with data Eψn(tn) at time t = tn . By our choice of the data, the control of the growth of
the modulation parameters obtained in Proposition 3.3 and a bootstrap argument, we conclude that there
exist absolute constants α,C, T > 0 with T small such that T+( Eψn) > T and

inf
µ∈[1/2,2]

λ|log λ|∈[t2/C,Ct2
]

‖ Eψn(t)− (Qλ− Qµ)‖2H0
≤ αt2 for all n, for all t ∈ [tn, T ].

Passing to a weak limit then finishes the proof. Full details are in Section 5.

2. Preliminaries

The purpose of this section is to recall preliminary facts about solutions to (1-4) that will be required in
our analysis. Before recalling these facts, we establish some notation. For two quantities A and B, we
write A . B if there exists a constant C > 0 such that A ≤ C B, and we write A ∼ B if A . B . A. For
the paper, we denote by χ a smooth cutoff χ ∈ C∞rad(R

2), so that, writing χ = χ(r) we have

χ(r)= 1 if r ≤ 1 and χ(r)= 0 if r ≥ 2 and |χ ′(r)| ≤ 2 for all r ≥ 0.

We define χR(r) := χ(r/R). The L2 pairing of two radial functions is denoted by

〈 f | g〉 := 1
2π
〈 f | g〉L2(R2) =

∫
∞

0
f (r)g(r)r dr.

The Ḣ 1 and L2 rescalings of a radial function f are denoted by

fλ(r)= f (r/λ), fλ(r)=
1
λ

f (r/λ),

and the corresponding infinitesimal generators are given by

3 f := − ∂

∂λ

∣∣∣
λ=1

fλ = r∂r f (Ḣ 1
rad(R

2) scaling),

30 f := − ∂

∂λ

∣∣∣
λ=1

fλ = (1+ r∂r ) f (L2
rad(R

2) scaling).
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Recall the definition of the space of degree-0 data with finite energy:

H0 :=
{
(ψ0, ψ1)

∣∣ E(ψ0, ψ1) <∞, lim
r→0

ψ0(r)= lim
r→∞

ψ0(r)= 0
}
.

We define the norm H via

‖ψ0‖
2
H :=

∫
∞

0

(
(∂rψ0(r))2+

(ψ0(r))2

r2

)
r dr,

and for pairs Eψ = (ψ0, ψ1) ∈H0 we write

‖ Eψ‖H0 := ‖(ψ0, ψ1)‖H×L2 .

Given ψ0 ∈ H, if we define ψ̃0(x) := ψ(ex), x ∈ R, we see that ‖ψ0‖H = ‖ψ̃0‖H1(R). Thus, by Sobolev
embedding on R we conclude that

‖ψ0‖L∞ ≤ C‖ψ0‖H .

This fact will be used frequently in our analysis.

2A. Compactness of nonscattering threshold solutions. A central result we use in our work, obtained
from the standard well-posedness theory for (1-4), concentration-compactness methods and Theorem 1.1,
is the following compactness statement for nonscattering threshold solutions. The proof is the same as
the higher equivariant analog found in [Jendrej and Lawrie 2018] and is omitted.

Lemma 2.1 [Jendrej and Lawrie 2018, Lemma 2.9]. Let Eψ(t) ∈ H0 be a solution to (1-4) defined on
[0, T+( Eψ)). Suppose that E( Eψ)= 8π and Eψ(t) does not scatter in forward time. Then if tn→ T+ is any
sequence of times such that

sup
n
‖ Eψ(tn)‖H0 ≤ C <∞,

there exist a subsequence, which we continue to denote by tn , scales νn > 0 and a nonzero Eϕ ∈H0 such
that

Eψ(tn)1/νn → Eϕ ∈H0

strongly in H0. Moreover, E( Eϕ)= 8π , and the solution Eϕ(s) to (1-4) with data Eϕ(0)= Eϕ is nonscattering
in forwards and backwards time.

2B. Near two-bubble maps. We recall that the unique (up to scaling) nontrivial corotational harmonic
map Q is given by

Q(r)= 2 arctan r.

The harmonic map Q has a variational characterization as follows. As in the Introduction, let H1 be the
set of all finite-energy corotational maps which map infinity to the south pole, i.e.,

H1 :=
{
(φ0, φ1)

∣∣ E( Eφ) <∞, φ0(0)= 0, lim
r→∞

ϕ0(r)= π
}
.
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Then for (ϕ0, ϕ1) ∈H1, we have the following Bogomol’nyi factorization of the nonlinear energy:

E(ϕ0, ϕ1)= π‖ϕ1‖
2
L2 +π

∫
∞

0

(
∂rϕ0−

sin(ϕ0)

r

)2

r dr + 2π
∫
∞

0
sin(ϕ0)∂rϕ0 dr

= π‖ϕ1‖
2
L2 +π

∫
∞

0

(
∂rϕ0−

sin(ϕ0)

r

)2

r dr + 2π
∫ ϕ0(∞)

ϕ0(0)
sin(ρ) dρ

= π‖ϕ1‖
2
L2 +π

∫
∞

0

(
∂rϕ0−

sin(ϕ0)

r

)2

r dr + 4π.

By solving the differential equation in the parentheses, we see that E(ϕ0, ϕ1)≥ 4π with equality if and
only if (ϕ0, ϕ1)= (Qλ, 0) for some λ > 0.

In our analysis, we will need several technical facts related to the distance of a map Eψ to the set of
two-bubbles. More precisely, given a map Eφ = (φ0, φ1) ∈ H0 we define its distance d( Eφ) to the set of
two-bubbles by

d( Eφ) := inf
λ,µ>0,ι∈{+1,−1}

(‖(φ0− ι(Qλ− Qµ), φ1)‖
2
H0
+ (λ/µ)). (2-1)

To distinguish between the two cases of a map being close to a pure two-bubble (ι=+1 above) or an
anti-two-bubble (ι=−1 above), we define

d±( Eφ) := inf
λ,µ>0

(‖(φ0∓ (Qλ− Qµ), φ1)‖
2
H0
+ (λ/µ)).

The next two lemmas follow from the same arguments given in [Jendrej and Lawrie 2018] for higher
equivariant wave maps, and the proofs will be omitted. The first lemma shows that the size of a map Eψ with
threshold energy can be controlled by its distance to the surface of two-bubbles. The second lemma proves
the intuitive fact that a map Eψ cannot simultaneously be close to a pure two-bubble and anti-two-bubble.

Lemma 2.2 [Jendrej and Lawrie 2018, Lemma 2.13]. Suppose that Eφ = (φ0, φ1) ∈H0 and

E( Eφ)= 2E( EQ)= 8π.

Then for each β > 0 there exists C(β) > 0 such that

d( Eφ)≥ β =⇒ ‖(φ0, φ1)‖H0 ≤ C(β).

Conversely, for each A > 0 there exists α = α(A) such that

d( Eφ)≤ α(A) =⇒ ‖(φ0, φ1)‖H0 ≥ A.

Lemma 2.3 [Jendrej and Lawrie 2018, Lemma 2.14]. There exists an absolute constant α0 > 0 such that
for any Eφ ∈H0

d±( Eφ)≤ α0 =⇒ d∓( Eφ)≥ α0.

The final preliminary results we will need for our analysis are related to a virial identity for solutions
to (1-4). The following virial identity follows easily from (1-4) and integration by parts.
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Lemma 2.4. Let Eψ(t) be a solution to (1-4) on a time interval I. Then for any time t ∈ I and R > 0 fixed
we have

d
dt
〈ψt | χR r∂rψ〉L2(t)=−

∫
∞

0
ψ2

t (t, r)r dr +�R( Eψ(t)), (2-2)

where

�R( Eψ(t)) :=
∫
∞

0
ψ2

t (t)(1−χR)r dr − 1
2

∫
∞

0

(
ψ2

t (t)+ψ
2
r (t)−

sin2 ψ(t)
r2

)
r
R
χ ′(r/R)r dr (2-3)

satisfies

|�R( Eψ(t))|.
∫
∞

R
ψ2

t (t, r)r dr dt +
∫
∞

R

∣∣∣∣ψ2
r −

sin2 ψ

r2

∣∣∣∣r dr dt

.
∫
∞

R

(
ψ2

t (t, r)+ψ
2
r (t, r)+

sin2 ψ(t, r)
2r2

)
r dr.

Finally, using Lemma 2.2, one can bound the virial and the error for threshold solutions by its distance
to the set of two-bubbles. The proof of this fact is the same as in [Jendrej and Lawrie 2018] and is omitted.

Lemma 2.5 [Jendrej and Lawrie 2018, Lemma 2.16]. There exists a number C0 > 0 such that for all
Eφ = (φ0, φ1) ∈H0 with E( Eφ)= 2E(Q) and all R > 0 we have

|〈φ1, χRr∂rφ0〉| ≤ C0 R
√

d( Eφ),

|�R( Eφ)| ≤ C0

√
d( Eφ).

(2-4)

3. The modulation method for two-bubble solutions

In this section we analyze the modulation equations that govern the evolution of corotational near two-
bubble solutions. As in the case of higher equivariant wave maps studied in [Jendrej and Lawrie 2018],
the scale of the less concentrated bubble does not change, but it does affect the evolution of the more
concentrated bubble. A central challenge which arises in the analysis of corotational maps which is not
found in the higher equivariant setting is the fact that the zero mode of the operator obtained by linearizing
about the harmonic map Q is a resonance rather than an eigenvalue. A rough outline of this section is as
follows. For a solution Eψ(t) with d( Eψ(t)) small on a time interval J, we first use the implicit function
theorem to find modulation parameters λ(t), µ(t) defined on J such that g(t) := ψ(t)− (Qλ(t)− Qµ(t))

satisfies appropriate orthogonality conditions and d( Eψ(t))' λ(t)/µ(t). We would like to then prove that
if the modulation parameters λ(t), µ(t) are approaching each other in scale, i.e., if d

dt (λ(t)/µ(t))|t=t0 ≥ 0,
then λ(t)/µ(t)continues to grow in a controlled way in forward time near t0. In particular, this would
imply that Eψ(t) has to leave a small neighborhood of the set of two-bubbles. However, the slow decay of Q
requires us to deal with additional technical obstacles not encountered in the case of higher equivariant
wave maps. In particular, we must replace λ(t) with a carefully chosen logarithmic correction.

3A. Modulation equations. In this section, we study solutions near two-bubble solutions Eψ(t) to (1-4).
More precisely, we consider maps such that d( Eψ(t)) (defined by (2-1)) is small on a time interval J.
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The operator corresponding to linearizing (1-4) about the harmonic map Qλ is the Schrödinger operator

Lλ := −∂2
r −

1
r
∂r +

cos 2Qλ

r2 .

For convenience we write L := L1. Differentiating the equation

∂2
r Qλ+

1
r
∂r Qλ−

sin 2Qλ

2r2 = 0

with respect to λ and setting λ= 1 implies that 3Q is a zero mode for L, i.e.,

L3Q = 0, 3Q ∈ L∞(R2).

Note that 3Q ∼ 1/r as r→∞ so that 3Q fails (logarithmically) to be in L2(R2). We say that 3Q
is a resonance of L. In the k-equivariant setting with k ≥ 2, we have 3Q ∈ L2(R2). This weak decay
of 3Q requires more care when studying the modulation equations compared to the higher equivariant
setting. We note that in general, we have

LλQλ = 0.

Define
Z(r) := χL(r)3Q(r),

where, as before, χ is a smooth cutoff. The parameter L > 0 will be chosen later. We use Z to obtain
a useful choice of modulation parameters (the scales) for the near two-bubble solution Eψ(t). We first
recall the following modulation lemma from [Jendrej and Lawrie 2018], which follows from standard
arguments involving the implicit function theorem, an expansion of the nonlinear energy and coercivity
properties of Lλ.

Lemma 3.1 [Jendrej and Lawrie 2018, Lemma 3.1]. There exist η0 = η0(L) > 0 and C = C(L) > 0 such
that the following holds. Let ψ(t) be a solution to (1-4) defined on a time interval J ⊂ R, and assume that

d+( Eψ(t))≤ η0 for all t ∈ J.

Then there exist unique C1(J ) functions λ(t), µ(t) so that the function

g(t) := ψ(t)− Qλ(t)+ Qµ(t) ∈ H

satisfies for all t ∈ J
〈Zλ(t) | g(t)〉 = 0, (3-1)

〈Zµ(t) | g(t)〉 = 0, (3-2)

d+( Eψ(t))≤ ‖(g(t), ∂tψ(t))‖2H0
+
λ(t)
µ(t)
≤ Cd+( Eψ(t)).

Moreover,

‖(g(t), ∂tψ(t))‖H0 ≤ C
(
λ(t)
µ(t)

)1/2

, (3-3)

and hence
d+( Eψ(t))'

λ(t)
µ(t)

. (3-4)
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Finally, we have the explicit bound for the kinetic energy

‖∂tψ(t)‖2L2 ≤ 16
λ(t)
µ(t)
+ o

(
λ(t)
µ(t)

)
. (3-5)

Remark 3.2. The o( · ) term in (3-5) depends on the parameter L , but it will be important that the
leading-order term is independent of L .

Given the modulation parameters λ(t), µ(t) we define

g(t) := ψ(t)− Qλ(t)+ Qµ(t),

ġ(t) := ∂tψ(t).

Then the vector Eg := (g, ġ) satisfies the equations

∂t g = ġ+ λ′3Qλ−µ
′3Qµ, (3-6)

∂t ġ = ∂2
r g+

1
r
∂r g−

1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ)). (3-7)

As a first step towards understanding the behavior of the modulation parameters, we establish bounds
on the first derivatives of λ(t), µ(t). This information is not enough to study the interaction of the bubbles
for the near two-bubble solution Eψ(t) and achieve the goal outlined at the start of the section. This should
also be intuitively clear since Eψ(t) satisfies a second-order equation in time, and thus, the interaction of
the bubbles should be governed by second derivatives of λ(t), µ(t).

Proposition 3.3. There exist a constant C > 0 and η0= η0(L) > 0 with the following property. Let J ⊂R,
and let Eψ(t) be a solution to (1-4) on J such that

d( Eψ(t))≤ η0 for all t ∈ J.

Let λ(t), µ(t) be the modulation parameters given by Lemma 3.1. Then for all t ∈ J we have

|λ′(t)| ≤ C(log L)−1/2
(
λ(t)
µ(t)

)1/2

, (3-8)

|µ′(t)| ≤ C(log L)−1/2
(
λ(t)
µ(t)

)1/2

. (3-9)

Proof. Differentiating the orthogonality conditions (3-1) and (3-2) and using (3-6) we obtain the relations

−〈Zλ | ġ〉 = λ′
(
〈Zλ |3Qλ〉−

〈
1
λ
[30Z]λ

∣∣∣∣ g
〉)
−µ′〈Zλ |3Qµ〉,

−〈Zµ | ġ〉 = λ′〈Zµ |3Qλ〉+µ
′

(
−〈Zµ |3Qµ〉−

〈
1
µ
[30Z]µ

∣∣∣∣ g
〉)
.

These two equations yield the following linear system for (λ′, µ′):(
A11 A12

A21 A22

)(
λ′

µ′

)
=

(
−〈Zλ | ġ〉
−〈Zµ | ġ〉

)
, (3-10)
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where

A11 := 〈Zλ |3Qλ〉−

〈
1
λ
[30Z]λ

∣∣∣∣ g
〉
,

A12 := −〈Zλ |3Qµ〉,

A21 := 〈Zµ |3Qλ〉,

A22 := −〈Zµ |3Qµ〉−

〈
1
µ
[30Z]µ

∣∣∣∣ g
〉
.

We now estimate the coefficients of the matrix A= (Ai j ) so that we may invert (3-10) and obtain estimates
for (λ′, µ′). We define

αL := 〈Z |3Q〉 =
∫
∞

0
χL |3Q|2r dr.

Note that since |3Q(r)|. 1/(1+ r), we have for all L > 0 sufficiently large

log L . αL . log L ,

where the implied constants are absolute.

Claim 3.4. For λ/µ sufficiently small (depending on L), the diagonal terms satisfy

A11 = αL [1+ OL((λ/µ)
1/2)], (3-11)

A22 =−αL [1+ OL((λ/µ)
1/2)]. (3-12)

To prove the claim we simply observe that∣∣∣∣〈1
λ
[30Z]λ

∣∣∣∣ g
〉∣∣∣∣. ‖g‖L∞‖30Z‖L1(r dr) .L ‖g‖H .L (λ/µ)

1/2.

Thus,

A11 = 〈Zλ |3Qλ〉−

〈
1
λ
[30Z]λ

∣∣∣∣ g
〉
= αL + OL((λ/µ)

1/2),

which establishes (3-11). The estimate (3-12) is established analogously, and the claim is proved.
We now estimate the off-diagonal terms.

Claim 3.5. For λ/µ sufficiently small (depending on L) we have

|A12|.L (λ/µ)
2, |A21|. log L , (3-13)

where the implied constant in the estimate for A21 is absolute.

Since rZ(r) ∈ C∞0 , λ/µ� 1 and |3Q|. r for small r , we conclude that

|A12| = |〈Zλ |3Qµ〉| =

∣∣∣∣∫ 2Lλ/µ

0

µr
λ

Z(rµ/λ)3Q(r) dr
∣∣∣∣.L

∫ 2Lλ/µ

0
|3Q| dr .L (λ/µ)

2.
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This proves the first estimate in (3-13). Let σ = λ/µ. By a change of variables and the explicit expression
for Z we have

|A21| = |〈Zµ |3Qλ〉| = |〈Z |3Qλ/µ〉|.
1
σ

∫ 2L

0

r
1+ r2

(r/σ)
1+ (r/σ)2

r dr . log L ,

which proves the second estimate in (3-13) and the claim.
We now solve for (λ′, µ′) by inverting A:(

λ′

µ′

)
=

1
det A

(
−A22〈Zλ | ġ〉+ A12〈Zµ | ġ〉
A21〈Zλ | ġ〉− A11〈Zµ | ġ〉

)
.

The previous two claims imply that

det A = A11 A22− A12 A21 =−α
2
L [1+ OL((λ/µ)

1/2)] (3-14)

as long as λ/µ is sufficiently small. It is easy to see that the function Z = χL3Q satisfies ‖Z‖L2 .
(log L)1/2. Then by Cauchy–Schwarz and (3-5) we have, for λ/µ sufficiently small,

|〈Zλ | ġ〉| + |〈Zµ | ġ〉|. |log L|1/2(λ/µ)1/2 . α1/2
L (λ/µ)1/2, (3-15)

where the implied constant is absolute. Our two claims, (3-14) and (3-15), imply that as long as λ/µ is
sufficiently small

|λ′|. |det A|−1(|A22||〈Zλ | ġ〉| + |A12||〈Zµ | ġ〉|)

. α−1/2
L (λ/µ)1/2 . (log L)−1/2(λ/µ)1/2

as desired. A similar argument establishes

|µ′|. (log L)−1/2(λ/µ)1/2

as well, which finishes the proof. �

3B. Refined control of the modulation parameters. As stated previously, information about the first
derivatives of the modulation parameters is not enough to study the evolution of two-bubbles since (1-4)
is second-order in time. Due to the slow decay of the 3Q, we will in fact need to study second-order
derivatives of 2λ|log λ/µ| and µ. Moreover, for technical reasons we will study a function ζ = ζ(t)
which approximates 2λ|log λ/µ| and a function b = b(t) which approximates ζ ′(t) (see Proposition 3.9).

We first define a truncated virial functional and state some relevant properties. This functional played
a fundamental role in the work of Jendrej and Lawrie on threshold dynamics for higher equivariant wave
maps [Jendrej and Lawrie 2018] and in the two-bubble construction in [Jendrej 2019]. It will play a very
important role in our work as well. For the proofs of the following statements we refer the reader to
[Jendrej 2019, Lemmas 4.6 and 5.5]. In what follows, we denote the nonlinearity by f (ρ) := 1

2 sin 2ρ.

Lemma 3.6 [Jendrej 2019, Lemma 4.6]. For each c, R > 0 there exists a function q(r) = qc,R(r) ∈
C3,1((0,∞)) with the following properties:

(P1) q(r)= r2/2 for r ≤ R.
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(P2) There exists an absolute constant κ > 0 such that q(r)≡ const. for r ≥ R̃ := κeκ/c R.

(P3) |q ′(r)|. r and |q ′′(r)|. 1 for all r > 0, with constants independent of c, R.

(P4) q ′′(r)≥−c and (1/r)q ′(r)≥−c for all r > 0.

(P5) (d2/dr2
+ (1/r)(d/dr)r)2q(r)≤ c · r−2 for all r > 0.

(P6) |r(q ′(r)/r)′| ≤ c for all r > 0.

For each λ > 0 we define the operators A(λ) and A0(λ) as

[A(λ)g](r) := q ′
(

r
λ

)
· ∂r g(r), (3-16)

[A0(λ)g](r) :=
(

1
2λ

q ′′
(

r
λ

)
+

1
2r

q ′
(

r
λ

))
g(r)+ q ′

(
r
λ

)
· ∂r g(r). (3-17)

Since q(r)= r2/2 for r ≤ R, we have A(λ)g(r)= (1/λ)3g(r) and A0(λ)g(r)= (1/λ)30g(r) for r ≤ R.
One may intuitively think of A(λ) and A0(λ) as extensions of (1/λ)3 and (1/λ)30 to r ≥ R which have
good boundedness properties. The following lemma makes this precise. In what follows, we set

X := {g ∈ H | g/r, ∂r g ∈ H}.

Lemma 3.7 [Jendrej 2019, Lemma 5.5]. Let c0 > 0 be arbitrary. There exists c > 0 small enough and
R, R̃ > 0 large enough in Lemma 3.6 so that the operators A(λ) and A0(λ) defined in (3-16) and (3-17)
have the following properties:

• The families {A(λ) | λ > 0}, {A0(λ) | λ > 0}, {λ∂λA(λ) | λ > 0} and {λ∂λA0(λ) | λ > 0} are bounded
in L (H ; L2), with the bound depending only on the choice of the function q(r).

• For all g1 ∈ X
〈g1 |A0(λ)g1〉 = 0. (3-18)

• For all λ > 0 and g1, g2 ∈ X there holds∣∣∣∣〈A(λ)g1

∣∣∣∣ 1
r2 ( f (g1+ g2)− f (g1)− f ′(g1)g2)

〉
+

〈
A(λ)g2

∣∣∣∣ 1
r2 ( f (g1+ g2)− f (g1)− g2)

〉∣∣∣∣≤ c0

λ
‖g2‖

2
H . (3-19)

• For all g ∈ X we have〈
A0(λ)g

∣∣∣∣ (∂2
r +

1
r
∂r −

1
r2

)
g
〉
≤

c0

λ
‖g‖2H −

1
λ

∫ Rλ

0

(
(∂r g)2+

1
r2 g2

)
dr. (3-20)

• Moreover, for λ,µ > 0 with λ/µ� 1

‖3Qλ−A(λ)Qλ‖L∞ ≤
c0

λ
, (3-21)

‖303Qλ−A0(λ)3Qλ‖L2 ≤ c0, (3-22)

‖A(λ)Qµ‖L∞ +‖A0(λ)Qµ‖L∞ .
1
µ
, (3-23)
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and, for any g ∈ H,∣∣∣∣∫ ∞
0

1
2

(
q ′′
(

r
λ

)
+
λ

r
q ′
(

r
λ

))
1
r2 ( f (−Qµ+Qλ+g)− f (−Qµ+Qλ)−g)g dr

−

∫
∞

0

1
r2 ( f ′(Qλ)−1)g2 dr

∣∣∣∣≤ c0(‖g‖2H+(λ/µ)). (3-24)

Remark 3.8. The argument for the estimate (3-22) from [Jendrej 2019] does not quite apply to our case due
to the slow decay of Q. We provide a different argument here. We first note that 303Q = 4r/(1+ r2)2 ∈

L2(R2) and the estimate (3-22) is scaling-invariant so we can take λ= 1. Since 303Q =A0(1)3Q for
r ≤ R and A0(1)3Q = 0 for r ≥ R̃ = Rκeκ/c, we have

‖303Q−A0(1)3Q‖2L2 ≤

∫
∞

R
|303Q|2r dr +

∫ R̃

R
|A0(1)3Q|2r dr.

The first term on the right-hand side above can be made less than c2
0/2 as long as R > 0 is sufficiently

large since 303Q ∈ L2. For the second term, we write

A0(1)3Q =
r
2

(
q ′(r)

r

)′
3Q+

q ′(r)
r
303Q.

Then by properties (P6) and (P3) in Lemma 3.6 we have∫ R̃

R
|A0(1)3Q|2r dr . c2

∫ R̃

R
|3Q|2r dr +

∫
∞

R
|303Q|2r dr

. c2
∫ Rκeκ/c

R

1
r

dr +
∫
∞

R

1
r5 dr . c+ R−4

≤ c2
0/2

as long as c is sufficiently small and R is sufficiently large. We conclude that for c, R chosen appropriately,
we have

‖303Q−A0(1)3Q‖2L2 ≤ c2
0,

as desired.

As before, we let χ ∈ C∞c (R
2) be a smooth radial cutoff. We then define the function b(t) by

b(t) := −〈χM
√
λ(t)µ(t)3Qλ(t) | ġ(t)〉− 〈ġ(t) |A0(λ(t))g(t)〉. (3-25)

Here M > 0 is a constant which we will later fix. Finally, we define

ζ(t) := 2λ(t)|log(λ(t)/µ(t))| − 〈χM
√
λ(t)µ(t)3Qλ(t) | g(t)〉. (3-26)

Note that ζ(t) is C1 since ∂t g(t) is continuous in L2 with respect to t . We will now show that we may
roughly view ζ(t) as 2λ(t) log λ(t) and b(t) as a subtle correction to ζ ′(t). The essential feature of this
correction is that b′(t) (which intuitively is connected to λ′′(t)) is bounded from below. More precisely,
we prove the following.
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Proposition 3.9 (modulation control). Assume the same hypothesis as in Proposition 3.3, and in addition,
assume that there exists t0 ∈ J such that 1

2µ(t0)≤µ(t)≤ 2µ(t0) for all t ∈ J. Let 0< δ < 1
2 be arbitrarily

small, and let η0 be as in Lemma 3.1. There exist functions L0 = L0(δ) > 0, M0 = M0(δ, L) > 0 and
η1 = η1(δ, L ,M) > 0 such that if L > L0, M > M0 and d+( Eψ(t)) ≤ η1 < η0, then for all t ∈ J the
functions λ(t), µ(t), ζ(t) and b(t) (which implicitly depend on L and M) satisfy∣∣∣∣ ζ(t)

2λ(t)|log(λ(t)/µ(t))|
− 1

∣∣∣∣≤ δ, (3-27)

|ζ ′(t)− b(t)| ≤ δ
[
λ(t)
µ(t)

]1/2∣∣∣∣log
λ(t)
µ(t)

∣∣∣∣1/2 ≤ δ[ ζ(t)µ(t)

]1/2

, (3-28)

|b(t)| ≤ 4
[
λ(t)
µ(t)

]1/2∣∣∣∣2 log
λ(t)
µ(t)

∣∣∣∣1/2+ δ[ λ(t)µ(t)

]1/2∣∣∣∣log
λ(t)
µ(t)

∣∣∣∣1/2 ≤ 5
[
ζ(t)
µ(t)

]1/2

. (3-29)

Moreover, b(t) is locally Lipschitz and there exists C1 = C1(L) > 0 such that

|b′(t)| ≤ C1/µ(t), (3-30)

b′(t)≥ (8− δ)/µ(t). (3-31)

Proof. Since we will take η1 < η0, the modulation parameters are well-defined and C1 on the interval J.
We also note that by rescaling Eψ(t0) we can assume that 1

2 ≤ µ(t)≤ 2 on J. Throughout the argument,
implied constants and big-oh terms will depend on the parameters L and M unless stated otherwise.

We first prove (3-27). By Proposition 3.3 we have ‖g‖L∞ ≤ ‖g‖H . λ1/2. Thus,

|〈χM
√
µλ3Qλ | g〉|. λ3/2

∫ 4M/
√
λ

0
|3Q|r dr . λ.

We conclude that
1

2λ|log(λ/µ)|
|〈χ√µλ3Qλ | g〉|. |log λ|−1,

which can be made smaller than δ as long as λ/µ is sufficiently small compared to L and M. This proves
(3-27).

Now we prove (3-28). From (3-6) we have

d
dt
〈χM

√
λµ3Qλ | g〉 = 〈χM

√
λµ3Qλ | ġ〉+ λ′〈χM

√
λµ3Qλ |3Qλ〉−µ

′
〈χM

√
λµ3Qλ |3Qµ〉

−
λ′

λ
〈χM

√
λµ303Qλ | g〉−

(
λ′

2λ
+
µ′

2µ

)
〈3χM

√
λµ3Qλ | g〉. (3-32)

Since |3Q|. r−1, ∫ 2M
√
λµ

√
λµ

|3Qλ|
2r dr .

∫ 2M
√
µ/λ

√
µ/λ

r−1 dr . 1.

Thus,

λ′
∫
∞

0
χM
√
λµ|3Qλ|

2r dr = λ′
∫ √λµ

0
|3Qλ|

2r dr + O(λ′)= 2λ′|log(λ/µ)| + O(λ1/2).
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We now show that the remaining terms on the right-hand side of (3-32) are � |log λ|1/2λ1/2 for all L
and M large and λ/µ sufficiently small compared to L and M. Since we are assuming 1

2 ≤ µ ≤ 2, we
have by (3-9)

|µ′||〈χM
√
λµ3Qλ |3Qµ〉|. λ

1/2
∫ 4M

√
λ

0

1
λ

r
λ
|Qr (r/λ)|

1
µ

r
µ
|Qr (r/µ)|r dr

. λ−1/2
∫ 4M

√
λ

0

(r/λ)
1+ (r/λ)2

r2

1+ r2 dr

. λ1/2
∫ 4M

√
λ

0

r2

λ2+ r2

r
1+ r2 dr . λ3/2.

Thus, the third term in (3-32) is� λ1/2
|log λ|1/2. For the fourth term, we have∣∣∣∣λ′λ 〈χM

√
λµ303Qλ | g〉

∣∣∣∣. |λ′|‖g‖L∞ ‖χM
√
µ/λ303Q‖L1 . λ‖χ4M/

√
λ303Q‖L1 .

Now 303Q = 4r/(1+ r2)2 so

‖χ4M/
√
λ303Q‖L1 . 1.

Thus, ∣∣∣∣λ′λ 〈χM
√
λµ303Qλ | g〉

∣∣∣∣. λ� λ1/2
|log λ|1/2.

For the fifth term appearing in (3-32), we have

|〈3χM
√
λµ3Qλ | g〉|. ‖g‖L∞

∫ 2M
√
λµ

M
√
λµ

|3Qλ|r dr . λ3/2
∫ 4M/

√
λ

M/(2
√
λ)

|3Q|r dr . λ.

By (3-8) and (3-9) we conclude that for all λ sufficiently small depending on L and M∣∣∣∣( λ′2λ
+
µ′

2µ

)
〈3χM

√
λµ3Qλ | g〉

∣∣∣∣. λ1/2
� λ1/2

|log λ|1/2.

From (3-32) and the previous bounds we conclude that∣∣∣2λ′ log(λ/µ)− d
dt
〈χM

√
λµ3Qλ | g〉+ 〈χM

√
λµ3Qλ | ġ〉

∣∣∣� λ1/2
|log λ|1/2. (3-33)

By (3-8) and (3-9)

d
dt

2λ log(λ/µ)= 2λ′ log(λ/µ)+ 2(λ′µ−µ′λ)/µ= 2λ′ log(λ/µ)+ O(λ1/2).

From this estimate and (3-33) we obtain

|ζ ′+〈χ√λµ3Qλ | ġ〉| � λ1/2
|log λ|1/2. (3-34)

Recall that

b(t) := −〈χ√λµ3Qλ | ġ〉− 〈ġ |A0(λ)g〉.
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By (3-3) and Lemma 3.7 we have

|〈ġ |A0(λ)g〉|. ‖ġ‖L2‖A0(λ)g‖L2 . ‖(g, ġ)‖2H0
. λ� λ1/2

|log λ|1/2.

This estimate and (3-34) imply

|ζ ′− b| � λ1/2
|log λ|1/2

for L and M large and λ/µ sufficiently small depending on L and M. This completes the proof of (3-28).
To prove (3-29), we argue as above and obtain

|b(t)| ≤ ‖χM
√
λµ3Qλ‖2‖∂tψ‖2− O(λ)= [2 log(λ/µ)+ O(1)]1/2‖∂tψ‖2− O(λ).

By (3-5) we have

‖∂tψ(t)‖22 ≤ 16(λ/µ)+ o(λ).

The previous two estimates combined yield (3-29).
We now turn to proving (3-31) and (3-30). By approximating the initial data Eψ(t0) for some t0 ∈ J by

smooth functions and using the well-posedness theory, we may assume that Eψ(t) is smooth on J. We
differentiate b(t) and use the formulae (3-6), (3-7) to obtain

b′(t)=
λ′

λ
〈χM

√
λµ[303Q]λ | ġ〉−〈χM

√
λµ3Qλ | ∂t ġ〉−〈∂t ġ |A0(λ)g〉

−
λ′

λ
〈ġ | λ∂λA0(λ)g〉−〈ġ |A0(λ)∂t g〉+

(
λ′

2λ
+
µ′

2µ

)
〈3χM

√
λµ3Qλ | ġ〉

=
λ′

λ
〈χM

√
λµ[303Q]λ | ġ〉−

〈
χM
√
λµ3Qλ

∣∣∣∣ ∂2
r g+

1
r
∂r g−

1
r2 ( f (Qλ−Qµ+g)− f (Qλ)+ f (Qµ))

〉
−

〈
∂2

r g+
1
r
∂r g−

1
r2 ( f (Qλ−Qµ+g)− f (Qλ)+ f (Qµ))

∣∣∣∣A0(λ)g
〉
−
λ′

λ
〈ġ | λ∂λA0(λ)g〉

−〈ġ |A0(λ)ġ〉−λ′〈ġ |A0(λ)3Qλ〉+µ
′
〈ġ |A0(λ)3Qµ〉+

(
λ′

2λ
+
µ′

2µ

)
〈3χM

√
λµ3Qλ | ġ〉.

We first discard those terms which are� 1 as long as L > 0 is sufficiently large, M > 0 is sufficiently
large depending on L , and λ/µ is sufficiently small depending on L and M. Consider the last term
appearing above. Here we will choose the size of L . For some absolute constant C2 > 0 we have

‖3χM
√
λµ3Qλ‖L2 ≤ C2. (3-35)

If C is the constant in (3-8), then we choose L > 0 large so that

80CC2(log L)−1/2
≤

δ

100
. (3-36)

Then by Cauchy–Schwarz, (3-35), (3-5) and (3-36), we conclude that∣∣∣∣λ′λ 〈3χM
√
λµ3Qλ | ġ〉

∣∣∣∣≤ |λ′|λ ‖3χM
√
λµ3Qλ‖L2 ‖ġ‖L2 ≤

2C(log L)−1/2λ1/2

λ
C240λ1/2

≤
δ

100
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as long as λ/µ is sufficiently small. Similarly, we have∣∣∣∣µ′µ 〈3χM
√
λµ3Qλ | ġ〉

∣∣∣∣≤ |λ′|λ ‖3χM
√
λµ3Qλ‖L2 ‖ġ‖L2 ≤ 4C1(log L)−1/2λ1/2C240λ1/2

≤
δ

100

as long as λ/µ is sufficiently small. Thus, the last term above can be made ≤ δ/100. We now consider
the first and sixth terms appearing above. By Cauchy–Schwarz and the fact that 303Q ∈ L2, we have∣∣∣∣λ′λ 〈(1−χM

√
λµ)[303Q]λ | ġ〉

∣∣∣∣. |λ′|λ ‖ġ‖L2 ‖303Q‖L2(r≥M
√
µ/λ) . ‖303Q‖L2(r≥M

√
µ/λ)� 1.

Then the first term and the sixth term combined yield

λ′

λ
〈χM

√
λµ[303Q]λ | ġ〉− λ′〈ġ |A0(λ)3Qλ〉 =

λ′

λ
〈[303Q]λ | ġ〉− λ′〈ġ |A0(λ)3Qλ〉+ o(1)

=
λ′

λ
〈[303Q]λ−A0(λ)3Qλ | ġ〉+ o(1),

where the little-oh satisfies |o(1)| � 1 as long as L > 0 is sufficiently large, M > 0 is sufficiently large
depending on L , and λ/µ is sufficiently small depending on L and M. By (3-22)

|λ′|

λ
|〈[303Q]λ−A0(λ)3Qλ | ġ〉| ≤ Cλ−1/2

‖ġ‖L2 ‖[303Q]λ−A0(λ)3Qλ‖L2 . c0� 1,

as long as c0 is sufficiently small. We conclude that∣∣∣∣λ′λ 〈χM
√
λµ[303Q]λ | ġ〉− λ′〈ġ |A0(λ)3Qλ〉

∣∣∣∣� 1.

Since (λ∂λA0(λ)) : H → L2 is bounded, we have that the fourth term satisfies∣∣∣∣λ′λ 〈ġ | (λ∂λA0(λ))g〉
∣∣∣∣. λ−1/2

‖(g, ġ)‖2H0
. λ1/2

� 1.

Via (3-18) the fifth term appearing above vanishes:

〈ġ |A0(λ)ġ〉 = 0.

Finally, since 1
2 ≤ µ≤ 2 we have

|µ′〈ġ |A0(λ)3Qµ〉| =
|µ′|

µ
|〈ġ |A0(λ)3Qµ〉|. |µ

′
|‖ġ‖L2 . λ� 1.

We now introduce some notation. Until the end of the proof, we write A ' B if A = B up to terms
which can be made < δ as long as L > 0 is sufficiently large, M > 0 is sufficiently large depending on L ,
and λ/µ is sufficiently small depending on L and M. We have shown so far that

b′(t)'−
〈
χM
√
λµ3Qλ

∣∣∣∣ ∂2
r g+

1
r
∂r g−

1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ))

〉
−

〈
∂2

r g+
1
r
∂r g−

1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ))

∣∣∣∣A0(λ)g
〉
. (3-37)
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We now choose the size of M > 0 (depending on L). Recall that

Lλ3Qλ :=

(
−∂rr −

1
r
∂r +

f ′(Qλ)

r2

)
3Qλ = 0.

In fact, since we have the factorization Lλ = A∗λAλ with Aλ =−∂r + cos Qλ/r , we must have

Aλ3Qλ = 0.

Thus, 〈
χM
√
λµ3Qλ

∣∣∣∣ ∂2
r g+

1
r
∂r g−

f ′(Qλ)

r2 g
〉
=−〈χM

√
λµ3Qλ | A∗λAλg〉

= −〈Aλ(χM
√
λµ3Qλ) | Aλg〉

=
1

M
√
λµ
〈χ ′M

√
λµ
3Qλ | Aλg〉.

Since χ ′M√λµ is bounded by 2 and is supported on the annulus {M
√
λµ≤ r ≤ 2M

√
λµ}, Cauchy–Schwarz

and Proposition 3.3 imply

1
M
√
λµ
|〈χ ′M

√
λµ
3Qλ | Aλg〉|. M−1λ−1/2

‖Aλg‖L2 .L M−1λ−1/2
‖g‖H .L M−1.

Thus, for M > M0(L), the above term is� 1. We conclude that〈
χM
√
λµ3Qλ

∣∣∣∣ ∂2
r g+

1
r
∂r g

〉
'

〈
χM
√
λµ3Qλ

∣∣∣∣ f ′(Qλ)

r2 g
〉
.

We now rewrite (3-37) as

b′(t)'
〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ)− f ′(Qλ)g)

〉
−

〈
∂2

r g+
1
r
∂r g−

1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ))

∣∣∣∣A0(λ)g
〉
. (3-38)

We add, subtract and regroup to obtain

b′(t)'
〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ( f (Qλ− Qµ)− f (Qλ)+ f (Qµ))

〉
+

〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ( f ′(Qλ− Qµ)− f ′(Qλ))g

〉
(3-39)

+

〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ( f (Qλ− Qµ+ g)− f (Qλ− Qµ)− f ′(Qλ− Qµ)g)

〉
(3-40)

−

〈
∂2

r g+
1
r
∂r g−

1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ))

∣∣∣∣A0(λ)g
〉
.

We now identify the first term above as the leading-order contribution.

Claim 3.10.
〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ( f (Qλ− Qµ)− f (Qλ)+ f (Qµ))

〉
'

8
µ
. (3-40)
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By trigonometric identities

f (Qλ− Qµ)− f (Qλ)+ f (Qµ)= 1
2(sin 2Qλ(cos 2Qµ− 1)+ sin 2Qµ(1− cos 2Qλ))

=− sin 2Qλ sin2 Qµ+ sin 2Qµ sin2 Qλ

=− sin 2Qλ(3Qµ)2+ sin 2Qµ(3Qλ)
2. (3-41)

We show that the first term in the above expansion gives a negligible contribution to the L2 pairing on the
left side of (3-40). Indeed, if we set σ := λ/µ, then as long as σ � 1, depending on L and M,∣∣∣∣〈χM

√
λµ3Qλ

∣∣∣∣ sin2Qλ

r2 (3Qµ)
2
〉∣∣∣∣. 1

λ

∫ 2M
√
λµ

0
|3Qλ|

2
|3Qµ|

2 dr
r
.

1
σ

∫ 2M
√
σ

0
|3Qσ |

2
|3Q|2 dr

r

=
1
σ

∫ 2M
√
σ

0

(r/σ)2

(1+(r/σ)2)2
r2

(1+r2)2
dr
r

. σ

[∫ σ

0
σ−4r3 dr+

∫ 2M
√
σ

σ

r3

(σ 2+r2)2
dr
]
. σ [|logσ |+log M] � 1.

Thus,

〈χM
√
λµ3Qλ | ( f (Qλ− Qµ)− f (Qλ)+ f (Qµ))〉 '

〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 (3Qλ)

2 sin 2Qµ

〉
. (3-42)

We now compute〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 (3Qλ)

2 sin2Qµ

〉
=

1
λ

∫
∞

0
χM
√
σ (3Qσ )

3 sin2Q
dr
r

=
1
λ

∫ √σ
0
(3Qσ )

3 sin2Q
dr
r
+

1
λ

∫
∞

√
σ

χM
√
σ (3Qσ )

3 sin2Q
dr
r
. (3-43)

Since |3Q|. r−1 for r large and σ ∼ λ, we have

1
λ

∫
∞

√
σ

|3Qσ |
3 dr

r
.

1
σ

∫
∞

√
σ

|3Qσ |
3 dr

r
.

1
σ

∫
∞

1/
√
σ

|3Q|3 dr
r
. σ 1/2

� 1.

Thus, from (3-43) it follows that〈
χ√λµ3Qλ

∣∣∣∣ 1
r2 (3Qλ)

2 sin 2Qµ

〉
'

1
λ

∫ √σ
0

(3Qσ )
3 sin 2Q

dr
r
.

Since σ = λ/µ� 1, on the interval [0,
√
σ ] we write

sin 2Q = 4r
1− r2

(1+ r2)2
= 4r + O(r3). (3-44)

We compute

1
λ

∫ √σ
0

(3Qσ )
34r

dr
r
=

4σ
λ

∫ 1/
√
σ

0
(3Q)3 dr

=
4σ
λ

∫
∞

0
(3Q)3 dr − 4

σ

λ

∫
∞

1/
√
σ

(3Q)3 dr =
8
µ
+ O(σ ),
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where the integral
∫
∞

0 (3Q)3 dr = 2 is evaluated using substitution. By (3-44),∣∣∣∣1λ
∫ √σ

0
(3Qσ )

3(sin 2Q− 4r)
dr
r

∣∣∣∣. 1
λ

∫ √σ
0
|3Qσ |

3r2 dr

=
σ 3

λ

∫ 1/
√
σ

0
|3Q|3r2 dr . σ 2

|log σ | � 1.

Thus, 〈
χ√λµ3Qλ

∣∣∣∣ 1
r2 (3Qλ)

2 sin 2Qµ

〉
'

1
λ

∫ √σ
0

(3Qσ (r))3 sin 2Q(r)
dr
r
'

8
µ
. (3-45)

Combining (3-42) and (3-45) we conclude that

〈χ√λµ3Qλ | ( f (Qλ− Qµ)− f (Qλ)+ f (Qµ))〉 '
8
µ

as desired. �

For what follows, we list the useful identities

32 Q = 1
2 sin 2Q = 2r

1− r2

(1+ r2)2
, (3-46)

33 Q = 2r
(

1+ r2
− 5r4

− r6

(1+ r2)4

)
, (3-47)

303Q = (r∂r + 1)(r∂r Q)= 23Q+ r2∂2
r Q.

We now claim that the term (3-39) in the expansion of b′(t) satisfies∣∣∣∣〈χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ( f ′(Qλ− Qµ)− f ′(Qλ))g

〉∣∣∣∣. (λ/µ)1/2. (3-48)

First note that we have

f ′(Qλ− Qµ)− f ′(Qλ)= sin 2Qλ sin 2Qµ− 2 cos 2Qλ sin2 Qµ

= 432 Qλ3
2 Qµ− (3Qµ)2 cos 2Qλ. (3-49)

By (3-46) and (3-47) we have

|3Q| + |32 Q|.
r

1+ r2 .

We first estimate∣∣∣∣〈χM
√
λµ3Qλ

∣∣∣∣ 4
r23

2 Qλ3
2 Qµg

〉∣∣∣∣. ‖g‖L∞
1
λ

∫ 2M
√
λµ

0
|3Qλ||3

2 Qλ||3
2 Qµ|

dr
r

. ‖g‖H
1
σ

∫ 2M
√
σ

0
|3Qσ ||3

2 Qσ ||3
2 Q|

dr
r

. ‖g‖H

∫ 2M/
√
σ

0
|3Q||32 Q| dr . σ 1/2,
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where σ = λ/µ as before. We then estimate∣∣∣∣〈χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ((3Qµ)2 cos 2Qλ)g

〉∣∣∣∣. ‖g‖H

(∫
∞

0
(3Qσ )

2(3Q)4
dr
r

)1/2

. σ 1/2
(∫

∞

0
(3Qσ )

2 dr
r

)1/2

. σ 1/2.

The previous two bounds along with (3-49) imply (3-48).
In summary, we have shown thus far that

b′(t)−
8
µ
'

〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ( f (Qλ− Qµ+ g)− f (Qλ− Qµ)− f ′(Qλ− Qµ)g)

〉
(3-50)

−

〈
∂2

r g+
1
r
∂r g−

1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ))

∣∣∣∣A0(λ)g
〉
. (3-51)

We now rewrite (3-50) as〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ( f (−Qµ+Qλ+g)− f (−Qµ+Qλ)− f ′(−Qµ+Qλ)g)

〉
=−

〈
A(λ)g

∣∣∣∣ 1
r2 ( f (−Qµ+Qλ+g)− f (−Qµ+Qλ)−g)

〉
+

〈
A(λ)g

∣∣∣∣ 1
r2 ( f (−Qµ+Qλ+g)− f (−Qµ+Qλ)−g)

〉
+

〈
A(λ)(Qλ−Qµ)

∣∣∣∣ 1
r2 ( f (−Qµ+Qλ+g)− f (−Qµ+Qλ)− f ′(−Qµ+Qλ)g)

〉
+

〈
A(λ)Qµ

∣∣∣∣ 1
r2 ( f (−Qµ+Qλ+g)− f (−Qµ+Qλ)− f ′(−Qµ+Qλ)g)

〉
+

〈
χM
√
λµ(3Qλ−A(λ)Qλ)

∣∣∣∣ 1
r2 ( f (−Qµ+Qλ+g)− f (−Qµ+Qλ)− f ′(−Qµ+Qλ)g)

〉
.

We remark that we used the fact that χM
√
λµA(λ)Qλ =A(λ)Qλ (as long as λ/µ is small) to obtain the

previous expression. The second and third terms above can be estimated using (3-19) with g1 = Qλ−Qµ
and g2 = g:∣∣∣∣〈A(λ)g ∣∣∣∣ 1

r2

(
f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− g

)〉
+

〈
A(λ)(Qλ− Qµ)

∣∣∣∣ 1
r2

(
f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− f ′(−Qµ+ Qλ)g

)〉∣∣∣∣.L c0,

which is� 1 as long as c0 is taken sufficiently small. The pointwise bound

| f (Qλ− Qµ+ g)− f (Qλ− Qµ)− f ′(Qλ− Qµ)g|

=
1
2 |sin(2Qλ− 2Qµ)[cos 2g− 1] + cos(2Qλ− 2Qµ)[sin 2g− 2g]|. |g|2
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and (3-23) imply that the second-to-last line of the above satisfies∣∣∣∣〈A(λ)Qµ ∣∣∣∣ 1
r2

(
f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− f ′(−Qµ+ Qλ)g

)〉∣∣∣∣. 1
µ
‖g‖2H . λ� 1.

Using (3-21) we estimate the last line of the expansion of (3-40) similarly:∣∣∣∣〈χM
√
λµ(3Qλ−A(λ)Qλ)

∣∣∣∣ 1
r2

(
f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− f ′(−Qµ+ Qλ)g

)〉∣∣∣∣
. ‖3Qλ−A(λ)Qλ‖L∞‖g‖2H .L c0� 1.

Thus, we have shown that〈
χM
√
λµ3Qλ

∣∣∣∣ 1
r2 ( f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− f ′(−Qµ+ Qλ)g)

〉
'−

〈
A(λ)g

∣∣∣∣ 1
r2 ( f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− g)

〉
,

which by (3-50) implies

b′(t)−
8
µ
'−

〈
A(λ)g

∣∣∣∣ 1
r2 ( f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− g)

〉
−

〈
∂2

r g+
1
r
∂r g−

1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ))

∣∣∣∣A0(λ)g
〉
. (3-52)

We now consider the line (3-52). By adding and subtracting terms and (3-20) we have

−

〈
∂2

r g+
1
r
∂r g−

1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ)) |A0(λ)g

〉
=−

〈
A0(λ)g

∣∣∣∣ ∂2
r g+

1
r
∂r g−

1
r2 g

〉
+

〈
A0(λ)g

∣∣∣∣ 1
r2 ( f (Qλ− Qµ)− f (Qλ)+ f (Qµ))

〉
+

〈
A0(λ)g

∣∣∣∣ 1
r2 ( f (Qλ− Qµ+ g)− f (Qλ− Qµ)− g)

〉
≥−

c0

λ
‖g‖2H +

1
λ

∫ Rλ

0

(
(∂r g)2+

1
r2 g2

)
r dr +

〈
A0(λ)g

∣∣∣∣ 1
r2 ( f (Qλ− Qµ)− f (Qλ)+ f (Qµ))

〉
+

〈
A0(λ)g

∣∣∣∣ 1
r2 ( f (−Qµ+ Qλ+ g)+ f (−Qµ+ Qλ)− g)

〉
,

where R is defined in the statement of Lemma 3.7. From (3-41) we have the pointwise estimate

| f (Qλ− Qµ)− f (Qλ)+ f (Qµ)|. (3Qλ)
2(3Qµ)+3Qλ(3Qµ)

2.

By Lemma 3.7, ‖A0(λ)g‖L2 . ‖g‖H and A0(λ)g is supported on a ball of radius C Rλ. Thus, the third
term in the second-to-last line above satisfies∣∣∣∣〈A0(λ)g

∣∣∣∣ 1
r2 ( f (Qλ− Qµ)− f (Qλ)+ f (Qµ))

〉∣∣∣∣
. ‖g‖H

[(∫ C Rσ

0
r−2(3Qσ )

4(3Q)2
dr
r

)1/2

+

(∫ C Rσ

0
r−2(3Q)4(3Qσ )

2 dr
r

)1/2]
. ‖g‖H . λ

1/2
� 1.
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Thus,

−

〈
A(λ)g

∣∣∣∣ 1
r2 ( f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− g)

〉
−

〈
∂2

r g+
1
r
∂r g−

1
r2 ( f (Qλ− Qµ+ g)− f (Qλ)+ f (Qµ))

∣∣∣∣A0(λ)g
〉

≥
1
λ

∫ Rλ

0

(
(∂r g)2+

1
r2 g2

)
r dr

+

〈
(A0(λ)−A(λ))g

∣∣∣∣ 1
r2 ( f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− g)

〉
+ o(1). (3-53)

The difference A0(λ)−A(λ) is given by the operator of multiplication by

1
2λ

(
q ′′
(

r
λ

)
+
λ

r
q ′
(

r
λ

))
.

By (3-24) we have〈
(A0(λ)−A(λ))g

∣∣∣∣ 1
r2 ( f (−Qµ+ Qλ+ g)− f (−Qµ+ Qλ)− g)

〉
=

1
λ

∫
∞

0

1
r2 ( f ′(Qλ)− 1)g2 dr + O(c0λ), (3-54)

where c0 > 0 is as in Lemma 3.7.
The estimates (3-52), (3-53) and (3-54) combine to yield

b′(t)−
8
µ
≥

1
λ

∫ Rλ

0

(
(∂r g)2+

1
r2 g2

)
r dr +

1
λ

∫
∞

0

1
r2 ( f ′(Qλ)− 1)g2 dr + o(1).

The orthogonality condition 〈Zλ | g〉 = 0 implies the localized coercivity estimate,

1
λ

∫ Rλ

0

(
(∂r g)2+

1
r2 g2

)
r dr +

1
λ

∫
∞

0

1
r2 ( f ′(Qλ)− 1)g2 dr ≥−

c1

λ
‖g‖2H ;

see [Jendrej 2019, Lemma 5.4, equation (5.28)] for the proof. The constant c1 > 0 appearing above can
be made small by choosing R sufficiently large. Since ‖g‖2H . λ, we conclude that

b′(t)−
8
µ
≥−

δ

2
≥−

δ

µ

as long as L is sufficiently large, M is sufficiently large depending on L and λ/µ is sufficiently small
depending on L and M. �

From Propositions 3.3 and 3.9 we now show that, roughly, if the modulation parameters are approaching
each other in scale, then the solution to (1-4) is ejected from a small neighborhood of the set of two-bubbles.

Remark 3.11. We now fix the parameters L and M used in the definition of ζ(t) for the remainder of the
section. In particular, we fix L = L0 and M = M0 large enough so that the estimates in Proposition 3.9
hold for

δ = 1
2020 ,

whenever d( Eψ(t)) < η1 = η1(L0,M0) < η0.
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Proposition 3.12. Let C > 0. Then for all ε0 > 0 sufficiently small and for any ε > 0 sufficiently small
relative to ε0 the following holds. Let Eψ(t) : [T0, T+)→H0 be a solution of (1-4). Assume that t0∈[T0, T+)
is so that d( Eψ(t0)) ≤ ε and d

dt (ζ(t)/µ(t))|t=t0 ≥ 0. Then there exist t1 and t2, T0 ≤ t0 ≤ t1 ≤ t2 < T+,
such that

d( Eψ(t))≥ 2ε for t ∈ [t1, t2], (3-55)

d( Eψ(t))≤ 1
4ε0 for t ∈ [t0, t1], (3-56)

d( Eψ(t2))≥ 2ε0, (3-57)∫ t2

t1
‖∂tψ(t)‖2L2 dt ≥ C

∫ t1

t0

√
d( Eψ(t)) dt. (3-58)

If we assume that d
dt (ζ(t)/µ(t))|t=t0 ≤ 0, then analogous statements hold with times t2 ≤ t1 ≤ t0.

Proof. The proof is along the lines of Proposition 3.10 from [Jendrej and Lawrie 2018]. From (3-4), (3-27)
and Remark 3.11, it follows that if ε1 > 0 is sufficiently small and ζ(t)/µ(t)≤ 4ε1, then the estimates in
Proposition 3.9 hold with δ = 1

2020 in a neighborhood of t0. In particular, we have

1
4
ζ(t)
µ(t)
≤
λ(t)
µ(t)

∣∣∣∣log
λ(t)
µ(t)

∣∣∣∣≤ ζ(t)
µ(t)

. (3-59)

Let t2 be the first time t2 ≥ t0 such that ζ(t2)/µ(t2)= 4ε1. If there is no such time, we set t2 = T+. Define

f (x)= x |log x |,

which is smooth and increasing on (0, 100ε1) for ε1 sufficiently small and satisfies limx→0+ f (x) = 0.
Then (3-59) becomes

1
4
ζ(t)
µ(t)
≤ f

(
λ(t)
µ(t)

)
≤
ζ(t)
µ(t)

. (3-60)

Then if t2 < T+ we have f (λ(t2)/µ(t2))≥ ε1, which by (3-4) implies (3-57) by taking ε0 comparable to
f −1(ε1). By the scaling symmetry of the equation, we can assume that µ(t0)= 1. Let t3 ≤ t2 be the last
time such that µ(t) ∈

[ 1
2 , 2

]
for all t ∈ [t0, t3]. If there is no such final time we set t3 = t2. We will see by

a bootstrapping argument that we can always take t3 = t2 and that t2 < T+.
By Remark 3.11 and by taking ε1 small enough, we have by (3-31)

b′(t)≥ 1. (3-61)

We also obtain from (3-28)

ζ ′(t)≥ b(t)− ζ(t)1/2.

Consider ξ(t) := b(t)+ ζ(t)1/2. Using the two inequalities above we obtain

ξ ′(t)≥ 1+ 1
2ζ(t)

−1/2(b(t)− ζ(t)1/2)= 1
2ζ(t)

−1/2(b(t)+ ζ(t)1/2)= 1
2ζ(t)

−1/2ξ(t).

By (3-29) and the fact that µ(t) ∈
( 1

2 , 2
)
, we conclude that

ξ(t)≤ 10ζ(t)1/2. (3-62)
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Let
ξ1(t) := b(t)+ 1

2ζ(t)
1/2
=

1
2 b(t)+ 1

2ξ(t)= ξ(t)−
1
2ζ(t)

1/2.

Since b′(t)≥ 0, we have

ξ ′1(t)≥
1
2ξ
′(t)≥ 1

4ζ(t)
−1/2ξ(t)≥ 1

4ζ(t)
−1/2ξ1(t). (3-63)

Since µ(t0)= 1, we have 0≤ d
dt (λ(t)/µ(t))|t=t0 = ζ

′(t0)− ζ(t0)µ′(t0), so (3-9) and (3-27) imply that
ζ ′(t0)≥− 1

8ζ(t0)
1/2 as long as ε is taken small enough. This fact and (3-28) gives b(t0)≥− 1

4ζ(t0)
1/2, so

ξ1(t0) > 0 and (3-63) yields ξ1(t) > 0 for all t ∈ [t0, t3]. Thus

ξ(t)≥ 1
2ζ(t)

1/2 for t ∈ [t0, t3]. (3-64)

This lower bound along with ξ ′(t)≥ 1
2ζ(t)

−1/2ξ(t) imply

ξ ′(t)≥ 1
4 . (3-65)

By (3-62) we see that ζ(t) and thus λ(t) is far from 0 on [t0, t3].
The bounds (3-62), (3-60) and (3-4) imply that there exists a constant α0 such that ξ(t)≥ 40[ f (α0ε)]

1/2

forces d( Eψ(t)) ≥ 2ε. Let t1 ∈ [t0, t3] be the last time such that ξ(t1) = 40[ f (α0ε)]
1/2 (set t1 = t3 if no

such time exists). Then by (3-64) and (3-60) we have

[ f (λ(t)/µ(t))]1/2 ≤ ζ(t)1/2 ≤ 80[ f (α0ε)]
1/2 for t ∈ [t0, t1],

which yields (3-56) if ε is small enough.
We now claim that µ(t) ∈

( 1
2 , 2

)
for all t ∈ [t0, t2] and that t2 < T+. Recall that on [t0, t3] we have

ξ ′(t) > 0 as well as

ζ(t)1/2 ≤ 2ξ(t)≤ 20ζ(t)1/2, ξ ′(t)≥ 1
2ζ
−1/2(t)ξ(t), ζ(t)≤ 8ε1.

Thus, by (3-9)∫ t3

t0
|µ′| dt .

∫ t3

t0
ζ(t)1/2 dt .

∫ t3

t0
ξ(t) dt .

∫ t3

t0
ζ(t)1/2ξ ′(t) dt .

√
ε1

∫ t3

t0
ξ ′(t) dt .

√
ε1ξ(t3). ε1,

where the implied constant is absolute. Thus, we getµ(t3)∈
[2

3 ,
3
2

]
if ε1 is small enough, which implies that

t3 = t2. Now suppose that there is no t2 ≥ t0 such that ζ(t2)/µ(t2)= ε1. Then, since ζ(t) (and hence λ(t))
is far from 0, by [Struwe 2003] the solution is global and (3-65) implies that ξ(t) is eventually O(1).
Thus ζ(t) is eventually O(1), which contradicts our definition of t2. This implies that there exists t2 < T+
such that ζ(t2)/µ(t2)= ε1, which implies (3-57) by choosing ε0 comparable to f −1(ε1).

By (3-28) and (3-29) we have |ζ ′(t)|. |ζ(t)|. Thus, there exists an absolute constant α1 > 0 such that
ζ(t)≥ 1

4ε1 for t ∈ [t2−α1, t2]. Since ζ(t). f (α0ε) on [t0, t1], we must have t2− t1 ≥ α1 if f (α0ε)� ε1.
Then (3-61) yields

b(t)≥ b(t1)+α1 ≥ b(t0)+α1 for t ∈ [t1, t2].

Thus, if ε is small enough, we get

b(t)≥ 1
2α1, t ∈ [t1, t2]. (3-66)
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By Proposition 3.3, the Cauchy–Schwarz inequality and the definition of b(t) we have

b(t). |log λ|1/2‖ġ‖L2 .

Since λ(t)≤ ζ(t)≤ 8ε1 on [t0, t2], we conclude that there exists an absolute constant α2 > 0 such that
on [t0, t2]

|b(t)| ≤ α2|log ε1|
1/2
‖ġ‖L2 . (3-67)

Integrating, from t1 to t2 the lower bound (3-66) and using (3-67) we obtain

α3
1

4
≤

∫ t2

t1
|b(t)|2 dt ≤ α2

2|log ε1|

∫ t2

t1
‖ġ(t)‖2L2 dt,

which implies
α3

1

4α2
2|log ε1|

≤

∫ t2

t1
‖∂tψ(t)‖2L2 dt. (3-68)

Recall that on [t0, t1], we have ξ ′(t)≥ 1
4 and |ξ(t)| + ζ(t)1/2 .

√
εα0|logα0ε|, where α0 is an absolute

constant. Thus,∫ t1

t0

√
d( Eψ(t)) dt .

∫ t1

t0

√
ζ(t) dt .

∫ t1

t0

√
ζ(t)ξ ′(t) dt .

√
ε|log ε|

∫ t1

t0
ξ ′(t) dt . ε|log ε|,

where the implied constant is absolute. This estimate and (3-68) imply (3-58) after choosing ε sufficiently
small. �

4. Dynamics of nonscattering threshold solutions

In this section we prove the main result, Theorem 1.7. We will obtain it as a consequence of the following
proposition.

Proposition 4.1. Let ψ(t) : (T−, T+)→H0 be a corotational wave map with E( Eψ)= 2E( EQ) which does
not scatter in forward time. Then

lim
t→T+

d( Eψ(t))= 0.

As a first step, we state a direct consequence of Theorem 1.3.

Proposition 4.2. Let Eψ(t) : (T−, T+)→H0 be a corotational wave map with E( Eψ)= 2E( EQ) which does
not scatter in forward time. Then

lim inf
t→T+

d( Eψ(t))= 0.

4A. Proof of Proposition 4.1. Using the results from Sections 2 and 3, the proof of Proposition 4.1 is
identical to that of the corresponding statement, Proposition 4.1, for higher equivariant threshold solutions
from [Jendrej and Lawrie 2018]. Therefore, we will sketch the main ideas of the proof and refer the
reader to Section 4 of [Jendrej and Lawrie 2018] for complete details. For the remainder of this section,
we will always denote by Eψ(t) a solution to (1-4), Eψ(t) : (T−, T+)→H0, such that E( Eψ)= 2E( EQ) and
Eψ(t) does not scatter in forward time.
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We argue by contradiction. By our preliminary step Proposition 4.2, we know that d( Eψ(t)) tends to 0
along a sequence of times. If Proposition 4.1 were false, then using Proposition 3.12 we split the maximal
time interval of existence into a collection of bad intervals where Eψ(t) is close to the set of two-bubbles,
and good intervals where Eψ(t) is far from the set of two-bubbles. A defining feature of these intervals is
that the integral of [d( Eψ(t))]1/2 on a given bad interval is controlled by a small constant times the integral
of ‖∂tψ(t)‖2L2 on neighboring good intervals; see [Jendrej and Lawrie 2018, Lemma 4.6]. On the union of
good intervals which we denote by I, we use Lemmas 2.2 and 2.1 to show that the Eψ(t) has the following
compactness property: there exists a continuous function ν(t) : I → (0,∞) such that the trajectory

K = { Eψ(t)1/ν(t) | t ∈ I }

is precompact in H0; see [Jendrej and Lawrie 2018, Lemma 4.8]. Solutions with the compactness property
do not radiate energy, and thus we expect that such solutions are given by rescalings of stationary solutions
(harmonic maps). If this intuition is correct, we arrive at a contradiction since the only degree-0 harmonic
map is the constant map, which has energy equal to 0 6= 8π .

To prove that a solution with the compactness property on the union of good intervals is stationary, we
will use the virial identity. Integrating (2-2) from t = τ1 to t = τ2 yields∫ τ2

τ1

‖∂tψ(t)‖2L2 dt ≤ |〈∂tψ | χRr∂rψ〉(τ1)| + |〈∂tψ | χRr∂rψ〉(τ2)| +

∫ τ2

τ1

|�R( Eψ(t))| dt,

where the error �R( Eψ(t)) is given by (2-3). By Lemma 2.5, we obtain∫ τ2

τ1

‖∂tψ(t)‖2L2 dt ≤ C0
(
R
√

d( Eψ(τ1))+ R
√

d( Eψ(τ2))
)
+

∫ τ2

τ1

|�R( Eψ(t))| dt.

We then show that by the defining feature of the good intervals and by choosing the parameters R, τ1, τ2

appropriately, we can absorb the error term involving �R( Eψ(t)) from the right-hand side into the
left-hand side; see [Jendrej and Lawrie 2018, Lemmas 4.9, 4.11, 4.12]. The resulting averaged small-
ness of ‖∂tψ(t)‖2L2 and the compactness property allow us to conclude that Eψ(t) = E0, our desired
contradiction. �

4B. Proof of Theorem 1.7. We first use Proposition 4.1 to prove Eψ(t) converges to a pure two-bubble or
anti-two-bubble as t→ T+. Let ε > 0 be sufficiently small. By Proposition 4.1 there exists a T0 ∈ (T−, T+)
such that

d( Eψ(t)) < ε for all t ≥ T0.

We further assume that ε <α0, where α0 is the constant from Lemma 2.3. Towards a contradiction, assume
that Eψ(t) alternates between being close to a pure two-bubble and anti-two-bubble, i.e., that there exist
t1, t2 ≥ T0, t1 < t2, such that d+( Eψ(t1))≤ ε and d−( Eψ(t2))≤ ε. By Lemma 2.3 we have d+( Eψ(t2))≥ α0

and d−( Eψ(t1)) ≥ α0. By continuity there exists t0 ∈ (t1, t2) such that d+( Eψ(t0))= d−( Eψ(t0)). But then
again by Lemma 2.3, we conclude that d+( Eψ(t0))= d−( Eψ(t0)) > α0 > ε. This contradicts our definition
of T0, which proves the desired convergence. Without loss of generality, we assume that d+( Eψ(t))→ 0
as t→ T+.
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We now prove finite time blow-up and asymptotics of the scales. By taking T0 larger if necessary, we
may assume that

d+( Eψ(t)) < ε for all t ≥ T0.

We note that as long as ε >0 is sufficiently small, the modulation parameters λ(t) andµ(t) are well-defined
on [T0, T+), and by Lemma 3.1

Eψ(t)= EQλ(t)+ EQµ(t)+ oH0(1) as t→ T+.

Let ε0 > 0 and choose ε smaller if necessary so that the conclusions of Proposition 3.12 hold. Let ζ(t) be
as in (3-26) with L and M chosen as in Remark 3.11 so that ζ(t)∼ λ(t)|log λ(t)/µ(t)|. By rescaling if
necessary, we can assume that µ(T0)= 1.

Since d+( Eψ(t))→ 0 as t→ T+, there exists a sequence of times τn→ T+ such that

d
dt

∣∣∣
t=τn

(
ζ(t)
µ(t)

)
≤ 0.

Then there exist times t1 ≤ t0 =: τn and t2 ≤ t1 satisfying the conclusions of Proposition 3.12. By our
choice of T0 and (3-55) we have t1 ≤ T0 for every t0 = τn . From the proof of Proposition 3.12 we recall
that µ(t) ∈

[ 1
2 , 2

]
on [T0, τn], and the function

ξ(t)=−b(t)+ ζ(t)1/2

satisfies for all t ∈ [T0, τn]

ζ(t)1/2 ≤ 2ξ(t)≤ 20ζ(t)1/2, ξ ′(t)≤− 1
2ζ
−1/2(t)ξ(t). (4-1)

Since τn → T+, these same bounds hold on [T0, T+). From (3-4), (3-29), (4-1) and the fact that
d+( Eψ(t))→ 0 as t→ T+ we can conclude

ζ(t)→ 0 and ξ(t)→ 0 as t→ T+.

From (4-1) we see that ξ(t) is positive on [T0, T+) and satisfies ξ ′(t)≤−1
4 . Since ξ(t)→ 0 as t→ T+,

we conclude that T+ <∞, which proves finite time blow-up.
We now turn to the asymptotics of the scales. The estimates (4-1) and (3-9) imply that∫ T+

T0

|µ′| dt .
∫ T+

T0

ζ(t)1/2 dt .
∫ T+

T0

ξ(t) dt .
∫ T+

T0

ζ(t)1/2(−ξ ′(t)) dt .
∫ T+

T0

(−ξ ′(t)) dt . 1.

Thus, µ(t) converges to some µ0 ∈
[1

2 , 2
]
. For the decay of λ(t), we first recall that by (4-1) we have

ξ ′(t).−1. By Proposition 3.3, we see that

|ξ ′(t)|. |b′(t)| + ζ−1/2
|ζ ′(t)|. 1.

Thus, there exists C > 0 such that

−C ≤ ξ ′(t)≤− 1
C

for all t ∈ [T0, T+),

which implies
1
C
(T+− t)≤ ξ(t)≤ C(T+− t) for all t ∈ [T0, T+).
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Since ξ(t)∼ ζ(t)1/2 ∼ [λ(t)|log λ(t)|]1/2 on [T0, T+), we conclude that

λ(t)|log λ(t)| ∼ (T+− t)2 as t→ T+
as desired.

Finally, we show that Eψ scatters backward in time. Suppose not. Then −∞ < T− < T+ <∞, and∫ T+
T−

√
d( Eψ(t)) dt <∞ by what we have shown up to this point. The virial identity (2-2), (2-4) and the

fact that d( Eψ(t))→ 0 as t→ T± imply that∫ T+

T−
‖∂tψ(t)‖2L2 dt ≤

∫ T+

T−
|�R(ψ(t))| dt for all R > 0.

For all t ∈ (T−, T+), we have |�R( Eψ(t))| ≤ C0

√
d( Eψ(t)) ∈ L1(T−, T+) and limR→∞�R( Eψ(t)) = 0.

Thus, by the dominated convergence theorem∫ T+

T−
‖∂tψ(t)‖2L2 dt = 0.

We conclude that Eψ is a degree-0 harmonic map, i.e., Eψ = (0, 0). This contradicts E( Eψ)= 8π and finishes
the proof. �

5. Construction of a minimal blow-up solution

5A. Proof of Theorem 1.6. Let T > 0 be small (to be determined later). We define a function `(t) :
[0, T )→ [0,∞) implicitly by the relation

`(t)|log `(t)| = 2t2, t ∈ (0, T ),

with `(0)= 0. By elementary calculus it is easy to see that ` ∈ C∞(0, T ), ` is increasing on [0, T ) and

`′(t)|log `(t)| = 4t[1+ O(|log `(t)|−1)].

In particular, this implies that

`(t)
`′(t)
=

1
2 t[1+ O(|log `(t)|−1)], (5-1)

`(t)
(`′(t))2|log `(t)|

=
1
8 + O(|log `(t)|−1). (5-2)

Let tn be a sequence in (0, T ) which is monotonically decreasing to 0. We define a sequence of initial
data at time t = tn via

ψ0,n := Q`(tn)− Q,

ψ1,n := −`
′(tn)3Q`(tn)χ

√
Rn`(tn),

where χ is now a sharp cutoff, χ(r)= 1 for 0≤ r ≤ 1 and χ(r)= 0 for r > 1, and Rn > 0 is chosen so
that

E(ψ0,n, ψ1,n)= 2E( EQ).

We first show that Rn exists and that Rn + R−1
n is bounded.
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Lemma 5.1. For T > 0 sufficiently small, for all n there exists Rn > 0 such that the pair of initial data
(ψ0,n, ψ1,n) defined above satisfies E(ψ0,n, ψ1,n)= 2E(Q). Moreover, there exists R > 0 such that

1
R
≤ Rn ≤ R.

Proof. We expand the nonlinear energy and obtain (see Section 3 of [Jendrej and Lawrie 2018])

2E(Q)= E(ψ0,n, ψ1,n)

= 2E(Q)+
∫
∞

0
ψ2

1,nr dr − 4
∫
∞

0
3Q`(tn)(3Q)3 dr

r
+ 2

∫
∞

0
(3Q`(tn))

2(3Q)2r dr
r
,

so that ∫
∞

0
ψ2

1,nr dr = 4
∫
∞

0
3Q`(tn)(3Q)3 dr

r
− 2

∫
∞

0
(3Q`(tn))

2(3Q)2 dr
r
. (5-3)

By a change of variables, the left side of (5-3) is readily computed to be∫
∞

0
ψ2

1,nr dr = (`′(tn))2
∫ √Rn/λn

0
|3Q|2r dr = 2(`′(tn))2

[
log
(

1+
Rn

`(tn)

)
+

1
1+ Rn/`(tn)

−1
]
. (5-4)

For the right side of (5-3), we first consider the expression

4
∫
∞

0
3Qσ (3Q)3 dr

r
= 64σ

∫
∞

0

r3

(σ 2+ r2)(1+ r2)3
dr

= 64σ
∫ σ

0

r3

(σ 2+ r2)(1+ r2)3
dr + 64σ

∫
∞

σ

r3

(σ 2+ r2)(1+ r2)3
dr,

where for brevity we have set σ = `(tn). Now∫ σ

0

r3

(σ 2+ r2)(1+ r2)3
dr .

∫ σ

0
r dr . σ 2.

Since
1

σ 2+ r2 =
1
r2 +

σ 2

(σ 2+ r2)r2 ,

we have ∫
∞

σ

r3

(σ 2+ r2)(1+ r2)3
dr =

∫
∞

σ

r
(1+ r2)3

dr + σ 2
∫
∞

σ

r
(1+ r2)3(σ 2+ r2)

dr

=
1
4 + O(σ 2

|log σ |).
We conclude that

4
∫
∞

0
3Q`(tn)(3Q)3 dr

r
= 16`(tn)[1+ O(`(tn)2|log `(tn)|)]. (5-5)

By a similar argument we also obtain∫
∞

0
(3Q`(tn))

2(3Q)2 dr
r
. `(tn)2|log `(tn)|. (5-6)

Combining (5-3), (5-4), (5-5) and (5-6) we obtain

log
(

1+
Rn

`(tn)

)
+

1
1+ Rn/`(tn)

− 1=
8`(tn)
(`′(tn))2

[1+ O(`(tn)|log `(tn)|)].
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Thus by (5-2)

log
(

1+
Rn

`(tn)

)
+

1
1+ Rn/`(tn)

− 1= |log `(tn)|[1+ O(|log `(tn)|−1)]. (5-7)

The function f (x)= log(1+ x)+ 1/(1+ x)− 1 is continuous, is equal to 0 when x = 0 and tends to∞
as x→∞. Thus, by the intermediate value theorem and as long as T is sufficiently small, there exist Rn

satisfying (5-7) for all n. From (5-7) we see that Rn/`(tn)→∞ as n→ 0. Rearranging the previous
expression yields

log Rn = 1− log
(

1+
`(tn)
Rn

)
−

1
1+ Rn/`(tn)

+ O(1).

Since Rn/`(tn)→∞, the right side of the previous expression is bounded. �

Let Eψn(t) denote the solution to (1-4) with initial data Eψn(tn) = (ψ0,n, ψ1,n). We remark that the
previous computations yield

‖ψ1,n‖
2
L2 = 16`(tn)[1+ O(`(tn)2|log `(tn)|)]. (5-8)

Therefore, as long as T > 0 is small, for all t in a neighborhood of tn the modulation parameters λn(t)
and µn(t) are well-defined for Eψn(t) and

λn(tn)= `(tn), µn(tn)= 1.

If we set gn(t) := ψn(t)− (Qλn(t)− Qµn(t)) and ġn(t)= ∂tψn(t), then

gn(tn)= 0, ġn(tn)=−`′(tn)3Q`(tn)χ
√

Rn`(tn).

Let ζn(t) and bn(t) be defined as in (3-26), (3-25) for each Eψn; i.e.,

ζn(t) := 2λn(t)|log(λn(t)/µn(t))| − 〈χM
√
λn(t)µn(t)3Qλn(t) | gn(t)〉,

bn(t) := −〈χM
√
λn(t)µn(t)3Qλn(t) | ġn(t)〉− 〈ġn(t) |A0(λn(t))gn(t)〉.

Corollary 5.2. As long M > 0 is sufficiently large we have

bn(tn)= 8tn[1+ O(|log `(tn)|−1)].

Proof. Let M2 be larger than R given by Lemma 5.1. Then by (5-8) and (5-1) we have

bn(tn)=−〈χM
√
`n(tn)3Q`(tn) | ġn(tn)〉 =

1
`′(tn)

‖ψ1,n(tn)‖2L2 =
16`(tn)
`′(tn)

[1+ O(`(tn)2|log `(tn)|)]

= 2`′(tn)|log `(tn)|[1+ O(|log `(tn)|−1)] = 8tn[1+ O(|log `(tn)|−1)]. �

Let L = L0 > 0, M = M0 > 0 and η1 > 0 be chosen so that the conclusions of Proposition 3.9 hold
with δ = 1

2018 and so that the conclusion of Corollary 5.2 holds. Let

T ′n = sup
{
t ∈ [tn, T ] | Eψn(s) exists, d+( Eψn(s) < η1, and µn(s) ∈

( 1
2 , 2

)
for all s ∈ [tn, t]

}
.

We will show that T ′n = T as long as T is sufficiently small.
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Let t ∈ [tn, T ′n]. By (3-28), (3-29) and our assumption on µn(t)

ζn(t)= ζn(tn)+
∫ t

tn
ζ ′n(s) ds ≤ ζn(tn)+

∫ t

tn
[|bn(s)| + ζn(s)1/2] ds ≤ ζn(tn)+ 6

∫ t

tn
ζn(s)1/2 ds.

Thus,
ζn(t)≤ 2ζn(tn)+ 36(t − tn)2.

Since ζn(tn)= 2`(tn)|log `(tn)| = 4t2
n , we conclude that

ζn(t)≤ 148t2. (5-9)
Then by (3-27)

λn(t)|log λn(t)| ≤ 75t2. (5-10)

We now consider µn(t). By the fundamental theorem of calculus, (3-9), (3-27) and (5-9) there exists an
absolute constant β > 0 such that

|µn(t)− 1| ≤ βt2.

By (3-3), (5-10) and our assumption on µn there exists a constant α > 0 such that

‖ Eψn(t)− ( EQλn(t)− Qµn(t))‖
2
H0
≤ αt2. (5-11)

In summary, we have shown that

λn(t)|log λn(t)| ≤ 75t2, |µn(t)− 1| ≤ βt2, d+( Eψn(t))≤ (α+ 150)t2.

By a continuity argument, it follows that T ′n = T provided that Eψn(t) is defined on [tn, T ]. We now prove
this fact.

Let t ∈ [tn, T ′n]. By Corollary 5.2 and (3-31) we have

bn(t)≥ 1
2

(
8− 1

2020

)
(t − tn)+ 8tn[1+ O(|log `(tn)|−1)] ≥ 3(t − tn)+ 5tn ≥ 3t. (5-12)

By (3-28), (5-12) and (5-9) we have

ζ ′n(t)≥ bn(t)− 2
2020ζ

1/2
n (t)≥ 3t − 2

√
148

2020 t ≥ 2t.

By the fundamental theorem of calculus we conclude that

ζn(t)≥ ζn(tn)+ t2
− t2

n = 4t2
n + t2

− t2
n ≥ t2.

By (3-27), the previous inequality implies that

λn(t)|log λn(t)| ≥ 1
3 t2. (5-13)

The estimates (5-13), (5-10) and (5-11) imply

inf
µ∈[1/2,2]

λ|log λ|∈[t2/3,75t2
]

‖ Eψn(t)− (Qλ− Qµ)‖2H0
≤ αt2 (5-14)

on [tn, T ′n]. By Corollary A.4 of [Jendrej 2019] we conclude that the interval of existence of Eψn strictly
includes [tn, T ′n] as long as T is small. Thus, we have proved that T ′n = T.
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The bound (5-14) also implies that we may pass to a weak limit and obtain our desired blow-up solution.
Indeed, for any T0 < T

inf
µ∈[1/2,2]

λ|log λ|∈[T 2
0 /3,75T 2

]

‖ Eψn(t)− (Qλ− Qµ)‖2H0
≤ αT 2 for all t ∈ [T0, T ], for all n.

By Corollary A.6 of [Jendrej 2019] we can conclude, after shrinking T and extracting subsequences if
necessary, there exists a solution Eψc(t) defined on (0, T ] such that Eψn(t) ⇀n Eψc(t) for all t ∈ (0, T ]. By
weak convergence and (5-14)

inf
µ∈[1/2,2]

λ|log λ|∈[t2/3,75t2
]

‖ Eψ(t)− (Qλ− Qµ)‖2H0
≤ αt2.

Thus, Eψc is the desired solution with blow-up time T− = 0. �
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