msp






ANALYSIS AND PDE
Vol. 14, No. 7, 2021

https://doi.org/10.2140/apde.2021.14.2123

THRESHOLD DYNAMICS FOR COROTATIONAL WAVE MAPS

CASEY RODRIGUEZ

We study the dynamics of corotational wave maps from R!*? — S? at threshold energy. It is known that
topologically trivial wave maps with energy < 87 are global and scatter to a constant map. We prove that
a corotational wave map with energy equal to 87 is globally defined and scatters in one time direction,
and in the other time direction, either the map is globally defined and scatters, or the map breaks down in
finite time and converges to a superposition of two harmonic maps. The latter behavior stands in stark
contrast to higher equivariant wave maps with threshold energy, which have been proven to be globally
defined for all time. Using techniques developed in this paper, we also construct a corotational wave map
with energy = 87 which blows up in finite time. The blow-up solution we construct provides the first
example of a minimal topologically trivial nondispersing solution to the full wave map evolution.

1. Introduction

1A. Wave maps. We study the dynamics of energy critical wave maps which are defined as follows.
Let n be the Minkowski metric on Rtljc'z, and let N be a Riemannian manifold with metric 2. A map

u:R"*2 — N is a wave map if it is a critical point of the action

l/ (0"u, d,u)y dx dt,
2 R1+2

where we raise and lower indices using the Minkowski metric 5. The associated Euler—Lagrange equations

Au) =

are the wave maps equations given in local coordinates by
3", u + T (u) 3"u® 3,u¢ = 0. (1-1)

Here the I'j,. are the Christoffel symbols associated to the metric 4 on V. The time translational symmetry
of Minkowski space and Noether’s theorem provide a conserved energy for the evolution

Eu(r), du(t)) = % /Rz |8;u(t, x)|7 + |Vu(z, x)|7 dx = const. (1-2)

We study wave maps as solutions to the Cauchy problem (1-1) with prescribed finite-energy initial data
1(0) = (ug, u), where
up(x) €N, ui(x) € Ty N, xeR%

Here and throughout the paper we use the notation u(¢) to denote the pair of functions

u(t) := (u(t, ), du(t,-)).

MSC2010: 35L05, 35L71.
Keywords: wave maps, harmonic maps, bubbling, blow-up, classification.

2123


http://msp.org/apde/
https://doi.org/10.2140/apde.2021.14-7
https://doi.org/10.2140/apde.2021.14.2123
http://msp.org

2124 CASEY RODRIGUEZ

We also assume that there exists 1, € N such that
up(x) > Uy as x| — oo.

Due to the conformal symmetry of Minkowski space, we also have the following scaling symmetry: if
u(t) is a wave map and A > 0, then

R _ 3 . t x 1a r x
uy (t, x) = (up(t, x), 0u; (1, x)) := <M<X’X 5 Ot X’X)

is also a wave map. The energy is scale-invariant,
Euy) = E@),

and for this reason, the wave maps equations in (14-2)-dimensions are said to be energy critical. Wave
maps have been extensively studied over the past several decades, and we refer the reader to [Shatah and
Struwe 1998; Geba and Grillakis 2017] for reviews of the work that has been done.

In this work we specialize to the case N = S? (with the usual round metric) and wave maps which
respect the rotational symmetry of the background and target. More precisely, we fix an origin in R? and
north pole N € S?. We say a map u : R'*? — S? is corotational or 1-equivariant if u o p = p ou for
all p € SO(2). Here p acts on S? by rotation about the axis determined by N. Choosing N = (0,0, 1)
without loss generality, we can write a corotational map as

u(t,r,0) = (siny(z, r)cosd, siny (¢, r)sind, cos (¢, r)) € S* C R?, (1-3)

where (z, r, 0) are polar coordinates on R'*2 and (1, 0) are spherical coordinates on S2. For corotational
maps, the Cauchy problem (1-1) reduces to a single equation for the azimuth angle ¥ = ¥ (¢, r):

in 2 -
T 0. O =0y (1-4)

R
The conserved energy (1-2) is given by
o] 2
EW (1) = n/ <(a,w(z, M+ @y (1, 1)) + smf#)r dr.
0

The expression for the energy implies that there exist m,n € Z such that lim,_,¢ ¥o(r) = mm and
lim, _, oo ¥o(r) = nm. By continuity of the flow i (¢),

limy(,r)y=mn, lim ¢(,r)=nx forallz.
r—0 r—00

Without loss of generality, we may assume that m =0 and n € NU {0}. Thus, finite-energy solutions to
(1-4) are split into disjoint classes given by

Ho = {(Wo, ¥1) | EGo, Y1) <00 and lim ro(r) =0, lim yo(r) =n7}.

We refer to the parameter n € N U {0} as the degree of the map, and it can be thought of as parametrizing
the minimal number of times the map ¥ (¢) (more precisely, u(¢) given by (1-3)) wraps R? around the
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sphere. We study those corotational initial data (¥, ¥1) € Hop, i.€., those which satisfy
lim Yo (r) = lim ¥o(r) =0.
r—0 r—>00

A corotational ansatz reduces the complexity of the wave maps equations greatly and is possible in the
more general case when A is a surface of revolution. Choosing A" = S? is motivated by what is known
about stationary wave maps, or harmonic maps, in this setting. By an ODE argument, the unique (up to
scaling) nontrivial corotational harmonic map is given explicitly by

Q(r) =2arctanr,
with energy
£(Q) = 4.
We note that
rll_r)% Q(r)=0, lim Q@) =,

so that Q € H;. In fact, it can be shown that Q minimizes the energy in H; (see Section 2). As we will
soon discuss, these harmonic maps play a fundamental role in the long-time dynamics of wave maps with
large initial data.

We conclude this subsection by discussing k-equivariant maps, a generalization of our corotational
reduction. For k € N, we say a map u : R'"? — S? is k-equivariant if u o p = p* o u for all p € SO(2),
where SO(2) acts on the R'*2 and S? as before. Then we may write

u(t,r,0) = (sinyr(t, r)coskf, siny(t, r)sinkf, cos v (t, r)),

and the wave maps equations reduce to the single equation

in?2 -
251;1r21ﬁ =0, ¥(0)= (o, ¥1). (1-5)

2 2 1
Y — Y — 0y +k

The conserved energy (1-2) is given by

7 = sin? ¥ (¢, r
G =n f ((atz/fa, N+ O (e ) +k2%)rdr.
0
As in the corotational setting, the unique (up to scaling) nontrivial k-equivariant harmonic map is given by
0% (r) = 2 arctan(r¥).

The harmonic map Qk is in Hy, 6”‘(@") =4k and ék minimizes the energy EX(-) in the class H,.
In particular, the corotational harmonic map Q = Q! has the least energy of all nontrivial equivariant
harmonic maps.

We now turn to motivating our main results.

1B. History and motivation. Strichartz estimates suffice to prove global existence for equivariant wave
maps evolving from small degree-0 data (see Section 2), so recent work has been dedicated to understanding
the long-time dynamics of wave maps evolving from large initial data. It is here that the family of
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harmonic maps plays a fundamental role. Indeed, a classical result of [Struwe 2003] states that if a
smooth k-equivariant wave map 1/7(t) breaks down at time ¢ = 1, say, then 17/(t) converges to the harmonic
map Qk in a local spacetime norm. Moreover, &(t, r) must concentrate energy in excess of Ek(ék) at
the tip of the inverted light cone centered at (77, r) = (1, 0). Thus, a k-equivariant wave map &(t) with
energy less than Sk(ék) is globally defined and smooth. The works [Krieger, Schlag, and Tataru 2008;
Rodnianski and Sterbenz 2010; Rapha&l and Rodnianski 2012] constructed examples of degree-1 wave
maps that blow-up by bubbling off a harmonic map, i.e.,

()= 0% + 80,

with A(f) > Oast — T4 < oo and ¢(¢) regularupto t =T,

As we’ve discussed, harmonic maps play a key role in singularity formation for wave maps, but in
fact they should be fundamental in describing the dynamics of arbitrary wave maps. Indeed, according
to the soliton resolution conjecture, one expects the following beautiful simplification of the dynamics:
smooth wave maps asymptotically break up into a sum of dynamically rescaled harmonic maps and a
free radiation term (a solution to the linearized equations). The problem of describing the dynamics of
corotational wave maps with energy = 2& (Q) we address in this paper is motivated by several recent
advances made in establishing this conjecture for equivariant wave maps. We first state the following
refined threshold theorem proved in [Cote, Kenig, Lawrie, and Schlag 2015a].

Theorem 1.1 [Cdte, Kenig, Lawrie, and Schlag 2015a]. For smooth initial data (Yo, V1) € Ho, with

X (o, v1) < 26405,

there exists a unique global smooth k-equivariant wave map lﬁ € C(R; Hp) with 1/7(0) = (Yo, ¥1).
Moreover, Y (t) scatters both forward and backward in time; i.e., there exist solutions (Zf to the linearized

equation
2

1 k
312<P—3r2§0——3r<ﬂ+—28r¢:0 (1-6)
r r
such that
V() =GEW) +op, (1) ast — Eoo.

The intuition for the threshold energy being 28k (Qk) rather than é'k(ék) is the following. If a k-
equivariant map gZ(t) € Ho wraps the plane around the sphere once, then it must also unwrap the sphere
once more in order to have degree 0. Since the minimum amount of energy needed for a k-equivariant
map to wrap the plane around the sphere once is equal to £ k (Qk ), it follows that if £ k(l;) <2 k(ék ) then
¥ (¢) is bounded away from the south pole (i.e., Y (¢, r) < w — € for all ¢, r). Thus, @(t) cannot converge
locally to a harmonic map Qk, which by Struwe’s bubbling result implies 1/7(t) is globally regular.

A result analogous to Theorem 1.1 for the full wave map system, with no symmetry assumptions,
was established in [Lawrie and Oh 2016]. More precisely, we say initial data (uo, u1) (with target S?) is
topologically trivial if

1
E/Wu(’;a)gzzQ
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where we. is the volume form on S?. It can be checked that the above condition is propagated by the
wave map evolution, and an equivariant map # with associated azimuth angle 1; € H is topological trivial.
The authors obtain the following result as a consequence of the analysis from [Sterbenz and Tataru 2010].

Theorem 1.2 [Lawrie and Oh 2016]. Suppose that (ug, u1) is smooth topologically trivial finite-energy
initial data with

Eug, uy) < 87w =25(0Y).

Then there exists a unique global solution u : R'*? — S? to the wave maps equations (1-1) with
1u(0) = (ug, u1). Moreover, u(t) scatters to the constant map as t — £00.

The works [Cote, Kenig, Lawrie, and Schlag 2015a; 2015b] also established soliton resolution for
corotational wave maps in #; with energy below 3& (é). In this setting only one concentrating bubble is
possible, and these works showed that for any such wave map there exists a solution ¢y () € H to the
free equation (1-6) (the radiation) and a continuous dynamical scale A(¢) € (0, co) such that

KZ(l) = Qx(z) + @) +o3,(1) ast— Ty.

Proving soliton resolution above 36(@) is very challenging since one can conceivably have multiple
harmonic maps concentrating at different scales and interacting. However, there has been exciting recent
progress in establishing a weaker form of the conjecture. The work [Cdte 2015] (for 1-equivariant maps)
and [Jia and Kenig 2017] (for all equivariant maps) established the following soliton resolution result
along a well-chosen sequence of times.

Theorem 1.3 [Cdte 2015; Jia and Kenig 2017]. Let @(t) € H, be a smooth k-equivariant wave map on
[0, T'y). Then there exists a sequence of times t, — Ty, an integer J € NU {0}, a solution ¢ (t) € H
to (1-6), sequences of scales X, ; which satisfy 0 < X, 1 K Ap2 L -+ K Ay y and signs t; € {—1, 1} for
jef{l,..., J}, so that

J
V(i) =Y 405 +¢Lt) +0p, (1) asn— oo, (1-7)
j=1
If Ty <oothenJ > 1, 0< i1 K LAy LT —ty,and if Ty =00 then 0 <Ap 1 K - KAy g Lty
The signs 1; are required to satisfy the topological constraint I,Z(t) € Hy, iLe.,

J
lim ZL' k) =nm.
r—>00 4 ! J Q)‘"vj( )

j:

We remark that [Cote, Kenig, Lawrie, and Schlag 2015a; 2015b; Cote 2015; Jia and Kenig 2017;
Jendrej and Lawrie 2018] use ideas and techniques inspired by the seminal papers on the focusing quintic
nonlinear wave equation in three space dimensions by [Duyckaerts, Kenig, and Merle 2011; 2012a; 2012b;
2013] (see also [Kenig 2015] for an account of the important techniques and ideas in these papers).

Jendrej [2019] showed it is possible for more than one bubble to form in the decomposition (1-7).
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Theorem 1.4 [Jendrej 2019]. Fix an equivariance class k > 2. There exists a solution 1; 1 (=00, T1) — Ho
of (1-5) such that
lim 1Y () = (Qeyr-216-2 — Dllry =0,
—>—00
where c, > 0 is explicit. O

A similar construction is possible when k =2 with an explicit exponentially decaying scale as t — —oo.
By Theorem 1.1, these solutions are examples of nondispersing threshold solutions to (1-5) for k > 2.

Jendrej and Lawrie [2018] classified the dynamics of k-equivariant wave maps &(t) with threshold
energy EX (1/7 ) = 25"(@") for k > 2. Their work provided the primary motivation and roadmap for
establishing our main results. To state their results concisely, we first introduce some terminology. Let
J(t) : (T_, Ty) — Ho be a k-equivariant wave map with Ek(lz) = 28"(@'“). We say that J(t) is a
two-bubble in the forward time direction if there exist ¢ € {1, —1} and continuous functions A(z), u(¢) >0
such that

Tim ([0 (1) = (@) = Qi) Vi)l =0, () K (o) ast— Ty
— 14
The notion of a two-bubble in the backward time direction is defined similarly.

Theorem 1.5 [Jendrej and Lawrie 2018]. Let k > 2, and let & 2 (T-, Ty) — Ho be a k-equivariant wave
map such that
k) = 265(0%) = 8rk.

Then T_ = —oo, T = 0o and one the following alternatives holds:

o Yr(t) scatters in both time directions.

. 1/7(t) scatters in one time direction and is a two-bubble in the other time direction. Moreover if 1/7(t) isa
two-bubble in the forward time direction, then there exists C = C (k) > 0, wo > 0 such that u(t) — uo and

poexp(—C1) < h(t) < poexp(—1/C)  if k=2,

%1_2/(/‘_2) <A(t) < Cpot™2* D jr g >3,

An analogous estimate holds if 12/(1‘) is a two-bubble in the backward time direction.

1C. Main results. The two-bubble solutions given by Theorem 1.4 and the classification result Theorem 1.5
are for k-equivariant wave maps with & > 2. The first main result of this paper establishes the existence
of a corotational two-bubble solution. In contrast to higher equivariant wave maps, our solution is in fact
a threshold blow-up solution.

Theorem 1.6 (Main Theorem 1). There exists a corotational wave map 1}0 : (0, Ty) — Ho, a continuous
scale A.(t) > 0, and constant C > 0 such that

212 < helloghe(n)] = CF

and

i [19e(0) = (Qs.0 = Dl = 0.

In particular, 8(1/76) =8mand T_=0.
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By Theorem 1.1, @c is a minimal energy nondispersing solution to (1-4). Moreover, by Theorem 1.2
the map u. : (0, Ty) x R> — S? given by

uc(t,r,0) = (siny.(t,r)cos 0, siny.(t,r)sinf, cos y.(t,r))

is a topologically trivial minimal energy nondispersing solution to the full wave map equations. The
existence of such a solution has been an open question up until now. The proof of Theorem 1.6 is a
byproduct of estimates we derive to prove our second main result and the general scheme for constructing
multisoliton solutions introduced in [Martel 2005; Merle 1990]. We remark that our construction does
not require as precise as an ansatz for ch as in those works but is closer in spirit to the two-bubble
construction for NLS in [Jendrej 2017].

Theorem 1.7 (Main Theorem 2). Let 1/7(t) 1 (T-, Ty) — Ho be a solution to (1-4) such that
E(P) =26(0) = 8.
Then either T— = —o0 or T4 = 0. Assume that T_ = —oo. Then 1/7(t) scatters in backward time, while
in forward time one of the following holds:
o Ty =o00and Jf(t) scatters in forward time.

o Ty < o0, @(t) is a two-bubble in the forward time direction, and there exists an absolute constant
C > 0 such that the scales of the bubbles A (t), u(t) satisfy

. 1 RA) A(2)
lim w(t) = po € (0, 00), E(T+—f) = E log E

t—T4

< C(Ty —1)>

If we assume initially that &(t) satisfies T = oo, then ¥ (t) scatters in forward time, and one of analogous
alternatives formulated in backward time must hold.

Overall, our main results state that the dynamics of corotational wave maps at threshold energy are
very different from the those of higher equivariant wave maps at threshold energy.

We remark that by Theorem 1.7, the blow-up solution lﬁc from Theorem 1.6 is global in forward
time, T = oo, and scatters. Thus, 1}6 is a trajectory connecting asymptotically free behavior to blow-up
behavior. Theorem 1.7 also asserts that for (1-4) the collision of two bubbles produces only radiation and
is therefore inelastic. This is consistent with what is known and expected for nonintegrable dispersive
equations; see [Martel and Merle 2011a; 2011b; 2018; Jendrej and Lawrie 2018]. Our main results
are in the spirit of the classification results at threshold energy by [Duyckaerts and Merle 2008; 2009;
Jendrej and Lawrie 2018], but one may also draw parallels to the study of minimal blow-up solutions for
dispersive equations; see for example [Merle 1993; Raphaél and Szeftel 2011]. Finally, we remark that
apart from the seminal work [Duyckaerts, Kenig, and Merle 2013] which verified the soliton resolution
conjecture for the 3-dimensional radial energy critical wave equation and Theorem 1.5 due to Jendrej and
Lawrie, Theorem 1.7 is the only other result which proves soliton resolution continuously in time at an
energy level that a priori allows two solitons in the asymptotic decomposition. In fact, Theorem 1.7 shows
that solutions with two concentrating bubbles cannot occur, and any nonscattering solution must blow up
precisely one bubble while radiating a second stationary harmonic map outside the inverted light cone.
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1D. Outline. The general framework for proving Theorem 1.7 is inspired by [Jendrej and Lawrie 2018]
on higher equivariant wave maps, but due to the slow convergence to 7 of the corotational harmonic map
Q(r) =2 arctan r, there are serious technical challenges not found in the higher equivariant setting that
arise. The main source of these obstacles will be elaborated on below.

A rough outline of the proof of Theorem 1.7 is as follows. By Theorem 1.3, a corotational wave map 12
that does not scatter forward in time must approach the space of two-bubbles along a sequence of times.
Towards a contradiction, we assume that 1} does not approach the space of two-bubbles continuously
in time. We then split time into a sequence of intervals [a,,, b, ] so that &(r) is close to the space of
two-bubbles on [a,,, b,,] (bad intervals), and @(r) stays away from the space of two-bubbles on [b,,;, @, +1]
(good intervals). By concentration compactness techniques, the trajectory 1Zf(t) has a certain compactness
property on the union of good intervals (see Sections 2 and 4). Past experience suggests that J(t)
converges to a degree-0 stationary solution to (1-4) along a sequence of times in the good intervals (see
[Duyckaerts, Kenig, and Merle 2016] for example). Since the only degree-0 stationary solution to (1-4)
is 0, we conclude 1} = 0, a contradiction.

To prove that J(t) approaches a stationary solution to (1-4), we use a virial identity for wave maps
(see Section 2) which bounds an integral of |0,y (¢) ||i2 over certain good intervals by small error terms
plus an integral of d(x/j(t))l/ 2 over certain bad intervals. Here d( -) is a measure of the distance to the
space of two-bubbles (see Section 2). The errors can be made small because 1} is close to a two-bubble on
the bad intervals and has the compactness property on the good intervals. The time integral of d (1/7(t))]/ 2
can be absorbed into the left-hand side, which shows that ||d; v (¢) ||i2 converges to 0 in a certain averaged
(over the good intervals) sense. The compactness property then allows us to conclude that 1 (#) must
approach a stationary solution. The fact that the integral of d (IZ(t))l/ 2 can be absorbed into the left-hand
side is due to the following informal fact: leaving the space of two-bubbles on a bad interval causes an
appreciable amount of kinetic energy, ||d;v (¢) 1%

L
Proposition 3.12 and Section 4). We prove this fact by studying the interaction of corotational two-bubbles

to be present on the neighboring good interval (see

using the modulation method (see Section 3). This is one of the main novelties of this paper.
On a time interval where a corotational wave map ¥ is close to a two-bubble, we decompose the
solution as

V(1) = (O — Ouay — &), Y (1)),

where the modulation parameters A(¢) and w(¢) are chosen by imposing certain orthogonality conditions
on g. The choice also ensures that d (Jf(t)) is comparable to A(z)/u(t). The goal of Section 3 is to show
and control growth of the ratio A(¢)/u(¢) in the future of a time #y, where %(A(t) J () 1=, > 0 (see
Propositions 3.3 and 3.12). In contrast to [Jendrej and Lawrie 2018] on higher equivariant wave maps, the
function (r9, Q)a«), which is the tangent vector to the curve f = O, is not in L?(R?). This function
plays a key role in the scheme since A(#) ™' ((r3, Q)a() | 3;¥ (1)) > should heuristically be proportional
to A'(r), so we may then differentiate it and use (1-4) to get information about A”(z). The fact that
rd,Q ¢ L? is the major obstacle in deriving the estimates, and the technique we introduce in Section 3 to
overcome this challenge is a central contribution of this work.
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We conclude our discussion of the proof of Theorem 1.7 with the following remarks. Our overall
scheme of proving Theorem 1.7 may also be summarized as showing that a threshold wave map that leaves
a small neighborhood of the space of two-bubbles can never return. This type of ejection result is similar
in appearance to those obtained by Krieger, Nakanishi and Schlag [2013; 2015] in their study of the
dynamics near the unstable ground state for the energy critical wave equation. However, the ejection of a
near two-bubble wave map is due to a purely nonlinear mechanism (the interaction of the harmonic maps).

We now briefly outline the proof of Theorem 1.6. The construction of the blow-up solution IZC () is
quite short due to the results proved in Section 3. We consider initial data at time £, of the form

Un(tn) = (Qeyy — Qv —E (0 (1) ™ (3, Qe Xn)

where ¥, is a cutoff that ensures £ (&(tn)) = 8. The function £(t) is chosen to satisfy £'(¢,) > 0 and to
essentially saturate the bounds on the modulation parameters in Proposition 3.3. Let v, (¢) denote the
solution to (1-4) with data 1/7,, (t,) at time ¢t = t,. By our choice of the data, the control of the growth of
the modulation parameters obtained in Proposition 3.3 and a bootstrap argument, we conclude that there
exist absolute constants «, C, T > 0 with T small such that T+(1},,) > T and

inf 19 (t) = (Q5. — QI3 < at? foralln, forall 7 € [1,, T].

pell/2,2]

Alogale[t?/C,Ct

Passing to a weak limit then finishes the proof. Full details are in Section 5.

2. Preliminaries

The purpose of this section is to recall preliminary facts about solutions to (1-4) that will be required in
our analysis. Before recalling these facts, we establish some notation. For two quantities A and B, we
write A < B if there exists a constant C > 0 such that A < CB, and we write A ~ B if A < B < A. For
(R?), so that, writing x = x (r) we have

00
rad

the paper, we denote by x a smooth cutoff x € C
x(r)=1 ifr<i and x(r)=0 ifr=2 and |x'(r)| <2 forallr >0.

We define xz(r) := x(r/R). The L? pairing of two radial functions is denoted by
1 oo
(F18)i= gt bz = [ F@r0rdr
T 0
The H' and L? rescalings of a radial function f are denoted by

FOY=F0/0, i) =1 f0/),

and the corresponding infinitesimal generators are given by

0 _ ) .
Af = w A:lf}" =ro,f (H,4(R) scaling),
] .
Aofi=—=—| fi=4rd)f (L14(R?) scaling).

oA lr=1
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Recall the definition of the space of degree-0 data with finite energy:
Ho == {(Wo. ¥1) | EWo, Y1) < 00, rlg)% Yo(r) = Tim ro(r) =0}.

We define the norm H via

00 2
1ol = /0 ((arwo(r>>2+ W)rdn

and for pairs 1/7 = (Yo, Y1) € Ho we write

19 220 == Il (W0, Yl 2

Given g € H, if we define Y(x) := ¥ (e¥), x € R, we see that [|oll# = |0l 41 w)- Thus, by Sobolev
embedding on R we conclude that

Vol < Clivolla-

This fact will be used frequently in our analysis.

2A. Compactness of nonscattering threshold solutions. A central result we use in our work, obtained
from the standard well-posedness theory for (1-4), concentration-compactness methods and Theorem 1.1,
is the following compactness statement for nonscattering threshold solutions. The proof is the same as
the higher equivariant analog found in [Jendrej and Lawrie 2018] and is omitted.

Lemma 2.1 [Jendrej and Lawrie 2018, Lemma 2.9]. Let &(t) € Ho be a solution to (1-4) defined on
[0, T+ (). Suppose that 5(1/7) = 8m and 1;(1) does not scatter in forward time. Then if t, — T4 is any
sequence of times such that

sup |9 (1) 12, < C < 00,

there exist a subsequence, which we continue to denote by t,, scales v, > 0 and a nonzero § € Hy such
that

J(tn)l/vn — ¢ et

strongly in Ho. Moreover, £(¢) = 8, and the solution ¢(s) to (1-4) with data ¢(0) = ¢ is nonscattering
in forwards and backwards time.

2B. Near two-bubble maps. We recall that the unique (up to scaling) nontrivial corotational harmonic
map Q is given by
QO(r) =2arctanr.

The harmonic map Q has a variational characterization as follows. As in the Introduction, let H; be the
set of all finite-energy corotational maps which map infinity to the south pole, i.e.,

Hi:={(@0. ¢1) | £(@) < 00, $0(0) =0, lim go(r) =}.
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Then for (g, ¢1) € H1, we have the following Bogomol’nyi factorization of the nonlinear energy:

sin(¢o)
p

00 2 00
E(po, 1) = 7|1 ||iz + n/ (8r<p0 — ) rdr+ 271/ sin(gg) 0, o dr
0 0

00 sin(¢p) 2 ©0(00) )
:ﬂllwllliz +7T/ (Brgoo— . rdr—i-ZJT/ sin(p) dp
0 2

0(0)
o0 sin(go) \?
=71||(p1||iz —i—n/ (8,<p0— . rdr+4m.
0

By solving the differential equation in the parentheses, we see that £(¢p, ¢1) > 47 with equality if and

only if (¢g, 1) = (Qy, 0) for some A > 0.

In our analysis, we will need several technical facts related to the distance of a map 1; to the set of
two-bubbles. More precisely, given a map q; = (¢o, ¢1) € Ho we define its distance d (qG) to the set of
two-bubbles by

d@):= inf - (1@0—1(Qr ~ Q). D), + (/). 2-1)

A, u>0,0e{+1,—1

To distinguish between the two cases of a map being close to a pure two-bubble (¢« = 41 above) or an
anti-two-bubble (¢t = —1 above), we define

dx(@) = inf (160 (Qx — Q). 0, + G/

The next two lemmas follow from the same arguments given in [Jendrej and Lawrie 2018] for higher
equivariant wave maps, and the proofs will be omitted. The first lemma shows that the size of a map 1} with
threshold energy can be controlled by its distance to the surface of two-bubbles. The second lemma proves
the intuitive fact that a map 1/7 cannot simultaneously be close to a pure two-bubble and anti-two-bubble.

Lemma 2.2 [Jendrej and Lawrie 2018, Lemma 2.13]. Suppose thatq; = (¢o, ¢1) € Ho and
£(@) =2£(0) = 8.
Then for each B > 0 there exists C(8) > 0 such that
d@)=p = (0. o), < C(B).
Conversely, for each A > 0 there exists « = «(A) such that
d@) ) = @0 Dl = A.

Lemma 2.3 [Jendrej and Lawrie 2018, Lemma 2.14]. There exists an absolute constant oy > 0 such that
forany ¢ € Hy
di(p) <apy = dz(¢)>p.

The final preliminary results we will need for our analysis are related to a virial identity for solutions
to (1-4). The following virial identity follows easily from (1-4) and integration by parts.
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Lemma 2.4. Let @(r) be a solution to (1-4) on a time interval 1. Then for any time t € I and R > 0 fixed

we have N
L | xr o) 2 (0) = — /0 Yt dr + QU (1), 22)
where
- <, 1 sin” (1)
Qr(Y (1)) 12/ v, (I)(I_XR)rdr_E/ (lﬁ, )+ v r(t) — ) X' (r/Ryrdr  (2-3)
0 0 r2 R
satisfies
IQR(l/f(t))|<[ YA, i’)i’di’dt+ ’10 —Sm 4 rdrdt

5/ (wf(ta”)-i'wrz(f,”)-i-W)rdr.
R 2r

Finally, using Lemma 2.2, one can bound the virial and the error for threshold solutions by its distance
to the set of two-bubbles. The proof of this fact is the same as in [Jendrej and Lawrie 2018] and is omitted.

Lemma 2.5 [Jendrej and Lawrie 2018, Lemma 2.16]. There exists a number Cy > 0 such that for all
55 = (¢po, ¢1) € Ho with 5((}3) =2&(Q) and all R > 0 we have

[(¢1, xrrdrd0)| < CoRVd(9), (2-4)
1Qr(P)] < CoVd(H).

3. The modulation method for two-bubble solutions

In this section we analyze the modulation equations that govern the evolution of corotational near two-
bubble solutions. As in the case of higher equivariant wave maps studied in [Jendrej and Lawrie 2018],
the scale of the less concentrated bubble does not change, but it does affect the evolution of the more
concentrated bubble. A central challenge which arises in the analysis of corotational maps which is not
found in the higher equivariant setting is the fact that the zero mode of the operator obtained by linearizing
about the harmonic map Q is a resonance rather than an eigenvalue. A rough outline of this section is as
follows. For a solution z/j(t) with d (1/7 (t)) small on a time interval J, we first use the implicit function
theorem to find modulation parameters A(¢), u(t) defined on J such that g(¢) := ¥ () — (Qx¢) — Qu))
satisfies appropriate orthogonality conditions and d (&(t)) ~ A(t)/u(t). We would like to then prove that
if the modulation parameters A(¢), i (¢) are approaching each other in scale, i.e., if %(A @)/ ()=, =0,
then A(#)/u(t)continues to grow in a controlled way in forward time near fq. In particular, this would
imply that 1/7(t) has to leave a small neighborhood of the set of two-bubbles. However, the slow decay of Q
requires us to deal with additional technical obstacles not encountered in the case of higher equivariant
wave maps. In particular, we must replace A(¢) with a carefully chosen logarithmic correction.

3A. Modulation equations. In this section, we study solutions near two-bubble solutions &(t) to (1-4).
More precisely, we consider maps such that d (@(z)) (defined by (2-1)) is small on a time interval J.
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The operator corresponding to linearizing (1-4) about the harmonic map Q; is the Schrédinger operator

cos20;
2

1
Ep:—f—;&+

For convenience we write £ := £;. Differentiating the equation
sin 2 Q A
2r?

with respect to A and setting A = 1 implies that A Q is a zero mode for £, i.e.,

=0

20, 4+ 15 0, _
0 Q;\-l-rarQ,\

LAQ =0, AQeL®R?.

Note that AQ ~ 1/r as r — oo so that A Q fails (logarithmically) to be in L?(R?). We say that A Q
is a resonance of L. In the k-equivariant setting with k > 2, we have AQ € L?(R?). This weak decay
of A Q requires more care when studying the modulation equations compared to the higher equivariant
setting. We note that in general, we have

L0, =0.
Define
Z(r) == xL(r)AQ(r),
where, as before, x is a smooth cutoff. The parameter L > 0 will be chosen later. We use Z to obtain
a useful choice of modulation parameters (the scales) for the near two-bubble solution &(r). We first
recall the following modulation lemma from [Jendrej and Lawrie 2018], which follows from standard
arguments involving the implicit function theorem, an expansion of the nonlinear energy and coercivity
properties of £;.

Lemma 3.1 [Jendrej and Lawrie 2018, Lemma 3.1]. There exist ng = no(L) > 0 and C = C(L) > 0 such
that the following holds. Let 1r(t) be a solution to (1-4) defined on a time interval J C R, and assume that

d. (V1) <no forallteJ.

Then there exist unique C'(J) functions A(t), u(t) so that the function

g0) =¥ @) — 0wy + Quwy €H
satisfies for all t € J

(Zu0 | £0)) =0, (3-1)
(Zuw 1 8@) =0, (3-2)
. A -
d.(y @) <I(gQ), 3z1//(f))||3{0 + % < Cd (Y (@)).
Moreover,
() 1/2
(g (#), 0¥ (£)) I3y < C(—) , (3-3)
wu(r)
and hence D)
Ao (Y (1)~ ——= (3-4)

w(t)



2136 CASEY RODRIGUEZ

Finally, we have the explicit bound for the kinetic energy
A(t) M)
1. (D117 < 16—+o<—). (3-5)
S TO R NAT!

Remark 3.2. The o(-) term in (3-5) depends on the parameter L, but it will be important that the
leading-order term is independent of L.

Given the modulation parameters A(¢), ;1 (¢) we define
g0) =y () — Oy + Quas
g(1) = 0y (0).

Then the vector g := (g, £) satisfies the equations
g =g+NAQy— W AQ,, (3-6)
. 1 1
08 =078+ -0g— = (f(Qr— Qu+8) = (@) + [(Qu). (3-7)

As a first step towards understanding the behavior of the modulation parameters, we establish bounds
on the first derivatives of A(¢), w(¢). This information is not enough to study the interaction of the bubbles
for the near two-bubble solution &(z) and achieve the goal outlined at the start of the section. This should
also be intuitively clear since 1/7(t) satisfies a second-order equation in time, and thus, the interaction of
the bubbles should be governed by second derivatives of A(f), w(z).

Proposition 3.3. There exist a constant C > 0 and ny = no(L) > 0 with the following property. Let J C R,
and let 1/7(t) be a solution to (1-4) on J such that

dW (1)) <no forallteJ.

Let L(t), u(t) be the modulation parameters given by Lemma 3.1. Then for all t € J we have

12
2/ (0] < Cllog L)‘”z(@) , (3-8)
wu(r)

A(t) )l/ 2
nw/) -
Proof. Differentiating the orthogonality conditions (3-1) and (3-2) and using (3-6) we obtain the relations

|1 (1)] < C(log L)l/z( (3-9)

1
—(2,18) =2 ((Zx | AQ)) — <X[Ath

g>> _M/<ZA | AQ&)»

o)
These two equations yield the following linear system for (A’, u'):

Ay A\ (N —(Z;18)
= - . s -]
(AZI Azz) (M) (—(Z,L | g)) (3-10)

1
—(2,18) =1(Z, | AQy) +u’(—<zu | AQ,) — <;[Aozh




where
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1
Al =(2, | AO,) — X[AOZ]A
A= —(Z, | AQyu),

)
Aoy :=(Z, | AQy), |
Ay = _(ZE | AQ&) - <;[AOZ]/L

J

We now estimate the coefficients of the matrix A = (A;;) so that we may invert (3-10) and obtain estimates
for (A, u'). We define

wi=(2180)= [ xuingPrar
Note that since |AQ(r)| < 1/(1+r), we have for all L > 0 sufficiently large
logL Sap Slogl,
where the implied constants are absolute.
Claim 3.4. For A/u sufficiently small (depending on L), the diagonal terms satisfy

A =ar[1+ 0 /m)"), (3-11)
Ax = —ar[14 0 (( /)], (3-12)

To prove the claim we simply observe that

1
‘<X[A03h

g>‘ SlgleellAoZl L rary St llgla SL /w2,
Thus,

1
Al =(Z, | AQy) — <X[AOZ]A

g> =+ 0L (A /m)'?),

which establishes (3-11). The estimate (3-12) is established analogously, and the claim is proved.
We now estimate the off-diagonal terms.

Claim 3.5. For )/ sufficiently small (depending on L) we have
Al SL A /w?, Al SlogL, (3-13)
where the implied constant in the estimate for Ay, is absolute.

Since rZ(r) € C§°, A/ < 1 and |[A Q| < r for small r, we conclude that

2Lk 2N/
|A12|=|<ZA|AQM>|=/0 B 2 /A Q) dr stO AQIdr S1 (/).
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This proves the first estimate in (3-13). Let 0 = A /u. By a change of variables and the explicit expression
for Z we have

2L
! / 4 (r/o) dr <logL,

A2l = 2 TAQIN =HZ T AQuw S 0 1+ 1+ (/o2

which proves the second estimate in (3-13) and the claim.
We now solve for (A’, i) by inverting A:

()J) 1 (A2 18+ AR(Z, 1 8)
W) detA\ Aa(Zi18) —Au(Z.18) )’

The previous two claims imply that

det A=Ay Ap — ApAy = —ai[1+ O0p((A /1)) (3-14)

as long as A/u is sufficiently small. It is easy to see that the function Z = y; A Q satisfies || Z]|;2 <

~

(log L)'/2. Then by Cauchy—Schwarz and (3-5) we have, for A/u sufficiently small,
(Zs 1 &+ 1(Z | &)1 S Nog LI/ S o) 2 /i)', (3-15)

where the implied constant is absolute. Our two claims, (3-14) and (3-15), imply that as long as A /u is
sufficiently small
VIS 1det Al (Al [(Zy | @)+ 1Al (Z, | )D)

Sa; 0w < dog L)V 00 )2

as desired. A similar argument establishes

u'| < (og L)~ (/w2
as well, which finishes the proof. O

3B. Refined control of the modulation parameters. As stated previously, information about the first
derivatives of the modulation parameters is not enough to study the evolution of two-bubbles since (1-4)
is second-order in time. Due to the slow decay of the A O, we will in fact need to study second-order
derivatives of 2A|logA/u| and u. Moreover, for technical reasons we will study a function ¢ = ¢(t)
which approximates 2A|log A /ut| and a function b = b(¢) which approximates ¢’(¢) (see Proposition 3.9).
We first define a truncated virial functional and state some relevant properties. This functional played
a fundamental role in the work of Jendrej and Lawrie on threshold dynamics for higher equivariant wave
maps [Jendrej and Lawrie 2018] and in the two-bubble construction in [Jendrej 2019]. It will play a very
important role in our work as well. For the proofs of the following statements we refer the reader to
[Jendrej 2019, Lemmas 4.6 and 5.5]. In what follows, we denote the nonlinearity by f(p) := % sin2p.

Lemma 3.6 [Jendrej 2019, Lemma 4.6]. For each ¢, R > O there exists a function q(r) = q. r(r) €
C*1((0, 00)) with the following properties:

®PD gq@r) = r2/2f0rr <R.
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(P2) There exists an absolute constant k > O such that q(r) = const. for r > R :=ke*/°R.
P3) |¢'(r)| Srand|q”(r)| S 1 forall r > 0, with constants independent of ¢, R.
P4) ¢"(r)> —cand (1/r)q'(r) > —c forallr > 0.
P5) (dz/dr2 + (1/r)(d/dr)r)2q(r) <c- r_2f0r allr > 0.
P6) [r(g'(r)/r)| <c forallr > 0.
For each A > 0 we define the operators .A(X) and Ap(A) as

r

A) -0,g(r), (3-16)

Ao( (LoD Lo(F (2.5 3-17
[Ao(M)gl(r) := (ﬁq (X)Jrgq (X»g(r)Jrq (X) -8 (r). (3-17)

Since ¢(r) =r?/2 for r < R, we have A(L)g(r) = (1/1)Ag(r) and Ag(M)g(r) = (1/A)Aog(r) for r < R.
One may intuitively think of A(X) and Ay(X) as extensions of (1/A)A and (1/A)Ag to r > R which have
good boundedness properties. The following lemma makes this precise. In what follows, we set

[AMR)g](r) == 6]’(

X:={geH]|g/r 0,8 H}

Lemma 3.7 [Jendrej 2019, Lemma 5.5]. Let cg > 0 be arbitrary. There exists ¢ > 0 small enough and
R,R>0 large enough in Lemma 3.6 so that the operators A(A) and Ay()\) defined in (3-16) and (3-17)
have the following properties:

o The families {A(X) | A > 0}, {Apg(A) | X > 0}, {13, A(X) | A > 0} and {10, Ap(A) | A > 0} are bounded
in £ (H; L?), with the bound depending only on the choice of the function q(r).

e Forallg e X
(811 Ao()g1) =0. (3-18)

e Forall . > 0and g1, g» € X there holds

1
‘<A(K)81 r—Z(f(gl +g2) — f(g1) — f’(g1)82)>
1
+ <A(?»)82 r—z(f(gl +g2)— f(g1)— gz)> < %ll&“%- (3-19)
e Forall g € X we have
1 1 co 1 (R 1
<Ao<x)g ‘ (83 + -9 — ﬁ)g> < Tngnz - /0 ((arg)2 + r—2g2>dr. (3-20)
e Moreover, for ., > QwithA/u < 1
1AQL—AG)Qslli~ = 3 (3-21)
[A0A QAL — Ag(M)A Q2 < co, (3-22)

1
IAGR) QuullLoe + A0 (A) QullLe < o (3-23)
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and, forany g € H,

001 ul ¥ A AT 1
fo 5(‘1 (X)* 4 (;))r—z<f<—Qu+Qx+g>—f<—Q,L+QA>—g>gdr
- fo S((@)=Dgdr| <colligly+0/m). (3-24)

Remark 3.8. The argument for the estimate (3-22) from [Jendrej 2019] does not quite apply to our case due
to the slow decay of Q. We provide a different argument here. We first note that AgA Q =4r/(1 +r?)* €
L?(R?) and the estimate (3-22) is scaling-invariant so we can take A = 1. Since AgAQ = Ay(1)A Q for
r < Rand Ag(1)AQ =0 for r > R = Rice®/*, we have

00 R
||AoAQ—Ao<1>AQ||izsf |A0AQ|2rdr+/ | Ao(1)A Q*r dr.
R R

The first term on the right-hand side above can be made less than c% /2 as long as R > 0 is sufficiently
large since AgAQ € L?. For the second term, we write

q'(r) q'(r)

r

Ao(l)AQ:%< )AQ+ AoAQ.

Then by properties (P6) and (P3) in Lemma 3.6 we have
R R 00
f | Ao(DHAQrdr < CZ/ IAQ|*r dr +/ |A0AQ*r dr
R R R
Rice®/c 1 %
502/ —dr+/ —Sdr§c+R_4§c(2)/2
R r R T

as long as c is sufficiently small and R is sufficiently large. We conclude that for ¢, R chosen appropriately,
we have

IA0AQ — Ay(DA Q7> < ¢,

as desired.

As before, we let x € CCOO([R{Z) be a smooth radial cutoff. We then define the function b(¢) by

b(t) ==~ rmma A Qo | §0) — (G0 | Ao (1) (0)). (3-25)

Here M > 0 is a constant which we will later fix. Finally, we define

(1) := 220 g (A (1) / ()] = (Xmyropn A Qrwy | 8(D)- (3-26)

Note that z(¢) is C! since 9, g(¢) is continuous in L? with respect to . We will now show that we may
roughly view ¢ (¢) as 2A(t) log A(¢) and b(¢) as a subtle correction to ¢’(¢). The essential feature of this
correction is that b'(¢) (which intuitively is connected to A”(¢)) is bounded from below. More precisely,
we prove the following.
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Proposition 3.9 (modulation control). Assume the same hypothesis as in Proposition 3.3, and in addition,
assume that there exists ty € J such that %M(lo) < u(t) <2u(ty) forallt € J. Let 0 < § < % be arbitrarily
small, and let ng be as in Lemma 3.1. There exist functions Lo = Lo(8) > 0, My = My(5, L) > 0 and
n =, L, M) > 0 such that if L > Ly, M > My and d+(12(t)) < n1 < o, then for all t € J the
functions A(t), u(t), ¢ (t) and b(t) (which implicitly depend on L and M) satisfy

‘ £ _ 1) <5, (3-27)
20(0)log (A (1) / (1))]
: AT A ]'? [z(t)}”z
—b §| —=| |log—= sl —=1| 3-28
@ =bnl= [M(I)] Lol =leo (528
1/2 1/2 1/2 1/2 172
1b(1)| < 4|:M:| 2log & +3|:M:| o M < 5[@} . (3-29)
wu(t) w(t) wu(t) wu(t) wu(t)

Moreover, b(t) is locally Lipschitz and there exists C; = C1(L) > 0 such that

Ib'(1)] < C1/u(t), (3-30)
b'(t) = (8=8)/u). (3-31)

Proof. Since we will take ; < 19, the modulation parameters are well-defined and C! on the interval J.

We also note that by rescaling 1/7(t0) we can assume that % < u(t) <2 on J. Throughout the argument,

implied constants and big-oh terms will depend on the parameters L and M unless stated otherwise.
We first prove (3-27). By Proposition 3.3 we have || gL~ < llgllg < A1/2. Thus,

4M /X
|tz A Q2 | 8) sf/zf |AQ|rdr S .
0

We conclude that
1

2i[log(A/ )|

which can be made smaller than § as long as A /u is sufficiently small compared to L and M. This proves
(3-27).
Now we prove (3-28). From (3-6) we have

(X A Qa | @)l S llogal ™!,

d . p
77 X yaah Qa | 8) = (X yauh Qa1 8) + A (i A Q| AQy) — W (XA Qx| AQy)

/ / /

Ao
- I(XMWAOAQA lg)— (ﬁ + ﬁ>< XA 0ilg). (3-32)
Since |[AQ| <r 7,
2M\Jip 2M /%
/ |AQA|2rdrA<J/ rldr <1.
o N

Thus,

VAR

o0
”/ Xyl AQulPrdr =2 / |AQ;1Prdr + 0(\) =21 [log(A /)| + O (A'/).
0 0
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We now show that the remaining terms on the right-hand side of (3-32) are < [log A|'/?A!/2 for all L
and M large and A/u sufficiently small compared to L and M. Since we are assuming % <u<2 we
have by (3-9)

AU 1r 1r
WOy A Qo | AQu) S W/ —=1Q,(r/W)| == 10, (r/w)|r dr
0 A X e
<a1e /‘”M r/p) _r?
~ 0 1+@/M)21+r2

12/4M\/X )"2 r 3
<AV dr <232,
~ 0 AMtril4rr ™

Thus, the third term in (3-32) is < kl/zllog A|'/2. For the fourth term, we have

/

A
o Xmyma oA Qs | 8)‘ SIVgl Lo Ao A QL S MiXgpry iAo AQllLr

Now AgAQ =4r/(147r?)* so
I Xapt) vz D0A QN S 1.
Thus,

/

A
— (ot hoA O | g>‘ < h < A2 log a2,

For the fifth term appearing in (3-32), we have

2MJAn 3 4M /N
KA XM o AQA|8)|§||8||L°°/ |AQxlrdr S A / AQ|rdr < A
" - M/ T B M/(2V2)

By (3-8) and (3-9) we conclude that for all A sufficiently small depending on L and M

)\‘/ ,LL/
‘(ﬁ - ﬂ)(AXM\/mAQA | g>‘ SAE < log 2.

From (3-32) and the previous bounds we conclude that

/ d .
123 10g(h /1) = & Otar D 01 1) + (ar i Qs | &) < 212 log . (3-33)

By (3-8) and (3-9)

%M log(A/p) =21 log(h/p) + 2N — p'2) /1 = 21" Tog(A /) + O (01/?).

From this estimate and (3-33) we obtain

10"+ (XA Qx| )] < A ?[log A2, (3-34)
Recall that
b(t) :=—(x A Qnl8) — (&1 A(N)g).
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By (3-3) and Lemma 3.7 we have
(g 1 AW S gl 2l Ao gl 2 S Mg, I, S & < AV [log A/,

This estimate and (3-34) imply
¢ bl < A2 |log A|"?

for L and M large and X/ u sufficiently small depending on L and M. This completes the proof of (3-28).
To prove (3-29), we argue as above and obtain

6O < llxp iz A Qull2 18 [l — O () = [21og(%/w) + O3, 2 — O(N).

By (3-5) we have
13, (D13 < 16(A /1) +0(3).

The previous two estimates combined yield (3-29).

We now turn to proving (3-31) and (3-30). By approximating the initial data 1;(1‘0) for some #y € J by
smooth functions and using the well-posedness theory, we may assume that 1/7(t) is smooth on J. We
differentiate b(¢) and use the formulae (3-6), (3-7) to obtain

/

A
b'(t) = Xl Ao A Q111 8) = Xar A @1 1 8:8) = (38 [ Ao(M)g)

)\’/ . . }\’/ / .
—5 (8l 10, A0(M)g)—(g | Ao(K)azg)Jr(ﬁJr;—M) (AxmyinhQal8)

/

1 1
= I(XM\/E[AOAQ]A | g)—<XMmA ) 33g+;3rg—r—z(f(Qx—Qu+g)—f(Qx)+f(Q,L))>

/

o (8128 A0(M)g)

/ /

A
—(& 1 AME) —1" (g | AW AQs)+1/ (£ Ao(?»)AQu)Jr(ﬁJr;—M) (Axmyiuh @il 8)

1 1 A
—<338+;3rg—r—z(f(Qx—Qu+g)—f(Qx)+f(Qu)) ‘ Ao()»)g>—

We first discard those terms which are < 1 as long as L > 0 is sufficiently large, M > 0 is sufficiently
large depending on L, and A/u is sufficiently small depending on L and M. Consider the last term
appearing above. Here we will choose the size of L. For some absolute constant C, > 0 we have

1A Xy i AQulle < Co. (3-35)

If C is the constant in (3-8), then we choose L > 0 large so that
8
80CCy(log L) ™'/? < —. 3-36
2(log L)/~ < 100 (3-36)
Then by Cauchy—Schwarz, (3-35), (3-5) and (3-36), we conclude that

A |A/ 2C (log L)~'/2)1/2

. | .
x(AXM\/mAQA 1 8)| < T||AXMWAQA||L2 gl <

b
Cr4001? < —
A 100
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as long as A/u is sufficiently small. Similarly, we have

w : I\ . _1/2,1)2 2 _ 8
;(AXM\/HAQA [8)] < T||AXMNAQA||L2 gllp2 <4Ci(log L) /“A77C401 /7 < 100

as long as A/u is sufficiently small. Thus, the last term above can be made < §/100. We now consider
the first and sixth terms appearing above. By Cauchy—Schwarz and the fact that AgA Q € L2, we have

A ) Mo
S0 =Xz A0 A Q1 | g)' S S 18l 1 A0 A Q22w ya7my S IAA QI 2> My K 1.

Then the first term and the sixth term combined yield
A . . ' . .
Xyl AoA QL] 8) — M1 AMAQ,) = S ([A0AQL[8) — A (g1 AW A Q1) +o(1)

/

=5 ([AoA Q] — Ao(M)AQ; | §) +o(l),

where the little-oh satisfies |o(1)| < 1 as long as L > 0 is sufficiently large, M > 0 is sufficiently large
depending on L, and A /u is sufficiently small depending on L and M. By (3-22)

V]
A

as long as ¢y is sufficiently small. We conclude that

{[A0A QL — Ao A Qs | €)1 < CAV21 8l 2 I[A0A QL — Ao(M A Qall 2 Seo K 1,

/

A
5yl AoAQly | g) =2 (g1 AMAQL)| < L.

Since (19;.49(1)) : H — L? is bounded, we have that the fourth term satisfies

/

Ao . .
— (&1 G A2)| S 27l DI, SA17 < 1.

Via (3-18) the fifth term appearing above vanishes:
(&1 Ao(1)g) =0.
Finally, since % < u <2 we have

'l . )
» 1 1 AoMAQ ) ST I8l SA k1.

(& 1 Ad(MA Q)| =

We now introduce some notation. Until the end of the proof, we write A ~ B if A = B up to terms
which can be made < § as long as L > 0 is sufficiently large, M > 0 is sufficiently large depending on L,
and A/ is sufficiently small depending on L and M. We have shown so far that

1 1
b'(t) ~ —<XMWA Q| 37g+ “Org = Q= Qutg)— Q)+ f(Qu))>

1 1
- <3ng + 08— r—z(f(Qx —0u+8)—f(Qn)+ f(Qu) ' Ao()»)g>- (3-37)
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We now choose the size of M > 0 (depending on L). Recall that

»C)\AQA = (—8,, — 18, + LgU)AQk =0.
r r

In fact, since we have the factorization £; = AT A, with A, = —09, +cos Q,/r, we must have
AyANQ, =0.
Thus,
1 f(05)
<XMmAQA g+ “Org =57 —8)=~(Xuymh Qx| A5Ax8)

= —(A(XmyiA Q) | Asg)

1 /
= M—WO(MWAQA | Avg).

Since x 1/u i is bounded by 2 and is supported on the annulus {M /A <r <2M /1 u}, Cauchy—Schwarz
and Proposition 3.3 imply

1 /
< -1y -1/2 < —14-1/2 < -1
—MWI(XMWAQ; LA SM A lAglle Sc M A 7 liglle Se M.
Thus, for M > My(L), the above term is < 1. We conclude that
1 (0
<XMWA 0, |07g+ ;3rg> ~ <XM¢mA Q) 2 8

We now rewrite (3-37) as

1
b'(t) ~ <XM¢mA Q| Z(f(Qr=Qute) — Q)+ f(Qu) - f’(Qx)g)>

1 1
- <3r28 t 08— 5 (J(Qr = Qut8) = f(Qn)+ f(Qu) ‘ Ao()»)g>- (3-38)

We add, subtract and regroup to obtain

1
b'(t) ~ <XMmA Q| Z(F(Qr= Q) — f(Q)+ f(Q,;))>
1
+ <XMWA 0y r—z(f’(Qx — 0 — f’(Qx))g> (3-39)
1
+ <XMmA ) r_z(f(Qk = 0u+8— f(Qn— 0w~ f Q- Qu)g)> (3-40)

1 1
- <3ng + 08— 5 (f(Qa = Qut8) = f(Q1)+ f(Qu) ‘ AO()\)8>~
We now identify the first term above as the leading-order contribution.

(3-40)

1
Claim 3.10. <meAQA 2 (f(Q— Q) _f(QA)+f(Q;4))>:

8
=
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By trigonometric identities
F(Q5— Q) = F(Q3) + £(Q) = 1(sin20;.(cos 20, — 1) +5in 20, (1 — c0520,))
= —sin2Q; sin’ O, +sin2Q, sin® Q;,
= —sin20;(AQ,)* +5in20,(AQ;)>. (3-41)

We show that the first term in the above expansion gives a negligible contribution to the L? pairing on the
left side of (3-40). Indeed, if we set o := A/, then as long as o < 1, depending on L and M,

s1n2Q 1 [2MVim 4 N .
KXMW“AQA A0, )> xfo IAQ.P1AQuI T <g/0 AQ, PIAQI 7T
3 I/ZMﬁ (r/a)z 72 dr
9 Jo (14+@r/0)2)? (14r2)? 1
7 43 WMo 3
S 0[/0 o r dr-i—/a 222 dr} < o[llogo|+logM] « 1.
Thus,

1
i A O 1 (f (@i — Q) — f(Q) + f(Qw)) = <XMmA ) r—z(AQ,x)2 sin2QM>. (3-42)

We now compute

1 . 1 [ . d
<XMWAQA r—z(AQx)zsm2Qu>=X /0 xMﬁ<AQg>3sm2Q7r

1 [ve 5. dr 1 [ 5 . o dr
=—/ (AQs) sm2Q—+—/ Xmyo(AQo)”sin2Q —. (3-43)
A Jo ro Alys r

Since |AQ| < r~! for r large and o ~ A, we have

1 dr 1 dr 1 [
—/ A0, < —f A0, < —/ A0P Y <o 1.
A o 1/o r

Thus, from (3-43) it follows that

1 5 1 (Ve s . dr
—2(AQA) sin2Q,, :—f (AQy)’sin2Q —.
r A Jo r

<X¢mA )

Since o = A/ < 1, on the interval [0, \/o'] we write

1— 2
§in2Q = 4r(1+—:2)2 =4r+0(™). (3-44)

We compute

1 [V dr 4o [V
[ =2 [ agrar
A Jo A Jo

:4_"foo(AQ)3dr—43[ (AQ)3dr—§+0(o)
A Jo YN
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where the integral fooo (A Q)3 dr =2 is evaluated using substitution. By (3-44),

‘1 Vo - dr
—/ (AQy)’(sin2Q —4r) —
)\. 0 r

1 Yo
5—/ |AQ, *r?dr
A Jo

SN
:GT/ A0 dr < o?lloga| < 1.
0
Thus,

1 - 1 (Ve ;. dr 8
—(AQy)7sin2Q, :—/ (AQy(r))’sin20(r) — ~ —.
r A Jo r “w

<XmA )
Combining (3-42) and (3-45) we conclude that
8
XA O | (F(Qr— Qu) — f(Q0)+ f(QW)) = n
as desired.

For what follows, we list the useful identities

A0 =lsn20 =22

-2 - (1+r2)2’

A3Q=2r 1472 —5r* =7 ’
(1+r2)

AoAQ = (rd, + 1)(rd, Q) =2AQ +r%3%Q.

We now claim that the term (3-39) in the expansion of b'(¢) satisfies

1 1 ’ 1/2
‘<XMWAQA r_Z(f Q=0 —f (QA))g>‘ SO/

First note that we have
f1(Qx— QW) — f/(Q:) =sin2Q; sin2Q,, — 2cos2Q; sin® Qy,
=4A? Q3 A Q) — (AQ,)* c0s20;.

By (3-46) and (3-47) we have
’

1472

IAQ|+|A%Q| <

We first estimate

4 2 M 2 20 91
A 0N 08 §||g||L°°X A [AQA ATl IATQpl —

'<XMWAQA
1 (Mo dr
summ;/o AQ11A20,114%01

M) 2 12
§||g||H/ IAQI|A%Qldr <o,
0

2147

(3-45)

(3-46)

(3-47)

(3-48)

(3-49)
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where o = A/u as before. We then estimate

1 o dr\'?
KXMWAQA ﬁ«AQ,L)zcoszQA)gH S ||g||H( fo (AQs)*(AQ)* TF)

> dr\'?
50”2</ (AQG)Z—) <ol
0 r

The previous two bounds along with (3-49) imply (3-48).
In summary, we have shown thus far that

8
b'(r) — ; =~ <XMWA 0,

1
2(f(Qr = Qut8) = f(Qi— Q) — Qs — Qu)g)> (3-50)

1 1
- <3rzg + 08— 5 (f(Qa = Qut8) = Q)+ f(Qu) ‘ Ao()»)g>- (3-51)

We now rewrite (3-50) as

1
<XMmA QA r—2(f(— Qu+QA+g)_f(_QM+QA)_f/(_Qu+QA)g)>

= —<A(A)g

1
r—z(f(—Qu+Qx+g)—f(—Qu+Qx)—g)>

+<A(/\)g

1
r_2(f(_ Out+0i+g)—f(= QM+QA)_g)>

+<A(k)(Qx—Qu)

1
r—z(f(— Ou+ Qx+g)—f(—QM+Qx)—f/(—QM+QA)g)>
+<A(/\)Qu

1
S (f(=QutOutg)—f (= 0u+0)—f'(— Q,L+Qk>g)>

+<XMW(A 0,—AR)05)

1
r—2(f(—Qu+Qx+g)—f(—Q;Her)—f'(— Qu+Qx)g)>-

We remark that we used the fact that x, /5, A(2) Oy = A(X) O, (as long as A/ is small) to obtain the

previous expression. The second and third terms above can be estimated using (3-19) with g1 = Oy — O,
and g, = g:

‘<A(/\)g

1
r—z(f(—Qu +01+8) — f(=Qu+ 05— g)>

+ <A()~)(QA — 0w

<L cos

~

1
r_z(f(_Qﬂ +0i+8)— f(=0u+ 01— f(—=0u+ Qx)8)>‘
which is « 1 as long as ¢ is taken sufficiently small. The pointwise bound

|f(QA_Qu+g)_f(Qk_Qu)_f/(QA_Qu)g|

= LIsin(2Q; — 20,)[cos 2g — 11+ cos(2Q; — 20,)[sin 2g — 2¢1| < Ig|
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and (3-23) imply that the second-to-last line of the above satisfies

<A(k) Ou

1 1
r_z(f(_Qu+ 0,+8)—f(=0,+ 0 — f(—0,+ Qx)g)>’ < ;Hglﬁ{ SAk

Using (3-21) we estimate the last line of the expansion of (3-40) similarly:

1
KXMW(AQA —AR)05) ﬁ(f(— Out0n+8—f(=0u+ 00— f(—=0u+ Qx)g)>‘

SIAQ, — AR Oillr=llghy Speo < 1.

Thus, we have shown that

1
<XMmA QA r—z(f(— Ou+t0i+8)—f(=0u+00)— f(=0u+ Qx)8)>

~ —<A(A)g

1
2+t - f(=Qut+ 00— g)>,
which by (3-50) implies

8
b'(t) — — =~ —<«4(k)g
n

1
ﬁ(f(—QuJr Or+8) — f(=Qu+ 0 —g)>

1 1
- <3r2g + g = S (f(Qr = Qut8) = f(Q0)+ f(Q) ‘ Ao(/\)g>- (3-52)

We now consider the line (3-52). By adding and subtracting terms and (3-20) we have
1 1
—<3r2g + ;arg - ﬁ(f(Qx —0u+8— f(Q0+ f(OW) | Ao()»)g>

= —<«40()»)8

1 1 1
07g+ ;8rg - r—28> + <Ao()»)g r—z(f(Qx -0 —f(Qn+ f(QM))>

+ <A0(A)g

1
5@ Qut8) = (0= Q) — g>>

€0 2 1 [* 2, 1
Z_Tllg”H—i_x ; (3-8) +r—2g rdr+{Ay(\)g

1
2 (@ = 0w — f(QV + f(Qu))>

+ <Ao()»)g

1

S(f(=0u+ O+ + f(=0u+ 01— g)>,
’

where R is defined in the statement of Lemma 3.7. From (3-41) we have the pointwise estimate

|£(Q5— Q) — f(Q3) + FOII S (AQD*AQ) +AQL(AQ,) .

By Lemma 3.7, Ao\ gllz2 < llgllg and Ap(A)g is supported on a ball of radius C RA. Thus, the third
term in the second-to-last line above satisfies

1
‘<Ao()»)g ﬁ(f(QA — Q) — f(Q)+ f(Qu))>’

CRo d 1/2 CRo d 1/2
SllgllH[</0 r‘2<AQa)“(AQ>ZTr> +</0 r—2<AQ)4(AQU>27r>]

Slela SA? <« 1.
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Thus,
—<A<x>g ’ L0t 040 — (- 0ut 0 - g>>
- <83g + %arg - r%(f(QA — 0u+8) — O+ f(Qu) ‘ Ao(x)g>
-1 / “ <<arg)2 4 ig2>rdr
A Jo r?
+ <(«40()») — A)g ‘ :—2<f<— Qu+ Qi +8) — f(—Qu+ Q1) — g>> +o(1). (3-53)

The difference Ap(A) — .A(X) is given by the operator of multiplication by
1 ¢, (r AT
(0 (5)+ 50 (2)

1
<(«40(?») —AM)g ’ 2+t - f(=Qu+ 00— g)>

By (3-24) we have

1 1
= / = (f(Q) — 1)g*dr + O(cor), (3-54)
0 r

where ¢g > 0 is as in Lemma 3.7.
The estimates (3-52), (3-53) and (3-54) combine to yield

/ 8§ 1 [® 2, 1 L1, 2
b'(t)——=— (0r8)"+ 8" |rdr+ — - (f (@) —Dg"dr +o(D).
nw - Ao r AJo 1
The orthogonality condition (2, | g) = 0 implies the localized coercivity estimate,

RA 0
1/ Or8) + g rdr+1/ Lo —netdr = =1l
)\‘ 0 }’g 7"28 )\‘ 0 }"2 A g - )\‘ g H>

see [Jendrej 2019, Lemma 5.4, equation (5.28)] for the proof. The constant ¢; > 0 appearing above can
be made small by choosing R sufficiently large. Since || g ”%1 < A, we conclude that

8 ) )

P(t)——>—2>—=

2 2 2
as long as L is sufficiently large, M is sufficiently large depending on L and A /u is sufficiently small
depending on L and M. U

From Propositions 3.3 and 3.9 we now show that, roughly, if the modulation parameters are approaching
each other in scale, then the solution to (1-4) is ejected from a small neighborhood of the set of two-bubbles.

Remark 3.11. We now fix the parameters L and M used in the definition of ¢ () for the remainder of the
section. In particular, we fix L = Lo and M = M large enough so that the estimates in Proposition 3.9
hold for

_ 1
8_2020’

whenever d(tZ(t)) < n1 =n1(Lo, Mp) < no.
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Proposition 3.12. Let C > 0. Then for all €y > 0 sufficiently small and for any € > 0 sufficiently small
relative to €g the following holds Let () : [Ty, T) — Ho be a solution of (1-4). Assume that ty € [Ty, T+)
is so that d(w(to)) <eand L & @)/ @)=, = 0. Then there exist t; and t, To <ty <t <1 < Ty,
such that

d(xZ(t)) >2e fort €l[t, ], (3-55)
dW (1) < tey fortelt.nl, (3-56)
d(§ (12)) > 2¢0, (3-57)

/ N O di = C / VA @) dr. (3-58)

n
If we assume that %({ @)/ (1)) 1=1, < 0, then analogous statements hold with times t, < t; < 1.
Proof. The proof is along the lines of Proposition 3.10 from [Jendrej and Lawrie 2018]. From (3-4), (3-27)

and Remark 3.11, it follows that if €1 > 0 is sufficiently small and ¢ (¢)/u(¢) < 4€;, then the estimates in

Proposition 3.9 hold with § = in a neighborhood of #y. In particular, we have

1¢@ _ A0 ) A@) | C@)

- < 0 < )

du) — p@| T p@ | u@)
Let #, be the first time #, > #y such that £(#;)/ut(¢2) = 4€;. If there is no such time, we set t, = T.. Define

2020

(3-59)

f(x) = x[log x|,

which is smooth and increasing on (0, 100¢;) for €; sufficiently small and satisfies lim,_, o+ f(x) =0
Then (3-59) becomes

160 _ (A(D) _ 50 (3-60)

4y~ \p@)) T u@

Then if t, < T4 we have f(A(f2)/un(t2)) > €1, which by (3-4) implies (3-57) by taking €y comparable to
f~!(e1). By the scaling symmetry of the equation, we can assume that j(fo) = 1. Let t3 <, be the last
time such that u(z) € [% 2] for all ¢ € [ty, t3]. If there is no such final time we set t3 = t,. We will see by
a bootstrapping argument that we can always take 3 = t, and that r, < 7.

By Remark 3.11 and by taking €; small enough, we have by (3-31)

b'(t)>1. (3-61)
We also obtain from (3-28)
£'(6) = b(t) =)',

Consider £(t) := b(t) + ¢ (¢)'/?. Using the two inequalities above we obtain
E0) = 143500720 -2 =3¢ 2@ + ¢ = 5007 E@).
By (3-29) and the fact that u(¢) € (E’ 2), we conclude that

E£(t) < 10¢(t)'/2. (3-62)
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Let
E():=bt)+1c)'P=1b)+3e) =£1) - S/

Since b'(t) > 0, we have
E(0) =58 0) = 120 PE@) = 300 PE (). (3-63)
Since (7)) = 1, we have 0 < %()\(t)/,uv(t))ltzt0 ={'(ty) — ¢ (to) ' (1), s0 (3-9) and (3-27) imply that

¢'(to) = —4¢(to)'/* as long as € is taken small enough. This fact and (3-28) gives b(fy) > — 3¢ (1) /%, so
&1(to) > 0 and (3-63) yields & (¢) > O for all € [tg, #3]. Thus

E(t) = 3¢(0)? fort €1y, 13]. (3-64)
This lower bound along with &'(¢) > %{(t)_l/zé (t) imply
HOES? (3-65)

By (3-62) we see that ¢ (¢) and thus A(¢) is far from 0 on [7g, #3].

The bounds (3-62), (3-60) and (3-4) imply that there exists a constant g such that &(z) > 40[ f (erpe)]'/?
forces d(lZ(t)) > 2e. Let t; € [ty, 3] be the last time such that £(¢)) = 4O[f(ozoe)]l/2 (set t; = t3 if no
such time exists). Then by (3-64) and (3-60) we have

[f () /u@)]V? < c()Y? < 80 f (ape)]/*  for t € [19, 11],

which yields (3-56) if € is small enough.
We now claim that u(t) € (%, 2) for all ¢ € [ty, 7] and that r, < T.+. Recall that on [7y, #3] we have
&'(r) > 0 as well as

' <26 <200, E'@) = LT VEE®),  ¢(t) < 8er.
Thus, by (3-9)

/ Wlde < f 0\dr < f e dr < / 02 dr < Ja/ E(dt < Jatn) e

where the implied constant is absolute. Thus, we get (#3) € [% %] if €1 is small enough, which implies that
t3 = 1. Now suppose that there is no t, > g such that £ (#2) /. (#2) = €;. Then, since ¢ (¢) (and hence A(¢))
is far from 0, by [Struwe 2003] the solution is global and (3-65) implies that £(¢) is eventually O(1).
Thus ¢(¢) is eventually O (1), which contradicts our definition of #,. This implies that there exists #, < T
such that ¢ (t)/1(t2) = €1, which implies (3-57) by choosing €, comparable to f~'(¢;).

By (3-28) and (3-29) we have |(¢)| < |¢(¢)|. Thus, there exists an absolute constant oy > 0 such that
() > %61 for t € [t —ay, t2]. Since ¢ (1) < f(ape) on [t, t1], we must have t, —t; > o if f(ope) K €.
Then (3-61) yields

b() = b(t)) +o; > b(ty) +a; forrt et, ).

Thus, if € is small enough, we get

b(t) > Jay, teln, bl (3-66)
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By Proposition 3.3, the Cauchy—Schwarz inequality and the definition of b(¢) we have
b(6) < llog A2 [1g ] 2.

Since A(t) < ¢(t) < 8¢ on [1y, 1], we conclude that there exists an absolute constant oy > 0 such that
on [fo, 12]

172

1b(1)| < azlloger|/711&]l L2 (3-67)

Integrating, from #; to #, the lower bound (3-66) and using (3-67) we obtain
3

15 5]

Lo | b PRdr <ddlioge] | 180112, dt

4=/ = oy |logeg t 8 12 at,
1 1

which implies
3 15

. f 13w (1) 2, . (3-68)
da;|log €| f

Recall that on [#g, 1], we have &'(¢) > }L and |E(t)| + ¢ ()2 < Jeap|log ape|, where o is an absolute
constant. Thus,

flw(&(t))drs/l\/z(r)drsf1\/;<T>s/<t>dt§Jellogdfls/<r)dt§e|loge|,

where the implied constant is absolute. This estimate and (3-68) imply (3-58) after choosing € sufficiently
small. O

4. Dynamics of nonscattering threshold solutions

In this section we prove the main result, Theorem 1.7. We will obtain it as a consequence of the following
proposition.

Proposition 4.1. Let ¢ (¢t) : (T, Ty+) — Ho be a corotational wave map with 5(1}) = 28(@) which does
not scatter in forward time. Then

lim d( (1)) =0.

As a first step, we state a direct consequence of Theorem 1.3.

Proposition 4.2. Let 1}(1‘) 1 (T—, Ty) — Hg be a corotational wave map with € (1}) =2 (é) which does
not scatter in forward time. Then
liminfd (¥ (1)) = 0.
t—T,

4A. Proof of Proposition 4.1. Using the results from Sections 2 and 3, the proof of Proposition 4.1 is
identical to that of the corresponding statement, Proposition 4.1, for higher equivariant threshold solutions
from [Jendrej and Lawrie 2018]. Therefore, we will sketch the main ideas of the proof and refer the
reader to Section 4 of [Jendrej and Lawrie 2018] for complete details. For the remainder of this section,
we will always denote by ¥ (1) a solution to (1-4), ¥ (1) : (T_, T;+) — Ho, such that £(¥) = 2£(0Q) and
@(t) does not scatter in forward time.
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We argue by contradiction. By our preliminary step Proposition 4.2, we know that d (1/7(t)) tends to 0
along a sequence of times. If Proposition 4.1 were false, then using Proposition 3.12 we split the maximal
time interval of existence into a collection of bad intervals where 1/7(t) is close to the set of two-bubbles,
and good intervals where 1/7(t) is far from the set of two-bubbles. A defining feature of these intervals is
that the integral of [d (J(t))]l/ 2 on a given bad interval is controlled by a small constant times the integral
of |0, ¥ (¢) ||i2 on neighboring good intervals; see [Jendrej and Lawrie 2018, Lemma 4.6]. On the union of
good intervals which we denote by I, we use Lemmas 2.2 and 2.1 to show that the @(t) has the following
compactness property: there exists a continuous function v(¢) : I — (0, oo) such that the trajectory

K= @ |t €l)

is precompact in Hp; see [Jendrej and Lawrie 2018, Lemma 4.8]. Solutions with the compactness property
do not radiate energy, and thus we expect that such solutions are given by rescalings of stationary solutions
(harmonic maps). If this intuition is correct, we arrive at a contradiction since the only degree-0 harmonic
map is the constant map, which has energy equal to 0 # 8x.

To prove that a solution with the compactness property on the union of good intervals is stationary, we
will use the virial identity. Integrating (2-2) from ¢t = 7 to t = 1, yields

T

/ 19 ()17 dt < 13 | xrrd ) @)+ K0W | xrrdr¥) (1) +/ QR ()] dt,

T T

where the error 2 R(x]f (t)) is given by (2-3). By Lemma 2.5, we obtain

/ 13,9 (D112, dt < Co(RVAW (1) + RVA(Y (1)) + / 1k (1)) dt.

T1 71
We then show that by the defining feature of the good intervals and by choosing the parameters R, 7, 7o
appropriately, we can absorb the error term involving 2 R(t}(t)) from the right-hand side into the
left-hand side; see [Jendrej and Lawrie 2018, Lemmas 4.9, 4.11, 4.12]. The resulting averaged small-
ness of ||8tw(t)||i2 and the compactness property allow us to conclude that J(t) = 6, our desired
contradiction. [

4B. Proof of Theorem 1.7. We first use Proposition 4.1 to prove zz(t) converges to a pure two-bubble or
anti-two-bubble as t — T',. Let € > 0 be sufficiently small. By Proposition 4.1 there exists a Ty € (T—, T};)
such that

d(Wr(t)) <e forallt>T,.

We further assume that € < o, where «y is the constant from Lemma 2.3. Towards a contradiction, assume
that J(t) alternates between being close to a pure two-bubble and anti-two-bubble, i.e., that there exist
t1, tp = Ty, t; < tp, such that d+(1Z(t1)) <eandd_ (17/(1‘2)) < €. By Lemma 2.3 we have d+(1/7(t2)) > o
and d_(1/7(tl)) > o. By continuity there exists #y € (¢1, t2) such that d (@ (t9)) = d_(gfr(to)). But then
again by Lemma 2.3, we conclude that d (1} (t9)) = d_(IZ(t())) > aq > €. This contradicts our definition
of Ty, which proves the desired convergence. Without loss of generality, we assume that d+(1/7(t)) —0
ast — Ty.
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We now prove finite time blow-up and asymptotics of the scales. By taking Ty larger if necessary, we
may assume that

d.(y (1)) <e forallt>Tp.

We note that as long as € > 0 is sufficiently small, the modulation parameters A(¢) and w(¢) are well-defined
on [Ty, T+), and by Lemma 3.1

V(1) = Qnin + Qu(z) +oy,(1) ast— Ty.

Let €p > 0 and choose € smaller if necessary so that the conclusions of Proposition 3.12 hold. Let £(¢) be
as in (3-26) with L and M chosen as in Remark 3.11 so that ¢(¢) ~ A(¢)|log A(¢)/u(t)|. By rescaling if
necessary, we can assume that w(7p) = 1.

Since d+(1Z(t)) — 0 as t — T4, there exists a sequence of times 7, — T such that

=t \ (1) )

dt
Then there exist times #| <ty =: 1, and #, < #; satisfying the conclusions of Proposition 3.12. By our

choice of Ty and (3-55) we have #; < Tj for every ty = 1,,. From the proof of Proposition 3.12 we recall
that u(z) € [% 2] on [Ty, 7,], and the function

£ty =—b0)+¢(0)'?
satisfies for all ¢ € [Ty, 7,]
() <26() <2002, E' (1) < =307 P0EW). (4-1)
Since 7, — T4, these same bounds hold on [Ty, Ty). From (3-4), (3-29), (4-1) and the fact that
d+(1z (1)) > 0 ast — T4 we can conclude

£(t)—0 and &(t)—>0 ast— T,.

From (4-1) we see that &(¢) is positive on [Ty, T'+) and satisfies &'(¢) < —Alf. Since £(¢t) > Oast — Ty,
we conclude that 7, < oo, which proves finite time blow-up.
We now turn to the asymptotics of the scales. The estimates (4-1) and (3-9) imply that

T, T, T, T, T,
/ Wldt < | c@o'?dr< | ewdts | co'F(—g@ndt < | (- @)dt S 1.
To To To To To

Thus, w(t) converges to some wg € [%, 2]. For the decay of A(t), we first recall that by (4-1) we have
&’(t) < —1. By Proposition 3.3, we see that

EOIS IO+ 1ol S 1.
Thus, there exists C > 0 such that
—C<&(@) < —% forall t € [Ty, Ty),
which implies

é(n 1) <E(t)<C(Ts—1) forallr e [Ty, Ty).
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Since £(t) ~ ¢ ()% ~ [A(t)[log A(1)|]/? on [Ty, T,.), we conclude that

A log h(t)| ~ (T —1)* ast— Ty
as desired.
Finally, we show that @ scatters backward in time. Suppose not. Then —oco < T_ < Ty < oo, and
fTTj vd (12/ (t)) dt < oo by what we have shown up to this point. The virial identity (2-2), (2-4) and the
fact that d (@(t)) — 0 as t — Ty imply that

T, T,
/ ||8t1//(t)||%2 dt§/ |Qr((@))|dt forall R > 0.
T T_

For all t € (T_, T), we have |Qg(¥ (1)) < CovVd (¥ (t)) € L'(T_, ;) and limg_ s Q& (¥ (1)) = O.
Thus, by the dominated convergence theorem

T,
f 13,9 ()]I3 > dt = 0.

We conclude that & is a degree-0 harmonic map, i.e., 1} = (0, 0). This contradicts £ (1}) = 8m and finishes
the proof. U

5. Construction of a minimal blow-up solution

S5A. Proof of Theorem 1.6. Let T > 0 be small (to be determined later). We define a function £(t) :
[0, T) — [0, co) implicitly by the relation

L@lloge(n)| =21>, 1€(0,T),
with £(0) = 0. By elementary calculus it is easy to see that £ € C°*°(0, T'), £ is increasing on [0, T') and
¢(llog ()| = 4t[1+ O(llog £(t)| 1.

In particular, this implies that

£(1)
()

= 3t[1+ O(llog £(1)| ™M1, (5-1)

£(t)
(€' (1))?|log £(1)]
Let ¢, be a sequence in (0, 7') which is monotonically decreasing to 0. We define a sequence of initial

=4+ O0(lloge(t)|™"). (5-2)

data at time ¢t = 1, via

1//0,;1 = Qz(ln) - Q’
Yig = —E/(tn)AQMX\/m’

where x is now a sharp cutoff, x(r) =1forO <r <1 and x(r) =0 for r > 1, and R, > 0 is chosen so
that

EWon Y1) =26(0).

We first show that R, exists and that R, + R, ! is bounded.
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Lemma 5.1. For T > O sufficiently small, for all n there exists R, > 0 such that the pair of initial data
(Yo.n, ¥1.0) defined above satisfies E(Yo.n, Y1.0) = 2E(Q). Moreover, there exists R > 0 such that

1

Proof. We expand the nonlinear energy and obtain (see Section 3 of [Jendrej and Lawrie 2018])

28(Q) =EWon, Y1)

* *© dr dr
=260+ [ wtrar-4 [T 80000 L2 [T a0 PO
0 0
so that
o dr 2 dr
/ Yiardr =4 / AQu)(AQ)* == / (AQe,))*(AQ)* = (5-3)
0 0
By a change of variables, the left side of (5-3) is readily computed to be
VR J7n 1
dr = (l'(t, A dr =2 (t,))"| log( 1 —1]. (54
[t =wapr [T inorrar =22 og(1+ 5 )+ 1 1 69
For the right side of (5-3), we first consider the expression
00 dr fOO r3
4 AQs(AQ) &= =64 d
/0 O (AQ) " m=0d0 | a4y
o r3 0 r3
=64 dr + 64 dr,
“fo @A+ T "/a @2+ +r2p
where for brevity we have set o = £(¢,). Now
o 1"3 o 5
dr < rdr <o,
0 (O’2+I"2)(1+}’Z)3 0
Since
L o’
o2 +r2 12 (02422
we have
o0 1”3 o) r 5 o0 r
dr = ———=d d
/U @+ 1+ / (a2 e / 23+
=1+ 0(?logo)).
We conclude that
o
d
4 / A Qe (AQ)* T = 16€(1)[1 + O (E(1)* log £(t)D]. (5-5)
0
By a similar argument we also obtain
o0
d
| @0 r@or & < e iog e (5-6)
0

Combining (5-3), (5-4), (5-5) and (5-6) we obtain

1o (1+ R )+ ! 1= 38 o og ()]
T ) T Rt T @Wan)? m) 108 )V
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Thus by (5-2)

— 1= [log £()[[1 + O([log £(t,)|~H)]. (5-7)

R,
log(l * é(m)) TR

The function f(x) =log(1+x)+ 1/(1+x) — 1 is continuous, is equal to 0 when x = 0 and tends to oo
as x — oo. Thus, by the intermediate value theorem and as long as T is sufficiently small, there exist R,
satisfying (5-7) for all n. From (5-7) we see that R, /{(t,) — oo as n — (0. Rearranging the previous
expression yields

loan:1—10g<l+£(tn)>— +0().
Ry 1+ R, /()
Since R, /€(t,) — oo, the right side of the previous expression is bounded. U

Let 1}" (t) denote the solution to (1-4) with initial data J,, (tn) = (Yo.n, ¥1.n). We remark that the
previous computations yield

1W1all72 = 16£@6)[1 + O (E(ta)*|log £(t)])]. (5-8)

Therefore, as long as T > 0 is small, for all 7 in a neighborhood of 7, the modulation parameters A, (¢)
and ., (¢) are well-defined for 1},, () and

An(tn) = L(tn),  pn(ty) = 1.
If we set g, (1) := ¥, (1) — (Qx, (1) — Ou,)) and g, () = 9;v,(¢), then
gn(tn) =0,  8n(ty) = — () A Qe X R0

Let ¢,(¢) and b, (¢) be defined as in (3-26), (3-25) for each l/_}n; i.e.,

En (1) = 22, (D) 10g(An (1) / n )| = (Xt 7, D DA Qo) | 80 (1)),

bu () := =iy i@ DA Q) | &0 (1)) = (€n (1) | Ao(An (1)) gn (1))
Corollary 5.2. As long M > 0 is sufficiently large we have

bu(ta) = 81x[1+ O(llog £(1,)| ™).

Proof. Let M 2 be larger than R given by Lemma 5.1. Then by (5-8) and (5-1) we have

A 1 2 16[011) 2
bn(tn) = _<XM\/WAQM | gn(tn» = g,(—t)llwl,n(tn)“LZ = Z/(l‘ ) [1 + O(E(tn) |10g£(tn)|)]
=20 (ty)log £(t,)|[1 + O ([log €£(t,)| ™)1 = 81,[1+ O (Jlog £(2,)| ™ H]. 0

Let L=Ly>0, M =My >0 and n; > 0 be chosen so that the conclusions of Proposition 3.9 hold
with § = ﬁ and so that the conclusion of Corollary 5.2 holds. Let

T = sup{t elt,, T]| &n(s) exists, d+(lzn(s) <1y, and u,(s) € (%, 2) for all s € [¢,, t]}.

We will show that 7, = T as long as T is sufficiently small.
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Let ¢ € [t,, T!]. By (3-28), (3-29) and our assumption on /i, ()

n

t t t
(1) = u(tn) +f h(s)ds < La(ty) +/ (b ()] + ¢ (s) 21 ds < &u(tn) +6/ ()2 ds.
tn th th
Thus,
Ca(t) < 20,(1,) +36(1 — 1,)°.
Since &, (t,) = 2£4(t,)|log £(¢t,)| = 4t,%, we conclude that

Ca(t) < 1482 (5-9)
Then by (3-27)
A (D) [log A ()] < 7512 (5-10)

We now consider u,(¢). By the fundamental theorem of calculus, (3-9), (3-27) and (5-9) there exists an
absolute constant 8 > 0 such that

| (1) = 1] < B
By (3-3), (5-10) and our assumption on u, there exists a constant o > 0 such that
190 (0) = (D, 0) = Quupe) Iy, < et (5-11)
In summary, we have shown that
dn(Olog dn (D] TS5, () — 11 < B2, de (P (1)) < (a+150)1°.

By a continuity argument, it follows that 7, = T provided that 1/7,1 () is defined on [f,, T]. We now prove
this fact.
Let t € [t,, T,]. By Corollary 5.2 and (3-31) we have

ba(t) = 5(8 = 535) (t — 1) + 811 + O(llog £(t,)| ™)1 = 3(t — 1) + 51, = 31 (5-12)
By (3-28), (5-12) and (5-9) we have

6 (6) = by (1) — st 2(1) = 30 — B8 > 21,

By the fundamental theorem of calculus we conclude that

Ca(t) = Cn(tn) + 12 — 12 =42 412 — 12 > 12,

By (3-27), the previous inequality implies that

n(D)[log An (1)] = 527 (5-13)
The estimates (5-13), (5-10) and (5-11) imply
: - _ _ 2 2 _
it () = (0= QIR S ar (5-14)

Alog Ale[r?/3,75¢%]

on [t,, T!]. By Corollary A.4 of [Jendrej 2019] we conclude that the interval of existence of 1},1 strictly

n
includes [t,, 7] as long as T is small. Thus, we have proved that 7, = 7.
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The bound (5-14) also implies that we may pass to a weak limit and obtain our desired blow-up solution.
Indeed, for any Ty < T
inf 1V (t) — (Qx — QI3 <aT? forall s € [Ty, T1, for all n.
well/2,2] 0
Mlog Mle[TE/3,75T?)
By Corollary A.6 of [Jendrej 2019] we can conclude, after shrinking 7 and extracting subsequences if
necessary, there exists a solution 1}6 (t) defined on (0, T'] such that 1;,1 (1) =, 1}6 (t) forallt € (0, T]. By
weak convergence and (5-14)
inf Y0 = (@ — QW5 <o’

nell/2,2]
Allog Ale[t?/3,75¢%]

Thus, iﬁc is the desired solution with blow-up time 7_ = 0. U
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