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Motivated by the increased interest in modelling
non-dissipative materials by constitutive relations
more general than those from Cauchy elasticity, we
initiate the study of a class of stretch-limited elastic
strings: the string cannot be compressed smaller than
a certain length less than its natural length nor
elongated larger than a certain length greater than its
natural length. In particular, we consider equilibrium
states for a string suspended between two points
under the force of gravity (catenaries). We study the
locations of the supports resulting in tensile states
containing both extensible and inextensible segments
in two situations: the degenerate case when the string
is vertical and the non-degenerate case when the
supports are at the same height. We then study the
existence and multiplicity of equilibrium states in
general with multiplicity differing markedly from
strings satisfying classical constitutive relations.

1. Introduction

In a series of intriguing papers [1-4], Rajagopal argued
that elastic bodies should be defined as bodies incapable
of dissipation and gave a wide class of implicit
constitutive relations consistent with this definition. This
class is larger than the constitutive relations found in
standard Cauchy elasticity where stress is a function of
strain. In particular, it includes the simple case of the
strain expressed as a function of the stress, which appears
more consistent with Newtonian causality than standard
constitutive relations since force causes displacement.
Implicit constitutive relations have found a wide range
of applications in the modelling of electro- and magneto-
elastic bodies [5,6], fracture in brittle materials [7,8], gum
metal [9] and many other materials (see [10] for further
references).
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However, we are unaware of implicit constitutive relations being used in the theory of
perfectly flexible one-dimensional elastic bodies moving in three-dimensional space: strings. The
configuration at time ¢ of a finite-length elastic string is given by a non-degenerate curve in
three-dimensional space, [0, 1] > s > (s, t), satisfying the balance of the linear momentum,

(IOA)(S)TH(S/ t) = nS(S/ t) +f(S, t)/
where (pA) is the mass density, f is the body force density and n is the contact force given by

rs(s, t)
|rS (S/ t)l ’

n(s, f) = N(s, t)

where N is the tension. Similar to standard treatments of three-dimensional elastic bodies, in
classical treatments of elastic strings, the system of equations is closed by expressing the tension
N as a function of the stretch v := |rs| via

N(s, ) = N(v(s, 1), 5).

Classically, it is assumed that the tension increases if the stretch increases (and, thus, the relation
between tension and stretch is invertible) with infinite compressive force associated with zero
stretch and infinite tensile force associated with infinite stretch (see for example [11,12] for more
details). In particular, these relations allow the possibility of compressing a string to an arbitrarily
small length or elongating a string to an arbitrarily large length. In this work, we initiate the study
of a new class of stretch-limited elastic strings. For these elastic strings, the stretch is expressed as
a non-decreasing function of the tension,

v(s, t) =D(N(s, t),s), »(0,s)=1,

but not vice versa, and the string cannot be compressed smaller than a certain length nor
elongated larger than a certain length regardless of the magnitude of the tension: there exist
0<vp<1<v;suchthatforall NeR, se[0,1],

ﬁ(N,S) S [VO, Ul].

See §2 for the precise formulation and assumptions.

We consider a simple setting for stationary stretch-limited strings: a string suspended between
two supports under the force of gravity (catenaries). The study of inextensible and extensible
catenaries has a rich history going back to Galileo with contributions by the Bernoullis, Huygens,
Leibniz and many others (see [11] for a brief history). In this work, we first explicitly classify
the support positions for which tensile catenaries (N > 0) contain inextensible segments (where
the stretch is maximized) in two situations: the degenerate case when the string is vertical and
the non-degenerate case when the supports are at the same height (see proposition 3.2 for the
degenerate case, and propositions 4.2 and 4.3 for the non-degenerate case). We then turn to the
study of existence and multiplicity of stationary states for given points of support. It is simple
to show that tensile states exist and are unique, as in the case of standard constitutive relations
considered in [11]. In the same work, for standard constitutive relations, Antman [11] also proved
that given two points of support less than one unit of reference length apart, there exist multiple
compressed states (N < 0) as long as the mass density is small. By contrast, for stretch-limited
strings we prove that if the distance between supports is less than the minimal length of the
string, then there exists a unique compressed state, as long as the mass density is small (see
proposition 4.5). We comment that, although compressed states are unstable within the theory of
elastic strings, they may play a more prominent role in a theory of rods with implicit constitutive
relations (a topic we intend to pursue) where their concave graphs model moment-free arches.
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2. Stretch-limited strings

(a) Kinematics, equations of motion and constitutive assumptions

Our general formulation of elastic strings follows the standard treatment due to Antman [11,12].
Let {i,7, k} be a fixed right-handed orthonormal basis for Euclidean space E3. Let s € I, where I
is the interval [0, 1], [0, o) or (—o0, 00), which parameterizes the material points of the string. The
configuration of the string at time ¢ is the map s+ (s, t), and the tangent vector to the curve r(-, t)
atsis rs(s, t) = 0sr(s, t). We recall that the stretch v(s, t) of the string at (s, t) is

v(s, £) = Irs(s, £)].

We require that the stretch is always positive throughout the motion of the string and say the
string is elongated where v(s, t) > 1 and compressed where v(s, f) < 1.

As a result of the balance of the linear momentum, we have the classical equations of motion for
a string:

(PA)(S)ri(s, 1) =ns(s, t) + f(s, 1), (s,t) €l x (0, 00). (2.1)

Here, (pA)(s) is the mass per unit reference length at s, f(s, t) is the body force per unit reference
length at (s, t) and n(s, t) is the contact force at (s, t).

A defining characteristic of a string is that the contact force is assumed to be tangent to the
configuration of the string. Thus, there exists a scalar-valued function N(s, t), the tension, such that

rs(s, t)
|rs (S/ t)l .
The mechanical properties of a string are modelled by specifying a relation between the stretch v

and tension N. In standard treatments of mechanical strings, a string is said to be elastic if there
exists a function N(v, s) such that

n(s, t) = N(s, t)

N(s,t) = N(v(s, ), 5) 2.2)

(see [11,12]). Inserting this relation into the equations of motion (2.1) results in a closed system
of partial differential equations for the variable (s, ) (which is hyperbolic if N, > ¢ > 0 and the
tension is positive, N > 0). A string is inextensible if v = 1 no matter the force applied. In this case,
the contact force n(s, t) is determined by (2.1) and the condition v =1 rather than a constitutive
relation.

Physically reasonable assumptions imposed on N are that an unstretched configuration is
not in a state of tension, an increase in tension leads to an increase in stretch, a state of zero
stretch requires infinite compression force and a state of infinite stretch requires infinite tensile
force. Mathematically, these assumptions are expressed by assuming N(l,s) =0, vi>N (v,s) is
increasing, lim,_, N(v, s)=—o0 and lim,_, N(v, s)=oo for all s. Thus, N(~,s) has an inverse
function (-, s), and the constitutive assumption takes the form

v(s, £) = D(N(s, 1), s), (2.3)
where N — D(N, s) is increasing,
lim ?(N,s)=0 and lim d(N,s)=ooc. (2.4)
N——c0 N—oo

(b) Aclass of stretch-limiting constitutive relations

Motivated by the intriguing papers by Rajagopal [1-4], we consider a class of strings with
constitutive relation expressed via (2.3) which cannot be expressed via (2.2). In particular, we
assume that the string cannot be further elongated nor compressed once a threshold value of
tensile force or compression force is reached. We refer to the modelled objects as stretch-limited
strings. Mathematically, we assume that
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— there exist Ng <0 < N7 and vg < 1 < v1 such that

. vp if N <Np,
(N, s) =
V1 iszNl,

— the function b(-,s) € C*°([No, N1];[vo, v1]), 9(0,s)=1 and there exists ¢>0 such that
bN(N,s) > ¢ for all (N, s) € [Ng, N1] x I.

We note that the previous two assumptions imply that d(-, s) is continuous and piece-wise smooth
but not globally smooth. The second assumption is necessary for the equations of motion (2.1) to
be hyperbolic in segments of the string not fully stretched.

Owing to our assumptions on the constitutive relation between stretch and tension, one cannot
expect motions in which the string has both extensible and inextensible segments to be classical
solutions to (2.1) across the interface. If the interface between the extensible segment of the string
(N € [Np, N1]) and the inextensible segment of the string (N € (—oo, Ng] U [N1, 00)) is given by a
curve (o(f),t) in the (s, f) plane, then along the interface, N € {Np, N1}, a weak solution to (2.1)
satisfies the well-known Rankine—Hugoniot jump conditions,

[n] + (0A)o'[ri] =0,

where [yl(c(t),t) =y(c(t)",t) —y(o(t)~,t) is the jump across the point s=o(f) at time t. In
particular, for equilibrium states, we must have that n is continuous across the interface.

3. Stretch-limited vertical states

(a) Formulation and initial result
We first consider the degenerate catenary problem for a straight vertical state,
n(s) =n(0) + F(s)k, s €[0,1]
3.1
and r(s) =z(s)k, r(0)=0, r(1) = bk,

where b > 0, n(s) = N(s)(rs(s)/|rs(s)|) is the contact force, the stretch v(s) = |rs(s)| and the tension
N(s) satisfy the constitutive relation discussed in §2b, and the magnitude of the total gravitational
force on the material segment [0, s] is

F(s) = JO 2(pA)E) de. (32)

We denote the total mass of the string by m := f(l)(pA)(s) ds.
Proposition 3.1. Let b € [vg, v1]. Then there exists N(0) € R such that
N(s):=N(0) + F(s),
n(s) :==N(s)k

and r(s) := J; D(N(§),&)dEk

fors € [0,1] solve (3.1). If b € (vg, v1) then N(0O) is unique (and, thus, r is unique). If b= vy or b = vy, then
r is unique.

Proof. We write r(s) = z(s)k so that v(s) =z'(s) > 0 on [0, 1]. If z(0) = 0 and z(1) = b then

1 1
b= JO Z'(s)ds = Jo V(N(s)) ds,

so (3.1) is equivalent to
N(s) = N(0) + F(s)

19101207 322t ¥ 905§ 01 edsyjeuol/buo'Buysyiqndiraposjefos H



Downloaded from https://royalsocietypublishing.org/ on 30 October 2022

and

1
b= J H(N(0) + F(s), 5) ds.
0

Since F(s) is increasing on [0, 1], F(1) = gm and r is stretch-limited, we have
1
N(@©0) <Ny —gm <— J D(N(0) + F(s),s) ds = vg
0

and

1
N(@0)>N; < JO D(N(0) + E(s),5) ds = v1.

Since the function N(0) — fo V(N(0) + F(s),s)ds is continuous and increasing on [Ng — gm, N1],
the proposition follows from the intermediate value theorem. |

(b) Threshold for elongated mixed extensible—inextensible state

We now assume that the string is uniform so that
(pA)s) =y >0, v(s)=D(N(s)).

Since F(s) =gys is increasing, there exist equilibrium states given by a union of an elongated
extensible segment where v € (1, v1) and an inextensible segment where v = v1. Indeed, this occurs
if and only if

N©)>0 and Nl;in(o)e(O,l). (3.3)

Indeed, (3.3) is equivalent to 0 < N(s) < Nj for all s € [0,51) and N(s) > Nj for all s € [s1, 1], where

o= 1= NO 0, 1).
4%

In terms of the position of the support bk, we pose the following question:

— What values of b result in an elongated state composed of an extensible segment and an
inextensible segment?

We prove that the essentially sharp threshold for bis b(y) =v; — % gy VN~ (Np), for all y sufficiently
small.

Proposition 3.2. Let € € (0,1). Then for all y sufficiently small (depending on € and ), the following
is true. If

m—(1- e)%yw (N1) <b <y, (3.4)

then (3.3) holds, i.e. the string is a union of an elongated extensible segment and an inextensible segment.
Conversely, if the string is composed of an elongated extensible segment and an inextensible segment,
then

=+ i) b <. (35)
Proof. Suppose that (3.4) holds. Since b < v; and N(s) = N(0) + gys, we must have N(0) < Nj.

Moreover, since b > ”2—1 for all y sufficiently small, it follows that N(0) > 0. Otherwise, for all s,
N(s) < yg, which implies b < I(yg) < v1/2 for all y sufficiently small. Thus, N(0) € (0, Np).
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We now prove the conclusion of the first part of proposition 3.2 by contradiction. Suppose that
there exist b, > 0, y,, > 0 and 0 < N;;(0) < Ny satisfying (3.4), y» — 0 and, for all ,

N — Nn(o) -1

3.6
8¥n (3.6)

Let Ny (s) :== N, (0) + gyns. By Taylor’s theorem, we have

1
b= J V(N,(0) + gyns)ds
0

= D(N(0)) + O(ya),

so, by (3.4), vi — D(N;(0)) = O(yn). Since v = D(N7) and the function ¥ is smoothly invertible on
[No, N1], we conclude that [N1 — N;;(0)| = O(yy), and thus [N — Ny (s)| = O(yy) uniformly in s.
Again by Taylor’s theorem

1
b =J D(Ny(s))ds
0

1
- JO [FNL) + dn- (ND)(Nu(s) — Np)ds + O(2)

A 1
=+ - (N9 (No(O) ~ N + 33 ) + 00

Thus,

N1 — Ny(0) vi—b 1 1 1
=— +-+0(n)<=(1—€)z+=+0(m) <1
< Sy oN- (Ny) 2 (yn) =( )2 > (vn)

for all n sufficiently large. This contradicts (3.6), and, thus, [N; — N(0)]/gy €(0,1).
Now suppose that N(0) > 0 and sg := [N — N(0)]/gy € (0,1). Then, as above, we use Taylor’s
theorem and the fact that Dn-(N7) > ¢ > 0 to expand

1
b= J D(N(s)) ds
0

:J%MN@ME+J1WdS

0 S0
= [ 150 + by (1)1 -+ OGS — NN®) - N s
+ (1 =so)v1
= so1 — 287 In- (N + 0GB + (1 —so)v
= 1 — 2gvin-(N(L+ OGS
Thus,

v —b
1gyin-(ND(A + O(y))

=s3¢(0,1),

proving (3.5). n
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4. Stretch-limited catenaries

(a) Formulation and preliminary results
Suppose a > 0, b € R. We now consider the non-degenerate catenary problem

n(s) = n(0) + F(s)k }

4.1
and r(0)=0, r(1)=ai-+ Dbk,

where, as before, n(s) = N(s)(rs(s)/|rs(s)|) is the contact force, the stretch v(s) = |rs(s)| and the
tension N(s) satisfy the constitutive relation discussed in §2b, and the magnitude of the total
gravitational force on the material segment [0, s] is

F(s) = JO 2(pAYE) dt.

It is well known that the assumptions of the problem imply that the configuration is planar,
r(s) € span{i, k}, n(0) - i # 0, and n is nowhere vanishing (see [11,12]).
Writing

r
m =cos i+ sin bk

and
n(0) =i + uk,
we obtain from (4.1) the relations

Ncos6é =X, Nsind=pu+F,

N =xcos6 + (i + F)siné,

and thus, if 8 := /A2 + (u + F)?2,

F
tan 6 = ntr
A

and
[A] u+F

N =sign(r)8, cosf = 5 sinf = sign(A)T.
With a > 0 and b specified, the relation between (g, b) and (A, v) is given by

1
ai + bk = J rs(s) ds
0

1
= J v(s)[cos O(s)i + sinO(s)k] ds
0

I EIEION)
_Jo +4(s)

=P, i + Q*(, wk, (4.2)

[Ai + (i + F(s))k] ds

where the & corresponds to the sign of A. This last relation can be written as
Vip®* (h, 1) =0, (4.3)
where )
D, 1) :=J W*(£8(s),s)ds — ra — ub
0

and

N - -

W*(N,s) := J D(N,s)dN.

0

We note that, since the stretch v(s) < v; for all 5, any solution to (4.2) (and thus (4.3)) must satisfy

2+ < v%.
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By a simple adaption of the proof from [11] using the variational form of the problem (4.3), we
have the following existence and uniqueness result for tensile states (A > 0) and existence result
for compressive states (A < 0).

Proposition 4.1. Suppose a >0 and a* + b* < v3. Then there exists unique (A, u™) with 2+ >0
satisfying V& (AT, u 1) =0.
Suppose a > 0 and a2+ b < vg. Then there exists (\~, u ™) with A~ < 0 satisfying V&~ (A=, u~) =0.

(b) Threshold for tensile states containing an inextensible segment
For the remainder of the paper, we assume that the catenary is uniform so that

(pA)s)=y >0 and v(s)=D(N(s)).

Suppose that b =0 (the supports of the catenary are at the same height) so the tensile catenary
satisfies

L A
a= Jo v(é(s))@ ds (4.4)
and
J o) 45)

Then (4.5) implies that © = —(1/2)gy and (4.4) becomes

a=ﬂ ((s))mds and 8(s)=\/kz+g2y2(s—%)2.

A tensile catenary is inextensible (v =) if and only if, for all s € [0,1], §(s) > N1, which is
equivalent to A > Nj. A tensile catenary is a union of extensible (v € (1, v1)) and inextensible (v =
v1) segments if and only if 4 < N7 and there exists s € (0, 1) such that §(s) = N1, which is equivalent

to
(gl)Z(NZ Az)e< i) (4.6)

The condition (4.6) is equivalent to §(s) > Ny for all s €[0,5_] U [s4,1] and 0 < é(s) < Ny for all

s € (s—,s+), where

1 1
st=-+— /N2 —-22¢(0,1).
2 gy

Thus, a tensile catenary containing an inextensible segment is either completely inextensible or is
a union of an extensible segment and two inextensible segments.
In terms of the support at ai, we now pose a similar question to that in §3:

— What values of a result in a tensile state containing inextensible segments?

We answer this question explicitly in the following two propositions.

Proposition 4.2. For all y, the tensile catenary is inextensible if and only if

2N
v — sinh 87 <a<vy. (4.7)
8Y N

1
A 2\ 2N
a= J vi—ds=v1— sinh™! &Y > L sinh ! 37
o 8(s) 4% 21 9% 2Nq

smh

since the function z 2 is decreasing.

Conversely, if (4.7) holds then the unique A > Ny solving (21 /gy) sinh_l(gy /2x)=a/v1 €(0,1)
satisfies the equation a = f(l) V1 %ds by the previous computation. By the uniqueness result for
tensile states, it follows that the catenary is inextensible. [ |
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Proposition 4.3. Let € € (0,1). For all y sufficiently small (depending on € and V), the following is
true. If

2
v — (g)/ (v1 + (2 + 3€)dny-(N1)N7) <a < v1£ sinh~ 1 22 3y , (4.8)
24N? 44 2Ny

then (4.6) holds, i.e. the tenszle catenary is a union of an extensible segment and two inextensible segments.
Conversely, if the tensile catenary is composed of an extensible segment and two inextensible segments,

then
(gr) 2Ny 187
24N2 (v1 + (2 — 3€)oNy-(N7)N7) <a < v; ey sinh™ Ny (4.9)

Proof. We prove the first part of the proposition by contradiction. Suppose that there exista;, > 0,
yn > 0 and A, > 0 such that y;, — 0 and either

Vi, An>Np (4.10)

or

v, (4.11)

1
— (N2 -2 >
G =]
By (4.8) and proposition 4.3, the possibility (4.10) is immediately ruled out. Assume that Vn, 1,, <

Ni and (4.11) holds. We claim that A, — Nj. If not then there exists a subsequence {A;, }; and
81 € [0,Nq) such that A,,, — 81. Then by (4.8)

1
v1 = lim g, < lim J D(8y,(s)) ds = D(81) < vy,
k—o00 k—o00 Jo

which is a contradiction. Thus, 4, — Nj. In particular, for all n sufficiently large, A, > N1/2 > 0.
Now

8u(8) = An = O()/nz)/

uniformly in s, so by Taylor’s theorem

1
R

— b J ; h—lgﬁ O(y2
S0 st 7 4 0072)

= 0(hn) + O(2)-
By (4.8), we conclude that
v1 = 1) = Oy).
Since ¥ is smoothly invertible on [Ny, N1], we conclude that Ny — 1, = O(y,%) and, thus,
Ny = 84(5) = O(r2).

We use Taylor’s theorem again

1
0= | S5 ds

1
= L (v1 + Dn- (N1)(8,(8) — N1) + O(V,f))

An
8n(s)
2An
= (11 — DN~ (N1)N1) v Slnh_l gy + - (NDAn + O(rip)
=1 — Dy- (N1)N1 + Dn- (N1 A — m(w — dn-(N1)N1) + Oy
1

and thus

Ni_ b gw (—

1
B - — In-(N1)N O(v3).
gvn gyn On-(N) \ (g7n)? 24N§(”1 on-(N1) 1)>+ )
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We conclude that

1 N2-22
<
4= (gJ/n)2
2An — 1
= aNle) ((”;yn)‘j “ae (Nl)No) +0(r3)
2N —
= ((”;yn)‘j . 4N2( = (Nl)No) +0(r3)

1 1
<=3 +00r) <y

for all n sufficiently large. This contradiction shows that (4.11) cannot hold and proves the first
part of the proposition.
Now assume that the tensile catenary is the union of an extensible segment and two
inextensible segments: we have
7= = N2 (0, 1) ,
3 2

so the segments [0,1/2 — t] and [1/2 + 7, 1] are inextensible, § > N1, and the segment (1/2 — t,
1/2 + 1) is extensible, § € (Ny, N1). Then |[N| — A| < (gy)2/4N1 s0 |8(s) — Nyl = O(y?) uniformly in
s € [0, 1]. We then deduce the relation

2 2

Applying Taylor’s theorem, we have

a= J v((S(s))m ds

1/2—t 1/2+t
J vl—ds—i—J' v((S(s))—d s+

A
0 5(s) 1/2-7 5(s) .[1/2+r 56) ds

1/24+t
=j (01 + P (ND)(B(5) — N1) + Oy ) —— ds
1/2—7 5(s)

sinh-1 87 _ 211 87T
2A 6% A

2Av
4=
gV

) 2% )
= (v — Dy~ (Nl)Nl)gT/ sinh~! g% + 200 (NDA 4+ O )

2% 2
+ ! sinh~! v _n sinh ! gre
8y 2 gy A

2.3
=~y (NN (20 - (g’;/)\; ) + 200N (NDA + v — 12(5;2) +006Y

R 273 R v
= —In-(N7)Ny (2‘[ — (gglz[% > 4+ 2ton-(N)A +v1 — ;(fl\);%) + O()/4).

Thus,

(y)?
24N

vi— (V1 — Dn-(N1)N7)

3N? N+

i () + O6r)

—a+ tiy-(N1)Np <2 _ Gry’e? ) @7
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2
= 0t ey (V1) <6N2 (@ — 6aN1) + S5 (v + 0GY

24Nq
_ 2VN (Nl) 1
=a+(gy) (3 +24>+O(y)
<a+(gy )271\]815] 1)+O( )
<a+ @ P a g

for all y sufficiently small, since f)N- (N7) = ¢ > 0. This proves (4.9) and concludes the proof of the
proposition. |

(c) Existence and multiplicity of compressive states

We now consider the existence and multiplicity of compressive states. Since §(s) #0 for all s €
[0, 1], compressive states satisfy a? + b? <1.In[11], Antman proved that if v = D(N) satisfies (2.4),
a>0and a? + b? <1, then for all y sufficiently small there are at least two solution pairs (A, i) to

) 1 D(=6(s))
ai + bk = Jo —50)

In [13], Wolfe proved that, of these multiple states, one state is a perturbation of a unit massive
inextensible catenary and another state is a perturbation of a straight, mass-less catenary. A simple
adaptation of [11] yields the following result in our stretch-limited setting.

(M + (u + gy9)k)ds. (4.12)

Proposition 4.4. Suppose that a > 0 and v < a® + b? < 1. Then for all y sufficiently small, there exist
at least two solution pairs to (4.12).

The question we turn to for the remainder of the section is:

— What is the multiplicity of solutions to (4.12) when the distance between supports is
less than the minimal length of the string, i.e. 4% 4+ b? < 13? Moreover, do these solutions
contain inextensible segments where v = vy?

We prove that if >0 and a® + b? < vg, then a solution pair (4, 1) to (4.12) is unique, and the
catenary is completely extensible, as long as the mass density is small.

We recall that if a > 0 and a? + b? < 1, then the problem for a uniform compressive inextensible
catenary with (pA)(s) =y >0,v=1,

1
ai + bk = J 51 o (M + (1 + gyos)k)ds, (4.13)

can be solved explicitly using hyperbolic functions (see [11]). In particular, (A, 1) solving (4.13) are
uniquely determined by the relations

V1-b2  2A| . 1 280

= sin. 4.14
a agyo 2|2 @14

and
1= Asinh (% +tanh~! b) . 4.15)

We note that (4.14) uniquely determines A since the function z + sinh z/z is invertible on (0, c0)
«/1 b2

with range (1, o0) and

Proposition 4.5. Suppose a > 0 and a® + b? < vg. Then, for all y sufficiently small, there exist unique
A =A(y) <0and = i(y) € R satisfying (4.12).

18101207 L2 ¥ 05§ 20igedsy/jeunof/bio-buiysigndiaaposiefos



Downloaded from https://royalsocietypublishing.org/ on 30 October 2022

Moreover, if (ro, o) is the unique solution to the inextensible problem (4.13) with yy =1, then
My)=rro+00%), Ay)=ymno+00?).
In particular, for all y sufficiently small, the catenary is completely extensible, V(s) € (vo, 1) for all s € [0, 1].
Lemma 4.6. Suppose a >0 and a2+ b < vg. Let y,; >0 and (Ay, uy) satisfy (4.12) with y, — 0 as

n— oo. Then
lim /22 + 42 =0.

n—oo

Proof. Suppose not. Then, for all n €N, there exist y, >0, 1, <0 and u, € R satisfying (4.12)
such that y,, — 0 and

A2+ 42— 80 € (0, 00]. (4.16)

We consider the two cases 8y = oo and §g € (0, 0o) separately.
If 89 = oo, then for all n sufficiently large, for all s € [0, 1],

— /A% + (1 + g¥ns)? < No. (4.17)

Then (4.12) implies

a, b 1 1 .
—i+ —k :J - (Ani + (n + gyus)k)ds.
Yo "o 0 )‘% + (n +gVn5)2

By (4.14) and (4.15), A;, is determined by the relation

2 2
v —b 2un A
07" _ Zvolral oy %8V (4.18)
a agvyn 2vp[Anl
and pu; is determined by
b
= A sinh( 8Vn_ | tanh~1 7>. (4.19)
2vp|An| Vo

Let z € (0, 00) be the unique solution to ,/ vg — b?/a =sinhz/z, which exists since ,/ vg - b2 >a.
Then by (4.18)
ag¥n

2vp[Anl
whence 1, = O(yx). By (4.19), it follows that

Un = An sinh(z +tanh ™! U%),

whence u, = O(yy). Thus,
A%+M%—>O asn— 0o,

which contradicts (4.17).
We now consider the case
A2+ u2 > 89 €(0,00). (4.20)
Passing to a subsequence and relabelling if necessary, we can assume that there exists (A, tt+)
such that
nhjr;o()knr M) = (s )

VA2 +uZ=8>0,

By (4.20), we conclude that

and therefore, for all s € [0, 1],

lim /22 + i + gyas = —22 + 2 = —.

n—
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By the continuity of 7, the dominated convergence theorem and (4.12), we conclude that

1 D <_\/ )L% + (1n +8Vn5)2>
ai + bk = lim J
oo —y/ )L% + (1n +8Vn5)2

Mo
NCERE RN

[Ani + (pn + g)/ns)k] ds

= —H(=8) k

and thus
@+ b = D(—80)* = 2,

a contradiction to the assumption a2+ b < vg. Thus, (4.16) cannot hold, which proves the lemma.
|

Via rescaling the variables (1, 1) and the implicit function theorem, we have the following
result from [13].

Lemma 4.7. Suppose a >0 and a? 4+ b2 < 1. Let (g, o) be the unique solution to the inextensible
problem (4.13) with yg = 1. There exists € > 0 and ¢ > 0 such that if y € (0, €), then there exists a unique

pair
2
< 42} ,

AY)=vro+ 002, ay)=yuo+O0@(?).

Proof of proposition 4.5. Let (A, ) satisfy (4.12) (we now drop the dependence in y). We claim
that

2

G, A € {‘i a0

I
+‘*—,U«0
Y

satisfying (4.12). Moreover,

A
lim = =5y, lim & = . @21
y—=>0y y—=0y
Then (4.21) and lemma 4.7 immediately imply the conclusions in proposition 4.5.
To prove (4.21), let y, > 0 and (A, iuy) satisfy (4.12), and suppose that y,, — 0. We wish to prove
that

A
o, B (4.22)
Yn Yn

Sn(s) == V )\% + (un + gVnS)Z/

ay:=a +J (D(=6n(s)) — 1)

Define

3n()

— o\ Mn +8Yns
by ._b—i—J ((=6n(s)) — 1)——=— 5n(5) ds,

An MUn

Aon=—, Hon=""
VYn n

and Son(8) = \/ )L(Z),n + (ron + gS)Z-

By lemma 4.6, (Ay, un)— (0,0), which implies 8,(s) — 0 uniformly on [0,1]. Since ¥(:) is
continuous, we conclude that

lim a,=a and lim b, =0.
n—0o0 n—oo

From the above definitions and (4.12), we have

1

ani+Db k:J —
! ! 0o 80u(s)

()LO,ni + (MO,n + gs)k),
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and thus, by (4.14) and (4.15), (Ao, t0,n) are uniquely determined by the relations

2
Y 1—by _ 2|)\O,n| sinh ang

4.23
an an8 2|)\O,n| ( )
and
_ . ag -1
Ho,n = Ao, sinh +tanh™" b, | . (4.24)
2|)\O,n‘

Since a;, — aand b, — b, (4.23) implies Ao, — Ao, i.e. % — Ap. By (4.24), it then follows that 11, —

o, i.e. % — o. This concludes the proof of (4.22) and proposition 4.5. |

5. Conclusion

This paper considers stationary strings suspended between two supports under the force of
gravity (catenaries) satisfying a new stretch-limiting constitutive relation. We explicitly classify
the positions of the supports leading to tensile states containing fully stretched, inextensible
segments in two cases: the degenerate case when the string is vertical and straight and the
non-degenerate case when the supports are at the same height. We then turn to the question
of multiplicity of compressive states in general and prove the uniqueness of compressive states
when the distance between the supports is less than the minimal length of the string. This work
should be viewed as an early first step in exploring the mathematical properties of implicit
constitutive relations within the realm of one-dimensional elastic bodies, including strings and,
more generally, rods. In particular, we have considered the simplest stationary setting of stretch-
limited elastic strings. It would be interesting to investigate the case of gravity and an external
force acting orthogonal to the plane of the string (for example, steady wind) or vertical forces that
are neither uniform nor smooth. In this work, we only consider the stationary problem, and we
plan to pursue dynamic motion in future work.
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