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Abstract—This paper is concerned with the problem of

estimating (interpolating and smoothing) the shape (pose and

the six modes of deformation) of a slender flexible body from

multiple camera measurements. This problem is important

in both biology, where slender, soft, and elastic structures are

ubiquitously encountered across species, and in engineering, par-

ticularly in the area of soft robotics. The proposed mathematical

formulation for shape estimation is physics-informed, based on

the use of the special Cosserat rod theory whose equations

encode slender body mechanics in the presence of bending,

shearing, twisting and stretching. The approach is used to derive

numerical algorithms which are experimentally demonstrated

for fiber reinforced and cable-driven soft robot arms. These

experimental demonstrations show that the methodology is

accurate (<5 mm error, three times less than the arm diameter)

and robust to noise and uncertainties.

I. INTRODUCTION

Biological creatures that are slender or possess slender
appendages, exploit the elasticity and compliance afforded
by their bodies to perform and simplify a variety of tasks,
from locomotion (snakes, eels, fishes [1]–[6]) to manipulation
(octopuses, elephants, plants [7]–[9]), and more generally to
conform, adapt and respond to environmental interference.
Bio-inspired slender structures are also being increasingly
incorporated in engineering, and particularly in robotics, to
enhance safety, dexterity and adaptivity [10]–[12]. Nonethe-
less, despite a decade of soft robotic research, we have only
begun to appreciate the inextricable nexus that exists between
elasticity, control and environmental context. Thus, to support
biological discovery and engineering applications, as well as
aid simulation efforts, there is a growing interest in accurate,
robust, and non-invasive technologies for shape and strains
estimation in slender flexible bodies.
The problem of shape/strains estimation is complicated

because elastic elements, whether biological or artificial, are
subject to long-range stress propagation effects where all
six modes of deformations (normal/binormal bending and
shear, twist and stretch) can be simultaneously engaged. As
a consequence, localized loads are communicated along the
entire structure in a nonlinear fashion, leading to complex
dynamics and global morphological reconfigurations [13],
[14]. These are among the mechanisms credited to contribute
to animals’ superior agility, dexterity, and ability to cope with
external factors, safely and robustly. Consequently, they have
important implications [15] in terms of body architectural
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Fig. 1: Cosserat rod model & Experimental setup – a soft BR2 manipulator
[21] is integrated in our vision-tracking system. The BR2 is constituted by
three parallel elements, individually actuated by compressed air. Actuation
signals are generated from Raspberry-Pi using ROS, and are relayed to SMC
valves (ITV0031-2UBL) for actual pressure regulation.

organization, actuation and control [7], [16]–[20]. Hence the
impending need, for correct mechanistic interpretation, of
methods able to quantify from experiments all continuum
deformations, particularly in the presence of highly stretchable
and shearable living or elastomeric materials [17].

This paper aims at developing and demonstrating methods
and algorithms to estimate, from multiple camera images, the
(continuum) bend, shear, twist and stretch strain functions
along the longitudinal axis of a slender flexible body in 3D
space. The vision-based approach is selected because it is
versatile, relatively inexpensive, and non-invasive. Further,
typical drawbacks (e.g. camera occlusion) can be effectively
mitigated in laboratory settings, where we envision the deploy-
ment of our system for robotic and biological characterization.

The contributions of this paper are two-fold. The theoretical
contribution is a novel optimization formulation to estimate
both slender body pose and associated six strain functions
from discrete measurements. The formulation is physics-
informed, based on the use of Cosserat rod theory [22],
whose equations encode slender body mechanics in the
presence of bending, shearing, twisting and stretching. A
corresponding numerical solution algorithm is presented. The
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practical contribution lies in the experimental demonstration
of the method for two soft robotic arms, one based on Fiber
Reinforced Elastomeric Enclosures (FREE) [23]–[25] and
one cable-driven [8], [26], [27]. The methodology is shown
to be scalable, accurate (<5 mm error, three times less than
the arm diameter), and robust to uncertainties, paving the way
for novel analyses of soft systems, and improved control.

Related work. Apart from vision-based approaches, there
are a number of continuum sensing techniques, such as Fiber
Bragg Grating [28], electromagnetic sensors [29], [30] or
liquid metal sensors [31]–[33], all of which are effective but
can be expensive, fabrication intensive, poorly scalable, and
may interfere with body dynamics.
In vision-based experimental setups, whether individ-

ual/multiple standard, wide-angle monocular, or depth cam-
eras are used, the reconstruction of slender body centerlines,
orientations and strains relies on image data extraction and
interpolation. A variety of methods exist for point extrac-
tion (often facilitated by body markers), from direct linear
transformation [34] and optical flow [35] to clustering [36],
skeletonization [37], [38], and deep learning [39]. Discrete
centerline points can then be interpolated into a continuous
shape, from which local curvatures and elongations are
directly estimated. If no additional information is employed,
only bending and stretch can be estimated. Off-centerline
discrete points provide discrete orientations, which can
be used to estimate all strain functions. Nonetheless, the
direct numerical evaluation of bending, twist, stretch and
(particularly) shear is sensitive, and interpolation quality
is key. While machine learning [36], [40], gradient-based
methods [41], or clothoid functions [37] have improved over
unreliable, standard B-spline techniques, challenges remain.
As a consequence, these reconstruction approaches typically
focus on a subset of deformations whereby (combinations of)
twist, stretch or shear are routinely neglected.
In the context of our work, two papers are of particular

significance. AlBeladi et al. [42] propose a least-squares type
smoothing problem with a parametrized kinematic model
of curvature. While the approach was successfully applied
to a specific soft robot arm [21], shear and stretch were
not considered, and only in-plane bending was actually
experimentally demonstrated. Fu et al. [43] use instead a
Cosserat rod model for piece-wise reconstruction of a snake’s
shape. Although both of these papers [42], [43] are related
to our work, important differences exist. We discussed them
as part of Remarks 1 and 2 in the methodological section.

II. PROBLEM FORMULATION

Setup and data collection. Our setup is depicted in Fig. 1.
The soft arm is fixed at the base and is of nominal length
L. The arc-length s 2 [0, L] parameterizes the centerline of
the arm, with s = 0 at the base and s = L at the tip. For
the purposes of mathematical modeling, an inertial reference
frame {e1, e2, e3} is affixed at the base of the arm. With
respect to this frame, the pose of the arm at s is denoted as

q(s) :=


Q(s) r(s)
0 1

�
2 SE(3) (1)

where r(s) 2 R3 is the position vector, and Q(s) =⇥
d1(s) d2(s) d3(s)

⇤
is the orientation matrix. The or-

thonormal vectors {d1(s), d2(s), d3(s)} are referred to as
directors. As depicted in Fig. 1, the normal director d1(s)
and the bi-normal director d2(s) span the cross section at
location s, and d3(s) = d1(s) ⇥ d2(s). It is convenient to
interpret q(s) as an element of the special Euclidean group
SE(3), with associated Lie algebra se(3).
A number Nd of discrete colored markers are mounted

at known fixed locations along the arm, with the j
th one at

s = sj and 0 = s0 < · · · < sNd = L. By observing these
markers using cameras (Sec. IV), pose data are obtained D :=
{(sj , qj) : j = 1, 2, · · · , Nd}, where qj 2 SE(3) represents
a noisy measurement of the true pose q(sj). For a given data
set D, the smoothing problem is to obtain a smooth posture
q : [0, L] ! SE(3) of the arm.

Cosserat rod model of a soft arm. The posture q is modeled
as solution of the ordinary differential equation (ODE)

dq
ds (s) = q(s)⇠(s), q(0) = q0 (2a)

where q0, known and fixed, is the pose at the base of the arm,
and the matrix ⇠ is parameterized by strains ✏ as follows

⇠(s) =


[]⇥ ⌫

0 0

�
2 se(3), ✏(s) =


(s)
⌫(s)

�
(2b)

with  = [1 2 3] being bending/twist strains, and ⌫ =
[⌫1 ⌫2 ⌫3] shear/stretch strains. The operator [·]⇥ represents
the skew-symmetric matrix associated with its argument
(e.g. equation (3.1) in [13]). The ODE (2a) represents the
kinematic constraint, so that given a strain ✏ : [0, L] ! R6,
a posture q is obtained by integrating (2a). In the Cosserat
rods theory, a model for strains is indirectly specified by
introducing the potential energy V =

R L
0 W (s, ✏(s)) ds

where W : [0, L] ⇥ R6 ! R is referred to as the stored
energy function. In this paper, we adopt a linear elasticity
model specified by the quadratic choice for the stored energy
function W (s, ✏) = 1

2 |✏� ✏
�(s)|2R where R = R(s) � 0

is the rigidity matrix, ✏
�(s) is the intrinsic strain, and

|x|R :=
p
x|Rx is the weighted norm.

Remark 1. A static equilibrium of a Cosserat rod (with a
free boundary condition at s = L) is any extremizing solution
of the following optimization problem

min
✏

V, subject to dq
ds = q⇠, q(0) = q0 (3)

This way, the strain ✏ may be regarded as a decision
variable (control). The optimization viewpoint has several
advantages, such as stability or uniqueness, as described
in [44], [45]. In the presence of measurements D, this
optimization framework is readily extended to obtain the piece-
wise pose {q(s) : sj�1  s  sj}, by specifying the fixed-
fixed boundary conditions q(sj�1) = qj�1 and q(sj) = qj .
Such an approach is taken in [43]. In fact, the optimization for-
mulation is not even necessary to obtain static equilibria. For
general types of storage functions and boundary conditions
(including the fixed-fixed case), there are well-established
numerical algorithms to obtain static equilibria [46].
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There are several issues with the piece-wise approach: (i)
measurements are noisy so fixed-fixed boundary conditions
may not be appropriate; (ii) because local changes in the
potential energy affect the stresses in the entire rod, it may
not be appropriate to assume that the piece-wise segments are
independent; (iii) the piece-wise approach will in general yield
solutions where strains are discontinuous at the boundaries
(s = sj). Such solutions may not be physically realistic.

Our objective in this paper is to modify the optimization
problem (3) to assimilate the data D in a global fashion. This
is done through a novel specification of the decision variables
(control), objective function and constraints.

Optimization problem. Let the set of admissible de-
cision variables be U =

�
u : [0, L] ! R6

, u piece-wise
continuous} with u of form d✏

ds (s) = u(s) and ✏(0) = ✏0,
where the strain ✏0 at the base is fixed and known. Such a
choice on the decision variable has the advantage of yielding
strains that are continuous along s.
The objective function is defined as

J(u;D) := V + �u
2

R L
0 |u(s)|2 ds| {z }

(regularization)

+PNd
j=1�(q(sj); qj)| {z }
(smoothing cost)

(4)

where �(q(sj); qj) =
�Q

2 kQ(sj)�Qjk2F+
�r

2 |r(sj)� rj |2,
k·kF is the Frobenius norm, and �u,�Q,�r > 0. Each
of these costs is self-explanatory: (i) V is the potential
energy, modeling intrinsic elasticity, from the special Cosserat
rod theory; (ii) the smoothing cost penalizes the prediction
error, i.e. the deviation of the estimated pose q(sj) from
the measured pose qj (such a choice is well-established
in the least square theory for smoothing problems with
noisy measurements); and (iii) the integral control cost is a
regularization term to obtain a unique solution.

Remark 2. With a vision-based system, a more natural
definition of the prediction error is the difference between
the measurements in camera images and the projection
of the estimate to camera space [42]. Extension of the
proposed framework to handle this and more general forms
of smoothing cost is possible and a subject of future work.

In summary, the optimization problem reads as follows

min
u2U

J(u;D) (5a)

subject to dq
ds = q⇠, q(0) = q0 (5b)
d✏
ds = u, ✏(0) = ✏0 (5c)

III. SOLUTION: ARM RECONSTRUCTION

Necessary conditions. The optimization problem (5) is solved
by using optimal control theory, with control Hamiltonian

H(q, ✏,�, ⌘, u; s) := Tr (�|q⇠) + ⌘
|
u�W (s, ✏)� �u

2 |u|2

where (q, ✏) 2 SE(3)⇥R6 is the state, (�, ⌘) 2 T
⇤
q SE(3)⇥R6

is the co-state (the Lagrange multipliers associated with the
constraints), u 2 R6 is the decision variable (control), and the
arc-length parameter s 2 [0, L] is the independent coordinate.

In order to write the Hamilton’s equations, it is convenient
to first express the co-state � in terms of (m,n)-coordinates

� =


1
2Q([m]⇥ +M) Qn

0 0

�
(6)

where M := �Q| [(Qn) r| + r (Qn)|] Q. Equation (6) is
the solution to the co-state � differential equation in the
Pontryagin’s Maximum Principle, which is the necessary
condition for the optimal control problem (5). A proof of
equation (6) is omitted here for brevity. In elasticity theory,
these coordinates are the internal couple m and force n, both
represented in the local frame. With a slight abuse of notation,
the coordinate (m,n) 2 R3⇥R3 is referred to as the co-state
pose. The Hamilton’s equations are described next.

Proposition 1. Consider the optimization problem (5). Sup-
pose u is the minimizer and (q, ✏) is the corresponding state
trajectory. Then there exists a co-state trajectory (m,n) :
[Nd
j=1(sj�1, sj) ! R3 ⇥ R3 and ⌘ : [0, L] ! R6, all not

equivalently zero, such that
dq
ds = q⇠, q(0) = q0 (7)
d✏
ds = u, ✏(0) = ✏0 (8)

and
d

ds


m

n

�
= �


⇥m+ ⌫ ⇥ n

⇥ n

�
(9)

d⌘

ds
= �


m

n

�
+R(✏� ✏

�) (10)

with jump conditions at the boundaries

m(s�j ) = m(s+j )� �Qvec
⇥
Q|Qj �Q|

jQ
⇤
s=sj

(11a)

n(s�j ) = n(s+j )� �r Q| (r � rj)|s=sj
(11b)

m(s+Nd
) = n(s+Nd

) = 0, ⌘(sNd) = 0 (11c)

where (m(s+j ), n(s
+
j )) for j<Nd are obtained by integrating

the co-state evolution (9) for (sj , sj+1), and vec[·] is the in-
verse operator of [·]⇥. The optimal control is obtained through
the point-wise maximization of the control Hamiltonian

u(s) = argmax
a

H(q(s), ✏(s),�(s), ⌘(s), a; s) = ⌘(s)
�u

(12)

The proposition’s proof (omitted here) is based on an
application of the Pontryagin’s maximum principle [47], [48].
Algorithm. For a given data set D, an iterative forward-
backward algorithm (see also Sec. III-C in [18]) is used to
numerically integrate the Hamilton’s equations. During the
k
th iteration, the state trajectory (q(k)(s), ✏(k)(s)) is obtained

by integrating (7), (8) forward from the base to the tip; the
co-state trajectory (m(k)(s), n(k)(s), ⌘(k)(s)) is obtained by
integrating the co-state equations (9), (10). Thus, for each
segment (sj�1, sj), (9), (10) are integrated backward using
boundary condition (11) at s = sj ; finally, a gradient descent
method is used to update the optimal decision variable

u
(k+1)(s) = u

(k)(s)� ↵

⇣
u
(k)(s)� ⌘(k)(s)

�u

⌘
(13)

where ↵ > 0 is the update step size. Convergence typically
requires sufficiently small values of ↵, here set to the constant
value 10�6. Pseudo code is found in Algorithm 1.
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Fig. 2: (Left) Camera calibration via multi-plane approach. The tips of the
flags, visible by all cameras, provide mapping between 3D-coordinates to
2D image spaces. (Right) Each camera tracks marker points on the soft arm
using optical flow. Advected marker locations are evaluated with DLT. To
handle occlusions, a feature matching technique is implemented to check the
visibility of the markers by each camera. Poses of tracking markers are then
used in the optimization problem (5) to reconstruct the soft arm’s posture.

IV. EXPERIMENTAL SETUP

The BR
2
soft continuum arm. In order to demonstrate

our physics-informed reconstruction method, we consider
a slender and soft robotic arm integrated within a video-
tracking environment. We focus primarily on Fiber Reinforced
Elastomeric Enclosures (FREEs [25]), due to their high degree
of shape reconfigurability, versatility, cost effectiveness and
overall promise for applications, from manipulation [23]
to agriculture [49]. FREEs are pneumatic slender actuators
embedding in their elastomeric shell inextensible fibers which,
depending on the winding pattern and upon pressurization,
lead to bending, twisting or elongation. We consider a BR2

[21] architecture (Fig. 1) whereby three parallel FREEs, one
bending and two twisting (clockwise and counterclockwise),
are glued together. By combining deformation modes, the BR2

attains complex morphologies and large workspaces. Further,

the BR2 can be extended by adding new sections in series
(Fig. 5), increasing reconfigurability. It is thus an excellent
candidate for testing the practical utility of our methods.
While our main interest is centered around the BR2, we also
consider a cable-driven soft-arm (Fig. 5), selected because
of its propensity to shear (a mode we wish to capture).

Multi-camera environment. Our video-tracking apparatus is
constituted by an aluminum profile of size 40⇥ 30⇥ 40 cm
that defines the data acquisition volume, and supports the arm
as well as five AKASO EK7000 cameras (60 fps, 1080p).
The metal frame allows to strategically place the cameras, so
that all marker points along the arm (Fig. 2) are visible by
at least two cameras throughout any attainable motion.

Given this setup, marker coordinates (Fig. 2) in 3D space
are obtained via standard Direct Linear Transformation (DLT
[34]) from 2D coordinates vi = (vi1, v

i
2) in camera i = 1, ..., 5

space. Cameras are calibrated by finding the DLT parameters,
T

i = (T i
1, T

i
2, ..., T

i
11), determined according to standard

guidelines [34], [50]. We note that once T
i is determined,

DLT provides bidirectional mapping, which allows us to
overlay reconstructed 3D positions and orientations back on
the original camera images, to assess solution quality.
Cameras calibration is critical and must be carried out

thoroughly to achieve reliable accuracy. While checkerboards
in the lateral, vertical, and horizontal side planes are common
calibration references, we noticed that interpolations in the
enclosed volume resulted distorted. To improve accuracy,
we then developed a scalable calibration method (Fig. 2)
whereby a fine 3D reference grid is embedded throughout the
workspace. This is achieved via equispaced flags of alternating
colors, hanging from a support rod along thin, transparent
nylon wires, straightened by weights at the bottom. The device
provides a finely gridded yz-calibration plane, and a top
slide rail allows to move the device to multiple x-positions,
thus forming our volume calibration mesh. Typically, for
calibration purposes, reference points of known (x, y, z)
coordinates are manually identified in 2D camera space to
obtain accurate (vi1, vi2)-coordinates. This is a time consuming
and non-scalable procedure. To automate the process, after an
initial manual identifications of a few (at least 12) points, we
use the corresponding, minimally calibrated DLT to estimate
each flag location in all 2D camera spaces, and then apply
Harry’s corner detection algorithm [51] to precisely determine
the (vi1, v

i
2)-coordinates of the flag’s tips. As a result, over

Algorithm 1: Solving the optimization problem (5)

Input: Data set D and state at base: q(0) = q0, ✏(0) = ✏0

Output: Optimal posture q
1: Initialize: decision variable trajectory u

(0)(s)
2: for k = 0 to MaxIter do
3: Update state by integrating (7), (8) forward.
4: Update co-state by integrating (9), (10) backward

with boundary condition (11)
5: Update decision variables point-wise by using (13)
6: end for

7: Output final posture by integrating (7) with final strains
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1000 reference points, simultaneously visible by all cameras,
could be collected, leading to a 2.6 mm max, and 1.4 mm
average, calibration error throughout the entire workspace.

Video tracking. After calibration, for each camera recording,
we manually select all reference marker points along the arm,
and then trace them in time and space via the Lucas-Kanade’s
optical flow method [52]. The algorithm assumes relatively
constant object intensity I

i(vi, t) = I
i(vi +�v

i
, t+ 1) and

considers the scalar advection rI
i · �v

i + I
i
t = 0, where

�v
i = (�v

i
1,�v

i
2) is the optical flow. To recover �v

i, we
employ a window of 19⇥ 19 pixels (full marker size) across
two consecutive frames, thus over-determining the advection
system, which is solved via regression.

A challenge is posed by the frequent markers appearance
and disappearance from camera view, due to arm occlusion.
Disappearance can be handled by monitoring the optical flow
error which is related to the contrast gradient rI . If at a
point the gradient magnitude in one direction is significantly
larger than in any other direction, then that point is considered
to be disappeared since it is likely at the horizon. Handling
reappearances is more convoluted. While sophisticated pattern
recognition techniques can be used, here we opt for a simpler
inverse-DLT approach. If the 3D coordinate of a marker is
known (because other cameras see it) then its position can be
estimated in camera space, and colors and intensity spectrum
of the marker (measured by cameras that see it) can be locally
searched, to determine its reappearance.

V. RESULTS AND ANALYSIS

A series of synthetic and robotic investigations is presented
here to demonstrate the reconstruction abilities of our method,
and its robustness to experimental disturbances.

Reconstruction from synthetic data. We start by generating
a 3D curve based on six analytically known strain functions
(Fig. 3). These are arbitrarily determined, harmonic functions
selected to produce strains of comparable magnitude. The
synthetic ground-truth curve is sampled along its arc-length
at increasing resolution (from a minimum of 2 to a maximum
of 100 points). Corresponding position/orientation datasets
are then used for reconstruction, to assess the impact of
coarsening on the quality (relative L2-error norm) of the
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Fig. 3: (Left) Two views shows the reconstructed pose (d1, green – d2, blue
– d3, red) aligns with the 5 ground-truth samples (black). (Middle) The six
strains include shear ⌫1, ⌫2, stretch ⌫3�1, bending 1,2 and twisting 3.
Reconstruction of strains (black) are plotted against ground-truth shear/stretch
strains ⌫̄ and bending/twisting strains ̄ (red). (Right) Relative reconstruction
error e=

R L
0 |�̄|2ds/(L ·maxs |̄|) vs. number of samples (same for ⌫).
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Fig. 4: (Top) Reconstructions are overlaid on top of BR2 (18 cm long)
experimental recordings for bending (35 psi, 100 degrees-of-bend), twisting
(30 psi, 0.6 revolution-of-twist), and mixed bending/twisting (35/25 psi)
actuations. The BR2 is 18 cm in length. (Bottom) Reconstructed bend (1)
and twist (3) along the arm for which the tip is defined by the last marker.

recovered strain functions versus the ground truth. As can
be seen in Fig. 3, errors rapidly decrease to ⇠1% within 5
points. Even with 2 points, reconstruction errors are within a
⇠5% level, demonstrating the applicability of this approach to
sparse data. This characterization was performed for numerous
synthetic curves, consistently recovering similar trends.

Reconstruction of individual modes: BR
2
arm. Next, we

move on to our first experimental demonstration (Fig. 4).
Here, we employ a BR2 arm and take advantage of its multi-
modality to elicit individual or mixed deformation modes.
This allows us to verify the consistency of reconstructed
strain functions against expected BR2 deformations.
The BR2 is initially at rest in a straight, vertical configu-

ration, with directors (i.e. marker orientations, five markers
used) well aligned with camera views. Then, three experi-
ments are performed in which only bending or twisting or
both are activated. For all these cases, the arm motion is
tracked and 1 (bending), 3 (twisting) are reconstructed.
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In the bending experiment of Fig. 4, we find 1 to be the
most significant deformation, implying that bending takes
place approximately in-plane, as indeed expected. For twisting
only, 3 is predominant and as a result the arm centerline
remains straight, while individual FREEs helicoidally reshape
around it. In both cases, the less significant modes are not
exactly zero. This is because glueing and gravity give rise
to residual stresses. A careful fabrication can mitigate such
effects, although they cannot be entirely removed. Finally,
both bending and twisting are simultaneously activated which
is reflected in the comparable magnitudes of 1 and 3 (Fig. 4,
bottom). In all cases reconstructed centerlines and orientations
are mapped back to camera space and overlaid on top of the
arm, illustrating good visual agreement.
In these demonstrations we do not have known ground-

truth curves to compare with. Then, we determine the
reconstruction error relative to the BR2 midsection, 3/4,
and tip positions, which in turn are measured via glued
electromagnetic sensors (Patriot SEU, Polhemus, 0.1 mm
position error within 1000 mm range). We note that the error
distance to the tip reflects the global error of our entire
methodology, from calibration to reconstruction. As seen in
Table I, our system consistently recovers positions within
5 mm error, less than a third of the BR2 diameter (1.59 cm).

Actuation median err. (mm) max err. (mm) min err. (mm)
Max Bending 4.15 5.43 2.55
Max Twist 2.96 4.03 2.28

Both 4.13 5.13 2.82
TABLE I: Reconstruction error relative to EM measurements at mid, 3/4
and tip (last marker) points. Each experiment was repeated 8 times.

Simultaneous reconstruction of all modes: multi-section

BR
2
and cable-driven arms. Here we consider a multi-

section BR2 arm, made of individual BR2 serially stacked
together, and a cable-driven arm (Fig. 5). The goal is to
simultaneously reconstruct all modes of deformation from
technologically diverse and highly reconfigurable robots.
In the first experiment, the multi-section BR2 is initially

straight and at rest. Upon actuation, Section 1 is given a bend-
ing signal while Section 2 receives a twisting one, realizing
the reconfiguration sequence of Fig. 5. By tracking the 11
markers along the arm, we reconstruct all strain functions.
As can be seen, in the first section 1 is predominant, while
in the second section 3 is most significant. All other modes
are excited, albeit to a lesser extent, in a non-intuitive fashion
on account of the coupling between FREEs, and gravity.
In the second experiment, the cable-driven arm (made

of two sections, 12 markers) is actuated so as to excite
1 in Section 1 and 2 in Section 2, as captured by the
reconstruction. Further, due to its materials (softer than BR2)
and design (cables can render cross-sectional holders no
longer perpendicular to the centerline), the arm is particularly
susceptible to twisting and shearing effects. These expected
additional deformations are apparent from camera images,
and indeed are captured in our reconstruction (Fig. 5).

Finally, to further illustrate our method robustness to noise,
we digitally perturbed the 12 markers positions along the
cable-driven arm with uniform noise of up to 5 mm (100% of
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Fig. 5: Study of multi-section BR2 (38 cm in length, 1.59 cm in diameter)
and a cable-driven arms (35 cm, 1.5 cm in diameter). (Left) Timelapse. The
multi-section BR2 performs bending in the upper section and twisting in
the lower section. The cable-driven arm is bending both sections in two
different directions and experiences twisting and shearing due to gravity.
Overlay using inverse-DLT may introduce additional 3-5 mm deviation errors.
(Middle) Reconstructed poses of final arms’ configurations are overlaid.
(Right) Corresponding six continuous strain functions ([] = [rad/m]).

the overall system reconstruction error). Then, we recovered
the new strains and compared them with the ones of Fig. 5,
obtaining an average ⇠ 10% relative L2-error, confirming the
ability of our approach to attain sensible physical solutions
in the face of significant data disruption.

VI. CONCLUSION

To fully understand how compliance mediates and assists
control both in the biological and engineering domain,
methods that are able to accurately quantify all modes of
deformation in ubiquitous slender structures are necessary.
To respond to this need, we theoretically establish a physics-
informed framework that reconstructs normal and binormal
bending, shear, twist, and stretch strain functions along any
generic slender structure. Our approach relies on Cosserat
rod theory, and seeks to obtain globally smooth strain
functions so that the corresponding 3D shape minimizes
both elastic energy and distance from discrete pose data. To
test the proposed reconstruction method, shapes and strains of
highly reconfigurable soft robotic arms (BR2, multi-section
BR2, cable-driven) are collected using a multi-vision and
homography algorithm. Results demonstrate the accuracy and
robustness of our reconstructions, in the face of limited and
noisy data. Robotics demonstrations further underscore the
practical research capability of our integrated platform, for the
characterization in laboratory settings of robotic prototypes or
biological systems [53], [54], as well as for the development
of validated simulations and control strategies.
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