W) Check for updates

Article

Mathematics and Mechanics of Solids
2022, Vol. 27(3) 474-490

Longitudinal shock waves in a class of © The Author(s) 021

Article reuse guidelines:

semi-infinite stretch-limited elastic e lor 1771081266521 1025582
0 journals.sagepub.com/home/mms
strings §SAGE

Casey Rodriguez
Massachusetts Institute of Technology Cambridge, MA, USA

Received 26 February 2021; accepted: 27 May 2021

Abstract

In this paper, we initiate the study of wave propagation in a recently proposed mathematical model for stretch-limited
elastic strings. We consider the longitudinal motion of a simple class of uniform, semi-infinite, stretch-limited strings
under no external force with finite end held fixed and prescribed tension at the infinite end. We study a class of motions
such that the string has one inextensible segment, where the local stretch is maximized, and one extensible segment.
The equations of motion reduce to a simple and novel shock front problem in one spatial variable for which we prove
existence and uniqueness of local-in-time solutions for appropriate initial data. We then prove the orbital asymptotic
stability of an explicit two-parameter family of piece-wise constant stretched motions. If the prescribed tension at the
infinite end is increasing in time, our results provide an open set of initial data launching motions resulting in the string
becoming fully inextensible and tension blowing up in finite time.
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I. Introduction

The exact equations for planar motion of mechanical strings were derived by Euler in 1751 and for general
motion in three-dimensional space by Lagrange in 1762, and they have been a rich source of research for
natural philosophers and mathematicians (see [1]). In standard treatments, a string is elastic if the tension is
given as an explicit function of the stretch of the string (see [1, 2]). This then implies the existence of a stored
energy functional which by the first law of thermodynamics implies mechanical work is not converted into heat
during the string’s motion (i.e., there is no dissipation).

In a series of papers [3—5], Rajagopal recognized within the context of full three-dimensional continuum
mechanics that the absence of dissipation is not predicated upon assuming the stress variable is an explicit
function of the strain variable. More precisely, if we define elasticity as the incapability of dissipation, then
elastic bodies can be modeled by a wider class of relations between the stress variable and strain variable than
those where the stress is a function of strain. This generalized notion of elasticity has had numerous applications
in the modeling of electro and magneto-elastic bodies [6, 7], fracture in brittle materials [8, 9], gum metal [10],
and many other materials (see the recent review [11] for further references).

In [12], we initiated the study of these generalized relations for strings by considering a class of stretch-
limited elastic strings. For these strings, the stretch is an explicit function of the tension of the string, but not
vice versa, and the stretch is constrained between two limiting values. Therefore, segments of stretch-limited
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strings can neither be stretched nor compressed beyond certain lengths. Put another way, if one fixes one end
and pulls hard enough on the other end of a stretch-limited string, then the string becomes completely taut and
incapable of further stretching (a common experience with real strings). These properties are incapable of being
modeled within the standard framework for elastic strings. In [12] we studied stationary configurations of finite
stretch-limited strings suspended between two points under the force of gravity (catenaries) containing both
inextensible segments (where the stretch is maximized) and extensible segments.

In this work we study the dynamic longitudinal motion of a simple class of uniform, semi-infinite, tensile,
stretch-limited elastic strings with finite end held fixed, prescribed tension at the infinite end (the end at infinity
being pulled taut), and containing one inextensible segment and one extensible segment. A brief overview of
the formulation of the problem is as follows (see Section 2 for more details). Let / = [0, oo) parameterize the
particles of the string and denote the tension by N and stretch by v. We denote the position of the particle s
along the i axis at time ¢ by x (s, f) so that the stretch v(s, r) = (s, ). The variables y; and N are related via

IN(s,t) if0 < N(s,7) < Ny,

MQOZ{W i NGs, 1) > NI, (.1

where v; > 1 is the maximal stretch of the string, N, > 0 is the threshold tensile force resulting in inextensibility,
and £ = N, /v;. The equations of motion reduce to the simple balance law:

tht(Sa t) = NS(S: t)s (Sa t) € [05 OO) S [O, T]:

x(0,£)=0, N(oo,t)=<(t+T, (1.2)

where y > 0 is the mass density and ¢ > 0, T € (0, N;) determine the prescribed tension at the infinite end. When
the tension is a function of stretch, N(s, ) = N (xs(s, 1)), as in the classical treatment of elastic strings, (1.2) falls
within the well-studied realm of hyperbolic balance laws of one spatial variable (see e.g. [13]). However, the
balance law (1.2) with relation between the state variables given by (1.1) is, to the best of the author’s knowledge,
novel. We assume that the string for each time # contains an inextensible segment parameterized by s € [0, o (¢)]
where the tension N(-, ) € C!([0, o(£)]) exceeds the threshold for inextensibility

N(s,t)>N; >0, se€l[0,0(0)],
and an extensible segment parameterized by s € [o'(¢), 00) where N(-, ) € C!([o(f), >0)) and
0 < N(s,t) = Exs(s,t) < Ni, s € [o(t),o0).
We further assume the (generic) condition
N(o~(f),£)>N; > N(o ™t (¢), ) (1.3)

holds. Then the point of transition s = o (f) between segments is a shock front and, therefore, these motions do
dissipate energy due to entropy production (see Proposition 3.5) in contrast to motions which have continuous
state variables (see Section 2).

The organization and main results of this work are as follows. In Section 2, we briefly review the general
theory of mechanical strings, give the precise formulation of the problem we consider and derive the reduced
equations of longitudinal motion. In Section 3, we define the class of classical shock solutions we study and
prove the local-in-time existence and uniqueness of shock solutions to (1.2) for classical shock front initial
data (¥, 9;x,N)|=o (see Theorem 3.3). The boundary condition at s = 0 and the assumption of longitudinal
motion effectively reduces the proof to solving a linear wave equation for x in the extensible region {(s,#) : ¢ €
[0,T],s € [0(F),00)} with x(o(f),f) = vio(t). The condition (1.3) implies the shock speed o’ is greater than
the speed of propagation for this wave equation (a version of Lax s entropy inequality), and the result is then
proved via the implicit function theorem and finite speed of propagation arguments. Such a simplification is not
present for the full equations of motion, and the local-in-time existence and uniqueness of solutions outside of
longitudinal motion is an open question. Finally, in Section 4 we prove the orbital asymptotic stability of an
explicit family of piece-wise constant stretched motions,[AQ: 3]

v ifs € [0,0())

Xs(s,0) = {% if s € (o(t),00),
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parameterized by the initial shock front o (0) and shock speed o’(0) (see Theorems 4.2 and 4.3). When ¢ > 0,
the final time of existence for this family and its perturbations is 7(¢) = (N; — 7)/{ < 00, the time when the
tension at infinity exceeds the threshold for inextensibility, N(co, 7(¢)) = N;. As the tension at the end s = 0o
is growing to the threshold value N; when ¢ > 0, stability in this case is more delicate than { = 0. One must
show the stretch in the extensible segment grows in a controlled way like ({¢ 4 t)/E to leading order so that
a second inextensible segment does not form. This requires a careful analysis of the relationship between the
shock front o and the size of the perturbation in the extensible region [0 (¢), 00). For ¢ > 0 our results prove the
existence of an open set of initial data launching motions having one inextensible segment and one extensible
segment for ¢ < 7(¢) and becoming fully inextensible (o(f) — o0) as t — T(¢). Moreover, these motions
result in the blow-up of the tension: for all s € [0, 00),

lim N(s, t) = oo.
t—T()~

Whether or not the family of piece-wise constant stretched motions are orbitally asymptotically stable outside
of purely longitudinal motion is an open question.

We remark that our main results still hold with minor modifications if instead of assuming a linear relation
between stretch and tension (1.1) we assume a linear relation between strain e := v —1 and tension, i.e., Hooke’s
law. In this case, (1.1) is replaced with

IN(s,#) if0 < N(s,) < Ny,

1.4
vi—1  ifN(s,f) > N, (1-4)

XS(SaZ) - 1= {

where £ := N;/(v; — 1) is Youngs modulus for the string. We expect our main results can be generalized for
longitudinal motion involving more general stretch-limiting constitutive relations than (1.1) or (1.4) with the
possible exception of Theorem 4.2 due to a potential second shock forming in the extensible segment for small
perturbations.

2. Formulation of the problem

In this section, we review of the general theory of mechanical strings, state the precise assumptions for the
problem we consider and derive the reduced equations of motion.

2.1. Mechanical strings

A brief overview of mechanical strings is as follows (see [1, 2] for a more extensive exposition). Let {i, j, k} be
a fixed right-handed orthonormal basis for Euclidean space E*. Let / C R be a fixed reference interval which
parameterizes the particles or material points of the string. The configuration of the string at time ¢ is the curve
I 5 s+ r(s,t) € E3, and the tangent to the curve r(-, f) at s is ry(s, t) = d,(s, t). The stretch v(s, t) of the string
at (s,7) is

v(s, 1) = |rs(s, 7).

We require that the configuration is regular so that stretch is always positive throughout the motion of the string.
As a result of balance of linear momentum, the general classical equations of motion for a string are given by

(pA)(S)ry(s, 1) = ny(s,t) + f(s,8), (s,8) €l x[0,T]. (2.1)

Here (pA)(s) is the mass per unit reference length at s, f(s, ) is the body force per unit reference length at (s, 7),
and n(s, t) is the contact force at (s, 7). A defining characteristic of a string is that the contact force is tangential
to the configuration of the string: there exists a scalar-valued function N(s, t), the tension, such that

7s(s, 1)
(s, )1

n(s,t) = N(s, 1)
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The mechanical properties of a string are modeled by specifying a relation between the stretch v and tension
N. Classically, a string is said to be elastic if there exists a function N(v, s) such that

N(s, 1) = N(v(s, 1), s), (2.2)

with N(l,s) =0,v N(v,s) increasing, lim,_, N(v,s) = —o0 and lim,)_m,ﬁ/(v,s) = oo for all s. These
mathematical restrictions on N reflect the physically reasonable assumptions that an un-stretched configuration
is not in a state of tension, an increase in tension leads to an increase in stretch, a state of zero stretch requires

infinite compression force and a state of infinite stretch requires infinite tensile force. Thus, N (-, ) has an inverse
function D(-, s), and the constitutive relation between stretch and tension takes the form

v(s, 1) = D(N(s, 1), s). (2.3)

2.2. Longitudinal motion for stretch-limited elastic strings

In this paper we study the dynamics of a simple class of uniform, semi-infinite stretch-limited elastic strings
introduced in [12]. The constitutive relation can be expressed via (2.3) but not via (2.2), and we assume that
the string becomes inextensible once a threshold value of tensile force is reached. Mathematically, the string
satisfies the following.

* For all (s, ¢) € [0,00) x [0, T],
(pA)(s) =y >0, (s, 1) = D(N(s,1)),
where b : R — (0, 00) is absolutely continuous, nondecreasing, and v(0) = 1.
* There exist Ny >0 and v; > 1 such that b € C*°([0, N1]; [1, v1]) is strictly increasing and for all N > Ny,
D(N) = vy.

For simplicity we assume the constitutive relation is linear for all values of tension near the threshold:
there exists 1 > 0 such that for all N € [n, V]

HN) = %N, 2.4)

where E := Nj/v;. As mentioned in the introduction, our main results hold with minor modifications if
instead of (2.4) we assume a linear relation between the strain e := v — 1 and the tension (Hooke’s law):
there exists n > 0 such that for all N € [n, V]

1
€=é(N)= EN,

where £ := N, /(v — 1) is Young s modulus for the string. For definiteness, our statements and proofs will
be in the setting of the first relation (2.4).

Strings satisfying the previous assumptions admit a stored energy functional for motions satisfying N > n
and may be described as elastic: there is no dissipation for motions that are sufficiently smooth. Indeed, define
the stored energy functional via

E E
W(N,v) = 1{N5N1}5V2 + 1{NzN1}§V12,

the total stored energy of the material segment [a, b],

b
E@) = / W(N(s, 1), v(s, 1)) ds.



478 Mathematics and Mechanics of Solids 27(3)

and the kinetic energy of the material segment [a, b],

b
. Y 2
K(?) ._/a 2|r,(S,t)| ds. (2.5)

Then as long as the state variables (r;,7,,n) € C!([a,b] x [0, T];R’) and N > n during the motion, an easy
calculation using (2.1) and (2.4) shows that for all ¢ € [0, T']

K'(t) + E' () = P(t) := n(b,?) - (b, 1) — n(a, 1) - r(a, ), (2.6)

where P(f) is the power exerted on the segment [a, b] by the tensile forces in the string. By the first law of
thermodynamics (2.6) implies that no mechanical work is converted into heat.

In this work, we specialize our study to the longitudinal motion for a uniform, tensile, stretch-limited string
under no external body force, fixed at the end s = 0, pulled taut at the end at s = oo and containing an
inextensible segment and an extensible segment:

« for all (s, ?),
r(s,0) = x(s,01,  xs(s,6)>0,
SO
v(s, ) = xs(s, 1), n(s,t) = N(s, )i,
R
* there is no body force, f (s, ) = 0;
* the boundary conditions
r0,1) =0, n(co,t)=(¢t+ 7)i, (2.7)
where ¢ > 0 and t € (1, Ny);
» there exists o € C%([0, T]; (0, o0)) such that ¢’ > 0 and
Vs € [0,0(?)), N(s,t) € (N;,00),
Vs € (o(t),00), N(s,t) € (n,Ny);
and
« the generic condition that for all # € [0, T7],

N(o~(£),t)>N; > N(c (1), 1). (2.8)

We refer to [0, o (7)] as the inextensible (material) segment, [o(¢), 00) as the extensible (material) segment and
the point s = o (¢) as the shock front. We note that the assumption ¢’ > 0 reflects the physical assumption that
the inextensible segment is growing in time.

We consider weak solutions to the equations of motion (2.1) on [0,00) x [0, T] which are also satisfied
classically on

Zs = {(s,t) : t €[0,T],s € [0,0(2)]}
and
E i={(s,t):t €[0,T],s € [o(t),0)}
separately. The property of (r, n) being a weak solution is equivalent to the Rankine—Hugoniot jump conditions:
[n] +o'[r.] =0, (2.9)

where [y](o(?),1) = y(o(8)T,1) — y(o(£)~, t) is the jump across the point s = o (7) at time ¢.
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2.3. Reduced equations of motion and jump conditions

We now derive the reduced equations of motion from (2.1), the Rankine—Hugoniot conditions (2.9), and our
assumptions from the previous subsection. For (s, ) € &,, where the string is extensible, (2.1) and the boundary
condition (2.7) reduce via (2.4) to the wave equation

E
XZ‘[(Sa t) = _XSS(Sa t)’

Y (2.10)
ft+t

s 1) = .
Xs(00, 1) z

For (s, f) € Z,, where the string is inextensible and x,(s, #) = v;, we have

x(s,t)=/ v d&§ = vys,
0

and (2.1) reduces to Ny = 0, thus

N(s,t) = N(o (1), 1),
x(s,t) = vys.

The Rankine—Hugoniot conditions (2.9) reduce to

[N+ yo'®[x] = 0. (2.11)

Imposing the condition that x (s, ¢) is continuous across s = o (for brevity we drop the dependence of o on ¢)
implies

+ Ni
x(c",t)=vio = —0o (2.12)
E
and, thus,
O,/
Xt(a+: t) = E(Nl - N(G+a t))

As x,(s,t) = 0 for s € [0,0], we conclude

yo'lxl = ”;;’f (N = N(o™, ),
which, by (2.11), yields
N(o~,f) = N(o™*, ) + ”(;/)2 (N, — N(o™, 1)),
Thus, in the extensible region Z,,
N(s,t) = N(o+, 1) + V(Z/)z (Ni — N(a™, 1)), (2.13)

x(s,1) = vyis.

In summary, the equations of motion (2.1) and Rankine—Hugoniot conditions (2.9) are equivalent to (2.10) in
the region &,, (2.13) in the region Z,, condition (2.12), and our assumption (2.8).

From (2.8) and (2.13), it follows that the shock speed is greater than the speed of propagation in the
extensible region to the right of o (¢):

co>o'(t)>+/E/y. (2.14)
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As the speed of propagation of the inextensible region to the left of o(¢) is infinite, (2.14) reflects that the
solutions we study satisfy a generalized version of Lax s entropy inequality [14]. By choosing appropriate units,
we may assume that

J/ = E = 1’
so that Ny = v; and for all (s, ¢) € &,

N(s,t) = xs(s, ).

3. Existence and uniqueness of shock solutions

We now define precisely the class of initial data and shock solutions to the equations of motion that we study in
this work and prove our existence and uniqueness result.

3.1. Preliminaries

Definition 3.1. We say a triple of real-valued functions

(X0, x1,No) € C([0,00)) x L*([0, 00)) x L*=([0, 00)).
is a set of classical shock front initial data if there exists a unique oy € (0, 00) (the initial shock front) such that:
1. (x0, x1) € C* x C'([09,00)) and Ny € C'([00,00));
2. for all s € [09, 00), No(s) = x(s) and
n < No(s) < Ny;

3.xp(@) =1, x{(00)=2¢, xo0(op) = Nioy;

 xlh) .
4. o] .= —N]_X(,)(G()Jr) 1,

5. for all s € [0, g¢],
Xo(s) = Nis,
xi(s) =0, (3.1)
No(s) = No(og") + (61)* (N1 — No(o)) > N.

We remark that a simple class of shock front initial data is given by
xo(s) = Niog + (s — 09), s € [09,00)
and any x, € C'([09, 00)) satisfying

xi()=¢,  xi(oo) >N — 7).
(This data (x0, X1, No)l[sy,00) 15 €xtended to [0, o¢] via (3.1).)
Definition 3.2. Let (xo, X1, No) be a set of classical shock front initial data with initial shock front o € (0, 00).
We say a pair
(x>N) € C([0,00) x [0, T]) x L*=([0,00) x [0, T])

is a classical shock solution on the time interval [0, T] with initial data (o, x1, No) if ;x € L>([0, 00) x [0, T])
and there exists a unique curve
o € CX([0,T}; [00, 00)),

the shock front, with o (0) = oy such that:
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1. x € C¥&,)and N € C!(&,) where, as before,

E i={(s,0):t€[0,T],s € [0(F),0)};

2.0n&,, N(s,t) = xs(s, ) and

n < N(s,t) < Nyp;

3. x(o*,f) = Nio;

7 Cas) .
4.0 = —Nl_’N(UJr,t) >1;

5.onZ, :={(s,t): t €[0,T],s € [0,0]},

X(Sa t) = NIS:
N(s,£) = N(o T, 1)+ (6'*(N1 — N(o T, £)) > Ny; (3.2)

6. on &, x satisfies the wave equation

Xtt(sa t) = XSS(S3 l),
xs(00,0) = ¢t +1, (3.3)
X(S, O) = XO(S), Xt(sa 0) = Xl(s)'

3.2. Existence and uniqueness of classical shock solutions

We now prove the existence and uniqueness of classical shock solutions for given classical shock front initial
data.

Theorem 3.3. Suppose (xo, x1,No) is a set of classical shock front initial data with initial shock front oy €

(0,00). Then there exist T = T(xo0, x1) > 0 and a unique classical shock solution (x,N) to the equations of
motion on the time interval [0, T].

Proof. (Existence) We first extend the initial data

(X0, 1) € C* x C'([09, 00))

to a pair
(X0, 1) € C* x CY(R)

such that for all s € [0y — 8, 00)
No < x4(s) < Ny.
Let ¥ € C*(R},) be the unique solution to the wave equation
Xi(8, 1) = Hss(8, 1), (s,1) € Rit,
X(s,0) = Xo(s), Xi(5,0) = X1(s), s €R.

By D’Alembert’s formula

1 1 S+t
26.0= 5 (fols + 0+ fols = 0) +5 [ inceras

—t

and the assumptions on the data, we have for all # € R,

Xs(00,0) = ¢t + 7.



482 Mathematics and Mechanics of Solids 27(3)

By continuity and choosing Ty > 0 sufficiently small, we have for all (s, ¢) € [0y — §,00) x [—Tp, To],
n < xs(s, 1) < Ny.
Consider the function
f(o,t) = Nyo — x(0,1), (0,t)eR x[—T, To].
Then f(09, 0) = Nygy — xo(oo) = 0, and
So(00,0) = Ny — xi(os") = Ni — No(o,") > 0.

By the implicit function theorem, there exists 77 € (0, 7»), € > 0 such that for all € [T, T;] there exists a
unique 6 (¢) € [0y — €, 00 + €] such that /(6 (¢), f) = 0. Moreover, by differentiating the equation /(6 (¢),7) = 0
in time, we have
ACION;
O IO
Nl - XS(O-(t)s t)

which implies 6'(¢) is C! and

X1(00+)

d'0)=0= —""—
Ny — No(o")

>1.

By choosing T < T sufficiently small, we can ensure that for all # € [0, 7]
X(6(),1) = No(t), &'(t)>1.
The latter inequality along with Ny > x,(6 (¢), f) implies
Xs(6(0),0) + (8" (0 (N1 — £:(8 (), 1) > N1

Defining T := T,0:=6, (X-N)le, == (X, xs)le,» and (x,N)|z, via (3.2) we obtain a shock solution on [0, 7]
with initial data (xo, x1,No).

(Uniqueness) Suppose ( )?,](/) is another shock solution on [0, '] with initial data (xo, x1,No) and initial
shock front oy. Let x be the unique C? solution to the wave equation (3.3) on {(s,?) : t € [0, T], s € [0¢+1,00)}.
By finite speed of propagation, x is a C* extension of x|g, and X|g, and, thus, o and & solve the ordinary
differential equation

X:(0,t _
o = #, a(0) = oy,
Nl - XS(J, t)
which implies 0 = 6. We conclude x|s, = x|, = X|s,, proving uniqueness. ]

We note that our uniqueness proof does not rely on 7 being the same as that from the existence proof.
Therefore, we define the final time of existence T, for a shock solution (yx,N) to be the largest time such that
(x,N) is a shock solution on [0, T’;.). We refer to [0, 7y) as the maximal interval of existence for (x,N).

By finite speed of propagation we have the following simple observation that we can identify a classical
shock solution (y, N) on &, with the restriction of a solution to the wave equation defined on the strictly larger
domain {(s,7) : t € [0, T],s € [6(0) + ¢, 00)}.

Proposition 3.4. Suppose that (x,N) is a classical shock solution on a time interval [0, T) with shock front o
and initial data (xo, x1, No). Let X be the unique C? solution to the wave equation (3.3) on {(s, ) : t € [0,00),s €
[6(0) + t,00)}. Then

Es C{(s,t):t €[0,00),s € [6(0) + t,00)},
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and xe, = xe,. Consequentially, if

o(T):= tli_)n}o(t) < 00,

and

n<Xs(s,T) <Ni, s ¢€[o(T),00),

X, 1)
Ni = xs(o(T), T)

b

then (x, N) extends uniquely to a shock solution on [0, T] with T>T.

3.3. Dissipation
We conclude this section by showing that these motions dissipate the mechanical energy of material segments.

Proposition 3.5. Suppose (x,N) is a shock solution to the equations of motion on the time interval [0, T] with
shock front o, and suppose that a,b € (0,00) with a < o(t) < b. Define the total energy (the sum of the total
kinetic energy and total stored energy of the string) of the material segment [a, b] via

b o b
K(t)+ E(t) := / %(Xt(s,t))zds—l- / %leder / %(N(s,t))zds.

Then for all t € [0, T],
K'()+E(t) = P(t) + Q).

where P(t) is the total power exerted by the tensile forces on the segment [a, b],
P(t) = N(ba Z‘)Xt(ba t) - N(Cl, t)Xt(a, t) = N(b, t)Xt(ba [)a

and Q(t) is the total heat power,

0() i= =2 (N1 = N@* . 0)X(@'Y = 1) < 0.
Proof. Using the relation N = y; on &,, the equations of motion (3.3) and integration by parts we deduce

K +E =P+0Q,
where
+ + o' a2, + 2 2
—0(0) = (0 DN, + T (a0 + (V@0 = N)).

By the Rankine—Hugoniot conditions and the relation

[[Xt]](o+v t) = Xt(0+,t) = 0/(Nl - N(G+: t))

we deduce
1
(@ DN, 1) + S0 (o™, )

1
= [[Xtﬂ(a+a t) (N(U+a t) + EO_/[[XI]](O’-F, t))

N(o™,t)+ N(o~,1)
2

= %/(Nl — Nt )N, )+ N(o,1)).

= [[Xtﬂ(a+’ t)
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By Definition 3.2 we conclude
00 =% (N~ N@* )&+ N 1)
-V = N@*.0?)

=%(N1 — N(o+,0)(N(o ™, 1) = Ny)

:%/(Nl —N(e*,0)*(0')> = 1)>0

as desired. O

4. Piece-wise constant stretched motions

In this section we prove the orbital asymptotic stability of an explicit two-parameter family of piece-wise
constant stretched motions.

4.1. The two-parameter family of piece-wise constant stretched motions
We define

o0 if¢ =0,

T({):{ -t .
NT if £ >0.

When ¢ > 0, this is precisely the time when the tension at s = oo surpasses the threshold tensile value, N;, for
inextensibility. In particular, the solutions to the equations of motion having one inextensible segment and one
extensible segment satisfy 7, < T(¢).

We first exhibit the solutions which have piece-wise constant stretch,

Vs, 0) = K5 0) = {Nl if’s € [0.0(1)].

(t+ 1 ifs € [o(t),00), S

where o is the shock front separating the inextensible segment [0, o] from the extensible segment [0, 00). Via
simple calculations, we have the following.

Proposition 4.1. Let (0y,01) € (0,00) x (1,00). Define a shock front o and pair of functions for (s,t) € E; by
o (N; — 1)t

Ni— (@t + )

x(s,1;8,00,01) = Niog + (£t + T)(s — 00) + 01(N1 — )8,

N(s,t;¢,00,01) =t + T,

G(l5 4‘5070,071) =0y +
(4.2)

extended to I, via (3.2). Then (4.2) defines the unique solution to the equations of motion on the maximal
interval of existence [0, T(¢)) satisfying (4.1), 0(0) = oy and o'(0) = o7.

The values of the following state variables corresponding to a piece-wise constant stretched motion with
parameters (09, 01) € (0,00) x (1, 00) (and omitting the dependence of the solution on ¢, 0y, 07) are given by,
for s € [o(¢), 00),

Xs(s, ) =¢t+7, xuls,0) = (s —0p) +o1(N1 — 1),
(Ni—1  2(o(1) — 0p) + 01 (N) — 1)

=N S r T MGt

5

and, for s € [0,0(?)],

[¢(a(t) — 00) + o1 (N — 7))

N(s,t)y=¢t+ 1+ Ny —(Cr+ o)
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4.2. Perturbations of piece-wise constant stretched motions

We first note that the piece-wise constant stretched motions described in the previous subsection are, in general,
unstable to small L™ perturbations of the state variables. Indeed, suppose ¢ >0 and (0p, 01) € (0, 00) x (1, 00).
Then, for all € >0 and R > oy, one can construct initial data (o, x1, N) with initial shock front o} such that
T < x(s) <t +e, s € [og,00),
, T if s € [09, R] U [4R, 00)
XO(S) = : >
T4+e€ ifs € [2R, 3R]

x1(s) = &(s —o9) + 01 (N1 — 1), s € [0, 00).

Then

X0 — Tllzo[oo,00) + X1 = [E(s — 00) + o1 (N1 — T)]ll1 < €.

By choosing ¢ sufficiently small, R sufficiently large, and using finite speed of propagation, we can then
conclude using Proposition 3.4 that

nzﬂi%i9<nn

and, fort € [0,7],s € [2R+t,3R — ],
Xs(s,0) =t + 1 + €,

i.e., the string has formed a second inextensible material segment before the time 7'(¢). The previous argument
also previews why proving stability of piece-wise constant stretch states is more delicate when ¢ > 0: the
increasing tension at s = oo and the nature of the perturbation may result in a second inextensible segment.

We now prove piece-wise constant stretch motions are orbitally asymptotically stable under small weighted
L perturbations of the state variables and their derivatives. We begin with the simpler case ¢ = 0.

Theorem 4.2. Assume { = 0. Let (09,01) € (0,00) x (1,00). There exist €y > 0 and C > 0 such that for all
€ < €, the following is true. Suppose (xo, X1, No) is a set of initial data with initial shock front oy such that
there exists r > 0 such that

B:= sup [|X6(S) — 7| + 5 x ()] (4-3)

s€[0(,00)
+ b = o = 0l +5 X 0)]] <«

Then, the unique solution (x,N) to the equations of motion with initial data (xo, x1, No) satisfies T+ = T(0) =
oo and the state variables and shock speed remain close to and asymptotically approach those of a piece-wise

constant stretched motion as t — oo: there exist o° € (1,00) such that ‘% — 1’ < Ce and for all t € [0, 00)

sup s [ xss(s, )| + | xs(s, )] < CB,

s€lo(t),00)

sup [ 1x(5,0) = 7l + +lxuls. ) = 0Ny = )l | = CBO +0)7,

s€lo(t),00) (4 4)
/ t .
‘G ©_ 1‘ < CBU +1)7,
1
sup [N (s, ([t + (02PN, — D)) — 1‘ < CB(1 + 1)
s€[0,0(1)]

Proof. We first note that by (4.3) and the fundamental theorem of calculus,

o0 B
) — 7l = / X&) de| < 25,
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0o . _ 1 : i
o = g lim,_, o, x1(s) exists and

B
Ix1(s) — o °(N) — 1)| < 7S_r,

for all s € [o0g, 00). In particular, by (4.3),
lo1(N1 — 7) — 07°(N1 — 7)| = |o1(N1 — 7) — x1(00)| <€,

proving o € (1,00) and

— 1l <

=N 2 (4.5)

o0
’ol €
()]

for all € sufficiently small.

Let (x, V) be the unique solution to the equations of motion with shock front o and initial data (o, x1, No)
defined on a maximal time interval of existence [0, 7). Let x be the unique C? function on Dy, := {(s,7) : t €
[0, 00),s € [0g + ¢, 00)} solving the wave equation

Xtt(sa t) = )ZSS(S5 f),

XS(OO, t) =T,

X(Sa 0) = XO(S)7 Xt(sa 0) = Xl(s)'
By D’Alembert’s formula:

s+t

1 1
1.0 = 5 (o6 + 04 06 -0) +5 [ a@ds,

—t

By finite speed of propagation,

xle, = Xxle,» (4.6)
and, thus, the shock front o is the unique C? solution to
/ Xt(av t)

= ——"—, 0) = oy. 4.7

U= Ry TO= 47

By D’ Alembert’s formula, we have for all ¢ € [0, 00), s € [0 (), 00)
| Xs(s,0) — 7|

— %(X()(s +1H—1)+ %(xé(s +0H—-1)

300640 = oM = 1) = 30005~ )~ 07N ~ )

2B _
< —(@—-0", (4.8)
r
and, similarly,
) - 2B ~,
X, 1) = o* (N =) < —(0 = 1), (4.9)
S Xos (8, O + 1 Xsts, D] < B+ (s — 7™, (4.10)

As o —t > gy, we conclude from (4.3), (4.8), and (4.9) that there exists C; > 0 such that for all € sufficiently
small, for all (s,7) € Dy,

n<t—Cle < xs(s,t) < T+ Cie < Ny,

xs(o,1)

R g e

< o(1 + Cie). (4.11)
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By Proposition 3.4, it follows that 7, = 7'(0) = co.
By (4.5), (4.7), and (4.11),

t
U—t:Uo—i-/ o'(t)ydt —t
0

€

> 1 —
_O'o-l-Gl( N -1

)(1 —Cie)t—t
1
> 09 + 5(01 —
for all € sufficiently small. A similar argument also proves there exists a constant ¢ > 0 depending on ¢y and o
such that (1 — ¢)o > ¢ and, thus, for all s € [0, 00)
(S _ t)frflsr < cfr,

for all € sufficiently small. Thus, by (4.6), (4.8), (4.9), and (4.10) we conclude there exists C > 0 such that for
all s € [0, 00)
S 1 xss(s, 01 + x5, 011 < CB,
| Xs(s,0) = 7] + |xels, 1) — 07" (N1 — T)| = CB(1 +1)™".
This proves the first two estimates in (4.4) which then immediately imply the third and fourth estimates in (4.4)
via (4.7) and (3.2). O

Theorem 4.3. Assume ¢ > 0. Let (0p,01) € (0,00) x (1,00). There exist €y > 0 and C > 0 such that for all
€ < €, the following is true. Suppose (xo, X1, No) is a set of initial data with initial shock front oy such that
there exists r > 0 such that

B:= sup [Ix()(s) — 7| +Sr+2|X6/(S)|

s€[o(,00)
+ha() = oV = D)l + 5 )l] < e (4.12)

Then the unique solution (x, N) to the equations of motion with initial data (xo, X1, No) satisfies T, = T(¢) and
the state variables and shock speed remain close to and asymptotically approach those of a piece-wise constant

stretched motion as t — T(¢): there exist o° € (1,00) such that |% — 1\ < Ce and for all t € [0,T(¢))

sup 8" 2[| xss(s, )| + | xs(s, )] < CB,

s€lo(t),00)

sup [ 11605, = (61 + )] + [xi(s.0) = [£ (s = 00) + 07N = D] ]

s€lo(t),00) -
< CB(T(¢)— ', (4.13)
_ (N, — 1)\ -1 )
o oL IR ) < cnro) - oy,

[£ (0 — 00) + o7° (N — t)]z)_l ~ 1| < CB(T(¢) — 1.

sup N(s,t)( N —(C1+ 1)

s€[0,0(1)]

Proof. As in the previous proof, it follows from (4.12) and the fundamental theorem of calculus that there for

€

all € sufficiently small, there exists o € (1, 00) with |(;1—l -l =5=

such that for all s € [0y, 00)

B
o) =Tl < s
"3 (4.14)

|x1(s) = (¢ (s = 09) + 0" (N} — 1)) < r-l—_ls_l_r
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In particular, there exists C; > 0 depending on oy, 01, ¢ and N; — t such that

| a'(0)

o’

- 1} < C\BT(Y.

Let (x,N) be the unique solution to the equations of motion with shock front o and initial data (o, x1, No)
defined on a maximal time interval of existence [0, 7). Let x be the unique C? function on Dy, := {(s,7) : t €
[0,7(2)),s € [0 + t,00)} solving the wave equation

Xtt(s’ t) = XSS(S’ Z),
Xs(00,1) = ¢t + 7,
x(5,0) = xo(s), Xi(s,0) = x1(s).

As before, using (4.14) and D’ Alembert’s formula, we conclude the bounds for all ¢ € [0, 7(¢)), s € [o(t), 00),

vt 2B —1—r
|Xs(s,0) = (St +7)| = r+_1(0 -0

2B
| Xe(s, 1) = [§(s — 00) + 0" (N1 — D)]| < r—l——l(a -0, (4.15)
S %55 (85 O + 1 Xst(s, O] < B(L+ (s — )7 25™2).

To control the shock speed and state variables, we proceed via a bootstrap argument. We claim that there
exists a constant Cy > C; depending only on oy, 01,¢ and N; — t such that for all € sufficiently small, the
following is true: if 7 < T and for all ¢ € [0, T'] we have

o (8(0(t) = 09) + (N — )\ .
o'(1) ( T i ) 1| <2CB(T(¢) — 1), (4.16)
then for all ¢ € [0, 7] we have
(S0 (t) —09) + o °(N) — T)\ ! ,
o (z)( T ) 1| < CoB(T(2) — 1) 4.17)

Assume that (4.16) holds with Cy to be determined. Let

e 5(0_0'0)-{-0’100(]\71—1') —1_
5() = o (z)( TS ) .
/ Lt +8@) i

Ny — (Gt +7)
thus

FO= 5=
Then

146 CO(N —
(0 —op) — Nf(%t:t-))r)(a —0p) = %(1 + 8(2)),
which implies
oM -7 d

—[(0 — oo) exp(—f ()] = 7 KPS (0)-

—¢
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Integrating, we conclude that

o (N1 — 1)

o—oy=————(EpfO-1
oo N _
= §(;11 E (1“ +T)r)) (V) — 1) expg(t) — (N — (¢t + 1))
_ o T®)

@) = (T expgd — 1),

where
£8(1) -
d
g0 = /Nl—(§r+r) t
satisfies, via (4.16),

lg(0)] =
Then, for all € < W min{og, 7'(¢)(o° — 1)},
(T(¢) — (o — 1) =0(T(¢) — ) + o7 T ()t + T(¢)(expg(?) — 1))
— T+ 1
>00(T(§) = ) + T(E) 0 — )i+ 07°T(¢ ) (expg(r) — 1)

r42
> 7(¢) min{o, T(¢ o — 1)) — 2018V G0,

20(TQ),
r

1
ZET(Q“)min{Oo,T(C)(GfO— D)}
Thus, for all p >0,
1 —
(@ =07 = (37@)minlon, TG = DY) " (T@) =17 (4.18)

Inserting (4.18) into (4.15) implies that there exists an explicit constant C, > 0 depending on oy, 01, ¢ and Nj —1
such that

Xt(aat) 14r
—1| < GB(T(¢) —
¢(o —o09) +0°(N — 1) ' = GO =0 (4.19)
N = x(o,0) 1' < CB(T(¢) — 1Y
Ny —(t+71)

NX’& we conclude that there exists an explicit constant C3 > 0 depending on
1—Xs(0,t

09,01, ¢ and Ny — t such that forsali € sufficiently small

Thus, via the relation o’ =

o'()

(Lot BN ZONT | < i) — oy

N — (;l + T)
If we define Cy := max{C, C3}, then we have proved that (4.16) implies (4.17) for all

min{oy, T({)(o7* — 1)}

7

< —_—
8Coo T (¢)y+!

sufficiently small. This proves the claim.

By the claim and a continuity argument, if follows that the bound (4.16) and its consequences hold on
[0, Ty) for all € sufficiently small. By (4.16), (4.19) and Proposition 3.4, it follows that 7, = 7(¢) for all €
sufficiently small. Then (4.16), (4.15), (4.18), and (3.2) and the fact x|¢, = x|¢, immediately yield (4.13) for
all e sufficiently small. O
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