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DYNAMICS OF BUBBLING WAVE MAPS
WITH PRESCRIBED RADIATION

BY JAacek JENDREJ, ANDREW LAWRIE AND Casey RODRIGUEZ

ABSTRACT. — We study energy critical one-equivariant wave maps taking values in the two-sphere.
It is known that any finite energy wave map that develops a singularity does so by concentrating the
energy of (possibly) several copies of the ground state harmonic map at the origin. If only a single
bubble of energy is concentrated, the solution decomposes into a dynamically rescaled harmonic map
plus a term that accounts for the energy that radiates away from the singularity. In this paper, we
construct blow up solutions by prescribing the radiative component of the map. In addition, we give a
sharp classification of the dynamical blow up rate for every solution with this prescribed radiation.

RESUME. — Nous étudions 1’équation des applications d’onde (wave maps) critique pour I’énergie,
a valeurs dans la sphére de dimension 2, dans le cas équivariant de degré 1. Il a été montré qu’une
application d’onde d’énergie finie ne peut développer de singularité qu’en concentrant a ’origine du
systéme des coordonnées des bulles d’énergie, c’est-a-dire des applications harmoniques remises a
Iéchelle. S’il n’y a qu’une seule bulle, alors I'application se décompose en la superposition de celle-
1a, et de la radiation émanant de la singularité. Dans cet article, nous construisons des solutions
explosives en prescrivant la composante radiative de I’application. Nous déterminons également le taux
de concentration de la bulle explosive pour toute solution ayant la méme radiation que la solution
construite.

1. Introduction
We consider wave maps from (1+2)-dimensional Minkowski space R,l’“;z to the 2-sphere,
S?, with 1-equivariant symmetry. In this setting, the objects under consideration are formal

critical points of the Lagrangian action,

(1.1) AU) = %/Rm (—|3,U(z,x)|2 + |VU(z,x)|2> dx de,
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1136 J. JENDREJ, A. LAWRIE AND C. RODRIGUEZ

where U : R} £? — S? C R3 are maps that take the restricted form,
(1.2) U(t,r,0) = (sinu(t,r)cos8,sinu(t, r)sin 6, cosu(t,r)) € S c R3.

Here (r, 6) are polar coordinates on R?, and u(t, r) is a radially symmetric function. The
Cauchy problem for 1-equivariant wave maps reduces to a scalar semilinear wave equation
for the polar angle u:

1 in2
Pu— 0%u — ~du+ 2 — 0, (1.r) € R x (0, 00),
r 2r2
(u(to), 0;u(to)) = (uo, o), fo € R.

Wave maps are referred to as nonlinear o-models in the high energy physics literature, see
e.g.,[20, 9]. From the mathematical point of view, they are a canonical example of a geometric
wave equation as they simultaneously generalize the free scalar wave equation to manifold
valued maps and the classical harmonic maps equation to Lorentzian domains. The case
considered here is of particular interest, as the static solutions given by finite energy harmonic
maps are amongst the simplest examples of topological solitons; other examples include
kinks in scalar field equations, vortices in Ginzburg-Landau equations, Dirac monopoles,
Skyrmions, and Yang-Mills instantons; see [20]. The symmetry reduced Equation (1.3) is a
much studied problem, since it admits intriguing features from the point of view of dynamics,
e.g., bubbling harmonic maps, multi-soliton solutions, etc., in the relatively simple setting of
a geometrically natural semilinear wave equation. For a more thorough presentation of the
physical or geometric content of this equation, see e.g., [20, 40, 9].

The energy functional £ is defined for vectors ug := (uo(-), o(-)) by the formula

(1.3)

0 )

(1.4) E(ug) 1= n/ (|ito|2 + |0ruol* + _smrzu0> rdr.
0

Due to the temporal translation invariance of the action 4(-) and Noether’s theorem,
the energy is conserved if u is a solution to (1.3): E(u(z)) = &E(up) for all + where
u(t) := (u(t,-),d;u(t,-)). Note that initial data uy = (ug,%p) of finite energy forces
up(r) —» mmasr — 0and ug(r) - nmwasr — ooform,n € Z. We will fixm = 0,
and n = 1 in our analysis, but we could just as well consider states of finite energy with
arbitrary endpoint in 7 Z. Thus the finite energy maps we study connect the north and south
poles of S? and have topological degree one, i.e., they are members of the space

(1.5) Hy :={up | E(mp) < 00, limug(r) =0, lim ue(r) = x}.
r—>0 r—00
T'he family of stationary solutions

(1.6) 0,(r) := 2arctan (%
plays a fundamental role in the study of (1.3). We will write Q(r) := Q1(r). We note
that @ := (Q,0) € H; since Q(r) — m asr — oo. In fact, Q, which is the polar angle

of a degree one harmonic map, has minimal energy in Hy; see (2.13) below.

). A>0

We will often work with vectors in the energy space H := H x L?, where the space H is
the completion of C§°((0, oo)) for the norm

° 2
(L.7) lvllz = n/o (la,v(r)|2 + |v(r2)|

r

) rdr.
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BUBBLING WAVE MAPS WITH PRESCRIBED RADIATION 1137

Note that v € H forces lim,_, 4o, v(r) = 0 and that uy € H; means that ug — Q, € H for
any fixed A > 0. Itis classical that (1.3) is locally well-posed for initial data in H; see [41] (and
thus, (1.8) is well posed in H).

We observe that the wave maps Equation (1.3) can be equivalently expressed as a first
order system:

dru(t) = J o DE(u(t))

1.8
-9 u(to) = uo,
where

01 —2u(t) — L,u(r) + Sn2u®
1.9 J = . DE _ r ¥ P .
- <—10) (e ( deu()

1.1. Main results

The breakthrough works of Krieger, Schlag, Tataru [18, 19], Rodnianski, Sterbenz [38],
and Raphaél, Rodnianski [36] proved that wave maps can develop singularities in finite time
by concentrating energy at a point in space. The main goal of this paper is to directly tie the
precise blow-up dynamics of concentrating wave maps to the part of the solution that radiates
away from the singularity.

We start by clarifying what is meant by the radiation field of a singular wave map. By equiv-
ariance and energy-criticality a solution to (1.3) can only become singular by concentrating
energy at r = 0. In [43], Struwe proved that such energy concentration can only occur via the
bubbling of at least one harmonic map, at least along a sequence of times. It was later shown
in [6, Theorem 1.3] that any 1-equivariant wave map u(t) € H; with energy £(u) < 3£(Q)
that blows up, say as time t — 0%, admits a decomposition of the form

u(t) = Q) +ug +g@),
(1.10) At) =o0(t) as t - 0T,
gl — 0 as t — 07,

where uj € 'H is uniquely determined by u(t) = (u(¢),d;u(?)), and A(¢) is a continuous
function. In fact, letting u™*(t) = (u™*(¢), 9,u*(¢)) denote the wave map evolution of the initial
data u*(0) = uj (i.e., the solution to (1.8)), we have £(u*) = £(u) — £(Q) and,

(1.11) u(t,r) = (m,0) +u*@,r), Vr>t,

i.e., u*(t) accounts for the part of u(¢) that radiates out of the light cone as we approach the
singular time. We will refer to uj € H or the associated flow u* as the radiation field of the
singular wave map u.

In the case of a wave map that blows up by bubbling off a single harmonic map, the cap
on the energy £(u) < 3£(Q) (which ensures that there can only be one blow up bubble)
was removed by Cote [5], and Jia, Kenig [16] generalized the result to k-equivariant maps.
These works also provided a further generalization of (1.10) that allows for the possibility
of more concentrating bubbles along a sequence of times. Later, Duyckaerts, Jia, Kenig, and
Merle [7] established a one-bubble decomposition as in (1.10) for general wave maps with
energy slightly above the ground state harmonic map.
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1138 J. JENDREJ, A. LAWRIE AND C. RODRIGUEZ

Given the qualitative decomposition (1.10), it is natural to ask if the radiation field u;
carries information about the blow up dynamics. In this paper, our approach to answering
this question is to fix a mapping u; € H as a candidate for a radiation field, and ask:

— Do solutions that become singular as in (1.10) with radiation ug exist?

— If yes, can we characterize all singular solutions with radiation ug?

This perspective is natural. Indeed, the only solution as in (1.10) with ug = (0, 0) is the
stationary solution Q,, for fixed A9 > 0. Thus, the dynamical parameter A(¢) in (1.10) can
only tend to zero in the presence of nontrivial u§ and naively one can expect that the concen-
tration is driven by nonlinear interactions between the wave map evolution u*(¢) and Q) ().
In this paper, we show that for sufficiently regular g € H this naive intuition is correct,
and that the answer to both questions above is yes. In fact, the dynamical parameter A(¢) is
precisely determined by the rate of decay of uj(r) asr — 0.

We demonstrate this for a natural class of radiation fields, i.e., those with polyno-
mial vanishing as r — 0. Let v > % and ¢ € R\{0}, and consider a radiation field

uy = (ugy,u7) € H such that either

ug(r) = qr® x(r)
(1.12) ’
uj(r) =0,

or
ug(r) =0,

(1.13) . 1

uy(r) =qr=" x(r),

where y € C*°(0, 00) is a cut-off such that y(r) = 1if r <1/2and y(r) =0ifr > 1.

The main result is the following theorem.

THEOREM 1.1 (Main Theorem). — Let ug € H be as in (1.12) or (1.13) with v > %. Then,

(a) (Construction)Ifq < 0in(1.12), there exists T+ > 0andasolutionu, € C((0,T4)); H1)
to (1.3) blowing up backwards-in-time at T— = 0 such that

(1.14) uc(t) = Q;. ¢ +ug+on(l), ast—0F,
with
V1
(1.15) Ac(t) = %ltlogll’
where
v(v + Z)ﬁf(%")
(1.16) p=p):= .

()
If g < 0in (1.13) then the exact same result holds with the explicit constant
2+v

(1.17) p) = ()
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BUBBLING WAVE MAPS WITH PRESCRIBED RADIATION 1139

(b) (Classification) Let u(t) € Hy be any finite energy solution to (1.3) that blows up by
concentrating one bubble backwards-in-time at t = 0 while radiating ug as in (1.12), i.e.,
u(t) admits a decomposition

(1.18) u(t) = @y +ugy +on(l), ast — 0",
with A(t) = o(t) ast — 0. Then,
(1.19) q<0,

and the rate A(t) satisfies,
gl
1.20 A) = —— 1
(1.20) 0 (VZ(H])”( ))
where p(v) is as in (1.16).
If instead the radiation takes the form (1.13) then the same result holds with p(v) as
in (1.17).

tv+1

as t — 07T,
|logz]

REMARK 1.2. — In part (b) of Theorem 1.1 we assume that the blow up solution u(z)
admits a decomposition (1.18) with one bubble, but this is a mild hypothesis given the
existing literature. By [6, Theorem 1.3] the decomposition (1.18) holds for any solution
u(t) € H; such that £(u) < 3£(Q). For larger energies, it was proved by Cote [5] that such
a decomposition holds as long as we assume that there is only one concentrating bubble.
The qualitative classification results for energies larger than 3£(Q) in [5, 16] allow for
solutions that simultaneously concentrate the energy of multiple bubbles in finite time (along
a sequence of times), which necessitates our inclusion of the hypothesis that only one bubble
concentrates. However, it is quite possible that finite time multiple bubble trees do not exist.

REMARK 1.3. — In Appendix A we show that the blow up rate (1.15) can be formally
derived from the leading order behavior of the linear evolution of the radiation. This is
borne out by our analysis—the explicit constants p(v) in (1.16), (1.17) arise as the leading
order coeflicients of the evolution of the data ug(r)/r via the free 4d wave equation at the
point (z, 0); see Section 2.3 and Appendix B.

REMARK 1.4 (Forward-in-time blow up and the sign of the bubble).

Suppose the radiation takes the form #*(0) = (ug,0) asin (1.12) with ¢ < 0. Then
due to the time reversal symmetry of (1.3), a wave map u™ satisfies (1.18) if and only if
u=(t,r) ;== ut(—t,r) satisfies

(121) Il_(t) = Ql(lt\) + ué =+ 07—((1), ast — 0.

Thus, the conclusions of Theorem 1.1 are equally valid forward-in-time. However, if we
assume the radiation takes the form #*(0) = (0,u7) as in (1.13) with ¢ < 0, then a wave
map ut satisfies (1.18) if and only if u=(¢, r) := —ut(—t, r) satisfies

(1.22) u (t) = —QA(M) + ué +oxn(l), ast—0".

In particular, the conclusions of Theorem 1.1 hold forward-in-time with the sign of the bubble
reversed.

In all of the analysis we could have just as easily considered ug = (ug,u]) with ug, uj
both nontrivial and simply determined which factor contributed the leading order behavior
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1140 J. JENDREJ, A. LAWRIE AND C. RODRIGUEZ

of the linear flow; see Section 2.3 and Appendix B. For example, if the radiation takes the
form

(1.23) ugy = x(r)(q1r’, q2r’"")

with

(1.24) a1 <0,

34v

v(v+2)fr(3;”) X (u+1)fr(2;V)
q2
(4+v) ( )
v(v +2) vl (352) (v+1)fF(2J£”)
41‘(4%) —h 4F<3+u)

then there exist bubbling solutions uci and scaling parameters A* defined for ¢ > 0 near 0
satisfying A+ (¢) ~ |¢|"*!|log|¢||~" such that

(1.25) a1

(1.26) ug(t) = Q¢ +ug +oxn(l), ast— 0%

Moreover, if the sign of (1.25) is reversed then there exist bubbling solutions #F and scaling
parameters A% defined for +¢ > 0 near 0 satisfying A% (z) ~ |¢|"*"|log|¢||~! such that

(1.27) ur(t) =+0,4q +uy+on(l), ast— 0%

In particular, the sign of the bubble is reversed for a solution bubbling forward in time in this
situation. In both cases, classification results hold with different explicit constants appearing
in the concentration rates A*(¢). However, we will stick to the forms (1.12) and (1.13) for
simplicity.

REMARK 1.5 (Straightforward generalizations). — The restriction u§(r) — O asr — oo
in (1.12) does not play any significant role in the analysis and we could just as easily consider
ug(r) such that uj(r) — nx asr — oo for any integer n € Z.

REMARK 1.6 (Different blow up dynamics). — The statement of Theorem 1.1 makes
clear that the order of vanishing of uf in (1.12) or (1.13) asr — 0 determines the blow
up rate (1.15). We considered the polynomial decay, e.g., r¥ as in (1.12), first and fore-
most because of its simplicity, but also because it yielded the previously unknown blow up
dynamics A(z) ~ t"*1/ [log¢|.

The restriction v > 9/2 in Theorem 1.1 is technical—it allows us to use the simple
pointwise estimates in Lemma 2.1 to pick out the leading order of the evolution u*(¢) near
r = 0. The odd integer values of 1 < v < 9/2,1i.e., v = 3, could easily be included in our
analysis, since function in (2.24) is manifestly smooth in this case. The case v = 1in (1.12)
is a special case that could also be treated by our methods and there we would see the same
blow up dynamics from [39]. The number 9/2 could possibly be lowered with a more careful
analysis, but we do not pursue this here.

The techniques in this paper should also allow Theorem 1.1 to be extended to radiation
fields with non-pure polynomial decay. In Appendix A we outline how to formally guess the
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BUBBLING WAVE MAPS WITH PRESCRIBED RADIATION 1141

rate of A(¢) for a few different choices for u*(r). For example, the methods here should readily
cover radiation fields of the form,

9
(1.28) ug(r) = —r"logr|* x(r), v> S HE R,
which would yield the blow-up rates,
(1.29) A(t) ~ 1" logr[*™! as 1 — 0.

Of particular interest is the case 4 = 1, which yields the pure power rates A() ~ ’*+!
discovered by Krieger, Schlag, Tataru [18] using a different method.

The stable blow up regime discovered by Raphaél, Rodnianski [36] is an open set of initial
data (including smooth data) in H? that leads to blows up with the rate A(¢) ~ re—oetl
i.e., just barely faster than the self-similar rate A() = ¢, which is forbidden for finite
energy solutions to (1.3). However, the radiation fields for solutions in the stable regime
are too singular for the methods in this paper to directly apply; see the discussion in [34,
Comment 4.].

REMARK 1.7. — We note that for integer values of v > 9/2, the radiation u*(¢) can be a
C  function. We do not pursue here questions concerning additional regularity of the blow
up solution u.(¢) in part (a).

1.2. Discussion of Theorem 1.1

A basic tenet of the approach in this paper is that certain bubbling phenomena can be
readily accessed by viewing the solution backwards from the final time, rather than from the
point of view of initial data. This “backwards” point of view opens the door to classification
statements as in part (b) of Theorem 1.1 and to the uniqueness conjecture posed below. Our
method can be motivated via an analogy with the scattering problem for nonlinear waves.

1.2.1. Analogy with the scattering problem. — There are two ways to think about the scat-
tering problem. On the one hand, start with initial data for a nonlinear wave uyr (¢) and
show that it scatters by finding a linear wave uy (¢) such that

(1.30) lunr () —ur@)lr — 0 as 1 — oo.

This first type of scattering question is typically called completeness of wave operators. On the
other hand, one may start with a free evolution u (¢) and attempt to find a nonlinear wave
unr(t) such that (1.30) holds. This latter type of scattering question is called existence of
wave operators and is typically easier to address than the completeness question. As one may
imagine, the completeness question requires precise estimates for the nonlinear flow, which
are harder to obtain than the corresponding information about the linear flow that serves as
input for the existence question.

In the setting of singularity formation, one can view the approach of “finding sets of initial
data that lead to blow-up” taken for example in [18, 38, 36] as somewhat analogous to the
completeness question in scattering theory. The approach in this paper, in which we prescribe
the radiation field #§ and look for blow-up solutions radiating u{ can be viewed as analogous
to the existence question in scattering theory. One of the main advantages of the “backwards”
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1142 J. JENDREJ, A. LAWRIE AND C. RODRIGUEZ

perspective taken here is that it gives evidence for a natural unique continuation of singular
solutions past the blow up time.

1.2.2. Unique continuation. — Part (b) of Theorem 1.1 determines the rate of concentration
for any blow up solution radiating ug; up to the precise constant in the leading order term
in A(t). The following corollary is immediate.

COROLLARY 1.8. — Let u.(t) denote the constructed blow-up solution from Part (a) of
Theorem 1.1 and let u(t) € H; be any other solution that blows up backwards-in-time att = 0
with the same radiation field uj. Then,

(1.31) lluc(t) —u()|s — 0 as t — 0T,
In fact, we expect the radiation to uniquely determine the blow-up solution.

CONJECTURE 1.9. — Let u.(t) denote the constructed blow-up solution from Part (a) of
Theorem 1.1 and let u(t) € Hy be any other solution that blows up backwards-in-time att = 0
with the same radiation field ug. Then,

(1.32) u(t) = uc(t).

The significance of this conjecture is that its proof would yield the unique continuation of
blow-up wave maps past the singularity preserving the energy and the topological class of the
solution. To be more concrete, suppose u; is as in (1.12) with ¢ < 0. Then by Theorem 1.1,
there exists a finite energy solution ™ defined for small positive time such that

(1.33) wt(t) = Qyrq) — (1,0) + uf + 0p(1), ast — 0%

The shift by —m above is included for convenience so that we now have u™(¢,r) = u*(t,r)
for all¥ > t. The wave map u™ can be continued past ¢ = 0 by attaching the forward-in-time
bubbling solution #~ that also radiates u:

(1.34) u (t) = Q- — (7.0) + ug + 0(1), ast —0".
As discussed in Remark 1.4, u=(t,7) := u*(—t,r), t < 0, in this case. The resulting weak
solution is now defined on an open interval containing ¢ = 0 and is continuous except

at (t,r) = (0,0). Viewed in forward time, the solution consists of a concentrating bubble
radiating u*(¢) for ¢t < 0 and an expanding bubble for ¢ > 0.

In the case of radiation of the form ug = (0, u}) asin (1.13) with ¢ < 0, the continuation
past ¢ = 0 is obtained by attaching the forward-in-time anti-bubbling solution #~ that also
radiates ug:

(1.35) u (1) = —(Qs-¢) — (7.0)) + ug +0x(1), ast—0".

Again, as discussed in Remark 1.4, u=(¢,r) := —u~(—t,r), t < 0, in this case. Viewed in
forward time, the solutions consists of a concentrating anti-bubble radiating u*(¢) for t < 0
and an expanding bubble for ¢ > 0. A proof of Conjecture 1.9 ensures that the continuation
process discussed in each case previously is the only meaningful one—of course one could
also “extend” the blow up solution past the singular time by evolving only the radiation ug,
but this extension does not conserve energy (£(Q) is lost) and does not preserve the topo-
logical class of the solution.
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These weak solutions provide an intriguing connection to the work of Topping [44],
which gave a continuation for the harmonic map heat flow in which an expanding bubble
is reattached after a rotation at the blow-up time. Indeed, the continuation proposed here
for solutions with radiation of the form (1.13) comes with a 180-degree rotation of the
bubble when viewed in the context of the full map (1.2). This raises interesting questions
about the nature of the flow outside of equivariant symmetry, e.g., do these continuations
of bubbling solutions yield information about “nearby” continuous-in-time solutions? It
seems that not much is known in this direction in the case of wave maps, but one can
draw parallels to formal observations made by van den Berg, Williams [2] for the Gilbert-
Landau-Lifshitz flow that describe “near” blow up solutions in which the inner scale quickly
rotates over an angle of 180-degrees. In the context of Schrodinger maps, Merle, Raphaél,
Rodnianski [34] observed an instability mechanism given by the rotational freedom in that
model, and conjectured that the blow up regime for wave maps in [36] is similarly unstable
under non-corotational perturbations; see [34, Comment 2 after Theorem 1.1]. The question
of extending singular solutions past blow up was also addressed in [3] in the context of
supercritical self-similar wave maps.

The authors are unaware of any uniqueness results as in Conjecture 1.9 for concentrating
nonlinear waves, but we mention here the pioneering proof of existence and uniqueness of
minimal mass blow up for the mass critical NLS by Merle [27] and the analogous result (using
a different method) by Raphaél, Szeftel [38] for the mass critical NLS with an inhomoge-
neous nonlinearity. A significant distinction is that in these works the minimal mass blow up
emits no radiation.

1.2.3. Relationship with previous work:— In the context of energy critical singular nonlinear
waves, the “backwards” approach taken here was initiated in a series of papers by the first
author on the blow-up problem for the focusing energy critical nonlinear wave equation
(NLW). In [10], the first author provided an upper bound on the blow up speed A(¢) for the
NLW in dimensions d = 3, 4, 5 in the case where the radiation liesin H51t1 x HS fors > %
and s > 1, and showed that blow up is impossible in the case of regular u#; with u(0) < 0.
In [12], the first author gave constructions of blow up solutions for the 5d NLW for regular
radiation analogous to the result in part (a) of Theorem 1.1, via a related approach. In this
context, the significant new element of the present work is the sharp classification of the rate
in part (b) of Theorem 1.1. To the authors’ knowledge, this is the first paper to obtain such a
result. In earlier work [15, 39], the authors considered the special case of threshold dynamics.
Aspart of the main theorem in [15], the first two authors determined the rate of concentration
for global-in-time pure 2-bubble solutions in equivariance classes k > 2. In part of [39],
the third author characterized the rate for any minimal topologically trivial 1-equivariant
blow-up solution. In fact, the latter paper [39] can be compared to the special case of v = 1
in (1.12), but where the radiation is given precisely by ug(r) = —Q(r). See also work of
the first author [14], which characterized the dynamical behavior for pure 2-solitons with the
same limit speed for the KdV equation in the unstable regime.

In a broader sense, the heuristic principle that the size of the nonlinear interaction between
a blow up bubble and the rest of the solution influences, or even determines the blow up speed
is well documented in the literature. For the mass critical NLS, Bourgain, Wang [4] produced
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examples of blow up solutions with regular u* where the blow up speed is given by that of
the explicit solution S(¢), which equals the pseudo-conformal transform of the ground state
solitary wave (which has u* = 0). This was later clarified in the classification result of Merle,
Raphaél [31], which showed how the regularity properties of u* distinguish the so-called
loglog-regime from the S(z)-type blow up regime. Later, a remarkable sequence of works
by Martel, Merle, Raphaél, [23, 24, 25] on the mass critical gKdV equation showed that
blow up solutions close to the soliton have a fixed rate if the initial data have sufficient decay
properties, and that exotic blow up regimes exist if these decay properties are relaxed. In the
case of energy critical equations, Merle, Raphaél, Rodnianski conjecture in [34, Comment 4
after Theorem 1.1] a deep relationship between blow up dynamics and the regularity of u* in
the context of the Schrodinger maps equation. In recent work Pillai [35] constructs solutions
to (1.3) that are singular in infinite time with rates A(r) ~ (log7)~?, b > 0, that are tied to the
infinite time radiation field, or scattering profile, of the map. A similar phenomenon occurs
in [1], for the hyperbolic mean curvature equation.

As mentioned in Remark 1.6 the pure polynomial blow up regime A(z) ~ ¢!tV v > %
discovered by Krieger, Schlag, Tataru in [18] can be recovered via the methods in this paper,
as long as v is sufficiently large. Since the landmark work [18] there have been several subse-
quent developments, see e.g., [8] which provided the optimal range of pure polynomial blow
up, v > 0. Recently, Krieger, Miao [17] proved that these blow up solutions are stable under
a sufficiently regular perturbation.

1.3. Outline of the proof

The proof of Theorem 1.1 can be summarized as follows. Let #*(¢) be the solution to the
nonlinear Equation (1.8) with #*(0) = uj. At time r > 0 we study the nonlinear flow near
the set {Q; + u*(t)} for A < 1. Considering a solution u(¢) to the nonlinear Equation (1.8)
near this set on a time interval we write

(1.36) u(t) = Qi +u" (1) +g(0).

where the pair (A(¢), g(¢)) = (A(?),g(?),g(¢)) is determined uniquely by imposing the
orthogonality conditions 0 = (2, | g(t)), where we take Z(r) = x(r)rd, Q(r) for a smooth
cut-off y. This yields a coupled system for (A(z), g (¢)) under the assumption that u(¢) above
solves (1.3), i.e.,

d(g) _ g+ 509,00
(1.37) —(° )= . ! *
dr \g Ag— 5 (f(Qi+u*+2)— f(02) — f(™))
(1.38) (Zr | g(0) =0,

where f(p) = % sin 2p. This is the beginning of the classical modulation theoretic approach
and a standard argument yields a preliminary estimate [A'(t)| < ||g(¢)|.2, by differenti-
ating (1.38) and using the first row in the equation for g (¢). The goal is to (a) find a solution
such that

(1.39) At) =0, [lg@)llx—0
in finite time, and (b) characterize the dynamics of A(¢) for any such solution. Since (1.3)

is second order in time, refined information linking the dynamics of g(z) and A(¢) enters in
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the study of A”(z). However, a naive approach of twice differentiating (1.38) typically does
not yield sufficient information to close. If the goal is to construct a single solution, a now
standard remedy (developed with outstanding success in, e.g., [36, 28, 29, 32, 30, 33, 23, 24,
25, 22, 37)), is to refine the ansatz, i.e., extract more profiles from g(z) before imposing the
orthogonality conditions, improving at each step the equations of motion for the remainder
and the dynamical parameters. However, fixing a refined ansatz at the outset is somewhat at
odds with proving a general classification result as in part (b) of Theorem 1.1.

We thus employ a general approach developed by the authors in [15, 39, 14], which
was inspired by earlier work of the first author in [13, 11]. We do not refine the ansatz at
all, rather we refine the modulation parameters. For technical reasons we first define a new
function ¢(¢) ~ 4A(¢) log(z/A(t)). We then define a new modulation parameter, b(t), by

(1.40) b(t) = '(t) + small correction,

where the correction has a large derivative designed to cancel critical terms of indeterminate
sign in the equation for ¢”. In the study of 5'(¢) we find that the leading order is given by
the nonlinear interaction between the bubble Q) and the radiation u*(¢), and this gives
rise to the universal rate A(¢) ~ "1/ |log¢|; see Section 3. There are several difficulties that
arise. For one, to make sense of the above, we need control over the size of the error || g (¢) ||
in terms of ¢, A(¢)—even the correction to ¢’ is seen to be small only once we know the size
of [|g (@) [l#-

We argue as follows. For a solution as in (1.36) such that (1.39) holds, we have
(1.41) Em) =E(Q) + E@™).
On the other hand a Taylor expansion of the energy using (1.36) yields,
(1.42) E(u) = E(Qy +u™) +(DEQ, +u™) | g) +(D*E(Q, +u)g | g)+ Olgll3)-

The orthogonality condition (1.38) ensures that the quadratic term is coercive, hence
combining the previous two identities yields,

143) gl = (80 + ™)~ E(Q) — £@™)) + (DEQ, +u™) | g).

Since DE(Q ;) = 0 the last term above can be replaced with (DE (™) | g). In the settings
considered in earlier work such as [10, 15, 39], the latter term is also shown to be negli-
gible, which means that the pure interaction terms in the first grouping above yield the size
of ||lg ||§_L. Indeed, using technique analogous to those developed by Struwe [42] in a different
context, [10] shows that (DE(u*) | g) is, to leading order, a conservation law. In [15, 39]
the argument is even simpler, since there #* = —Q, and the linear term is manifestly
lower order. Here there is a significant difference. In fact, (DE(u*) | g) is shown to carry
leading order interaction, see Lemma 4.5. This novel feature can be attributed to the fact
that the underlying system for the dynamical parameters is not autonomous in contrast
to[10, 15, 39]; see e.g., Appendix A.1. Section 4 is devoted to making this precise. In fact, the
sketch above is oversimplified as we have ignored the need to localize due to the slow spatial
decay of rd, Q(r) ~ r~1. This introduces large, but ultimately manageable error terms.
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In Sections 5 and 6 we combine the modulation theoretic analysis from Section 3 with
the energy estimates for g(z) in Section 4 to construct and classify bubbling solutions that
radiate u.

We emphasize that while the arguments in this paper are involved, the technique is elemen-
tary. In particular, we do not use any sophisticated dispersive analysis aside from the local
well-posedness theory of (1.3), which is classical.
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2. Preliminaries

In this section we recall elementary facts about solutions to (1.3) needed in our analysis
and establish precise behavior of the radiation field u*(z, r) inside the light cone {r < t}.

We define
2.1 ug(r) = (ug(r)ig(r)) := x(r)(gr".0),
where y(r) is a smooth cutoff such that y(r) = 1 forr < %, and supp(yx(r)) C {r < 1}. See
Appendix B for a discussion on how to adapt the proof in the case of radiation as in (1.13).

2.1. Notation

Given a radial function f : R? — R we will abuse notation and simply write f = f(r),
where r = |x|. We will also drop the factor 27 in our notation for the L? pairing of radial
functions on R?

(2) )= o= Ughoge = [ S0 rar

We define a norm H by

(2.3) vl = /Ooo ((a,v(r))2 + (”(r;z))z) rdr

and for pairs v = (v, 0) we write

(2.4 ol := 1. D)l x>

The change of variables x = logr gives us an identification between the radial func-

tions H(a <r < b)and H'(loga < x <logbh), i.e.,
(2.5) v(r)e H(a <r <b) < v(e*) € H'(loga < x <logh).
By Sobolev embedding this means

(2.6) lvllLoo@@<r<b) < ClIvlH@<r<b)-
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The scaling invariance of (1.3) plays a key role in our analysis. Given a radial function
v : R? — R we denote the H! and L? re-scalings as follows

1

2.7) () = v(r/A), valr) = v (r/A).
The corresponding infinitesimal generators are given by

d .

Av = o1 vy =710,V (Hrlad(Rz) scaling),
(2.8) A=l
Aoy = —— vy = (1 +rd)v (Lfald R?) scaling).
O fpmy &

Finally, we will often use the notation

1 .
2.9 f(p) = 3 sin2p
to denote the nonlinearity in (1.3), which means (1.3) becomes

1
(2.10) Ofu — 2u — d,u + — f(u) = 0.
r

2.2. The harmonic map Q

We recall that the unique (up to scaling and sign change) nontrivial, harmonic map is given
by

Q(r) = (2arctanr,0).

The harmonic map @ has a variational characterization as follows. For allu = (ug,u1) € H;
where

@.11) Hy = {(uo, u1) | E(@) < 00, up(0) =0, lim uo(r) = 7},
we have
(2.12) E@) > £(Q) = 4n

with equality if and only if # = Q. Indeed, for (ug,u;) € H;, we have the following
Bogomolny factorization of the nonlinear energy:

sin(ug)

o) 2 o)
E@) = mllur]|?, + n/ (a,uo - ) rdr + 271[ sin(ug)d,uq dr
0 0
o0 i 2 ug(c0)
(2.13) = n|jux ||i2 + JT/ (3ruo - s1n(u0)) rdr + 271/ sin(p) dp
0 r u

0(0)
© sin(u 2
= mlu|?, + n/ (a,uo - #) rdr + 4.
0

We conclude that £(u) > 47 with equality if and only if u = @ for some A > 0.

The Schrodinger operator corresponding to linearizing (1.3) about the harmonic
map Q) is given by

1 1
(2.14) Lii= == 0+ — (Q1).
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For convenience we write £ := £;. Due to the variational characterization of Q, one expects
the spectrum of £ to contain no unstable modes. Indeed, differentiating the equation

203+ 901~ 5 f(02) =0

with respect to A and setting A = 1 implies

2r
(2.15) AQ(r) = 7
satisfies
(2.16) LAQ =0, AQ € L®(R?).

By Sturm oscillation theory, we conclude £ has no negative eigenvalues. A useful computa-
tion we will use throughout our analysis is:

R 2R2
(2.17) / [AQ(N)r dr = Tt 2log(l + R*) = 4logR + O(1) as R — oo.
0

In particular, the previous line implies AQ fails (logarithmically) to be in L2(R?), and we say
01is a resonance for L. In general, we have £, AQ, = 0 by scaling. Finally, we note AgAQ has
an important cancelation which leads to improved decay at co. Indeed,

4r

s0 AgAQ € L' (R%) N L®(R?).

2.3. Description of the radiation field »* inside the light cone.
Let y € C°°(R?) be radial such that y(r) = 1 forr < X and y(r) = 0if r > 1. Let

ug(r) = (ug(r).ug(r)) = x(r)(gr".0),

asin (2.1) and let u*(¢) € Ho be the unique finite energy solution to (1.8) with #*(0) = ug,
i.e., the radiation. Let u] = uj (¢, r) be the solution to the linear wave equation
druy (t) = J o DEL(uj (1))
(2.19) L L
ur(0%) = ug,

which we note is the linearization of (1.8) about 0. Here,

. . 1
E1(vo. o) 1= n/ (150l + [0l + —lvol?) rdr,
0

- 1
DgL(uL([)) _ ( AML([) + rzuL([)) .

drup(t)
Our goal of this section is to obtain a description of #* (¢, r) inside the light cone {r < ¢}. To
do this, we first describe uj (¢, ) for r < ¢ using Kirchoff’s formula. We then compare u™(z, r)

to uy (t,r) for r <t using the standard well-posedness theory for (1.3). It is in carrying out
these steps that the technical restriction v > % is required.
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LEmMA 2.1. — Letv > %. There exists C = C(v,q) > 0 such that for all r < |t|,

(2.20) (e, r)—gplt]” " rl < Cripe=,
2.21) deut(t,r) < Crle]"72,
(2.22) |0pus (t.r)] < C "7
where
v(v + Z)ﬁF(%“’)

v(v+2 ! _
py = 22 5 )[ P (1 —p?) 2 dp =
o ()

Proof. — For (t,x) € R'™, define v(t,x) = uj(t,|x])/|x|. Then Ogi+sv = 0 and

v(0) = Iuj. For |x| < |r|, we can express v(¢, x) using Kirchoff’s formula and a change
of variables by

_ 1 1 3 u—lf |X|
v(e.x) = 20, (0r) (z 1t y|51q'y+ e,

=, (30) (¢ 117 x1/1).

where e; = (1,0,0,0) and

v—1

(1—[y|»)~12 dy)
(2.23)

1 . -
(2.24) ¢(z>=§]f aly+zal™ A=Ay ze Ll
Y=<

By the dominated convergence theorem, ¢(z) € C*([—1,—1]) for v > %. A straightforward
computation shows

(2.25) v(t,x) = |7y (Ixl/0),

where ¥/ (z) = v(v+2)¢(z) — (2v+2)z¢/(z) +22¢" (z). The function ¢ (z) is an even function
which implies ¥ € C2([—1, 1]) is even as well. Thus, there exists a constant C > 0 such that

¥ (2) =y (O] <Clz”, |z] <1,
which implies
(6, x) =y ©O) ¢~ [ < C [ |x ],
Since ¥ (0) = gp(v) and uy (¢, r) = rv(¢, r) we conclude
ur(t.r) —qple|"" rl < C e,

which proves (2.20).

To derive the estimates (2.21) and (2.22) we observe from (2.25) that v(¢, r) satisfies for all
r <t

(2.26) v, r)| <Clt]"™ ", V)] <Cle' 2,

which imply the desired bounds for uj (t,r) = rv(t,r). O
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LEMMA 2.2, — Letv > %. There exists a constant C = C (v, q) > Osuch that forallr < |t|,

(2.27) IVeu*(t.r) = Veup(t.r)| < Crle]? 72,
(2.28) lu*(t,r) —up(t,r)] < CrejeP' 2.
Proof. — For r < |t|, we have by finite speed of propagation and the well-posedness

theory for (1.3) (see [40])

V2 u*(t.r) = V2 up (t.r)| < C|VZu* (1) = Vi i Ollae<n
=< C<||a?u0||H(r521)||u0||%-1(r52,) + ||3,uo||%_I(,52,)||u0||11(r52,))
< C|l|3v_2.

We then obtain (2.27) and (2.28) by the fundamental theorem of calculus applied to the

previous estimate once and twice respectively. O

By Lemma 2.1 and Lemma 2.2, we immediately obtain the following description of the
radiation u* inside the light cone.
COROLLARY 2.3. — Let v > % and p = p) be as in Lemma 2.1. There exists
C = C(v,q) > 0 such that for all r < |t|,

(2.29) (e r) —gplel" " rl < Cr2 2,
(2.30) [0,u*(t,r)| < Crt]'2,
2.31) 0 u*(t.r)| < C e,

(2.32) ¥ (e, r)| < Crle]'™".

3. Modified Modulation Method

In this section, we begin our study of solutions «(¢) to (1.3) which are cl_ose to a superpo-
sition of a bubble and the regular part u*(¢), in the sense that there exists A(¢) such that

3.1 lu() = @* () + Q53 < 1
forallz € J C (0, To]. We will also assume for r > ¢
(3.2) u(t,r) = (w,0) +u*@,r).

We remark if 7_ = 0, then this last assumption is necessary and sufficient for u* to be the
radiation field of u.

By the implicit function, we can find a modulation parameter A(t) € C'(J) so that if
g(t) € H is defined by

(3.3) g() = (g(t), &(1) = u(1) — (Q;(1) + u*(1)),
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then g(t) satisfies a suitable orthogonality condition (see Lemma 3.1). Roughly stated, our
goal in this section is to show the modulation parameter A(¢) satisfies differential inequalities
from above and below that are, to leading order in ¢, saturated by

__plal M
oy MO =530+ 1 Thoarl
(3.5) gt.r) = (0.-AOAn(r). r=t.

In particular, we find that the leading order term driving the crucial differential inequality
(3.46) is the interaction between the bubble and the radiation u*(¢, r) inside the light cone
{r < t}. A key idea we use in our approach, that was used in the study of threshold wave
maps in [15, 39], is to study a small modification of A/ (¢) log ﬁ) having a good monotonicity
property.

3.1. Preliminary control of the modulation parameter
We first state the existence and uniqueness of a C! modulation parameter such that

(3.6) g) =u@) —(Qup +u* (1)

is (L?)? orthogonal to the tangent space of the family of harmonic maps {Q,},. Let
x € C®°(R?) be radial such that y(r) = 1forr < 1and x(r) = 0ifr > 1, and
let Z(r) = y(r)AQ(r). Then

(3.7 [000 Z(r)AQ(r)rdr > 0.

By standard arguments using the implicit function theorem (see for example [10, Proof of
Lemma 2.5] or [15, proof of Lemma 3.1]), we have the following.

LEmMA 3.1 (Modulation Lemma). — There exist ng > 0, Ag > 0 and C > 0 with the
following property: LetJ C (0, To] be a time interval, u(t) a solution to (1.3) defined on J, and
assume there exists A(t) such that

(3:8) lu() — * @) + Qi) <n<no. AW) <k Vi€l
Then, there exists a unique C*(J) function A(t) so that, defining g(t) € H by
(3.9) g(t) = (g(1).8(1) = u(t) — (@) +u™ (1))

we have, for eacht € J,

(3.10) (Za. 8()) =0,

(3.11) lg @5 < Cn.

By differentiating the orthogonality condition satisfied by g(z), we obtain the following
preliminary control of the modulation parameter A(¢).

PrOPOSITION 3.2 (Modulation Control Part 1). — Let u(t) be a solution to (1.3) on J as
in Lemma 3.1 and let A(t) be given by Lemma 3.1. Then fort € J

(3.12) IO S 1Lz

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1152 J. JENDREJ, A. LAWRIE AND C. RODRIGUEZ

Proof. — The function g(¢) satisfies

(3.13) drg =8¢ +AAQ,.
Differentiating the orthogonality condition (3.10) we obtain
d A , .
(3.14) 0= E(Zbg) = _I(AOZLg> + A(Zx. AQ1) + (22, 8).
SO
/ 1 .
(3.15) ¥ ((22:A02) = £ (M0Z2.8)) = —(Z1.)-
We have the following easily verifiable bounds:
1
(3.16) | (80Z1.8)| S 12l gl S lgha < mo.
(3.17) (2. )] S e
The previous bounds and (3.7) immediately imply (3.12) as long as 7y is sufficiently small.

O

3.2. Sharp control of the modulation parameter

We now turn to obtaining an improved control of the modulation parameter A(¢). We first
define an auxilary function ¢ € C!(J) by

t t
(3.18) £(t) := 4A(t) log — [AQMg(t)rdr,

A0 Jo

which serves as a better proxy for the dynamics than A(z) but is still close to 4A(¢) log ﬁt)
(see Proposition 3.5). According to the formal computation for the blow-up rate (see
Appendix A), we wish to prove, up to formally acceptable error terms, that

¢"(t) ~ 4plqlt”~".

It is not difficult to see that, up to formally acceptable error terms,

t
(3.19) () ~ —/ AQ &(t) rdr.
0
However, it is difficult to prove the formally desired lower bound
d ! . _
(3.20) ~ 4 ) AQu0g O rdr = 4plgleH 1+ o(1).

since several terms arising on the left hand side above have critical size and indefinite sign. To
overcome this obstacle, we instead study a function b(¢) which is a (small) correction to ¢’(¢)
by a truncated virial functional. The introduction of truncated virial functional produces
terms which are then large enough to cancel the bad terms which originally arose. The use
of such an ad hoc correction was inspired by Raphaél, Szeftel [37], and was used crucially
in this context in works of the authors [13, 15, 39]. To define and study the properties of the
function b(z), we require the following lemmas.
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LemMma 3.3 ([13, Lemma 4.6]). — For each c, R > 0 there exists a function

q(r) = qc,r(r) € C*1((0,00))
with the following properties:
(P1) ¢g(r) = %rzforr <R,
(P2) there exists an absolute constant k > 0 such that q(r) = const for r > R := ke*/°R,
(P3) 1¢' (") Srandlq”(r)| <1 forall r > 0, with constants independent of ¢, R,
(P4) ¢"(r) = —c and %q’(r) > —c, forallr >0,

r dr

(P6) |V(@)/} <c, forallr > 0.

(P5) (;Tzz +1424(r) <c-r72 forallr >0,

For each A > 0 we define the operators A(A) and Ay (1) as follows:

(.21) AGEIC) = 4'(5) 30
(22 A0 = (354" () +5-0'(5))s) +4'(5) g ().

Since ¢(r) = 3r? forr < R, AM)g(r) = $Ag(r) and Ag()g(r) = $Aog(r) for r < AR.
One may intuitively think of A(A) and .4¢(A4) as truncations of %A and %Ao tor > AR which
have good boundedness properties. The following lemma makes this precise. In what follows,
we denote

(3.23) X = {geH | g,argeH}.
r

LEMMA 3.4. — Let co > 0. There exists ¢ > 0 small enough and R, R > 0 large enough in
Lemma 3.3 such that A(A) and Ay (L) defined in (3.21) and (3.22) have the following properties:

— the families {A(L) : A > 0}, {Ap(X) : X > 0}, {10 A(A) : A > 0} and {13, Ap(A) : A > 0}
are bounded in £ (H ; L?), where the bound depends only on the choice of the function q(r),

— forall A > 0and g1, g € X there holds

1
(324) |[AR)g1. =5 (f(e1 + 820 = f(en) = '(51)82))
1
+ (AMg2. =5 (f(81+ 82) = f(81) + £2))| = T2l
— forallg € X,
1 1 1 R 1
629 (AW @+ 0 5)e) < Phel -5 [ (@re? + %) an

— in addition we have the bounds,

(3:26) IAQs — AR Qallze < .
(3.27) [A0AQ% = Ao(MAQ 4 L2 = co,
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and there exist T = T(co,v,q) > 0and C = C(v,q) > 0 such that if t < T and
{r < RA} C{r <t}, then forallg € H,
r Ao r

628 | [ 3(0" () + 1)) 5 (FQat " +0) = F(Qa ) )gr s

> 1
[ (@ =Dl rar] < collsliy + Clely

Proof. — For the proofs of all statements except (3.28) we refer the reader to [13,
Lemma 5.5]. By trigonometric identities we compute

(3.29)

F(Qi+u*+8)— f(Qr+u*)— g = —sin20, + 2u™)sin® ¢

1

(3.30) —(g— 3 sin2g) cos(2Q; + 2u™)
(3.31) —g¢0820,(1 —cos2u™) — gsin2Q sin 2u™
(3.32) —(1—co0s20,)g.
(3.33) f(03)—1=cos20; — 1.
By Corollary 2.3 and our assumption {r < RA} C {r < t}, we have the pointwise estimate
(3.34) |1 —cos2u™| + |sin2u™| < ¢V,

which along with (P3) imply

* A
639 | [73(0" G+ 2D 5@+ + 0= FQut) ~ g)erdr

1y, A, rn 1 ¢
[ 3@+ S0 (5)) 15 os20a ~ DlgPrdr| < Llelfy + Cllely

2 A A
as long as T is sufficiently small. Now, for r < AR, we have by (P1)
(3.36) %(q”(%) + %t/(%))riz(cos 20, 1) = rlz(cos 20, - 1).
Thus, by (P3)
(3.37)
[5G+ 20/(5)) 5 cos205 — DlgPrar— [~ (o5 205~ lgPr ar
o 2 A r A/ r2 0o 1?2

o0 dr
5[ 11— cos20,] gL
RA r

S gl sup [1—cos2Q]
r>

IA

Co
Sl
as long as R is sufficiently large. Combining (3.35) and (3.37) yields the claim. O

We now define a second auxiliary function b(t) by

(3.38) b(t) := —/0 AQun& (1) rdr —(&(1). Ao(A(1))g(1)).
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As stated previously, we will show below that we can think of b(¢) as a subtle monotonic
correction to the derivative ¢’(¢). We note the error term g (¢) satisfies the differential equa-
tion

9:g =& +MAQ,.,

(3.39) 1 N
atg—Ag—r—(f(u +0x+8) — fw")— f(Qn),
where A = 18 (rd;-) and f(u) = 5 sm 2u. Moreover, the assumption u(z,r) = u*(¢t,r) for
allr > ¢ 1mphes
(3.40) gt r)=(r—0xn(r),0), Vr=>t.

ProrosiTION 3.5 (Modulation Control Part 2). — Assume the same hypothesis as in
Proposition 3.2. Let § > 0 be arbitrary and let ng be as in Lemma 3.1. Let {(t),b(t) be as
in (3.18), (3.38). In addition, assume there exists a constant o > 0 such that for allt € J

(3.41) A,

Then there exist n1 = n1(v,q,8) < no and a constant Cy = Co(v, q,a) > 0 such that if
le@I7 +a+supJ <m, Viel,

then

(3.42) m - 1' < G an(nuﬁ,

(3.43) o] < @+ " (1og ﬁ) 1800 + Collg )12,
(3.44) 0 - b0 = Co (120122 + 2.

In addition, b(t) is locally Lipschitz and the derivative b'(t) satisfies

(3.45) b (0)] < Co ( 20 —||g<z)||H)

(3.46) Do) = (plal — 9~ C6" D g I,

Proof. — To prove the first estimate, we note

t t/A
‘ [ 80serar| S 2l [ IAQIrdr < tligleqsn
0 0

and conclude
t

1

[ hosgrar| € sttt
Oserdr| S s lelmiso

which proves (3.42).
To prove (3.43), we first note

(3.47) (g, AoM)g)| < CligllLzllgla < Cllgll3,-
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By Cauchy-Schwarz and a change of variables we have

t
(3.48) /0 AQsgrdr| < IAQ 20wl 20 <0
Since
(3.49) IAQIZ: 2t/ = 4lo2(t/2) + O,

(3.47) and (3.48) imply (3.43) as long as 7, is sufficiently small.
We now turn to (3.44). We have

¢ =4 log b4t —a - ¢ /tAQ d
= — — 4N - — rdr
SR dr Jo A8
l ! A l ! . / ! 2
=4 logx~|—47—4l — | AQugrdr—2A [AQ | rdr
0 0

/ t

[AoAQ]pg rdr + AQ&gr|r:t.

-5 i
By (3.49) and the definition of b it follows that
. 1 (!
G50 16O =01 (1 + 1 A+ 5 [ [186AQLIglrdr)
A
(3.51) + o4 ‘AQigr|r=t .

Since, for allt € J,

(3.52) lg@ln S 1,
(3.53) 1S N2,

and fot [AoAQ|rdr <1, we conclude
. 1 t t
G54 15 AWl + 5 [ 180AQLllelrdr < gl + lelus [ 180801 dr <1,

Since g(t.1) = 7 — Qa0 (1) = O ™),

n0aer| |

A

r=t t
Thus,

) . A

(3.55) & =Dl S Nglle2 + 7

as long as 7, is sufficiently small. This proves (3.44).

We now turn to the delicate proof of (3.46). To lessen notation, we denote

t
(3.56) (h1, h2)ioc =/O hy(r)ha(r) rdr.
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We have
D0) = 5 (IR0 AQLz. £ — (A Byhe — (01 Ap()g)
_ %/(g, 283 A0(0)g) — (&, Ag(N)drg) — AOxE|,_,
= )%([AOAQ]L»g)loc
(3.57)

(801 8¢ - (st + 044 - 10 - Fi0)

loc

~(8 = S0+ 01k 0= 1) - ) Antire)

loc
’

A
= 5 (€29, 40(1)g) — (&, Ao (D)) = A (6. Ao()AQ3).

To pass from the first equality to the second, we used g (¢t,7) = (m — Qx(),0) forall r > ¢
and (3.39).
Since g(¢,r) = 0 for r > ¢, we have

(3.58) (g, AoMAQ;) = (¢, Ao(M)AQ4),, -
Thus by (3.27) we have the first and sixth terms combined to satisfy
A . A
@59 Ll 1r0n0): ~ 400N 2hee| = L gl 11A0AQL ~ A03) Q212 <
1y § .
(3.60) S eor Mgl7e = 157 gl

as long as cg is chosen small enough. Again by Lemma 3.4 the fourth term appearing in b’
satisfies
| |A']

. - § . _
S (g A0 A0Ng)| S g < A7 g R < 1o5h g e

as long as 1, is sufficiently small. Since (A — riz f'(03))AQ, = 0 we have by integration by
parts

1
(3.61) (AQx. Ag — r_zf/(Q/l)g)loc =rAQyd,8|,_, —rd-AQ;g|,_,.
Since g(¢t,r) = m — Q»)(r) for all r > ¢, we conclude
(3.62) rAQdrgl,_, —r3:AQsg|,_,| St Mg, 0] + 1(3,8)(1, 1)
(3.63) < A2,

as long as 7, is sufficiently small. We denote
10) = (AQ4. 5 (" + 01+ 8) — ™)~ £(01) ~ F'(22)8))
(o). Ag — (4 03 + )~ F) — (01)

Then up to this point, we have proved

loc

loc'

ORI

(3.64) |b'(t) = 1(0)] < Com %/\_lllg(l)lliz-
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We now turn to the study of 7(¢).
We write

10) = (AQ1. 5 (f(Qs ™)~ 1(02) — ™)

loc

F{A0s (7@ + Ut~ 1'(00))

loc

A0 Qs+ +0)— (01 +u™) 101 +u")9)
~ (Ao, Ag — 5 (FGu™ + 01 + 9~ F®) — £(Q)

We claim the first term appearing in the expression for /(¢) contains the leading order:
(3.65)

‘(AQL U@+ u) — (01— fG), -+ 4pgr™!

lo

loc

1oc.

8p|q|8 tv—l

< Cort™2
= (o + 100

By trigonometric identities and the fact that sin @, = AQ, we have

(3.60) (f(Qa +u™) = f(Q1) — f(u¥)) = —sin2Q; sin® u* —sin 2u™| 03>,

The first term appearing in (3.66) contributes to the L? pairing

sin20;, sin® u* 1 [ o dr
(3.67) (AQL,QA—2> S —/ IAQ; P | P —
r loc A 0 r
1 [ d
(368) 5 _[ |AQA|2r2t2v_2_r
AJo r
t/A
(3.69) StZH/ |AQ|?dr
0
(3.70) - 4plq|5tu_17

- 100
as long as 7, is sufficiently small. By Lemma 2.3 we have for all r <t

—sin2u* (1, r) = =20 (1, 1) + O(u* (. 1)P) = =2qpt*~'r + O3 4 7).
Thus,

sin 2u*|AQ |2 ! dr
@) [(ag - SHIRGEY g [ near
r loc 0 A
s [ 3.2 -1 [° 3 dr
(3.72) <3 [mosr et [ng,e
t/A
(3.73) 5m”—2/ |AQ|*rdr 4 1371
0
2, 4plgl -
3.74 <CM24 L
(3.74) < + <00

Since [;° |AQ|*r dr =2 and

o0 d o0
(3.75) / 60 P Y = / IAQP dr < 222,
t A t/A
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as long as 1, is sufficiently small, we conclude
in2u*|AQ;|?
(3.76) ‘(AQL_M) +4pqtv—1
r loc
By (3.66), (3.70) and (3.76) we obtain (3.65).

We now introduce some notation. Until the end of the proof, we write A ~ B if
A=B+O0Xt ) +o()" ' + 17 g(®)|3,), where o(1) — 0 uniformly for ¢t < 1
as 1 — 0. Thus, up to this point in the argument, we have shown that

(3.77)
Vo) 4apr* ™ = (A (/s +u" + 8~ [(Q +u') — 1(Qx +u)g))

8p|q|8tv—1

< CoAt™2
=Co + 100

loc

(3.78) (Ao, g — 5 (@ + 0 + )~ f) ~ £(03)
We rewrite (3.77) as
(3.79)

1
(A01. 5 (F(01 +u" +8) = Qs +u") = F(02 +u")g))

loc’

= {AWE. FU@s "+ 0~ 105 +u') +0)
(
(

1
—{A" . S (F(Q1+1" +8) = F(Qu+u") = £1(Q2+u")g))

+{Ag. S (F@i+u + 8~ £(01 +u") + 9)

FAD©@1+ 7). 5 (F(Qx+u™ +9) = f(Qs %)~ (0 + 7))

(A1~ AN Qs 5 (F(Qs +u™ +8) = F(Qx +u7)— /(01 +u)g)

Here we used (A(A) f,h) = (A(Q) f, h)1oc for all f and & as long as n; is sufficiently small.
By (3.24) with g; = QO +u™ and g, = g, the second and third terms right of the equal sign
in (3.79) satisfy

(3.80) (A0 (@i +u + )~ £(01 +u™) + 2))

(3.81) +<A(X)(QA +u’), riz(f(QA +u +g)— f(Qr+u") — f1(Qx+u")g)

loc

Co 1
(3.82) < lgl < 5 lglz
as long as cy is sufficiently small. The pointwise estimate

(3.83) |f(Qa+u™ +g)— f(Qa+u™)— f(Qs +u")gl S lgI?

implies the second to last line of (3.79) satisfies
1
G84) (A0t S(F(Ox +ut + @) = £(Q1 +uT) = £1(Qs+ 1))

. 1
(3.85) S IAM (| gl < Xllgllir
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as long as 1 is sufficiently small. In the last estimate, we used || A(A)u*||peo < [|0,u*|[poe S 1
which follows easily from the definition of A(A) and Lemma 3.3. Using (3.26), we can
estimate the last line of (3.79) similarly by

(86 [[AQx—AN0s. S (F(Q1+u" + )~ £(Qs +u) — 101 +u")) |

loc

Co 1
(3.87) S 5 lel < llglz

as long as ¢y is sufficiently small. In summary, we have shown that

1
(3.88) (A01. (F(01+u" +8) = Qi +u") = F1(02+u")g))
1
(3.89) ~ (A0, 5 (F(Q1+u" +9) = f(Q+u) + ).

which by (3.77) implies

P+ apgt”™ = {AM)g. S (f(Qx +u” + 9~ F(Qs ) +g))

(3.90) |
~ (Aoh)g. g = (f" + 01 + ) = fu™) = f(Q)

loc’

We now consider the second term appearing in (3.90). Since Ag(A)g is supported in
{r < RA} C {r <t} if n, is sufficiently small, we may replace the local L? pairing by the full
L? pairing. Adding and subtracting terms and using (3.25) we obtain

_<A°(A)g’ Ag— riz(f(u* +0r+8)— fu) - f(QA)>
= ~{Ao(g. 26 + Lirg — )

HAog . S (/@5 + %)~ Q1) — )

loc

@a91) HAog, 5 (F(Qs +u" + ) £(01 +3) ~ g)
1 (R 1
==l + 5 [ (e + leP)rar

1
+ (Ao @)g . (£(Qx +u) = £(02) = fu))
1
+ (A0R)g. 5 (£(Q1 +u* +g) = F(Qu+1u") =)
where R is defined in Lemma 3.3. By (3.66) we see that

(3.92) 1£(Q2) = £(Q3) = fu) S IAQA P |u™| + [AQalu*[>.
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Since [|Ao(A)gllz2 < llglla and [[r~tu*||Loor<ry S V71 (see Corollary 2.3), the second to
last line in the previous expansion can be estimated via Cauchy-Schwarz

(93 [[Aog. 5 (F(Q1 +u) 100~ f))

L w2 4 -2y %14 2y dr
(394 Sl ([ (70PN + 21 A0aP) )

- 1 -
(3.95) Slglar™ < lglf +!

as long as 7, is sufficiently small. We conclude
1
—[A0g. (01 +u" +9) = f(Q1+u") =~ 9))
1
—(Ao)g. g = S (F™ + 01+ ©) = f*) = £(0)

1 R 1
3.96 - 24 —g)?
690 = [ (1eP + SleP) rar

loc

{000~ Ag . 5 (/@1 41" +2)— F(Qs + )~ )
Fo((! + 1 lgl)

The operator Ag(1) — A(A) is given by multiplication by the function 5 (¢ () + 24'(%))-
By (3.28) it follows that

(40— AWg . 5 (01 +u* + 8~ £(Qs +u") ~ )
(3.97) =7 | -l rar

1
+ (co+ llgllm) O (5 gl )-
where cg is from Lemma 3.4. The estimates (3.90), (3.96) and (3.97) imply
(3.98)

b +apar = - [ (sl + Slef)rar [T L (00 - st rar
Ao U7 r2 AJo 12

1 A

_ v—1 - 2\ _ -~

(3.99) (1" + SlgllE) — Co -

The orthogonality condition (ZL , g) = 0 implies the localized coercivity estimate,

1R 2, Lo L1, 2 €1, 12
100, 5 [ (el + S1el)rar + 5 [ (7@ = Dl dr = =Sl

(see [13, Lemma 5.4, eq. (5.28)] for the proof). The constant ¢; > 0 appearing above can be
made small by choosing R sufficiently large, and thus,

/ v— - V— 1
(3.101) b'(t) + 4pgt”™' > O\t 2)—0(1)(t 1+)—k||g||%1)

for R sufficiently large and 5, sufficiently small. This concludes the proof. O
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4. Energy Estimate for the Error

In this section, we continue our study of wave maps u such that forallz € J C (0, To],

4.1) u(t) = Q) +u*(t) +g(@),
where A € C!(J) is the modulation parameter and
(4.2) g(t) = (g(1).&(1)) == u(t) — (@) +u™ (1))

is the error term given by Lemma 3.1. In the previous section we obtained differential
inequalities for A(¢) in terms of A(z), ¢, and the size of g (¢) (see Proposition 3.5). The goal
for this section is to derive an energy estimate for g () to close these differential inequalities.

4.1. Energy estimate for g (¢)

The goal of this section is to prove the following energy estimate for g (¢).

ProrosSITION 4.1. — Assume the same hypothesis as in Lemma 3.1. In addition assume

4.3) u(t,r) = (m,0) +u*@,r), Vr>t,
(44) My e

There exist 1, = 12(v,q) >0, C = C(v,q) > 0andc = c(v,q) > 0 such that if sup J < 1,
then for all tg,t € J withty <t,

t

@5  clg®lE +1g7> = —SPQ/ N (@)t dr+ Cllg (o) I3

)
(4.6) 4+ t1(to) + t1(2) —1—/ ta(t)dr,
to
where
4.7) () < C(A(t)zt_z + 1272 )(1)* log %t) + A(t)t”‘l),
(4.8) n(0) = C(AOP2 + g 0l3,).

For a finite energy wave map u# = (u, d;u), consider the local energy contained inside the
light cone at time ¢:

t )
Guctu) = [ (10 0P + ot P+ TEED ) g

We will obtain Proposition 4.1 from an estimate for the quadratic part of the local energy

(4.9) Q(g(0).1) 1= Eroc(u(1))) = E1oc(Q 0y + 4™ (1))
(4.10) —(D&oc(Qyy + 4™ (1)). 8(1))
(4.11) = (D*E10c(Qaqry + u*(1)g (1), £(1)) + OUg (D134 <p))-
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PROPOSITION 4.2. — Assume the same hypotheses as in Proposition 4.1. There exist n, =
n2(v,q) > 0and C = C(v,q) > 0 such that if sup J < ny then for all to,t € J withty <t,

@.12) Qg(t).1) = —8npq / V(O de 4+ g (o). 1o)

t
(4.13) +1ato) = 11 (1) + [ L(t)dr,
to
where
(4.14) u(@) < c(ﬁ(t)z—2 +12V72)2(1) log ﬁ + AT A @) ||g(t)||H>,
(4.15) n() = (27200 + + g1

The proof of Proposition 4.2 will occupy the majority of this section. We now give a quick
proof of Proposition 4.1 assuming Proposition 4.2.

Proof of Proposition 4.1. — By definition

(4.16) %(ngloc(Qk(t) +u*(1)g(t).g(1)) =/0 lg(0)|* rdr +/0 10, g()|* rdr
P (Qaqy +u*(1))
[

4.17) lg(®)|? rdr.

Then it is easy to see for all ¢ € J, there holds

(4.18) Qg (.1 < lg®II3,.

Towards deriving a lower bound for Q(g(¢), t), we first note
4.19) £ (Qs + u*) = cos(20; + 2u*) = cos2Q, —2cos2Q; sin? u* —sin2Q;, sin 2u*.

Forr < ¢, |u*(z,r)| <t which implies

t ¢ 2
@) |[ oos2gasintut +5in20s sin2u e < o0 [ EOE g
0 r 0 r
Thus,
1 *
4.21) —(D%Eioe( Q) + 47 (1)g (1) £(0)
t t
(4.22) = [Cewrrar+ [Casorrar
0 0
t / t 2
(4.23) 4 / @) (2 rdr + 047 / gOP
0 7'2 0 7'2
Now, since g(t,7) = (w — Q) (r),0) for all r > ¢, it is simple to see
At)?
(4249 180 Brmy ~ "
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By (4.24) and the orthogonality condition imposed on g(¢), we conclude there exists ¢ > 0
such that

@29 (D% @sy +u" (1) (1), g (1)

(4.206) =/0 |g(t)|2rdr+/0 |8,g(t)|2rdr—i-[0 %Lg(lﬂzrdr
(4.27) 0@ [oo |g(,2)|2 rdr + 002(t)2)
0 r
oo 2
(428) — (D% Qg0 80} + 0 [ E rar+ 06200

(4.29) > (2¢ = 0) gl + 187> + 0> (D) 72).

Thus, forallf € J,

1
(4.30) 3Tcllg(l)llﬁ + 107 = —Qe®).0) + O (t)*t™?)

as long as 7, is small enough. Inserting (4.18) (for t = f¢) and (4.30) into Proposition 4.2
and using A(¢)t™! < ||g(t)|| g (see (4.24)) yields (4.5) as long as 7, is small enough. O

4.2. Proof of Proposition 4.2

To prove Proposition 4.2, we will use the following local energy identity: if u is a finite
energy solution to (1.3) on J x R2, then for any ty, ¢t € J with fy < ¢,

(4.31) Eroc(u(1)) = Eroc(u(to)) + F(u, 10, 1),

where F is the flux

' sin” u(p, p)

Flu,to,1) = / (16 + oo P+ Z=5LL20) o,

fo

Indeed, (4.31) is easily verified for smooth wave maps using (1.3) and the divergence theorem.
The identity (4.31) then holds for all finite energy wave maps by a mollification argument.

Consider now u satisfying (4.1) and u(¢,r) = (7,0) + u* (¢, r) for all r > ¢. We perform a
Taylor expansion and write
Eloc( Q) ™ (1) + g(1))
= Eloc (@ + 4™ (1)) + (DEioc(Q () + u™ (1)), g (1)) + Qg (1), 1).

From (4.31), we conclude
(4.33)  E10e(Qa) +u™ (1)) + (DEioc(Q ) + u™ (1)), g(1)) + Qg (1), 1)

(4.34) = Eloc(Qa(ry) T 4" (10)) + (DE0c(Q 1) + U™ (t0)). g (t0)) + Q(g (t0), t0)
(4.35) + Flu,to,1).

(4.32)

We now extract the leading order contributions for each of the first two terms appearing on
the left and right sides of the previous equality sign.
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LEMMA 4.3. — Forallt € J,
(4.36) E10e(Qaqy + 1 (1)) = E(Q) + Eioc(™ (1)) + dmA()u™ (¢, 1)
4.37) + o(xz(z)z—2 1272023 log(t/A)| + M”—l).
Proof. — We compute
Eloc (@) + U (1) — E(Q) — Eroc (™ (1))

0o c 2 t
:n/ (|B,QA|2+ s 2Q*)rdr+2n/ 8,1* (1), 05 r dr
t 0

r

+ 7 /t[sinz(QA + u*(t)) —sin® Q; — sin? u*(t)]ﬂ.
0 r

The first term is easily seen to be O(A2/¢?).
Integrating by parts and using AQ; = # sin2Q, we obtain

t t
d
2/ 9,u*(t)0, Q,rdr = —/ sin(2Q;L)u*—r + 20, Q,l(,)(t)u*(t,t)t.
0 0 r

Since 9 Q1) (1) = 2A/12 + O(A3/t*) and |u* (1, 1)| < ¥, we conclude Eioe(Q () +u* (1)) =
E(Q) + Eioc(* () + 4mA()u*(t, 1)/t + O(A%/1?) + €(t) with

et)y=m /Ot [sin®(Q + u*(t)) —sin® @, — sin® u™(r) — sin(2Q)u* ()] ?

Using trigonometric identities we can simplify the previous to

t d t d
et) = —27r/ sin? u* sin® Q) — + 1/ Sin(20;)[sin 2u* — 2u*] .

0 r 2 0 r
Since [u*(¢,r)| < rt’~! and sin? 0, = |AQ;|?, the first integral appearing above satisfies

t d t
(4.38) / sin® u* sin2 0 —- 5[2”—2/ |AQ|?r dr

0 r 0

t/A
(4.39) < tZ”_z)LZ/ |AQ|?r dr
0

(4.40) <2722 2% log(t /1),

and the second integral satisfies
t d}’ t
‘/ sin(20,)[sin 2u* — 2u*]—‘ < 13“—3/ |sin20;|r2 dr
0 r 0

t/A
< r3”*3x3/ |sin2Q|r?dr
<) ’
We conclude |e()] < At3V~1 +12v72)2|log(t/A)| so
E1oc(Q; +u* (1)) = E(Q) + Eroc (™ (1)) + 4mwA(t)u™(¢,1)/1
+0(A2/1 + 27202 log(e/M)] + 47),

as desired. O

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1166 J. JENDREJ, A. LAWRIE AND C. RODRIGUEZ

LEMMA 4.4. — Forallt € J,

(44D (DEe( Qs + (1)), £(1) = (Dol (1), (1)) + OR(W)*7?)
(442) +0(lg@lar@™).

Proof. — We write
(D&ioc(Q )y +u™ (1)), g (1))

t o
= ZJT/O (atu*(l)g + d,u*(¢)d,g() + 5111(2—0)) (t))
+27T/0 <3rQA(t)3rg(l) + w (l))

T , : d
+ /0 [sin202) +2u* (1) = in(2Q2) = sin@u* (1) | ()=~

The first term on the right-hand side above is exactly (D&oc (u*(1)), g(1)). After integrating
by parts and using AQ, = % along with (4.3) we see that the second term satisfies

t
@ 2 [ (3 0aotnew + TEZ 0)rar = 20,0180
(4.44) = 20, 0307 — Qao)rlrms
(4.45) < A@/HAD/ D)t = A)* /12,

Using trigonometric identities, we write
r . " . . " dr
(4.46) [sm(ZQm) + 2u™(t)) —sin(2Q 1)) — sin(Qu (t))]g(t)T
0
. - ok D dr
4.47) = —2/ [Sin(2Qa(r)) sin” u™(¢) + sin(2u™(¢)) sin Q;L(,)]g(t)T.
0
Since ||gllzo¢r<n) S llglla <), the first integral satisfies
" 22k dr o 1o
[ sin@Qu sin® w20 | < el [ Isin20ar dr
0 0

t/A
S lglle=nr® 222 / |sin20|r dr
0
S ||g||H(r§t)f2v_1)L
For the second integral, we obtain
! . * .2 dr 1 ! 5
‘/0 sin(2u” (7)) sin Q/\(l)g([)T < ”g”H(rgz)[v /0 |AQ)L(,)| dr

S lIgllae<nr @)

The lemma follows. O
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LEMMA 4.5. — Forallty,t € J,

(4.48) (D&oc(u™ (1)), g(t)) = 8mpq f (D)t dr 4 (DEoc(u*(10)). g (t0))
(4.49) — A A (¢, )" + A (to)u* (to, to)ty
(4.50) + / y(7) dr,

where y(t) satisfies
(4.51) y(0) = 0(*7220) + g ()I3,).
Proof. — Define

B(1) = - (Dol (1)) g (1))

g
t . *
- 2/0 (atu*(t)g(t) +0,u*()drg(t) + wg(z))rdu

We compute /(). Since g(¢,r) =0and g(t,r) = m — Q) (r) for r > ¢, we have

B0 = 200 0.0, Qa0 + 2D 0,00

1
1
+ 2/ [8?u*g + af,u*a,g + r—zf’(u*)atu*g]r dr
0
=3

t
1
+2/ [a,u*a,g+aru*a$,g+ 2f(u*)a,g]rdr,
0

where again we have f(p) := % sin 2p. Using the equations satisfied by #*(¢) and g (¢) we
can write the last two lines as

t
1
(4.52) 2/0 {Au*g’ + 0%,u*d,g + r—zf’(u*)atu*g + du*Ag + 0,u*d?, g

1 1
(4.53) — W+ Qa4 g) = fu”) = f(Q]du” + r—zf(u*)/\’AQi}r dr.

Integrating by parts and using g(¢,r) = 7 — Q(¢t)(r) for r > ¢, we have

t t
2/ Zu*d,grdr = —20,u*(t,1)0, Q) (1)t —2/ d,u*Agrdr,
0 0
t t
2/ du*d? grdr = 2)L’(t)8ru*(t,t)AQ&(,)(t)t—2/ Au*grdr
0 0

t
- 2/\’/ Au*AQ,rdr.
0

We conclude

) = 20,000, Q0 + 2D 0,500

—20,u™(1,2)3; Q) ()t + 21 (1), u™ (1, 1) AQ j. (1) (2)1

_2A’ft(Au* - f(“*))AQM dr + y(0),
0

72
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where
! d
PO =2 [ dar [ + 0+ 9= ) - £(Q0) - £6g]
0 r

We now study the size of y(¢). Adding and subtracting f(u* 4 g) in the integrand, using
fw* +g)— fw*) — f'(u*)g = 0(|g|?) and Corollary 2.3 we see that

F(1) = =2 /0 t D[ f* + Qa4+ g) = f(u" + )~ f(Qm]% +0( gl g<n)-

Now

(4.54) f™+0x+g) — fu +g)— f(Q2)
(4.55) = —% sin(2u™* + 2g)(1 — cos2Q;) — %(1 —cos(Qu* +2g))sin20;.
Thus,

. ! . dr
FOLS [ 10071 + el os 20 = 11+ (u™P + g sin204] -
By Corollary 2.3
t dr t
/ [0,u™||u*||cos2Q; — 1] — < 12"_2/ |cos20; — 1]dr
0 r 0
< [21)—2/\

as well as

t dr 5 t/A
| oarllglicos 204 =115 S #2Alglumiery [ Teos20 11 dr
0 0

S Mgl e<n-

Via Corollary 2.3 we also conclude

! , dr g , dr _
[ ot Psin201 S+ [ ol sin20a1 S 0+ £ gl oy
0 0

In summary, we have proved that the linear term

1
BO) = (D Eiuctu” 1)), £()
t . 2 *
=2 /0 (30 020) + e 00 + 2ETD ) rar
satisfies
.

@s6) 0 = 20000, a0 + 2D i 0,0(0)
4.57) —20,u™(t,1)0, Qaq) (1)t + 21 ()3, u™(t, DAQw (1)1
t *

(4.58) - 2)&//0 (8 - %)AQ&V dr +7(0),
where
(4.59) 7() = 0(*7220) + 22Ol = + gl <o) )-
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We note for all r > 1,
(4.60) T—=Q) =271+ 007), 300 =2r"+ 00",
(4.61) AQ(r)=2r""+0(7?).
By Lemma 2.2 and Lemma 2.1
(4.62) Xt )] 4 10,u* (2, 1) + [0, u* (e )] S e
Thus, we conclude
=20,u™(t,1)0; Qa(r) (1)t = =43, u™(t, A" + 0" ™*213 (1)),
Sin2u7(1.1) 2”:([’ D (x = 03 = 4™ (6, DA + OGP 2A(0) + 1"~*A(0)°),
—20,u*(t,1)3r Qa( ()t = —40,u™(t, )A()t ™ + O ~*13 (1)),
21 (), u* (t, 1) AQ ) (1)t = 4X (1), u™ (2, 1) + O (£)t > 12(1)).

Now, integrating by parts and using (A — %)AQ 2 = 0 we obtain

_2A’/Z(Au* - f(u*)>AQAr dr = =21 ()3, u™ (1, ) AQ (1)t + 21" ()u™(t,1)3,AQ (1)t
0

2
d ! dr
—2/\’/ u*AQ;err+2/V/ SWHAQ),—
0 N 0 o r

= =2X ()3, u™ (. 1) AQ A ()t + 2A (1)u™ (2, 1), AQ . (2)t
20 (Y., . dr
-5 | (e r@n - ran)aos
Since 1 —cos2Q; = 2sin? Q; = 2(A0;)?
—u* f1(Q2) + f(u*) = 2u*sin® 0 + O(lu*|*) = 2u™(AQ)* + O(lu*]?).
SO

20 [ty . dr 4 [, dr L 3y
ey~ [(wrrien - ram)ag, =2 [ o(xiv ).
A Jo r A Jo r
By Lemma 2.2 and Lemma 2.1 we have for r <1t
(4.64) w*(t,r) = pgt"~'r + 03" e,

Since [y (AQ1)*r2dr < A3|log(A/1)| we conclude

24 1 d ! d
@os) —= [ (7@ - ram)ags = [ partnon S

(4.66) + o(zv—%'m log(t/A)| + x'ﬂv—l)
(4.67) = 8pgqt’ IV
(4.68) n o(zv—%'m log(t/2)| + x’z”—l).
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Thus,
t *
(4.69) —2,\’/ (Au* - f(”2 ))AQ”dr
0 r -
(4.70) = =2/ ()0, u™(t. 1) AQ A ()t 4+ 2A ()u™ (£, 1)0, AQ (1)1
4.71) + 8pqt” IV (1) + o(t”—3mz| log(t/A)| + )m”—l).
Using (4.60), (4.62) and Proposition 3.2 we conclude
t *
4.72) —21’[ (Au* — f(”; ))AQ“dr
0 r -
(4.73) = —4X (1), u*(t, 1) — 4N (Ou*(t, )t~ + 8pqt N (1)
(4.74) +0(" 2% 108t /M) g2 + 17 N2l 2 )-

In summary, we have proven

(4.75) B'(t) = =40, u* (1, 1)t ™  + AA()u* (¢, 1)t + 4A() D, u*(t, )t}

(4.76) — 4N (Ou*(t, ) + 8pgA (D) + v (1)
4.77) = —4% (/\(Z)u*(t,t)t_l) +8pgA ()" + y(1),
where

y(1) = O(*72A0) + 220 lg Ol + g O, + 722 0)).
Since A(t)t™! < [|g(¢)|13,, the previous implies

y(0) = 07200 + g ()1

The lemma follows upon integrating 8’ from fy to ¢. O

The proof of Proposition 4.2 now follows from the previous three lemmas.

Proof of Proposition 4.2. — For t > ty, we define

(4.78) (1) 1= Eioc(@aqy + 4™ (1)) = E(Q) — Eioc (™ (1)) — 4mA()u™ (1, 1)1~
(4.79) + (D&oc(Qir) + 4™ (1)), g(1)) — (D&ioc(u™(1)). g (1)),
(4.80) (1) := —y(1),

where y(¢) is as in the statement of Lemma 4.5. By Lemma 4.3, Lemma 4.4 and Lemma 4.5
t1 and ¢, satisfy the desired estimates. The Taylor expansion of the local energy inside of the
light cone may then be expressed as

Eloc(Q iy +u™ (1) + g(1))
= Eloc(Q )y T 4™ (1)) + (DE1oc(Qa(ry + 4™ (1), g (1)) + Qg (1), 1)
= E(Q) + Eroc(@™ (1)) + 4A (O™ (1, 1)t ™" + (DEioc (™ (1)). g (1))
+ () + Qg (1).1).

(4.81)
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Recall the local energy identities satisfied by u and u*:

Eioc(u(t)) = &Eioc(u(to)) + F(u,t9.1),
Eloc (U™ (1)) = Eroc (U™ (t0)) + F(u™,to,1).
Conservation of energy and (4.82) imply

Eext((to)) = Eext(u(t)) + F(u,10,1),
Eext (U™ (10)) = Eext (U™ (1)) + F (™. 10, 1),

(4.82)

(4.83)

where

o0 =2
Eont (1)) i= 7 / (19eute. )P + orute. ) + Smj‘#) rdr

Since u(t,r) = (7,0) + u*(t,r) forall r > ¢, Eext(u(t)) = Eext(u™*(¢)) for all z. By (4.83), we
conclude

(4.84) Fu,tg,t) = F(u*, to,1).
Then (4.81) and (4.82) imply
(4.85) E£(Q) + Eioc(@™ (1)) + 41 (U™ (1, 1)t + (DEioc (™ (1)), g (1)) + 11 (1) + Qg (1), 1)

(4.86) = £(Q) + Eioc (™ (10)) + 4A(10)u™ (t0.10)tg " + (D Eioc(u* (t0)). & (t0))
(4.87) + 11(t0) + Q(g (t0). 10) + F(u™, 1o, ).

Since

(4.88) Eloc ™ (1)) = Eioc (U™ (t0)) + F(u™, t9,1),

(4.89)  (D&oc(u™(1)). g (1)) = 8Pq/t N (@)™ dt + (DEioc (™ (1)), g (10))

(4.90) —AA (e, )t 4 A (to)u* (to, o)ty — /tt 1»(1) dr,
0
we conclude
(4.91) Q(g(r).1) = Q(g(10).70) — 8pq [,Ot A (@) de
(4.92) +ll(to)—L1(t)+/ttL2(T)dT,
as desired. O

5. Construction of the blow-up solution

In this section we prove part (a) of Theorem 1.1. We define

plgl !
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Let y € C*®(R?) be radial such that y(r) = 1 forr < % and y(r) = 0ifr > 1. As
before, let #* denote the unique solution to (1.3) such that u*(0,r) = uj(r) = x(r)(gr",0).
For t > 0, we define

(5.2) 0(1) = Q) + (O + (1= 1) (T — Q1,. 0).
We note

(5.3) v(t,r) = Q) () +u(t,r), Vr= %
and

(5.4) v(t,r) = (,0) + u*(t,7), Vr>t.

The main tool we use to prove part (a) of Theorem 1.1 is the following proposition.

ProPOSITION 5.1. — For all € > 0 sufficiently small, there exists Ty = Ty (v, q, €) > 0 with
the following property. For all T < Ty, and for all ty < T, the unique finite energy solution u
to (1.3) with initial data u(ty) = v(ty) is defined on [to, T and satisfies

(5.5) sup [lu(t) = (@ ) +u* ()|, <€

t€(to,T]

We prove Proposition 5.1 via a bootstrap argument. We will first require a few simple facts.

5.1. A few lemmas

The following two lemmas are simple consequences of Proposition 3.5 and Proposi-
tion 4.1.

LEmMMA 5.2. — Assume the same hypothesis as in Proposition 3.2. Let § > 0 be arbitrary and
let ng be as in Lemma 3.1. Let (A(t), g (¢)) be defined as in Lemma 3.1, and let £(t), b(t) be as
in (3.18), (3.38). In addition, assume there exist constants k1, k3 > 0 such that for allt € [ty, T]

K1 tv+1 tv+1
<A(t) < kK ———,
(5.6) 2019 TTogr] —+) =*1770g7]

lg()lI3, < k2t>"|logt|™".

Then there exist To = To(v, q,8,k1,k2) > 0and Cy = Co(v, q, k1, k2) > Osuchthatif T < T,
then for allt € [ty, T]

(5.7) m—l < Collog1|73,

(5.8) b)) < @v + 8) [log]? ()]l 2 + 81",
(5.9 §'(t) = b(1)] < 6.

In addition, b(t) is locally Lipschitz and the derivative b'(t) satisfies

(5.10) |b'(1)] < Cot¥™,

(5.11) b'(1) = (~4pg — )"
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Proof. — The assumption (5.6) implies
l|10gt| - t - 2019|10gt|.

5.12 —
(5.12) Kkt T At T o« v
Thus, forallt < T,
t
(5.13) logm = v|log?| + O(log|logz|).
The assumption (5.6) and (5.13) then easily imply the following estimates:
t 1
o lg@llx < [logt]™2,
)L(t)logﬁ
. A(t) . _1
g2 + — S t"[logt]™2,
(5.14) AE[)
v—1 -1
Tz St | logt| T,
1 2 p—
- ¢ < [v 1,
TLIUCE

where the implied constants depend only on k1, k2. By choosing T sufficiently small, (5.6)
implies the hypotheses in Proposition 3.5 are verified. The conclusions of Proposition 5.2
then follow from those in Proposition 3.5, the estimates (5.13) and (5.14). O

LEMMA 5.3. — Assume there exist constants k1, ko > 0 such that for allt € [ty, T]
tv—i—l tv+1
<A <k
(5.15) 2019 | log¢| [logt]
lg @7, < k2t loge]| "
There exists Ty = To(v,q,Kk1,k2) > 0 and C1 = C1(v,q, k1, k2) such that if T < Ty then for
allt € [[0, T],

t
(5.16) cllg®liz + 18017, < —8pg / V(D) tde
to
(5.17) + C1 (llg@o)lF, + 12" log?]| ™) .

Proof. — Let(; and 1, be as in the statement of Proposition 4.1. Then using (5.15) we have
for all ¢ sufficiently small

(5.18) A1) 72 < t?|logt] 2,

(5.19) Y220 logt /()] S 1+ | logr |7

(5.20) AP < loge| 7!,

which imply for all ¢ sufficiently small

(5.21) [t1(2)] S 12| logt| 2.

Note the function f(t1) = t2"|logt|~2 is strictly increasing on (0, Ty] as long as Ty is
sufficiently small. This implies for all g <t < T

(5.22) 1(to) S 157 |logo| ™2 < 12V log| 2.
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Using (5.15) we have for all ¢ sufficiently small
(5.23) 220 + 1 g ONF, S 2 logr| T

which imply, for all ¢ sufficiently small,

t t
(5.24) / Lz(z)dfgf 3 logt| ™ dr <3| logt|™! <12V logt| 2.
to 0

Inserting (5.21), (5.22) and (5.24) into Proposition 4.1 finishes the proof.

O

The following two lemmas are needed to estimate the size of v(t0) — (Q () + #”* (o))

and the size of 0, — Q3,.

LEMMA 5.4. — For allt > 0 sufficiently small, we have

(5.25) (1= 1) (7 = Qs- O) |5, < 12" loge| 2.

Proof. — For t sufficiently small, we have after a change of variable

[} 2
5.26 - - )2 < 0,02+ 1271, 4
620 0w [ (0P + B ) rar
o0
(5.27) §/ r4rdr
1/22¢(t)
(5.28) < Ae()?t72 < 12| logt| 2.

LEMMA 5.5. — Let A1, A2 > 0. Then

A
log—l .

529 101, @l = e 3

Proof. — By the scaling invariance of the estimate we can set A, = 1. Then, making the

change of variables

(5.30) x =logr, xo=1logh;, [f(x)= Q(e"),
we see that (5.29) is equivalent to showing
(5.31) If(x = x0) = F() 1wy S Ixol-

By the fundamental theorem of calculus
1
(5.32) fx=x0) = f0) = =xa [ f/Gx = rxoy .
0

Since f/(x) = AQ(e¥), f"(x) = A2Q(e*), we obtain

(533) 1/ (x—x0) = fO)llgi@ S ol f a1 @ S 1%l (IAQNlH + 1A2Q1lH) < Ixol.

as desired.

4¢ SERIE - TOME 55 — 2022 — N° 4

O



BUBBLING WAVE MAPS WITH PRESCRIBED RADIATION 1175

5.2. Proof of Proposition 5.1

The proof proceeds via a bootstrap argument. Let € > 0 be sufficiently small, 7} to be
chosen later, and #9 < T < Tj. Let u be the unique finite energy solution to (1.8) with initial
data u(ty) = v(f). By Lemma 5.4

(5.34) (o) — @™ (t0) + @), S 15" 110g 0] 72

Let Z be defined as in Lemma 3.1. Then as long as 77 is sufficiently small,

(5.35) (u(to) — W™ (t0) + Qnctto)): Zactie)) = ((1 = X10) (T — Qo)) Zictag)) = 0.

Thus, there exist a time interval containing o and a C ! modulation parameter A(¢) such that
(5.36) u(t) = Q) +u*(t) +g()
with <g(z) | Z&> = 0and

(5.37) A(to) = Ac(to),  g(t0) = (1 = 21) (T — Q2. (1) 0)-

Let T’ € (¢, T] be the largest time such that for ¢ € [¢g, T'], u(¢) is defined and

plgl "t plgl "t
5.38 12y Pll <A <(Qt+ordl L
(5.38) A=) 20 +1 Tiogr] =+ = M+ 973077 Tiogr]
(539) eI + 13013 < (1+2) 2L L
' H L2 = v3  |logt|’

where c is the constant from Lemma 5.3. By the preceding discussion, (5.37) and Lemma 5.4,
such a T’ exists as long as T is sufficiently small. Moreover, by Corollary A.4 of [13] and as
long as T is sufficiently small, () is defined beyond 7.

We first show the bootstrap assumptions imply an improvement to (5.39) as long as €
and T are sufficiently small. Let 77 be small enough so Lemma 5.3 applies. Then since
t +— t?’|logr|7? is increasing and [|g(fo)||7, < 13”|logto|™2, it follows that there exists
a9 = ap(v,q) > 0such that

t
(5.40) clle®lz + 160172 < 8P|61|[ N ()t~ dr + ot [logt| 72,
fo
We note since 5-12”|logt| ™! = 2012~ log |~ + 12V~ log |72, it follows that

‘ 1 1
(5.41) / > logr|™ dr = 1" |logt| ™! — S-13"|logio| ™' + O™ log1| 7).
11

0
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Thus, by integration by parts and (5.38) we conclude that as long as € and 77 are sufficiently
small

(5.42)
/t M@ Ndr = A" = Aoty = (v = 1) /t A(r)r" 2 dr
7 to

0

plq| 2v -1 _ ,2v -1

(5.43) _—v2<v+])((1+e)t [logt|™! — 12*| log o]

t
(5.44) —(v-10 —ez)f 12”_1|10gt|_1d1) + Ct?|logt|™2

to
(5.45) < 21 2 2L g
’ — 203 v+1 v+1

rlql v—1 2v\,2 -1 2 -2
5.46 -1 1— 15" logt Ct*’|logt
(5.46) v2(u+1)< + = e))OIOgol + |log1|
rlq| v 2v -1

(5.47) <5 (1+(2+e)—v+le)t llog?|~.

Combining (5.40) and (5.47) we conclude that as long as 77 is sufficiently small, we have for
allt € [to, T']

) 20\ 4p3q? _
2 2 2 1
(5.48) O + 18172 < (14 (1 + 0= e) Ll loge .
As long as € is small enough so
2v
1 <2,
( +€)v+1

(5.48) is an improvement of (5.39). We now turn to obtaining an improvement on (5.38).

Let £(¢) and b(¢) be defined as in (3.18) and (3.38). Let 77 be small enough so Lemma 5.2
applies with § = €3. We conclude from (5.8), (5.11) and (5.48) that as long as T; is small,
there exists &y = a1 (v, q) > 0 such that for all ¢ € [tg, T']

2

4plq| v
€
v+1

(5.49) LR -y <bo = +ale3)%(1 +(1+e)

)%4p|q|tv.

By Taylor’s theorem, (1 + x)% =1+ %x + O(x?). Thus, the previous implies that as long
as e is sufficiently small, there exists a constant o, = (v, ¢) such that

4 4
(5.50) 4Pl e < () < (1 + (1 + aze) G)Mx“.
v v+1
By (5.9), (5.39) and integration, the previous implies that there exists o3 = a3(g, v) such that
(5.51)
4plq| 3y v+l vl
—(1— T — 1 <(t)—¢(t
v(v—i—l)( aze”)( 0 ) =@ —&()
v 4plgl i1

5.52 1+ (1 Vgt
(5.52) = (14 (e —pe) om0 =gt
By (3.42) and (5.38) (see (5.13)) we have
(5.53) ¢(t) = 4vA(r)|logt|(1 + O(] logt|™! log|logtl)).
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In particular,

4plq|
5.54 to) = ———1t!
(5.54) cw) = S0
Inserting (5.53) and (5.54) into (5.52), we conclude there exists ay = a4(v, ¢) such that as
long as T is sufficiently small we have

(1 + O(|logto|~ " log|logol)).

4 v+l o+l
555 2l b

v(v+1) |logt|

As long as € is sufficiently small so

v 4plq|
< A(t) < (1 (1 +ase)— le)v(v T gl

V
v+1
(5.55) is an improvement on the bootstrap assumption (5.38). Thus, we have proven that
as long as ¢ is sufficiently small and 77 is sufficiently small depending on €, the bootstrap
assumptions (5.38) and (5.39) can be improved on [t9, T’]. We conclude T’ = T'. In partic-
ular,

(5.56) age <1, (14 age)

<1,

(5.57) Sup lu@) — @* @) + Qa) |, S 1" |logt|712,

with

(5.58) (1 —eHAe(t) < AMt) < (1 +)Ae(t), Vi€t T

Combining (5.57), (5.58) and Lemma 5.5 finishes the proof. O

5.3. Proof of part (a) of Theorem 1.1

We prove part (a) of Theorem 1.1 using Proposition 5.1 and a general scheme for
constructing multi-soliton and singular solutions to dispersive equations introduced by
Martel [21] and Merle [26]. Let € > 0 be small enough so Proposition 5.1 is valid. Then there
exist 7 > 0 and a sequence of times 7" > ty > t; > --- with f, — 0 such that the unique
finite energy solution u, to (1.3) with initial data u,(z,) = v(¢,) is defined on [z,, T] and
satisfies, for alln > O and forall 0 <m < n,

(5.59) sup Hu,,(t) —(Q.0 t u* (1)) ||H < 2.

te[tmstm—l]
Here we set —; := T. In particular, we have
(5.60) sup ||u,, ()= (Qa.) + u*(t))HH <e.
te(ty,T]

By Corollary A.6 of [13] we can conclude from (5.60) (after shrinking ¢ and extracting
subsequences if necessary) that there exists a finite energy solution u. to (1.3) defined on
the time interval (0, 7] such that u,(t) —, u.(¢t) for allt € (0,T]. By (5.59) and weak
convergence, we conclude for all m > 0,

(5.61) sup “uc(l‘) — (Q)Lc(t) +u*@)) ||'H <27e.
t€ltm tin—1]
Thus, u, is the desired blow-up solution. O

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1178 J. JENDREJ, A. LAWRIE AND C. RODRIGUEZ

6. Classification of bubbling dynamics determined by the radiation
In this section we prove part (b) of Theorem 1.1. We assume there exists a continuous time
parameter A(¢) such that

u(t) = Qi(t) +u*(t) +on(1) as 1 — 0,
(6.1) )_L(t)

T—>O as t — 0,

where u*(t) € H is the unique finite energy wave map with initial data u*(0,7) = uj(r) =
x(r)(grY,0). Here, as always, y € C%(R?) is radial such that y(r) = 1 forr < % and
x(r) = 0if r > 1. By the local Cauchy theory for (1.3) and finite speed of propagation
we have

(6.2) u(t,r) = (7,0) +u*@,r), Vr>t.

It follows from (6.1) that we can find 7y > 0 small enough such that the hypothesis of
Lemma 3.1 is satisfied on the time interval

(6.3) J = (0, To).
Let A(z) and g (¢) be given by Lemma 3.1 so that forall¢ € J,

ut) = Q¢ +u @)+ g,
0=(Zy0 | ).

From (6.1) and (3.11), we see that ||g(¢)]l — 0 and therefore

(6.4)

(6.5) — —>last - 0.

Then (6.1) and (6.4) imply
u(t) = Q) +u*(0) +g(@),

6.6
(©0 ”g(t)”H‘l‘@—)O as t — 0.

Thus, we may assume A(r) = A(r) to begin with. By Proposition 3.2,
6.7) V)] S 1&g

Finally, from (6.2) we see that

(6.8) gt.r)=(m—Qin().0), Vr=r,

and thus we have the bound

AZ
(6.9) lg @ lire=n = ,?'
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6.1. Focusing nature of the radiation

We first prove the interaction of the bubble and the radiation must be attractive for blow-
up to occur. More precisely, we prove the following.

ProPOSITION 6.1. — Letv > % and q € R, and let u satisfy (6.6). Then
(6.10) q <0.

Towards a contradiction, we assume ¢ > 0 (if ¢ = 0, then (6.6) and the variational
characterization of @ imply 349 > 0 such thatu = @, /). We require the following lemmas.

LEMMA 6.2. — Let v > % and ¢ > 0, and let u satisfy (6.6). There exist constants
C =C(u),c =c(u) > 0suchthatast — 0,

/X(t)z

(6.11) cle®lz, + A0 <[v-1)+ o(1)]/ M)’ 2dr+C

Proof. — Let (; be as in the statement of Proposition 4.1. By (6.6), (6.9) it follows that

()2

(6.12) (@) < —=— + 1) L.

Thus, limy, ¢ t(fo) = 0. By Proposition 4.1 and integration by parts

t
613 clg@l+8par0r™ = 0= Dspq [ A0 dr
A(1)?
(6.14) +C () +C/ lg (D)3, " de
(6.15) + CA() 7 + c[ A(r)r?V 72 dr.
0

Thus,

t
(6.16) cle®)z +A@0 ™ <[v-1)+ 0(1)][ A(r)r" 2 dr

0

A()? b

(6.17) 3 'dr.
By Gronwall’s inequality the previous estimate immediately implies (6.11). O

LEmMMA 6.3. — Letv > % and q > 0, and let u satisfy (6.6). Then
(6.18) At) =o' tY), ast — 0.

Proof. — We claim there exists C = C(u) > 0 such that the following holds: for all R > 0
sufficiently large, there exists 7o = To(R) > 0 such that forallz < T

(6.19) A(t) < C(log R)" 1"+,

The above claim then immediately implies A(t) = o(¢”*!) as desired.
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To prove (6.19), we first note ;g = & + A’AQ, implies

d R RA RA
(6.20) —/ AQ,lgrdr=/ AQAgrdr—i—/V/ |IAQ|? rdr
dr Jo h 0 - 0 h
A RA
(6.21) - 7/0 |AoAQlig r dr + RAAQ g | _p;.
Since [A| < 1€1l.2, AoAQ € LY (R?) and AQ(R) = O(R™1), we have
M./l RA . >
(6.22) raliA |A0AQ]Lgrdr‘ Slglzliglize < gl
as well as
(6.23) [V RAQsg7|,_gy| S 1212 RAT R glloe RA S Rllg Iy
The previous two estimates imply
A RA
(624) 5 [ 10eAQLerdr+ RXAQse |,y | £ Rlgl

whence

RA RA
’ . d
625 XINQagen =~ [ AQairdr+ 4 [ AQugrdr+ ORIgI.

Integrating in time and using Minkowski’s inequality we conclude

1 t t
(6260 A()logR < (logR)} /0 lg @l dr + AORIg )]+ + R /0 lg (@I dr.

Since lim; ¢ || g (t)||x = 0, the second term on the right side above absorbs into the left side
and the third term absorbs into the first term (for all ¢ sufficiently small depending on R).
Thus, for all  sufficiently small,

(6.27) A(I)S(logR)_%/O g (@)l dz.

By (6.11) we conclude

629 aostoen [[[ e as]' de -+ o &) [ 4

Define
a(t) ;== sup A(r) = o(t).
7€(0,¢]
Then the previous estimate implies there exists a constant C > 0 (uniform in R) such that

t 1
(6.29) a(t)? < Clog R)~21"F + C(log R)—%f a(@)>

0

dr.

Let R be large enough so

1
(6.30) C(logR)"2 < Zmin(v + 1.1).
Then (6.29) implies

d —C(lo R)_% ! 05(1')% 1 vl oo R)_%—l
(631) E t g dr < C(lOg R) 5iv% o .
0 T
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We note (6.30) and the fact a(z) = o(¢) imply

_ClogR)"2 ta(f)%
(6.32) lim ¢ ~€Uog R) / dr = 0.

t—>0 0 T
Integrating (6.31) then yields

t 1
(6.33) / O 40 < cog Ry E
0 T

Inserting (6.33) into (6.29) implies that for all ¢ sufficiently small,
(6.34) a(t)? < C(log Ry~ %1%,
which yields (6.19). O

We now give the short proof of Proposition 6.1.

Proof of Proposition 6.1. — Assume g > 0. By (6.11) and Lemma 6.3 we conclude

t
(6.35) clgOlz + A" < [(v =1 + 0(1)]/ A(r)r" 2 dr,
0
as well as
(6.36) lg @7 = o?").
Define
(6.37) f(@):=cllg®lF,t™" + Ay
Then f(¢) > 0, lim;—¢ f(¢) = 0 and by (6.35)
t
(6.38) f@t) < vf”/ f(r)rv~t dr.
0
Let T > 0 be a maximal time for £, i.e.,
(6.39) Vi€ (0,T], f@) < f(T).
Then (6.38) implies
T T
(6.40) f(T) <vT™ / f()rvVde < f(DHT™ / v~ ldr = f(T),
0 0
which is a contradiction. Thus, ¢ < 0. O

6.2. An upper bound for the modulation parameter

By Proposition 6.1 we can assume for the remainder of this work that g < 0. In this section
we prove the following preliminary bound on the modulation parameter A().

PROPOSITION 6.4. — Letv > % and g < 0, and let u satisfy (6.6). Let J = (0, Ty] be as
in (6.3), and let A(t) and g(t) be as in (6.4). Then, there exists a constant A = A(u) > 0 such

that
v+1

(6.41) At) < A , Vtel.

|log¢]

Throughout this section, we assume the hypotheses from Proposition 6.4. We first use
Proposition 4.1 to obtain the following bound for g ().
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LEmMMA 6.5. — There exists C = C(u) > 0 such that

At)?
2 ) Vit e J.

(6.42) le®I3 = (A0 +

Proof. — Let t; be as in the statement of Proposition 4.1. By (6.6), (6.9) it follows that

()2

(6.43) ()] < == + A(0)r? L

Thus, lims,—¢ t(f9) = 0. By Proposition 4.1 and (6.43) there exist constants C,¢ > 0 such
that for all ¢ sufficiently small

p 2
(6.44) cllg I3, = 8plal / M@ dr+ € (M”’”_‘ " Aii)

(6.45) +C /0 MA@ 2+ g@l3) dr

After integrating by parts, the previous expression implies for all ¢ sufficiently small

6460 clg@li+8plglv =) [ A@e2ar

2

(6.47) <8plglA()" M + C (x(z)ﬂ”—‘ + %)

t
(6.48) +C / A@O 2+ g()3) dr

0

e AM0)? | 8plglv—=1) [T v
(6.49) <CcA" '+ C 5T 5 /0 A(r)r 2 de

t
(6.50) + C/O g @3, dr.

We conclude there exists a constant C > 0 such that

! v— v— A(l‘)2 ! v—
(6.51) ||g(t)||%+/0 MOT 2 de = C(A00 T + =5 +/0 g (), dr).

By Gronwall’s inequality and (6.6)

(6.52)  [lg@Il7 + /t AT’ 2dr < CA( ' + Clg?z
0
(653) n C /I(A’(f)fsz +A(T)2‘L’v73) dT
0
(6.54) SC()L(Z‘)I‘FI () + (1)/ )t(‘[)‘[v sz

Absorbing the third term on the right side into the left side above yields

A 2
(6.55) le@I7, < C(A(t)t”_l + %)

which finishes the proof. O
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Before turning to the proof of Proposition 6.4, we recall the two auxiliary functions ¢ (¢)
and b(¢) defined in (3.18) and (3.38):

(6.56) C(t) = 4A(t) log — )L( ) /0 AQwyg(t) rdr,

(6.57) b(t) = —/0 A &) rdr —(g(1), Ao(A(1))g(1)).

For the convenience of the reader we also recall several of the estimates proved in Proposi-
tion 3.5 for these functions:

(6.58) m— ‘ Co m)lt—mllg()llw

(6.59) o] = @+ o1 (1og m))é 1202 + Collg @)1
(6.60) €0 -0 = G (120l + 52 ).

(6.61) Pe) = (plgl — o — 2 52 gz,

Proof of Proposition 6.4. — Combining (6.60) and (6.59) and using the fact ||g (t)||» <1
we conclude

(6.62) £'()] < (log w)) g @l + 22,
Integrating the above yields,

f : ‘M)
(6:63) (05 [ (loeyi5) @ ar+ [ 2

By (6.58)

t
A7)
6.64 A(t)1 log d —d
664 oy < [ (og505) el art [ 2 a b itg ol
Plugging in (6.42) to the previous estimate we obtain

1

A(t)log— </ (r)(logk( )) 7 de

o~k !
+/0 A<f)(1"gur)> T
(6.65) | logm)
t 1
+/ A(T)(log/\(i))r(logk(r)) )
+ a0 T 4 A,

Since log ﬁ) — oo ast — 0 the last term on the right-hand side can be absorbed into
the left-hand side and the third term on the right absorbs into the second term. The previous
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estimate reduces to

A1) log —— / 3 (1) logﬁ)i‘[% dr

1
(6.66) A 1 d
[ (T)( ng( ))-L—(log/l( ))2 T

F AT
Now, define
) a(t) ;== sup A(r)log——
(6.67) re0) el
Since A(t) = o(t), «(¢) > 0 for all ¢ sufficiently small and
(6.68) a(t) >0 as t — 0.
From (6.66) we obtain
t
v 1
(6.69) a(t) S a2t +a@)? / a(1)? - dr.
0 t(log ﬁ) 2
Dividing through by a(t)% gives
t
1
(6.70) w(t)? <C1*F +c/ a(t)f ——— dt
0

T (log AE‘L’) ) :
for some universal constant C > 0. Next, we estimate the last term on the right above. Let
8 > 0 be a small constant such that

C <
6.71 —— =<
6.71) (log 1)

and define additional auxiliary functions

if 1 <34,

0| =

8
c ) c
== [ — S dn o= ——y
(6.72) * r(log i) ¢ (log 735)
t
610) = exp(—y(1) [ ety @) d.
0
Then (6.70) reads
1 4 1 v+1
(6.73) a(t)z —/ a()2y'(z)dt <Ct = .
0
We first claim 6(¢) — 0 as t — 0. To see this, note
(6.74) A tog —— = 120 10 L _ o)1,

A(t) L) )
which implies
1

(6.75) a(t)2y/ (1) <12
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Note also by (6.71) we have

1 (%1 1. 1
(6.76) —y(t) < —/ —dr<-log- = logt_%
8J, 1 8 t

and therefore

1

(6.77) exp(—y() S 178,

Combining these estimates gives

t
(6.78) (1) < t_§/ P dr<i® 50ast—0
0
as claimed. Now, using (6.70) we obtain

! 1 1
0'(t) = —y'(1) eXp(—)/(t))fo a(r)2y'(v) dr + a(1)2 exp(—y )y’ (1)

(6.79) = exp(—y () () ()’ _[0 a(®?y'(7) dr)

v+1

< Cexp(—y(0)y () 2,

so integrating from 0 to ¢, using integration by parts and (6.77) we obtain

t
630 o0 =C [ expy@y @t a
0
v 1 t v—
(6.81) - C(—exp(—y(t))t gt % / exp(—y ()7 d‘L’.)
0
t
(6.82) <C / exp(—y(0)) 2 dr.
0
Since log ﬁ — 0, we observe
d PES v+ 1 v=t1
(6:83) < (exp(y )13 ) = == exp(—y ()12
t
(6.84) — (@) exp(—y (o) max(c 3 ¢ "F)
1 v—
(6.85) > ”: exp(—y (1) T
for all ¢ sufficiently small. Thus, fot exp(—y(r))r% dr < exp(—y(@))t 5o
(6.86) 6(1) < exp(—y ()T,
for all ¢ sufficiently small. From the definition of 6(¢), we conclude for all ¢ sufficiently small,
t
1 v
(6.87) f ()} ———— de SiE
0 r(log /\(Tr)) :
By the definition of «(¢), (6.70) and (6.87), we conclude for all ¢,
t
6.88 A(t) log — <S¢Vt
(6.:88) (log 35 <

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1186 J. JENDREJ, A. LAWRIE AND C. RODRIGUEZ

Dividing the previous by ¢ and taking a logarithm yields

(6.89) |logt| < log —

A(z )’
whence it follows that
(6.90) At) <t loge| 7t
which finishes the proof. O

6.3. Determination of the blow-up rate
In this section we prove the remaining statements in Theorem 1.1 (b). More precisely, we

prove the following.

PROPOSITION 6.6. — Letv > % and g < 0, and let u satisfy (6.6). Let A(t) and g (t) be as
in (6.4). Then

_ plq| !
(6.91) AQR) = ( 2o+ 1) +o(1 )) Tog1]
Proof. — We first prove

plal '+
(692) /X(Z‘) > (m — 0(1)) |10gt| , ast — 0.
Proposition 6.4 and Lemma 6.5 imply there exists C = C(u) such that

lg @)%, v—1
(6.93) W <Ct .
By (6.61), (6.41) and (6.93)
A 2
(6.94) o) = (plal — o)™t = 20— oy IE DL
(6.95) > (4plql — o))", ast — 0.
By (6.59), (6.93) and (6.6)
(696) b s AHEOL e o
A(?)2
ast — 0. Thus, b(z) > ( pla| )t" which implies
4plq| v+1

(6.97) /0 b(zr) dt > (v(u ey —0(1))t .
By (6.60) and (6.58) we conclude

t t ( )
(6.98) 4)L(t)logm > /0 b(zr) dt — CO/ (||g(r)||L2 + —)
(6.99) — Cot |lg (@) [l
By (6.93) and (6.41),

t A( ) v+1

(6.100) | (1l + =2) de + g0l < T
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Inserting (6.97) and (6.100) into (6.99) implies

(6.101) A(1) log —— /\(t) > ( (pf'l) —0(1))z“+1.

Dividing both sides of (6.101) by ¢ and taking logarithms implies

(6.102) ogm < (v +o(1)|logt|.

Inserting (6.102) into (6.101) yields

plg| e
(6.103) A(t) > (m — 0(1)) [Tog 1| )

which finishes the proof of (6.92).

Now we prove the sharp upper bound,

plgl !

v2(v + 1) |logt|’

(6.104) A(t) < (1 + o(1)) ast — 0.

The estimates (6.41) and (6.93) imply
(6.105) lg @7 < r*[logt|™",

where the implied constant is uniform in 7. This estimate will be used frequently in what
follows.

Our first step towards proving (6.104) is to establish the following bounds:

t v+1
(6.106) ‘ / AQringt)rdr| < T
0 T |logt|2

, d [* v
(6.107) 4v|logt|V (1) — — | AQuing@)rdr —b@)| < 1
dr Jo - |logt|#

Indeed, the estimate (6.1006) is quite simple:

t t
(6.108) [ 20serrar < el [ 1a0ulrar
0 0
t/A
(6.109) < 1)l A [ AQIrdr
0
v+1
(6.110) StlgWlla < i
L

We now turn to (6.107). By (6.41) and (6.92), we have

(6.111) log — A( )= =v|logt|(1 + O(|logt| ' log|logt])), ast — 0.
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Since 9,8 = ¢ + AAQ,,

d t t t
(6.112) E/ AQA(t)g(t)rdrzf AQigrdr—i—)V/ |AQi|2rdr
0 i 0 0

(6.113) - %’/0’ [AoAQlugrdr + AQagr|,_,

(6.114) = —b(t) + 4v|logt| + O(A log|logt])

(6.115) —(g. A)g) + %//Ot |AoAQlugrdr + AQagr|,_,.
The two estimates

(6.116) le®lb < ogrl . [ laanolrar <1

imply

. 1 t t
(6.117) |{g, Ao(D)g)| + )_k[o [A0AQLLlIglrdr < llgll3, + ||g||L°°[0 |AoAQ|rdr S 1.
Since g(1,t) = — Qu0y (1) = O(A(1)t™ 1),

‘AQAgr %

< t¥|logt|™t.

<
~J
r=t

Since M| S ||gllz2 <tV 10gt|_%, we conclude

t

(6.118) |4v|logt|A () — %/0 AQawg(t)rdr —b(1)

which finishes the proof of (6.107).
In the second step of proving (6.104), we establish the bound

(6.119) cllgOlF + 1013,

2plg| (' B 1
(6.120) <0 4+o0o()—— | b(r)r" ‘|logt| " dr, ast—0,
v 0

< |V|log|logt| < t¥|logt| 4,

where c is the constant appearing in Proposition 4.1. Indeed, by Proposition 4.1, (6.41) and
(6.107),

t
6.121)  clgly +1gl7> < 8P|61|/ A"t dr + Cr?|logr| 2
0

2 t
(6.122) < M/ b(z)" " logz| ! de
v 0
! d ‘ v—1 —1
(6.123) +8plgl | (| AQawg@rdr)e|loge|™" dr
o dT VMo —
t
(6.124) +C/ 2 loge|F dr + Cr?|logt|2
0
2 t
(6.125) < M/ b(r)e " logz| ! de
% 0
! d ‘ v—1 —1
(6.126) + 8plq| d—( AQm,g(z)rdr)f llog |~ dr
o dT VMo —
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(6.127) 1+ Ct?|logt| 5.
By integration by parts and (6.106),
t d T
(6.128) /oa</o AQMg(t)rdr)fV—luogﬂ—l dr
t
(6.129) =t"_1|10gt|_1/ AQiing(t)rdr
, e
t T d
(6.130) —/ [ AQymg(t)— (" logz| ™) rdr dr
0 0 e d‘L’
t
(6.131) §t2"|logt|’%+/ 2 log 7|73 dr
0

3
< t%|logt|"2.

~

(6.132)

We recall b(z) satisfies the lower bound b(¢) 2 ¥ so
2 t
(6.133) ¥ log~F < 01 logt| " < (1) 220 / b(x)e" ! dr.
v 0

We conclude

2 <12 2plq| (! v—1 -1 2v -2
(6.134) C||g”H+“g||L2§T b(r)r" '|logz|™ dr + Ct*¥|logz|™3
0
2 t
(6.135) 5(1+0(1))M/ b(r)r"log|™! dr,
% 0
as desired.

From the first two steps, the proof of the sharp upper bound (6.104) follows easily. By
(6.59) and (6.120),

(6.136) b(t) < (14 0(1))(4v) 2| log | ?||g]| .2
1 1 t %
(6.137) <@ +0(1))(8p|q|)5|10gt|7(/0 b(x)r " logz|! dr) .
Let
t
(6.138) f(t):/ b(t)r" Y logr|™! dr.
0

Then f is positive for all ¢ sufficiently small and lim;—o f(¢) = 0. The previous estimate
implies

(6.139) F1(6) < (1 +0(1)(8plg) 2" logt[~2 £(1)2.
Thus,

d 1 1 1
(6.140) SO < L+ 0()@plgh e logr] 2,

and we conclude ()2 < (1 + o(1)(2p|g])2v='¢"|logt|"2, ie.,

t 1
(6.141) (/ b(x)z " logt|"! df)z < (1+o0(1)2plg)v="¢"logt|~3.
0
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Plugging (6.141) into (6.137) we obtain

(6.142) b(t) < (1 + o(1)) 241 p|q|
Then
(6.143)
(1 +o0(1)4v|log?|A(t) = 4A(r) log — A( )
(6.144) <t@t)+ Ctllg®)|x
! A7)
(6.145) < | b dr+C (||g<r>||Lz + 552 de + Crlig ()l
0
4
(6.146) < Jr()(l))ﬂr”l + C/ ’|logz|~2 dr
V(V + 1) 0
(6.147) +Cr" P logt| 2
(6.148) < (1 +0(1)) (pl‘”l) P4 vt logt| 3
4plal v
6.149 1 .
(6.149) =(+o()——— oD
We conclude
(6.150) A1) < (1+ o(1))ﬂz”+l|10gt|—l,
- vZ2(v +1)
which finishes the proof of Proposition 6.6 and thus also of Theorem 1.1. O

6.4. Faster decay of g(¢)

We conclude this work with a simple corollary of Theorem 1.1, which shows that the L?
norm of g(¢) carries the leading order in ||g (¢) || x.

COROLLARY 6.7. — Assume the same hypotheses as Theorem 1.1, and let

(6.151) g) = (). &(1) :=ut) = (Qjq) +u* (1)),

where A(t) € C'(J) is the m_odulation parameter defined on a time interval J = (0, Tp) (s0
(6.4) and (6.6) hold). Define b € C(J) andw € C(J; L*>(R?)) via

_ t
(6.152) b(t) = —||AQ||Z§(r§t/w))/o AQ 0§ (t) r dr,

(6.153) w(t) := g(t) + b)) xir=nAQa)-

where x[r<;] is the sharp cutoff

1 ifr<t,

6.154 <t =
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Then, ast — 0,

-~ plql r”
(6.155) bt) = <v_2+0(1))llogt|’
t2v
(6.156) g + lw@®)7. = 0(|1og;|>’
. . 4p2q2 t2v
(6.157) 1§72 = (_,,3 + 0(1)> |logt|

Proof. — By the definition of b and w, (W, AQ;) = 0. Thus,

(6.158) 117> + BV IAQNT 2 <y = €172

By the definition of the auxiliary function b(¢), Lemma 6.5 and Theorem 1.1,

t
(6.159) b(t) = —/O AQ&grdr + (g, Ao(L)g)
(6.160) = IAQI2_, b + O(lg I3,
(6.161) = (4v —o(1))|logt|b + O(t?"|logt|™h).

By (6.59) and (6.61),

(6.162) b(t) = (4’)7”' + 0(1))z"
and thus,
(6.163) b(t) = (% n 0(1))t”| logz|™!,

which establishes (6.155). In particular, we conclude

_ 4p2q2 ; B
(6.164) BYIAQ 22y 5 = (o5 + 0(1) 1 loge]| .
Inserting (6.158) into (6.120) and using (6.162) and (6.164) yield
2 .12 2plq| ! v—1 -1
(6.165) clgly + llwl;. = +0(1))T A b(t)r" '|logz|™ dr
4 2,2
(6.166) — (14 0(1) L2 log ]!
%
8 2.2 t
(6.167) ~ (1 +o(1))p—2‘1/ 2 log 7! de
% 0
4 2.2
(6.168) — (14 0(1) L1 log ]!
v
(6.169) — 0(12”|10gt|_1>,

which establishes (6.156). Finally, we obtain (6.157) from inserting (6.164) and the previous
bound into (6.158). O
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Appendix A
Formal derivation of the blow-up rate
In this section we demonstrate how to formally derive the blow-up rate for a given radia-

tion field uj. The idea is to separate variables and search for a solution with an expansion in
a small parameter b(z),

(A.1) u(t) = u* (1) + Q) + DU + L2 OUT) +-+-

where for a pair U = (U, U) the rescaling U ; is defined by U, = (Uy, Uy), i.e., the invariant
scaling in H! x L2. And above as usual u*(¢) denotes the wave map evolution of ug. We now
use the Equation (1.3) to make informed guesses for the dynamical parameters (A(¢), b(t))
and the profiles U ).

First, differentiating the first few terms in the expansion for u(¢) we see that
(A2) deu(t) = du™(t) — A ()AQuy + -+,

which leads to the guess b(r) = —A/(1) and UV = (0, AQ).
Next, we write 9?u two ways. On the one hand, differentiating in time the terms in the
second slot of the expansion, and using b(¢) = —A/(¢) yields,

2
(A.3) u(t) = 0%u*(t) + b'(1)AQ ) + %AOAQ“Q + -

On the other hand, if u(¢) is to solve (1.3) then, using that #*(¢) also solves (1.3) we have
1
Bfu = Au — r_zf(u)
1
= AW* + 03 + DU ) — S+ Qs +02UP )

1
A4 =0 OAUT - S (S 0+ 0PUP) ) - S(Q0) + -
= 92u* — h2L, U
1
— (/0 + 02 +02UD) — Fw) = £(02) — F(QPPUP) + -
= 2u* — b2 LU + 22Ut (AQ)P + -+

where in the last line we have used the approximation,

(AS) f(Qu+u* +b°U) = f(Q) = fW*) = f1(Qub*U? = =2u"(AQ2)* + -+,
which is formally valid in the small-r regime and if we continue ignoring terms that are
smaller than h2.

Setting the right-hand sides of the previous two expressions equal to each other, and
ignoring lower order terms we arrive at the equation

b(t)?
A

which we will use to choose b(¢) and U@ for given u*(t, r).

(A.6) b2 LAU = =b' (1) AQ ) — AoAQ ) + 2, 2u* (1. ) (AQ )
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A.1. The case u*(r) = (y(r)gqr",0)

In this section we find the formal rate for radiation #* as in Theorem 1.1. In this case we
know from Corollary 2.3 that the wave map evolution #*(¢) can be approximated inside the
light cone r < ¢ by the value that the 4d linear evolution uj (¢,r)/r takes at the origin at
time ¢, i.e.,

(A.7) u*(t,r) = pqre’™ 4+ ...,

where p = p(g,v) > 0 is an explicit constant. Replacing u*(¢,r) by the above we
reduce (A.6) to

A8 2 @ _ b(t)? v—1,.—1 2

(A.8) bo()LLU™ = =D (1)AQaq) — WAOAQA(I) +2pqt" T r (AQ )"

Noting that £, U/{z) = $(LU®P); and that r 1 (AQ;))? = [r~'(AQ)?]x we rescale above
and arrive at

(A.9) LUD = _AgAQ — ;—z(b’AQ - 2pqt"_1r—1(AQ)2).

A (formal) invocation of the Fredholm alternative, tells us that solving for U™ above on say
the interval r < t/A, requires that the right-hand side be perpendicular to the kernel of £ on
this interval. This leads to the condition

(A.10)

t/A t/A b2 t/A
(f |AQ|? r dr) b =2pgt¥! (/ (AQ)3)dr) + — (/ (AOAQ)AQrdr) ,
0 0 A 0

from which we deduce that to leading order,

(A.11) 4log(t/M)b'(t) = 4pq["*1 4.
We arrive at the formal system,

M) = —b(r)
(A.12) ) -1

PO = gy

In the case g < 0 we deduce the rate,

rq v+1

(A.13) Ar) = T2+ 1) |logt]

(1+4+o0(1)), ast—0,

which appears in Theorem 1.1.

A.2. Other rates

Using the same formal argument as above we can find the formal rates associated to
different behaviors of the radiation as r — 0, for which the rigorous methods developed in
this paper apply. In particular, we can recover the pure polynomial blow-up rates A(z) ~ t"*!
discovered by Krieger, Schlag, and Tataru [18]. Indeed, consider radiation #*(r) such that

(A.14) ug(ry = —r"|logr| x(r), ug(r) =0.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1194 J. JENDREJ, A. LAWRIE AND C. RODRIGUEZ

Aslongisv > % the same argument given in Section 2.3 shows that the wave map evolution
u*(¢) of this data is well approximated by

(A.15) u*(t,r) = —pre’™" |logt| + -

for some explicit constant p” > 0. Arguing exactly as in Section A.l we obtain the formal
system

M) = —b()
A.16 1
(A.16) by = 51! [log ¢|
log(A/t)
from which one deduces the rate
(A.17) A(t) ~ ¢Vt

Other rates can also be considered. For example, one immediate extension is to consider
radiation of the form

(A.18) ug(r) = —r" logr|" x(r), ug(r) =0,
from which we find the formal rate

(A.19) () ~ " |logr [t

Appendix B
Radiation of the form u} = (0, x(r)gr”™")

In this appendix we briefly discuss the case where the radiation takes the form (1.13), and
in particular the derivation of the constant (1.17). In fact, the only different aspect of the
proof lies in the analysis of the linear flow in Lemma 2.1.

Consider radiation of the form,

(B.1) ug(r) = (ug(r), ug(r)) = x(r)0,qr"™").
Let u; = uj (¢, r) be the solution to the linear equation
1 1
afuL — EﬁuL - ;8ruL + r_zuL =0, (t,r) €Rx(0,00),

uj (0) = ug.

(B.2)

Since the initial data takes the form u = (0, g) we take special note here in the distinction
between the forward and backwards evolution (oddness in time), as a crucial difference in
sign emerges; see Theorem 1.1 and Remark 1.4.

LEmma B.1. — Letv > %. There exists C = C(v,q) > 0 such that for all r < |t|,

(B.3) lui(t,r) —qpt|t]">r| < Cr3e|' 72,
(B.4) |8} (e, 7)) < Crlt]" 2,
(B.5) 0,uf(t,r)| < Ct|"",
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where

v+ 1)\/51“(2;”)
34 '
4r(7”)
Proof. — For (t,x) € R!*4 define v(r,x) = uj(t,|x|)/|x|. Then Ogi+4v = 0 and

v(0) = }ug. For |x| < |t], we can express v(z, x) using Kirchoff’s formula and a change
of variables by

11 _ X
vmm=—4tﬁwﬂf aly+ e,
81 lyl<1 t

:(}m)03m“ﬂmuvw)

where e; = (1,0,0,0) and

v+1 [t _
pv) =—— /0,0““(1—,02) 2 dp =

v—2

a—wﬁ*”w)
(B.6)

1 y— _
B) 4@ =f bzl a-bP e s
yi=

By the dominated convergence theorem, ¢(z) € C3([—1,—1]) for v > %. A straightforward
computation shows that

(B.8) v(t,x) =1 ("2 y(Ixl/1),

where ¥ (z) = (v + 1)¢(z) — z¢'(z). The function ¢(z) is an even function which implies
¥ € C2([—1,1]) is even as well. Thus, there exists a constant C > 0 such that

Y (2) =y O] <Clz”, |z] <1,
which implies
o(t.x) =) e | < C |7 |x .
Since ¥ (0) = gp(v) and uy (¢,r) = rv(t, r) we conclude
ur(t,r) —qp)t|t|"2r| < C 1713,
which proves (B.3).

To derive the estimates (B.4) and (B.5) we observe from (B.8) that v(z, r) satisfies for all
r <|tl,

(B.9) (@, 1) < Cle|"™", |V, )] < C ]2,

which imply the desired bounds for uy (t,7) = rv(z,r). O
With Lemma B.1 in hand, the analogs of Lemma 2.2 and Corollary 2.3 follow as in

Section 2.3. And thus the rest of the proof of Theorem 1.1 for radiation as in (1.13) follows in

an identical fashion as the detailed arguments carried out in the rest of the paper for radiation
asin (1.12).
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