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Data Imputation for Multivariate Time Series
Sensor Data with Large Gaps of Missing Data

Rui Wu, Scott D. Hamshaw, Lei Yang, Dustin W. Kincaid, Randall Etheridge, Amir Ghasemkhani

Abstracit— Imputation of missing sensor-collected data is often an important step prior to machine learning and statistical
data analysis. One particular data imputation challenge is filling large data gaps when the only related data comes from
the same sensor station. In this paper, we propose a framework to improve the popular multivariate imputation by chained
equations (MICE) method for dealing with missing data. One key strategy we use to improve model accuracy is to reshape
the original sensor data to leverage the correlation between the missing data and the observed data. We demonstrate
our framework using data from continuous water quality monitoring stations in Vermont. Because of possible irregularly
spaced peaks throughout the time series, the reshaped data is split into extreme and normal values and two MICE models
are built. We also recommend that sensor-collected data should be transformed to meet the machine learning model
assumptions. According to our experimental results, these strategies can improve MICE data imputation model accuracy
at least 23% for large data gaps based on R? values and are promising to be applied for other data imputation algorithms.

Index Terms— Data Imputation, Large Missing Data Gap, MICE, Multivariate, Time Series

[. INTRODUCTION

Missing data is a common issue with sensor-collected
datasets across domains including environmental monitoring,
structural health monitoring, bioinformatics, and other Internet
of Thing (IoT) applications. Data gaps can occur for various
reasons, such as damaged sensors, loss of power, and problems
with data storage or transmission. Data imputation is the pro-
cess of replacing missing data with substituted values [1] and
it is an important data pre-processing step for subsequent data-
driven or physics-based modeling. In this paper, we analyze
approaches to improve the accuracy of a data imputation model
for multivariate time series sensor data with large data gaps
and propose a data imputation framework.

Previous research has focused on ‘“how to predict the
missing values within sensor collected data [2]-[5].” One
reasonable approach to gap-filling sensor data is to use data
collected from a nearby sensor station and leverage the spatial
autocorrelation found in many systems, especially environ-
mental phenomena (e.g., weather, hydrology). For example, if
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multiple sensors are located within a study area it is possible to
leverage data from a neighboring sensor(s) as reference(s) for
data imputation [6], [7]. However, there are many scenarios
where another dataset from nearby sensors is not available
(e.g., when the budget limits the deployment of duplicate
sensors or nearby sensors are damaged). In this scenario, the
research question becomes “How to predict the missing
values using sensor data collected from the same sensor
station”, which is inherently more challenging. One approach
that has been explored to address this challenge is the use of
physics-based model output to impute missing sensor data.
For example, hydrological models have been used to gap
fill missing data from streamflow monitoring stations [8].
However, this approach does not scale well as physics-based
models can be resource intensive to calibrate and do not yet
effectively model many phenomena at resolutions that match
sensor data.

Data gaps in sensor-collected datasets can sometimes be
very large (i.e., spanning multiple days). For example, the
water quality sensor data introduced in Section V Experi-
ment Results and Analysis has many large data gaps due to
power losses, which prevented the nearly continuous sampling
(every 15 min) sensors from collecting data until power was
reestablished at the site. The consequent large data gap can
make data imputation challenging. In fact, the accuracy of
data imputation methods can drop very fast as the data gap
increases [9], [10]. The data imputation problem becomes
even more challenging if it is a multivariate data imputation
problem (i.e., multiple variables have missing data) compared
to a univariate data imputation problem (i.e., only one variable
has missing data). To the best of our knowledge there has been
little research conducted on the question “How to predict a
continuous large data gap for a multivariate time series
dataset using data from the same sensor station?”. In this
paper, we propose a data imputation framework to address
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this research question by leveraging the inherent correlation
between the missing data and the observed data.

Specifically, data interdependencies need to be built between
missing data and the limited information collected from one
sensor station. One possible method for building the interde-
pendencies is regression machine learning models [11], [12].
Regression machine learning models can predict missing data
by mathematically learning the relationship between target
variables with missing values and other variables. The rela-
tionship can be expressed with different structures, such as
trees, equations, and neural networks. These structures should
be dynamically created based on historical data. However,
regression models are trained to predict missing data of one
variable based on other variables. As such, if multiple variables
have missing data, the regression model cannot be directly
applied to solve the multivariate data imputation problem. To
address this issue, we propose using iterative data imputation,
such as the multiple imputation by chained equations (MICE)
method [13], to predict missing values. The MICE algorithm
leverages a chain of regression models and allows the use
of previously imputed values to predict subsequent variables.
This means MICE can be applied to solve multivariate data
imputation problems [14]. However, MICE is designed for
general data imputation and may not consider the temporal
connections between each data record. To help MICE discover
the intrinsic correlation in the dataset, we propose the use of
a reshape operation, which builds upon the sliding window
and lagged correlation approaches [15] to improve MICE
performance. The reshape operation can potentially enhance
temporally repeating patterns within time series data and
improve the correlation between missing and observed values.

In this work, we mainly employ two strategies to improve
the performance of the MICE method:

o Reshape: this is a data organization modification op-
eration which is helpful to strengthen data interdepen-
dencies by leveraging temporal information [16]. Data
records with different timestamps can be combined as
a new data record. This operation can potentially build
connections between data collected before or after the
gap with missing data because they might have a similar
temporal pattern. For example, daily water temperatures
oscillate similarly each day. Sensor collected data can
be combined based on the time cycle to enhance in-
terdependencies between missing temperature values and
observed temperature values. The idea is commonly used
in autoregressive machine learning models for time series
data prediction [17], [18]. In this paper, we explore how
to reshape a multivariate dataset with large data gaps
to enhance the interdependencies between missing and
observed data.

« Extreme value separation: extreme values in a time series
are extremely small or large values that infrequently
occur [19]. Conversely, normal values are commonly
observed according to the data distribution. For example,
values between 10 and 90 percentiles, i.e., normal values,
have much higher probabilities compared to the values
below 10 percentile or above 90 percentile, i.e., extreme
values. These extreme values can negatively impact data

prediction [20]. One possible method to mitigate the
impacts of extreme values is to separate the original data
into normal and extreme values and separately imple-
ment data imputation models on each dataset. However,
splitting time-series sensor data without losing temporal
information from the data is challenging. We introduce a
method for extreme value separation in Section III B.

Our proposed framework, i.e., Large Gaps Data Imputation
(LGDI), for multivariate sensor data contributes an advance-
ment in available methods for gap filling missing data in
datasets where gaps can be large (i.e., 20% missing values).
Our framework shows how to integrate reshape and extreme
value separation operations with MICE algorithm to enhance
the data interdependencies and split data into normal and
extreme categories. We also illustrate possible impacts of
different reshape methods (i.e., combining records with small
vs. large time intervals) and demonstrate which operations
should be applied first, reshape or extreme value separations.
Additionally, we test the impacts of data gap sizes on the
accuracy of LGDI against selected popular data imputation
algorithms (i.e., GAIN [21], MRNN [22], and MICE [13]).
The LGDI source code is available at [23].

The proposed method is applicable to time series datasets
including extreme and normal values with repeating temporal
patterns and large data gaps. In this work, we demonstrate
the application of LGDI using data from stream water quality
monitoring stations equipped with continuously observing sen-
sors measuring meteorological and hydrological parameters.
The remaining sections of this paper review related work
on machine learning for data imputation (Section II), present
connections between the reshape operation, sliding window,
and lagged data records (Section III), present our proposed
LGDI framework (Section IV), present the experiment results
(Section V), and discuss our conclusions and recommendations
for future work (Section VI).

[I. RELATED WORK

Machine learning models are commonly used for time-series
data imputation. Data imputation can be treated as either a
supervised learning or an unsupervised learning task. For the
supervised learning problem, variates with missing values will
be treated as labels (i.e., what we want to predict). Neural
networks can be constructed based on a back propagation
algorithm to estimate the values of records with missing
values [24]. If only one variate has missing values, the data
imputation is a basic application of a regression machine learn-
ing model that relies on other variates for prediction. However,
if multiple variates have missing values, a regression machine
learning model cannot be directly applied. Advanced neural
networks, such as generative adversarial networks (GANs)
and recurrent neural networks [22], [25], [26] offer a more
capable solution to missing value imputation, including the
multivariate case. For example, Yoon et al. [21] proposed the
Generative Adversarial Imputation Nets (GAIN) framework to
address this issue. Missing values are estimated using a GAN
method [27], where one neural network (the generator) uses
a noise variable to generate predictions and another neural
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network (the discriminator) determines whether the predictions
are from the true data distribution or not. After both neural
networks are trained, the generator can generate accurate
estimations for missing values. Multi-Directional Recurrent
Neural Networks (MRNN) is based on the deep learning
architecture including an interpolation block and an imputation
block to estimate missing values [22]. This method leverages
the temporal information within the data and both correlation
within one variable and across other variables. These two
methods are very promising and were compared to LGDI in
this work.

Unsupervised learning data imputation methods, such as k-
means and neural network clustering algorithms, have also
been applied to missing value imputation. Different from
supervised learning, unsupervised learning does not have a
training phase and does not use label information (i.e., ob-
served values in the target variate with missing data). Missing
values in a time series can be estimated using neighboring data
records. For example, spatiotemporal self-organizing maps
(SOMs) can leverage temporal correlations within data to find
neighbor records [28]. This method can be improved when
missing values are replaced by weighted nearest neighbors’
mean [29]. To leverage both spatial and temporal information,
Gowgi and his colleagues propose the use of spatiotemporal
memories to learn temporal dynamics and to calculate the
closeness according to a spatiotemporal metric [30]. Thus,
we use temporal information and correlation to combine data
records with their neighbors. Spatial information is not used
because we assume data is only available from one sensor site
(see Introduction).

Few data imputation studies specifically address larger data
gaps [31], [32]. However, a few studies discuss how to adjust
their algorithms for large missing gaps. Two possible relations
that can be leveraged to tackle the large missing gap challenge
are i) correlations between variables with missing values and
other variables and ii) temporal dependencies between data
records with missing values and data records without missing
values. If sensor collected data is organized as a matrix, each
column can be values of a variable and each row can be a
data record at a timestamp. “correlations” are the connections
between each pair of column and “temporal dependencies”
are the relations within the rows. Missing values usually are
not independent. They can have close correlations with other
variables collected at the same or different times. One example
of an approach that leverages correlations is the ratio-based
imputation algorithm to handle large gaps [31]. In this method,
correlations are calculated and ranked for each pair of vari-
ables. The missing values are then estimated based on a linear
model and the inputs of the linear model are selected based
on the correlation rank. When there are strong correlations
between missing values and observed values, the proposed
ratio-based imputation method is very accurate. However, the
original MICE algorithm performs better than the ratio-based
method when the data gap is large and variables are weakly
correlated correlated [31]. For example, if Spearman correla-
tion value is calculated and close to 0, it means two variables
are not strongly correlated. With temporal dependencies, time
intervals between two collected data records can be used as

observation patterns and dependencies [25]. This information
can help machine learning models learn connections between
missing and observed values. The time intervals may not be
fixed and can dynamically change. Machine learning methods,
such as KNN, can be used to find these patterns and estimate
missing values [33].

Our proposed data imputation framework, LGDI, is based
on iterative imputation. MICE is one of the most prevalent
iterative imputation methods [13]. This method initially fills
missing values with temporary values using simple methods,
such as the mean value of non-missing data. Subsequently, the
method imputes missing values for one variable (i.e., column
of data from the filled matrix) at a time by training a regression
model with the remaining variables as predictive features.
This step is repeated for each variable. Regression training
is iterated multiple times until the predicted values converge.
MICE is a powerful iteration method, because it can predict
multiple missing values at the same timestamp according to the
variable connections obtained from historical data. However,
large data gaps can substantially reduce MICE accuracy [9],
[31]. This is because the original MICE does not consider
temporal dependencies. We propose to use reshape operation
to solve this issue.

Reshaping the data is a potential method to enhance missing
data prediction. For example, one proposed reshape method
creates a matrix based on sensor data. Each row represents
a record at a certain timestamp and each column includes
data observations of a variable. A new record can be created
by combining multiple rows. However, the reshaped matrix
should avoid entire rows or columns with all missing val-
ues [16]. Thus, this method cannot be directly applied to our
problem because our datasets have large data gaps where entire
columns (all observations for some variables in the matrix) are
missing after the reshape operation. In this paper, we describe
a reshape solution that uses reshape and matrix split method
to overcome this issue.

By using the reshape and extreme and normal value split
operations, our proposed LGDI can perform more accurately
on large missing gaps compared to existing approaches. Re-
shape can combine records with similar patterns to increase
the correlation between missing and observed values. To treat
data with different distributions uniquely, LGDI splits time
series data into extreme and normal groups and uses different
machine learning models for these two groups.

[1l. CONNECTION BETWEEN RESHAPE AND SLIDING
WINDOW

Sliding window can be used to convert a time-series su-
pervised learning problem into a classic supervised learning
problem [15]. The main idea is to use data records at previous
timestamps to forecast future values, which is commonly used
in autoregressive models [34]. The current sensor data can
be expected to be correlated with observed data records. An
autoregressive model of order p is defined as:

P
Xy = C+Z<PiXt—i+€t (D

i=1
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where X, is the time series value at timestamp ¢; c is a
constant; ¢ is the parameter of an autoregressive model; and
€; is the noise term. The prediction of X; is based previous
p observations. Multivariate time series sensor data with n
different variables can have similar relationship as shown in
the following equation:

m P
Xt =c+ Z Z 0i;Xjt—i + € ()
j=11i=1

where m denotes the number of variables leveraged for X,
prediction at timestamp ¢. To generalize this idea for more
complex cases, operations besides sum can be applied and
Eq. (2) can be written as:

Xm,t =c+ f(Xl,tflel,tf% "7X1,t7p7

X2,t—i7 ceey Xm,t—p) =+ €¢ (3)
where function f(-) can be a regression machine learning
model and takes the lags of multiple variables as features.
The reshape operation creates new records and can predict
missing values using the lag idea introduced in Eq. (2). The
value p should be selected based on the length of repeated
data patterns, which can be calculated by the autocorrelation
formula [35]. For example, the Potash research site data
is used in the experiment results and analysis section. Its
autocorrelation values are calculated and visualized in Fig. 1b.
For example, the second highest peak p value at the Potash
study site occurs around 13 days (Fig. 1a), and thus p is 13
day.

The sliding window can leverage temporal information
within target variable y and connections between target vari-
able y and related features to forecast future y values. In this
paper, we apply a similar idea to reshape the data organization
by combining records with missing values with their neighbor-
ing records to estimate missing values from observed values.
Reshape can improve the results because it can add features
that have strong connections with missing values from other
timestamps.

1) Reshape Method 1: Cut Along Rows: Here we discuss
two options for reshaping the data to apply the sliding window
concept discussed previously. The first method reshapes the
data by merging data records with different timestamps. For
example, a sensor dataset can be organized as the following
matrix (first column is timestamp and rest of the columns are
m — 1 variables), in which each row can represent a record at
timestamp n.

t1 a1l aip a1,m—1

to a1 asp2 a2,m—1
Dn,m =

tn an,1  Qp2 An,m—1

Every two rows are combined into a new row, i.e., data at
timestamp ¢ — 1 is combined with data at timestamp ¢ and the
reshaped matrix turns into:

[Z a1,m-1  t2 a2,m—1
[Z T a3m-1  ta A4,m—1

Dn/2,2m =
tnfl An—1,m—1 tn An,m—1

If n is not an even number, the last row will be created
by duplicating the record at timestamp n. If variable,, (i.e.,
variable at column m) has missing values at timestamp ¢,
then a regression model is built as Eq. (4) shows.

Xm,t =c+ f(Xl,t717 XQ,t717 teey Xm,tflv

“4)
Xity s Xono1t) + €

To generalize this reshape operation, we can choose to
combine n* data records, where n* is a factor of n. If the
original sensor data is organized as a n by m matrix (n denotes
timestamp and m denotes the number of variables), then the
data becomes a ;% by m *n* matrix. MICE can predict each
missing value by training a regression model with m xn* — 1
features.

Missing data in a time series are often strongly correlated
with neighboring data. Reshaping the dataset prior to MICE
imputation, which does not consider temporal connection
between data records, can improve imputation accuracy by
enhancing temporally repeating patterns within time series
data and improving the correlation between missing and
observed values. However, combining more data records (i.e.,
large n*) will not necessarily improve the imputation results.
This is because combining multiple data records can also
increase the chance of including more missing data in each
combined data record (i.e., row). This can make it challenging
to predict missing values with iterative imputation methods.
Additionally, combining multiple data records can cause a
curse of dimensionality issue [36]. Because MICE needs
to predict the missing data variable with other variables as
features, the more data records combined means that more
features will be in each combined data record. Thus, it is
necessary to conduct experiments to determine a reasonable
n* to balance the benefits of connections with neighbors and
the disadvantages of combining too many records for a specific
sensor dataset with missing values. A reasonable n* value
should avoid rows and columns with too many missing values
[16].

If the missing data gap is large, i.e., a variable has con-
tinuous missing data points, the Reshape Method 1 may not
improve the imputation accuracy. This is because reshaping
data with large data gaps can produce a combined row with
many missing values of the same variable. In this scenario,
the MICE regression models, which makes predictions based
on predictions of the same variable multiple times, will likely
perform poorly and produce inaccurate results. For example, if
a1 and ag; of the original matrix D, ,,, are NAN and every
two rows are combined, then the first row of the reshaped
matrix D,, /3, will have no information on variable;. It is
difficult for a regression model in the MICE algorithm to
predict vartable; at timestamp ¢; and to. This issue will



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 5

3.51
3.01

2.5

Similar Peak Patten
around 13 days in between
2.0 1
1.5 1
1.0 1

0.5

Streamflow (Cubic Meter Per Second)

0.0 1

[SASIING X
o o0 o o
A T T Y

Time

A A
O oo
2 T oY

(a)

(b)

1.0

0.8

0.4

Second Highest Peak
atlag 1241

Autocorrelation Value

0.2

0.0

—3000 —2000 —1000 0 1000

Lags (1 unit=15 minutes)

2000 3000

Fig. 1: (a) Example stream flow time series from Potash Brook. (b) Autocorrelation values of streamflow for the time period
shown in (a). The highest autocorrelation occurs at lag O and the second highest at lag 1241 (13 days). A similar peak pattern

is shown in (a).

become more challenging when multiple rows are combined
with a variable that has many continuous missing values.

2) Reshape Method 2: Cut Along Columns: To address this
large data gap challenge, we propose an alternative reshape
method that builds on the approach discussed previously [16].
If the original matrix is n by m each column can be split
into n'* chunks with the same length and each chunk will be
treated as a new column and combined horizontally. Then the
reshaped matrix will be -7 by m * n"* (Figure 2).

Compared to the Reshape Method 1, the lags used in each
row are not close. However, this can be beneficial if a variable
has a large gap. In matrix D, ,,, if there is a large data
gap from timestamp 1 to timestamp n/2 for variable; (i.e.,
from a1 to a,/21) and the Reshape Method 1 is applied
to combine every two rows (n* is 2), then there will be no
information for variable; (i.e., ai1 to ay 1) available for the
first n/2 rows. In this case, the MICE data imputation might
perform poorly. If Reshape Method 2 is applied and n'* = 2
is used, then the matrix will be:

1 tpje41 a1 Gn/241,m—1
I - ta tpjo42 a2 O /24+2,m—1
n/2,2m — . . .
tn/2 128 Qpy2.1 Apm—1

Even if there is a missing gap from aj1 t0 a, 2, there
is a variable; observed value (i.e., from a, /2411 t0 @y 1) in
each row to predict missing variable; values. Even though the
variable; lag of matrix D/, /mmis much larger compared to
reshaped matrix from Reshape Method 1 D,/ 2, (i€., 2 Vs
n/2), our experimental results show that the MICE algorithm
can perform more accurately with the matrix D/, /2.2m° How-
ever, Reshape Method 1 may be more appropriate for MICE
if large data gaps are not a feature of the dataset, because of

the shorter lags (see Section V for more details).

V. LGDI IMPUTATION FRAMEWORK

To address the problem of imputing multivariate data with
large data gaps, we propose a data imputation framework

that leverages data transformation and Reshape Method 3 to
improve MICE model accuracy (Figure 3). Reshape Method 1
and 2 are discussed in the previous section. To achieve more
accurate data imputation results, we propose Reshape Method
3 which combines the extreme value separation with Reshape
method 2. More details are introduced in Section IV-B.

A. Split Data Into Extreme and Normal Values

This step labels extreme values in the time-series data file
and splits data into two groups: normal and extreme values.
Because the data includes missing data, it is challenging to use
machine learning-based classification algorithms to classify
whether a data record is an extreme or a normal value.
Statistical methods, such as extreme value theorem, can be
customized based on the data characteristics, and used to label
the extreme values. One proposed approach uses a time-series
extreme value separation algorithm [37] based on Extreme
Value Theory [38], [39]. The key idea is to dynamically update
a threshold to split data according to the data distribution
within a period of time.

Reshaping the data must be done prior to splitting the
data into extreme and normal values, otherwise the important
temporal information will be mixed up. For example, if the
original matrix is 10 x 3. t1,t3, tg, t1¢ are extreme values and
to,t4,ts,17,ts, tg are normal values as shown in the following
two matrices:

tv a1 aip
Dewtreme = ts 3,1 93,2
e as1 G2
ti0 @10,1 @102
to as1 ag:2
ty agq1 ag2
Dnormal = t5 5,1 452
t7 ar1 araz
tg ag1 agz2
to ag1 ag2
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Fig. 2: In the Reshape Method 2, the original matrix is split into columns. Each column is subsequently cut into equal n'*

n

chunks including -7 records. The column chunks are then combined horizontally. The subsequent MICE data imputation is
applied to the reshaped matrix. ¢ denotes the timestamp column and V'1...V(m — 1) denote variable; to variable,, 1

If Reshape Method 1 is used to combine every two rows,
the two matrices become:

D - ti ai1 a1z t3  azi  asp2
extreme—reshape —
P t¢ as1 as2 tio ai0,1 G102
to as1 a2 ta as1 Q42
Dnormalfreshape = |t as1 04572 tr ar1 ar2
tg ag;1 ag2 to ag1 ag2

The time intervals between each combined row are not
consistent because data is split first and then reshaped (same
for other reshape methods introduced in this paper). In
Deztreme—reshape, the time interval of the first row is t3 —¢;
which is different from the second row time interval tg — t1g.
The same problem exists in Dy, ormai—reshape- 1t is challenging
for regression models used in MICE to find the data patterns
if the time interval is not consistent. To avoid this issue,
reshaping the data must be done prior to splitting the data
into extreme and normal values Figure 3.

Before we continue, we need to introduce a rule to deter-
mine if a combined record is treated as extreme. One potential
rule is the “OR” rule in which a combined row is treated as
an extreme if the row includes an extreme value. For example,
t1 and to are combined. Because ¢; is an extreme value, the
combined row is considered extreme. If Reshape Method 1 is
used to combine every two rows (i.e., n* = 2) and the “OR”
rule is applied, then the extreme and normal reshaped matrices
will be:

ty ai1 a12 ta a1 a2
' _|ts as1 as2 a4 a1 aap
extreme—reshape ts as1 as2 te a1 a2
to ag1 ag2 tio ai0,1 @102

l _
normal—reshape — (t7 ar1 arz ls asy a8,2)

Because the matrix is reshaped and then split, the time
intervals between each row are the same, i.e., n* for Reshape
Method 1 and for n/n* Reshape Method 2.

B. Reshape Method 3: Reshape and Split Based on
Lags

However, the “OR” rule can also cause problems. If
most combined rows have an extreme value, the “OR”
rule can cause an imbalanced issue where the reshaped
extreme matrix is much larger than the normal matrix.
For example, D[, cnc_reshape Nas many more rows than

normal—reshape- VMICE may not have enough data to predict
missing values if a matrix has a small number of rows. To
address this issue, we propose Reshape Method 3 as shown in

Figure 4.

A chosen extreme value detection algorithm should be able
to classify enough records (i.e., rows) from the original matrix
as normal and extreme values for MICE data imputation and
the reshape method should not change the ratio between ex-
treme values and normal values to avoid producing imbalanced
extreme and normal matrices. To achieve these goals, we
propose Algorithm 1 to reshape and split the sensor data.

Algorithm 1 Reshape Method 3 used by LGDI

: Input: D

: Output: N and F

: Flag < SPOT (D)

n"™* + Autocorrelation(D)

D < Reshape_Method2(D,n'*)

: DL «+ tile(D, (n'*, 1))

DL <+ remove nrf* duplicates from DL

: DN « hstack(D,DL)

: N+ [ and F « []

: row_index < 0

: while row_index < n do

if Flag[row_index] = 0 then
N.append(D N [row_indezx))

else if Flag[row_index] =1 then
E.append(D N [row_index))

end if

row_index < row_index + 1
17: end while
18: Return N and E

© 0 N U AW

— = = = = s =
AN A
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Fig. 3: The Large Data Gap Imputation (LGDI) Frame-
work, which uses reshape, extreme value separation, and data
transformation operations, can enhance correlations between
missing and observed data.

Here N denotes Dyormal—reshape and E  denotes
Deztreme—reshape.- The algorithm takes the original n by m
matrix D as input and returns normal value and extreme value
matrices. In this algorithm, compare to Fig. 4,

e Line 3 is Step 1. An extreme value flag vector should
be created to mark if the current row of the original
matrix is considered extreme. SPOT is a threshold-based
algorithm and can label extreme values in streaming
sensor data [37]. SPOT can be replaced with other similar
extreme value labeling algorithms;

e Line 4 -5 is Step 2. Reshape Method 2 introduced Section
III 2 is applied to split each column of the original matrix
into n/* chunks. n’* is calculated based on autocorrelation
values. These chunks are combined horizontally to create
a reshaped matrix. The reshaped matrix will be 7= by
m * n'*;

e Line 6 is Step 3. The reshaped matrix is copied n'* times
and combined vertically to be the initial lagged matrix.
The lagged matrix will be n by m * n'*;

e Line 7 is Step 4. The lagged matrix is compared with

Original Matrix

m

Step 1: Create flag
column

Extreme Event Flag Column

Lagged Matrix

Copy

S

2

ep 3: Make n** Copies to be initial Lagged Matrix
‘ Duplicatcl

Driginal Matrix

vi1
v21

Step 4: Compare with original matrix
and remove duplicate chunks

A New Matrix

T
Step 5: Combine original matrix with lagged matrix

70|;iginal Matrix Lagged Matrix

c
=
=
<]
o
Qo
En
[
-
(=
o
>
w
o
=
o
i
s
x
w

Step 6: Split the new
matrix into two Extreme
matrices based on flag | Value Matrix

column

Normal Value
Matrix

Fig. 4: In Reshape Method 3, an extreme value flag column
is created to denote whether a row is considered extreme.
A new matrix is created by combining the original matrix
with a lagged matrix. The lagged matrix can be created by
repeating Reshape Method 2 n’* times and removing the
duplicate section in the lagged matrix. The duplicated sections
are highlighted as orange color and should be removed because
the repeated observed and missing values can mislead machine
learning imputation results.
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the original matrix row by row. The repeated elements
should be removed and the lagged matrix will be n by
(m*n'™* — )i

o Line 8 is Step 5. A new matrix is created by combining
the original matrix with the lagged matrix. The new
matrix will be n by m + (m *n’* — 7 );

o The output N and E matrices are initialized, i.e., assigned
empty arrays, at line 9.

e Line 10 - 17 is Step 6. The new matrix is split into
extreme and normal value matrices based on the extreme
flag vector created at Line 3.

Instead of reshaping the whole matrix, Reshape Method 3
creates a new matrix by combining the original matrix with a
lagged matrix. The original matrix is » by m and each column
is split into n'* chunks. The lagged matrix is 7= by m *
(n* —1). It is m = (n’* — 1) because the duplicate chunks are
removed. The key idea of Reshape Method 3 is to create a new
record including records happening before or after the original
record. These new records are grouped based on the extreme
value concept. According to our experiment results, Reshape
Method 3 can improve data imputation accuracy compared to
the original MICE algorithm.

C. Combine Extreme and Normal Value Prediction and
Reverse Reshape

After the data is reshaped and split into extreme and normal
matrices as shown in Figure 4, two MICE models will be
built to predict missing values. Then the extreme and normal
matrices do not have any missing values after this step. These
two matrices should be combined following the order or the
“new matrix” shown in Figure 4 and the “original matrix” can
be extracted from the “new matrix.”

D. Data Transformation and Back Transformation

Data transformation can potentially improve the accuracy
of the regression model used in MICE to predict the missing
values. For example, a Box-Cox transformation can be applied
to transform a variable with a non-normal distribution into
a variable with a normal distribution. This is important for
machine learning models because input features or activation
potential of a neural network last layer are usually expected
to be independent and follow normal or nearly normal dis-
tribution [40]. Non-normal distribution data can violate this
and cause negative impacts on the performance. The data back
transformation formula should be applied based on the selected
transformation method in the data transformation step.

V. EXPERIMENT RESULTS
A. Experiment Data

To demonstrate the application of LGDI to a real-world
data set, we present the case of gap filling missing data
in environmental sensor data. The data used in this work
were collected from three water quality monitoring stations
in three streams in the Lake Champlain Basin of Vermont
in the northeastern United States. Data were collected from
March to November in 2017 and 2018. Hungerford Brook

(43.8 km?; 44.918403°N, 73.055664°W) is a primarily agri-
cultural watershed. The Potash Brook watershed (18.4 km?;
44.4443318°N, 73.2144828°W) is primarily characterized by
urban and suburban development. Wade Brook (16.7 km?2;
44.864468°N, 72.552904°W) is a primarily forested headwater
watershed. Each watershed site has different characteristic
dynamics of streamflow and water quality and thus represents
three cases where variables have different temporal dynamics
and degrees of correlations between variables. We note Potash
Brook, being an urban/suburban stream is generally the most
challenging of the three sites for any type of predictive data
analysis given the highly varied environmental processes at
work in a human-modified watershed system.

The dataset includes stream discharge (streamflow), water
quality, and solute parameters and meteorological parameters
measured continuously every 15 min by an array of in situ
sensors. In total, the experimental dataset includes 19 variables
besides the timestamp. In-stream water quality measurements
were measured using a YSI EXO2 water quality sonde (YSI
Incorporated, Yellow Springs, Ohio, United States). Discharge
data (m?/s) were acquired from a U.S. Geological Survey
gaging station. Solute concentrations were estimated using
s::can spectro::lyser UV-Visible spectrophotometers [41], [42]
where available (Hungerford Brook Station 04293900), or
calculated from stage-discharge rating curves Meteorological
parameters were measured using a HOBO RX3000 weather
station (Onset Computer Corporation, Bourne, Massachusetts,
United States). Meteorological data were originally recorded
every 5 min, but were aggregated to 15-min intervals to har-
monize data with in-stream measurements. Occasional sensor
malfunctions or power loss led to irregular data gaps in all
time series. More information on these catchments and data
collection methods are reported in [41], [43].

This dataset is representative of the type of high-frequency
water quality and quantity monitoring stations that are in-
creasingly becoming available as part of next-generation,
national environmental monitoring efforts such as the National
Ecological Observatory Network (NEON) [44] and the U.S.
Geological Survey Next Generation Water Observing System
(NGWOS) [45].

B. Experiment Results and Analysis

Given the importance of the streamflow (discharge) pa-
rameter for environmental monitoring, we consider this our
primary variable of importance for testing imputation of large
gaps in this proof of concept application. Though the original
sensor data set includes missing values, we pre-processed
the data to remove records where streamflow or all sensor
variables were missing to test the application of the LGDI
framework. To simulate large gaps in the sensor data, we
randomly added 30% missing values to the original sensor
dataset and had the streamflow variable with a continuous
20% missing value gap (i.e., about 30 days of missing data)
for all data imputation algorithms. For consistency, we used
a Gradient Boosting Regressor [46] as the kernel for all the
MICE models. We applied a 5-fold cross validation approach
and calculated R? values. The hyperparameters are calibrated
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with the gridsearchcv function and a 5-fold cross-validation
splitting strategy.

Splitting the data into extreme and normal value regimes
was done by applying a recursive digital filter technique
commonly used in hydrology to split streamflow data into
extreme and normal values (HydRun) [47]. Extreme values
in these datasets are largely driven by storm events, which
cause streamflow to increase for a period of hours to days and
eventually return to lower base flows. HydRun detects these
extreme values using base flow separation and recession anal-
yses. This data splitting approach may not be appropriate for
non-hydrological data, and alternative approaches should be
chosen based on commonly used algorithms within a domain
or field, and/or based on measures of the data distribution. The
separation results for our dataset are displayed in Figure 5.

—— Streamflow
Threshold
2.0
£
t 1.5
2
=
=
E1.0
o
&

o
w

0:0 ) \WJ\JU)\JM \\

2017-11-09 2017-11-13 2017-11-17 2017-11-21 2017-11-25 2017-11-29
Time

Fig. 5: An example of how observed streamflow in our exper-
imental dataset (blue line) was split into extreme and normal
values using a recursive digital filter technique (HydRun).
The orange line is the threshold between normal and extreme
values. All values above the threshold are treated as extreme
values and all values below are treated as normal values.

Extreme values are decided by their probabilities going to
happen. In Fig. 5, spike values are extreme values because
most other values are close to 0. The orange threshold line
is drawn based on the data distribution. All values above the
orange line have a much smaller chance to happen compared
to the values below the orange line.

We found that splitting the data into extreme and normal
values and imputing missing values for these datasets sepa-
rately as proposed in the LGDI framework improved accuracy.
Table I shows the large gap missing data imputation R?
accuracy comparisons between using a MICE model trained
on the whole dataset versus a MICE model trained on just
the extreme values. The latter model was more accurate (i.e.,
higher R? value) at each of the three stream monitoring
sites. We surmise that the model trained on the whole dataset
performed worse because it was unable to capture the periodic
peak forming behavior in streamflow associated with storm-
induced high flow events (Figure 5). Conversely, a model
trained only on the extreme values is better able to capture
these commonly occurring patterns. We also compared the
overall accuracy between a single MICE model (see Table II
“Original MICE” column) and predictions from normal and

TABLE I: Comparison of imputation model accuracy (R2)
between a MICE model trained on the whole time-series
dataset and a MICE model trained only on the extreme values
of the dataset.

Site Original MICE | Extreme Value MICE
Wade 0.4642 0.5847
Hungerford | 0.6380 0.6520
Potash 0.1387 0.3120

extreme MICE models (see Table II “Extreme and Normal
Value Split” column) and again found that evaluating extreme
values separately improved the accuracy of the imputation
model. We note that R? values for Potash Brook are generally
substantially lower than Hungerford and Wade Brook, which
is likely associated with the urban nature of Potash Brook wa-
tershed, where streamflow is heavily altered by practices such
as stormwater management, making prediction of streamflow
from hydrometeorological data alone challenging.

We compared the results of missing data imputations that
used either the original MICE approach, only Reshape Method
1, only Reshape Method 2, or only Reshape Method 3. When
we imputed missing data on a sensor time-series dataset
without large continuous data gaps (i.e., smaller than 5%
missing data gap for each variable), both reshaping methods
improved the imputation model accuracy over the original
MICE approach by 15 to 88%, depending on the stream
monitoring site (Table III). When comparing the three re-
shaping methods, we found that Reshape Method 1 was more
accurate than Reshape Method 2 and Reshape Method 3 at all
stream monitoring sites, though increases in accuracy (around
5 to 10%) were minor relative to the improvement over not
reshaping the data prior to imputation using MICE (Table III).
Reshape Method 1 was more accurate than Reshape Method
2 and Reshape Method 3 because there is a lower probability
that the reshaped data will have a combined row with many
missing values of the same variable with smaller data gaps.
Additionally, Reshape Method 1 creates new records with
smaller time lags compared to Reshape Method 2 and Reshape
Method 3. Conversely, when we imputed missing data on a
sensor time-series dataset with large continuous data gaps,
Reshape Method 2 and Reshape Method 3 were more accurate
than Reshape Method 1 by 10% to 49% (Table II). This is
because shorter gaps will lower the chance that a combined
record has many missing values of the same variable. As such,
our results demonstrate that reshaping time-series data prior to
imputation of missing values using MICE improves the model
accuracy substantially, and the Reshape Method 2 can further
increase model accuracy on time-series data sets with large
continuous data gaps. In Table III, Reshape Method 3 was
more accurate compared to Reshape Method 2 (around 1% to
4%). This is because Reshape Method 2 and Reshape Method
3 used the same method to reorganize the data and Reshape
Method 3 also split data into normal and extreme values, which
helped machine learning models to treat data with different
distributions differently.

Our experiment also demonstrated that transforming data
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TABLE Il: Comparison of imputation model accuracy (R?) using different strategies to improve the accuracy of the original
MICE model on a time-series dataset with large continuous missing data gaps. LGDI is the Large Data Gap Imputation

framework we propose here.

Site Original MICE | Extreme and Normal Value Split | Data Transformation | Reshape Method 1 | Reshape Method 2 | LGDI

Wade 0.4642 0.5542 0.5798 0.4179 0.5015 0.6247

Hungerford | 0.6380 0.6882 0.6812 0.6113 0.6731 0.7859

Potash 0.1387 0.3165 0.3496 0.3055 0.3857 0.4507
TABLE Ill: Comparison of imputation model accuracy (R?)

using different methods on a time-series dataset without large
continuous missing data gaps.

Site Original MICE | Reshape Method 1 | Reshape Method 2 | Reshape Method 3
Wade 0.5291 0.9964 0.9319 0.9407
Hungerford | 0.7956 0.9942 0.9128 0.9201
Potash 0.7583 0.9798 0.8917 0.9317

for normality can improve imputation model accuracy. We
transformed our time-series data with large continuous data
gaps prior to imputation using the Box-Cox transformation.
The transformation improved the MICE model accuracy by 7
to 150% depending on the stream site (Table II). Thus, we
suggest that data transformations to improve normality and
stabilize variance should be explored prior to imputing missing
data using MICE.

Our proposed data imputation framework, LGDI, (Figure 3)
combines the strategies we tested separately here and includes
data transformation(s), a reshaping method, and splitting the
dataset into extreme and normal values. Currently, Reshape
Method 3 is used in LGDI, though future work will improve
upon this method to reduce the lagged matrix size without
affecting accuracy. The LGDI framework increases the ac-
curacy of the MICE model by 23 to 225% depending on
the stream monitoring site, an improvement of 5 to 11%
over the next best single strategy at each stream monitoring
site (Table II, Figure 7a, and Figure 7b). For comparison
purposes, we also analyzed imputed values predicted by LGDI
against those generated by the GAIN and original MICE
method for each site. Parts of the Hungerford site comparisons
results are visualized in Figure 7a. Compared to other data
imputation algorithms, LGDI generally predicted values that
were less varied than MICE and also better captured peak
dynamics than the MICE or GAIN method. Based on our
observations, the MICE imputation results usually have more
peaks for extreme data compared to LGDI. This is because the
input data includes both extreme and normal events and their
distributions can be different. MICE cannot account for the
data distribution differences and overreacts to the data changes
on the data peaks. On the other hand, LGDI splits data into
extreme and normal categories, which mitigates the difficulties
of extreme value imputation. The predictions of LSTM-RNN
data imputation method [26] are smoother compared to LGDI.
However, the differences between the estimated missing values
and observed data can be large when a missing data gap size
is very large. Besides these, we do note that capturing peak
magnitude varied across the three sites with predicted values
generally being biased low for Wade Brook and Potash Brook.

We also conducted experiments to test how the size of the

data gaps affected imputation model accuracy using different
data imputation methods, i.e., original MICE, our proposed
LGDI, GAIN, MRNN, LSTM-RNN, and linear interpolation.
We first randomly added 30% missing values and then created
a continuous gap for a variable separately for all three stream
monitoring datasets. Data imputation accuracy tended to de-
crease as a function of data gap size across all imputation
methods (Figure 6a, 6b, 6c). Linear interpolation tended
to perform worse than the other methods, i.e., the average
R? value for all gap sizes and stream sites is 56% lower
compared to LGDI, though accuracy was relatively stable as a
function of gap size. With the exception of the large gap sizes
(i.e., > 30%) in the Wade, Hungerford, and Potash datasets,
our LGDI framework had greater imputation accuracy than
other methods we tested. Imputation accuracy using the LGDI
framework was on average 7.2% greater than the next best
performing method across all three stream sites. For large gap
sizes (i.e., > 30%), the LGDI framework outperformed the
next best method by 5% to 11% depending on the stream
monitoring site.

We conducted experiments to study if LGDI can be applied
to other data imputation methods and MICE with traditional
regression models as kernels to improve the imputation results.
Wade, Hungerford, and Potash sensor datasets were used with
30% missing values overall and 20% continuous missing gap
in the streamflow variable. According to the R? values in
Table IV, LGDI is promising to improve the accuracy of
other data imputation methods and MICE with traditional
regression models as kernels too. For example, after applying
the LGDI framework, GAIN is averagely improved 22.8%,
MRNN is averagely improved 19.2%, and LSTM-RNN is
averagely improved 13.6%.

VI. CONCLUSION AND FUTURE WORK

Our experimental results demonstrate that our proposed
multivariate data imputation framework, LGDI, improves the
accuracy of data imputation using a MICE approach. While
imputation accuracy tended to decrease with the duration of
the gap, the LGDI framework had greater imputation accuracy
than other imputation methods. Thus, we recommend our
LGDI framework for imputing missing data on multivariate
datasets that have large continuous data gaps. Our experiment
results demonstrate a straightforward approach to the chal-
lenge of imputing missing data from a sensor station without
relying on a neighboring station or a separate physical-based
model. We anticipate the scenario we simulated of imputing
one variable with a large missing gap using multivariate sensor
data with random gaps is becoming increasingly common with
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TABLE IV: Comparison of imputation model accuracy (R?) with and without LGDI.

Site Linear | KNN MICE-SVR | MICE-Decision Tree | MICE-Random Forest | GAIN MRNN | LSTM-RNN
Wade without LGDI 0.3626 | -1.0948 | -2.067 0.084 0.5249 0.4110 | 0.4786 0.5913
Wade LGDI 0.0804 | 0.0822 0.0657 0.2482 0.5398 0.6001 | 0.6449 0.6714
Hungerford without LGDI | 0.5079 | 0.3764 0.3913 0.332 0.6043 0.4842 | 0.6908 0.7087
Hungerford LGDI 0.3219 | 0.4313 0.5774 0.3053 0.6239 0.5408 | 0.8725 0.7615
Potash without LGDI 0.2772 | -0.392 -2.7949 0.1561 -0.0055 0.3189 | 0.4292 0.3448
Potash LGDI 0.2823 | -0.3145 | -0.3921 0.2943 0.4562 0.3533 | 0.4125 0.4133
Days
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Fig. 6: Two numerical solutions: Imputation model accuracy
(R?) as a function of the data gap size across three time-series
datasets from different stream monitoring sites using different
data imputation methods.

multi-sensor monitoring sites used in a variety of environmen-
tal domains.

The tradeoff for improved accuracy with this proposed
framework is the extra calculations and computation time
required. For example, the new matrix shown in Figure 4
is much larger than the original matrix and MICE models
will consume extra time for missing value estimations. Future
work will improve the Reshape Method 3 to reduce the lagged
matrix size without affecting accuracy.
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